GBPPR "Zine

e
“mﬂ\m\

Issue #22 / The Monthly Journal of the American Hacker / January 2006

Don't get it —> <- Get it
"Democracy, immigration, multiculturalism. Pick any two."

—— James C. Bennett, at the end of a post on Australia's Sydney beach riots.

Table of Contents

+ Page 2 / Introduction to Software Descriptions / #1A ESS
¢ It's a little more complicated than a Speak & Spell.

+ Page 51/ Portable Video Camera Viewer
+ Device to visually test a video camera'’s output signal.

+ Page 57 / Micky "Cheesebox" Callahan
+ Excerpt from the book Cheesebox Callahan.

+ Page 64 / Using the Alternative Enhanced Redirect Service Data Validation Tool
+ Update your business line routing in case of an emergency.

+ Page 70 / How to Break Into Medium-Security Installations
+ Old file from the local BBS scene.

+ Page 78 / Nortel DMS-100 Input/Output Device Maintenance Overview
+ Input/output device maintenance overview under a DMS-100.

+ Page 91 / Motorola Bag Phone Handset Control
+ Control a Motorola cellular phone's handset with a simple PIC circuit.

+ Page 106 / Bonus
+ Wanted.

+ Page 107 / The End
+ Editorial and rants.

Introduction to Software Descriptions / #1A ESS

AT&T PRACTICE AT&T 231-045-000

SPCS Issue 3, June 1984
—
INTRODUCTION TO SOFTWARE DESCRIPTIONS
*
2-WIRE 1 AND 1A “ESS '* SWITCHES
—
CONTENTS PAGE CONTENTS PAGE
~ GENERAL 2 INTRODUCTION 8
INTRODUCTION 2 MACHINE INSTRUCTIONS 8
PURPOSE AND CONTENTS OF 1/1A ESS 1A PROCESSOR ASSEMBLY LANGUAGE 10
— SWITCHES SOFTWARE SECTIONS 3
MACROS 10
A. Section Numbering Plan 3
ESS SWITCH PROGRAMMING LANGUAGE
B. Program Coverage 3 (EPL) 11
C. Support Documentation 3 DIAGNOSTIC LANGUAGE (DL-1) 1
SCOPE OF SECTION 3 DATAPOOL n
ATTACHED PROCESSOR SYSTEM 3 PROGRAM DEVELOPMENT PROCESS 12
CARRIER INTERCONNECT 3 OFFICE DATA 12
P
INTRODUCTION TO PROGRAM CONTROL 4 PROGRAM LISTING 13
GENERAL 4 4. PROGRAM STRUCTURE OVERVIEW 14
MEMORY 4 GENERAL 14
AUXILIARY STORAGE 5 INTERRUPT SYSTEM 14
BUS SYSTEMS 5 INPUT/OUTPUT MAIN PROGRAM 14
CENTRAL CONTROL 5 A. Introduction 14
- A. General 5 B. Characteristics 15
B. Instruction Execution 5 C. Organization 16
T C. Data and Address Generation 6 5. BASE-LEVEL PROGRAMS 16
t
D. Processing 8 GENERAL 16
— PROGRAMMING LANGUAGES AND DOCU- MAIN PROGRAM 17
- MENTATION 8
6. ORGANIZATION OF 1/1A ESS SWITCHES
* Trademark of AT&T Technologies SOFTWARE SECTIONS 17
—

AT&T TECHNOLOGIES, INC. - PROPRIETARY

Printed in U.S.A.

Page 1

Introduction to Software Descriptions / #1A ESS

AT&T 231-045-000

CONTENTS
GENERAL

FUNCTIONAL ORGANIZATION OF 1/1A ESS
SWITCHES SOFTWARE DESCRIPTIONS

DESCRIPTION OF CONTENTS—1/1A ESS
SWITCHES SOFTWARE SECTIONS

SECTION-TO-PIDENT
INDEX

CROSS-REFERENCE

PIDENT-TO-SECTION CROSS-REFERENCE

INDEX
7. ABBREVIATIONS AND ACRONYMS
Figures
1. Central Control With External Communities
2. Central Control Overview
3. Decode, Control, and Address Formation
4. Operation Circuitry
5. Program Development Process
6. Program Control Plan
7. Input/Output Main Program
8. Organization of 1/1A ESS Switches Soft-
ware
Tables
A. Interrupt Levels
B. Description of Contents—1/1A ESS
Switches Software Sections
C. Section-to-Pident Cross-Reference
D. Pident-to-Section Cross-Reference

Page 2

PAGE

17

19

16

23

33

50

1. GENERAL
INTRODUCTION
1.01 This section provides an introduction to the 1
and 1A ESS switches software and the Soft-
ware Descriptions which describe the functions of
the software programs. It provides information that
is common to both the 1 and 1A ESS switches and in-
formation that is peculiar to the 1A ESS switch only.
Any information that is peculiar to a 1A ESS switch
is noted as such. Information that is peculiar to the
1ESS switch is not given.

1.02 This section is reissued for the following rea-
sons:

(a) Toinclude a brief description of these sections
in Table B:

o 231-045-440
o 231-045-445
e 231-045-455
o 231-045-460
e 231-045-490

(b) To delete from Table B sections 231-045-425
and 254-280-240

(¢) To delete major portion of Part 5
(d) Figures 8, 9, and 10 removed
(e) Addition to old Fig. 11 now Fig. 8

(f) New pidents are added and others deleted from
Table C

(g) Obsolete Table D completely revised

(h) To add information concerning the attached
processor system using the AT&T 3B20D

Model 2 computer

(i) To add information concerning the Carrier
Interconnect.

Change arrows are used to denote significant
changes.

Introduction to Software Descriptions / #1A ESS

1.03 Part 7 of this section provides a defined list of
abbreviations and acronyms used in this sec-
tion.

PURPOSE AND CONTENTS OF 1/1A ESS SWITCHES SOFT-
WARE SECTIONS

A. Section Numbering Plan

1.04 Software sections related to the 1/1A ESS
switches are designated by the following num-
ber plan:

NUMBER DESCRIPTION

254-280-XXX 1A processor programs/reference
manuals common to 1A ESS
switch and other systems (eg,
4ESS switch).

231-045-XXX Software Descriptions which pro-
vide information that is common
to both 1 and 1A ESS switches.
Information that is peculiar to the
1A ESS switch only is also in-
cluded when necessary. Informa-
tion that is peculiar to 1ESS
switch only is not included.
231-310-XXX Software Descriptions applicable
to 1A ESS switch only.

The last three digits in each series further designate
the functional positions of the document within the
overall 1/1A ESS switches software coverage. A com-
plete listing of the documents relative to 1/1A ESS
switches software is given in Part 6 of this section.

B. Program Coverage

1.05 Software Descriptions provide high-level de-

scriptions of major software functions. Many
of the documents encompass two or more separate
programs when these programs together perform the
major functions to be described. The purpose of each
document is to provide:

(a) The purpose and structure of the program(s)
(b) Explanations of the primary functions at each

appropriate level within the program struc-
ture

ISS 3, AT&T 231-045-000

(c) Identification of interfacing programs and
interprogram relationships.

C. Support Documentation

1.06 In addition to the above, each description

identifies the pertinent program entry/exit
points to enable the reader to easily access the pro-
gram listing for all further level of detail required.

1.07 Support documents (sections) are provided to

serve as reference manuals for all source lan-
guages used to develop these programs, description of
the program listings, various library listings, and
other reference manuals.

SCOPE OF SECTION

1.08 As a high-level introduction to 1/1A ESS
switches software, this section provides a
brief description of:

(a) The 1A processor central control with empha-
sis on execution circuitry and registers which
are directly referenced in program instructions.

(b) The source programming languages, including
the assembly process and program listings.

(¢) The overall system program structure of the

1/1A ESS switches. Cross-reference lists of all
programs covered in this series with the sections
in which the programs are described are also pro-
vided.

ATTACHED PROCESSOR SYSTEM

1.09 #The attached processor system is used to re-

place the file store. The attached processor
system consists of a 3B20D Model 2 computer using
a 160 Megabyte disk system and an attached proces-
sor interface frame.

CARRIER INTERCONNECT

1.10 The Carrier Interconnect feature provides in-

ter-LATA (local access and transport area)
carriers and international carriers access to local
exchanges via 1 and 1A switches. Basically, the Car-
rier Interconnect feature provides the data and pro-
gram logic necessary to route calls to and receive
calls from inter-LATA carriers. The LATA is a de-
fined geographical area where equal access and of-

Page 3

Introduction to Software Descriptions / #1A ESS

AT&T 231-045-000

fices and/or access tandems can provide an inter-
LATA carrier/international carrier access to the
local exchange. Calls between LATAs are handled by
an inter-LATA carrier. This feature is not provided
for HILO networks.4

2. INTRODUCTION TO PROGRAM CONTROL
GENERAL

2.01 Program control of the 1A ESS switch is per-

formed by the 1A processor which is made up
of four communities of external units and a central
control unit (Fig. 1). Private-access buses connect
each community with the central control.

2.02 Two of the communities provide the primary

memory for the central control. The program
store memory contains some fixed control data and
the bulk of the program instructions executed by the
central control. The call store memory contains fixed
control data and record type data which may be in-
terrogated and updated during program execution.
The call store memory contains more fixed control
data (eg, translation data) than program store mem-
ory. High speed storage is provided on disk in the file
store or attached processor system. Additional bulk
storage is provided by tape transports in the auxil-
iary data system.

2.03 The auxiliary unit community is made up of

units which are capable of communicating
with program store and call store communities via
central control bus access circuitry. The units control
access to bulk memory and data links. The peripheral
unit community consists of the switching equipment
and associated access control circuitry. It includes
the TTY units, the Master Control Center (MCC), the
processor peripheral interface (PPI), and various
types of network, scanner, and signal distribution
units.

MEMORY

2.04 The program store and call store memory are

available in 65K word stores and 256K word
stores. The following is a brief description of the 65K
word stores. (A similar description for 256K stores is
provided in section 254-201-015.) The program stores
and call stores are physically identical memory
stores. The capacity of each store unit is 65,536 twen-
ty-six bit words (24 bits of data and 2 bits for parity).
Each store unit consists of two modules. The access
circuitries for program store and call store are basi-
cally identical with the exception of the size of the
reply bus. The program store reply bus which concur-
rently accesses both modules of a program store unit
on a read order returns 54 bits of information (48
data bits, 4 parity check bits, an all-seems-well bit,

CALL
STORE

CALL
STORE BUS

PERIPHERAL

PERIPHERAL | UNIT BUS CENTRAL UNIT BUS AUXILIARY
UNITS CONTROL UNITS

AUXILIARY

PROGRAM
STORE BUS

PROGRAM
STORE

Fig. 1 —Central Control With External Communities

Page 4

Introduction to Software Descriptions / #1A ESS

and an all-seems-well failure bit). The call store reply
bus which accesses one module of a call store unit on
a read order returns 28 bits of information (24 data
bits, 2 parity check bits, an all-seems-well bit, and an
all-seems-well failure bit). The program stores are
not duplicated, but are all backed up on disk in the
file store or attached processor system. Besides the
program store units required to store the generic pro-
gram, two program store units are designated as
spares. The call stores contain transient call-related
data and semipermanent control data such as trans-
lations and data tables. The transient data is usually
duplicated in another store. Translations and data
tables are located in a protected area of the call store
which requires a special instruction to overwrite.
This data is not duplicated but is backed up on disk
backup.

AUXILIARY STORAGE

2.05 Bulk storage for the 1A processor is provided

on magnetic disk and tape units accessed by
the auxiliary unit bus system. This bus system has
two terminations:

(a) One at a disk backup or attached processor
system.

(b) The other at a data unit selector which, in
turn, interfaces with the tape transports.

2.06 The file stores or attached processor system is
used primarily for storage of:

(a) Nonduplicated program and call store con-
tents

(b) Infrequently used programs

(¢) Data which is paged into program and call
stores when required for execution.

The information stored on tape serves as a final
backup for the 1A ESS switch. All the information
that is necessary to resume normal call processing,
after a severe interrupt, is stored on tape. This infor-
mation includes translation data, parameter data,
library programs, program store contents, and essen-
tial data in call stores.

ISS 3, AT&T 231-045-000

BUS SYSTEMS

2.07 The four major bus systems of the 1A proces-

sor are shown in Fig. 1. Two-way communica-
tions between central control and all units are
provided on two separate buses:

(a) A write bus to send data from central control
to a unit

(b) A reply bus on which to receive data at central
control.

In order to address any particular unit, all address
buses include an enable code field designated as the
K-code, which specifies the unit being addressed. The
remaining bits on this bus then specify the location
within the unit and the type of operation. For exam-
ple, the call store address field includes:

(a) A 5-bit K-code which specifies one of the call
store codes

(b) A 16-bit address which specifies one of 32,768

words in this store module. Each bus group
includes control buses not shown in Fig. 1 for
transfer of maintenance, control, and status infor-
mation.

CENTRAL CONTROL
A. General

2.08 Each 1A ESS switch office has two central

control frames. These are duplicates of each
other and operate in step, one in the active mode and
the other in the standby mode. When a mismatch of
the data being processed is detected, the one contain-
ing the error condition can be repaired while the
other central control continues to process all calls.
The primary function of the central control equip-
ment is to read the program instructions from memo-
ry, to decode them, and to execute them.

B. Instruction Execution

2.09 An outline of the basic components of the cen-

tral control involved in the execution of pro-
gram instructions is shown in Fig. 2. Instructions are
read from order memory (order and program instruc-
tions are used interchangeably) which is normally in
the program store (although the central control is
capable of reading orders from the call store). The

Page 5

Introduction to Software Descriptions / #1A ESS

AT&T 231-045-000

central control continues to read instructions until a
transfer in control is encountered, in which case
reading continues with the destination address of the
transfer. The instructions are either 1-word or 2-
word instructions.

2.10 The decode, control, and address formation

circuitry decodes the binary information in
the order word and controls the execution according-
ly. Various fields of information (groups of bits) are
sent to appropriate circuitry within the central con-
trol. A more detailed diagram of this circuitry is in
Fig. 3.

ORDER
MEMORY

C. Data and Address Generation

The execution of most 1A ESS switch orders
requires the generation of a data word or a
memory address. Several factors influence this ad-
dress or data generation. In general, a data field in
the order is added to the contents of an index register
in the index adder circuitry. The results replace the
contents of the data address register (DAR) (see Fig.
3). If this result is to be used as data, it is sent directly
to the operation circuitry. If the result is used as an
address, it is interpreted by the memory address de-
coder which determines the memory community to
be addressed.

2.1

DATA
MEMORY

(MEMORY)
B REGISTER

(CONTROL DATA)
DECODE, CONTROL, (DATA !
AND ADDRESS (WORD) ARGUMENT)
FORMATION (RESULT)
INDEX (REGISTER OPERATION
(FIGURE 3) {) ARGUMENT) (FIGURE 4)
¢
‘ & i (OPTIONS) —>1 FLIP/FLOP
] — P REPLY
ORDER DATA MASKED
MEMORY MEMORY BUS

ADDRESS ADDRESS

UNMASKED
BUS

L (LOGIC REGISTER) JQ——

T L SHADOW

7 INDEX REGISTERS
(F,6,J.K,X,Y,Z)

AND SHADOWS

1*—————————-[]7 (TOP STACK REGISTER)I}qh————

PERIPHERAL CONTROL |
REGISTERS

0ouTPUT MASKED
T0 P.U. BUS

Fig. 2—Central Control Overview

Page 6

Introduction to Software Descriptions / #1A ESS

ISS 3, AT&T 231-045-000

P
ORDER
MEMORY
(CONTROL) (MASK. DISPLACEMENT)
ORDER BUFFER # (CONTROL DATA)
(OP. (DATA (INDEX)
CODE) FIELD)
ORDER
DECODER INDEX ADDER
CONTROL
— (RELATIVE O Tt & (WORD)
ADDRESSING) (TRANSFER)
(S OR W OPTION)
MASKED BUS
v
DATA
MEMORY
ADDRESS
4‘—_ UNMASKED BUS
- ORDER FETCH ADD 1 OR 2
(A OPTION)
CONTROL (ADDRESS CIRCUIT | MASKED BUS
POINTER >
UPDATE)
(J OR T OPTION)
MASKED BUS
- ORDER
MEMORY
ADDRESS

Fig. 3—Decode, Control, and Address Formation

Page 7

Introduction to Software Descriptions / #1A ESS

AT&T 231-045-000

D. Processing
General

2.12 Two internal central control buses, the
masked bus and the unmasked bus, are the
paths for information enroute to and from central
control registers. The central control registers are
fast-access flip-flop memory and may be accessed
several times during the execution of a single pro-
gram instruction. They consist of 24 bits which are
numbered from the right, beginning with the least
significant bit 0 to the most significant bit 23.

General Purpose Registers

2.13 The index registers, designated as the F, G, J,

K, X, Y, and Z registers, are the general pur-
pose registers which can be specified as the source or
destination of an operation as well as a source for
indexing in address information. The logic register
serves as a special purpose register to receive all pe-
ripheral unit replies and to perform a specific func-
tion in certain logic operations.

Special Purpose Registers

2.14 Some of the special purpose registers and
their functions are:

(a) Data Buffer Register B: A register whose con-
tents always reflect the last data word read
from or written into the data memory.

(b) Top-of-Stack Register T: A register which

always contains the top or most recent entry
in the Pushdown Stack, located in the call store,
which is used for program transfers, #but may also
be used for temporary data storage.4

(c) P Register: Peripheral data register (36 bits)
used for transmitting data and instructions to
peripheral units on the peripheral unit write bus.

(d) E Register: A register which registers the
name of the peripheral unit enabled to receive
data.

(e) Control Flip-Flops (CF): Two flip-flops which

are set at the completion of an arithmetic, log-
ical, or #memory-read4 operation to show the re-
sult as positive or negative and homogeneous (all
ones or all zeros) or nonhomogeneous.

Page 8

2.15 The logical or arithmetic functions in the exe-

cution of a program instruction are accom-
plished in the operation circuitry. These functions
may include add, compare, logical product, logical
union, exclusive-OR, rotate, shift, complement,
rightmost-one detection, insertion, or some combina-
tion of these functions. These operations can have
one or two 24-bit arguments (operands), which can
come from a memory location or a data field of the
program instruction and/or a central control regis-
ter. Figure 4 gives a more detailed view of the opera-
tion circuitry and examples of instructions which
utilize the circuitry.

3. PROGRAMMING LANGUAGES AND DOCUMENTA-
TION

INTRODUCTION

3.01 The 1A ESS switch program is derived from
two sources:

(a) Maintenance and administrative programs
developed for the 1A processor

(b) New application programs developed ex-
pressly for the 1A ESS switch.

3.02 This part provides a brief introduction to the

1A processor and the 1A ESS switch program-
ming language and associated documentation. A de-
scription of the program development process is also
provided.

MACHINE INSTRUCTIONS

3.03 Instructions to the 1A processor (machine in-

structions) must ultimately be represented in
binary. These instructions may be two 24-bit words
or one 24-bit word. The primary factor which deter-
mines the length of an instruction is the number of
bits needed to represent the data field and/or the
number of options or additional actions which are
encoded in the instruction.

3.04 Base cycle time of a particular instruction is

the time required by the processor to carry out
the functions specified by the instruction. The 1A
processor is designed to execute instructions in fixed
units of time referred to as processor cycles. PWith
the introduction of fast stores, most 1A instructions
now execute within 700 nanoseconds, even if memory
access is required.4

Introduction to Software Descriptions / #1A ESS

(CONTROL DATA)

ISS 3, AT&T 231-045-000

(AMOUNT) ‘ (24 BIT MASK) (9 BIT MASK FIELD,
RMO SHIFT AMOUNT)
L 3
o ROR SOR
ROTATE SIZE & DISP
REGISTER REGISTER
(SIZE
(CONTROL) DISP)
- (DATA
ARGUMENT) 1 ROT SOT
ROTATE SIZE & DISP (BIT
2 CONTROL TRANSLATOR POSITION)
L ‘m\sx
6 ‘ L
3 MC L
PRODUCT L 8 1
. MASK AND l “
COMPLEMENT
—o
LOGIC AND | LF cn (RESULT)
FUNCTION COMBINE, >
- (L,A,C,P,U,X) MASK
9
(REGISTER AG
ARGUMENT) | 5 ARGUMENT L—
REGISTER
RMO
7 RIGHT-MOST- (DISP)
ONE DETECTOR SDR
— INSTRUCTION: PATHS:
L,LW,SD,SSD 3
(A,C,P,U,X)[W], SEARCH 3,5
S,SS,SZ,PUSH, (T OPTION) 4
PRODUCT MASK 3
INSERTION MASK 8
Q.0c,Qs,0s¢C 2
H,HC 2,10
LA,LWA PRODUCT MASK 1.8
— INSERTION MASK 1,5,8,9
SA 2,8
IF:T MASK OPTION 4,(8,10)
F:T,Z:T 5,7,10,11
- Fig. 4—Operation Circuitry
Page 9

10

Introduction to Software Descriptions / #1A ESS

AT&T 231-045-000

1A PROCESSOR ASSEMBLY LANGUAGE

3.05 The machine instructions are generated by

translation of a set of mnemonic instructions,
designated as the 1A processor assembly language.
This language is used by a programmer to transform
the requirements of a program into the machine in-
structions required to execute the program. After a
program is written in this language, it is input to an
assembly program #which may or may not generate
machine instructions, and if generated, may generate
one or more machine instructions per source
statement.4 A description of the assembly program
and a brief discussion of the overall assembly process
are given in paragraph 3.19.

3.06 In assembly language statements, the opera-
tion of each instruction is coded mnemonically
and the data and instruction addresses are in sym-
bolic form. For example, the mnemonic for the
STORE instruction is simply S. An example is:

S X, SYMADDR

The data word to be stored is in register X and the
address at which the word is to be stored is symboli-
cally encoded as SYMADDR.

3.07 The 1A assembly language contains four

classes of instructions. Each of these classes
and the instructions which fall into each class are
discussed in detail in section 254-280-020 (1A Proces-
sor Assembly Language). These classes are:

(a) General processing instructions, which are for
directing or controlling the 1A processor

(b) Peripheral instructions, which transmit and
receive data between the processor and the
switching system

(e¢) Maintenance instructions, used to test central
control, memory, and the buses

(d) Pseudo-operations, which are used only for
certain directions to the assembler and loader
programs in development of the overall program.
MACROS
3.08 Many similar functions are performed repeti-

tively throughout the 1A processor and 1A
ESS switch software programs. The programming of

Page 10

these functions is simplified by the use of the macros.
A macro is a high-level statement which is translated
by the assembly program into a predefined sequence
of instructions or data. As an example, if the contents
of a memory location (DATA_WORD20) needs to be
added to the contents of another location (OTHER_
LOCATION) and the result stored in a new location
(NEW_LOCATION), the entire operation could be
performed by the following macro call:

ADD DATA_WORD20, OTHER_LOCATION
RESULT=NEW_LOCATION REG=X

The following 1A assembly instructions (and ma-
chine instructions) would be generated by the assem-
bly program:

L X, DATA_WORD20 (Load contents of
DATA_WORD20 in register X)

A X, OTHER_LOCATION (Add contents of
OTHER_LOCATION)

S X, NEW_LOCATION (Store results in
NEW_LOCATION)

If this macro was defined by a programmer for use
in only one program, it is called a programmer-
defined macro and its definition would appear in the
program listing for that program. If the macro is
used in more than one program, it is a system-defined
macro and its definition is in Datapool, a public li-
brary listing (see Datapool, paragraph 3.16). The def-
inition of a macro includes its name, function,
format, explanation of parameters, and the program
listing comments.

3.09 The macro in paragraph 3.08 is a simplified

example. Generally, a greater number of op-
tions in parameters is available, which in turn pro-
vides more diversity in the code which is produced.
Through this diversity, a macro’s usefulness is exten-
sive.

3.10 There are two types of macros which generate
instructions.

(a) General purpose macro: A macro which

generates instructions that perform a com-
mon data manipulation function, eg, IF and LET
macros

11

Introduction to Software Descriptions / #1A ESS

(b) Special purpose macro: A macro which

generates a code that performs a specific func-
tion according to the hardware or software design
of a system, eg, the PRINT, CIN (change in net-
work), and CIC (change in circuit) macros of 1A
ESS switch.

ESS SWITCH PROGRAMMING LANGUAGE (EPL)

3.11 The 1A assembly language was previously de-

fined as a language used by the programmer
(and assembly program) to transform program re-
quirements into machine instructions. The ESS
switch programming language (EPL) is a higher-
level language, with statements closer to English lan-
guage statements. As such, EPL statements may
translate into several machine instructions, meaning
that programming logic takes place on a higher level,
compared to the assembly language where one ma-
chine instruction is generated for each assembly
statement.

3.12 Programs may contain both EPL statements
and assembly language statements inter-
mixed. During assembly of the program:

(1) An EPL compiler will transform the EPL
statement to assembly language statements

(2) The assembly program will then convert these
to the binary encoded machine instructions.

DIAGNOSTIC LANGUAGE (DL-1)

3.13 DL-1 is a macro language that consists of

many individual statements. When these
DL-1 statements are assembled, the results are data
table-driven diagnostic programs that direct diag-
nostic tests to be run on 1A processor equipment. The
diagnostic programs that run on the 1A processor
are, in general, based on repetitive execution of sim-
ple tests involving:

(a) Setting a location to a known value
(b) Reading the value of a location

(c) Comparing the read results with an expected
value.

3.14 Most programs repeat the same type of test
hundreds of times in diagnosis of a particular
unit. The program instructions required to perform

ISS 3, AT&T 231-045-000

each diagnosis of a particular unit differ only in the
location address and the data to be read or written.
Instead of repeating these instructions for each and
every test, the unique portions of each, ie, addresses,
data, and expected results, are referred to as data
tables. Only one set of instructions, called a task rou-
tine, is then provided in the program to execute all
these types of tests.

3.15 The DL-1 macro language is used to generate

these data tables. A DL-1 macro is a high-level
statement which is expanded by the assembly pro-
gram into a predefined data table format. In general,
each DL-1 statement has an associated test routine.
A more detailed description of DL-1 is available in
section 254-280-040 (Diagnostic Language—DL-1
Description 1A Processor).

DATAPOOL

3.16 Definitions and descriptions of data and

macros which are used in more than one pro-
gram pident are not given in each program listing,
but appear in library listings available to all pro-
grams. These listings are designated as Datapool.
Datapool is subdivided into the following sections (li-
braries):

(a) Macro Library: Contains the macro defini-
tions and all names made synonymous with
macro names.
(b) Symbol Library: Contains all other symbol
definitions. This is the larger of the two li-
braries.
3.17 The macro library contains definitions of
macros that are needed by more than one pro-
gram pident. Each macro definition is preceded by a
description which includes:
e Macro name
e Macro function
e Format for calling the macro
e The macro parameters.
A cross-reference section is provided in the macro

library, giving the page and line number of the macro
in the listing.

Page 11

12

Introduction to Software Descriptions / #1A ESS

AT&T 231-045-000

3.18 The symbol library of Datapool contains all

the data definitions used by more than one
pident in the generic program. The symbol library
contains the following:

(a) Memory Allocation Section: $All symbols

requiring memory allocation are defined in
the memory allocation section, even those symbols
which are used by only one pident.4

(b) Symbol Layout Section: $Memory alloca-

tion is not repeated in the symbol layout sec-
tion but other attributes may be added to some
symbols defined in the memory allocation
section.4

(c) Cross-Reference Section: For each sym-
bol, the cross-reference section of this library
includes:

(1) Address (in the case of a symbolic name) or
the value (if a symbolic constant)

(2) Type (item, block, or table, etc)

(3) Attributes which define certain character-
istics of a symbol, such as the number of
bits in an item and its displacement in a word.

The symbol library also contains an equivalent cross-
reference section which is ordered numerically by the
value assigned to a symbol. For a more detailed de-
scription of Datapool, see section 254-280-010
(Datapool Documents).

PROGRAM DEVELOPMENT PROCESS

3.19 The generic program for any ESS switch of-

fice is developed remotely from the ESS
switch office because these offices do not have the
capability of assembling the generic programs. Fig-
ure 5 shows the generic program development pro-
cess. The source language statements, eg, assembly
statements, EPL, DL-1, and macros, form a source
program which is not executable by the 1A processor.
Operation codes and symbolic addresses must first be
translated into binary code. This translation process
is the function of the assembly/compiler program,
designated as the Switching Assembly Program
(SWAP). The input to SWAP consists of the source
program and two sets of Datapool libraries: one set
of libraries containing information for the particular
ESS switch application for which the generic pro-

Page 12

gram is being developed, and one set of libraries con-
taining data common to the 1A processor and
independent of application.

3.20 The assembler translates the assembly lan-
guage statements to machine instructions on
a one-to-one basis. Macros and EPL statements are
first converted to assembly language statements and
then to machine instructions. The primary output of
the assembler is the object program module contain-
ing the executable code. Another output of the assem-
bler is the program listing. The object program
module is then input to the 1A loader program which
loads and links pidents of the program by assigning
program store addresses and resolving all external
pident references. Information from the Datapool
libraries is also used by the 1A loader program to es-
tablish program addressing (relative, vector table, or
absolute) links for transfer and data location.

3.21 Output from a 1A loader program includes the

loader map, available in each ESS switch of-
fice, which is a table identifying the starting address
of the pident, the pident name, and the ending ad-
dress of the pident. The other output from the 1A
loader program is the loader history which is the ge-
neric program information without the office depen-
dent data, and is used as input to the output tape
program to generate a loader output tape. The loader
output tape contains the generic program informa-
tion. A detailed description of the generic program
development and installation is given in section 254-
280-020 (1A Processor Assembly Language).

OFFICE DATA

3.22 The generic tape contains the operational pro-

grams and data which are the same in every
office. In addition to the generic data, all office-
dependent data, unique in each office, must be devel-
oped and installed. Office data includes #the engi-
neered quantities of call registers, trunk registers,
network memory, etc, as well as4 translation data,
which primarily reflects the office equipage and con-
nections in addition to trunks and routing.

3.23 For new central office installations, all office

dependent data is developed by the Parameter
Data Assembler (PDA) and the Translation Data
Assembler (TDA). The PDA and TDA are off-line
processing systems which compile office data re-
quired by the generic program. The PDA compiles
office data such as the number of call registers,

13

Introduction to Software Descriptions / #1A ESS

1A
PROCESSOR
DATAPOOL

LIBRARIES

ESS SWITCH
DATAPOOL
LIBRARIES

SOURCE CODE
PROGRAMS

ISS 3, AT&T 231-045-000

OFFICE
DEPENDENT
DATA

PARAMETER DATA

SWAP 0BJECT 1A LOADER LOADER ASSEMBLER,

ASSEMBLER/ PROGRAM PROGRAM HISTORY TRANSLATION

COMPILER MODULE DATA ASSEMBLER

PROGRAM ADER LOADER

LISTING ,L.ﬂp OUTPUT TAPE
__— L PROGRAM To ESS

SWITCH
OFFICE

Fig. 5—Program Development Process

amount of duplicated and unduplicated call store, etc.
The TDA compiles the translation data needed for a
particular ESS switch office. The output of these
assemblers is placed on tape for input to the 1A ESS
switch memory. The translation data may be altered
by the telephone company after original installation
to reflect changes in line and trunk assignments as
well as routing information via recent change inputs.
However, the parameter data can only be altered by
AT&T.

PROGRAM LISTING

3.24 A program listing is a hard copy record of a

program which describes the objectives of the
program, lists all instructions, and defines all data
unique to the program. The listing is produced by the
assembly program. Each program consists of one or
more subunits called program identifications
(pidents). There are two types of listings: the stan-
dard program listing and the diagnostic phase pro-
gram listing. Diagnostic programs are divided into
phases, where each phase contains a grouping of

tests. Each phase is designated as a pident. Although
the formats of each type of listing are different, each
is composed of five sections:

e Prologue Section

e Macro Definition Section
e Data Definition Section

e Program Section

e Cross-Reference Section.

In addition to a description of formats of each sec-
tion, section 254-280-030 (Program Listing—Descrip-
tion) identifies standards which provide for detailed
narrative information and comments in the listings
to aid the reader in understanding the purpose, flow,
and contents of each program.

Page 13

14

Introduction to Software Descriptions / #1A ESS

AT&T 231-045-000

4. PROGRAM STRUCTURE OVERVIEW
GENERAL

4.01 The organization of the 1/1A ESS switches

program is strongly influenced by the fact
that it must operate in real time. That is, the pro-
gram must respond promptly to signals and data sub-
mitted to it by other switching systems and
customers. In addition, it must respond quickly to
errors detected by one of the many trouble detector
circuits. These circuits are designed into the hard-
ware to assure dependable operations within the sys-
tem at all times. Whenever it fails to do so, the result
may be improper handling of calls and a general deg-
radation of service. For example, failure to detect
digit signals may result in directing a call to a wrong
number, or failure to outpulse digits to another office
promptly will cause the other office to return over-
flow tone to the calling customer. Therefore, it is nec-
essary to establish a hierarchy of program tasks.
Some tasks must be performed on a strict schedule;
others may be delayed without significant adverse
effects.

INTERRUPT SYSTEM

4.02 The central processor has an interrupt mecha-

nism within it which seizes control of the sys-
tem momentarily when a system configuration, a
fault detector, or testing of a processing type inter-
rupt signal occurs. The interrupt system causes the
central control to stop its present program task,
stores the program address at which the interrupt
occurred, and then transfers to the appropriate
emergency action, fault recognition test, or clock-
controlled input/output program. When the inter-
rupt programs are completed, control is returned to
the program that was interrupted or to a safe start-
ing point in the maintenance program.

4.03 Figure 6 illustrates this overall plan. The in-

terrupt sources and their associated programs
are arranged in a hierarchy of ten interrupt levels.
From highest to lowest, these levels are designated
A,B,C,D,E,F, G, H,J, and K. The K-level interrupt
is not used in the 1A ESS switch. An interrupt source
assigned to a particular level can interrupt programs
of lower level only, with the exception of the A and
B levels which can interrupt each other as well as
their own levels. The interrupt levels and their source
conditions are listed in Table A.

Page 14

4.04 Every 5 milliseconds a system clock activates

a level J interrupt which gives control to the
input/output programs. The level H is used to inter-
rupt the J-level input/output program when tasks
being performed exceed 5 milliseconds.

INPUT/OUTPUT MAIN PROGRAM
A. Introduction

4.05 In order to perform all tasks promptly, the
individual task must not take too long. Thus
it is necessary to limit the amount of processing per-
formed by the interrupt programs. The input pro-
grams are confined to scanning for and recognizing
input signals and storing the input information in a
call store hopper. Each hopper is inspected by the
base-level programs. When data is present in the
hoppers, appropriate base-level programs start or
continue the processing of the call. Likewise, call
store buffers are provided for the base-level pro-
grams to load output area. At an appropriate time,
the call store buffers are unloaded by output pro-
grams which deliver the information to the periph-
eral equipment. The peripheral order buffers are
used to store address and control information for
peripheral equipment, such as network controllers
and signal distributors. These buffers provide the
means for communication between the scheduled
input/output programs and the base-level call pro-
cessing programs. In a 1A ESS switch, flags are set
in an activity word which is used in the base-level
programs. This is described in paragraph 5.04.

4.06 The 700-nanosecond clock pulses in the central

control are counted, and every 5 milliseconds
(actually 5.005) the counting circuit generates an out-
put signal which interrupts the base-level program
being performed. The interrupt signal causes the cen-
tral processor to transfer to the J-level input/output
main program. All input/output programs are classi-
fied into high-priority and low-priority tasks accord-
ing to the frequency and urgency with which these
tasks must be performed.

4.07 The low-priority tasks can be delayed for a

few milliseconds without an adverse effect on
the operation of the system. This will be the case
when the coincidence of input work under a peak
traffic load causes the system to take more than 5
milliseconds to complete the high- and low-priority
tasks. In this event the H-level interrupt will occur
and the low-priority work will be interrupted. The

15

Introduction to Software Descriptions / #1A ESS

ISS 3, AT&T 231-045-000

TROUBLE 5-
DETECTORS MILLISECOND
AND MANUAL CLOCK
CONTROL
INTERRUPT CIRCUITRY
(WIRED PROGRAM)
4
A c E 6 H AND J MAIN PROGRAM
gs:;:gL CENTRAL PROGRAM SPECIAL INPUT- PREFERENCE CLASSES
Pt CONTROL STORE TESTING OUTPUT
e—{ INTERJECT)
B [} F
EMERGENCY CALL PERIPHERAL
ACTION STORE UNITS
¥V ¥ 4 v ¥ v ¥y """IIIIIIIIII'}"*
OR RESTORE RESTORE

! = D

MAINTENANCE CLOCK-

INTERRUPT INTERRUPT —ppe— ?folling"2¥ﬂ$::::c5,—1»

PROGRAMS PROGRAMS

Fig. 6—Program Control Plan

accumulated high-priority work will again be per-
formed before returning to the low-priority program
that was interrupted.

B. Characteristics

4.08 Since this program must be executed every 5

milliseconds, the time required by the central
control to cycle through all of the input/output task
programs is held to a minimum, even at the expense

of a small increase in the total number of program
words. For example, it is expedient in some cases to
have a number of program blocks that perform
nearly equal tasks instead of a common program ca-
pable of performing all of the tasks. A common pro-
gram would, in general, involve more machine
operations to accommodate the small variations in
each of the individual prog<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>