
GBPPR 'Zine

Issue #14 / The Monthly Journal of the American Hacker / May 2005

"... There must be some control of what's said on the airwaves, and who says it. In
the absence of control, there is only static. Random broadcasts would squash each
other. Radios would become useless. Besides, there are plenty of legal stations
playing by the rules broadcasting enough programming to suit virtually every taste..."

"Outlaw broadcasters operate without concern for decency, public safety and for the
thousands who play by the rules and depend on the airwaves to make a living. The
pirate thing has become one of our biggest issues. It drives everybody crazy." − C.
Patrick "Pat" Roberts, President of the Florida Broadcaster's Association

Table of Contents

Page 2 / Nortel DMS−100 Table AMAOPTS♦
DMS−100 Automatic Message Accounting options. (Refer to LOD/H Technical Journal #3)♦

Page 24 / Nortel DMS−100 AMA Log Reports♦
DMS−100 Automatic Message Accounting log reports, a phreaks worst nightmare.♦

Page 34 / Nortel DMS−100 SOS Script Overview♦
Found this on the Interweb, seriously.♦

Page 129 / Vehicle Tracking Beacon♦
Build a simple "bumper beeper" using a FRS radio.♦

Page 135 / Outside Plant Symbols♦
Overview of Bell System map and location symbols.♦

Page 153 / Outside Plant Codes & Symbols♦
Overview of Bell System map and location codes.♦

Page 174 / TV−B−Gone Jammer♦
TV remote control jammer.♦

Page 178 / Bonus♦
Hack the Planet!♦

Page 179 / The End♦
Editorial and Rants.♦

1

Nortel DMS−100 Table AMAOPTS
Table Name

Automatic Message Accounting Options

Functional Description of Table AMAOPTS

Table AMAOPTS is used to control the activation and scheduling of the recording options for
Automatic Message Accounting (AMA). Table AMAOPTS contains one tuple for every option, and
initially contains the default values for each of these options. The default values of these options
are dependent on the entry in field FORMAT in table CRSFMT (Call Record Stream Format) where
entry in field KEY is AMA. The entry in field FORMAT can be BCFMT (Bellcore Format) for Bellcore
offices, NTFMT (Nortel Networks Format), or another format type for non−Bellcore offices. Some of
the options replace office parameters that were used in earlier software releases.

These options cannot be deleted. Adds are performed to force a display of the contents of the table
and to make the tuple known to the table editor to allow for changes to the tuple. By changing the
scheduling information for the options, the operating company can activate, deactivate, and
schedule the options at specified dates and times, and so control the output produced by the AMA
system.

The initial contents of table AMAOPTS are defined at Initial Program Load (IPL) time, but are not
displayed in the table until the tuples have been added. To add entries without affecting the default
scheduling values, use the selector DEFAULT in field AMASEL, and table control replaces the
selector DEFAULT with the default value.

For example, to add the default entry DA411 to table AMAOPTS in field AMAOPT, enter the tuple
DA411_DEFAULT. The entry DA411 OFF is displayed, indicating that the option is disabled as a
default.

If the options that control unanswered call recording (UNANS_TOLL, UNANS_LOCAL, and
UNANS_TOPS) are set to Y (yes), table BCCODES (Bellcore Codes, formerly ATTCODES) must
also be datafilled to route unanswered calls that are not equal access calls to the call
recording. Call records are produced for all equal access calls, both answered and unanswered,
regardless of the datafill in these tables. See table BCCODES for further explanation.

See the first table below for a description of available options. See the second and third tables
below for the default schedule values for each option, and see the fifth table for the allowable values
of field AMASEL for each option.

−−−
Description of Available AMA Options

Option Explanation
−−−
ACBAR_MOD_CO This option provides a method of identifying any billable calls that are
 set up with Automatic Call Back (ACB) or Automatic Recall (AR) features,
 and includes a way of distinguishing calls to private numbers using ACB
 or AR. The setting of option ACBAR_MOD_CO determines whether features
 ACB and AR and the privacy status of a call are provided. The option
 ACBAR_MOD_CO is an ON or OFF parameter. If ACBAR_MOD_CO is set ON,
 features ACB and AR and the privacy status of a call are found in the

2

 appended module code 068. The information added to the billing record
 is interpreted by the downstream billing center. If it is a private
 number, the Directory Number (DN) is not printed on the subscriber's
 invoice. If option ACBAR_MOD_CO is set OFF, module code 068 is not
 appended; therefore, features ACB and AR and the privacy status
 information of a call are not provided. If option ACBAR_MOD_CO is set
 OFF, the DN of any private number is printed on the subscriber's invoice.
 The default value is OFF. Values other than ON, OFF, or DEFAULT are
 not valid.
−−−
ACBAR_STY_IN This option provides a method of identifying any billable calls that are
 set up with ACB or AR features, and includes a way of distinguishing calls
 to private numbers using ACB or AR. The setting of option ACBAR_STY_IN
 determines whether features ACB and AR and the privacy status of a call
 are provided. The option ACBAR_STY_IN is an ON or OFF parameter. If
 option ACBAR_STY_IN is set ON, features ACB and AR and the privacy status
 of a call are found in character 5 of the study indicator. The information
 added to the billing record is interpreted by the downstream billing
 center. If it is a private number, the DN is not printed on the subscriber's
 invoice. If option ACBAR_STY_IN is set OFF, features ACB and AR and the
 privacy status of a call are not found in character 5 of the study indicator.
 If option ACBAR_STY_IN is set OFF, the DN of any private number is printed on
 the subscriber's invoice. The default value is OFF. Values other than ON,
 OFF, or DEFAULT are not valid.
−−−
AMATRKTG_ANS This option controls the generation of the AMA record triggered by the
 option AMATTRKTG in table AMATKOPT for all calls or for answered calls only.
 If this option is ON, the AMA records are generated only for answered calls.
−−−
APPEND_ISDN_ This option controls the production of the ISDN channel identifier
CKT_ID (module 180) and trunk identification (module 181) module codes. This option
 gives office−wide control of these module codes. The module codes are
 produced for originating and terminating BRI and PRI ISDN calls. To turn on
 the recording of modules 180 and 181, set APPEND_ISDN_CKT_ID to ON. To stop
 the recording of modules 180 and 181, set APPEND_ISDN_CKT_ID to OFF.
 The default value for this option is OFF.
−−−
APPEND_PRI_ This option controls the addition of AMA module 070/071 to billing records
MODULE for PRI originating calls. This option can be set to ON or OFF. The default
 value is OFF. To turn on the recording of module 070 or 071, set
 APPEND_PRI_MODULE to ON. To turn off the recording of module 070 or 071,
 set APPEND_PRI_MODULE to OFF.
−−−
AR_BILLING This option provides the possibility to append a module code 611 to the AMA
 record, to indicate that a call has been made using the Automatic Recall/
 Automatic Recall with Dialable Directory Number (AR/ARDDN) feature.
 If the option is set to ON, module code 611 with a generic context ID of SUSP
 (80024) is appended to the AMA record when such a call is made. If the option
 is set to OFF, a normal AMA record is generated.
−−−
AUDIT This option controls the resetting of the internal AMA counts for the
 Operational Measurements (OM) tracer record and sets up the accumulated
 time change for the new day. This option cannot be changed, and appears
 for information only.
−−−
BACK_CHARGE This option controls the addition of module 611 for backwards charging
 information on French Telephony User Part (FTUP). This activity sends
 charging information during the call to the (calling subscriber's) switch
 that performs the billing. This option allows the service provider to
 control the billing of the call.
−−−
BCLID_USPAUD This option controls the generation of AMA records by the Bulk Calling
 Line Identification Usage−Sensitive Pricing Audit (BCLID_USPAUD) that
 is scheduled in table AMAOPTS. Option SUSP (Subscriber Usage−Sensitive

3

 Pricing) must be turned on to obtain BCLID_USP records. If a DN used as
 a BCLID group billing DN is also used as a Custom Local Area Signaling
 Services (CLASS) line with at least one CLASS display feature, then two
 AMA records are generated for the DN.

 Field USP in table BCLIDGRP controls the collection of AMA information
 for each group of BCLID subscribers. If field USP is datafilled Y (yes),
 AMA counts are collected for the group. The peg counts store the number
 of full calling DNs delivered and the combined number of PRIVATE and
 OUT−OF−AREA indications delivered. An AMA record is generated for each
 BCLID group that is datafilled for Usage−Sensitive Pricing (USP).

 BCLID groups that are datafilled with N (no) in field USP in table BCLIDGRP
 are not billed on a usage−sensitive basis. No AMA records are generated
 for these BCLID groups.
−−−
BCLONGCALL This option allows setting of the record generation time for long−duration
 Bellcore format records.
−−−
CALL_FWD This option controls the usage recording of Call Forwarding (CFW/CFX).
−−−
CALL_TIMECHG This option governs the triggering of the new time−change module on the
 AMA record. There are three possible values:

 * ON: Enables this functionality if a time change (CI commands SETTIME
 or SETDATE) occurs during a call, the time−change module is
 appended to the resultant AMA record.

 * OFF: Disables this functionality. This is the initial value.

 * DEFAULT: Equates to OFF in all cases. When datafilling this tuple,
 option UNIVERSAL_AMA_BILLING in table OFCENG must be set to
 Y and option TIMECHANGE in table AMAOPTS must be set to OFF.
−−−
CAPTURE_ This option controls the generation of MCI 098 for unanswered calls.
CKTSZ_UNANS When set to ON, the terminating circuit seizure date and time will be
 captured in MCI 098.
−−−
CAPTURE_ This option controls the capture of the Class of Service (COS) Index.
CLASS_SERV When set to ON, the most recent Class of Service Index assigned to the
 originating trunk group will be captured in BCD char 6−9 of MCI 611.
 The MCI 611 together with the new context ID (80058) will be attached to
 the AMA record. If table control is set to OFF a dummy value of hex F
 will be captured in BCD char 6−9.

 By default the COS captured in MCI 611 will be the one entered in the
 table TRKOPTS. If the COS is overridden during the translations then
 the COS captured in the MCI 611 will be the COS entered in the table
 CLISRVPF. The COS value assigned to the call can range from 0 − 1023.

 If all the three table controls (CAPTURE_CLASS_SERV, CAPTURE_COMPL_CODE
 and CAPTURE_SAT_IND) are set to OFF then the MCI 611 with the new
 context ID (80058) will not be attached to the AMA record.
−−−
CAPTURE_ This option controls the capture of the completion code, representing the
COMPL_CODE reason for the call termination. The completion code will be captured for
 either the: release cause, treatment or called/calling party disconnect.

 If the release cause is available, then the completion code corresponding
 to the release cause will be captured. If the release cause is not
 available, then the treatment code, if available, will be captured as the
 completion code. If neither are available, the calling party/called party
 disconnect information will be captured as the completion code.

4

 Completion code information is captured for the following protocols:

 * ETSI ISUP V1
 * ETSI ISUP V2
 * IBN7
 * FST R1
 * FST R2
 * RBTUP
 * BTUP
 * DPNSS

 When set to ON, the reason for the call termination will be added to MCI 611
 (BCD char 2−4) with the new context ID (80058), and will be attached to the
 AMA record. The BCD char 1 will indicate the event in the call for which the
 completion code is captured. If table control is set to OFF a dummy value of
 hex F will be captured in BCD char 1−4.

 If all the three table controls (CAPTURE_CLASS_SERV, CAPTURE_COMPL_CODE and
 CAPTURE_SAT_IND) are set to OFF then the MCI 611 with the new context ID
 (80058) will not be attached to the AMA record.
−−−
CAPTURE_ This option controls the capture of INAP CPC. If the option is turned ON
INAP_CPC and if the call involves INAP, the INAP CPC, if it exists, is captured in
 the AMA module code 611 (context ID: 80027).
−−−
CAPTURE_ This option controls the capture of satellite indicator information.
SAT_IND If the call involved a satellite circuit then this one bit flag is set
 to 1 (ON). Information in this field is based on the SAT field value that
 is datafilled against the originating trunk in table TRKSGRP. For ISUP
 (ETSI ISUP V1, ETSI ISUP V2, IBN7) and RBTUP protocols this information is
 based on the satellite information carried by the incoming IAM and the SAT
 field value that is datafilled against the originating trunk in the table
 TRKSGRP. The satellite circuit information is captured in the BCD char 5
 of the MCI 611. MCI 611 with the new context ID (80058) will be attached
 to the AMA record. If table control is set to 0 (OFF) a dummy value of
 hex F will be captured.

 If all the three table controls (CAPTURE_CLASS_SERV, CAPTURE_COMPL_CODE
 and CAPTURE_SAT_IND) are set to OFF then the MCI 611 with the new context
 ID (80058) will not be attached to the AMA record.
−−−
CCBS_BILLING This option controls Call Completion to Busy Subscriber (CCBS) billing,
 adding usage billing for CCBS calls. It is possible to mark the billing
 record to indicate CCBS usage thereby providing the ability to charge for
 the successful usage of CCBS. The option can be set to either ON or OFF.

 If the option is set to ON, it indicates that CCBS usage billing indication
 will be provided in AMA records for CCBS originated calls. If the option is
 set to OFF, no CCBS usage billing will be provided.

 Indication of CCBS usage is provided for the following scenarios where CCBS
 has been initiated and the called party has become free:

 * Originator ignores the ring back.

 * Originator answers the ring back call and disconnects immediately
 (before or after the called party has rung).

 * Ringing is applied to the called party and he doesn't answer.

 * A complete call setup occurs between the originator and the called
 party. In this scenario if an answer message is received with no
 charge indication then the record will be marked as unanswered with
 CCBS usage marked.

5

Note: This option applies to both IBN and EBS lines.

 The service feature field (field 012) is used to indicate that CCBS usage
 has been successful. CCBS usage is marked with a service feature code
 of '029' in the billing record.

Note: The service feature code value of '029' is also used to
 indicate BTUP CBWF usage.
−−−
CCSADATA This option controls the precedence of call code 021 over call code 072
 for Common Control Switching Arrangement (CCSA) data calls.
 It has no effect on non−data calls.

 A call code 072 record is produced for a CCSA data call if the CCSADATA
 option is set to the default value OFF.

 A call code 072 record is replaced by call code 021 if the call is a
 CCSA data call and the CCSADATA option is set to ON.
−−−
CDAR This option controls the recording of customer−dialed account codes.
−−−
CDAR_EXTENDED This option controls the generation of the AMA module code 850 for the
 capture of account codes.
−−−
CDRDUMP This option controls the generation of an audit that provides a billing
 record for all calls in progress on the DMS−100 at a specified time.
 The default value for this option is OFF, which requires that the audit
 be explicitly set. Once the specified time for the audit run is reached,
 a copy of the Call Detail Recording (CDR) for all calls in progress at
 that time is generated and sent to the respective AMA process.
−−−
CDRLONGCALL This option controls the scheduling of a new audit to produce long−duration
 call CDRs (46−byte CDR format only). The first check occurs at the time
 specified by field START, followed by periodic checks with a period
 specified by field PERIOD. The option cannot be set with a period less
 than eight hours. ON enables the functionality. OFF disables the
 functionality. DEFAULT is PERIODIC with a period of eight hours, starting
 at the next occurrence of either 05:15, 13:15, or 21:15.
−−−
CDRSYNC This option allows synchronization records (code 1B) to be added to the
 CDR data stream at intervals specified by the user. The option can be
 datafilled as OFF or PERIODIC. The CDR stream must be datafilled in
 field KEY of table CRSFMT before setting option CDRSYNC to PERIODIC.
 The default for this option is OFF and the format is CDR300FMT.
−−−
CHG411 This option controls charging for 411 Directory Assistance (DA) calls.
 Option DA411 must be set ON along with option CHG411 before local DA calls
 are written as charged. Local DA records are written as study records if
 option DA411 is set ON and option CHG411 is OFF.
−−−
CHG555 This option controls charging for seven−digit (555−1212) DA calls. Option
 DA555 must be set ON along with option CHG555 before 555 DA calls are written
 as charged. DA calls are written as study records if option DA555 is set
 ON and option CHG555 is OFF.
−−−
CIDSUSPAUD This option controls the Calling Information Delivery (CID) Subscription
 Usage−Sensitive Pricing (SUSP) audit that generates a billing record
 (for each Calling Number Delivery (CND), Dialable Number Delivery (DDN)
 and/or Calling Name Delivery (CNAMD) feature subscriber) that contains
 peg counts for each of the CLASS SUSP display options.

 If option SUSP in table AMAOPTS is ON or has been ON at any point during
 the audit period, then at the datafilled start time and interval, the audit

6

 produces a record for each subscription CNAMD or CND/DDN subscriber.
 A subscription option is one that has its billing option field set to AMA.

 If option SUSP in table AMAOPTS is OFF and has not been ON during the audit
 period, then the audit is not run and no records are produced.

 If a subscriber has not received any calls that increment the delivery counts
 for a CLASS SUSP display, then a record that contains 0 (zero) in the available
 and unavailable count fields for that option is produced if:

 * The CLASS SUSP display option is currently active.
 * The CID options are enabled in table RESOFC.
 * Option SUSP was ON in table AMAOPTS during the last audit period.

 After the audit is complete, the AMA registers that are associated with each
 subscriber are set to 0 (zero) in preparation for the next audit period.

 Since this audit can produce many AMA records, we recommend that the
 operating company schedule the audit during low traffic hours and on a
 24 hour basis.

 The audit is not the only source of billing records. If a CLASS SUSP
 display option is changed to flat−rate or removed from the line, the
 delivery counts stored for the CLASS SUSP display option are reported
 in an AMA record appropriately.

 Value DEFAULT in NTFMT (Northern Telecom Format) AMA switching units is
 OFF and cannot be changed. Value DEFAULT in BCFMT (Bellcore Format) AMA
 switching units is PERIODIC and set to run once a day at midnight. Although
 option CIDSUSPAUD in table AMAOPTS cannot be turned off in a BCFMT switching
 unit, the audit does not run if option SUSP has been turned off since the
 last time the audit ran.
−−−
CITYWIDE This option allows generation of billing records for intra−citywide Virtual
 Private Network (VPN) calls that are normally non−billable. Value ON turns
 billing on. The default value is OFF. Values other than ON, OFF, or
 DEFAULT are not valid.
−−−
CLI_DELV This option controls the capture of the CLI delivery indicator. If the
 option is turned ON, the CLI delivery indicator is captured in the
 AMA module code 611 (context ID: 80058).
−−−
CMCICWK For a terminating Central Message Control (CMC) call, the carrier connect
 time is the time the incoming CMC trunk is seized. If option CMCICWK is
 set to ON, the carrier connect time on a CMC to Feature Group D (FGD) carrier
 call is the time of billing wink from the FGD carrier. A CMC access record
 is not created unless a billing wink is received from the FGD carrier.
−−−
CMCORIG This option controls the generation of originating CMC billing records
 (call codes 63 and 64). If this option is set OFF, no call code 63 or 64
 records are created.
−−−
CMCTERM This option controls the generation of terminating CMC billing records
 (call codes 65 and 66). If this option is set to OFF, no call code 65
 or 66 records are made.
−−−
COIN This option controls the recording of all local coin calls.
−−−
COLL_SVC_BILL_ This option controls the use of Japan billing enhancements. These
INFO enhancements have an effect on module codes 611 and 612. To enable
 Japan billing enhancements, set option COLL_SVC_BILL_INFO to ON.
 If this option is OFF, the switch ignores AMAOPTS options RECORD
 DIALED_DIGS and MC611_80005.

7

−−−
CRSEQNUM This option controls the generation of a call record sequence number
 for each call record.
−−−
CRT_BILLING This parameter controls billing records for the call redirect feature on
 an office−wide basis. CRT_BILLING set to ON creates a billing record for
 the redirected call. With CRT_BILLING set to OFF, a billing record does
 not generate for the redirected call.
−−−
CSMI This option can be set to ON or OFF in order to enable or disable
 billing for CSMI.
−−−
DA411 This option controls the recording of calls to a local DA operator.
 Local DA calls are recorded as study records if option DA411 is set ON.
 DA calls are written as charged if options DA411 and the CHG411 are both
 set to ON.
−−−
DA555 This option controls the recording of seven−digit (555−1212) directory
 assistance calls. Ten−digit (NPA−555−1212) DA calls are always recorded
 as station−paid calls. DA 555 calls are recorded as study records if
 option DA555 is set ON. DA 555 calls are written as charged if options
 DA555 and CHG555 are both set ON.
−−−
DISABLE_MCD_ This option activates the Minimum Call Duration parameter used on DMS−100
INFO switches in Israel. DISABLE_MCD_AMA supports special functionality for
 short calls that can be used by other customers. If the option is set ON,
 the minimum call duration is activated. The default value is OFF.
−−−
ENABLE_SCI500 This option sets the AMA environment for DMS−100 switches in Israel.
 ENABLE_SCI500 provides structure code 500 in Bellcore AMA records.
 If the option is set ON, the AMA environment is set up for the Israeli
 market. Option ENABLE_TLR_BILLING must be set ON before option
 ENABLE_SCI500 is activated. The default value is OFF. Any change in
 this option requires a reload restart.
−−−
ENABLE_TLR_ This option sets the AMA environment for DMS−100 switches in Israel.
BILLING If the option is set ON, the AMA environment is set up for the Israeli
 market. The default value is OFF. This option controls TIV logs,
 generation of AMA record as a result of successful wake up request
 activation, generation of RBP log, implementation of OGINFO option
 in AMATKOPT, special Telrad implementation of CAMA, special service
 features in records of BOOMERANG and VML calls, sending of AMA records
 via MPC card, supporting of a special structure for BEARER_CAPABILITIES
 and SERVICE_FEATURE fields in the AMA record, implementation of FLEXCLI
 option in TRKOPTS table. If there is FLEXCLI option for the trunk group
 in TRKOPTS table, the modification of the CLI is done as written in
 FLEXDIGS table and the new DN is written in the record unit for AMA.
 Any change in this option requires a reload restart.
−−−
ENFIA_B_C This option controls the AMA recording of ENFIA B and ENFIA C calls
 (for example, 950−10xx).
−−−
FREECALL This option controls the recording of all local calls that terminate on
 a free number.
−−−
FTRCODE This option indicates whether the originating and terminating feature codes
 in Bellcore AMA are required for international billing. Setting the tuple
 FTRCODE to ON results in module code 509 being appended to the 510 structure
 code if one of the recorded features is activated by either the calling or
 called party. TIMED and PERIODIC are not valid values, and are blocked when
 entered. The value DEFAULT sets the tuple to OFF.
−−−
GFTBILL This option counts transport activities that have a generic function.
 This option appends the activities to the AMA billing record. Value ON

8

 turns billing on. The default value is OFF.
−−−
HIGHREV This option suppresses the generation of all AMA data except for call
 types that are listed as high revenue in table BCCODES.
−−−
IC_CDPN_INFO_ This option controls the capture of Incoming Called Party Number NPI and
REQD NOA or TON information. The FLEXCPNI option (subfield IC_CDPN_INFO) in
 tables AMAXLAID and FLEXAMA activates this capture.
−−−
IC_CGPN_INFO_ This option controls the capture of Incoming Calling Party Number (CGPN)
REQD Numbering Plan Indicator (NPI) and Nature Of Address (NOA) or Type Of
 Number (TON) information. The FLEXCPNI option (subfield IC_CGPN_INFO)
 in tables AMAXLAID and FLEXAMA activates this capture.
−−−
IC_CGPN_PI_ This option provides a means to capture the incoming calling party's
REQD Presentation Indicator (PI) in AMA records and conveys the information
 about the Calling Line Identity (CLI) presentation or restriction.
−−−
INFO_DIGIT This option controls whether an extra digit in the calling_dr field of
 the translation block in the CCB is copied into the calling_dr of the
 AMA PRU. When the option INFO_DIGIT is ON, the extra digit is not
 copied. When the option INFO_DIGIT is OFF, the extra digit is copied.
−−−
INTL_ICR_REQD This option provides office−wide ICR activation for all IBN and BRI lines.
−−−
INTRASITE This option allows generation of billing records for normally non−billable
 intra−site VPN calls. Value ON turns billing on. The default value is OFF.
 Values other than ON, OFF, or DEFAULT are not valid.
−−−
INWATS This option controls the recording of all Inward Wide−Area Telephone
 Service (INWATS) calls.
−−−
ISDN_ACCIND When set to ON, this option provides the correct ISDN access indicator
 value in the module code 611 AMA billing record for the supported
 interworkings, providing the options COLL_SVC_BILL_INFO and MC611_80005
 are also ON. When the ISDN_ACCIND option is set to OFF, the terminating
 ISDN indicator is recorded as 'unknown' for some of the supported
 interworkings in the Japan market.
−−−
ISDN_ETSI_BS When set to ON, this option specifies that all ISDN PRI and BRI calls
 have a module code 030 appended to their AMA billing record.
−−−
ISDNBBGBILL This option allows the production of billing records for Basic Business
 Group (BBG) facilities and services on ISDN BRI lines. If ISDNBBGBILL is
 ON, the switch appends module code 074 to all ISDN BRI AMA records.

 Module code 074 identifies:

 * The BBG call type.
 * The billing number of the BBG customer.
 * The associated Virtual Facility Group (VFG) or
 Trunk Group Number (TGN) used in the call.

 This option applies only to ISDN BRI lines, and it controls the production
 of BBG billing records office−wide.
−−−
ISDNCIRCUIT This option controls the production of the ISDN circuit structures and
 philosophies office−wide. The structures consist of ISDN core module
 070/071 and ISDN terminating user service module 073. The philosophies
 consist of call types and allow the operating company to specify
 signaling capabilities that are considered a basis for originating or
 terminating detailed billing.
−−−
LNID This option can only be OFF. This tuple is forced to OFF during a dump

9

 and restore or when operating company personnel attempt to change its
 value. This option controls the inclusion of a coded representation of
 the line ID in the AMA record. This option has no effect if entry in
 field FORMAT, in table CRSFMT, where field KEY = AMA, is NTFMT.
−−−
LNP_721 This option creates an LNP record for Bellcore call code 721.
 The option has values of ON, OFF, and DEFAULT. The default is OFF.
−−−
LNP_721_Use_ This option creates an LNP record for Bellcore call type code 721 with
SC0500 structure code 500. The option has values of ON, OFF, and DEFAULT.
 The default is OFF. With this option OFF, LNP721 records generate with
 structure code 0001.
−−−
LNP_721_ This option creates an LNP record for Bellcore call code 721 only when
PortedDNOnly the dialed DN is ported. The option has values of ON, OFF, and DEFAULT.
 The default is OFF.
−−−
LNP_722 This option creates a last resort LNP record, Bellcore call code 722.
 Last resort AMA is generated when last resort routing to a recipient
 switch occurs at a donor switch and an AMA record is not already being
 generated at the donor switch. The option has values of ON, OFF, and
 DEFAULT. The default is OFF.
−−−
LNP_BILL_ This option is used to trigger AMA billing records at the donor exchange
DONOR in LNP QoR calls.
−−−
LNP_MODULE_ This option controls the kind of module that LNP appends to an AMA record.
719 The default is OFF, which means that LNP stores portability information
 in module 720.
−−−
LOG117_ This option controls whether the calling DN is copied into the AMAB117
CALLING_DN log. ON copies the DN to AMAB117. OFF does not record the DN.
−−−
LOGAMA This option controls the generation of AMAB117 log reports. If this option
 is set ON, AMAB117 log reports are generated for each record that is put on
 the AMA tape. (This is used instead of office parameter SPECIAL_AMA_REPORT
 in table OFCVAR)
−−−
LOGOPT This option controls the generation of a log outlining the status of the
 AMA recording options such as active or inactive.
−−−
LOGTEST This option controls the generation of AMAB200 log reports. If it is set
 ON, AMAB200 log reports are generated for AMA billable calls to or from a
 line with the line option AMATEST enabled in table LENLINES.
−−−
LONGCALL This option controls the production of AMA records periodically during
 the course of long−duration calls.
−−−
LUSORIG This option controls the recording of all calls that originate on a line
 with Line Usage Study (LUS) as defined in table LENFEAT.
−−−
LUSTERM This option controls the recording of all calls that terminate on a line
 with LUS as defined in table LENFEAT.
−−−
MC611_80005 This option controls the addition of module code 611 (80005) to AMA billing
 records for the office. To enable the recording of module code 611 (80005),
 set option MC611_80005 to ON. To disable the recording of module code 611
 (80005), set option MC611_80005 to OFF. The default value for this option
 is OFF.
−−−
MWIC_AUDIT This option provides the DMS−100 switch the ability to generate daily
 AMA records of aggregate counts of successful MWI control activations
 and deactivations on an MSRID basis. The MWIC_AUDIT option works in
 conjunction with the BILLNUM option of table MSRTAB. MWIC_AUDIT schedules

10

 the audit to capture the metrics of the new BILLNUM option.
−−−
NTAI This option controls the generation of AMA module 611 NTAI information
 switch−wide depending on the subfield ON/OFF setting.
−−−
OBSERVED This option controls the recording of all calls that originate on a line
 with complaint Observed Studies (OBS) as defined in table LENFEAT.
−−−
OCCOVFL This option controls the recording of equal access overflow calls
 (call code 120). Option OCCOVFL is dependent on the use of fixed
 pseudo−code EAPEG, which must be added to table CLLI and must be
 datafilled in table OFRT. When EAPEG is encountered in the route
 list of table OFRT, an overflow count is pegged against the destination
 carrier in table OCCINFO.
−−−
OCCTERM This option controls the recording of terminating equal access calls
 (call code 119). If option OCCTERM is ON, these records are produced.
 If OCCTERM is OFF, these records are not produced.

Note: The only option supported by GSF031 release for equal
 access is OCCTERM.
−−−
OUTWATS This option controls the recording of all OUTWATS calls.
−−−
OVERFLOW This option controls the recording of all INWATS or LUS calls that failed
 to terminate for any reason.
−−−
RECORD_ This option controls the addition of module code 040 to AMA billing
DIALED_DIGS records for the office. Module code 040 records the dialed digits
 received at call setup. To enable the recording of module code 040,
 set option RECORD_DIALED_DIGS to ON. To disable the recording of
 module code 040, set option RECORD_DIALED_DIGS to OFF. The default
 value for this option is OFF.
−−−
RECORD_LSPI This option enables the generation of LSPI recording on a switch−wide basis.
−−−
RECORD_ This option enables the generation of module codes 338 and 125, and LSPI
NATIVE_LSPI call type codes 126, 127, and 128 on a switch−wide basis for native agents.
 Turn on the RECORD_LSPI option before using this option.
−−−
RECORD_ This option enables the generation of module codes 338 and 125, and LSPI
RESOLD_LSPI call type codes 126, 127, and 128 on a switch−wide basis for resold agents.
 Turn on the RECORD_LSPI option before using this option.
−−−
RECORD_ This option lets users add the MC338 (LSPI) module to the generated
SIGNAL_LSPI billing record on a switch−wide basis. The default value for this option
 is OFF, which deactivates the option. Note that users must also activate
 the RECORD_LSPI option in table AMAOPTS to activate the RECORD_SIGNAL_LSPI
 option. When both options are ON, the switch records the signaled LSPAO
 and LSPSO information in module 338 and adds it to the billing record.
−−−
RECORD_ This option controls the recording of terminating information on trunk calls
TERMINATION routed from the VPN trunk calls encountering busy or no−circuit problems.
−−−
RECORD_TRUNK This option controls the generation of trunk−related LSPI recording for
_LSPI selected inter−switch public trunk types. The default value is OFF,
 indicating that recording of trunk−related LSPI information is inactive
 on the switch. Turn on the RECORD_LSPI option before using this option.
−−−
RECORD_ This option enables the generation of module codes 338 and 125, and LSPI
UNBUND_LSPI call type codes 126, 127, and 128 on a switch−wide basis for unbundled
 agents. Turn on the RECORD_LSPI option before using this option.
−−−
SAID_MOD_ This option controls the production of module 047 on an office−wide

11

SUPPR basis. Module 047 is appended for Speech Activated Intelligent Dialing
 (SAID) calls. To stop the generation of module 047, set SAID_MOD_SUPPR
 to ON. To enable the generation of module 047, set SAID_MOD_SUPPR to OFF.
−−−
STORE_ This option enables the capture of call identity and point code in the
CALLREF AMA billing record. These values are obtained from the Call Reference
 Parameter in the IAM message. The default value is OFF, which deactivates
 this option. The STORE_CALLREF option works in conjunction with the
 TRKOPTS option CALLREF for ETSI ISUP V2 trunks.
−−−
STORE_ LRN This option is used to trigger additional AMA billing module 612 for
 ported−in number originated calls.
−−−
SUSP This option controls SUSP.

 If option SUSP is OFF (the default):

 * No SUSP billing occurs.
 * Service order prompting for SUSP is suppressed.

 If option SUSP is ON:

 * Service order prompting for BILLING_OPTION is enabled.
 * SUSP billing is enabled for the office (and SUSP billing
 takes place on lines that have the AMA BILLING_OPTION).

 SUSP records are not recorded under any conditions if parameter
 AMA_FORMAT is NT.

 SUSP is also provided for the screening list editing (SLE) features:
 Selective Call Forwarding (SCF), Selective Call Rejection (SCRJ),
 Selective Call Acceptance (SCA), and Distinctive Ringing/Call Waiting
 (DRCW). The usage−sensitive context here means generating billing
 records each time the subscriber accesses an SLE USP feature screening
 list or activates or deactivates a SLE USP feature. Billing records are
 not generated each time a terminating call is screened by a subscriber's
 SLE USP feature.

 To enable usage−sensitive pricing (USP) for SLE features:

 * The feature or features must be enabled in table RESOFC.
 * The feature or features must be assigned to a line.
 * The SUSP entry in table AMAOPTS must be set ON.
 * The BILLING_OPTION prompt, which is displayed when adding
 or changing an SLE feature, must be set to AMA.
−−−
TIMECHANGE This option controls the generation of time−change records if the time or
 date on the switch is set by the Command Interpreter (CI) commands SETTIME
 or SETDATE at a Maintenance and Administration Position (MAP) terminal.
−−−
TRACER This option controls the production of an AMA tracer record containing
 peg counts of several AMA events such as originations or records output.
−−−
TRKID This option can only be OFF. This tuple is forced to OFF during a dump
 and restore or when operating company personnel attempt to change its
 value. This option controls the inclusion of a coded representation of
 the terminating trunk ID in the AMA record. This option has no effect
 when parameter AMA_FORMAT is NT.
−−−
TRMTID_CAPTURE This option controls the capture of the treatment ID applied to calls
 that have failed to be routed out of the DMS−100 switch. With this option
 ON, any billable calls that fail on 2−way or incoming ISUP, BTUP, FST R1,
 FST R2, RBTUP, ETSI PRI and DPNSS trunks result in the generation of an
 AMA module code 130 with call characteristic value 10.

12

−−−
TWC This option controls the usage recording of Three−Way Calling (3WC).
−−−
U3WC This option controls the usage recording of Three−Way Calling − Usage
 Sensitive (U3WC).
−−−
UNANS_AIN This option controls Advanced Intelligent Network (AIN) specific unanswered
 call recording. If option UNANS_AIN is turned on, an AMA record is produced
 for every unanswered billable AIN call whose call type is datafilled in tuple
 AIN in table BCCODES. If switch−based unanswered call recording is in effect
 for a certain call type, then unanswered AIN calls of that call type are
 recorded, regardless of whether or not UNANS_AIN is turned ON.
 The default value is OFF.
−−−
UNANS_LOCAL This option controls the recording of unanswered local calls. Only those
 local calls that generate AMA records are recorded. The call is defined as
 toll, local, high revenue, or Traffic Operator Position System (TOPS) in
 table BCCODES. The unanswered calls must have the associated call code
 datafilled in table BCCODES. If option UNANS_LOCAL is set ON, answered
 and unanswered local calls are recorded. (Equal access calls are
 unaffected; see note) If the unanswered call is a billable Capability
 Set 1 Revised (CS−1R) call, an AMA record is generated regardless of what
 UNANS_LOCAL is set to. A CS−1R call is billable if a Furnish Charging
 Information (FCI) operation is received from the SCP for that call.
−−−
UNANS_TOLL This option controls the recording of unanswered toll calls. Only those
 toll calls that generate AMA records are recorded. The call is defined
 as toll, local, high revenue, or TOPS in table BCCODES. The unanswered
 calls must have the associated call code datafilled in table BCCODES.
 If option UNANS_TOLL is set to ON, answered and unanswered toll calls
 are recorded. Option UNANS_TOLL is used instead of office parameter,
 NO_ANS_CALLS_ONTAPE in table OFCENG. (Equal access calls are unaffected;
 see note) If the unanswered call is a billable CS−1R call, an AMA record
 is generated regardless of what UNANS_TOLL is set to. A CS−1R call is
 billable if a Furnish Charging Information (FCI) operation is received
 from the SCP for that call.
−−−
UNANS_TOPS This option controls the recording of unanswered TOPS calls. Only those
 TOPS calls that generate AMA records are recorded. The call is defined
 as toll, local, high revenue, or TOPS in table BCCODES. The unanswered
 calls must have the associated call code datafilled in table BCCODES.
 If the option UNANS_TOPS is set ON, answered and unanswered TOPS calls
 are recorded. (Equal access calls are unaffected; see note)
−−−
Note: Originating equal access calls, both answered and unanswered, generate AMA
records regardless of the datafill in tables AMAOPTS and BCCODES. For offices that require
billing for all E800 calls, ensure that call codes 141 and 142 are datafilled against
UNANS_TOLL.
−−−
−End−

In table CRSFMT, if the entry in field KEY is AMA, and the entry in field FORMAT is BCFMT (Bellcore
Format), the default values for the options in table AMAOPTS are as listed in the following table:

−−−
Default Schedule Values for Bellcore Format Options

Option Default Schedule
−−−
ACBAR_MOD_CO OFF
ACBAR_STY_IN OFF
AMATRKTG_ANS OFF
APPEND_ISDN_CKT_ID OFF

13

APPEND_PRI_MODULE OFF
AR_BILLING OFF
AUDIT PERIODIC yymmdd 0000 24 HRS
BCLID_USPAUD PERIODIC yymmdd 0000 24 HRS
BCLONGCALL PERIODIC yymmdd 0000 24 HRS
CALL_FWD ON
CALL_TIMECHG OFF
CAPTURE_CKTSZ_UNANS OFF
CAPTURE_CLASS_SERV OFF
CAPTURE_COMPL_CODE OFF
CAPTURE_INAP_CPC OFF
CAPTURE_SAT_IND OFF
CCBS_BILLING OFF
CCSADATA OFF
CDAR OFF
CDAR_EXTENDED OFF
CDRDUMP OFF
CDRLONGCALL PERIODIC
CHG411 OFF
CHG555 OFF
CIDSUSPAUD PERIODIC yymmdd 0000 24 HRS
CITYWIDE OFF
CLI_DELV OFF
CMCICWK OFF
CMCORIG OFF
CMCTERM OFF
COIN OFF
COLL_SVC_BILL_INFO OFF
CRSEQNUM OFF
CRT_BILLING OFF
CSMI ON
DA411 OFF
DA555 OFF
DSCWID_CONF_AUDIT OFF
ENFIA_B_C ON
FREECALL OFF
FTRCODE OFF
GFTBILL OFF
HIGHREV OFF
INTL_ICR_REQD OFF
INTRASITE OFF
INWATS OFF
ISDN_ACCIND OFF
ISDNBBGBILL OFF
ISDNCIRCUIT OFF
LNID OFF
LNP_BILL_DONOR OFF
LOGAMA OFF
LOGOPT PERIODIC yymmdd 1200 24 HRS
LOGTEST OFF
LONGCALL PERIODIC yymmdd 0000 24 HRS
LUSORIG OFF
LUSTERM OFF
MC611_80005 OFF
MWIC_AUDIT PERIODIC yymmdd 0000 24 HRS
NTAI OFF
OBSERVED OFF
OCCOVFL PERIODIC yymmdd 2300 1 HRS
OCCTERM ON
OUTWATS OFF
OVERFLOW PERIODIC yymmdd 2300 24 HRS
RECORD_DIALED_DIGS OFF
RECORD_LPSI OFF
RECORD_NATIVE_LSPI OFF

14

RECORD_RESOLD_LSPI OFF
RECORD_SIGNAL_LSPI OFF
RECORD_TERMINATION OFF
RECORD_TRUNK_LSPI OFF
RECORD_UNBUND_LSPI OFF
SAID_MOD_SUPPR OFF
STORE_CALLREF OFF
STORE_LRN OFF
SUSP OFF
TIMECHANGE OFF
TRACER PERIODIC yymmdd hh00 1 HRS
TRKID OFF
TWC ON
U3WC ON
UNANS_AIN OFF
UNANS_LOCAL OFF
UNANS_TOLL OFF
UNANS_TOPS OFF
−−−
Note: 'yymmdd' is the date at Initial Program Load (IPL) time, and 'hh00' is the time
at IPL.
−−−

In table CRSFMT, if the entry in field KEY is AMA, and the entry in field FORMAT is NTFMT (Nortel
Networks Format) or another non−Bellcore format, the default values for the options in table
AMAOPTS are listed in the following table:

−−−
Default Schedule Values for non−Bellcore Format Options

Option Default Schedule
−−−
AR_BILLING OFF
AUDIT PERIODIC yymmdd 0000 24 HRS
CALL_FWD OFF
CCSADATA OFF
CDAR OFF
CDRDUMP OFF
CDRLONGCALL PERIODIC
CDRSYNC OFF
CHG411 OFF
CHG555 OFF
CIDSUSPAUD OFF
COIN OFF
DA411 OFF
DA555 OFF
ENFIA_B_C ON
FREECALL OFF
HIGHREV OFF
INWATS OFF
LNID OFF
LOGAMA OFF
LOGOPT OFF
LONGCALL PERIODIC yymmdd hhmm 1 HRS
LUSORIG OFF
LUSTERM OFF
OBSERVED OFF
OCCOVFL PERIODIC yymmdd 2300 1 HRS
OCCTERM ON
OUTWATS OFF
OVERFLOW OFF
STORE_CALLREF OFF
TIMECHANGE OFF

15

TRACER OFF
TRKID OFF
TWC OFF
UNANS_LOCAL OFF
UNANS_TOLL OFF
UNANS_TOPS OFF
−−−
Note: 'yymmdd' is the date at Initial Program Load (IPL) time, and 'hh00' is the time
at IPL.
−−−

In table CRSFMT, if the entry in field KEY is AMA, and the entry in field FORMAT is BCFMT (Bellcore
Format), the allowable values for field AMASEL in table AMAOPTS are as listed in the following
table:

−−−
Allowable AMASEL Values for Each Bellcore Format Option

Option ON OFF TIMED PERIODIC DEFAULT
−−−
ACBAR_MOD_CO X X X
ACBAR_STY_IN X X X
AMATRKTG_ANS X X X
APPEND_ISDN_CKT_ID X X X
APPEND_PRI_MODULE X X X
AUDIT X
BCLID_USPAUD X X X X
BCLONGCALL X X
CALL_FWD X X X X
CALL_TIMECHG X X X
CAPTURE_CKTSZ_UNANS X X X
CAPTURE_CLASS_SERV X X X
CAPTURE_COMPL_CODE X X X
CAPTURE_INAP_CPC X X X
CAPTURE_SAT_IND X X X
CCBS_BILLING X X X
CCSADATA X X X
CDAR X X X X
CDAR_EXTENDED X X X
CDRDUMP X X X
CDRLONGCALL X X X X
CHG411 X X X X
CHG555 X X X X
CIDSUSPAUD X X
CITYWIDE X X X
CLI_DELV X X X
CMCICWK X X X X
CMCORIG X X X X
CMCTERM X X X X
COIN X X X X
COLL_SVC_BILL_INFO X X X
CRSEQNUM X X X
CRT_BILLING X X X
CSMI X X X
DA411 X X X X
DA555 X X X X
DSCWID_CONF_AUDIT X X X
ENFIA_B_C X X X X
FREECALL X X X X
FTRCODE X X X
HIGHREV X X X
INTL_ICR_REQD X X X
INTRASITE X X X

16

INWATS X X X X
ISDN_ACCIND X X X
ISDNBBGBILL X X X
ISDNCIRCUIT X X X X
LNID X X
LNP_BILL_DONOR X X X
LOGAMA X X X X
LOGOPT X X X
LOGTEST X X X
LONGCALL X X
LUSORIG X X X X
LUSTERM X X X X
MC611_80005 X X X
MWIC_AUDIT X X X
OBSERVED X X X X
OCCOVFL X X X X X
OCCTERM X X X X
OUTWATS X X X X
OVERFLOW X X X
RECORD_DIALED_DIGS X X X
RECORD_LPSI X X X
RECORD_NATIVE_LSPI X X X
RECORD_RESOLD_LSPI X X X
RECORD_SIGNAL_LSPI X X X
RECORD_TRUNK_LSPI X X X
RECORD_UNBUND_LSPI X X X
SAID_MOD_SUPPR X X X
STORE_CALLREF X X X
STORE_LRN X X X
SUSP X X X X
TIMECHANGE X X X
TRACER X X X
TRKID X X
TWC X X X X
U3WC X X X X
UNANS_AIN X X X X
UNANS_LOCAL X X X X
UNANS_TOLL X X X X
UNANS_TOPS X X X X X
−−−
−End−

In table CRSFMT, if the entry in field KEY is AMA, and in field FORMAT is NTFMT (Nortel Format) or
other non−Bellcore format, the allowable values for field AMASEL in table AMAOPTS are as listed
in the following table:

−−−
Allowable AMASEL Values for Each non−Bellcore Format Option

Option ON OFF TIMED PERIODIC DEFAULT
−−−
AUDIT X
APPEND_ISDN_CKT_ID X X X
CALL_FWD X X
CCSADATA X X X
CDAR X X
CDRDUMP X X X
CDRLONGCALL X X X X
CDRSYNC X X X
CHG411 X X
CHG555 X X
CIDSUSPAUD X X
COIN X X

17

DA411 X X
DA555 X X
ENFIA_B_C X X
FREECALL X X
HIGHREV X X
INWATS X X
LNID X X
LOGAMA X X
LOGOPT X X
LONGCALL X X
LUSORIG X X
LUSTERM X X
OBSERVED X X
OCCOVFL X X X X X
OCCTERM X X X X
OUTWATS X X X
OVERFLOW X X X
SAID_MOD_SUPPR X X X
STORE_CALLREF X X X
TIMECHANGE X X
TRACER X X
TRKID X X
TWC X X
UNANS_LOCAL X X
UNANS_TOLL X X
UNANS_TOPS X X
−−−
−End−

Datafill Sequence

Table CRSFMT must be datafilled before table AMAOPTS.

Table Size

Table size is determined by the number of options currently supported. This number is static.

Datafill

The following table lists datafill for table AMAOPTS:

−−−
Field Descriptions for Table AMAOPTS

Field Subfield Entry Explanation
−−−
OPTION See subfield Option
 This field consists of subfield AMAOPT.

 AMAOPT Alphanumeric AMA Option
 Enter one of the option values listed
 in the first table in this chapter.
−−−
SCHEDULE See subfield Schedule
 This field consists of subfields AMASEL,
 ONDATE, OFFDATE, SCHED, ONTIME, and OFFTIME.

 AMASEL ON, OFF, AMA Selector
 DEFAULT, PERIODIC, Enter one of the values listed in the fourth
 TIMED and fifth tables in this chapter.

18

 * ON: Activate the option immediately.

 * OFF: Deactivate the option immediately.

 * DEFAULT: Use the default schedule for
 the option. The value DEFAULT
 never appears in table AMAOPTS,
 since table control replaces it
 with the actual default value;
 details are shown in the
 cross−reference tables in this
 chapter. The DEFAULT selector
 can be used at any time and the
 switch recalculates the default
 value if the default AMASEL value
 is PERIODIC.

 * PERIODIC: Activate the option at the
 specified date and time and
 perform the activity periodically
 at the interval specified.
 Datafill subfields ONDATE and
 ONTIME to specify the date and
 time for activation, and datafill
 SCHED for the time intervals at
 which to perform the activity.
 For PERIODIC refinements, refer
 to AMASEL=PERIODIC conditional
 datafill table.

 * TIMED: Activate the option between the
 specified dates and times. Datafill
 refinements ONDATE and ONTIME to
 activate the option, and refinements
 OFFDATE and OFFTIME to deactivate
 the option. For TIMED refinements,
 refer to AMASEL=TIMED conditional
 datafill table.
−−−
−End−

AMASEL = PERIODIC

If the entry in subfield AMASEL is PERIODIC, datafill refinements ONDATE, ONTIME, SCHED, TV,
and TU as described in the following table:

−−−
Field Descriptions for Table AMAOPTS

Field Subfield Entry Explanation
−−−
 ONDATE 0 to 9 Activation on Date
 (6 digits) Enter the year, followed by the month,
 followed by the day (yymmdd) on which the
 activation of the option is set to ON.
 For example, 821105.

 ONTIME 0 to 9 Activation on Time
 (4 digits) Enter the hour, followed by the minute
 (hhmm) on which the activation of the
 option is set to ON. For example, an
 ON time of 1:45 P.M. is entered as 1345.

19

 SCHED See subfields Periodic Schedule
 This field consists of subfields TV and TU.

 TV 0 to 255 Time Value
 Enter the time value for periodic scheduling.
 For example, an entry of 9, activates the
 option for the period of time units selected
 in subfield TU.

 TU HRS, MINS, or Time Unit
 SECS Enter the time unit for the time value
 selected in subfield TV.
−−−
Note: Years 82 to 99 mean 1982 to 1999, while years 00 to 81 mean 2000 to 2081.
Dates that are past cannot be entered in this field by the commands CHANGE or ADD.
−−−
−End−

AMASEL = TIMED

If the entry in subfield AMASEL is TIMED, datafill refinements ONDATE, ONTIME, OFFDATE, and
OFFTIME, as described in the following table:

−−−
Field Descriptions for Table AMAOPTS

Field Subfield Entry Explanation
−−−
 ONDATE 0 to 9 Activation on Date
 (max of 6 digits) Enter the year, followed by the month,
 followed by the day (yymmdd) on which
 the activation of the option is set to
 ON. For example, 821105.
−−−
 ONTIME 0 to 9 Activation on Time
 (max of 4 digits) Enter the hour, followed by the minute
 (hhmm) on which the activation of the
 option is set to ON. For example, an ON
 time of 1:45 P.M. is entered as 1345.
−−−
 OFFDATE 0 to 9 Activation off Date
 (max of 6 digits) Enter the year, followed by the month,
 followed by the day (yymmdd) on which
 the activation of the option is set to
 OFF. For example, 821106.
−−−
 OFFTIME 0 to 9 Activation off Time
 (max of 4 digits) Enter the hour, followed by the minute
 (hhmm) on which the activation of the
 option is set to OFF. For example, an
 OFF time of 11:00 P.M., is entered as 2300.
−−−
Note: Years 82 to 99 mean 1982 to 1999, while years 00 to 81 mean 2000 to 2081.
Dates that are past cannot be entered in this field by the commands CHANGE or ADD.
−−−
−End−

20

Datafill Example

The following example shows sample datafill for table AMAOPTS.

−−−
Datafill Example for Option CCBS_BILLING in Table AMAOPTS
−−−
Example of a MAP display:

OPTION SCHEDULE
__
CCBS_BILLING ON
__

−−−
Datafill Example for Table AMAOPTS
−−−
Example of a MAP display:

OPTION SCHEDULE
__
ACBAR_MOD_CO OFF
RECORD_SIGNAL_LSPI OFF
INTL_ICR_REQD ON
__

−−−
Datafill Example for Option LNP_BILL_DONOR in Table AMAOPTS
−−−
Example of a MAP display:

OPTION SCHEDULE
__
LNP_BILL_DONOR ON
__

−−−
Datafill Example for Option RECORD_TRUNK_LSPI in Table AMAOPTS
−−−
Example of a MAP display:

OPTION SCHEDULE
__
RECORD_TRUNK_LSPI ON
__

−−−
Datafill Example for Option NTAI in Table AMAOPTS
−−−
Example of a MAP display:

OPTION SCHEDULE
__
NTAI OFF
__

21

−−−
Datafill Example for Option STORE_CALLREF in Table AMAOPTS
−−−
Example of a MAP display:

OPTION SCHEDULE
__
STORE_CALLREF ON
__

−−−
Datafill Example for Option STORE_LRN in Table AMAOPTS
−−−
Example of a MAP display:

OPTION SCHEDULE
__
STORE_LRN ON
__

−−−
Datafill Example for Option CAPTURE_CKTSZ_UNANS in Table AMAOPTS
−−−
Example of a MAP display:

OPTION SCHEDULE
__
CAPTURE_CKTSZ_UNANS ON
__

−−−
Datafill Example for Option TRMTID_CAPTURE in Table AMAOPTS
−−−
Example of a MAP display:

OPTION SCHEDULE
__
TRMTID_CAPTURE ON
__

−−−
Datafill Example for Options CAPTURE_CLASS_SERV, CAPTURE_COMPL_CODE, and
CAPTURE_SAT_IND in Table AMAOPTS
−−−
Example of a MAP display:

OPTION SCHEDULE
__
CAPTURE_COMPL_CODE ON
CAPTURE_CLASS_SERV ON
CAPTURE_SAT_IND ON
__

Error Messages

The following explains error messages that can occur when you attempt to datafill table AMAOPTS.

Message:

ERROR: LNP Billing options may not be activated unless Software Optionality Control
option LNP00200 is ON.

22

Explanation: SOC option LNP00200 is in the IDLE state.

User Action: Activate SOC option LNP00200. Activate the LNP billing option.
(again)

23

Nortel DMS−100 AMA Log Reports
AMA100

Explanation

The Automatic Message Accounting (AMA) subsystem generates AMA100 when an AMA process
changes status to TRAP or DEATH. When an AMA process like AMAPROC, AMAUDITP, or AMAEI
changes status, the AMA log shows the changes. Do not suppress the AMA100 log. The AMA100
log indicates the status of active billing functions in the switch.

Format

The log report format for AMA100 is as follows:

AMA100 mmmdd hh:mm:ss ssdd INFO AMA PROCESS STATUS CHANGE
 PROCESS NAME = aaaaa
 STATUS = <status>
 RECREATE COUNT= nnnnnn

Example

An example of log report AMA100 follows:

AMA100 JAN02 00:22:53 6401 INFO AMA PROCESS STATUS CHANGE
 PROCESS NAME= SMDR
 STATUS= PROCESS
 RECREATE COUNT= 1

Field Descriptions

The following table describes each field in the log report:

−−−
Field Value Description
−−−
INFO AMA PROCESS constant Indicates a process status change.
STATUS CHANGE
−−−
PROCESS NAME constant Identifies the status of the processor.
−−−
STATUS PROCESS, TRAP, DEATH
−−−
RECREATE COUNT PROCESS, TRAP, DEATH Identifies the recreated number.
−−−
−End−

24

Action

The status of each process determines the next step. Follow the directions of the last AMA100 log
received for a stream.

−−−
Status Action
−−−
PREPROCESS IS DEAD The process listed has trapped more than five times in five
 minutes. If the stream is not the AMA stream, any mechanism
 will automatically start the process. You can use the
 AMARESTART command to restart the stream. If it is the AMA
 AUDIT process then you must pass the NIL stream to the
 AMARESTART command.

Note: If the stream is AMA, the AMARESTART command
 works. If the stream is not AMA, the stream restarts
 automatically within 10 minutes.
−−−
AMA: RECORDING SHUTDOWN This only occurs with the AMA DADDY process name. If any
 call recording is expected in the switch, this log indicates
 these expectations are not fulfilled. This should only occur
 after a RESTART. If this condition occurs in an active
 office, contact the next level of maintenance.
−−−
CREATE ATTEMPT FAILED A recording stream trapped and was recreated successfully.
 If additional AMA100 logs are not received for that process,
 monitor the condition.
−−−
SBA BUFFERING RECORDS If recording to an SDM this log shows the recording stream
 has died and the stream has been restarted. This log will
 be produced with a recreate count of 1 showing that the SBA
 application is accepting records to be recorded to the SDM.
 There will be a total of six AMA100 logs incrementing the
 recreate count. The first will appear once the stream has
 been started successfully after dieing. Two more logs will
 appear within the next four minutes and three more every ten
 minutes for a total of six logs in thirty−four minutes.
−−−
All Others Another log that reports what you did to correct the event
 must follow any other status. Any other status is an
 intermediate status.
−−−
−End−

Associated OM Registers: There are no associated Operational Measurement (OM)
registers. (all AMA reports)

Additional Information: There is no additional information. (all AMA reports)

25

Nortel DMS−100 AMA Log Reports
AMA112

Explanation

The Automatic Message Accounting (AMA) subsystem generates this report at the intervals defined
in table AMAOPTS. The AMA112 log lists the calls in progress for longer than the period defined in
OFCENG. This report is not generated if there are no long duration calls.

Format

The log report format for AMA112 is as follows:

UKC21071CG AMA112 mmmdd hh:mm:ss ssdd INFO LONG DURATION CALL
 ORIG = <clli>
 TERM = <clli>
 CLG NO = <dn>
 CLD NO = <dn>
 CONNECT_TIME = day/hh:mm:ss
 REPORT COUNT = nnn
 ANSWERED = Y/N

Example

An example of log report AMA112 follows:

UKC21071CG AMA112 DEC19 12:00:03 2112 INFO LONG DURATION CALL
 ORIG = CKTKNGA201BTWBE3
 TERM = LEN HOST 50 1 01 00 DN 8114005
 CLG NO = 1628798004
 CLD NO = 123456789123456789123456789123
 CONNECT TIME = 185/11:16:47
 REPORT COUNT = 324
 ANSWERED = Y

Field Descriptions

The following table describes each field in the log report:

−−−
Field Value Description
−−−
INFO LONG DURATION constant Indicates that a call has been in progress for
CALL more than the period defined in OFCENG.
−−−
ORIG character string The Common Language Location Identifier
 (CLLI) for the trunk group of the calling party.
−−−
TERM character string Gives the Common Language Location Identifier
 (CLLI) for the trunk group of the called party.
−−−
CLG NO integers Gives the Directory Number (DN) of the calling
 party. Left justified.
−−−
−continued−

26

−−−
Field Value Description (continued)
−−−
CLD NO integers Gives the DN of the called party. Right
 justified.
−−−
CONNECT TIME symbolic text Gives the day and time when the connection
 for this call was set up (as day in
 year/hours/minutes/seconds/milliseconds).
−−−
REPORT COUNT 0−999 Gives a sequential count for each series of
 reports.
−−−
ANSWERED Y (yes), N (no) Indicates whether the call was answered or
 not.
−−−
−End−

Action

Maintenance personnel must make sure that the specified trunks work. If the call is correct and in
talking state, notify the downstream processing personnel and give details of the call.

27

Nortel DMS−100 AMA Log Reports
AMA114

Explanation

The Automatic Message Accounting (AMA) subsystem generates report AMA114 when an AMA
rotate entry forms. The rotate entry goes into the AMA buffer, which goes into the AMA file. The
count in AMA114 should match the count in the DIRP101 file rotation logs.

Format

The log report format for AMA114 is as follows:

AMA114 mmmdd hh:mm:ss ssdd INFO FILE ROTATION ENTRY
 ROTATION TYPE = <rottype>
 STREAM NAME = <stream>
 RECORD COUNT = <reccount>
 CALL COUNT = <recnumber>

Example

An example of log report AMA114 follows:

*** AMA114 DEC19 12:00:00 5383 INFO FILE ROTATION ENTRY
 ROTATION TYPE = OUTGOING−EMERGENCY
 STREAM NAME = AMA
 RECORD COUNT = 40
 CALL COUNT = 40

Field Descriptions

The following table describes each field in the log report:

−−−
Field Value Description
−−−
INFO FILE ROTATION constant Indicates an AMA transfer.
ENTRY
−−−
ROTATION TYPE INCOMING Indicates that the file rotation entry is an
 incoming transfer record.

 OUTGOING Indicates that the file rotation entry is an
 outgoing transfer record.

 OUTGOING−EMERGENCY Indicates that the file rotation entry is an
 outgoing/emergency transfer record.
−−−
STREAM NAME symbolic text Indicates the record stream set in table
 CRSFMT. Examples are AMA, SMDR, and
 CDR.
−−−
−continued−

28

−−−
Field Value Description (continued)
−−−
RECORD COUNT 0−99999999 Indicates the count of the eight−digit
 numeric record that enters a just−closed
 AMA file. This count should be identical
 to the count in the DIRP101, File Rotation
 Logs.
−−−
CALL COUNT 0−99999999 Indicates the call count is an eight−digit
 numeric field. The field shows the number
 of records produced from call processing
 activities that generate records. Does not
 include transfer records, time change records,
 or restart indication records. AMA114
 generates when file restoration occurs for
 recording streams found in table CRSFMT.
−−−
−End−

Action

Order up another standby AMA device.

29

Nortel DMS−100 AMA Log Reports
AMA117

Explanation

The Automatic Message Accounting (AMA) subsystem generates AMA117 according to the
schedule that appears in table AMAOPTS. Log report AMA117 provides the current state of the
AMA options. Table AMAOPTS controls the AMA options.

Format

The log report format for AMA117 is as follows:

AMA117 mmmdd hh:mm:ss ssdd INFO AMA_OPTIONS
 AUDIT: <statxt>
 LOGAMA: <statxt>
 LOGOPT: <statxt>
 LONGCALL: <statxt>
 TRACER: <statxt>
 SST: <statxt>
 DA411: <statxt>
 CHG411: <statxt>
 DA555: <statxt>
 CHG555: <statxt>
 UNANS: <statxt>
 TRKID: <statxt>

Example

An example of log report AMA117 follows:

AMA117 JUL14 23:56:00 4721 INFO AMA_OPTIONS
 AUDIT: PENDING
 LOGAMA: ACTIVE
 LOGOPT: ACTIVE
 LONGCALL: PENDING
 TRACER: ACTIVE
 SST: ACTIVE
 DA411: INACTIVE
 CHG411: INACTIVE
 DA555: INACTIVE
 CHG555: INACTIVE
 UNANS: ACTIVE
 TRKID: INACTIVE

30

Field Descriptions

The following table describes each field in the log report:

−−−
Field Value Description
−−−
INFO AMA_OPTIONS constant Indicates that the AMA option and current
 state of the AMA option follow.
−−−
AUDIT ACTIVE Indicates the option is active.

 PENDING Indicates the option is not active.
 Table AMAOPTS specifies the date and time
 the subsystem activates the option.

 INACTIVE Indicates the option is not active.
−−−
LOGAMA Refer to preceding AUDIT.
−−−
LOGOPT Refer to preceding AUDIT.
−−−
LONGCALL Refer to preceding AUDIT.
−−−
TRACER Refer to preceding AUDIT.
−−−
SST Refer to preceding AUDIT.
−−−
DA411 Refer to preceding AUDIT.
−−−
CHG411 Refer to preceding AUDIT.
−−−
DA555 Refer to preceding AUDIT.
−−−
CHG555 Refer to preceding AUDIT.
−−−
UNANS Refer to preceding AUDIT.
−−−
TRKID Refer to preceding AUDIT.
−−−
−End−

Action

There is no action required. The operating company can use this report to make sure the AMA
recording options are in the required state. To change the states of options, the operating company
can adjust the tuples in table AMAOPTS.

31

Nortel DMS−100 AMA Log Reports
AMA118

Explanation

The Automatic Message Accounting (AMA) subsystem generates AMA118 to indicate the status of
AMA options. Set option LOGOPT in table AMAOPTS to control the generation the AMA118
log. The user can set LOGOPT so that the system does not generate the AMA118 log. The user
can set the LOGOPT so that the system generates the AMA118 log every 24 hours, or at chosen
intervals. When LOGOPT is in the default configuration, the system does not generate this log
report.

Format

The log report format for AMA118 is as follows:

AMA118 mmmdd hh:mm:ss ssdd INFO AMA_OPTIONS
 <AMA option> : <status>

Example

An example of log report AMA118 follows:

AMA118 APR13 12:00:00 0615 INFO AMA_OPTIONS
 ACBAR_MOD_CO: INACTIVE
 ACBAR_STY_IN: INACTIVE
 APPEND_ISDN_CKT_ID: ACTIVE
 AUDIT: ACTIVE
 BCLID_USPAUD: ACTIVE
 BCLONGCALL: ACTIVE
 CALL_FWD: ACTIVE
 CALL_TIMECHG: INACTIVE
 CCSADATA: INACTIVE
 CDAR: INACTIVE
 CDRDUMP: INACTIVE
 CDRLONGCALL: INACTIVE
 CDARSYNC: INACTIVE
 CHG411: INACTIVE
 CHG555: ACTIVE
 CIDSUSPAUD: ACTIVE
 CITYWIDE: INACTIVE
 CMCICWK: INACTIVE
 CMCORIG: INACTIVE
 CMCTERM: INACTIVE
 CMCTERM: INACTIVE
 COIN: ACTIVE
 CRSEQNUM: INACTIVE
 CSMI: ACTIVE
 DA411: ACTIVE
 DA555: ACTIVE
 DSCWID_CONF_AUDIT: ACTIVE
 ENFIA_B_C: ACTIVE
 FREECALL: INACTIVE
 FTRCODE: INACTIVE
 HIGHREV: INACTIVE
 INTRASITE: INACTIVE

32

 INTRASITE: INACTIVE
 INWATS: ACTIVE
 ISDNCIRCUIT: INACTIVE
 LOGAMA: ACTIVE
 LOGOPT: ACTIVE
 LOGTEST: INACTIVE
 LONGCALL: ACTIVE
 LUSORIG: ACTIVE
 LUSTERM: ACTIVE
 OBSERVED: ACTIVE
 OCCTERM: ACTIVE
 OUTWATS: ACTIVE
 OCCOVFL: ACTIVE
 OVERFLOW: INACTIVE
 SAID_MOD_SUPPR: ACTIVE
 SUSP: INACTIVE
 TIMECHANGE: ACTIVE
 TRACER: INACTIVE
 TWC: ACTIVE
 U3WC: ACTIVE
 UNANS_AIN: INACTIVE
 UNANS_LOCAL: ACTIVE
 UNANS_TOLL: ACTIVE
 UNANS_TOPS: ACTIVE

Field Descriptions

The following table describes each field in the log report:

−−−
Field Value Description
−−−
INFO AMA_OPTIONS constant Indicates a report of status of options in
 table AMAOPTS.
−−−
<AMA option> Identifies the option in table AMAOPTS.
−−−
<status> ACTIVE Indicates activation of the option in table
 AMAOPTS.

 INACTIVE Indicates deactivation of the option in table
 AMAOPTS.

 PENDING Indicates the option scheduled in table
 AMAOPTS not activated.
−−−
−End−

33

Nortel DMS−100 SOS Script Overview
Abstract

This document is designed to give the reader a quick−and−dirt view of the SOS Command
Interpreter (CI for short) and execs on the DMS−100 switch. It is not designed to replace reading of
the pertinent DIS documents. The document covers the basic CI commands as well as numerous
examples of using SOS execs, and many of the "secret" features and Murphitic surprises awaiting
the unwary.

The following conventions are used in this manual:

Commands as you would type them in are always shown in CAPITALS, preceded with a
greater−than: ">". If there is an optional parameter, it will be shown in braces:
"{blah}". Comments are indicated out to the right of a line and will start with a double−dash: "−−".

You should not enter the comments. Thus, the line:

>READ OPERPROF −− start up the profile

Means to enter the command "READ OPERPROF". You do not enter the ">" or the comment "−−
start up the profile" at any time.

Parameters which are variable values are usually indicated with the greater−than and less−than and
in lower case letters: "<blah−blah>".

For example:

>QFLAG <user−sys>

The possible values for user−sys are given by the use of braces. For example:

Where, <user−sys> = {ATV, AUTOVON, D250, XYZ, etc.}

Here, the term "etc" stands for "et cetera" or "and so forth" and is not an option. Usually, a help
command will be available to explain what the legal options are.

In this document, I always use <BREAK> to indicate the break key.

I will also use the "^" in place of the caret.

Overview

To many the mere word (acronym) SOS evokes terror, disgust, yea even a tight feeling in the left
shoe. However, we must be of strong will for (though nasty the subject be) many must use SOS.

34

The perspective of this paper is not so much the operation of SOS itself (of which much has been
written and said), but on how to use the SOS features to implement "programming" execs. Thus, if
you want to know how the scheduler works, or how to interface your CIBINCOMs to SOS or CIP,
look elsewhere. There are several good DIS documents and a couple of video tapes on that
subject.

Thus, we are only concerned with the rather nasty "computer" type operations −− not the operation
of SOS as an operating system. We are like BASIC programmers trying to print the first ten
integers:

 (BASIC) (SOS)

10 FOR I = 1 TO 10 1 −> II
20 PRINT I REPEAT 10 (PRINT II;(II+1)−>II)
30 NEXT I

Logging In and Getting Started

When you log in, the SOS creates a user area of memory within which your execs and files will
reside. Also, when you log out, that area of memory continues to exist. Only if you UNPERMIT a
user (i.e., erase the user log on) will you wipe out files, etc. (Of course, if the switch is re−booted
during your absence, then those files are lost also.)

To log on:

Find a terminal, turn on the power, and...•
Hit the <BREAK> key. On some terminals, this is marked "BREAK" (easy), on others it is marked "INT" (for
interrupt), on others, you hold down a function key (<FUNC>) and then hit <INT>, and on still others, it is
<F5>. All designed to confuse the novice.

•

You should get a question mark (also known as "hook"): ?•
Type in the word: LOGIN•
When prompted for the name and password, enter them on one line (unless you have "enhanced password
security"):

•

−−− Enter user name and password:
>ALPHA ALPHA −− already permitted

−−− Enter user name: −− security version
>ALPHA
−−− Enter password:
>ALPHA

Of course, if the user is not permitted, you may need to go to the operator console and enter:

>PERMIT ALPHA ALPHA 2 5000 ALL

or something like that.

A Few Useful Keys

You may have noticed by now that CI doesn't like the arrow keys. With that in mind, here are some

35

substitute key sequences, as well as some other handy keystrokes. Like in any other ASCII
environment, "<CTRL> H" means "hold down the control key and hit H."

<CTRL> U −− Erase contents of line•
<CTRL> I −− Go into insert mode•
<CTRL> X −− Exit insert mode•
<CTRL> E −− Erase to end of line•
<DELETE> −− Delete character under cursor (destructive backspace key on VT220s, etc.)•
<CTRL> F −− Skip to next character•
<CTRL> H −− Backspace (also <BS> on VT100s, or <F12> on VT220s, VT320s, NT220s, etc.)•
<CTRL> S −− Stop scroll•
<CTRL> Q −− Resume scroll•
<CTRL> G −− Bell•

Note: If you're getting a lot of "Stack Overflow" messages while messing around on the switch,
you probably need to increase your stack size. To do that, you will have to re−PERMIT yourself,
with a larger number for the stacksize field (5,000 in the example above). 10,000 is the limit. That's
what I always use.

The SOS Editor (Introduction)

Well, since there are files on the system, we need some way of creating and changing them −−
enter the SOS editor. It is a little primitive (not full−screen) −− however, we can do a lot with it by
using SOS macros within the editor. How?? Read on.

To proc it up:

>EDIT myfile (or whatever)

 edit commands

 ... and to exit:

>QUIT −− discards input −−− NO failsafe!
>FILE SFDEV −− files the changed file in RAM

Directory Structure While in EDIT

When a user name is permitted, a permanent area of memory is allocated. This same SFDEV
(RAM) is always accessed when the user logs in. The user always has read−write access to the
memory. Upon entering the EDIT command, the SOS Command Interpreter (CI) creates a
temporary linkage to a read only directory. It will be layered on top of your existing directory and
you can then access the EDIT commands (INPUT, TYPE, UP, etc.).

Thus, you might try this:

>EDIT JUNK
NEW FILE −− SOS tells you that the file doesn't exist
>LISTST −− to show the directory structure...
EDITDIR CE01,8071 RO
ALPHA CE01,C047 RW
PROGDIR CE01,C004 RO
SYSDIR CE01,2002 RO
ROOTDIR CE01,4001 RO
STDIRS CE01,A01E RO

36

SOS puts the copy of the EDIT directory on top. And even though it is Read Only (RO), you can
still create macro commands in your Read/Write (RW) directory "USERS.ALPHA" that use the edit
commands.

EDIT <filename>

Let us say that we want to create a junkfile called "MYJUNK" to play with. We enter:

>EDIT MYJUNK −− enter the editor, filename is MYJUNK
NEW FILE −− the editor says the file is a new one
EDIT: −− prompt to remind us we are in EDIT
> −− prompt for the next edit command

We want some stuff in the file, so we use the INPUT command.

>INPUT
INPUT MODE:
> −− Now we can enter our lines. To exit
 −− we enter an extra carriage return.

>Mary had a little lamb.
>Sally lives here.
>> −− i'll use ">>" for double carriage return
EDIT:
>

Now we want to see what we entered, so use the TYPE, UP, and DOWN commands:

>UP 1
>TYPE 33
>DOWN 11
>DOWN END −− special variable will put us at the bottom of the file

Also we can change text on the current line with the CHANGE command:

>CHANGE 'Mary' 'Sammy'
Sammy had a little lamb.

 or

>CHANGE 'Marry' 'Sammy'
STRING NOT FOUND −− EDIT couldn't find the string
>

We must always use the apostrophe ('), so things sometimes get a bit messy:

>INPUT
INPUT MODE:
>Don't you know?

37

>>

>CHANGE 'Don''t' 'Didn''t'
Didn't you know?

>CHANGE '''t' '−t'
Didn−t you know?

The general rule is to use an extra apostrophe for the one in the text.

Or we can delete the whole mess with the DELETE command. The DELETE command doesn't
output anything except the new current line (if it changes).

Both DELETE and CHANGE always refer to the current line, which can be displayed by the TYPE 1
command. UP and DOWN move you through the text files.

CHANGE and DELETE have "until" features:

>DELETE 'zotto' −− Delete all lines from here until
 −− the search string "zotto" is found.
 −− If it doesn't exist then nothing is zapped.

>CHANGE GLOBAL 'a' 'A' −− Goes from current line to end of file.

 or

>CHANGE 3 'a' 'A' −− change 3 times on the same line:
MAry hAd A little lamb.
 | | |

The line number of the current line in the editor is stored in a special variable called LINE:

>TYPE 1
Mary had a little lamb.
>PRINT LINE
1
>DOWN 1
Sally lives here.
>PRINT LINE
2

The current line's contents are always copied to a special variable called LINESTR:

>PRINT LINESTR
Sally lives here.

TOP and END move you quickly through the file. To search for a string, we can use DOWN with a
string:

38

>TOP −− The editor will always reserve a dummy
 −− blank line at the top of your file.

>DOWN 'lives'
Sally lives here. −− Or you might get an error message
 −− STRING NOT FOUND.

>UP 'lamb'
Mary had a little lamb. −− UP with a search string

Commands can be strung out on the same line with the ";" (just like SOS commands):

>TOP;DOWN 'here';TYPE 333 −− Go back to the top of file,
 −− go down until the string 'here'
 −− is found, and type the next 333
 −− lines (or until End−of−File).
 or

>TOP
>DOWN 'here'
>TYPE 333

By the way, there is another form of INPUT... INPUT B. This will input the data before the current
line. Sort of handy from time to time.

>FILE SFDEV −− save our file in RAM (SFDEV)
>FILE D010TEST1 −− save our file on disk volume D010TEST1

EDIT Macros

Since the EDIT directory is on top of ours, which is on top of the system and program directories,
we can still use SOS to create commands −− and while in edit, these can be very powerful:

>EDIT MYJUNK −− If the file already exists, we won't
 −− get the "NEW FILE" message here.

>COMMAND CM COMMAND −− Define a shorter version of the
 −− command declaration command.

>CM D DOWN −− short form for DOWN
>CM U UP −− short form for UP
>CM T TYPE −− short form for TYPE
>CM BOT END −− XEDIT users like "BOT" not "END"
>CM CH CHANGE −− short form for CHANGE
>CM CHA CHANGE −− three−letter version
>CM DEL DELETE −− short form for DELETE

>CM PUT1 (LINESTR−>XX1) −− store the current line in a temp variable "XX1"

>CM GET1 (INPUT XX1) −− and input it after the current position.

39

Example:

>EDIT LAMBS
NEW FILE:
>INPUT
INPUT MODE:
>Mary had a little lamb.
>Sally lives here.
>> −− extra carriage return, exits input mode

>TOP;DOWN 1
Mary had a little lamb.
>PUT1 −− XX1 now equals 'Mary had a little lamb.'
>END
>GET1 −− store it as the new last line, and...

>TOP;T 5555 −− show the file:
Mary had a little lamb.
Sally lives here.
Mary had a little lamb.

Neato, eh? Of course, we could write a macro to put an unlimited number of lines, but let's wait until
later.

SOS Fundamentals

What's the Difference Between NT40 and SuperNode Switches?

This is a really broad question, but I'm going to try to sum it up in a page or so.

First, let's talk about how a switch works. A captive office is basically two parts: the network and the
switch. The network is a collection of peripherals (each of which is driven by its own
microprocessor). The switch is the master computer which, among other things, sets up
connections between peripherals so they can talk to one another.

With this in mind, I'll try to explain the life of a simple phone call. The call comes into the switch on
a trunk/line. The peripheral says, "Hey, I just got a call. I better tell the switch." So it sends a
message to the switch. A little volley goes on and eventually the peripheral tells the switch what
digits were dialed. The switch figures out where to send the call next and sets up the connection
between the incoming and outgoing peripherals. This connection is set up in the network. From
here on out, the peripherals talk to each other without any help from the switch until the call ends.

This is why, once you get a call up, you can do anything to the switch you want to and the call stays
up. You can restart warm, restart cold, whatever. The peripherals never even know it.

Now that we have that out of the way, we can get on with the real question.

The NT40 is a proprietary processor developed by Northern Telecom specifically for digital
telephony applications. This processor is, of course, the heart of what we call NT40 switches.

A few years ago, someone decided it would be a really neat idea to base a switch around a
68020. That's where SuperNode came from. But the differences don't end there. SuperNode is
actually two computers instead of just one. (Two... two... two computers in one!) It's made up of a
CM (Computing Module) and an MS (Message Switch).

40

One of the results of this arrangement is that images are about twice as large for SuperNodes as for
NT40s, and consequently take about twice as long to boot. Enter the SLM.

SLM stands for System Load Module. An SLM consists of a Winchester disk and a magnetic−tape
cartridge. The SLM is used to contain all images for a SuperNode, as opposed to the NT40 which
stores images on the regular disk drives. The overall result is that the SLM tapes boot many times
faster than the normal tapes, and the SLM drives leave that much more room on the regular disk
drives.

The only other major difference from a user standpoint is the way you boot the two machines. NT40
switches are booted using the thumbwheel on the front of the switch. SuperNodes are booted from
the Reset Terminal. The procedures are described in detail in the "Booting from Disk or Tape"
section.

That about covers it. Any additional questions you have about SuperNode versus NT40 are
probably covered in the DMS−100 SuperNode System Description (SYSDESC). If you're curious
about SLMs, look a little further down in the "SLM Stuff" section.

A Few Things to Know Before Writing Execs

SOS Data Types

Basically, there are several unusual data types that cause all sorts of problems:

Integers•
Strings•
Symbols•
Files•

And, of course, since Protel is heavily typed, it is hard to get the computer to convert them back and
forth. For some conversions there exist functions, for others not:

12−>TWELVE −− TWELVE is a decimal value of 12
PRINT (HEXTOSTR TWELVE) −− print the form−feed
 or
PRINT (HEXTOSTR #0C) −− actual hex value "#"

So we have a function "HEXTOSTR" to do the conversion. We'll see others later.

Variables & Values

There are several types of variables in SOS and these include:

Numeric & string variables (the usual)•
Symbols (which are strange beasties)•
Files, devices, commands, execs, etc.•

You see, all entities have a partype associated with them and we can find out what that is with the
PARTYPE built−in function:

>1−>II
>PRINT (PARTYPE II)
1

41

We can, of course, assign values. For example:

>'abc'−>VARX
>32767−>MAXINT

Now we come to a very important aspect. The so−called "goes−into".

The Goes−Into "−>"

To assign a variable, we use two characters instead of just 1:

BASIC: BBB = 33
 SOS: 33−>BBB

Now a very interesting thing occurs, and that is that the number of spaces on each side of the
goes−into must be the same:

123−> XYZ −− does nothing at all!!
123 −>XYZ −− does nothing at all!!
123 −> XYZ −− ok
123−>XYZ −− ok
123 −> XYZ −− ok

This can be tricky, so either use no spaces or at least one space on each side.

Comparison and Relational Operators

Of course, SOS has IFs, UNTILs, and WHILEs, and what would an IF, UNTIL, or WHILE be
without comparison and relational operators? Here are the comparison operators:

Comparator Symbol

 Less Than <
 Greater Than >
 Less Than or Equal <=
 Greater Than or Equal >=
 Equal =
 Not Equal ^=

These are the relational operators:

Relator Symbol

 AND &
 OR |
 EXCLUSIVE OR !

As with the goes−into, SOS is kinda picky about how many spaces are on each side of a
comparator or a relational operator. The rule for comparators is the same as that for the
goes−into. At least one space on both sides or no spaces on either side.

42

The relational operators are different, though. With them, the number of spaces on the left don't
matter, but there must be at least one space on the right. Don't ask me. I just work here.

Let's look at some examples:

IF ((x>y) & (w=1)) THEN (... −− do it fine.
IF ((x > y) & (w = 1)) THEN (... −− ok by me.
IF ((x > y)& (w = 1)) THEN (... −− no prob.
IF ((x > y)& (w = 1)) THEN (... −− ok fine.

IF ((x > y)&(w = 1)) THEN (... −− won't work!!!
 (need a space after the &)
IF ((x>y) &(w=1)) THEN (... −− won't work!!!
 (need a space after the &)
IF ((x> y)&(w=1)) THEN (... −− won't work!!!
 (uneven spacing around >)
IF ((x>y)&(w =1)) THEN (... −− won't work!!!
 (uneven spacing around =)

Numeric Variables

Numeric variables are always signed 16−bit integers. This means that the limit of an integer is
between −32,768 and 32,767.

Thus, the following are examples:

 123 −> AVAR
 32767−>BVAR
 −32760 −> JVAR

All arithmetic is integer and must conform to these range restrictions.

String Variables

String variables are always enclosed in the single−quotes mark (apostrophe):

'here is a string' −> MY_STRING
'Joe''s pizza'−>$PARLOR_MESG

The rule in general is that you use one extra ' in the middle of a string. Thus, the following do the
following:

>PRINT $PARLOR_MESG
Joe's pizza

>'''x'''−>QUOTO
>PRINT QUOTO
'x'

43

The extra extra ' is required due to the fact that the first one is the delimiter. Anyway, you can fool
around with it until you get the hang of it. We saw some examples of that back in the editor
discussion.

NUMTODECSTR, NUMTOHEXSTR, HEXTOSTR, & DECSTRTONUM

SOS is pretty flaky about consistently providing type−conversion, so here we go:

>123−>NUMBER
>(NUMTODECSTR NUMBER) −> STRING
>(DECSTRTONUM STRING) −> SAMENUMBER
>(NUMTOHEXSTR NUMBER) −> STRING2
>PRINT NUMBER STRING STRING2 SAMENUMBER
123 123 007B 123

>PRINT (HEXTOSTR 12)

Would produce a CONTROL−L (form−feed in ASCII)

Simple SOS Commands

The keyword for a command declaration is COMMAND. (Very catchy, eh?)

>COMMAND FF (PRINT (HEXTOSTR 12))

This would give us a short form of the form−feed command.

Now let us look at a fancy version of form−feed:

>COMMAND FF (PRINT (HEXTOSTR 12))
>PRINT '***** DEBUGGING RLT '
>DATE;PRINT ' ')

Notice two or three things:

A command starts with a "(" and must end with a ")".

Continuations on the next line can go on for quite a while (as long as you don't over−flow the token
parm area −− 255 max when input interactively. Otherwise, 2,048 in a file).

The ";" can be used within a command just as it can be on a line for separating commands.

Now, lets look at a neato command:

>COMMAND NEATO ((SYMTOSTR @1)−>$PARM1;
>IF ($PARM1='OK')THEN(
>PRINT '−− It''s ok with me.'
>)ELSE(
>PRINT '−− Not ok.'))

44

Things get complicated fast in SOS, so let's look at it blow by blow.

Any string parm passed into a command is automatically converted to a symbol. Numeric values
are not. They are left as numerics.

The IF statement can have an ELSE, but it stops scanning after the THEN is completed. That is
why I put the closing ")" for the THEN on the next line. The following has no ELSE clause:

>COMMAND NOT_NEATO ((SYMTOSTR @1)−>$PARM1;
>IF ($PARM1='OK')THEN(
>PRINT '−− It''s ok with me.')
>ELSE(
>PRINT '−− Not ok.))

Yes, SOS strikes again! Since you closed out the THEN clause at the end of the "ok with me"
line, the scanner just ignores the ELSE and its clause on the next two lines. It only makes sure that
you have a final closing ")" to balance the very first one in the very first line.

Since commands give us more power, they also require more support. We will now look at some of
the functions built in to help with commands.

SYMTOSTR & STRTOSYM

As we have seen, string parms that are passed to a command are converted to a SYMBOL type of
variable. So we must convert them to strings to compare or print them.

>COMMAND NEATO ((SYMTOSTR @1)−>$PARM1;... etc.)

The first parm is stored in the variable @1, #2 in @2, etc. Thus, after execution of NEATO, we could
print the variables where we have transferred the values:

>NEATO HOWDY
>PRINT $PARM1
HOWDY

We can use this to "parse" a line:

>COMMAND ALTER ((SYMTOSTR @1)−>$IX_TABLE;
>(SYMTOSTR @2)−>$IX_CLLI;
>(SYMTOSTR @3)−>$IX_FIELD;(SYMTOSTR @4)−>$IX_VAL)

>COMMAND SHOW_ALT (PRINT '−− ALTER−PARMS: ' $IX_TABLE;
>PRINT $IX_CLLI $IX_FIELD $IX_VAL)

And, I could use them thusly:

>ALTER trkgrp mdal2wdtgs01 authfld $3334444
>SHOW_ALT

45

 −− ALTER−PARMS: trkgrp mdal2wdtgs01 authfld $3334444

An interesting thing to note is the need for a non−numeric as the first character of field four. This is
because the numeric value would not be transformed into a symbol, while a string value
would!! This means that the (SYMTOSTR @4) would fail to get a proper input variable −− and give a
"parameter of wrong type" message. Ah, SOS −− how wonderful. There is a way out of this
by using the PARTYPE function. Since PARTYPE returns the parameter type (as an integer), we
could use this in an IF statement to do the proper conversion.

Sometimes we want to concatenate strings, so we may need to do several conversions into strings,
and then do the concatenations:

>1−>II
>'TM8 '−>$CKT
>$CKT+(NUMTODECSTR II) −> $TM8_SHELF
>PRINT $TM8_SHELF
TM8 1

Usually, I will put an extra set of parentheses around stuff to be concatenated. Also, note that string
concatenation is one of the slowest things SOS does!

Well, since we can do a symbol to string, why not a string to a symbol? No sooner said than
done. Study this:

>1−>II
>33 −> VAR33
>('VAR'+(NUMTODECSTR II)) −> VAR_NAME
>22 −> (STRTOSYM VAR_NAME)
>PRINT VAR33 VAR1
33 22

Here's what happens:

II gets set to 1.•
The value 33 is put into a variable called VAR33.•
A new string variable called VAR_NAME is built up with a value of 'VAR1'.•
The value of 22 is stored in a variable called VAR1.•

So we can create variables out of thin air. Sort of like an array. Consider the following:

>1−>II
>REPEAT 10 (II −> (STRTOSYM ('NUM'+(NUMTODECSTR II));
(II+1) −> II)

This will do the same as:

>1 −> NUM1
>2 −> NUM2
>3 −> NUM3
 ...
>10 −> NUM10

46

This is indeed an array. Not only that, but the thing can be used to execute using variables passed
into a command!

>COMMAND PUT_LINE (
>LINESTR −> (STRTOSYM ('XLINE'+(NUMTODECSTR II)))
>(II+1)−>II)

>COMMAND GET_LINES (
>REPEAT II (
>INPUT (STRTOSYM ('XLINE'+(NUMTODECSTR II))
>);0−>II))

We need only initialize the II value, and then we can use it in EDIT. So the ability to build symbols
from strings is one of the most important aspects. Still...

Symbols & Devices

Since we can build the symbol of what something is in a variable, we can pass to a variable
something other than a plain old string or number. Consider:

>'D010TEST' −> $VOL_NAME −− Create a string with the
 −− name of a disk volume in it.
>(STRTOSYM $VOL_NAME) −> $VOL −− A symbol is created!
>DSKUT
>LISTVOL $VOL ALL −− List the files on the given volume!

Notice, however, that were we to try and do the following...

>PRINT $VOL
device −− the same as >PRINT D010TEST

>PRINT $VOL_NAME
D010TEST −− just what we put in the var

>LISTVOL $VOL_NAME ALL
Wrong type: <volume name> DEVICE name

Wherein SOS is telling us that "$VOL_NAME" is not in the root directory as a symbol representing a
disk volume. This is one of the differences between a string and a symbol.

RINDEX & LINDEX −− Parm Pointers

LINDEX and RINDEX tell you how many parameters appear to the left and right of your command,
respectively. For example:

>COMMAND DOIT (PRINT (LINDEX);PRINT (RINDEX))

>DOIT A B C
0
3

47

>A DOIT B C
1
2

You can use this to make sure that the user enters the correct number of parameters to your
command, and maybe even give them a little more descriptive error message than SOS's helpful: "@
−− Parameter 1 does not exist".

Many people also use LINDEX to see if they should print help information. If the user typed "HELP
cmd", LINDEX would be 1.

This brings up another interesting point about SOS. Notice that, in our second example above, the
command DOIT was executed even though it was not the first thing in the command line (ooh,
aah!). What SOS actually does is scan the line from left to right and execute the first command it
finds.

Like many things in SOS, this is potentially disastrous. Say, for example, you had a command
DOIT. Say, also for example, that you were in table IOC (a rather important table), positioned on a
particularly important tuple (like the one that contains all the terminals). Now, say you were to type:

>DIOT DELETE −− Note the misspelling :)

I think you get the point.

The SOS Commands −− Attack of the CI Commands

Now children, are you all nice and cozy? Well, good. Once upon a time, there was a DIS
document that described the commands that SOS allowed you to use. It was a document, and it did
exist (long after the fires of Mordor had been quelled). Then, one day it up and disappeared! But,
then it wasn't really very useful, so no one really noticed that it was gone (until some poor novice
was scanning the DIS disk looking for it). So, here is a tale of SOS CI commands. (With examples,
yet!)

By the way, the only existing document on SOS that is in DIS is the Northern Telecom Publication
(NTP) 297−1001−509, DMS−100 Family Command Reference Manual. Use the following to get a
copy of it:

>DIS INDEX
>PRINT N1001509 LISTING I
>CP SP PRT CLO FORM XHDP

(or however you print stuff at your site)

It is a bit dated, and somewhat more like a dictionary. However, I will quote a bit from it.

Survey of the Commands

I couldn't decide if I should put the commands in here in logical order or in alphabetical order, so I
finally decided on both! This section is the one that is logical. The others are alphabetical. By

48

necessity, there are some commands that I talk about quite a bit, and others that I don't really get
into very much at all.

Logging On, and Stuff Like That

Commands discussed:

FORCEOUT•
LOGIN•
LOGOUT•
MSG•
PERMIT•
PRINT USERS•
PROFILE•
SETLOGMSG•
SHOW USERS•
UNPERMIT•
<BREAK> HT•
<BREAK> HX & HXX•

TERMDEV, LOGIN, LOGOUT, FORCEOUT

You must always make sure the terminal is configured correctly in table TERMDEV. Its baud rate,
etc. should match the setting on your terminal:

MAP 0 8 CYB B1200 CL 1X67BC NONE N NONE ALL

would be the entry for a Cybernex terminal. The device name is "MAP", which is the default for the
operator position. For a printer, the entry would be:

PRT0 0 9 KSR B1200 CL 1X67BC NONE N NONE ALL

For a VTxxx (VT100, VT220, etc.), the entry would be:

MAP 0 8 VT100 B1200 CL 1X67BC NONE N NONE ALL

Then, you log in. You get the switch's attention by hitting the break key. In this document, I always
use <BREAK> to indicate that key.

<BREAK>
? −− This is the standard prompt.
?LOGIN −− Then, you enter LOGIN after the "?". The switch
 −− will then prompt you for your user name and
 −− password if there is no default user for your
 −− terminal.

>LOGOUT −− Zap. You are logged out. All commands,
 −− variables, and directories that you had
 −− defined disappear.

Another handy command is:

49

>FORCEOUT <user>

Which will forcibly logout another user. There is no warning, so use it with caution. The user does
get a message something like "Logged out by user".

Detached User LOGIN

This brings us to the topic of detached users (about which I will have a whole lot to say later). If you
are already logged in, you can use the LOGIN command with the following format:

>LOGIN <user> <password> <profile> <device>

See the discussion under the LOGIN command for more details.

MSG & SETLOGMSG

MSG is used to send a message to another (or all optionally) user(s):

>MSG MAP4 'Are you ready for lunch?'

When we use the MSG command, we have to know who is logged on. We can use the PRINT
USERS command to find out.

SETLOGMSG allows you to set the message that will be displayed at log on. Also, if you hit return
twice in a row, you will get the log message displayed (along with a prompt showing where you are):

>
>
CI:
BCS−18ZO RMT with TATS AUG−12−85 No Patches
>

PRINT USERS, SHOW USERS

PRINT USERS −− shows all users who are logged in.

SHOW USERS −− shows all users who have been permitted.

PERMIT & UNPERMIT

PERMIT allows you to add a user name that the switch will recognize at login. For example:

>PERMIT MAP3 MAP3 2 8000 ALL −− or something like that

Now, someone can go to a terminal and log in as MAP3.

50

UNPERMIT just does the opposite of PERMIT. For example:

>UNPERMIT MAP3 −− erases a user name from existence

These have an interesting property. The user name has nothing to do with the device. However, if
it happens that a user name has been permitted that has exactly the same spelling as a device
name, and then you go to log on at that device −− you won't be prompted for name or password!

PROFILE & NOPROFILE

You can set up a user profile for each login user name with the PROFILE command. You have one
chance to override the default profile at login time. After you login, the very first command you enter
must be NOPROFILE. Otherwise, you will automatically execute the associated login profile the first
time you hit return after logging in. For example:

<BREAK>
?LOGIN
−−− Enter user name and password:
>BETA BETA
−−− User BETA logged in on 1PRT0 on Jan 31, 1993.
>NOPROFILE −− this should disable the profile

The <BREAK> Key with HT, HX and RT

If a long listing is coming out and you want to discard the output, you can hit the break key and
enter "HT" after the "?". Then, if you want to look at the output again (before the output is done),
you can hit break again and enter "RT" after the new "?".

These are modeled after VM/CMS's Halt Typing (HT) and Resume Typing (RT) commands. Of
course, there are problems. For example, if you have a record link going to a device (e.g., RECORD
START ONTO PRT0), then even though you have entered the HT, the listing still continues to
PRT0. (It may be a little bit faster since the line doesn't actually have to be output to two different
devices.)

To kill the current program you are running, use the break with either "HX" or "HXX". These "Halt
Execution". Sometimes it takes a few moments to clear, but you will usually get a message like
"User process stopped." followed by a prompt.

Disk Stuff

Well, of course the switch has a disk drive... it's a computer, isn't it? It's used for pretty much the
same things on the switch as it is on any other computer... storing junk and retrieving it fairly quickly.

In this little section, I'll discuss some of the things you can do with the disk, along with some of the
pitfalls of working with the disk.

Commands discussed:

DSKALLOC (increment)•
DSKUT (increment)•
EDIT (increment)•

51

COPY•
DUMP•

DSKALLOC

DSKALLOC is a handy little increment that does all the low−level stuff that make the disk drive on the
switch useful.

Just like on a PC, the disk must be formatted before it's any good to anybody. This is done with the
REINIT command in DSKALLOC. Within DSKALLOC, you can also partition the disk drive into
several "volumes" using the ADD and DELETE commands. You can even make the volumes
accessible only to certain users using the DIRADD and DIRDEL commands.

I'm not going to go into detail about DSKALLOC here, since you probably shouldn't be using it
anyway. That's a job for the maintenance guys. If you're really curious, look in NTP
297−1001−526.

DSKUT

In general, if you want to do anything relating to the disk (print files, create files, copy files, etc.), you
need to use DSKUT.

Probably the most valuable command in DSKUT is LISTVOL. LISTVOL allows you to list the files on
a given disk, which puts pointers to them in your read−write directory, which makes the files
accessible to you. If you want to READ, PRINT, COPY, or EDIT a file, you have to use LISTVOL to
do it.

Like the entries in SFDEV, the files on disk know who owns them. So, you can have several
different files with the same name on the same disk, but SOS is able to keep them straight because
it knows who owns them. If you just do a:

>LISTVOL D010CNTFL

you would get only the files that you own. If you do a:

>LISTVOL D010CNTFL OPERATOR

you would get only the files that OPERATOR owns. If you do a:

>LISTVOL D010CNTFL ALL

you would get all the files on the volume.

This brings up an important point. If you do a LISTVOL and get more than one file listed with the
same name, SOS will only remember the last one that popped up. So be careful.

This gets to be even more of a pain, because if you file a new version of a file that was already
there, the older version is not erased. It's still sitting out there, and if you do a LISTVOL, it will show

52

up as an "*** older duplicate ***", and these can be a real pain to get rid of. Of course, if
you do a LISTVOL and the last copy of the file that pops up is an "*** older duplicate ***",
that's the only one SOS knows about.

But, enough about LISTVOL. There are several other little goodies in DSKUT. You can get
information about a volume or a file (SHOWVOL and SHOWFL) and erase files (ERASEFL). If you're
messing with the boot volume, you can even mess with the current image (SETBOOT, SHOWBOOT,
and CLEARBOOT).

Getting a File on the Disk

There are only three ways I know of to get a file on the disk. The first is to COPY it there. You can
copy files from SFDEV, from other disk volumes, or from tape.

The second way is to EDIT a file and FILE it on disk. EDIT is the SOS file editor. You start off by
EDITing a file that doesn't exist, putting some stuff in it, and issuing the FILE command:

>FILE D010CNTFL

The third way is to take an image using the DUMP command.

Tape Stuff

Of course, if you really want your data to be safe, you'll back it up to tape every once in a
while. (Maintenance has this nasty habit of reformatting disks when they develop problems.)

In this section, I'll briefly discuss how to get stuff onto and off of a tape.

Commands discussed:

ERASTAPE•
MOUNT•
DEMOUNT•
LIST•
COPY•
DUMP•

Mounting the Tape

Of course, the first thing you have to do when using a tape is mount it. To do that, you go to the
tape drive, put your tape on the wheel, and manually thread the tape onto the takeup
reel. (Autoloading? What's that?) There should be a diagram on the tape drive to show you how to
do that.

You then hit the LOAD button. The tape will spin for a few seconds and stop. The LOAD light will
come on when it stops. You then hit the ONLINE button.

You've now done all the manual work involved in mounting the tape. The switch still doesn't know
it's there, though. You have to issue the MOUNT command... like this:

>MOUNT 0
 or

53

>MOUNT 1
 or
>MOUNT 10
 depending on the name of your tape drive

That's the simple form. We'll get to the more complicated forms in a minute.

Anyway, the switch now knows that there's a tape there. You're ready to go.

Getting Files from Tape to Disk

To get files from tape to disk, you mount the tape just as outlined in the "Mountng the Tape"
section. The next step is to get all the files on the tape into your symbol table. This requires the
use of the LIST command:

>LIST T0

Notice that the tape drive is now prefaced with a "T". Why? Who knows. It's just one of those
Walter Cronkite things: "That's the way it is."

Be forewarned: unlike LISTVOL or LISTSF, no filenames will appear on the screen when you use
the LIST command.

Anyway, once you've done that, you use the COPY command to pull the files off and put them where
you want them:

>COPY FILE1 D010CNTFL
>COPY FILE2 SFDEV

See? No problem.

Getting Files from Disk to Tape

Getting files from tape to disk is just a little more complicated at first. Specifically, you have to erase
the tape before you mount it:

>ERASTAPE 0
>MOUNT 0

Now, you use the COPY command, much the same as you would to copy from tape to disk:

>COPY FILE1 T0
>COPY FILE2 T0

Demounting the Tape

This is pretty easy. To demount the tape, just type:

54

>DEMOUNT T0

The tape will rewind back to the LOAD position. To take the tape off, hit the ONLINE button, then hit
the REWIND button. No problem.

The only trick is that the DEMOUNT command has to be issued at the same terminal where you
issued the MOUNT command.

There are a couple of special cases, though. If you forget to do the DEMOUNT command, you can't
screw anything up. When you go to the tape drive and hit the ONLINE button, it'll just ignore you.

The other case is if you do a restart without DEMOUNTing a MOUNTed tape. In this case, the switch
no longer knows the tape is mounted, so just go over and hit the ONLINE and REWIND buttons.

Booting from Tape and Imaging to Tape

Yes, you can boot from tape and take an image to tape. Both are discussed in "Images"
section. Just thought you'd like to know.

SLM Stuff

What's an SLM? Well, it's a combination disk drive and tape drive. Basically, someone decided it
would be neat to use those new high−density cartridge tapes, and someone else decided it would
be a good idea to have a disk drive used strictly for storing images, so they put them both in one
box and called it an SLM. To see one, just open the cabinet doors on your nearest
SuperNode. The SLMs are the things with the big slots in them toward the bottom. If you don't see
it, go around to the other side.

I'm going to try to explain how you use an SLM in terms of how you use a regular disk drive. Ok,
you know that switches have one regular disk drive per side and that those drives are identified as
D000 and D010. There can be several logical volumes on a single drive (IMAGE, CNTFL, PMLOADS,
etc.), so to identify a particular volume on a particular drive, you do something like D010CNTFL or
D000IMAGE.

Well, SLMs work kind of the same way. Each SLM contains two devices: a disk drive and a tape
drive. The disk drive is S00D or S01D and the tape drive is S00T or S01T. SLM disks also have
volumes. However, the only volume I've ever seen on an SLM disk in the lab is IMAGE. So, you
have S01DIMAGE and S00DIMAGE.

Now, SLMs are supposed to be the only things you use for images and booting on a
SuperNode. They're the only things you can DUMP to or \BOOT from. The disks act pretty much like
regular disks, though. You can COPY things to or from one, EDIT things and FILE them on one,
and just generally treat one like another disk drive. The exception to that is that DSKUT doesn't
access an SLM. The corollary to DSKUT for an SLM is DISKUT. DISKUT will be explained a little
further down.

The SLM tape drive is an interesting beast. It doesn't behave much like the reel tape drives. It's
used strictly for backing up files and booting. You can't even use the COPY command on it. To get
files onto it, you have to use the DISKUT BACKUP command, and to get them off, you have to use
the DISKUT RESTORE command.

55

I will spend the remainder of this section talking about how to use the SLM disk and tape drives.

Commands discussed:

DISKADM (increment)•
DISKUT (increment)•
DUMP•

DISKADM

DISKADM is the SLM version of DSKALLOC. From within DISKADM, you can create and delete
volumes on an SLM disk, display disk and volume information, format the disk, and reinitialize a
volume.

As you can see, DISKADM is a pretty hazardous little utility. If you really think you'll ever need this
thing, look in NTP 297−1001−509. It's the only thing I've found that talks about DISKADM.

DISKUT

DISKUT performs all the same basic functions on an SLM as DSKUT performs on a regular disk. In
addition, it has a couple of commands to MOUNT and DEMOUNT those tape cartridges (INSERTTAPE
and EJECTTAPE).

One of the largest differences between the operation of DSKUT and DISKUT is the way they handle
images. On an NT40 switch, the IMAGE volume of a drive is assumed to contain only images, so
when you want to see what images are available, you just do a LISTVOL on the IMAGE volume of
the disk. Not so with a SuperNode.

An SLM contains all images on a SuperNode, but those images can be spread out over multiple
volumes on the SLM. So, to keep everything straight, each SLM device has two Image Tables Of
Contents (ITOC) associated with it. One ITOC contains an entry for every MS load, and the other
contains an entry for every CM load. When you dump an image, entries are automatically
generated in the appropriate ITOCs. But, if you were to put an image on an SLM from a reel tape
(yuck), you would have to use the SETBOOTFL command to update the ITOC.

The reason for having an ITOC is so that the switch can look for other loads to boot if it can't boot
the ACTIVE load. So, if you try to boot the switch from SLM and the image fails its reload restart,
the switch will go down the ITOC list looking for a load to boot. If you want to know the full search
order the switch goes through, look at SLMUG in DIS. It goes through the whole thing.

You can also control which image is booted with SETBOOTFL and CLEARBOOTFL, and see which
image is current with LISTBOOTFL.

If you want to manipulate the cartridge tape drive, you can use BACKUP to back up either single files
or whole volumes from the SLM disk, and then RESTORE to get them back off again. This brings up
an interesting point. When you BACKUP an entire volume, everything is put in one file on the
tape. If you want to see the names of the individual files, you have to use the BVOL option of the
LISTFL command in DISKUT.

You can see what volumes are available with LISTVOLS, and then there are some other commands
to manipulate files. (RENAMEFL, DELETEFL, and CLEARVOL)

56

I could give you more information here, but since it's already in the dictionary section, I'll just refer
you there.

DUMP

The DUMP command on a SuperNode switch has a few more options than the DUMP command on
an NT40. In short, since there is more than one CPU on a SuperNode, you can dump each one
individually. If you do a:

>Q DUMP

you will see all the extra options at the end, after the VERBOSITY option.

These are optional parameters, so if you don't specify anything the default is TOTAL, which will
dump the active CM and MS.

"How will it differentiate between the CM and MS loads on the disk?" you ask. It will simply tag
"_CM" and "_MS" onto the ends of the respective images.

Images

Just what the heck is an image, anyway? Well, an image is a bit−for−bit copy of the contents of
memory on the switch at a given point in time, and since all the switch's software and data is kept in
memory, that can be quite a bit of stuff.

Images can reside on tape or on disk, and they're put there with the DUMP command. They are
reloaded by use of the thumbwheel on the switch.

Basically, what happens when you use the DUMP command is that all the switch's used memory is
copied to tape or disk in such a manner that the switch is able to reload the data in exactly the same
place later on. It will then continue on about its business, starting at the point immediately following
the point where the image was taken.

Usually, you will want to take an image right after you've made some major changes in the datafill
on the switch (so that you don't lose it), or right before you do something that could mess the switch
up so bad that you'd have to reload from disk or tape (like loading a module that could cause a
restart loop).

"Ok, so now I know how to take an image. But how do I boot with it once I've taken it?"

Booting from Disk or Tape

This is one item that's as different as night and day between NT40 and SuperNode. Take your pick.

Booting the NT40

Booting the NT40 from disk or tape involves using that funny little thumbwheel on the front of the
switch. (Scary, huh!) The general formula is:

Flip the "ACT/DEACT" switch to "DEACT".•
Turn the thumbwheel to 7.•
Hit the RESET button.•

57

Turn the thumbwheel to 8.•
Hit the RESET button.•
Wait for "D2" to be displayed.•
Turn the thumbwheel to 9.•
Hit the RESET button.•
Wait for "D3" to be displayed.•
Turn the thumbwheel to the desired number.•
Hit the RESET button.•
Repeat steps 8 and 9 if necessary.•
Flip the "ACT/DEACT" switch back to "ACT".•

The desired number on the thumbwheel in step 10 depends on what device you want to boot from:

A −−> Side 0 tape drive
B −−> Side 1 tape drive
C −−> Side 0 disk drive
D −−> Side 1 disk drive

In the case of most (99%) of the split switches, step 10 involves turning the thumbwheel to E and
hitting RESET if you're trying to boot side 1 of the switch. This step is not necessary when booting
side 0.

If you're using an unsplit switch in the lab, chances are when you look at the front of the switch, one
of the sides will be switched to "DEACT" and the other will be switched to "ACT". When booting
these switches, step 12 is never necessary. Just go to the "DEACT"ed side, do the
thumbwheel−reset routine, and flip both "ACT/DEACT" switches at the same time. (The "ACT" one
to "DEACT" and the "DEACT" one to "ACT".)

If all went well, the display on the side you booted will start at E9, go to E8, and then start
"spinning". (You'll know what I mean when you see it.) If it doesn't work, try it again. If it still
doesn't work, scream for help.

Note to the novice: Never ever boot a switch without making sure that everyone using the switch
knows you're going to and has given you the go−ahead. And, for heaven's sakes, be sure to boot
the right switch. Everyone's booted somebody else's switch at least once, and, believe me, it's not
a good way to make friends with your co−workers.

Booting SuperNode

The SuperNode, unlike the NT40, uses a terminal interface to boot the system. The functionality of
this terminal is similar to that of the CC thumbwheel and toggle switch of the NT40. This interface is
known as a Reset Terminal InterFace (RTIF).

Now, the thing about booting SuperNode is that there are currently no split SuperNodes. That
makes booting a little trickier, because the side you boot has to be ACTIVE, and the other side has
to be INACTIVE.

The way you tell the difference is to go to the RTIF (that's the terminal next to the video selector
A−B box) and find a CM. Just turn the knob until you see "CM 0" or "CM 1" at the top of the
screen. Right beside that, it will say either "active" or "inactive".

If both sides are active, you'll need to type in:

58

>\JAM
>YES

to make one side inactive. Then you can boot the other side. If both sides are inactive, you'll need
to type in:

>\RELEASE JAM

to activate one side.

After you've gotten one side active and the other inactive, you're ready to boot. If you're booting
from SLM tape, you should now put your tape in one of the slots located at the bottom of the front of
the SuperNode cabinet. If you're booting from SLM disk, you can skip this step (obviously).

Now, you're ready to boot. Here's what you do:

>\OVERRIDE
>\BOOT SLM1 T (or SLM0 if it's the one being used)
>YES

(SLM0 T or SLM1 T) for booting from cartridge tape
(SLM0 or SLM1) for booting from the disk

After the switch boots (takes about 15 minutes) you will need to place the splitter cards for
SuperNode into their proper slots if the switch is split. The exact procedure for this differs for each
lab. If you're doing this for the first time, either ask the person who told you to boot the switch what
to do, or call maintenance if you're all alone.

A Dictionary of the SOS Commands

Dictionary Format

Each entry looks like the following. I try to give a brief summary of the essentials first.

−−
COMMAND NAME

 All Known Formats : >command <parm>
 >different format

 Opposite Command : The "inverse" of it

Associated Commands : Other commands

 E.G. : >command, as you might enter it
 >maybe even another example
−−

Then I go ahead and discuss the command in a more or less random manner. There may be
warnings for the unwary, or even examples. And, the stuff may ramble on endlessly. The whole
idea is to present as many ideas as possible as to how you actually use the command. This

59

material may duplicate (in intent) the ideas contained elsewhere. And that is good, for there are no
other examples other than on the switch execs themselves. Have fun!

−−
ATTACH

 All Known Formats : >ATTACH <directory name>
 >ATTACH <directory> ABOVE <dir−name>

 Opposite Command : DETACH

Associated Commands : DETACH, DIRECTORY, LISTST

 E.G. : >DIRECTORY USER_DIR1 −− create the dir
 >ATTACH USER_DIR1 −− and attach it
−−

It is almost certain that without the good old ATTACH command (and its two best pals DETACH and
DIRECTORY), little serious work could be done in the world of Regression. The main idea is that
you can create your own read−write directories and put them on top of other directories, you can
attach to other user directories, etc. It's like the LINK or GU commands used in VM/CMS.

One example is to override the infamous TATS QUIT command. (There is no failsafe, so you can
quite easily exit TATS and you have to start all over.)

>LOGIN
>BETA BETA −− login as BETA user name and password

>TATS −− This will create the two or three
 −− topmost directories that TATS uses.
>DIRECTORY REGDIR
>ATTACH REGDIR −− It is now the topmost directory

REGDIR CE01.2025 RW
TATSUSERDIR CE01.600E RO
TATSRWDIR CE01.800D RO
TATSDIR CE01.8006 RO
BETA CE01.C047 RW
PROGDIR CE01.C004 RO
SYSDIR CE01.2002 RO
ROOTDIR CE01.4001 RO
STDIRS CE01.A01E RO

>COMMAND QUIT (PRINT '*** To quit, enter: TATS_QUIT')
>COMMAND TATS_QUIT (ERASE QUIT;QUIT ALL;CRT_QUIT)

The idea is that our new command will be encountered before the version in the TATSDIR
directory. Thus, we can create and attach our own directories. We can also attach other user
directories:

>LOGIN −− login as OPERATOR
>OPERATOR OPERATOR
>'hi there' −> SECRET_MSG

>LOGIN −− at another terminal, login as BETA
>BETA BETA

60

>ATTACH USERS.OPERATOR −− attach the operator's directory
>LISTST

OPERATOR CE01.2025 RO
BETA CE01.C047 RW
PROGDIR CE01.C004 RO
SYSDIR CE01.2002 RO
ROOTDIR CE01.4001 RO
STDIRS CE01.A01E RO

>PRINT SECRET_MSG
hi there
>

−−
CIPROMPT

 All Known Formats : >CIPROMPT SETPROMPT ON
 >CIPROMPT SETPROMPT OFF
 >CIPROMPT SETABORT <string>
 >CIPROMPT SETQUERY <string>

 Opposite Command : No opposite command

Associated Commands : None

 E.G. : >CIPROMPT SETPROMPT OFF
 >CIPROMPT SETABORT QUIT
 >CIPROMPT SETQUERY EXPLAIN
−−

There are three separate and distinct uses for this command. I'll save the best for last.

First, there's the SETABORT use. You know when you put the wrong thing in and CI prompts you for
a parameter to the command you typed in and you type "ABORT" to make it stop asking you? Well,
with SETABORT, you can change "ABORT" to something else. For instance, you could say:

>CIPROMPT SETABORT NEVERMIND

Then, when you were prompted for a parameter, you could type "NEVERMIND" and CI would leave
you alone.

Second, there's the SETQUERY flavor. You know when you want to know the format of a command,
like LIST, and you type "Q LIST"? Well, with SETQUERY, you can change "Q" to something
else. For instance, you could say:

>CIPROMPT SETQUERY TELLMEABOUT

Then, when you want to know about the LIST command, you type "TELLMEABOUT LIST".

Finally, and most importantly, there's the SETPROMPT flavor. This is most useful in SOS
execs. Ever written a SOS exec and used a command wrong inside a loop? Me, too. You look at

61

your terminal and you see is "invalid bla bla bla" scrolling up the screen. Well, with the
CIPROMPT SETPROMPT command, you can stop that mess.

CIPROMPT SETPROMPT OFF sets things up so that CI only asks you to correct your input
once. So, if you're writing an exec that contains a command that just might blow up, SETPROMPT to
OFF and just put a blank line after the command in your exec. That way, if the command blows up,
the blank line shuts CI up and your exec can continue on the next line.

−−
CLEARST

 All Known Formats : >CLEARST

 Opposite Command : No opposite command

Associated Commands : ERASE (erases one symbol)
 ATTACH, DETACH

 E.G. : >CLEARST
−−

This handy little command clears your symbol table. Your symbol table is the table in your own
private CI process that keeps track of variables you've defined, commands you've defined, and files
you know about through LISTSF or LISTVOL.

CLEARST detaches all directories except STDIR, ROOTDIR, SYSDIR, PROGDIR, and the user
directory.

−−
COMMAND

 All Known Formats : >COMMAND <user−command> ()
 >COMMAND <user−command> (text...)
 >COMMAND <user−command> <file name>

 Opposite Command : (very complicated, so watch closely)

Associated Commands : ERASE (erases the command)

 E.G. : >COMMAND REM () −− dummy command like %
 >COMMAND FF (PRINT (HEXTOSTR 12)) −− gen a form−feed
 >COMMAND ZOT XZOT_EXEC_FILE −− references an exec
−−

COMMAND is the most powerful of the SOS commands. In a sense, all of this document is about the
COMMAND command. Here are a few examples:

>COMMAND REM ()

Then, in a file, you can have lots of comments without ever generating a single prompt message
(log message):

62

>REM % any comments (Just use the "%" as the first
>REM % character, and leave a blank after the REM.)

The SELECT (CASE) command:

>COMMAND SEL (@(@1+2))

(one of the great mysteries of nature!)

>COMMAND KVALS (IF ((RINDEX) < (2)) THEN (
PRINT '*** ERR − Missing parms: <filter−time> <retries>'
PRINT '*** Format is: >KVALS ### ###'
)ELSE(
@1−>$KV_FTIME;@2−>$KV_RETRIES
PRINT '−−− K−Values are now: ' $KV_FTIME $KV_RETRIES))

Here the command has a built−in help facility!

In the following example, we want to create a high−speed tokenized exec:

>EDIT XTI_FUNC
>INPUT
 IF ((RINDEX) < (2)) THEN (
 PRINT '*** TI−FUNC, missing parms: ADD/DEL tuple'
 READ PREVIOUS)
 %
 (SYMTOSTR @1) −> $OPT
 %
 IF ($OPT='ADD') THEN (
 TYPEIN 'ADD TUPLE '+(SYMTOSTR @2)
 READ PREVIOUS)
 %
 IF ($OPT='DEL') THEN (
 TYPEIN 'DELETE TUPLE '+(SYMTOSTR @2)
 READ PREVIOUS)
 %
 PRINT '*** ERR −− Bad option: ' $OPT
 PRINT '*** Must either be ADD or DEL'
 >>
>FILE D010CNTFL −− put the file out on disk
>COMMAND TIFUNC XTI_FUNC

After we enter the COMMAND command, if there are any errors, SOS may not in fact tell us!! If we
have an extra opening parenthesis, we may get the "TOKENIZING AREA FULL" and the CI system
will ignore all the rest of the stuff in the file, until we either get to EOF or get an extra ")".

In order to display the character string that makes up a command you need to be very desperate,
because it is more complicated than on the surface it seems it should be. But according to all
sources that I know there is no other way, yet, to do this. Anyway, first you need to have a
command that you want to display, lets call it NEATO. Then you need to invoke LISTST to
determine the name of your Read Write (R/W) directory. Assuming that you logged onto the switch
using ADMIN as your userid, LISTST might generate the following:

63

>COMMAND NEATO (PRINT 'This is a simple command')
>LISTST
TABDIR 2B01, 60B9 RO
ADMIN 2B01, 20BB RW
PROGDIR 2B01, A0C5 RO
SYSDIR 2B01, 60C7 RO
ROOTDIR 2B01, 40C8 RO
STDIRS 2B01, 40BA RO

Notice that the ADMIN directory has RW to the left of it. Next you should print the R/W
directory. On the SuperNode, it might look like this:

>PRINT ADMIN
INPUT Device Copy 1802
OUTPUT Device Copy 1802
NEATO List Orig 005890D8

and on the NT40 it might look like this:

>PRINT ADMIN
INPUT Device Copy 1804
OUTPUT Device Copy 1804
NEATO List Orig 900618

Notice that the number on the far right of the NEATO command is an address, either an NT40 three
byte address, or an S/DMS four byte address. This address is actually a pointer to a structure in CI
called TOKENS. The first element of the structure is a descriptor of token information, and the
second element is a descriptor of the characters making up the command itself. So if you haven't
guessed what your about to do, then I will go ahead and tell you: Go into debug and display the
silly thing. On the NT40, given that a descriptor is three words long, the follow debug statements
will do it for you:

>DEBUG
debug mode
>DI 900618.3 (&0) N=80 CHAR
8F7FE3: ..COMMAND..NEATO..PRINT..This is a simple co
8F7FF9: mmand...............................

Notice that this is only the characters making up the command, not tokens. This means that quotes
and parentheses will not show up, but @ signs and other characters will show up. On the S/DMS it
will look like this:

>DEBUG
debug mode
>DI 005890D8.8@ N=50 CHAR
0058B9F0: ..COMMAND..NEATO..PRINT..This is a simple co
0058BA1C: mmand.

64

On the S/DMS, the descriptor is eight bytes long, so offset the address by eight, then dereference it,
and display the result in CHARacters. The N=80 or N=50 is completely arbitrary, and depends on
the length of the command. It is possible that you will miss it the first time and need to increment
some more.

−−
COPY

 All Known Formats : >COPY <filename> <device>
 >COPY <filename> <new−fname> <device>

 Opposite Command : No opposite command

Associated Commands : COPYFILE (I think has disappeared)
 LIST/TLIST, LISTSF, LISTVOL

 E.G. : >COPY my_sf_file D010TEST2 −− copy to disk
−−

See the discussion under MOUNT, as that is where I talk about copying files to tape.

Whenever you use one of the LIST commands (LIST <tape>, LISTSF, or LISTVOL
<vol−name>), you create a current pointer to each file. This means that if you had three separate
files, each with the same name, and each one on a different device (e.g., SFDEV, tape, and
D010TEST2), only the last one you reference is actually "known". So when you do a COPY, it
always refers to the current file and that's that. Well, almost.

Let's say we have a file in SFDEV called PIZZA, and we can do the following:

>LISTSF
PIZZA
>COPY PIZZA D010TEST2 −− there is now a copy of our file on disk

>COPY PIZZA NEW_PIZZA D010TEST2 −− and now another
 −− copy out there
>MOUNT 0 FORMAT 'MYTAPE'
ok
>COPY PIZZA T0 −− Can't change the name when
>DEMOUNT T0 −− we copy out to tape.

>COPY PIZZA OLD_PIZZA D010TEST2
*** Error −− device off−line

Ooops, we forgot that whenever we access a tape, that becomes our new source from the file. To
recover, we must do a LISTSF and then copy.

By the way, you can create duplicate files on the disk volumes, which are terribly inconvenient.

−−
DATE

 All Known Formats : >DATE

 Opposite Command : No opposite command

65

Associated Commands : SETDATE, TIME, SETTIME

 E.G. : >DATE
 Date is TUE. 19/AUG/1986 18:02:40
−−

Actually, DATE gives you the time as well, which suggests the following little exec:

>EDIT XGET_DATE
>INPUT
 SEND SINK
 ERASESF XXTEMP_FILE −− Erase any old copy of the temp
 ABORT −− file we will use for output.
 %
 SEND SFDEV XXTEMP_FILE −− re−direct the output to file
 DATE −− issue the date command
 SEND PREVIOUS −− back to sink (will close file)
 EDIT XXTEMP_FILE −− edit the file and extract the
 DOWN 1 −− string with the date info
 LINESTR −> $DATESTR
 QUIT
 (SUBSTR $DATESTR 15 12) −> $DATE −− use the substring
 (SUBSTR $DATESTR 28 8) −> $TIME −− function to get them
 %
 ERASESF XXTEMP_FILE
 SEND PREVIOUS −− continue output to disk, exit and..
>>
>FILE D010CNTFL −− put the file out on disk

>READ XGET_DATE
>PRINT $TIME $DATE
18:02:30 19/AUG/1986

Neat−o, eh?

−−
DEBUG

 All Known Formats : >DEBUG

 Opposite Command : No opposite command

Associated Commands : Beats me

 E.G. : >DEBUG
−−

DEBUG is an obnoxious little module that has no help and refuses to tell you what commands it
recognizes. Even worse, it is not an increment, so once you're in DEBUG you're stuck with only
DEBUG's commands (whatever they are) until you QUIT out of it.

Actually, I've never used DEBUG, so I don't have much to say about it. There is a document in DIS
about it (DEBUG LISTING). Basically, it is a program to debug Protel modules on the switch. It lets
you set breakpoints, trace through your program, display variables... all that nifty poop. If you think
you might need or want it, print out the manual. Then you'll know more than me.

66

−−
DECSTRTONUM

 All Known Formats : >DECSTRTONUM <string>

 Opposite Command : NUMTODECSTR

Associated Commands : HEXTOSTR, NUMTODECSTR, NUMTOHEXSTR

 E.G. : >PRINT (DECSTRTONUM '123')
 123
−−

DECSTRTONUM takes a string containing an integer and converts it to an integer. Thus, in the
example above, the string '123' was converted to the integer 123.

NUMTODECSTR goes the other way. That is, it takes an integer and converts it to a string. Like
converting the integer 123 to the string '123'.

−−
DEMOUNT

 All Known Formats : >DEMOUNT T##

 Opposite Command : MOUNT

Associated Commands : LIST, TLIST, MOUNT, LOGUTIL

 E.G. : >DEMOUNT T0
 >DEMOUNT T10
−−

Used to demount a tape when you are done with it. For more info, see the discussion under MOUNT.

By the way, the DEMOUNT must be performed from the exact same user terminal where the MOUNT
command was issued.

−−
DETACH

 All Known Formats : >DETACH <directory−name>

 Opposite Command : No opposite command

Associated Commands : ATTACH, DIRECTORY, LISTST

 E.G. : >DETACH MY_DIR
−−

See also the discussions under the associated commands.

The DETACH command disconnects the indicated directory from your current symbol table. Note
that the directory and all its contents still exists. It is just no longer visible when you do a
LISTST. Also note that the entry still exists in the R/W directory wherein you created the

67

directory; i.e., you still have a pointer to it, even though it is not attached. You can then later
re−attach it. However, if you do a DETACH and then an ERASE on the directory name... guess
what? Yep, all of the contents of the directory are destroyed forever. You can then re−attach it −−
but it will of course be empty.

>DIRECTORY MY_DIR
>ATTACH MY_DIR
>COMMAND DOOZY (PRINT '** doozy **') −− created in MY_DIR
>DETACH MY_DIR

The command DOOZY is temporarily unknown. However, if we then re−attach the directory, all of its
contents can again be accessed.

−−
DIRECTORY

 All Known Formats : >DIRECTORY <dir−name>

 Opposite Command : No opposite command

Associated Commands : ATTACH, DETACH, LISTST, PRINT

 E.G. : >DIRECTORY MY_DIR
 >ATTACH MY_DIR
−−

>DIRECTORY MY_DIR
>ATTACH MY_DIR
>3 −> XYZ
>'GOFORIT' −> ABC
>PRINT MY_DIR
XYZ Int Copy 3
ABC String Copy 'GOFORIT'

Thus the entries are created in the topmost read/write directory, and you can always access them
with the (USERS.dir.dir.variable) format.

−−
DISKADM

 All Known Formats : >DISKADM

 Opposite Command : No opposite command

Associated Commands : FORMATDISK, DISPLAYDISK, CREATEVOL,
 DELETEVOL, REINITVOL, DISPLAYVOLS,
 See Also : DISKUT

 E.G. : >DISKADM
−−

DISKADM is an increment which is mainly used to format and configure the SLM disk drives in a

68

SuperNode switch. This is an extremely dangerous increment to be in if you're inexperienced.

Since this is so touchy, I'm not even going to explain it any further here. If you really need to know,
look in NTP 297−1001−509. That's the only place I've seen it explained.

−−
DISKUT

 All Known Formats : >DISKUT −− special disk utility

 Opposite Command : No opposite command

Associated Commands : BACKUP, RESTORE, CLEARBOOTFL,
 SETBOOTFL, LISTBOOTFL, CLEARVOL,
 LISTVOLS, DELETEFL, LISTFL, RENAMEFL,
 INSERTTAPE, EJECTTAPE
 See Also : DISKADM

 E.G. : >DISKUT;LISTVOLS S01D;QUIT
 >DISKUT;LISTFL S01DIMAGE;QUIT
−−

DISKUT is similar to DSKUT, but it works only on SLM devices.

Like DSKUT, DISKUT is an increment. You enter the increment like this:

>DISKUT

and get out of it like this:

>QUIT

I don't want to spend a lot of time in this top−level section. The real fun is in the subcommands. So
let's get to it. You'll see something new in there: abbreviations. This is the only place I know of on
the switch where the commands have abbreviations that the switch recognizes. They're listed with
each command.

Before you go in there, though, I want to give you a little glossary so you'll know what the
parameters mean:

<dev−vol> means the fully qualified volume name, like S01DIMAGE.•
<device> means either S00D or S01D.•
<volume> means the up to eight character volume name which usually follows a device name, like IMAGE.•
<boot table> is either CM (for Computing Module) or MS (for Message Switch).•
<filename> is the name of a file.•

Oh, yeah... there's one more thing that makes this increment unique among all the commands on
the DMS−100. It actually has good help. In fact, the help on the switch is actually better than any
other documentation I've found for the increment. Make use of it. In fact, you might even want to
print it out if you're going to be using DISKUT a lot. Use HELP <command> FULL. It gives you
even more stuff.

69

Well, that's about it. Let the fun begin!!

−−
BACKUP

 Abbreviation : BA

 Format : BACKUP FILE <dev−vol> <filename> (<tape filename>)
 or : BACKUP VOLUME <dev−vol> <backup volume name>
−−

This command allows you to back things up onto those cute little tape cartridges. You can back up
individual files or entire volumes. The only trick is that both the disk volume and the tape have to be
in the same SLM. So you can't back up volume S01DIMAGE onto tape S00T.

Also, notice that the tape filename in the first version of the command is optional. If you don't
specify, the filename on the tape will be the same as the filename on the disk.

One final note: when you back up an entire volume, BACKUP puts all the files together into a single
file. When you use restore, everything is unpacked back into individual files.

For example:

>BACKUP FILE S00DVOL1 MYFILE % copies myfile onto tape S00T
>BACKUP VOLUME S00DVOL1 MYVOL % copies entire volume onto tape

In the SuperNode environment, backing things up is very important. People tend to erase things
from the SLM disks pretty often, so once you get an image from loadbuild configured properly, be
sure and back it up onto tape if you intend to use it again.

−−
RESTORE

 Abbreviation : RE

 Format : RESTORE FILE <dev−vol> <filename>
 or : RESTORE VOLUME <dev−vol> <backup volume name>
−−

This command is the opposite of the BACKUP command. It allows you to pull files from tape onto
the SLM. Again, the disk and the tape have to be on the same SLM.

Examples:

>RESTORE FILE S00DVOL1 MYFILE % copies myfile from tape S00T
 % onto S00DVOL1

>RESTORE VOLUME S00DVOL1 MYVOL % copies entire volume MYVOL
 % from tape onto the disk volume
 % S00DVOL1

70

The only catch is that when you restore volumes, the destination volume has to be
empty. Otherwise, RESTORE will refuse to restore.

−−
CLEARBOOTFL

 Abbreviation : CBF

 Format : CLEARBOOTFL <device> <boot table> ALL
 ACTIVE
 FILE <volume> <filename>
−−

Look familiar? Look a lot like CLEARBOOT? Well, there are some very important differences.

The fundamental thing to remember is that, since SuperNode is actually two computers, there are
two active loads: the CM load and the MS load. CLEARBOOTFL clears these loads
separately. This, of course, aids you greatly in screwing yourself on those late nights when it's
crucial that you don't screw yourself.

Here are some examples:

>CLEARBOOTFL S00D CM ALL % clears all CM loads on S00D

>CLEARBOOTFL S00D MS ACTIVE % clears the active MS load
 % on S00D

>CBF S01D CM FILE IMAGE SMC_29_RTM_CM % clears only the
 % SMC_29_RTM_CM CM
 % load on S01DIMAGE

See? No problem. Remember, though, that CLEARBOOTFL does not erase the file. It only
removes the entry from the ITOC for that device. You have to use the DELETEFL command to
erase it.

−−
SETBOOTFL

 Abbreviation : SBF

 Format : SETBOOTFL <dev−vol> <filename> <boot table>
 <entry number> ACTIVE
 REGULAR <−− default

 Where <entry number> is the entry in the ITOC where the
 file name and volume name is to be placed (1 to 15).

 Where ACTIVE specifies that the file is to be the active
 boot file.

 Where REGULAR adds the file to the ITOC without making
 it the active boot file.
−−

71

Not much to explain on this one. It just puts an entry in the ITOC for the file you specify. If you
specify the ACTIVE option, the file you enter becomes the active boot file. REGULAR is the default,
though.

Examples:

>SBF S01DIMAGE SMC_29_RTM_CM CM 1 ACTIVE % adds SMC_29_RTM_CM
 % to the CM boot table
 % for S01D and makes it
 % the active boot file

>SBF S00DIMAGE MS_TEST_LOAD MS 5 % adds MS_TEST_LOAD to the MS
 % boot table for S00D, but
 % leaves the active boot file
 % alone

−−
LISTBOOTFL

 Abbreviation : LBF

 Format : LISTBOOTFL <device> <boot table> ALL
 ACTIVE <−− default

 Where ACTIVE specifies that only the ACTIVE boot file for
 the device is to be listed.

 Where ALL specifies that the entire contents of the ITOC
 be listed.
−−

As the name implies, LISTBOOTFL lists the contents of the ITOC for the given device and boot
table. It's sort of analagous to the SHOWBOOT command in DSKUT.

Examples:

>LISTBOOTFL S01D CM ALL
Image Table Of Contents for CM on SLM, unit 1:

ITOC Volume File
Entry Name Name
Number
−−−−−− −−−−−−−− −−−−−−−−−−−−−−−−−
 1 IMAGE MCI_29BN_CT_CM
 2 IMAGE MSMC29BP_E250E_CM

>LISTBOOTFL S01D CM ACTIVE
Image Table Of Contents for CM on SLM, unit 1:

Active Boot File Device: DISK
Active Boot File Volume: IMAGE
Active Boot File File: MSMC29BP_E250E_CM

72

−−
CLEARVOL

 Abbreviation : CVOL

 Format : CLEARVOL <dev−vol>
−−

Yes, this command is just as dangerous as it sounds. It deletes every file from the volume you
specify. There are two failsafes, though. It will ask for confirmation before actually doing it, and it
will refuse to clear the volume if any of the files are registered in the ITOC.

Example:

>CVOL S01DIMAGE
*** WARNING ***
Clearing a volume will destroy all files stored on the volume.
Do you want to clear volume S01DIMAGE (Yes/No)?
>YES
Volume S01DIMAGE has been cleared.

Whew!! Gives me the heebie−jeebies just thinking about it.

−−
 Abbreviation : LV

 Format : LISTVOLS <device> {FULL}
−−

This will give you extensive information about all the volumes on the SLM device you specify. If all
you want to see is the names of the volumes available, PRINT ROOTDIR will give you
that. LISTVOLS tells you all sorts of stuff about each volume. It'll tell you even more stuff if you use
the FULL option. If you want the details, look in NTP 297−1001−509 for the complete poop.

Example:

>LISTVOLS S01D
Volume information for SLM disk 1

Volume Volume Modify Total No. of ITOC
Name Status Date No. of Open Files
 Y/M/D Files Files
−−−−−−−− −−−−−−−−− −−−−−−−− −−−−−− −−−−−− −−−−−
IMAGE OPENED 89/08/03 4 0 4

−−
DELETEFL

 Abbreviation : DDF

 Format : DELETEFL <dev−vol> <filename>

73

−−

Pretty self−explanatory, really. There are a couple of exceptions, though. If the file you're trying to
delete appears in an ITOC, you have to CLEARBOOTFL it out before deleting it. The other exception
is that you can't DELETEFL a file that's been marked as read−only or non−erasable.

Sorry, but I don't know anything about marking files as read−only or non−erasable. This is the first
time I've seen it mentioned.

Example:

>DELETEFL S01DIMAGE MCI_29BP_CM

−−
LISTFL

 Abbreviation : LF

 Format : LISTFL <dev−vol> {FULL | BVOLS}
−−

This command allows you to list the files on a specified volume. In this case, volumes also include
tapes. If you want to list all files on a tape, you use S01T or S00T as the <dev−vol>. Actually, you
shouldn't do a LISTFL on a tape unless you have a lot of time to kill. It's extremely slow.

If you do have a lot of time to kill, and the tape has entire volumes backed up on it, you might want
to use the BVOLS option. That will list all the individual files backed up from each volume.

Also, if regular LISTFL doesn't give you all the stuff you wanted to know, you can always use the
FULL option to get more info.

Anyway, just like LISTVOL or LIST, LISTFL takes the filenames it finds and puts then in your
symbol table, so you can READ them or COPY them or whatever.

Examples:

>LISTFL S01DIMAGE
File information for volume S01DIMAGE.

File File File In
Name Org. Code ITOC
−−−−−−−−−−−−−−−−−−−−−−−−−− −−−− −−−− −−−−
MSMC29BP_E250E_MS IMG 0 YES
MSMC29BP_E250E_CM IMG 0 YES
MCI_29BN_CT_MS IMG 0 YES
MCI_29BN_CT_CM IMG 0 YES
MYFILE OTH 0 YES

74

−−
RENAMEFL

 Abbreviation : RNF

 Format : RENAMEFL <dev−vol> <old filename> <new filename>
−−

Now here's a little command I wish DSKUT had. It does exactly what it sounds like it does...
changes the name of an existing file. Of course, if the file is registered as a boot file in an ITOC,
you can't rename it.

Example:

>RENAMEFL S01DWORK MYFILE YOURFILE % renames MYFILE to YOURFILE

−−
INSERTTAPE

 Abbreviation : IT

 WRITELABEL <label name> RET <−− default
 Format : INSERTTAPE <device> CHECKLABEL <label name> NORET
 READLABEL <−− default

 Where <label name> is up to six characters long.
−−

This is the equivalent of doing a MOUNT for a tape cartridge. Each tape cartridge has a label name
of up to six characters.

READLABEL is the default. It looks for the label name and tells you what it finds. If there is no label,
this is a good indication that the tape has not been written to.

If you choose the WRITELABEL option, all existing files on the tape are destroyed.

CHECKLABEL could come in handy if you forget to label the outside of the tape. If the label on the
tape doesn't match the one you said to check for, the INSERTTAPE command is aborted. That way,
you don't have to do an EJECTTAPE afterwards.

One more thing. When you do an INSERTTAPE, the tape will automatically be retensioned for
you. If you don't want this to be done, you can use the NORET option. I'll probably get in trouble for
this, but I highly recommend the NORET option. The tape is retensioned every time you do an
EJECTTAPE anyway, and I think doing it on an INSERTTAPE is overkill. Just my opinion.

−−
EJECTTAPE

 Abbreviation : ET

 Format : EJECTTAPE <device> WAIT <−− default NOWAIT
−−

75

This command is analogous to a DEMOUNT for a cartridge tape. It's rather deceptively named,
though, because the tape doesn't actually pop out of the slot when it's done. You have to pull it out
by hand.

Do yourself a favor and use the NOWAIT option. Otherwise, you'll end up sitting there for about five
minutes waiting for the tape to retension. If you use NOWAIT, it'll still retension, but you don't have
to wait for it.

Example:

>EJECTTAPE S01T NOWAIT % demounts the side 1 tape cartridge.

−−
DSKALLOC

 All Known Formats : >DSKALLOC <unit number>

 Opposite Command : No opposite command

Associated Commands : DISPLAY, ADD, REINIT, DELETE, DIRADD,
 DIRDEL, UPDATE, QUIT
 See Also : DSKUT

 E.G. : >DSKALLOC 1
−−

DSKALLOC is CI increment which is used mainly to partition and format the hard disk on the
switch. As such, it is very dangerous in the hands of the inexperienced.

In order to use DSKALLOC on a drive, the drive must be manual−busy. To accomplish this, use
MAPCI as follows:

>MAPCI;MTC;IOD;IOC 0;CARD 1;BSY

This, of course, depends on the actual IOC and CARD number where your particular disk drive
resides.

The associated commands listed above are the commands available in the DSKALLOC
increment. I'm not going to discuss DSKALLOC any further here. If you really think you're ever
going to use it, print out NTP 297−1001−526.

−−
DSKUT

 All Known Formats : >DSKUT −− special disk utility

 Opposite Command : No opposite command

Associated Commands : LISTVOL, SHOWVOL, SHOWFL, RENAMEFL,

76

 ERASEFL, SETBOOT, SHOWBOOT,
 CLEARBOOT, QUIT
 And : ROOTDIR
 Also See : DSKALLOC

 E.G. : >DSKUT;LISTVOL D010CNTFL ALL;QUIT
 >DSKUT;SHOWVOL D010CNTFL
−−

>PRINT ROOTDIR −− One of the fastest ways to see what all
 −− volumes have been allocated to your disk drive.

DSKUT is a CI increment (sort of like LOGUTIL) that gives you some ability to see what all files are
on your disk volumes. It also allows you to create and destroy not only your own files, but files from
other people. And you can also create disk files with duplicate names, etc.

Naturally, there were plans to revise and update the system. However, there just hasn't been
time. So, we must learn to live with it. Now, this section is rather lengthy (especially since I kept
referring you here from various other commands), so you might want to take a break before digging
in.

>DSKUT −− this puts you in the disk utility sub−system
>QUIT −− gets you out

Actually, it is difficult to find out what all is allocated with this sub−system, so we use two tricks:

>PRINT ROOTDIR

This, of course, prints out all of the devices and should give you a list of the disk volumes which
have been allocated.

The second trick to getting the volumes is to do this:

>MAPCI NODISP;MTC;IOD;IOC 0;CARD 1;ALLOC
 or
>MAPCI ;MTC;IOD;IOC 0;CARD 1;ALLOC

Not only does this give you the list of the volumes, but whether or not any user has any files open
on them. In fact, this is the routine you have to use to re−allocate the volumes (see the discussion
under DSKALLOC).

Next on our grand tour are the more "normal" things that we all want to do with a disk (or do to it as
the case may be):

>DSKUT;LISTVOL D010CTS ALL
UNI14_5LOOPS
SBS15_5LOOPS
STD_PROF

77

>QUIT

Now, as we know from the LISTST and LISTSF commands, the LISTVOL command makes the
various files known to our symbol table. That is, there may well be a file called "SIDE_0" over on
the disk under the volume D010MAINT, but unless we do a LISTVOL D010MAINT ALL, we will
never know it. So, LISTVOL makes a copy of the file's location in our directory. This means that
we can access it as if it were in SFDEV.

>READ STD_PROF −− execute the file directly from disk.

>COPY STD_PROF SFDEV −− copy the file to SFDEV (temp storage)

The main difference between DISK files and SFDEV is this:

SFDEV files: Remain on the user memory as long as we do not un−permit the user or reboot.

DISK files: Should be fairly robust, but you should always back them up on tape if you want to keep
them. Better yet, move copies up to the IBM. Better yet even, do both.

Once we are in DSKUT, we can do a help and use the various commands:

>DSKUT
DSKUT:
>HELP DSKUT

From here on out, I'll discuss the various commands available in DSKUT (listed in the header as
associated commands).

−−
LISTVOL

Format : >LISTVOL <device> ALL | <username>
−−

LISTVOL lists all files on the given volume which belong to the given user. If no username is given,
the default is yourself. LISTVOL also puts pointers in your directory to the files it lists, so that you
can do things with those files.

Say, for instance, that you sat down at OPERATOR one day, edited a file, and filed it on
D010CNTFL. The next day, you went back to OPERATOR and tried to PRINT the file:

>DSKUT
DSKUT:
>PRINT MYFILE
File not found
>LISTVOL D010CNTFL −− Lists all files on D010CNTFL
MYFILE −− that OPERATOR created.
>PRINT MYFILE −− it's found this time

78

You would have to do the LISTVOL before MYFILE could be found and printed.

Now, let's have some fun.

>DSKUT
>LISTVOL D010CNTFL ALL −− all files on D010CNTFL
>LISTVOL D010CNTFL BETA −− all files on D010CNTFL that
 −− BETA created
>LISTVOL D010CNTFL −− all files on D010CNTFL that you created

−−
SHOWVOL

Format : >SHOWVOL <volume> ALL
−−

SHOWVOL shows you some information on the disk. ALL is an optional parameter which will give
you additional information that you probably don't need. SHOWVOL without ALL will show you the
volume size (in blocks), the number of files on the volume, and the amount of free space remaining
on the volume (also in blocks). For example:

>SHOWVOL D010IMAGE −− basic information
 or
>SHOWVOL D010IMAGE ALL −− more detailed information

−−
SHOWFL

Format : >SHOWFL <filename> ALL
−−

SHOWFL gives information about the specified file. ALL is an optional parameter to give you some
more information that you probably don't need.

Entering SHOWFL <filename> will tell you the number of records in the file, the date and time it
was last modified, and format (fixed or variable length) and length of the records. For example:

>SHOWFL MYFILE −− for information on MYFILE
 or
>SHOWFL MYFILE ALL −− for more information

−−
RENAMEFL

Format : >RENAMEFL <volume> <old file name> <new file name>
−−

79

Note: When you do HELP DISKUT, this command will be listed. However, it applies to the SLM
and, thus, is only available on SuperNode. Personally, I have never had occasion to use this
command, so if you need more information on it look at the NTP document 297−1001−509.

−−
ERASEFL

Format : >ERASEFL <file name>
−−

Erases a file. (Self−explanatory, really).

Actually, there is a quirk. If the same file name occurs on more than one volume, the volume you
LISTVOL'd last is the one the file is deleted from.

−−
SETBOOT

Format : >SETBOOT <boot file name>
−−

On any NT40 switch, there is an image volume which contains one or more bootable software
loads. SETBOOT allows the user to specify which image is to be loaded when the switch is booted
from that volume.

For example, let's say you had a volume D000IMAGE on a switch which contained two loads: one
for Sprint (USS29BC) and one for MCI (MCI29BC). If you wanted to boot the MCI load, you would
do the following:

>DSKUT
DSKUT:
>LISTVOL D000IMAGE ALL
MCI29BC
USS29BC
>SETBOOT MCI29BC

The next time you boot from the side 0 disk, MCI27BC will be loaded.

−−
SHOWBOOT

Format : >SHOWBOOT <volume>
−−

SHOWBOOT tells you which is the active image on the specified disk volume. For example, if you did
a SHOWBOOT after the SETBOOT above, SHOWBOOT would tell you that MCI29BC is the active image.

80

−−
CLEARBOOT

Format : >CLEARBOOT <volume>
−−

CLEARBOOT clears the current boot file indicator for the volume specified. For example, if you did a
CLEARBOOT after the SETBOOT above, D000IMAGE would still contain both boot files, but neither
would be current. Consequently, if you tried to boot the switch from the side 0 disk, you would get
an error.

−−
DUMP

 All Known Formats :

 | MATE | UPDATE {SILENT}
 >DUMP <filename> <volume> | ACTIVE | RETAIN {TERSE}
 | DEBUG | {VERBOSE}
 | UNSAFE |

 Opposite Command : No opposite command

Associated Commands : RESTART, SHOWBOOT, SHOWBOOT

 E.G. : >DUMP MCI29BJ D010IMAGE ACTIVE UPDATE
 >DUMP USS29BJ D010IMAGE MATE RETAIN
 >DUMP TRES29BJ T0 ACTIVE UPDATE −− dump to tape
−−

The dump command is used to "take an image". This means copying the contents of all used
memory to disk or tape so that you can reload the switch at a later time and start where you left
off. Actually, the above are not all the known formats of the DUMP command. As important as this
command is, the only place I've found reference to it is NTP Supplement 297−1001−509.

The filename and device are pretty much self−explanatory.

Of the four options of the next parameter, I am only going to discuss the first two. If you want to
know anything about DEBUG or UNSAFE, you'll have to look in NTP 297−1001−509 or find someone
else who knows.

MATE and ACTIVE simply refer to which side of the switch you want to dump in an unsplit
switch. Since most of the labs are split, you will probably use ACTIVE most of the time. However, if
you were on an unsplit switch, you could use MATE to dump the side of the switch that is inactive.

If you choose the UPDATE option, the image you just took will be rebooted whenever anyone boots
from the device you just DUMPed to. If you choose the RETAIN option, the image which was active
remains active.

One more little hint: when you dump to tape, always make the dump UPDATE. Otherwise, you won't
be able to boot with the tape.

81

Addendum for SuperNode

SuperNode's DUMP has one more option tagged onto the end. The SCOPE option. Since
SuperNode has more than one CPU, there is a SCOPE option so you can dump whichever image
you want. The options are rather lengthy, and I don't know what a lot of them do, but if you do a:

>Q DUMP

on your nearest SuperNode, it'll give you the full story. The options I do understand are:

CM −− dumps the CM load (ACTIVE or MATE from above)
MS {0|1} −− dumps the MS load
TOTAL −− default... dumps CM and MS

If you use the TOTAL option, the dump will use the filename you specified and tag on "_CM" for the
CM load and "_MS" for the MS load, so you'll end up with two files.

When you do a DUMP on a SuperNode, it's automatically recorded in the ITOC.

−−
ELSE (See the discussion under IF)

 E.G. : IF (X=3) THEN (
 PRINT '−−− Ah−ha, X is three.'
) ELSE (PRINT '−−− Well, X is certainly not 3.')
−−

−−
ERASE

 All Known Formats : >ERASE <symbol>
 >ERASE <command>

 Opposite Command : No opposite command

Associated Commands : ERASESF, ERASEFL (DSKUT), EDIT,
 COMMAND (used to create new ones), etc

 E.G. : >COMMAND REM () −− dummy command like %
 >ERASE REM −− Zappo... it's gone
−−

This command is mainly used to erase an existing command. That is so that we can redefine
it. Note that a new definition does not override the older one. You have to ERASE a command to
redefine it.

−−
ERASEFL

All Known Formats : >ERASEFL <filename>
−−

82

See discussion under DSKUT.

−−
ERASESF

 All Known Formats : >ERASESF <filename>

 Opposite Command : No opposite command

Associated Commands : LISTSF, ERASE

 E.G. : >ERASESF MYFILE −− deletes it from SFDEV
−−

ERASESF erases a file from the user's RAM work area SFDEV. In order to erase a file, you must do
a LISTSF to get an entry for that file in your user directory.

−−
EXECUTE

 All Known Formats : >EXECUTE <filename>

 Opposite Command : No opposite command

Associated Commands : READ

 E.G. : >EXECUTE MYFILE
−−

This command is thoroughly nifty. It's basically like the read command, except with error
checking. It will load your SOS exec up and execute it, but it will abort execution if one of the
commands gives a bad return code.

If you want the full information, there is a short DIS document about EXECUTE named "W190"
(really descriptive). It'll tell you all you need to know.

−−
FAILMESSAGE

 All Known Formats : >FAILMESSAGE <type>

 Where type is one of:
 {SHORT, LONG, ALL, SAVE, PREVIOUS}

 Opposite Command : No opposite command

Associated Commands : None

 E.G. : >FAILMESSAGE SAVE
 >FAILMESSAGE PREVIOUS
−−

83

FAILMESSAGE determines the amount of information to be given when a command fails. It is
usually set to LONG, which gives you the error message and the command which was attempted:

>LISTSF ALL BLABLA
Either incorrect parameter or wrong number of parameters
LISTSF −− Wrong number of parameters

SHORT gives you the error text, but not the attempted command, and ALL gives you the route to the
failed command in addition to all information given with LONG. SAVE saves the current setting (to be
reinstated with PREVIOUS) and sets FAILMESSAGE to LONG.

I've just given you all the information in NTP 297−1001−509, so if you want to know more, play with
it.

−−
HEXTOSTR

 All Known Formats : >HEXTOSTR #nn

 Where 'nn' is any hexadecimal number

 Opposite Command : No opposite command

Associated Commands : NUMTODECSTR, SYMTOSTR, STRTOSYM,
 DECSTRTONUM

 E.G. : >PRINT (HEXTOSTR #61)
 a
−−

HEXTOSTR is one of many data conversion commands provided to allow the user (that's you) to
convert data from one form to another. Unfortunately, there is no facility for converting string data
directly to hex.

Always remember to put the "#" in front of the number. If you don't, you get some really strange
results.

−−
HT

 All Known Formats : >HT

 Opposite Command : RT

Associated Commands : RT, HXX, HX

 E.G. : ><BREAK>
 ?HT
−−

HT is used in the same way as it is used in VM/CMS. If you do something that generates a lot of
output (like LISTVOL D010CNTFL ALL) and you don't want to see all the output, just do a
<BREAK> HT. It's like doing a SEND SINK in the middle of the command. When the command

84

finishes, you will get a command prompt and everything will be back to normal.

The inverse of HT is RT. If you decide that you want to see how far along the command is after
you've done an HT, you can do a <BREAK> RT and the output will resume.

−−
HX

 All Known Formats : >HX

 Opposite Command : No opposite command

Associated Commands : HXX, HT, RT

 E.G. : ><BREAK>
 ?HX
 User process stopped.
−−

HX is used in the same way as it is used in VM/CMS. If you get yourself in trouble (like an infinite
loop in a SOS exec), you can do a <BREAK> HX to get yourself out of it. It stops your user process
and resets it, so that you end up back at a CI prompt.

−−
HXX

 All Known Formats : >HXX

 Opposite Command : No opposite command

Associated Commands : HX, HT, RT

 E.G. : ><BREAK>
 ?HXX
 User process stopped.
−−

As far as I can tell, this does the same thing as HX.

−−
IF

 All Known Formats : >IF (expr) THEN (cmds) {ELSE (cmds)}

 Opposite Command : No opposite command

Associated Commands : UNTIL, WHEN

 E.G. : >IF (A=1) THEN (DATE;LOGOUT) ELSE (PRINT 'Howdy)
−−

IF is discussed much more in depth in the "SOS Exec" section. Briefly, IF works much the same
as in any programming language. The expression in parentheses is evaluated and, based on the
outcome, either the THEN or the ELSE command lists are executed.

85

The SOS IF command supports compound expressions, expressions ANDed and ORed
together. Each expression is in the form <comparand> <comparator> <comparand>.

The comparands can be variables (A), functions (SYMTOSTR @1), or literal values (1, 'ON').

Logical expressions can be combined with relational operators to form compound expressions.

Now, for some examples:

>1−>A
>IF (A=1) THEN (PRINT 'then') −− the ELSE is optional
 then

>IF (A>1) THEN (PRINT 'then') ELSE (PRINT 'else')
 else

>COMMAND DOIT (IF ((SYMTOSTR @1)='THEN') −− using a
> THEN (PRINT 'then' −− function call
>) ELSE (PRINT 'else'))
>DOIT THEN
 then
>DOIT BLABLA
 else

>COMMAND DOIT2 (IF ((RINDEX=0) | (LINDEX>0)) −− complex
> THEN (PRINT DOIT2_HELPF −− expression
>)ELSE(READ DOIT2_EXEC)) −− using or

−−
LEAVE

 All Known Formats : >LEAVE

 Opposite Command : No opposite command

Associated Commands : QUIT
−−

LEAVE is the same as QUIT. See QUIT.

−−
LINDEX

 All Known Formats : >IF (LINDEX=0) THEN ...

 Opposite Command : RINDEX

Associated Commands : RINDEX

 E.G. : >IF (LINDEX = 1) THEN (PRINT 'Help information')
−−

No, this is not a cheap substitute for the leading window cleaner. LINDEX stands for Left Index. It
tells you how many parms there are to the left of the command. It always applies to commands. Its

86

main use seems to be for the help facility;

>COMMAND BERLIOZ (IF (LINDEX=1) THEN (PRINT BERLIOZ_HELPF
>)ELSE(READ XBERLIOZ_XEC))

That way if the user enters >HELP BERLIOZ, they will see the file BERLIOZ_HELPF. Otherwise,
the file "XBERLIOZ_XEC" is run.

Some fancy things can be done with it.

−−
LIST

 All Known Formats : >LIST <tape drive designator>

 Opposite Command : No opposite command

Associated Commands : MOUNT, DEMOUNT, TLIST

 E.G. : >MOUNT 0 −− mount the tape on drive 0
 >LIST T0 −− list all the files on the tape
−−

LIST is an older form of TLIST. It is used to read record−by−record the entire tape, so as to give a
list of the files on that tape. See also the discussion under the TLIST command.

LIST is very important since it does not require that the first file on the tape be the special
"TAPE$DIR" file (as does TLIST). Further, LIST will allow you to copy the files from the tape
directly to disk. Here is the recipe:

See the discussion under MOUNT for how to create the tape shown here.

>MOUNT 0
>LIST T0
MY_FILE
MY_DATA_INFO
SEND_HELPF
>COPY MY_FILE D010TEST2 −− copy the files to disk
>COPY MY_DATA_INFO D010TEST2
>COPY SEND_HELPF D010TEST2
>DEMOUNT T0

Now we notice that the first file on the tape is not the good old TAPE$DIR (which is what is created
on the IBM with XDMSTAPE exec). When we use the TLIST, we can only move the files to SFDEV
(not to a disk volume like D010TEST2, etc).

−−
LISTSF

 All Known Formats : >LISTSF {ALL | username}

 Opposite Command : No opposite command

87

Associated Commands : ERASESF

 E.G. : >LISTSF ALL
 >LISTSF OPERATOR
−−

LISTSF lists all files on SFDEV owned by the given user (default is you). If ALL is specified, it lists
all files on SFDEV owned by any user.

Like LISTVOL, LISTSF makes an entry for each file in your read−write directory. Also like
LISTVOL, if there is more than one file listed with the same name, the current entry in your directory
will be the last one listed. Et tu, LISTSF?

−−
LISTST

 All Known Formats : >LISTST

 Opposite Command : No opposite command

Associated Commands : PRINT, DIRECTORY, ATTACH, DETACH

 E.G. : >LISTST
−−

LISTST shows you all the directories current available to you in the order they will be searched.

The PRINT command will list the contents of any of those directories. The notable exception to this
is when you autologin (like when you login at MAP4 with the username MAP4). Then, when you do
a LISTST, one of your directories will be MAP4. But when you try to PRINT that directory, the
switch will respond "device". In order to get the contents of the directory, you have to fully qualify
it:

>PRINT (USERS.MAP4)

−−
LISTVOL

 All Known Formats : >LISTVOL <volume> {ALL | username}

 Opposite Command : No opposite command

Associated Commands : DSKUT, SHOWVOL, LISTSF

 E.G. : >LISTVOL D010CNTFL −− all your files
 >LISTVOL D010TEST2 OPERATOR −− all the operator's files
−−

See discussion under DSKUT.

88

−−
LOAD

 All Known Formats : >many and varied

 Opposite Command : UNLOAD

Associated Commands : See the DIS document OSA10 LISTING
−−

LOAD is a command not for the faint of heart. If you don't know what it is, you probably don't need
it. If you know what it is and need to know more about it, look at the DIS document "OSA10
LISTING".

−−
LOGIN

 All Known Formats :
 At a Terminal : ?LOGIN
 Detached : >LOGIN <username> <password> <profile> <device>

 Opposite Command : LOGOUT

Associated Commands : PERMIT, UNPERMIT

 E.G. : <BREAK> −− hit the break key
 ?LOGIN
 Enter user name and password:
 >BETA BETA
 User logged in on MAP4 at 3:30PM Aug−3−89
 CI:
 > −− ready for action
−−

Before you can log in, user name and password must be permitted. The usual protocol is to have
the password the same as the name; e.g., "BETA" user name and "BETA" password.

At a MAP that is already logged in (say the OPERATOR terminal):

>PERMIT BRAND BRAND 3 8000 ALL (See the permit command)

Login at a Terminal

Go to an unused terminal and enter:

<BREAK> −− hit the break key
?LOGIN
Enter user name and password:
>BRAND BRAND
User logged in on MAP4 at 3:30PM Aug−3−89
>

89

Detached User Login

The detached users are much like the disconnected users on the IBM. They don't have a
terminal. The point of having a detached user is so you can get something done in the background
while you do other things at your terminal.

The recipe for logging in a detached user is the following:

At a terminal you've logged in to, enter

>PERMIT DETUSER DETUSER 2 8000 ALL

At this point, I have created a logon user name and password called "DETUSER". There is nothing
magic about the name. It can be "ZAPPA" or "BOZO" or anything you want.

Now I'm going to create a profile for the detached user to run.

>EDIT TPROF −− edit a profile
EDIT:
>INPUT
MSG ALL "−−− Hi! I''m a detached user.'
LISTSF ALL
MAPCI;MTC;IOD;IOC 0;CARD 0
RTS
CARD 1
RTS
QUIT ALL
MSG ALL '−−− The tape & disk drives are now inservice.'
>>
>FILE SFDEV

Now, I will stream the detached user "DETUSER" with an initial logon profile of TPROF (which I must
be able to access... but since I just created it, I certainly can access it).

>LOGIN DETUSER DETUSER TPROF SFDEV

I have never tried using any device other than SFDEV.

Now, after a few moments (depending on how the switch is running), we would get a message on
every logged on console:

MSG FROM DETUSER −−− hi! i'm a detached user
MSG FROM DETUSER −−− the tape & disk drives are now inservice

Of course, promptly after that the user dies, since we didn't give him much to do. But you can see
the potential.

90

−−
LOGOUT

 All Known Formats : >LOGOUT

 Opposite Command : LOGIN

Associated Commands : PERMIT, UNPERMIT, FORCEOUT

 E.G. : >LOGOUT
 User logged out on MAP4 at 3:31PM Aug−3−89
−−

The LOGOUT command terminates your session. When you log out, the files that you have saved
on disk or in SFDEV are still there. However, the variables, commands, and directories you have
created will disappear.

−−
LOGUTIL

 All Known Formats : >LOGUTIL

 Opposite Command : No opposite command

Associated Commands : SUPPRESS, RESUME, THRESHOLD,
 STARTDEV, STOPDEV
−−

LOGUTIL is an increment which enables several commands related to the log system. The
commands listed as associated commands are just a few of the commands LOGUTIL recognizes.

If you want to do any really fancy stuff with logs, you need to look in DIS under the heading "LOG
SYSTEM" to find the document most suited to your purposes.

For now, here are a few quickies:

>LOGUTIL −− go into the increment

>STARTDEV 1PRT0 −− to start logs to a device

>STOPDEV 1PRT0 −− to stop logs going to a device

To set all the logs on, you go through MAPCI:

>MAPCI;MTC;IOC;CDR;SETLOG ALL
>QUIT ALL

To suppress all logs of a particular type:

>SUPPRESS PM −− dangerous since you might lose important info

91

>SUPPRESS PM 108 −− still dangerous

Better to just set them at a threshold (e.g., print only every 20th report of this type):

>THRESHOLD 20 PM
14 reports thresholded

>RESUME PM −− to "un−threshold" reports

−−
MOUNT

 All Known Formats : >MOUNT 0 −− to read
 >MOUNT 0 FORMAT 'mytape' −− to write

 Opposite Command : DEMOUNT

Associated Commands : LIST, TLIST, COPY

 E.G. : >MOUNT 0
 >TLIST T0
 >READ BUILD$LOAD
−−

MOUNT makes the switch recognize a tape you have mounted on a tape drive. The following is an
example of how to copy files from tape to disk.

>MOUNT 0
>LIST T0
MY_FILE
MY_DATA_INFO
SEND_HELPF
>COPY MY_FILE D010TEST2 −− copy the files to disk
>COPY MY_DATA_INFO D010TEST2
>COPY SEND_HELPF D010TEST2
>DEMOUNT T0

Now, let's copy files from disk to tape.

>ERASETAPE 0
>MOUNT 0
>LIST T0
>COPY MY_FILE T0 −− copy the files to tape
>COPY MY_DATA_INFO T0
>COPY SEND_HELPF T0
>DEMOUNT T0

By the way, the TLIST command is similar to the LIST command. However, TLIST does not allow
you to copy files from tape directly to disk. (To SFDEV only.) That's why I usually use the LIST
command.

92

−−
MSG

 All Known Formats : >MSG <user | ALL> '<message>'

 Opposite Command : No opposite command

Associated Commands : None

 E.G. : >MSG OPERATOR 'Please demount your tape.'
 Message sent to 1 user(s).

 >MSG ALL 'Cold restart in 1 minute. Anybody object???'
 Message sent to 12 user(s).
 Message from MAP4 Yes. I am in the middle of a DMOPRO
 >MSG MAP4 'How long do you think it''ll be?'
 Message from MAP4 About another 10 mins.
 >MSG MAP4 'OK. Tell me when you''re done.'
 Message from MAP4 Ok.
−−

Enough said? Well, not quite. If the other user is a detached user, we can use the MSG command
to tell us that certain tasks have been completed. (See the example under LOGIN).

−−
NOPROFILE

 All Known Formats : >NOPROFILE −− must be the first thing
 −− typed after login

 Opposite Command : No opposite command

Associated Commands : LOGIN, PROFILE

 E.G. : <BREAK>
 ?LOGIN
 Enter user name and password:
 >BETA BETA
 CI:
 >NOPROFILE <−− will override a login profile
 >
−−

This is used to override a login profile that has been set up for the user name. It must be typed
immediately after the login process is completed. Otherwise, you will execute the login profile (if
there has been one assigned). Sometimes a good thing, other times dangerous. Depends on what
the profile is supposed to do for you. Some profiles save your life. Others are just plain dumb.

−−
NUMTODECSTR

 All Known Formats : >NUMTODECSTR <integer>

 Opposite Command : DECSTRTONUM

Associated Commands : HEXTOSTR, NUMTOHEXSTR

 E.G. : >PRINT (NUMTODECSTR 25)

93

 25
−−

NUMTODECSTR is one of many data conversion commands provided to allow the user (that's you) to
convert data from one form to another. NUMTODECSTR takes an integer and converts it to a
string. Thus, in the example above, the integer 25 was converted to the string '25'.

DECSTRTONUM goes the other way. That is, it takes a string and converts it to an integer. Like
converting the string '25' to the integer 25.

−−
NUMTOHEXSTR

 All Known Formats : >NUMTOHEXSTR <integer>

 Opposite Command : No opposite command

Associated Commands : HEXTOSTR, NUMTODECSTR, DECSTRTONUM

 E.G. : >PRINT (NUMTOHEXSTR 123)
 007B
−−

Like its brothers (listed above), NUMTOHEXSTR does data conversion. It takes an integer and
converts it to a 4−digit hexadecimal number in string form. Confused? What I mean is, in the above
example, the integer 123 is converted to the string '007B'. The result is a string, not an integer.

Unfortunately, there is no command opposite to NUMTOHEXSTR.

−−
PAR

 All Known Formats : >PAR <integer>

 Opposite Command : No opposite command

Associated Commands : COMMAND

 E.G. : >PAR 1
−−

The PAR command (more easily recognized as "@") is the facility for passing parameters to
user−defined commands. Allow me to illustrate:

>COMMAND DOIT (PRINT PAR 1)
>'HOWDY' −> A
>DOIT A
HOWDY

The reason for the two different formats ("PAR" versus "@") is illustrated in the PAR functions section.

94

−−
PARNAME

 All Known Formats : >PARNAME <symbol>

 Opposite Command : No opposite command

Associated Commands : PARTYPE, SYMTOSTR

 E.G. : >PARNAME @1
−−

This command is similar to the SYMTOSTR command in that it converts a symbol into a character
string. The difference is that SYMTOSTR gives you the string representation of the contents of the
variable. PARNAME gives you the string representation of the variable name.

Take, for example, this set of commands and responses:

>COMMAND DOIT (PRINT (PARNAME @1))
>DOIT HOWDY
HOWDY
>DOIT D010CNTFL
D010CNTFL

To illustrate the difference between PARNAME and SYMTOSTR, look at this:

>(3+4)−>A
>PRINT (SYMTOSTR A)
7
>PRINT (PARNAME A)
A

As you can see, this is a pretty useful command. The strange thing is that it doesn't appear in any
of the documents I've found. It's not in NTP 297−1001−509 or NTP Supplement 297−1001−509,
anyway. I got it out of an eight year old document in DIS called "OSLD2". Good stuff, though.

−−
PARTYPE

 All Known Formats : >PARTYPE <symbol>

 Opposite Command : No opposite command

Associated Commands : PARNAME

 E.G. : >PARTYPE VAR1
−−

This function returns an integer which indicates the type of the parameter passed in. The types and
their corresponding values come from the module CITYPES and are as follows:

95

Type Value Returned

 null 0
 integer 1
 unsigned integer 2
 double integer 3
 unsigned double integer 4
 boolean 5
 string 6
 file 7
 directory 8
 program 9
 increment 10
 cibincom 11
 interp command(?) 12
 list command 13
 non−res command 14
 device 15
 pointer 16
 non−res increment 17
 long word 18

This could be really useful for making sure parameters are of the correct type. For example:

>COMMAND DOIT (IF ((PARTYPE @1) ^= 1) THEN (
>PRINT 'Sorry. Only integers allowed.'
>) ELSE (
>PRINT (3 + @1)))

Important point:

If the parameter you pass to PARTYPE doesn't exist (i.e. should return 0), PARTYPE will blow
up. That means that control structure you're in (IF, WHILE, etc.) will also blow up. This makes
PARTYPE rather hazardous to the robustness of your exec. Below is an example of how to get
around this problem in a simple IF statement:

FALSE−>CHECK
IF ((PARTYPE SCMSTOSOS) = 13) THEN (TRUE−>CHECK;QUIT)
PRINT ' '
IF (^CHECK) THEN (PRINT 'You are not in NCMS.')

Notice that there is no ELSE to the IF in the second line of this exec. Normally, you would expect
this segment to be written like this:

IF ((PARTYPE SCMSTOSOS) = 0) THEN (PRINT 'You are not in NCMS.')

But, if the statement were written this way, PARTYPE would blow up the IF command before the
THEN was ever reached. Thus, the problem. Just keep it in mind.

96

−−
PERMIT

 All Known Formats : >PERMIT <username> <password> {priority} {stksize} {language} {cmdclass}

 Opposite Command : UNPERMIT

Associated Commands : LOGIN

 E.G. : >PERMIT BETA BETA 4 8000 ENGLISH ALL
 >PERMIT ALPHA ALPHA ENGLISH ALL
−−

PERMIT allows you to add to the list of authorized users on the switch. The custom is to make the
username and password the same. (That makes it easier to guess your way in.)

Priority values range from 1 to 4 with 4 being the highest. 4 is also the default.

Stacksize values range from 1,500 to 10,000. The default is 5,000.

Language can be either ENGLISH or FRENCH.

Command Class determines which commands are available to the user. I've always used ALL.

Remember that both real users and detached users have to be permitted.

−−
PRINT

 All Known Formats : >PRINT {HEX | DEC} <item>

 Where 'item' is one of:
 expression, integer, string, symbol,
 filename, directory, booleans

 Opposite Command : No opposite command

Associated Commands : LISTST, LISTSF, LISTVOL, LIST
−−

Oh, goody!! Now, this is a really neat command. You can do all sorts of nifty things with it. For one
thing, you can PRINT just about anything you can think of, and you can even get the hexadecimal
value of it.

The best way I can think of to show you the true niftiness of this command is to do some
examples. So here goes!!

>DIRECTORY MYDIR
>ATTACH MYDIR
>1−>A
>PRINT MYDIR −− example of printing a directory
A Int Copy 1

>PRINT A −− example of printing a symbol

97

1

>PRINT HEX A −− example of printing a hex value
#0001

>'abc'−>ABC
>PRINT ABC
abc
>PRINT HEX ABC −− example of printing the hex
#616263 −− value of a string

>LISTST −− you've seen this one before
MYDIR CE01,8071 RW
MAP4 CE01,C047 RW
PROGDIR CE01,C004 RO
SYSDIR CE01,2002 RO
ROOTDIR CE01,4001 RO
STDIRS CE01,A01E RO

>PRINT MAP4 −− Oops... this is a directory, but
device −− PRINT evaluates it first as a device.

>PRINT (USERS.MAP4) −− there... we fully qualified it
B Int Copy 1

>PRINT ((4*4)+(6/3)) −− yes, CI does support mathematical
18 −− expressions, including parentheses
 −− and +, −, *, /

>1−>A;2−>B
>PRINT (A+B) −− it even works with variables
3

>TRUE−>BOOLVAR −− boolean variables, too
>PRINT BOOLVAR
TRUE
>FALSE−>BOOLVAR
>PRINT BOOLVAR
FALSE

>PRINT HEX (A+B) −− and will even return hex values
#0003

>EDIT MYFILE −− input a file to print
EDIT:
>INPUT
INPUT:
>First line
>Second line
>Third line
>>
EDIT:
>FILE SFDEV
CI:
>LISTSF −− have to do this so PRINT can find MYFILE
MYFILE
>PRINT MYFILE −− PRINT that puppy
First line
Second line
Third line

There now... wasn't that fun?

98

−−
PROFILE

 All Known Formats : | LOGIN | <filename> |
 >PROFILE | AUTO | |
 | RESTART | CLEAR |

 Opposite Command : No opposite command

Associated Commands : LOGIN, RESTART, NOPROFILE

 E.G. : >PROFILE LOGIN CLEAR −− clears current login profile
 >PROFILE LOGIN MYFILE −− sets up a new login profile
−−

This is the command that makes it possible for you to set up a login profile (a SOS exec to be
executed when you login). There are two other forms of it that need discussion first, though.

AUTO is used only by the DMS−100 emulator on the IBM. I have never used it, so if you need it,
look somewhere else.

RESTART is used on the switch, presumably to make the switch execute the given SOS exec at
every restart. I have never used this, either, but it looks pretty straight−forward.

So much for that discussion. Now, on to the stuff I have done... LOGIN profiles.

As the example above indicates, clearing out a login profile is as simple as entering >PROFILE
LOGIN CLEAR. Setting up a new profile is just about as easy. You just enter PROFILE LOGIN and
the file name you want to execute as the profile.

The PROFILE command has another nifty feature. If you just enter >PROFILE LOGIN, you will
know whether a login profile has been set up. If there is none, you will get a message that looks
something like "LOGIN PROFILE IS NIL".

Now, if you did a >PROFILE LOGIN and there was a login profile in effect, you would expect to see
the filename, right? Oh, well... no such luck. All you get is a 12−digit hexadecimal number, which
bears no obvious relation to the file name.

Anyway, it's a neat command. It can come in useful for various things. If you use the same
username every time, and nobody else uses that username, you could customize your environment
somewhat... a few special abbreviations for often used commands, etc. If the switch you're using is
an unusual beast (like an EIOC or something), you might want to use the login profile to make it
look more civilized. Maybe make the operator profile do some things like datafilling the rest of the
terminals and bringing them up.

Food for thought.

−−
QUIT

 All Known Formats : >QUIT
 >QUIT ALL
 >QUIT <nlevels>
 >QUIT <increment>

99

 Opposite Command : No opposite command

Associated Commands : LEAVE

 E.G. : >QUIT 3 −− quits out 3 levels
 >QUIT MAPCI −− quits out of MAPCI
−−

QUIT is used everywhere. It is the all−purpose escape hatch. Again, the best way for me to do this
is to give you a bunch of examples, so here goes:

CI:
>TABLE TERMDEV
TABLE TERMDEV:
>TABLE TRKGRP
TABLE TRKGRP:
>MAPCI
MAPCI:
>QUIT 2 −− quit 2 of the 3 levels
TABLE TERMDEV:

CI:
>TABLE TERMDEV
TABLE TERMDEV:
>TABLE TRKGRP
TABLE TRKGRP:
>MAPCI NODISP
MAPCI:
>MTC
MTC:
>IOD
IOD:
>IOC
IOC:
>QUIT −− quit 1 level
IOD:
>QUIT MAPCI −− quit MAPCI increment
TABLE TRKGRP:
>QUIT ALL −− quit all the way back to CI
CI:

−−
READ

 All Known Formats : >READ <filename>
 >READ PREVIOUS −− clear read stack
 >READ INPUT −− reads from keyboard

 Opposite Command : No opposite command

Associated Commands : EXECUTE

 E.G. : >READ MYEXEC −− read the file "MYEXEC"
 >(READ PREVIOUS;READ MYSELF) −− recursive read
−−

100

This is the command that reads an exec file. That is, if you edit and fill a file full of commands, you
can file it away and READ it at any time.

The READ <filename> is the most powerful format, as it gives you a full−fledged macro
processing facility. The READ PREVIOUS is like the RETURN in BASIC. It returns to the previous
calling exec. READ INPUT is useful for getting interactive input from the user from inside an exec
file. I'll go into that later.

Enough talk... let's see some action:

 >EDIT ONE_FILE >EDIT TWO_FILE
 >INPUT >INPUT
1:: PRINT '−− Here goes' PRINT '−− Two−file here'
2:: 1 −> XLEVEL PRINT 'Do da, do da'
3:: READ TWO_FILE IF (XLEVEL=1) THEN (
4:: PRINT '−− And again' READ PREVIOUS)
5:: 2 −> XLEVEL PRINT 'More of the same'
6:: READ TWO_FILE READ PREVIOUS
7:: PRINT 'All done.'
 >> >>
 >FILE SFDEV >FILE SFDEV

And now, let's execute it:

>READ ONE_FILE
−− Here goes Line 1 of ONE_FILE
−− Two−file here Line 1 of TWO_FILE
Do da, do da Exiting at line 4 of TWO_FILE
−− And again Back at line 4 of ONE_FILE
−− Two−file here Line 1 of TWO_FILE again
Do da, do da Line 2 of TWO_FILE again
More of the same About to exit TWO_FILE, line 6
All done. Exiting ONE_FILE

By the way, I didn't really need that final READ PREVIOUS in line 6 of TWO_FILE. SOS
automatically does a READ PREVIOUS after the End−of−File. Either way, it's neat!

Of course you can do recursion. Just step this way:

 >EDIT PREAMBLE >EDIT DO_FOREVER
 >INPUT >INPUT
1:: PRINT '−− Here we go' % Do this until II>LIMIT
2:: 1 −> II IF (II > LIMIT) THEN
3:: 5 −> LIMIT (READ PREVIOUS)
4:: READ DO_FOREVER PRINT '−−− II: ' II
5:: PRINT '−− Bye for now' (1+II)−>II
6:: (READ PREVIOUS;
7:: READ DO_FOREVER)
 >> >>
 >FILE SFDEV >FILE SFDEV

It's pretty easy to see what is going to happen, but how??? Well, you see, the whole key is the
statement in lines 6 and 7 of the DO_FOREVER exec. Since it is in parentheses, the SOS CI

101

interpreter will sort of store it aside until it gets the closing parenthesis. Then it will do the READ
PREVIOUS, which "clears the stack" as far as the call to DO_FOREVER is concerned. The next READ
DO_FOREVER is then the only pending call. So, the exit in lines 2 and 3 finally returns to the caller
that is on the stack. Namely, PREAMBLE.

READ INPUT is pretty neat, but can be awkward if you're not used to it. Let's look at a portion of an
example exec:

COMMAND CM1 (@1 −> VARIABLE1;READ PREVIOUS)
PRINT 'Enter the first variable using the CM1 command.'
PRINT 'syntax: CM1 <variable1>'
READ INPUT

What this does is create a command, CM1, which will put its first parameter into VARIABLE1. The
exec then prompts the user to use the CM1 command to enter VARIABLE1. It then does a READ
INPUT, which tells the switch to temporarily stop reading input from the file and start reading from
the terminal. Of course, the drawback to doing this is that you are giving up control of execution to
the user until they decide to use the CM1 command. They could also just enter "READ PREVIOUS"
and control would be returned to the exec without VARIABLE1 being initialized. Anyway, it does
add a new dimension to what you can do.

Well, that's about it as far as READ is concerned. If you're confused, go to the switch and try these
little jewels. Just keep playing around and you'll get the hang of it. That's what I do.

−−
RECORD

 All Known Formats : >RECORD QUERY

 >RECORD START ONTO <device>
 >RECORD START FROM <device>
 >RECORD START FROM <device> ONTO <dev>

 >RECORD STOP ONTO <device>
 >RECORD STOP FROM <device>
 >RECORD STOP FROM <device> ONTO <dev>

 Opposite Command : No opposite command

Associated Commands : SEND, LOGUTIL (STARTDEV/STOPDEV)

 E.G. : >RECORD START ONTO PRT0 −− send console output
 >RECORD START ONTO MAP3 −− to various devices
 >RECORD START FROM TATSIM2 ONTO PRT1
−−

The whole idea is to create a fork for re−directing the I/O, but not disconnecting its original
direction. That is, if we use SEND PRT1, all our console output goes to that device. However, if we
use RECORD START ONTO PRT1, we still get the output on our terminal, in addition to getting a
copy on the printer!

There are several bad things about RECORD. You must stop the recording on the very same device
that started it. Also, SOS does not check to see if the recording is already started by another
user. Thus, you can do the following:

102

At MAP1:
>RECORD START ONTO PRT1

At MAP3:
>RECORD START FROM MAP1 ONTO PRT1

And this will of course create two streams, and when you want to stop them, you should do the
following:

>RECORD QUERY
From MAP1 ONTO PRT1 Started by MAP1
From MAP1 ONTO PRT1 Started by MAP3

At MAP1:
>RECORD STOP ONTO PRT1

At MAP3:
>RECORD STOP FROM MAP1 ONTO PRT1

That is the only way to stop it. Also, if you start the recording and then log out, the recording link is
stopped if and only if your userid and the terminal ID are different. For example:

If in table TERMDEV, there is an entry for the printer called PRT1, and you have previously
PERMITed PRT1 as a username, then when you login on the PRT1 device, you get a message like
this:

PRT1 logged in on device PRT1 6:33:22 Aug−21−89

Now, if someone starts a record start onto that device, it will continue even if you log out.

However, if you log in on a device called PRT2 (in table TERMDEV), and there is not a permitted
user called PRT2, then you are prompted for a user−name. Call it BETA. And then when someone
does a record start onto BETA (the user name), it will terminate when BETA logs out.

What actually happens is that you can do a RECORD START onto either a device or a user name. In
case of a device and a user with the same name, RECORD will assume you mean the device.

−−
REPEAT

 All Known Formats : >REPEAT ### (any commands)

 Opposite Command : No opposite command

Associated Commands : <BREAK> HX −− cancels execution

 E.G. : >MAPCI;MTC;TRKS;TTP;POST D DTC 0 1 1 −− post a trunk
 >REPEAT 24 (BSY;BSY INB;NEXT) −− BSY INB ALL
−−

103

REPEAT can also be nested (with care). It will not start executing until all "("'s are matched with
")"'s.

>EDIT ADD_MY_CKTS −− create a file... just watch
>INPUT
ADD_CKT CKT? DTC 0 1 ?
>> −− exit input mode
>REPEAT 23 (INPUT LINESTR) −− Remember that LINESTR
 −− always contains the
>TOP;TYPE 555 −− current line. See the
TOF −− 24 copies of the same
 ADD_CKT CKT? DTC 0 1 ? −− line.
 ADD_CKT CKT? DTC 0 1 ?

 ADD_CKT CKT? DTC 0 1 ?
EOF

>DOWN 1 −− position on the line
ADD_CKT CKT? DTC 0 1 ?
>1−>II
>REPEAT 24 (CHANGE 2 '?' (NUMTODECSTR II);
> (II+1)−>II;DOWN 1) −− zzzzzzap

>TOP;TYPE 555 −− voila!!
TOF
 ADD_CKT CKT1 DTC 0 1 1
 ADD_CKT CKT2 DTC 0 1 2
 ADD_CKT CKT3 DTC 0 1 3

 ADD_CKT CKT24 DTC 0 1 24
EOF

>FILE −− save it quick
*** FILE −−− NO WRITE VOLUME SPECIFIED −− oops
>FILE D010TRAFVOL

Neater−er and neater−er!

−−
RESTART

 All Known Formats : >RESTART WARM
 >RESTART COLD
 >RESTART RELOAD
 >RESTARTBASE −− one word!!

 Opposite Command : No opposite command

Associated Commands : None

 E.G. : >RESTART COLD
 Confirm (YES or NO)
 >YES
−−

The RESTART is really the same as a boot on most other systems, or an IPL in VM/CMS. It
re−initializes the software.

104

>RESTART WARM −− used to clear up minor problems
>RESTART COLD −− to clear up major problems
>RESTART RELOAD −− to clear up really major problems
>RESTARTBASE −− used in dire circumstances indeed!

Otherwise, you can use the control switch on the CPU itself:

Flip "ACT/DEACT" switch to "DEACT" (this will take the CPU off−line).1.
Set the thumbwheel to "5".2.
Hit the "RESET" button.3.
Flip "ACT/DEACT" switch back to "ACT"4.

If you're really interested, the "SuperNode System Description" has a section devoted to restarts. It
goes into all the gory details. Come to think of it, if you don't fully understand that section, you
probably shouldn't be messing with RESTART anyway.

−−
RINDEX

 All Known Formats : >IF (RINDEX=0) THEN ...

 Opposite Command : LINDEX

Associated Commands : LINDEX

 E.G. : >IF (RINDEX < 3) THEN (PRINT 'Too few parms')
−−

RINDEX is a function which returns the number of parameters to the right of the command. For
example, if someone entered the command:

>HOWDY A B C D

and HOWDY did an RINDEX, 4 would be returned.

RINDEX is mainly used in commands with a variable number of parameters so that the command
knows how many to read in.

−−
SEND

 All Known Formats : >SEND <device>
 >SEND SINK
 >SEND PREVIOUS
 >SEND SFDEV
 >SEND SFDEV <filename>
 >SEND <disk−vol> <filename>

 Opposite Command : No opposite command

Associated Commands : RECORD, LOGUTIL (STARTDEV/STOPDEV), <BREAK> HT

 E.G. : >SEND PRT1 −− redirect all output to a printer
−−

105

SEND is used to create a total branch point in your output, so that it either goes to another device, a
file, or the bit bucket. For example:

>SEND PRT1

would send all of your output to PRT1 (and you cannot see what you're doing). You probably should
enter:

>RECORD START ONTO PRT1

instead.

Now, let's look at some other examples:

>SEND PREVIOUS −− Re−direct the output to where it was
 −− going before the last SEND command was
 −− issued.

>SEND SINK −− discard all output

>SEND SFDEV −− send output to the file CONSOLE in SFDEV

>SEND SFDEV MY_LIST −− Same as above, but name of file
 −− will be "MY_LIST".

>ERASESF CLLI_LIST −− destroy any old copy of the file
>TABLE CLLI
>SEND SFDEV CLLI_LIST
>LIST ALL
>SEND PREVIOUS

This is called "capturing data". All of the junk that would normally be sent to your terminal is sent to
the file. Make sure that you do an "ERASESF" first so that the output does not append to the file or
create problems.

>EDIT CLLI_LIST 13 −− go look at the file, truncate
 −− at column 13
>END;PRINT LINE −− get the size of the file
138
>TOP;DOWN 1 −− get ready to make an exec
MDAL2WDTGS01
>REPEAT 138 (CHANGE '' 'POS ';DOWN 1) −− prefix each
>TOP;TYPE 2
TOF
POS MDAL2WDTGS01
>FILE

And to use it, say in trunk group,

106

>TABLE TRKGRP
TABLE TRKGRP:
>READ CLLI_LIST

Of course, for TRKSGRP or TRKMEM, we need the sub−group number. However, we could go into
table TRKMEM, send to a file, capture all the stuff, and then we edit the file, truncate the output, and
save the file.

Then, to make a trunk deleter, we could do the following:

>TABLE TRKMEM
>SEND SFDEV DEL_TRKS
>LIST ALL
>SEND PREVIOUS

>EDIT DEL_TRKS 18 −− go look at the file, truncate at column 18

>END;PRINT LINE −− get the size of the file.
142
>TOP;DOWN 1 −− get ready to make an exec
>REPEAT 142 (CHANGE '' 'DELETE ';DOWN 1)
>FILE

>TABLE TRKMEM
>OVE;VERIFY OFF
>READ DEL_TRKS −− Zappo... away go all the trunks which
 −− have been previously set to INB at
 −− the TTP level.
>QUIT

−−
SETDATE

 All Known Formats : >SETDATE date month year

 Opposite Command : No opposite command

Associated Commands : DATE

 E.G. : >SETDATE 31 7 89 −− July 31, 1989
 >SETDATE 1 2 90 −− February 2, 1990
−−

You'd think they would know better, but the year is only two digits. 19xx is assumed. Oh, well.

−−
SETTIME

 All Known Formats : >SETTIME hours minutes

 Opposite Command : No opposite command

Associated Commands : TIME, DATE

 E.G. : >SETTIME 9 00 −− set time for 9:00am

107

 >SETTIME 21 00 −− set time for 9:00pm
−−

I think that about covers it.

−−
SHOWFL

 All Known Formats : >SHOWFL <filename>

 Opposite Command : No opposite command

Associated Commands : DSKUT, LISTVOL, PRINT

 E.G. : >LISTVOL D010CNTFL ALL
 >SHOWFL GET_ALTLIB_READY
−−

See discussion under DSKUT.

−−
SHOWVOL

 All Known Formats : >SHOWVOL <volume>
 >SHOWVOL <volume> ALL

 Opposite Command : No opposite command

Associated Commands : DSKUT, LISTVOL, LISTST

 E.G. : >SHOWVOL D010CNTFL −− short display
 >SHOWVOL D010IMAGE ALL −− long display
−−

See discussion under DSKUT.

−−
SLEEP

 All Known Formats : >SLEEP <seconds>

 Opposite Command : No opposite command

Associated Commands : None

 E.G. : >SLEEP 3 −− wait 3 seconds before continuing
−−

'nuff said.

−−
TAPE

 All Known Formats : >Too many to go into here.

108

 Opposite Command : No opposite command

Associated Commands : MOUNT, DEMOUNT, LIST, TLIST
−−

The TAPE command is a very powerful command which allows you to do all sorts of unusual things
to a tape. You can rewind it without DEMOUNTing it, you can read an EBCDIC file off the tape and
translate it to ASCII at the same time, you can enter data on a tape one record at a time, erase files
off a tape, etc.

If you're going to be doing a lot of stuff with tapes, you should probably get familiar with this
command. A full explanation is in document NTP 297−1001−509 (of course). You might even want
to take a look at NTP 297−1001−118 (DMS−100 Family Magnetic Tape Reference Manual). It tells
you all about the block structure and all that.

−−
TAPECONFIRM

 All Known Formats : >TAPECONFIRM ON
 >TAPECONFIRM OFF

 Opposite Command : No opposite command

Associated Commands : MOUNT
−−

This is a silly little command, but it does come in handy occasionally. You know, when do
something like:

>MOUNT 0 FORMAT

and the switch makes you enter the name of the first file on the tape to confirm that you really want
to format the tape? Well, if you say:

>TAPECONFIRM OFF

you don't have to enter the file name. This may not sound like it's worth an entire command, but it
does make it a lot easier when you mount tapes with long file names.

−−
THEN (See the discussion under IF)

 E.G. : IF (X=3) THEN (
 PRINT '−−− Ah−ha, X is three.'
) ELSE (PRINT '−−− Well, X is certainly not 3.')
−−

109

−−
TIME

 All Known Formats : >TIME

 Opposite Command : No opposite command

Associated Commands : DATE, SETTIME
−−

TIME displays the time in hours, minutes, and seconds.

−−
TLIST

 All Known Formats : >TLIST <tape drive>

 Opposite Command : No opposite command

Associated Commands : MOUNT, DEMOUNT, LIST

 E.G. : >MOUNT 0
 >TLIST T0
−−

TLIST is basically a fast version of LIST. You can't always use it, though. When you mount a
tape, sometimes you'll see the message, "First file = TAPE$DIR...". If you see that
message, you can use TLIST. TAPE$DIR is created by many different utilities, including
XDMSTAPE on the IBM. It is a list of the files on the tape. TLIST reads that list into your CI process
symbol table so that you can access the files on the tape.

The reason TLIST is usually preferred over LIST is that LIST traverses the used portion of the
tape looking for files. If you have a lot of files on the tape, this could take a while. TLIST takes just
a few seconds. As far as I can tell, there is no reason to use LIST instead of TLIST when it's
possible to use TLIST. If anybody knows of any advantages in using LIST over using TLIST, let
me know.

−−
UNLOAD

 All Known Formats : >UNLOAD <module name>
 >UNLOAD <module name> DISPLAY
 >UNLOAD <module name> NOINFORM
 >UNLOAD <module name> NOWARN
 >UNLOAD <module name> NOERROR

 Opposite Command : LOAD

Associated Commands : See DIS document OSA10 LISTING
−−

UNLOAD is one of those commands you shouldn't use unless you absolutely know what you're
doing. If you think you need to know more about this command, DIS "OSA10 LISTING".

110

−−
UNPERMIT

 All Known Formats : >UNPERMIT <username>

 Opposite Command : PERMIT

Associated Commands : SHOW USERS, PRINT USERS, FORCEOUT

 E.G. : >FORCEOUT OPERATOR
 >UNPERMIT OPERATOR
−−

UNPERMIT discontinues a username on the DMS−100, thus revoking their access to the
switch. UNPERMIT will not work as long as the user is logged in. However, if you use FORCEOUT to
log the user out, you can then UNPERMIT him.

−−
UNTIL

 All Known Formats : >UNTIL (expr) (cmds)

 Opposite Command : No opposite command

Associated Commands : IF, WHILE

 E.G. : >UNTIL (A=10) ((A+1)−>A;PRINT A)
−−

The UNTIL command works the same as an UNTIL statement in any high−level language (Protel
included). It is a loop statement with an exit test at the end. Thus:

>1−>A;UNTIL (A=10) ((A+1)−>A;PRINT A)

would print the numbers 2 through 10, and:

>10−>A;UNTIL (A=10) ((A+1)−>A;PRINT A)

would execute forever, since the first A=10 test is done after (A+1)−>A has been executed.

−−
WHILE

 All Known Formats : >WHILE (expr) (cmds)

 Opposite Command : No opposite command

Associated Commands : IF, UNTIL

 E.G. : >WHILE (A<10) ((A+1)−>A;PRINT A)
−−

111

The WHILE command works the same as a WHILE statement in any high−level language (Protel
included). It is a loop statement with an exit test at the beginning. Thus:

>1−>A;WHILE (A<10) ((A+1)−>A;PRINT A)

would print the numbers 2 through 10, and:

>10−>A;WHILE (A<10) ((A+1)−>A;PRINT A)

wouldn't print anything, since the first A=10 test is done before (A+1)−>A is been executed.

NCMS −− A Special Note

"Why in the world are you talking about that dinosaur, NCMS? Don't you know that everyone uses
MPCNET now?" Well, not everyone. I know they have it in RTP, I think they have it in Meriline, and
I'm almost certain they have it in Carling (they have everything in Carling). However, we don't have
it in Richardson yet. Until MPCNET is universal, this section will remain. Since I'm in Richardson, I
can't really tell you much about MPCNET, but the MPCNET user's guide (DIS "REF JPF") is
probably what you really need. If you want to see what little I know about MPCNET, see the
MPCNET section.

Now, everyone knows how to use NCMS. The real problem is with the transfer of files.

>DSKUT
>LISTVOL D010TEST1 ALL
MY_OWN_EXEC
MY_OWN_EXEC_DATA

>LISTSF
MOVE_UP
>PRINT MOVE_UP

 % $FILE=MOVE_UP (Exec to move all my files up to the IBM)
 COMMAND NCPY (PRINT (SYMTOSTR @1);SOSTOCMS @1 @2 @3)
 %
 NCPY MY_OWN_EXEC MY_OWN_EXEC SOS_EXEC
 NCPY MY_OWN_EXEC_DATA MY_OWN_EXEC_DATA SOS_EXEC

Now, the only problem is that on the IBM, we can only have 8−character names, so that the first file
will actually appear as "MY_OWN_E SOS_EXEC", and when the next file, "MY_OWN_EXEC_DATA"
tries to come in −−− BLAMMO!! So, it is necessary to make sure that the destination file names are
of the right length. Thus, the two NCPY lines in the exec above should be something like:

NCPY MY_OWN_EXEC MY_EXEC SOS_EXEC
NCPY MY_OWN_EXEC_DATA MYX_DATA SOS_EXEC

Now, we can >READ MOVE_UP and it should do a lot better.

112

NCMS −− Wonderlink Between the Switch and the IBM

When you are on the switch, you can use NCMS to link back to the IBM. Normally, the link will be
up when you try to use it. If not, see the next page. If the link is up, the following procedure should
log you into the IBM:

>NCMS
>SMODE −− get to the IBM
>RCH or TEX −− depending on whether you want
 −− on BNRRCH or BNRTEX
<BREAK>
?HX −− you now have about 1 minute to log in to the IBM
>NCMS −− since HX threw you all the way back to CI
>SMODE −− back to the IBM again
>L <vmid> −− log into the IBM
><password>

>SMODE −− get back to the switch
>SCMSTOSOS <fn> <ft> <sos fn> <volume> −− from IBM to switch
 or
>SOSTOCMS <sos fn> <fn> <ft> −− from switch to IBM

When you're done, be sure to use:

>CMSLOGOFF

while you're in switch mode to log you off the IBM.

The process is different if you want to copy a module across to be loaded on the switch. Instead of
SCMSTOSOS, you use GETLOAD, or GL for short. It goes something like this:

>GL MYMOD

This will put your module in SFDEV. Then you can use the LOAD command to load it.

Common Problems and Mistakes with NCMS

All copy and logout functions must be performed from the switch. Thus, you must be on the switch and not the
IBM to copy files either way or to use the CMSLOGOFF command. This is because the NCMS routine is
controlling the file transfer and it resides on the switch. The IBM has nothing to do with the file transfer. If you
use SMODE and transfer back to the IBM and then try to do the SCMSTOSOS, you will get an error.

•

The location of the link on the switch varies from switch to switch. It is customarily posted somewhere in the
lab. It must be on−line (RTS) in order for NCMS to work.

•

The datafill looks something like this:

>TABLE DLCDEV
>LIST ALL

DLCNUM IOCNO IOCCKTNO BAUD EQPEC
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 0 2 0 B4800 1X67BA

•

113

If the data isn't there, you will have to add it.

You may have to reset the circuit in IOD:

>MAPCI;MTC;IOD;IOC 2;CARD 0
>BSY;OFFL;BSY;TST;RTS

•

A special note to side 1 NCMS users: If when you type NCMS, you're having some trouble getting a link, it could
be that NCMS is trying to use the DLC on side 0. There are 2 solutions to this problem. First, you can go into
MAPCI and busy out the DLC on side 0. Second, you can just type:

>NCMS 1

instead of:

>NCMS

This format just tells NCMS to use the DLC on side 1.

•

Any time the link acts balky, reset it and log back in.

The Ultimate NCMS Sin

This part gets a little technical on the VM/CMS side. If you don't know what it means, you probably
don't need to know about it.

Many people use VM facilities like WAKEUP to trap console I/O. Many people also DISCONNECT
rather than logging off sometimes. If both of these apply to you, you may have some trouble with
NCMS.

If you're disconnected and are using WAKEUP, and you log in via NCMS, you have one command
before NCMS freezes and you have to do a <BREAK> HX. Make it a good one. Use this one: IPL
CMS PARM AUTOCR. This will, of course, restart your VM session, and whatever installs your
WAKEUP stuff should be smart enough to know better when it sees that you're not on a full−screen
terminal.

If you forget and hang NCMS, do not use PRIVREQ to log yourself off the IBM. I have experienced
the consequences of this once. When we queried the userid on VM, it was listed as PENDING
LOGOFF. We had to get network services to get the userid logged off, and it took a system IPL of
the IBM to get the IBM to release the NCMS link. REALLY NASTY STUFF!!!

A <BREAK> HX is infinitely preferable.

MPCNET −− What Little I Know

Speculation

Sorry, folks, but, never having had the opportunity to use MPCNET myself, there's not a lot I can
offer you in the way of instruction. This section is basically a brief overview of MPCNET, with
comparisons to NCMS. I'll even throw in a few speculations, but I won't guarantee any of them. If
you want to know about the commands themselves, you need to be looking in the MPCNET user's

114

guide. That's "JPF" in DIS.

What is MPCNET, anyway? Well, basically, it's NCMS, only better. MPCNET is a 19.2 kbps link
between the switch and another machine (currently, only IBM mainframes are supported: fnref
REFID=spec.). That's four times as fast as current NCMS speeds.

Besides the speed increase, there are a few other nifty features MPCNET has over NCMS. First,
more than one person can use MPCNET at the same time. So you can be logged in on BNRTEX
while your buddy's logged in on BNRRCH from the same switch. There can be up to 255
simultaneous sessions on each switch. I'm not an expert, but I can't see how more than one person
could log in to the same IBM over the same link at the same time:fnref REFID=spec., so that
may be a limitation.

Second, you don't have any limit on the number of records you can transfer over the link. If you've
ever tried to transfer something large over NCMS, you know how painful it can be to be almost done
and have NCMS abort because it thought there were too many records. Don't have to worry about
that with MPCNET!! If you want to transfer the encyclopedia Britannica over the link, go for it!!

Third, you can transfer SuperNode modules over the link. Unless I'm mistaken, there is no facility
for that in NCMS:fnref REFID=spec.. With MPCNET, just issue the magic GL68K command,
and it happens!

Well, that just about exhausts my knowledge of MPCNET. I hope it helped somewhat.

SOS Execs

SOS execs, like execs on other systems, are basically files containing a list of commands to be
executed by the system's command interpreter.

This section is devoted to showing you some of the finer points of exec writing in the DMS−100
environment. For your reading enjoyment, many examples of SOS execs (which actually work!!)
have been included.

There are two ways to invoke execs. The orthodox way is by use of the READ command, like so:

>READ MYEXEC

The other way to invoke an exec involves the use of the COMMAND command, like this:

>COMMAND DOIT MYEXEC −− Look, Mom!! No parentheses!!
>DOIT −− does a READ on MYEXEC

Now, you may ask yourself, "What difference does it really make?" Well, here's some food for
thought:

>EDIT GOFORIT
>INPUT
PRINT 'here I am'
PRINT (SYMTOSTR @1) (SYMTOSTR @2) (SYMTOSTR @3)
>>

115

>FILE SFDEV
>LISTSF

>READ GOFORIT A B C
READ −− Wrong number of parameters −− oops...
 −− can't pass parms
>COMMAND DOIT GOFORIT
>DOIT A B C
here I am
A B C

So, you can see that making a command point to an exec makes it much easier to pass information
into the exec.

Well, enough of this. I'm spoiling all the surprises!! On with the show.

Exec Files, Some Simple Examples

Let's say that we want to make up some files that will do lots of neat things for us. For example,
let's edit and save the following files into SFDEV:

>EDIT PART1
>INPUT
 % $FILE=PART1 (Example of an exec file) RLT JUN−21−86
 PRINT '−− Hi−ho part−one fans... here we go'
 COMMAND PIXXY ((SYMTOSTR @1)−>$PARM1;
 PRINT '−− Parm−1 set: ' $PARM1)
 COMMAND HELP_PART (PRINT PART_HELPF)
 COMMAND PART_HELP (PRINT PART_HELPF)
 0 −> II
 READ PART2
>>
>FILE SFDEV

>EDIT PART2
>INPUT
 % $FILE=PART2 (Example of an exec−file) RLT JUN−21−86
 PRINT '−− PART2 here. To store an alpha parm, enter:'
 PRINT '−− >PIXXY <value>'
 PRINT ' '
 PRINT '−− For help, enter: >HELP_PART'
 PRINT −−− To reinitialize, enter: >READ PART1'
 PRINT ' '
>>
>FILE SFDEV

>EDIT PART_HELPF
>INPUT
 % $FILE=PART_HELPF RLT JUN−21−86
 PRINT ' '
 PRINT ' O N − L I N E H E L P FOR: PART'
 PRINT ' '
 PRINT ' The PART family of commands are used to'
 PRINT ' illustrate basic practices of writing SOS'
 PRINT ' execs. They don''t really do anything at all.'
 PRINT ' The following commands are available:'
 PRINT ' '
 PRINT ' >PIXXY <alpha−parm> −− will store $PARM1'
 PRINT ' >HELP_PART −− prints this info'
 PRINT ' '

116

 PRINT ' To re−initialize the PART system, enter:
 PRINT ' '
 PRINT ' >READ PART1'
 PRINT ' '
>>
>FILE SFDEV

So, on the previous page we see a little family of execs. And how cute they are, too! This is about
the bare−bones of what I consider essential to any family of execs. We have a start−up exec
(PART1), a main driver exec (PART2), and a baby−bear exec, er, ah, the help file (PART_HELPF)
which is invoked by either HELP_PART or PART_HELP (in case the user forgets the format). There
is a slicker way to do on−line help, but we won't get into that yet.

Thus, for our PIXXY command, we might use the following as the help file:

% $FILE=PIXXY_HELPF RLT JUN−21−86
PRINT ' '
PRINT ' O N − L I N E H E L P FOR: >PIXXY'
PRINT ' '
PRINT ' The PIXXY command allows the user to store any'
PRINT ' alpha parm in the variable $PARM1'
PRINT ' '
PRINT ' USAGE: >PIXXY <parm>
PRINT ' '

And to activate the command, we would add the following to PART1:

COMMAND HELP_PIXXY (PRINT PIXXY_HELPF)
COMMAND PIXXY_HELP (PRINT PIXXY_HELPF)

Now, on to bigger things:

Fool−Proof Execs: In−Line HELP for Commands

To help the user, you can install an in−line help in the command itself. In the following command,
the "guts" are in the ELSE clause. The help is in the first part.

COMMAND START (
IF ((RINDEX) = (0)) THEN (
 PRINT 'COMMAND START NEEDS 1 PARAMETER:';
 PRINT ' <CIRCUITNAME>|<ALL>'
)ELSE(
 START_FUNC −> FUNCTION;
 (SYMTOSTR @1) −> DIRNAME;
 READ PROCREQ
)

The way this one works is to see if there is no parm entered on the line. This means that the user
needs help. Of course, we can also check for the word "HELP" to the left of the command:

>HELP START

117

In this case, we need to check the left−index (LINDEX) instead:

COMMAND START (
IF ((LINDEX) = (1)) THEN (
 IF ((SYMTOSTR @−1) = 'HELP') THEN (
 PRINT 'COMMAND START NEEDS 1 PARAMETER:';
 PRINT ' <CIRCUITNAME>|<ALL>'
))ELSE(
 START_FUNC −> FUNCTION;
 (SYMTOSTR @1) −> DIRNAME;
 READ PROCREQ
)

Actually, the way most commands determine whether or not to print help is to use LINDEX to see if
there's anything before the name of the command on the line. If so, assume it's a "Q" or a "HELP"
and print the help file. This keeps it consistent with system commands (commands someone wrote
in Protel, compiled, and loaded onto the switch).

Fool−Proof Execs: Interactive Execs

This isn't a very safe thing to do in a SOS exec, but I'll show it to you anyway because you might
come up with a better use for it.

You've already seen how, by making a command invoke an exec, you can pass parameters to the
exec. But what if you have a rather complex exec and you want to ask the user a question in the
middle of it? How do you do that? Well, you do it verrry carefully!

A maneuver like this requires rather tricky use of the READ command. Specifically, the "READ
INPUT" variety of the READ command. Now, what "READ INPUT" actually does is tell CI to start
looking at the terminal for input. Very much like the "shell" commands you can use in some PC
programs to jump into a DOS session without leaving the original program. That means that your
exec is suspended until a "READ PREVIOUS" occurs, at which point it takes up where it left
off. However, with careful planning and voluminous prompting of the user, it is possible to minimize
your risk. Observe the following portion of an exec:

>EDIT COPYSF
>INPUT
 % $FILE=COPYSF (Example of an exec) v−1.00 BLH NOV−10−89
 PRINT 'How many files to copy?'
 PRINT 'Enter "NUMFILES n"'
 COMMAND NUMFILES (@1 −>NUMFL; −− Command to allow the user
 READ PREVIOUS) −− to specify num of files
 READ INPUT −− transfer control to the user.

 COMMAND FILEDEV (@1−>FNAME; −− Command to allow the user
 @2−>DEV; −− to specify file name and
 READ PREVIOUS) −− destination device.
 REPEAT NUMFL (
 PRINT 'What''s the next filename and device?'
 PRINT 'Enter "FILEDEV <filename> <device>"'
 READ INPUT
 COPY FNAME DEV
)

118

As you can see, when you use this method, you are depending on the user to enter what you tell
him when you tell him. Does it work? Yes. Is it risky? Oh, yeah!! But it is an interesting concept.

Fool−Proof Execs: WHILE and UNTIL Loops

As you may have noticed, the previous version of COPYSF is rather limiting in that you have to tell it
how many files you want to copy before you copy them. Of course, a much better way to do this
would be to loop until the user signalled you to stop.

With that in mind, look at this new and improved version of COPYSF which uses the UNTIL
command:

>EDIT COPYSF
>INPUT
 % $FILE=COPYSF (Example of an exec) v−1.00 BLH NOV−10−89

 COMMAND FILEDEV (@1−>FNAME; −− Command to allow the user
 @2−>DEV; −− to specify file name and
 READ PREVIOUS) −− destination device.
 UNTIL (((SYMTOSTR FNAME) = 'NONE') & ((SYMTOSTR DEV) = 'NONE')) (
 PRINT 'What''s the next filename and device?';
 PRINT 'Enter "FILEDEV <filename> <device>"';
 PRINT 'Enter "FILEDEV NONE NONE" to quit.';
 READ INPUT;
 COPY FNAME DEV
)

Of course, in this example, if the user changes his mind up front and enters "NONE NONE" the first
time through, the exec will fail miserably. That's why God (or IBM or somebody) invented the
WHILE loop. Take a look at the final version of COPYSF which doesn't fail quite so easily:

>EDIT COPYSF
>INPUT
 % $FILE=COPYSF (Example of an exec) v−1.00 BLH NOV−10−89

 COMMAND FILEDEV (@1−>FNAME; −− Command to allow the user
 @2−>DEV; −− to specify file name and
 READ PREVIOUS) −− destination device.

 PRINT 'What''s the first filename and device?'
 PRINT 'Enter "FILEDEV <filename> <device>"'
 PRINT 'Enter "FILEDEV NONE NONE" to quit.'
 READ INPUT

 WHILE (((SYMTOSTR FNAME) ^= 'NONE') & ((SYMTOSTR DEV) ^= 'NONE')) (
 COPY FNAME DEV;
 PRINT 'What''s the next filename and device?';
 PRINT 'Enter "FILEDEV <filename> <device>"';
 READ INPUT
)

Now you're an expert on WHILE, UNTIL, and READ INPUT. How do you feel? Well, take some
aspirin, and maybe it'll go away.

119

Now, wouldn't it be nice if we could just do away with that silly FILEDEV command and specify
everything on the command line?

Fool−Proof Execs: The PAR Function

You've seen PAR before. You remember the "@" symbol you use to reference parameters? Well,
the PAR function does that same thing, but by looking at the following exec, you can see the
advantage of the PAR function in certain situations. This differs from the previous examples in that,
because I'll be using parameters, the exec actually defines a command to do the work.

>EDIT COPYSFEXEC
>INPUT
 % $FILE=COPYSFEXEC (Example of an exec) v−1.00 BLH NOV−10−89

 ERASE COPYSF
 COMMAND COPYSF (
 2 −> NUMPARMS %% −− I'll use this as an index to my parms
 WHILE ((RINDEX) >= (NUMPARMS)) (
 COPY (PAR (NUMPARMS−1)) (PAR (NUMPARMS));
 NUMPARMS + 2 −> NUMPARMS
)
)

You can see how using PAR instead of @ allows me to use NUMPARMS as an index to which parm I
want to look at. So, there's one more little tidbit of information to stuff into your brain!

Fool−Proof Execs: Using Flags

Now, let's return to our previously scheduled program, PART1. Geez... I can hardly remember that
far back. Consider a new version of PART1:

>EDIT PART1
>INPUT
 % $FILE=PART1 (Example of an exec) v−1.01 RLT JUN−21−86
 PRINT '−− Hi−ho part−one fans... here we go...'
 0−>$REINIT_FLAG
 $REINIT_OK −> $REINIT_FLAG

 IF ($REINIT_FLAG = 0)THEN(PRINT '*** TO REINIT, ENTER:';
 PRINT ' >REINIT_PART';PRINT ' ')

 COMMAND REINIT_PART (1−>$REINIT_OK;READ PART1)

 COMMAND PIXXY (......

 0−>II
 0−>$REINIT_OK
 READ PART2

In this case, we have a fool proof means that the PART2 exec will not be accidentally re−read. Let's
say that we were to try and re−read the PART1 exec again.

The value of the $REINIT_FLAG would be set to 0, and so we would get the message "*** TO REINIT,
ENTER:" etc.

•

120

If we enter the REINIT_PART command, it sets the flag and will cause the READ_PART to proceed onward.•

There is only one more little detail, and that is "What is the value of $REINIT_FLAG the very first
time PART1 is read?" Actually, it is probably undefined (unless the user accidentally gave it a
value). For this reason, SOS will print a message like "undefined value as parameter
−1". To hide this from the user, so that s/he won't get too disturbed, we usually put all of the
definitions in a "SEND SINK SEND PREVIOUS" block. This will send the output (from error
messages, prints, etc.) to the bit bucket (known as the SINK in SOS −− remember SOS
BILGE?). So our exec now looks like this:

% $FILE=PART1 (Example of an exec) v−1.01 RLT JUN−21−86
PRINT '−− Hi−ho part−one fans... here we go...'
0−>$REINIT_FLAG
SEND SINK
 $REINIT_OK −> $REINIT_FLAG
SEND PREVIOUS

Fool−Proof Execs: Erase It Before You Define It

So far, we have assumed that we are running a perfectly debugged system. Ho, ho, ho! There is
just one problem with that. What if we (yes, we, ourselves) are trying to debug these confounded
commands, and we re−run the PART1 exec −− after we have changed the definition of a command
in the file. SOS will not change the definition!!! This means that, even though we have made a
change to the PART1 file, and re−read the file, the old definition is all SOS knows about.

For this reason, it is always a good idea to erase the old commands at the beginning of the file that
defines them. And then define them anew. Of course, the first time we read the file, we will get an
"undefined symbol" error (obviously there is nothing to erase). So, we simply put the ERASE
command in the SEND SINK SEND PREVIOUS block as well:

% $FILE=PART1 (Example of an exec) v−1.01 RLT JUN−21−86
PRINT '−− Hi−ho part−one fans... here we go...'
0−>$REINIT_FLAG
SEND SINK
 ERASE HELP_PART HELP_PIXXY PIXXY REINIT_PART
 ERASE ZZZZ_CMD
 $REINIT_OK −> $REINIT_FLAG
SEND PREVIOUS

This way the user is not bothered by all those pesky SOS warnings.

In a related topic, remember at the first of this section where I showed you how to make a command
invoke an exec so that the exec can take parameters? Well, if you change that exec and re−file it,
the command is still pointing where the old version used to be. Consequently, you need to ERASE
the command and define it again every time you change the exec. Details, details, details!!

$$PUSH and $$POP (Examples)

Now, let's look at a very useful set of execs that we will define within the edit environment:

 1 : % $FILE=AUX_CMDS (Helpful editor cmds) RLT JUL−24−86
 2 : SEND SINK

121

 3 : ERASE $$GET $$GETX $$GETSIZE $$MAKEEND $$POPALL
 4 : ERASE $$POPX $$PUSHX $$PUT $$RECOVER STACK
 5 : EDIT JUNKX
 6 : COMMAND $$PUSHX ((1+XPTRX)−>XPTRX;
 7 : ('XTEMP'+(NUMTODECSTR XPTRX))−>VARX;
 8 : (LINESTR −> (STRTOSYM XVARX)))
 9 : %
10 : COMMAND $$PUT (@1−>II;REPEAT II ($$PUSHX;DOWN 1))
11 : %
12 : COMMAND $$POPX (IF ((XPTRX) >= (1)) THEN (
13 : INPUT (STRTOSYM ('XTEMP'+(NUMTODECSTR XPTRX)));
14 : (XPTRX−1)−>XPTRX))
15 : %
16 : COMMAND $$GETX (IF ((IPTRI) <= (XPTRX)) THEN (
17 : INPUT (STRTOSYM ('XTEMP'+(NUMTODECSTR IPTRI)));
18 : (IPTRI+1)−>IPTRI))
19 : %
20 : COMMAND $$POPALL (IF ((XPTRX) >= (1)) THEN (
21 : XPTRX−>II;REPEAT II ($$POPX)) ELSE (
22 : PRINT '** NO PARMS ON STACK'))
23 : %
24 : COMMAND $$GET (IF ((XPTRX) >= (1)) THEN (
25 : 1−>IPTRI;XPTRX−>XHOLDXPTR;REPEAT XPTRX ($$GETX)
26 : 0−>XPTRX;
27 : PRINT '−−− ' XHOLDXPTR ' pulled from stack.';
28 : PRINT ' Use $$RECOVER_STACK to do an un−get'
29 :)ELSE(PRINT '** NO PARMS ON STACK'))
30 : %
31 : COMMAND $$RECOVER_STACK (IF ((XHOLDXPTR) > (XPTRX))
32 : THEN(XHOLDXPTR−>XPTRX;
33 : PRINT '−−− Recovered ' XHOLDXPTR ' from stack.'
34 :)ELSE(PRINT '*** Stack is already at maximum.'))
35 : %
36 : COMMAND $$GETSIZE (SEND SINK;END;LINE −> $SIZE;TOP;
37 : SEND PREVIOUS;PRINT '−− File has ' $SIZE ' lines.')
38 : %
39 : COMMAND $$MAKEEND (END;
40 : INPUT '%% END −> END %%%% END OF FILE')
41 : %
42 : QUIT
43 : SEND PREVIOUS
44 : %%%% VALUES & VARS %%%%
45 : 0 −> IPTRI; 0 −> XPTRX; 0 −> XHOLDXPTR
46 : 0 −> II
47 : 0 −> $SIZE

Now, let's look in some detail at this exec.

First of all, in line 1 we have a comment telling what the name of the exec is,
"$FILE=file−name". I have gotten in the habit of saying "$FILE=". Then, I can use the editor to
locate the beginning of file easily. Notice that I have a brief explanation (not much help here), then
my initials, and the last date I changed it.

At line 2, I send the output to the SINK (bit bucket). This way, the user won't see the silly "EDIT:"
prompt that will blip up every time the exec creates a command.

Lines 3 and 4 erase the commands I am about to create. This way, any old, spurious definitions for
those commands will be sure to be erased.

122

In lines 5 and 42 we enter and exit the editor. I only want to make sure that the commands are
properly linked, so I will edit a dummy file (JUNKX) and then create the commands, and then just
quit out of the editor.

In lines 6 through 8, I define a nifty little command to simulate pushing the line the editor is currently
on into a stack. In reality, I increment a counter (XPTRX) and then build up the name of a variable
into which I will store the current line's contents. Let's say that XPTRX was initially 0. In that case:

(1+XPTRX)−>XPTRX would set it equal to 1. Then, the nested "(NUMTODECSTR
XPTRX)" turns the integer into a string, giving '1' from the value 1. Next, I build the
name of the variable in the symbol XVARX:

'XTEMP'+'1'−>XVARX

So line 7 makes XVARX = 'XTEMP1'.

And then, in line 8, I create a symbolic reference to this string variable: (STRTOSYM
XVARX) which would accomplish the same thing as if I had typed in "LINESTR −>
XTEMP1".

And LINESTR is, of course, the editor system variable wherein the contents of the
current line are always stored (done internally by the editor).

Thus, we have the first 72 characters of the current line stored in a variable called
XTEMP1. And it is parameterized based on the current value of XPTRX. This leads
us to...

Line 10, where we make a multiple store command called $$PUT. To use it, we position ourselves
in the editor and enter >$$PUT 5 −− which would store the next five lines for us. Now, notice two
things. First, the parm 5 is a numeric value and is not converted to a symbol (as would be the case
in general). Next, the value appears inside the $$PUT command as "@1" (since it is the first parm
passed to it when we evoke the command). Next, I store the value in a temporary variable called
"II" and use it to start a repeat loop: $$PUSHX and then move down one line in the file.

Before we go too much further, I should make it clear that when we READ the file on the second
previous page, none of these commands is actually executed. The only thing that is done is to
create a new definition in your read/write directory that you can use later (at any time up until you
logout). That is what the "COMMAND" command does. It creates a new command! Now, back to our
file...

So, of course, what we store, we can retrieve. To do this, you just do the inverse of what the
$$PUSHX did by decrementing the pointer XPTRX. Of course, we need to be careful that it isn't
negative or zero:

12 : COMMAND $$POPX (IF ((XPTRX) >= (1)) THEN (

That is, if and only if XPTRX is still greater than 0, dothe following:

First, build the variable's name back up: 'XTEMP1' or whatever (in the case where

123

XPTRX = 1).

Then, convert the string to a symbol so that when we INPUT it, we get the VALUE of
the variable, not the name of the variable. For example, if we were to do the
following, this is what we would see:

>PRINT XPTRX
1
>PRINT (NUMTODECSTR XPTRX)
1 −− we can't see it, but this is really '1'
>PRINT ('XTEMP'+(NUMTODECSTR XPTRX))
XTEMP1
>PRINT (STRTOSYM ('XTEMP'+(NUMTODECSTR XPTRX)))
Mary had a little lamb.

And there it is, the value of the line that we stored when we were editing the
file. (Assuming things went something like on the next page.)

And finally in line 14, we decrement the counter XPTRX.

Now, the only problem with the $$POPX command is that the lines will come out in the opposite
order in which we put them in! (Just like any good push−pop stack should.) So, we create a
"normal" command $$GET, which will correspond to our $$PUT <nlines> command:

24 : COMMAND $$GET (IF ((XPTRX) >= (1)) THEN (
25 : 1−>IPTRI;XPTRX−>XHOLDXPTR;REPEAT XPTRX ($$GETX)
26 : 0−>XPTRX;
27 : PRINT '−−− ' XHOLDXPTR ' pulled from stack.';
28 : PRINT ' Use $$RECOVER_STACK to do an un−get'
29 :)ELSE(PRINT '** NO PARMS ON STACK'))

Well, that's a mouthful! First, in line 24, we check for stack underflow (i.e., a negative value for
XPTRX). Then we save a copy of XPTRX (just in case we want to cheat and get them again
later). Notice that we use XPTRX as the value of the repeat in line 25, and the thing we repeat is
itself another previously created command:

16 : COMMAND $$GETX (IF ((IPTRI) <= (XPTRX)) THEN (
17 : INPUT (STRTOSYM ('XTEMP'+(NUMTODECSTR IPTRI)));
18 : (IPTRI+1)−>IPTRI))

Here, you will notice that I used "IPTRI" instead of "XPTRX" just to make sure that things don't get
trashed. Further, I check that there is no underflow by comparing IPTRI to XPTRX. One thing to
note is that the IF statement does take a considerable time to execute. If I was going to do lots of
this stuff, I probably would be better off taking it out and checking it only in the $$GET command.

Anyway, the $$GETX command is pretty straightforward, and it insures us of getting the lines in the
correct order.

Lines 27 and 28 tell us what's going on. And, again, an important note is that if we close up the
"THEN" clause on line 26 without opening the "ELSE(", the SOS CI parser will fail to ever evaluate
the ELSE clause:

124

OK: IF (condition−of−some−sort) THEN (
 things to do if true;
 more things; and more things)ELSE(<−−−−−−+
 things to do if false) |
 |
BAD: IF (condition−of−some−sort) THEN (|
 things to do if true; |
 more things; and more things) |
 ELSE(things to do if false) |
 |
In the second case, the ELSE clause will NEVER (EVER) |
be executed!!! The SOS strangeness strikes again. |
So, programmers, leave those pending parentheses open |
ON THE SAME LINE. −−>−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+

Yes, yes, all well and good. But how do I use those commands??? |La questione excellente!

>READ AUX_CMNDS −− first we read the exec
>EDIT LAMB_FILE −− edit our favorite file and
>INPUT −− put some junk in it
INPUT MODE:
>Mary had a little lamb.
>Little lame lamb.
>Whose degree was in maths.
>> −− hit an extra return to exit input mode
EDIT:
>TOP
>DOWN 1
>$$PUT 2
>END
>$$GET
−−− 2 pulled from stack.
 Use $$RECOVER_STACK to do an un−get
>TOP;TYPE 999
TOF:
Mary had a little lamb.
Little lame lamb.
Whose degree was in maths.
Mary had a little lamb.
Little lame lamb.
EOF:
>

>END;INPUT '%%' −− go to the end and enter a marker
>$$RECOVER_STACK −− retrieve the holding pointer
−−− Recovered 2 from stack
>$$GET
−−− 2 pulled from stack.
 Use $$RECOVER_STACK to do an un−get

>TOP;TYPE 999 −− and let's see the file now...
TOF:
Mary had a little lamb.
Little lame lamb.
Whose degree was in maths.
Mary had a little lamb.
Little lame lamb.
%%
Mary had a little lamb.
Little lame lamb.
EOF

125

Pretty nifty, eh? By the way, you can put several commands on a line like that using the good old
";" between them: TOP;TYPE 3333.

Fool−Proof Execs: Setting Up Your Execs As A System

Plan your work and work your plan. This really applies to SOS execs since there may be several
different environments, etc. To handle this, it's usually a good idea to separate things. Specifically,
it's a good idea to put command and variable definitions in a separate file from the actual
execs. For example:

This is the first file, which really starts up the system. Notice that I READ the initialization procs to
set up various parms.

% $FILE=XINIT_RAMSES (Start up RAMSES) RLT MAY−21−85
PRINT '−−−− RAMSES −−−−'
READ XRAM_CMND_INIT
% −−−−−− THIS ROUTINE IS USED ON THE RAMSES TERMINAL
READ XRAM_HDW_INIT
READ XRAM_USRS_INIT
% −−−− SYSTEM VARIABLES FOR THE RAMSES TERMINAL ITSELF
'<NULL>'−>$NULL
'ACTIVE'−>$ACTIVE
$ACTIVE−>$RX_ALIVE

PRINT '−−−−−−−−−−−−−−−−−−− RAMSES is up.'
MSG ALL '−−−−−−−−− RAMSES started.'

Let's look at a couple of the initialization procs:

% $FILE=XRAM_HDW_INIT RLT MAY−21−85
% THE HARDWARE VARS ARE STORED HERE FOR D250−COMB CONFIG
3−>$RX_NPOOLS
%
'TM8 2'−>$RX_XX1
'TM8 3'−>$RX_YY1
%
'TM8 4'−>$RX_XX2
'TM8 5'−>$RX_YY2
%
'TM8 6'−>$RX_XX3
'TM8 7'−>$RX_YY3
%

% $FILE=XRAM_CMND_INIT RLT JUN−1−85
COMMAND CM COMMAND
CM $$NTDS NUMTODECSTR
CM $$SP (SEND PREVIOUS)
CM $$SS (SEND SINK)
CM QUERY_PM (RECORD START ONTO PRT1;MAPCI NODISP;MTC;PM;
 POST TM8 $RX_TM8;QUIT ALL;RECORD STOP ONTO PRT1)

126

By planning your execs carefully, you can restrict where the changes need to be made to one
specific file. For example, all commands are defined in the self−same file. However, there may be
times when you need to create commands linked to a given sub−system (e.g., EDIT, CRTSIM,
DSKUT, etc.). This means that defining a command before the sub−system is up will do you no
good. To get around this, we use directories to create working environments. Read on...

Fool−Proof Execs: Using Directories

When you create a directory, you are creating an artificial partition in your SFDEV memory. The
neat thing about a directory is that when you create new commands, they automatically go into the
TOP−MOST read/write directory. This means that you can override existing system commands or
earlier definitions.

This does create some problems. For example, let's say that you have read the standard profile
(STD_PROF) to define commands for the editor, and one of the commands is "D" for "DOWN". Then,
when you proc up PMIST with the PUPI file, if there is a new read/write directory on top and it
redefines "D" as "dump buffer", you can't get to your old "D" = "DOWN" command. You can, but
you must specify the directory path; eg, USERS.MAP3.D instead of DOWN. Well, let's get on with it...

Fool−Proof Execs: Using Other People's Directories

As we saw earlier, we can specify the directory path name. This makes it easy to use commands
and things from other people's directories. You just fully qualify the directory path. Say, for
instance, that you're MAP1 and MAP3 has some nifty doodle new command in his UTILDIR that he
wants you to try out. You don't have to put the command in your own directory to try it out. You can
just type:

>USERS.MAP3.UTILDIR.NIFTYCMD

Of course, if that command expects certain variables to exist and they exist in MAP3's directory,
NIFTYCMD won't work.

That does bring up another interesting point, though, because variables also exist in
directories. So, if you wanted to know the contents of the variable HISVAR in user MAP3's
directory, just type:

>PRINT (USERS.MAP3.UTILDIR.HISVAR)

Neat, huh?

Of course, if you wanted easy access to everything in the directory, you could always pull this little
trick:

>ATTACH USERS.MAP3.UTILDIR

Now, if all this has gotten you really jazzed about directories, you might want to go back to the
ATTACH section and read about the ATTACH command. It gets into some of the neat stuff you can
do with directories.

127

Conclusions

Well, hopefully, you now know enough about SOS and CI and execs to do some reasonably
productive things on the switch. I want to take a few lines here to recommend a few other
documents in DIS which contain useful information. Some of these are referenced in this
document, and some are not:

CPGUIDE Call Processing Guide for the DMS−250
OSA10 SOS Loader Reference Manual
OSLC COPY Command on NT40
W190 EXECUTE Command
DW114 Restarts
OSG SOS Editor
DCML1 Log System − User View
OSNC NCMS
N1001509 DMS−100 Family Command Reference Manual (NTP 297−1001−509)
S1001509 DMS−100 Family Supplement 10 of Commands Manual (NTP 297−1001−509)
N1001526 DMS−100 Family Disk Maintenance Subsystem Reference Manual (NTP 297−1001−526)
SLMUG SuperNode System Load Module SLM User's Guide
N1001118 DMS−100 Family Magnetic Tape Reference Manual (NTP 297−1001−118)
JPF DMS−100 MPCNET User's Guide
SYSDESC DMS SuperNode System Description

128

Vehicle Tracking Beacon
Overview

Build a simple RF tracking beacon ("bumper beeper") using a slightly modified Family Radio Service
(FRS) radio. This will use a 555−timer to pulse the radio's Push−to−Talk (PTT) key (to transmit for
about 1.5 seconds) every 20 seconds or so. The transmitting beacon can then be tracked using
normal RF direction finding techniques (doppler, rotating Yagis, body−beam, etc.). The pulsing
control circuitry is small enough to fit inside the FRS radio, and can be powered from the radio's
internal batteries. The pulsing control circuit is based around the 555−timer, and is the same circuit
which was used for the Mosque Time−Lapse Surveillance Camera project in GBPPR 'Zine, Issue
#12. Review that article for a more detailed explanation of the 555−timer operation and the
equations needed for tweaking the transmit/wait times.

Attach powerful magnets to the radio so you can easily (and covertly) mount it to the underside of a
vehicle. Hiding it inside the vehicle's dashboard is actually the best, as nobody will think to look in
there and the RF can escape through the windshield. This does require one to physically enter the
vehicle though.

Uses

This device will be useful for tracking human rights abusers:

... or even for tracking terrorists:

129

Pulse Control Schematic

130

Internal view of the Cobra PR3500DX FRS/GMRS radio used. Just about any radio will probably
work, but this particular radio has the "high−power" 2 Watt setting, which will be very useful for
tracking beacon purposes. Note the large open space just below the battery compartment on the
lower left.

The addition of an external antenna jack may also be useful. When mounted on the underside of a
vehicle, vertical antenna polarization will be more effective.

131

Picture showing the pulsing circuitry added. The circuit uses mostly surface mount components to
keep it physically small. Only three wires are needed for the pulsing circuit: a wire running to the +6
VDC POSITIVE terminal on the battery compartment, a wire running to the NEGATIVE or GROUND
terminal (which is common throughout the radio), and a wire running to the PTT switch. When the
PTT switch is grounded, the radio will transmit.

132

Overview of the wiring connections.

Note that the vibrator motor and the speaker are removed to reduce the weight of the radio
slightly. Leave the microphone in, as it will receive any ambient noise. If you hear road noise, the
vehicle is moving. If you hear crickets chirping, the vehicle is parked somewhere. Pretty fucking
clever, eh?

133

Another overview of the wiring connections. The RED wire is POSITIVE, the BLACK wire is
GROUND. The wire for the PTT is connected to the top solder terminal on the little circuit board
sticking up.

Closeup picture of the PTT connection. There are three solder terminals, solder to the top one
(closest to the antenna).

134

Outside Plant Symbols:
General

135

Outside Plant Symbols:
General

136

Outside Plant Symbols:
General

137

Outside Plant Symbols:
General

138

Outside Plant Symbols:
Poles & Associated Equipment

139

Outside Plant Symbols:
Poles & Associated Equipment

140

Outside Plant Symbols:
Poles & Associated Equipment

141

Outside Plant Symbols:
Poles & Associated Equipment

142

Outside Plant Symbols:
Wire

143

Outside Plant Symbols:
Wire

144

Outside Plant Symbols:
Wire

145

Outside Plant Symbols:
Wire

146

Outside Plant Symbols:
Underground Conduit & Manholes, Building

Conduit & Housings

147

Outside Plant Symbols:
Underground Conduit & Manholes, Building

Conduit & Housings

148

Outside Plant Symbols:
Underground Conduit & Manholes, Building

Conduit & Housings

149

Outside Plant Symbols:
Underground Conduit & Manholes, Building

Conduit & Housings

150

Outside Plant Symbols:
Cable, Cable Terminals, Closures, & Interfaces

151

Outside Plant Symbols:
Cable, Cable Terminals, Closures, & Interfaces

152

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

153

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

154

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

155

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

156

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

157

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

158

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

159

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

160

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

161

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

162

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

163

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

164

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

165

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

166

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

167

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

168

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

169

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

170

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

171

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

172

Outside Plant Codes & Symbols:
Cable, Cable Terminals, Closures, & Interfaces

173

TV−B−Gone Jammer
Overview

This is a simple electronics project which can be used to disable the use of any TV−B−Gone−type
devices − or any infrared (IR) TV remote control, for that matter.

The whiny, rich, fascist, $2600 reading nutcases have found a new toy. This toy is called the
"TV−B−Gone", and it's essentially just a universal TV remote control which is used to turn
televisions off. Of course, all the whiny rich kids are going around turning off other people's
televisons − a direct violation of personal privacy. Hey! Wait a minute... Don't $2600 readers
complaing about their personal privacy all the time? Shouldn't people be allowed to watch TV as
they wish?

Well, this little hack consists of several fairly intense pulsed infrared LEDs which can be used to
"confuse" (i.e. jam) the infrared receiver on most TV, VCR, stereos, cable boxes, etc.

The 1933 version of the TV−B−Gone.

Construction

This construction is very simple. Most of the parts are available at Radio Shack. It just consists of a
555−timer IC configured to output a series of pulses at around 38 kHz. These pulses then trigger
four infrared LEDs, which radiate their energy and jam any IR remote receivers in the vicinity. The
38 kHz signal is actually quite critical, as that is the carrier frequency (or something close to it)
which is used by normal IR remote controls. By encoding the remote's control data stream onto a
high−frequency carrier like this, any interference (especially sunlight − which is DC) is ignored.

When constructed and powered, place the jammer in the field−of−view of the TV you wish to
protect. This should prevent the TV from receiving any external IR remote signals. When you need
access to the remote, just remove the battery from the jammer. This could be very useful for
protecting a large store display of TVs, or any TVs in a bar or restaurant setting.

174

Schematic

175

Pictures

Closeup picture of the IR jammer. Pin 1 of the 555−timer is marked with the little blue dot. The
circuit is powered directly from a 9 Volt battery. You can salvage IR LEDs from old remote
controls. Using the resistor/capacitor values in the schemtic will get you very close to the required
38 kHz oscillator frequency. Fine tune the 1.2 kohm resistor if the circuit does not oscillate
correctly.

176

Alternate view. Leave a little bit of lead length on the IR LEDs to allow you to "tweak" the direction
of jamming.

177

Bonus
Found in the library:

178

End of Issue #14

Any Questions?

Editorial and Rants

But I was told by those rich college professors that Marxism is the future! Eric Corley told me white
people cause all the problems in the world! LOL!

 Title : A Morsel of Goat Meat (Black Zimbabweans Want the Return of White Rule)
 Source : NY Times − http://www.nytimes.com/2005/03/23/opinion/23kristof.html?oref=login
 : http://www.libertypost.org/cgi−bin/readart.cgi?ArtNum=89121
 Published : Mar 23, 2005
 Author : NICHOLAS D. KRISTOF

The hungry children and the families dying of AIDS here are gut−wrenching, but somehow what I
find even more depressing is this:

Many, many ordinary black Zimbabweans wish that they could get back the white racist government
that oppressed them in the 1970's.

"If we had the chance to go back to white rule, we'd do it," said Solomon Dube, a peasant whose
child was crying with hunger when I arrived in his village. "Life was easier then, and at least you
could get food and a job."

Mr. Dube acknowledged that the white regime of Ian Smith was awful. But now he worries that his
3−year−old son will die of starvation, and he would rather put up with any indignity than witness
that.

An elderly peasant in another village, Makupila Muzamba, said that hunger today is worse than ever
before in his seven decades or so, and said: "I want the white man's government to come back. ...
Even if whites were oppressing us, we could get jobs and things were cheap compared to today."

179

http://www.nytimes.com/2005/03/23/opinion/23kristof.html?oref=login
http://www.libertypost.org/cgi-bin/readart.cgi?ArtNum=89121

His wife, Mugombo Mudenda, remembered that as a younger woman she used to eat meat, drink
tea, use sugar and buy soap. But now she cannot even afford corn gruel. "I miss the days of white
rule," she said.

Nearly every peasant I've spoken to in Zimbabwe echoed those thoughts, although it's also clear
that some still hail President Robert Mugabe as a liberator. This is a difficult place to gauge the
mood in, because foreign reporters are barred from Zimbabwe and promised a prison sentence of
up to two years if caught. I sneaked in at Victoria Falls and traveled around the country pretending
to be a tourist.

The human consequences of the economic collapse are heartbreaking. I visited a hospital and a
clinic that lacked both medicines and doctors. Children die routinely for want of malaria medication
that costs just a few dollars.

At one maternity ward, 21 women were sitting outside, waiting to give birth. No nurse or doctor was
in sight, and I asked the women when they had last eaten meat, eggs or other protein. They
laughed uproariously. Lilian Dube, a 24−year−old who had hiked 11 miles to get to the hospital,
said that she had celebrated Christmas with a morsel of goat meat.

"Before that, the last time I had meat was Christmas the year before," she said. "I just eat corn
porridge and mnyi," a kind of wild fruit.

An elementary school I visited had its fifth graders meeting outside, because it doesn't have enough
classrooms. Like other schools, it raises money by charging fees for all students − driving pupils
away.

"Only a few of the kids who started in grade one are still with me in school," Charity Sibanda, a
fifth−grader, told me. "Some dropped out because they couldn't pay school fees. And some died of
AIDS."

As many as a third of working−age Zimbabweans have AIDS or H.I.V., and every 15 minutes a
Zimbabwean child dies of AIDS. Partly because of AIDS, life expectancy has dropped over the last
15 years from 61 to 34, and 160,000 Zimbabwean children will lose a parent this year.

AIDS is not President Mugabe's fault, but the collapse of the health system has made the problem
far worse.

The West has often focused its outrage at Mr. Mugabe's seizure of farms from white landowners,
but that is tribalism on our part. The greatest suffering by far is among black Zimbabweans.

I can't put Isaac Mungombe out of my mind. He's sick, probably dying of AIDS, and his family is
down to one meal a day. His wife, Jane, gave birth to their third child, Amos, six months ago at
home because she couldn't afford $2 to give birth in the hospital. No one in the family has shoes,
and the children can't afford to attend school. They're a wonderful, loving family, and we chatted for
a long time − but Isaac and Jane will probably soon die of AIDS, and the children will join the many
other orphans in the village.

When a white racist government was oppressing Zimbabwe, the international community united to
demand change. These days, a black racist government is harming the people of Zimbabwe more
than ever, and the international community is letting Mr. Mugabe get away with it. Our hypocrisy is
costing hundreds of Zimbabwean lives every day.

180

	index.html
	amaopts.html
	ama100.html
	ama112.html
	ama114.html
	ama117.html
	ama118.html
	dms_sos.html
	track.html
	osp-1.html
	osp-2.html
	osp-3.html
	osp-4.html
	osp-5.html
	osp-6.html
	osp-7.html
	osp-8.html
	osp-9.html
	osp-10.html
	osp-11.html
	osp-12.html
	osp-15.html
	osp-16.html
	osp-17.html
	osp-18.html
	osp-13.html
	osp-14.html
	op-1.html
	op-2.html
	op-3.html
	op-4.html
	op-5.html
	op-6.html
	op-7.html
	op-8.html
	op-9.html
	op-10.html
	op-11.html
	op-12.html
	op-13.html
	op-14.html
	op-15.html
	op-16.html
	op-17.html
	op-18.html
	op-19.html
	op-20.html
	op-21.html
	tv.html
	bonus.html
	end.html

