DEFINITY ONE™ Communications System
Release 2.0
Installation and Upgrades
Copyright © 2000, Lucent Technologies
All Rights Reserved
Printed in U.S.A.

Notice
Every effort was made to ensure that the information in this book was complete and accurate at the time of printing. However, information is subject to change.

Preventing Toll Fraud
Toll Fraud is the unauthorized use of your telecommunications system by an unauthorized party (for example, a person who is not a corporate employee, agent, subcontractor, or working on your company’s behalf). Be aware that there is a risk of toll fraud associated with your system and that, if toll fraud occurs, it can result in substantial additional charges for your telecommunications services.

Lucent Technologies Fraud Intervention
If you suspect that you are being victimized by toll fraud and you need technical assistance or support, call the Technical Service Center’s Toll Fraud Intervention Hotline at 1-800-643-2353.

Providing Telecommunications Security
Telecommunications security (of voice, data, and/or video communications) is the prevention of any type of intrusion to (that is, either unauthorized or malicious access to or use of your company’s telecommunications equipment) by some party.

Your company’s “telecommunications equipment” includes both this Lucent product and any other voice/data/video equipment that could be accessed via this Lucent product (that is, “networked equipment”).

An “outside party” is anyone who is not a corporate employee, agent, subcontractor, or working on your company’s behalf. Whereas, a “malicious party” is anyone (including someone who may be otherwise authorized) who accesses your telecommunications equipment with either malicious or mischievous intent.

Such intrusions may be either through synchronous (time multiplexed and/or circuit-based) or asynchronous (character-, message-, or packet-based) equipment or interfaces for reasons of:
- Utilization (of capabilities special to the accessed equipment)
- Theft (such as, of intellectual property, financial assets, or toll-facility access)
- Eavesdropping (privacy invasions to humans)
- Mischief (troubling, but apparently innocuous, tampering)
- Harm such as harmful tampering, data loss or alteration, regardless of motive or intent.

Be aware that there may be a risk of unauthorized or malicious intrusions associated with your system and/or its networked equipment. Also realize that, if such an intrusion should occur, it could result in a variety of losses to your company (including but not limited to, human/data privacy, intellectual property, material assets, financial resources, labor costs, and/or legal costs).

Your Responsibility for Your Company’s Telecommunications Security
The final responsibility for securing both this system and its networked equipment rests with you - a Lucent customer’s system administrator, your telecommunications peers, and your managers. Base the fulfillment of your responsibility on acquired knowledge and resources from a variety of sources including but not limited to:
- Installation documents
- System administration documents
- Security documents
- Hardware/software-based security tools
- Shared information between you and your peers
- Telecommunications security experts

To prevent intrusions to your telecommunications equipment, you and your peers should carefully program and configure your:
- Lucent provided telecommunications system and their interfaces
- Lucent provided software applications, as well as their underlying hardware/software platforms and interfaces
- Any other equipment networked to your Lucent products

Federal Communications Commission Statement
Part 15: Class A Statement. This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Part 68: Network Registration Number. This equipment is registered with the FCC in accordance with Part 68 of the FCC Rules. It is identified by FCC registration number A5593M-13283-MF-E. Refer to “Federal Communications Commission Statement” in “About This Book” for more information regarding Part 68.

Canadian Department of Communications (DOC)
Interference Information
This digital apparatus does not exceed the Class A limits for radio noise emissions set out in the radio interference regulations of the Canadian Department of Communications.

Le Présent Appareil Numérique n’émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la class A prescrites dans le règlement sur le brouillage radioélectrique édicté par le ministère des Communications du Canada.

Trademarks
See “About This Book.”

Ordering Information
Call: Lucent Technologies Publications Center
Voice 1 800 457-1255International Voice 317 361-3553
Fax 1 800 457-1764International Fax 317 361-3553

Write: Lucent Technologies Publications Center
P.O. Box 4100
Crawfordsville, IN 47933

Order: Document No. 555-233-109
Comcode 108671397
Issue 2, June 2000

For additional documents, refer to the section in “About This Book” entitled “Related Documents.”

You can be placed on a standing order list for this and other documents you may need. Standing order will enable you to automatically receive updated versions of individual documents or document sets, billed to account information that you provide. For more information on standing orders, or to be put on a list to receive future issues of this document, contact the Lucent Technologies Publications Center.

European Union Declaration of Conformity
The “CE” mark affixed to the DEFINITY ONE equipment described in this book indicates that the equipment conforms to the following European Union (EU) Directives:
- Electromagnetic Compatibility (89/336/EEC)
- Low Voltage (73/23/EEC)
- Telecommunications Terminal Equipment (TTE) i-CTR3 BRI and i-CTR4 PRI

For more information on standards compliance, contact your local distributor.

Comments
To comment on this document, return the comment card at the end of the document.
Contents

About This Book
- Conventions used in this book
- Related documents
- How to order documentation
- How to comment on this book
- Where to call for technical support
- Security issues
- Trademarks
- Standards compliance
- Electromagnetic compatibility standards
- Anti-static protection
- Remove/install circuit packs
- Federal Communications Commission statement
 - Part 68: Statement
 - Means of Connection (U.S.)

1 Install and Cable the Cabinet
- Check customer’s order
- Correct shipping errors
- Unpack and inspect
- Install the system cabinet
 - Verify the carrier address ID
 - Floor-mount the cabinet
 - Wall-mount the cabinet
 - Install cabinet — wall-mount
 - Install left and right panels — wall-mount
- Check AC power and ground
 - Check AC power
 - Approved grounds
 - Approved floor grounds
 - Uninterruptible power supply
 - Cabinet power switch
Contents

- Connect cabinet grounds and other grounds 1-16
 - Install the ground block 1-16
- Install coupled bonding conductor 1-18
- Connect and route the power cords 1-18

- Cable the system 1-20
 - Install Processor Interface cable and TDM/LAN bus terminators 1-20

- Install main distribution frame (MDF) and external modem 1-21
 - Install the MDF 1-21
 - Bottom-mounted MDF with modem 1-21
 - Install the external modem 1-23

- Install equipment room hardware 1-24
 - Cross-connect the cabinet to the MDF 1-24
 - Allowable and non-allowable circuit packs 1-24
 - Circuit pack installation 1-29
 - Circuit pack slot loading 1-29
 - Off-premises circuit protection 1-33
 - Install sneak fuse panels 1-34
 - Label the main distribution frame 1-37

- Set ringing option 1-38

- Install and wire telephones and other equipment 1-40
 - Telephone connection examples 1-40
 - Connect adjunct power 1-42
 - Station wiring examples 1-43
 - Analog tie trunk example 1-45
 - Digital tie trunk example 1-46
 - Cable examples for tie trunk connectivity 1-47
 - DS1 tie trunks between collocated systems 1-47
 - 3-pair and 4-pair modularity 1-49
 - Adjunct power connections 1-50
 - Auxiliary power 1-51

- Install Attendant Console — optional 1-52
 - Hard-wire bridging 1-52
 - Dual wiring of 2-wire and 4-wire endpoints 1-52
 - Install 26B1 Selector Console — optional 1-52
Contents

- **Connect external alarms and auxiliary connections** 1-53
 - Alarm input 1-53
 - Alarm output 1-53
 - UPS alarm connection 1-54
 - Emergency transfer and auxiliary power 1-55
 - Telephone pin designations 1-55
- **Install the BRI terminating resistor** 1-56
 - Terminating resistor adapter 1-57
 - Closet mounted (110RA1-12) 1-58
- **Install multi-point adapters** 1-60
 - BR851-B adapter (T-adapter) 1-60
 - 367A adapter 1-61
 - Basic multi-point installation distances 1-62
- **Install off-premises station wiring** 1-63
 - Install off-premises or out-of-building stations 1-63
 - Analog off-premises stations 1-63
 - Circuit protectors 1-66
 - Digital out-of-building telephones 1-67
- **Install emergency transfer panel and associated telephones** 1-68
 - Install the emergency transfer panel 1-68
 - Install telephone for power transfer unit 1-75
- **Connect modem to telephone network** 1-76
- **Connect modem** 1-77
 - External modem option settings 1-77
- **Set neon voltage to prevent ring ping** 1-78
- **Complete installation** 1-79
- **View LEDs to determine power and fan alarm state** 1-79

2 Connectivity and Access to DEFINITY ONE

- **Physical connections** 2-2
 - Via a PCMCIA ethernet (NIC) network connection 2-2
 - Via local monitor/mouse/keyboard 2-2
Via RAS (modem)
dial up 2-3
Create a connection icon for DEFINITY ONE 2-3
Dial up 2-5
Via customer LAN 2-11
DEFINITY LAN gateway (DLG) 2-12

Access methods 2-16
Via a Telnet session 2-16
Via a Web browser session 2-18
Via pcAnywhere 2-21
Start the pcAnywhere application on DEFINITY ONE 2-21
System administration/DEFINITY site administration (DSA) 2-26

DEFINITY ONE Lucent personnel logins 2-28

3 System Initialization 3-1

Power up and observe LEDs 3-2
Connect the laptop computer to DEFINITY ONE 3-2
Start a Telnet session 3-2
Verify the software version number 3-2
Determine the serial number 3-3
Obtaining a license file 3-3
Resolve alarms 3-4
Check system status 3-4
Place a test call 3-5
Enable customer logins 3-5
Enable AUDIX logins 3-5
Enable customer Web logins 3-6
Enable DEFINITY Logins 3-6

Administer DEFINITY ONE 3-6
DEFINITY ONE commands 3-6
Set date/time/time zone (Windows NT) 3-6
Administer customer’s LAN interface 3-7
Change customer options 3-7
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set country options</td>
<td>3-8</td>
</tr>
<tr>
<td>Log into the System</td>
<td>3-8</td>
</tr>
<tr>
<td>Check System Status</td>
<td>3-9</td>
</tr>
<tr>
<td>Set up your system</td>
<td>3-9</td>
</tr>
<tr>
<td>Add translations</td>
<td>3-10</td>
</tr>
<tr>
<td>Administer telephone features</td>
<td>3-10</td>
</tr>
<tr>
<td>Set up Call Accounting</td>
<td>3-11</td>
</tr>
<tr>
<td>Administer DEFINITY for AUDIX initialization</td>
<td>3-13</td>
</tr>
<tr>
<td>Check the Dial Plan</td>
<td>3-13</td>
</tr>
<tr>
<td>Check Hunt Groups</td>
<td>3-13</td>
</tr>
<tr>
<td>Check Class of Service</td>
<td>3-14</td>
</tr>
<tr>
<td>Check Class of Restriction</td>
<td>3-15</td>
</tr>
<tr>
<td>Change the Dial Plan</td>
<td>3-16</td>
</tr>
<tr>
<td>Add extension ranges</td>
<td>3-17</td>
</tr>
<tr>
<td>Add stations</td>
<td>3-17</td>
</tr>
<tr>
<td>Make a Hunt Group</td>
<td>3-20</td>
</tr>
<tr>
<td>Change Coverage Path</td>
<td>3-21</td>
</tr>
<tr>
<td>Add test phones</td>
<td>3-22</td>
</tr>
<tr>
<td>AUDIX administration</td>
<td>3-22</td>
</tr>
<tr>
<td>AUDIX commands</td>
<td>3-23</td>
</tr>
<tr>
<td>Adding an AUDIX subscriber</td>
<td>3-23</td>
</tr>
<tr>
<td>Download Message Manager and DSA</td>
<td>3-25</td>
</tr>
<tr>
<td>Install Message Manager</td>
<td>3-25</td>
</tr>
<tr>
<td>Download DSA</td>
<td>3-25</td>
</tr>
<tr>
<td>Start a DSA session</td>
<td>3-30</td>
</tr>
<tr>
<td>Scheduling backups</td>
<td>3-32</td>
</tr>
</tbody>
</table>

4 AUDIX Digital Networking

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial administration tasks</td>
<td>4-1</td>
</tr>
<tr>
<td>Viewing the Feature Options window</td>
<td>4-3</td>
</tr>
<tr>
<td>Changing the number of administered remote users</td>
<td>4-5</td>
</tr>
<tr>
<td>Administering networking channels</td>
<td>4-6</td>
</tr>
<tr>
<td>Changing local machine information</td>
<td>4-7</td>
</tr>
<tr>
<td>Changing the local machine profile</td>
<td>4-7</td>
</tr>
<tr>
<td>Completing the Local Machine Administration window</td>
<td>4-11</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adding a remote machine</td>
<td>4-12</td>
</tr>
<tr>
<td>Completing the Digital Network Machine Administration window (via Web browser)</td>
<td>4-12</td>
</tr>
<tr>
<td>Completing the Machine Profile screen for the remote machine (via AUDIX)</td>
<td>4-15</td>
</tr>
<tr>
<td>Performing a full remote update</td>
<td>4-21</td>
</tr>
<tr>
<td>Resetting automatic deletion of nonadministered remote users</td>
<td>4-21</td>
</tr>
<tr>
<td>Viewing remote extensions</td>
<td>4-22</td>
</tr>
</tbody>
</table>

5 Upgrade and Repair Procedures 5-1

- Update software 5-1
 - Install license file 5-1
 - Prepare for the update 5-2
 - Run the update 5-3
 - Update system 5-3
 - Upgrade pcAnywhere 5-3
- Replace the TN795 circuit pack 5-4
- Replace the hard disk 5-4
 - Remove the old disk 5-4
 - Add the new hard disk 5-4
 - Verify the software on the new hard disk 5-5
 - Restore customer’s data 5-5
- Replace the PCMCIA flash disk (hot pluggable) 5-6
- Access Diskeeper software to defragment the disk 5-6
 - Change the default times on Diskeeper 5-7

6 Hardware Additions 6-1

- Add circuit packs 6-2
- Add CO, FX, WATS, and PCOL 6-2
 - Requirements 6-2
 - Installation 6-3
- Add DID trunks 6-3
 - Requirements 6-3
 - Installation 6-3
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add tie trunks</td>
<td>6-4</td>
</tr>
<tr>
<td>Requirements</td>
<td>6-4</td>
</tr>
<tr>
<td>Installation</td>
<td>6-4</td>
</tr>
<tr>
<td>Add DS1 tie and OPS</td>
<td>6-6</td>
</tr>
<tr>
<td>Service interruption</td>
<td>6-6</td>
</tr>
<tr>
<td>Add speech synthesis</td>
<td>6-6</td>
</tr>
<tr>
<td>Add Code Calling access</td>
<td>6-6</td>
</tr>
<tr>
<td>Add pooled modem</td>
<td>6-7</td>
</tr>
<tr>
<td>Settings for modem connected to data module</td>
<td>6-7</td>
</tr>
<tr>
<td>Settings for modem connected to the data terminal equipment (DTE)</td>
<td>6-8</td>
</tr>
<tr>
<td>Multiple integrated recorded announcements</td>
<td>6-9</td>
</tr>
<tr>
<td>TN750C announcement circuit pack</td>
<td>6-9</td>
</tr>
<tr>
<td>Add TN750C circuit packs</td>
<td>6-9</td>
</tr>
<tr>
<td>Move a single announcement to another announcement circuit pack</td>
<td>6-10</td>
</tr>
<tr>
<td>Add ISDN-PRI</td>
<td>6-10</td>
</tr>
<tr>
<td>T1 (North American Standard)</td>
<td>6-10</td>
</tr>
<tr>
<td>E1 (International Standard)</td>
<td>6-11</td>
</tr>
<tr>
<td>Add circuit packs</td>
<td>6-11</td>
</tr>
<tr>
<td>Install cables</td>
<td>6-11</td>
</tr>
<tr>
<td>Enter added translations</td>
<td>6-11</td>
</tr>
<tr>
<td>Resolve alarms</td>
<td>6-12</td>
</tr>
<tr>
<td>Save translations</td>
<td>6-12</td>
</tr>
<tr>
<td>Add IP trunk</td>
<td>6-13</td>
</tr>
<tr>
<td>Prepare for installation</td>
<td>6-13</td>
</tr>
<tr>
<td>Check your shipment</td>
<td>6-14</td>
</tr>
<tr>
<td>Install the TN802B MAPD</td>
<td>6-15</td>
</tr>
<tr>
<td>Connect the modem (optional)</td>
<td>6-16</td>
</tr>
<tr>
<td>Connect the IP trunk server to your local area network</td>
<td>6-16</td>
</tr>
<tr>
<td>Connect the ethernet cable</td>
<td>6-16</td>
</tr>
<tr>
<td>Connect a monitor</td>
<td>6-17</td>
</tr>
<tr>
<td>Log onto the IP trunk server</td>
<td>6-17</td>
</tr>
<tr>
<td>Assign a server name and domain name</td>
<td>6-17</td>
</tr>
<tr>
<td>Check network services</td>
<td>6-18</td>
</tr>
</tbody>
</table>
Contents

Assign an IP address 6-18
Test the connection to the LAN 6-20
Test the modem 6-20
Set up network-trust relationships 6-20
Administer the IP trunk 6-20
- Add DOLAN and C-LAN functionality 6-21
- DEFINITY IP Solutions software 6-21

7 DEFINITY Site Administration (DSA) 7-1
- Interactions with switches and voicemail systems 7-2
- What DSA does 7-3
- Components of DSA 7-4
- How DSA works 7-6
- DSA help 7-7
- Configure DSA 7-7
 - Adding DEFINITY ONE Switch Administration Item 7-8
 - Adding DEFINITY ONE Voice Mail Administration Item 7-16
 - Starting a Switch Administration session 7-21
 - To launch a GEDI session: 7-21
 - To launch an emulation session: 7-22
 - Starting a Voice Mail Administration session 7-23

8 Message Manager Installation 8-1
- Introduction 8-1
 - Standard features 8-1
- Pre-Installation considerations 8-2
 - PC requirements 8-2
 - Installation requirements 8-3
 - Operating system considerations 8-4
 - Select installation type 8-4
 - Upgrade considerations 8-6
 - Before installation 8-6
 - During installation 8-6
 - After installation 8-6
 - Uninstalling Message Manager 8-7
- Installation to a client PC 8-8
Contents

1. **Single user installation process** 8-8
2. **Installing and accessing a shared copy of Message Manager** 8-10
3. **Installing Message Manager from a LAN server** 8-14
4. **Using the automated installation process** 8-15
5. **Updating your site-specific information** 8-17

9 Troubleshooting 9-1
- **Install Wizard error messages** 9-2
- **Platform troubleshooting commands** 9-5
- **Modem configuration and administration** 9-5
 - **Configure modem** 9-5
 - Verify INADS modem settings 9-5
 - Verify external modem option settings 9-6
 - Configure the installed modem 9-7
 - Test the external modem 9-8

10 Security and Copy Protection 10-1
- **Software copy protection mechanisms** 10-1
 - **Feature protection** 10-1
 - **Copy protection** 10-2

A Cable Pinouts A-1
- **TN760E tie trunk option settings** A-1
- **TN464F option settings** A-4
- **Connector and cable diagrams — pinout charts** A-6
 - Processor external cable pinout A-8

B Set Up and Use of Customer Logins B-1
- **Customer access** B-1
- **Windows NT logins for the customer** B-3
 - **NT login types for the customer** B-3
 - Administrator login B-3
 - AUDIX logins B-4
 - Customer Web access logins B-5
 - **Enabling Windows NT customer logins** B-7
 - Activate pcAnywhere B-7
 - Setup login accounts B-8
Contents

I

DEFINITY logins for the customer

Forced password aging (DEFINITY-specific)

Logoff notification (DEFINITY-specific)

Super User (DEFINITY)

Administer login command permissions

DEFINITY commands for user login

Password expiration

Installing and configuring DSA on a workstation

Installing DSA

Configuring DSA

Downloading Message Manager

C

Miscellaneous Procedures

Connect the laptop computer to DEFINITY ONE

Install the ethernet card

Configure the PCMCIA ethernet client on the laptop

Verify the connection from DEFINITY ONE to the laptop computer

Restore the laptop settings

Map DEFINITY ONE to the laptop computer’s CD-ROM drive

Setting the name of the switch

Setting the NT name

Updating AUDIX machine name

Restarting AUDIX

Change system name

Connect to SAT session via Telnet

Perform backup

Backup via the Web interface

Backup and restore main menu

Perform immediate backup

Viewing backup progress

Backing up to a LAN address

Viewing scheduled backups

 Adding a new scheduled backup (multiple backup schedules)

Accessing backup information

Perform restore
Recovery

- DEFINITY ONE system level shutdown and restart D-1
- DEFINITY software reset (recovery) D-4
 - Reset System 1 (DEFINITY warm start) D-4
 - Reset System 2 (DEFINITY cold start) D-4
 - Reset System 3 (DEFINITY reboot) D-5
 - Reset System 4 (DEFINITY reboot) D-5
 - Reset System 5 (System reboot) D-5

LED Boot Sequence/TN795 Processor E-1

- LED boot sequence E-1
 - TN795 processor circuit pack E-1
 - TN795 processor circuit pack LEDs (after booting) E-2
 - LED states E-5

Status LEDs F-1

- Attendant console LEDs F-1
- Other circuit packs F-1
 - Circuit pack status LEDs F-2
 - Power supply LEDs F-3

GAS Commands in the bash shell G-1

- Lucent access controller bash commands G-1
 - LAC commands G-4
 - setip command G-5
 - Displaying current settings G-5
 - Setting the machine name in NT G-5
 - Setting RAS IP address G-6
 - Setting the customer’s LAN, DNS and WINS information G-6
 - Setting LAN address G-6
 - Setting DNS addresses and host name G-6
 - Setting WINS addresses G-7
 - Other commands G-7
 - net user commands G-8
About This Book

This document provides procedures to install, upgrade, or add to a DEFINITY ONE™ Communications System (hereafter referred to as DEFINITY ONE), using the compact modular cabinet (CMC) with the TN795 circuit pack.

This document is intended for use by trained installation technicians who have Windows NT and local area network (LAN) training.

DEFINITY ONE is a high-functionality communications system for customers in the 25-40 line size or smaller with growth potential to 168 stations. This offer provides DEFINITY® software, INTUITY® AUDIX® messaging, and DEFINITY Site Administration (DSA) on a single hardware platform.

Conventions used in this book

Circuit pack codes (such as TN763D) are shown with the minimum acceptable alphabetic suffix (like the “D” in the code TN763D).

Generally, an alphabetic suffix higher than that shown is also acceptable. However, not every vintage of either the minimum suffix or a higher suffix code is necessarily acceptable.

NOTE:

The following conventions describe the systems referred to in this document.

- System is a general term encompassing Release 2.0 and includes references to DEFINITY ONE.
- Information is applicable for Release 2.0 unless otherwise specified.
DEFINITY ONE Communications System is abbreviated as DEFINITY ONE.

Physical dimensions in this book are in inches followed by metric centimeters (cm) in parentheses. Wire gauge measurements are in American Wire Gauge (AWG) followed by the cross-sectional area in squared millimeters (mm²) in parentheses.

Related documents

The following documents provide supplemental information when installing a DEFINITY ONE Release 2.0 system:

- BCS Products Security Handbook (555-025-600)
- BCS Products Security Handbook Addendum (555-025-600ADD)
- DEFINITY Enterprise Communications Server Release 8.2 Installation for Adjuncts and Peripherals (555-233-116)
- DEFINITY Enterprise Communications Server Release 8.2 Administrator's Guide (555-233-506)
- DEFINITY Enterprise Communications System Release 8.2 Administration for Network Connectivity (555-233-504)
- DEFINITY ONE Communications System Release 2.0 Maintenance (555-233-111)
- DEFINITY ONE Communications System Release 2.0 Overview (555-233-001)
- DEFINITY Enterprise Communications Server Release 8.2 System Description (555-230-211)
- DEFINITY Communications System Terminals and Adjuncts, Reference (555-015-201)
- DEFINITY ONE Communications System Release 2.0 Installation Quick Reference (555-233-738)

How to order documentation

You can order documentation directly from the Lucent Technologies Business Communications System Publications Fulfillment Center at 1-317-322-6791 or toll free at 1-800-457-1235, or at www.lucent.com/enterprise/documentation.
How to comment on this book

Lucent Technologies welcomes your feedback. Please complete the reader comment card at the front of this book and return it. Your comments are of great value and will help us improve our documentation.

If the reader comment card is missing, fax your comments to 1-732-817-4009 or to your Lucent Technologies representative, and specify this document's name and number, DEFINITY ONE Communications System Release 2.0 Installation and Upgrades, (555-233-109).

Where to call for technical support

<table>
<thead>
<tr>
<th>Service Description</th>
<th>Telephone number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streamlined Implementation (for missing equipment)</td>
<td>1-800-772-5409</td>
</tr>
<tr>
<td>USA/Canada Technical Service Center</td>
<td>1-800-248-1234</td>
</tr>
<tr>
<td>Technical Service Center Initialization and Database Administration System (INADS)</td>
<td>1-800-248-1111</td>
</tr>
<tr>
<td>International Technical Assistance Center</td>
<td>1-720-444-9990</td>
</tr>
<tr>
<td>DEFINITY Helpline (software assistance)</td>
<td>1-800-225-7585</td>
</tr>
<tr>
<td>Lucent Technologies Toll Fraud Intervention</td>
<td>1-800-643-2353</td>
</tr>
<tr>
<td>Lucent Technologies Technical Care Center</td>
<td>1-800-242-2121</td>
</tr>
<tr>
<td>DEFINITY Site Administration (DSA) Domestic</td>
<td>1-800-242-2121</td>
</tr>
<tr>
<td>INTUITY AUDIX Helpline</td>
<td>1-800-242-2121</td>
</tr>
<tr>
<td>TSC Repair</td>
<td>1-800-242-2121</td>
</tr>
<tr>
<td>DEFINITY Maintenance and Service</td>
<td>1-800-242-2121</td>
</tr>
<tr>
<td>Call Accounting support</td>
<td>1-800-242-2121</td>
</tr>
<tr>
<td>UPS support</td>
<td>1-800-242-2121</td>
</tr>
</tbody>
</table>
Security issues

To assist customers with security issues, Lucent Technologies offers services that can reduce toll-fraud liabilities. For more information, contact your Lucent Technologies representative.

NOTE:
Login security is an attribute of the DEFINITY ONE Release 2.0 software.

Trademarks

This document contains references to the following Lucent Technologies trademarked products:

- AUDIX®
- CallVisor®
- DEFINITY®
- DEFINITY ONE™ Communications System
- INTUITY®
- CentreVu®
- BCMS Vu®

The following products are trademarked by their appropriate vendor:

- LINX™ is a trademark of Illinois Tool Works, Incorporated
- Netscape Navigator® is a registered trademark of Netscape Communications Corporation
- pcAnywhere® is a registered trademark of Dynamic Microprocessor Associates
- Windows NT™ is a trademark, and Windows® is a registered trademark, of Microsoft Corporation.
- Paradyne™ is a trademark of Paradyne Corporation
- U.S. Robotics® is a registered trademark of U.S. Robotics Corporation.
Standards compliance

The equipment presented in this document complies with the following standards:

- ITU-T (Formerly CCITT)
- IPNS
- DPNSS
- National ISDN-1
- National ISDN-2
- ISO-9000
- ANSI
- FCC Part 15 and Part 68
- EN55022
- EN50081
- EN50082
- CISPR22
- IEC 825
- IEC 950
- UL 1459
- UL 1950
- UL19501
- CSA C222 Number 225
- TS001
- Australia AS3548 (AS/NZ3548)
- ECMA

For more information, contact your Lucent Technologies representative.
Electromagnetic compatibility standards

This product complies with and conforms to the following standards:

- Limits and Methods of Measurements of Radio Interference Characteristics of Information Technology Equipment, EN55022 (CISPR22), 1993
- EN50082-1, European Generic Immunity Standard
- FCC Part 15
- Australia AS3548

NOTE:

The system conforms to Class A (industrial) equipment. Voice terminals meet Class B requirements.

- Electrostatic Discharge (ESD) IEC 1000-4-2
- Radiated radio frequency field IEC 1000-4-3
- Electrical Fast Transient IEC 1000-4-4

The system conforms to the following standards:

- Electromagnetic compatibility General Immunity Standard, part 1; residential, commercial, light industry, EN50082-1, CENELEC, 1991
- Issue 1 (1984) and Issue 2 (1992), Electrostatic discharge immunity requirements IEC 1000-4-2
- Radiated radio frequency field immunity requirements IEC 1000-4-3
- Electrical fast transient/burst immunity requirements IEC 1000-4-4
- Power Harmonics IEC 61000-3-2, 1995

Anti-static protection

CAUTION:

When handling circuit packs or any components of a DEFINITY ONE system, always wear an anti-static wrist ground strap. Connect the strap to an approved ground such as an unpainted metal surface on the DEFINITY ONE system.
Remove/install circuit packs

⚠️ CAUTION:
The control circuit packs with white labels cannot be removed or installed when the power is on. The port circuit packs with gray labels (older version circuit packs had purple labels) can be removed or installed when the power is on.

Federal Communications Commission statement

Part 68: Statement

Part 68: Answer-Supervision Signaling. Allowing this equipment to be operated in a manner that does not provide proper answer-supervision signaling is in violation of Part 68 rules. This equipment returns answer-supervision signals to the public switched network when:

- Answered by the called station
- Answered by the attendant
- Routed to a recorded announcement that can be administered by the Customer-premises equipment (CPE) user

This equipment returns answer-supervision signals on all Direct Inward Dialing (DID) calls forwarded back to the public switched telephone network. Permissible exceptions are:

- A call is unanswered.
- A busy tone is received.
- A reorder tone is received.

Lucent Technologies attests that this registered equipment is capable of providing users access to interstate providers of operator services through the use of access codes. Modification of this equipment by call aggregators to block access dialing codes is a violation of the Telephone Operator Consumers Act of 1990.

This equipment complies with Part 68 of the FCC Rules. A label is provided on this equipment that contains, among other information, the Federal Communications Commission (FCC) registration number and ringer equivalence number (REN) for this equipment. If requested, this information must be provided to the telephone company.
The REN is used to determine the quantity of devices which may be connected to the telephone line. Excessive RENs on the telephone line may result in devices not ringing in response to an incoming call. In most, but not all areas, the sum of RENs should not exceed 5.0. To be certain of the number of devices that may be connected to a line, as determined by the total RENs, contact the local telephone company.

NOTE:
The REN is not required for some types of analog or digital facilities.

Means of Connection (U.S.)

Connection of this equipment to the U.S. telephone network is shown in the following table.

<table>
<thead>
<tr>
<th>Manufacturer's Port Identifier</th>
<th>FIC Code</th>
<th>SOC/REN/A.S. Code</th>
<th>Network jacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off/On Premises Station</td>
<td>OL13C</td>
<td>9.0F</td>
<td>RJ2GX, RJ21X, RJ11C</td>
</tr>
<tr>
<td>DID Trunk</td>
<td>02RV2-T</td>
<td>0.0B</td>
<td>RJ2GX, RJ21X</td>
</tr>
<tr>
<td>central office (CO) Trunk</td>
<td>02GS2</td>
<td>0.3A</td>
<td>RJ21X</td>
</tr>
<tr>
<td>CO Trunk</td>
<td>02LS2</td>
<td>0.3A</td>
<td>RJ21X</td>
</tr>
<tr>
<td>Tie Trunk</td>
<td>TL31M</td>
<td>9.0F</td>
<td>RJ2GX</td>
</tr>
<tr>
<td>1.544 Mbps Digital Interface</td>
<td>04DU9-B,C</td>
<td>6.0P</td>
<td>RJ48C, RJ48M</td>
</tr>
<tr>
<td>1.544 Mbps Digital Interface</td>
<td>04DU9-BN,KN</td>
<td>6.0P</td>
<td>RJ48C, RJ48M</td>
</tr>
<tr>
<td>120A2 Channel Service Unit</td>
<td>04DU9-DN</td>
<td>6.0P</td>
<td>RJ48C</td>
</tr>
</tbody>
</table>

If the terminal equipment (DEFINITY ONE system) causes harm to the telephone network, the telephone company will notify you in advance that temporary discontinuance of service may be required. But, if advance notice is not practical, the telephone company will notify the customer as soon as possible. Also, you will be advised of your right to file a complaint with the FCC if you believe it is necessary.

The telephone company may make changes in its facilities, equipment, operations or procedures that could affect the operation of the equipment. If this happens, the telephone company will provide advance notice so you can make necessary modifications to maintain uninterrupted service.
If trouble is experienced with this equipment, please contact the Technical Service Center at 1-800-242-2121 for repair or warranty information. If the equipment is causing harm to the telephone network, the telephone company may request that you disconnect the equipment until the problem is resolved.

It is recommended that repairs be performed by Lucent Technologies certified technicians.

The equipment cannot be used on public coin phone service or on party-line service provided by the telephone company. Connection to party line service is subject to state tariffs. Contact the state public utility commission, public service commission or corporation commission for information.

This equipment is hearing-aid compatible when used with a telephone receiver.
About This Book

Federal Communications Commission statement

xxiv
Install and Cable the Cabinet

This chapter describes the process for installing and cabling the cabinet to physically connect and access DEFINITY ONE.

NOTE:
Physical installation and cabling of the cabinet is basically the same as the ProLogix cabinet and cabling, with exception of the processor interface cable (multileg cable) and absence of the system access terminal (SAT). Software, such as DEFINITY, should not be accessed until cabling and installation of the cabinet is completed. Only 1 cabinet is supported.

This chapter is organized as follows:

- “Check customer’s order” on page 1-2
- “Correct shipping errors” on page 1-2
- “Unpack and inspect” on page 1-2
- “Install the system cabinet” on page 1-6
- “Check AC power and ground” on page 1-12
- “Cable the system” on page 1-20
- “Install main distribution frame (MDF) and external modem” on page 1-21
- “Install equipment room hardware” on page 1-24
- “Set ringing option” on page 1-38
- “Install and wire telephones and other equipment” on page 1-40
- “Connect external alarms and auxiliary connections” on page 1-53
- “Install the BRI terminating resistor” on page 1-56
- “Install multi-point adapters” on page 1-60
Install and Cable the Cabinet

Check customer’s order

1. Check the customer’s order and the shipping packing lists to confirm that all equipment is included.
2. Report missing equipment to a Lucent Technologies representative.
3. Check the system adjuncts for damage and report all damage according to local shipping instructions.

Correct shipping errors

1. Red-tag all defective equipment and over-shipped equipment and return according to the nearest Material Stocking Location (MSL) instructions.
2. Direct all short-shipped reports to the nearest MSL. Contact the appropriate location for specific instructions. For streamlined implementation, call 1-800-772-5409.

Unpack and inspect

⚠️ CAUTION:
Use lifting precautions! A fully loaded system weighs 58 lbs (26.3 kg). If the doors, power unit, and circuit packs are removed, the unit weighs only 29 lbs (13.1 kg).

1. Verify the equipment received. See Figure 1-1. Actual equipment may vary in appearance and may ship in separate packages. Equipment comcodes are listed in Table 1-1.
2. Before mounting the cabinet, remove the cabinet doors by opening them and lifting them straight up and off the hinge pins.
Figure notes
1. Left panel (also acts as a wall-mount template and as a floor mount pedestal)
2. CMC cabinet
3. Right panel
4. External modem (not shipped with all systems)
5. #12 x 1-inch shoulder screws
6. AC power cord (NEMA 5-15P or IEC 320)
7. Processor interface cable
8. Single-point ground block
9. 14-inch (35.5 cm) 6 AWG (#40) (16 mm²) ground wire
10. Flash disk (backup)

Figure 1-1. Equipment packed with the compact modular cabinet (CMC)
Table 1-1 lists the comcodes for equipment used with the CMC. If “Optional” is checked, the equipment may or may not be necessary, depending on the site configuration.

<table>
<thead>
<tr>
<th>Comcode</th>
<th>Description</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>847951662</td>
<td>Left Panel</td>
<td></td>
</tr>
<tr>
<td>847951670</td>
<td>Right Panel</td>
<td></td>
</tr>
<tr>
<td>847915238</td>
<td>Right Door</td>
<td></td>
</tr>
<tr>
<td>847915246</td>
<td>Left Door</td>
<td></td>
</tr>
<tr>
<td>601929763</td>
<td>Processor Interface Cable (Multileg cable)</td>
<td></td>
</tr>
<tr>
<td>103557484</td>
<td>TN795 Processor Circuit Pack</td>
<td></td>
</tr>
<tr>
<td>848320800</td>
<td>Hard Disk Programmed</td>
<td></td>
</tr>
<tr>
<td>407633999</td>
<td>External Modem</td>
<td>X</td>
</tr>
<tr>
<td>601929920</td>
<td>Software CDs</td>
<td></td>
</tr>
<tr>
<td>408276897</td>
<td>PCMCIA Ethernet Adapter Card</td>
<td></td>
</tr>
<tr>
<td>408166783</td>
<td>Flash Disk (For Backup)</td>
<td></td>
</tr>
<tr>
<td>105631527</td>
<td>time-division multiplexing/local area network (TDM/LAN) Bus Terminator</td>
<td></td>
</tr>
<tr>
<td>706827717</td>
<td>Single-Point Ground Block</td>
<td></td>
</tr>
<tr>
<td>H600-487</td>
<td>14-inch (35.5 cm) 6 AWG (#40) (16 mm²) Green Ground Wire</td>
<td></td>
</tr>
<tr>
<td>847987187</td>
<td>CMC 110 Cross-Connect Assembly (Main Distribution Frame) - Recommended</td>
<td>X</td>
</tr>
<tr>
<td>407676691</td>
<td>120 VAC Power Distribution Unit (145D 6-AC)</td>
<td>X</td>
</tr>
<tr>
<td>107949364</td>
<td>650A Power Supply</td>
<td></td>
</tr>
<tr>
<td>848082715</td>
<td>Fan Assembly</td>
<td></td>
</tr>
<tr>
<td>407745009</td>
<td>Fan Air Filter</td>
<td></td>
</tr>
<tr>
<td>848477634</td>
<td>LAN Crossover Cable (RJ45), 12-foot</td>
<td></td>
</tr>
<tr>
<td>405362641</td>
<td>120 VAC Power Cord</td>
<td></td>
</tr>
<tr>
<td>106278062</td>
<td>Apparatus Blank (Circuit Pack Blank) (158P)</td>
<td></td>
</tr>
<tr>
<td>106606536</td>
<td>Integrated Channel Service Unit (ICSU) (120A2)</td>
<td>X</td>
</tr>
<tr>
<td>107988867</td>
<td>DS1 Loopback Jack (T1 Only) (700A)</td>
<td>X</td>
</tr>
</tbody>
</table>

Continued on next page
Table 1-1. Comcodes for equipment used with the CMC — Continued

<table>
<thead>
<tr>
<th>Comcode</th>
<th>Description</th>
<th>Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>107152969</td>
<td>75 Ohm DS1 Coaxial Adapter (888B)</td>
<td>X</td>
</tr>
<tr>
<td>403613003</td>
<td>157B Connecting Block ("sneak current protectors")</td>
<td>X</td>
</tr>
<tr>
<td>406948976</td>
<td>6SCP-110 Protector</td>
<td>X</td>
</tr>
<tr>
<td>107435091</td>
<td>507B Sneak Current Fuse Panel</td>
<td>X</td>
</tr>
<tr>
<td>407216316</td>
<td>220029 Sneak Current Fuse</td>
<td>X</td>
</tr>
<tr>
<td>103970000</td>
<td>Main Distribution Frame Label (Code 220A)</td>
<td>X</td>
</tr>
<tr>
<td>104307327</td>
<td>C6C cable — 50-foot (15.2 m) shielded Digital Signal Level 1 (DS1) cable with 50-pin male to 15-pin male</td>
<td>X</td>
</tr>
<tr>
<td>104307376</td>
<td>C6D cable — 50-foot (15.2 m) shielded DS1 cable with 50-pin male on each end</td>
<td>X</td>
</tr>
<tr>
<td>104307434</td>
<td>C6E cable — 100-foot (30.5 m) shielded DS1 cable with 50-pin male to 50-pin female</td>
<td>X</td>
</tr>
<tr>
<td>104307475</td>
<td>C6F cable — 50-foot (15.2 m) shielded DS1 cable with 50-pin male to 3 inch (7.62 cm) stub</td>
<td>X</td>
</tr>
<tr>
<td>102381779</td>
<td>3B1A Carbon Block</td>
<td>X</td>
</tr>
<tr>
<td>104410147</td>
<td>3B1E-W Wide Gap Gas Tube</td>
<td>X</td>
</tr>
<tr>
<td>105514756</td>
<td>3C1S Analog Line Protector - Solid State</td>
<td>X</td>
</tr>
<tr>
<td>102904893</td>
<td>4B1C Carbon Block with Heat Coil</td>
<td>X</td>
</tr>
<tr>
<td>104401856</td>
<td>4B1E-W Wide Gap Gas Tube w/Heat Coil</td>
<td>X</td>
</tr>
<tr>
<td>104386545</td>
<td>4C1S Analog Line Protector - Solid State with Heat Coil</td>
<td>X</td>
</tr>
<tr>
<td>105581086</td>
<td>4C3S-75 Digital Voice Circuit Protector - Solid State</td>
<td>X</td>
</tr>
<tr>
<td>406144907</td>
<td>ITW LINX Gas Tube, Avalanche Suppress</td>
<td>X</td>
</tr>
<tr>
<td>901007120</td>
<td>ITW Linx Ground Bar (used with above)</td>
<td>X</td>
</tr>
<tr>
<td>406304816</td>
<td>ITW Linx Replacement Fuse</td>
<td>X</td>
</tr>
<tr>
<td>103972758</td>
<td>Data Link Protector (1 circuit)</td>
<td>X</td>
</tr>
<tr>
<td>103972733</td>
<td>Data Link Protector (8 circuits)</td>
<td>X</td>
</tr>
<tr>
<td>407063478</td>
<td>Electrostatic Discharge (ESD) Wrist Strap</td>
<td>X</td>
</tr>
<tr>
<td>107949364</td>
<td>Lucent online 650A UPS</td>
<td>X</td>
</tr>
<tr>
<td>407691401</td>
<td>23A2 Alarm Adapter</td>
<td>X</td>
</tr>
</tbody>
</table>
Install the system cabinet

The cabinet can be installed either floor-mounted or wall-mounted. Set the Carrier Address ID as per Figure 1-2 before installing the cabinet.

Verify the carrier address ID

Figure 1-2. Setting carrier address ID (right side)

Proceed to either “Floor-mount the cabinet” on page 1-7 or to “Wall-mount the cabinet” on page 1-8.
Floor-mount the cabinet

The cabinet dimensions (with floor pedestal) are 28.5 in. (72.4 cm) high, 24.5 in. (62.2 cm) wide, and 12 in. (30.5 cm) deep. Maintain a service clearance of 12 in. (30.5 cm) on the left, right, and front of the cabinet.

1. Floor-mount the cabinet as per Figure 1-3.

Figure notes

1. Left panel (floor-mount pedestal)
2. #12 x 1-inch shoulder screws
3. 12 inches (30.5 cm) minimum from nearest object (required to service the circuit packs)

Figure 1-3. Typical floor mount installation

2. Proceed to “Cable the system” on page 1-20.
Install and Cable the Cabinet

Wall-mount the cabinet

⚠️ CAUTION:
A fully loaded system weighs 58 lbs (26.3 kg). Use lifting precautions. The unit weighs 29 lbs (13.1 kg) with the doors, power unit, and circuit packs removed.

Install plywood backing on wall. The install technician must provide the plywood and the hardware for mounting.

💡 NOTE:
The following plywood dimensions account for the extra space needed to install the panels on each side of the cabinet. The cabinet is 24 inches (0.6 m) wide and each panel is 12 inches (0.3 m) wide.

1. Install a 3/4-inch (2 cm) thick sheet of 2 x 4-foot (0.6 x 1.2 m) plywood horizontally onto the wall. See Figure 1-4.

2. Ensure that the top of the plywood is at least 54 inches (137 cm) from the floor.
Install cabinet — wall-mount

The following are procedures for wall mounting the cabinet:

1. Place the template on the wall with the top surface level.
2. Mark two 1/8-inch (0.3-cm) pilot holes in the mounting hole locations.
3. Remove the template from the wall.
4. Drill the two pilot holes.
5. Thread two #12 x 1-inch shoulder screws partially into the holes.
6. Set the cabinet onto the wall and align the slots with the shoulder screws. See Figure 1-5. Slide the cabinet to the left to hold it in place. Tighten the screws securely.

Figure notes

1. #12 x 1-inch shoulder screws
2. #12 x 1-inch safety screw

Figure 1-5. Typical wall-mount installation

7. Drill 2 lower mounting holes using the cabinet as a template.
8. Thread the 2 lower screws and tighten.

⚠️ CAUTION:

Ensure the right bottom safety screw is in place and tight.
Install left and right panels — wall-mount

Figure notes
1. Left panel
2. Right panel

Figure 1-6. Left and right panel installation

1. Align the cutouts in the panels with the cabinet hinges.
2. Drill a 1/8-inch (0.3 cm) pilot hole into the wall and secure the panels with the #12 x 1-inch shoulder screws.
Install and Cable the Cabinet

Check AC power and ground

⚠️ CAUTION:
The alternating current (AC) power circuit must be dedicated to the system. The circuit must not be shared with other equipment and must not be controlled by a wall switch. The AC receptacle must not be located under the Main Distribution Frame and must be easily accessible.

⚠️ CAUTION:
The latch only removes direct current (DC) power from the cabinet. Unseating the power supply removes AC power from the power supply, but not from the cabinet. To remove AC power from the cabinet, pull the AC power cord from the AC appliance connector on the rear of the cabinet.

⚠️ CAUTION:
System grounding must comply with the general rules for grounding provided in Article 250 of the National Electrical Code (NEC), National Fire Protection Agency (NFPA) 70, or the applicable electric code in the country of installation.

⚠️ CAUTION:
AC mains wiring and testing must be performed by a qualified electrician and must conform to Article 250 of the NEC, NFPA 70, or the applicable electric code in the country of installation.

Check AC power

Each CMC uses an auto-ranging (85 to 264 VAC) power supply, 47 to 63 Hz, 330 Watts, 4.5 Amps (100-120 VAC) or 2.3 Amps (200 to 240 VAC), at 500 VoltAmps (VA).

The AC power source can be 1 phase of 120 VAC with neutral (100 VAC for Japan) with 15-Amp circuit breaker, or 1 phase of 220 or 240 VAC (200 VAC for Japan) with 10-Amp circuit breaker. The AC cord uses a NEMA 5-15P plug or an IEC 320 plug.

Before powering up the system, check the AC power in the equipment room using a KS-20599 digital voltmeter (DVM) (or equivalent).

1. Measure the AC voltage between the hot and neutral sides of the receptacle.
2. Depending on the AC power source, verify that the meter reads 90 to 132 VAC or 180 to 264 VAC. If not, have a qualified electrician correct the problem.
3. Measure the voltage between the neutral and ground sides of the receptacle.

4. Verify that the meter reads 0 VAC. If not, have a qualified electrician correct the problem.

5. When finished, set the AC main circuit breakers to **OFF**.

Approved grounds

An approved ground is the closest acceptable medium for grounding the building entrance protector, entrance cable shield, or single-point ground of electronic telephony equipment. If more than 1 type of approved ground is available on the premises, the grounds must be bonded together as required in Section 250-81 of the National Electrical Code.

Grounded Building Steel — The metal frame of the building where it is effectively grounded by 1 of the following grounds: acceptable metallic water pipe, concrete encased ground, or a ground ring.

Acceptable Water Pipe — A metal underground water pipe, at least 1/2 inch (1.3 cm) in diameter, in direct contact with the earth for at least 10 feet (3 m). The pipe must be electrically continuous (or made electrically continuous by bonding around insulated joints, plastic pipe, or plastic water meters) to the point where the protector ground wire connects. A metallic underground water pipe must be supplemented by the metal frame of the building, a concrete-encased ground, or a ground ring. If these grounds are not available, the water pipe ground can be supplemented by 1 of the following types of grounds:

- Other local metal underground systems or structures — Local underground structures such as tanks and piping systems
- Rod and pipe electrodes — A 5/8-inch (1.6-cm) solid rod or 3/4-inch (2-cm) conduit or pipe electrode driven to a minimum depth of 8 feet (2.4 m)
- Plate electrodes — Must have a minimum of 2 square feet (0.185 square m) of metallic surface exposed to the exterior soil

Concrete Encased Ground — An electrode encased by at least 2 inches (5.1 cm) of concrete and located within and near the bottom of a concrete foundation or footing in direct contact with the earth. The electrode must be at least 20 feet (6.1 m) of 1 or more steel reinforcing bars or rods 1/2-inch (1.3 cm) in diameter, or at least 20 feet (6.1 m) of bare, solid copper, 4 AWG (26 mm²) wire.

Ground Ring — A buried ground that encircles a building or structure at a depth of at least 2.5 feet (0.76 m) below the earth's surface. The ground ring must be at least 20 feet (6.1 m) of 2 AWG (35 mm²), bare, copper wire.
Approved floor grounds

⚠️ CAUTION:

If the approved ground is inside a dedicated equipment room, then these connections must be made by a qualified electrician.

Floor grounds are those grounds on each floor of a high-rise building that are suitable for connection to the ground terminal in the riser closet and to the cabinet single-point ground terminal. Approved floor grounds may include:

- Building steel
- The grounding conductor for the secondary side of the power transformer feeding the floor
- Metallic water pipes
- Power-feed metallic conduit supplying panel boards on the floor
- A grounding point specifically provided in the building for the purpose

Uninterruptible power supply

A recommended UPS (Uninterruptible Power Supply) may be used for power holdover. The type of UPS depends on the holdover requirements. Total holdover provides for times that vary from less than 10 minutes to up to 8 hours. The UPS must provide surge protection for the CMC cabinet.

1. Connect the UPS to an electrical outlet capable of handling the power requirements of the cabinets:
 a. 100 VAC, 4.5 Amps.
 b. 120 VAC, 3.8 Amps.
 c. 200 VAC, 2.3 Amps.
 d. 220-240 VAC, 2.0 Amps.

2. Ensure the cabinet is connected to an “unswitched” or “always on” electrical outlet on the UPS.

3. Connect and administer the UPS. See “Connect external alarms and auxiliary connections” on page 1-53.

⚠️ NOTE:

If the UPS is wired as recommended, holdover time for each power outage is 1 minute before an automatic shutdown. UPS may handle any subsequent power outage based on its total battery capacity.
Cabinet power switch

⚠️ CAUTION:

The latch acts as the DC power switch and only removes DC power from the cabinet, not AC power. To remove AC power, pull the AC power cord from the appliance inlet. See Figure 1-7.

Figure 1-7. CMC power supply

Figure notes

1. Latch
Connect cabinet grounds and other grounds

Follow these additional grounding requirements:

- The approved ground wire must be green, 6 AWG (#40) (16 mm²), copper, stranded wire. This is in addition to the ground wire in the AC power cord.
- Bond all approved grounds at the single-point ground to form a single grounding electrode system.

Install the ground block

1. Mount the ground block as shown in Figure 1-8.
2. Connect the cable as shown in Figure 1-9.

Figure notes

1. #12 x 1-inch shoulder screws
2. Single-point ground block

Figure 1-8. Ground block installation to right panel
Install and Cable the Cabinet

Check AC power and ground

Figure notes

1. 6 AWG (#40) (16 mm²) cabinet ground wire
2. Single-point ground block
3. AC load center single-point ground
4. 10 AWG (#25) (6 mm²) wire to coupled bonding conductor (CBC)
5. 6 AWG (#40) (16 mm²) ground wire from single-point ground block to the AC load center single-point ground

Figure 1-9. Typical cabinet grounding
Install coupled bonding conductor

The Coupled Bonding Conductor (CBC) provides mutual inductance coupling between the CBC and the telephone cables exposed to lightning. The conductor can be a 10 AWG (#25) (6 mm²) wire tie wrapped to the exposed cables, a metal cable shield around the exposed cables, or 6 spare pairs from the exposed cable.

For a high rise building, connect the CBC to an approved building ground on each floor. To provide the coupled bonding protection:

1. Connect 1 end of the conductor to a telephone cable building entrance protector ground that is connected to an approved ground.
2. Route the conductor next to the exposed telephone cables being protected until it reaches the cross-connect nearest to the telephone system.
3. Position the non-exposed telephone cables at least 12 inches (30.5 cm) away from exposed telephone cables whenever possible.
4. Terminate the other end to the single-point ground block provided for the telephone system.

Connect and route the power cords

⚠️ CAUTION: The AC power cord may connect to a properly rated power distribution unit, individual AC power receptacles, or to a UPS. See Figure 1-10.

1. Ensure the circuit breakers at the AC load center are OFF.
2. Connect the cabinet to an “unswitched” or “always on” electrical outlet.
Install and Cable the Cabinet

Check AC power and ground

Check AC power and ground

Figure notes

1. Cabinet AC power cord
2. Surge-protected AC power distribution unit (120 VAC systems) (optional)

Figure 1-10. Routing AC power cords to a power distribution unit
Cable the system

See Figure 1-11 while performing this procedure.

Install Processor Interface cable and TDM/LAN bus terminators

Figure notes

1. TDM/LAN bus terminator
2. Processor interface cable (slot 2)

Figure 1-11. System cable connections

1. Install the TDM/LAN bus terminators.
2. Connect the Processor Interface Cable to the slot 2 connector behind the cabinet. See Figure 1-11.
Install main distribution frame (MDF) and external modem

Install the MDF

⚠️ CAUTION:
The optional MDF is a special 110 cross-connect field that is smaller than the standard 110 cross-connect hardware. Do not install standard 110 hardware inside the right panel.

≡ NOTE:
The depth of any equipment installed inside the right panel must not exceed 2.5 inches (6.3 cm), or the right cover panel will not fit over the right panel.

The optional MDF represents the trunk/auxiliary field.

- Mount the optional MDF to the right panel using the following procedure:

Bottom-mounted MDF with modem

1. On the rear of the MDF, cut the cable tie securing the top 5 cables to the MDF mounting frame.
2. Mount the MDF to the right panel. See Figure 1-12.
3. Secure all 10 cables to the bottom left bracket on the MDF with a cable tie.
Install and Cable the Cabinet

Install main distribution frame (MDF) and external modem

Figure 1-12. Typical bottom-mount MDF and modem cable routing

Figure notes

1. Main distribution frame (MDF)
2. External modem
3. Processor interface cable (connect P2 to modem)
4. #12 x 1-inch shoulder screw

NOTE:
The right cover will not fit if a cable is plugged into slot 1, even though one is shown in Figure 1-12.
Install the external modem

The U.S. Robotics external modem is the recommended external modem. DEFINITY ONE systems operate with this modem set to factory default settings.

NOTE:
You may use a locally obtained, type-approved external modem (33.6 Kbps or higher and V.34 protocol). Contact your Lucent Technologies representative for more information.

WARNING:
If you use a modem other than the U.S. Robotics modem, it must be configured in NT.

1. Use the hardware provided with the modem. See Figure 1-12. If top-mounting MDFs, mount the external modem to the plywood in a location which allows the standard connection to the modem cable.
2. Route the modem cable (P2) from the Processor Interface Cable through the cable trough and to the modem.
3. Connect the cable to the modem. See Appendix A, “Cable Pinouts” for the pinout of the modem cable.
4. Plug the modem power cord into an electrical outlet and turn on the modem.

“Modem configuration and administration” on page 9-5 describes information about modem setup, administration, settings, and testing.
Install equipment room hardware

See DEFINITY Communications System Generic 1 and Generic 3 Main Distribution Field Design, 555-230-630, for more information.

Cross-connect the cabinet to the MDF

1. Cross-connect the ports on the trunk and line circuit packs to the MDF as required. See Figure 1-14.

Allowable and non-allowable circuit packs

Table 1-2 lists the circuit packs that can and cannot be used with Release 2.0 of DEFINITY ONE.

<table>
<thead>
<tr>
<th>Apparatus code</th>
<th>Name</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>650A</td>
<td>AC Power Unit</td>
<td>Yes</td>
</tr>
<tr>
<td>982LS</td>
<td>Current Limiter</td>
<td>No</td>
</tr>
<tr>
<td>CFY1B</td>
<td>Current Limiter</td>
<td>No</td>
</tr>
<tr>
<td>CPP1</td>
<td>Memory Expansion</td>
<td>No</td>
</tr>
<tr>
<td>ED-1E546 (TN566) (TN567)</td>
<td>DEFINITY AUDIX R3 System</td>
<td>No</td>
</tr>
<tr>
<td>ED-1E546 (TN2208) (TN2170)</td>
<td>CallVisor Adjunct-Switch Application Interface (ASAI) over the DEFINITY (LAN) Gateway R1</td>
<td>No</td>
</tr>
<tr>
<td>J58890M-1 (TN801)</td>
<td>CallVisor ASAI/Call Visor PC/LAN over the DEFINITY LAN Gateway Release 2.0</td>
<td>No</td>
</tr>
<tr>
<td>NAA1</td>
<td>Fiber Optic Cable Adapter Circuit Pack</td>
<td>Yes</td>
</tr>
<tr>
<td>TN417</td>
<td>Auxiliary Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN419B</td>
<td>Tone-Clock</td>
<td>No</td>
</tr>
<tr>
<td>TN420B/C</td>
<td>Tone Detector</td>
<td>No</td>
</tr>
<tr>
<td>TN429/B/C/D</td>
<td>Analog Direct Inward/Outward Dialing (DIOD) Central Office Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN429C</td>
<td>Analog Central Office Trunk</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Install and Cable the Cabinet

Table 1-2. Circuit packs and circuit modules — Continued

<table>
<thead>
<tr>
<th>Apparatus code</th>
<th>Name</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN429D</td>
<td>Analog DIOD Trunk - Analog Loop Start</td>
<td>Yes</td>
</tr>
<tr>
<td>TN433</td>
<td>Speech Synthesizer</td>
<td>Yes</td>
</tr>
<tr>
<td>TN436B</td>
<td>Direct Inward Dialing Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN437B</td>
<td>Tie Trunk Australia (future availability)</td>
<td>Yes</td>
</tr>
<tr>
<td>TN438B</td>
<td>Central Office Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN439</td>
<td>Tie Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN447</td>
<td>Central Office Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN457</td>
<td>Speech Synthesizer</td>
<td>Yes</td>
</tr>
<tr>
<td>TN459B</td>
<td>Direct Inward Dialing Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN464F</td>
<td>DS1 Interface - T1, 24 Channel - E1, 32 Channel</td>
<td>Yes</td>
</tr>
<tr>
<td>TN465B/C</td>
<td>Central Office Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN467</td>
<td>Analog Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN468B</td>
<td>Analog Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN479</td>
<td>Analog Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN553</td>
<td>Packet Data Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN556C/D</td>
<td>Integrated Services Digital Network -Basic Rate Interface 4-Wire S/T-NT Interface (ISDN-BRI)</td>
<td>Yes</td>
</tr>
<tr>
<td>TN568</td>
<td>DEFINITY AUDIX Slim</td>
<td>No</td>
</tr>
<tr>
<td>TN570B/C</td>
<td>Expansion Interface</td>
<td>No</td>
</tr>
<tr>
<td>TN572</td>
<td>Switch Node Clock</td>
<td>No</td>
</tr>
<tr>
<td>TN573B</td>
<td>Switch Node Interface</td>
<td>No</td>
</tr>
<tr>
<td>TN574</td>
<td>DS1 Converter - T1, 24 Channel</td>
<td>No</td>
</tr>
<tr>
<td>TN577</td>
<td>Packet Gateway</td>
<td>No</td>
</tr>
<tr>
<td>TN722B</td>
<td>DS1 Tie Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN725B</td>
<td>Speech Synthesizer</td>
<td>Yes</td>
</tr>
<tr>
<td>TN726B</td>
<td>Data Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN735</td>
<td>Multibutton Electronic Telephone (MET) Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN742</td>
<td>Analog Line</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Continued on next page
Table 1-2. Circuit packs and circuit modules — Continued

<table>
<thead>
<tr>
<th>Apparatus code</th>
<th>Name</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN744B/C</td>
<td>Call Classifier</td>
<td>No</td>
</tr>
<tr>
<td>TN744D</td>
<td>Call Classifier - Detector</td>
<td>Yes</td>
</tr>
<tr>
<td>TN746B</td>
<td>Analog Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN747/B</td>
<td>Central Office Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN748B/C/D</td>
<td>Tone Detector</td>
<td>No</td>
</tr>
<tr>
<td>TN750B</td>
<td>Announcement</td>
<td>No</td>
</tr>
<tr>
<td>TN750C</td>
<td>Announcement</td>
<td>Yes</td>
</tr>
<tr>
<td>TN753/B</td>
<td>Direct Inward Dialing Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN754/B/C</td>
<td>Digital Line 4-Wire DCP</td>
<td>Yes</td>
</tr>
<tr>
<td>TN755/B</td>
<td>Neon Power Unit</td>
<td>No</td>
</tr>
<tr>
<td>TN756</td>
<td>Tone Detector/Generator</td>
<td>No</td>
</tr>
<tr>
<td>TN758</td>
<td>Pooled Modem</td>
<td>Yes</td>
</tr>
<tr>
<td>TN760B/C/D/E</td>
<td>Tie Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN762/B</td>
<td>Hybrid Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN763B/C/D</td>
<td>Auxiliary Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN765</td>
<td>Processor Interface</td>
<td>No</td>
</tr>
<tr>
<td>TN767B/C/D/E</td>
<td>DS1 Interface - T1, 24 Channel</td>
<td>Yes</td>
</tr>
<tr>
<td>TN768</td>
<td>Tone-Clock</td>
<td>No</td>
</tr>
<tr>
<td>TN769</td>
<td>Analog Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN771/D</td>
<td>Maintenance/Test</td>
<td>No</td>
</tr>
<tr>
<td>TN772</td>
<td>Duplication Interface</td>
<td>No</td>
</tr>
<tr>
<td>TN775/B/C</td>
<td>Maintenance</td>
<td>No</td>
</tr>
<tr>
<td>TN776</td>
<td>Expansion Interface</td>
<td>No</td>
</tr>
<tr>
<td>TN777B</td>
<td>Network Control</td>
<td>No</td>
</tr>
<tr>
<td>TN778</td>
<td>Packet Control</td>
<td>No</td>
</tr>
<tr>
<td>TN780</td>
<td>Tone-Clock</td>
<td>No</td>
</tr>
<tr>
<td>TN787F/G/H/J/K</td>
<td>Multimedia Interface</td>
<td>No</td>
</tr>
<tr>
<td>TN788B</td>
<td>Multimedia Voice Conditioner</td>
<td>No</td>
</tr>
</tbody>
</table>

Continued on next page
Table 1-2. Circuit packs and circuit modules — Continued

<table>
<thead>
<tr>
<th>Apparatus code</th>
<th>Name</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN789</td>
<td>Radio Controller</td>
<td>Yes</td>
</tr>
<tr>
<td>TN790B</td>
<td>Processor</td>
<td>No</td>
</tr>
<tr>
<td>TN791</td>
<td>Analog Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN792</td>
<td>Duplication Interface</td>
<td>No</td>
</tr>
<tr>
<td>TN793</td>
<td>Analog Line, 24-Port, 2-Wire</td>
<td>Yes</td>
</tr>
<tr>
<td>TN794</td>
<td>Network Control/Packet Interface (NetPkt)</td>
<td>No</td>
</tr>
<tr>
<td>TN795</td>
<td>Processor</td>
<td>Yes</td>
</tr>
<tr>
<td>TN798B</td>
<td>Processor</td>
<td>No</td>
</tr>
<tr>
<td>TN799/B</td>
<td>Control LAN (C-LAN)</td>
<td>Yes</td>
</tr>
<tr>
<td>TN801</td>
<td>LAN Gateway Interface</td>
<td>No</td>
</tr>
<tr>
<td>TN802/B</td>
<td>Internet Protocol (IP) Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN1648/B</td>
<td>System Access/Maintenance</td>
<td>No</td>
</tr>
<tr>
<td>TN1650B</td>
<td>Memory</td>
<td>No</td>
</tr>
<tr>
<td>TN1654</td>
<td>DS1 Converter - T1, 24 Channel/E1, 32 Channel</td>
<td>No</td>
</tr>
<tr>
<td>TN1655</td>
<td>Packet Interface</td>
<td>No</td>
</tr>
<tr>
<td>TN1656</td>
<td>Tape Drive</td>
<td>No</td>
</tr>
<tr>
<td>TN1657</td>
<td>Disk Drive</td>
<td>No</td>
</tr>
<tr>
<td>TN2135</td>
<td>Analog Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2136</td>
<td>Digital Line 2-Wire DCP</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2138</td>
<td>Central Office Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2139</td>
<td>Direct Inward Dialing Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2140B</td>
<td>Tie Trunk - Hungary, Italy</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2144</td>
<td>Analog Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2146</td>
<td>Direct Inward Dialing Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2147C</td>
<td>Central Office Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2149</td>
<td>Analog Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2180</td>
<td>Analog Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2181</td>
<td>Digital Line 2-Wire DCP</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Continued on next page
Install and Cable the Cabinet

Table 1-2. Circuit packs and circuit modules — Continued

<table>
<thead>
<tr>
<th>Apparatus code</th>
<th>Name</th>
<th>Allowable</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN2182/B</td>
<td>Tone-Clock - Tone Detector and Call Classifier</td>
<td>No</td>
</tr>
<tr>
<td>TN2183</td>
<td>Analog Line</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2184</td>
<td>DIOD Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2185/B</td>
<td>ISDN-BRI 4-Wire S/T-TE Interface (Trunk Side)</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2198</td>
<td>ISDN-BRI 2-Wire U Interface</td>
<td>No</td>
</tr>
<tr>
<td>TN2199</td>
<td>Central Office Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2202</td>
<td>Ring Generator</td>
<td>No</td>
</tr>
<tr>
<td>TN2207</td>
<td>DS1 Interface - (T1) 24 Channel and (E1) 32 Channel</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2210</td>
<td>Tone Generator</td>
<td>No</td>
</tr>
<tr>
<td>TN2214/B</td>
<td>Digital Line, 24-Port, 2-Wire DCP - Category B only</td>
<td>No</td>
</tr>
<tr>
<td>TN2215</td>
<td>Analog Line, 16-Port 2-Wire - Category B only</td>
<td>No</td>
</tr>
<tr>
<td>TN2224/B</td>
<td>Digital Line, 24-Port, 2-Wire DCP</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2238</td>
<td>ATM Trunk Interface (Multi-Mode)</td>
<td>No</td>
</tr>
<tr>
<td>TN2242</td>
<td>TTC Japanese 2Mbit Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2301</td>
<td>Survivable Remote Logic Switch</td>
<td>No</td>
</tr>
<tr>
<td>TN2305</td>
<td>Asynchronous Transfer Mode (ATM) Trunk</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2306</td>
<td>ATM Interface (Single-Mode)</td>
<td>No</td>
</tr>
<tr>
<td>TN2308</td>
<td>Direct Inward Dialing Trunk</td>
<td>No</td>
</tr>
<tr>
<td>TN2464</td>
<td>DS1 Interface - T1, 24 Channel - E1, 32 Channel</td>
<td>Yes</td>
</tr>
<tr>
<td>TN2793/B</td>
<td>Analog Line 24-Port</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Install and Cable the Cabinet

Circuit pack installation

⚠️ **CAUTION:**

When handling circuit packs or any components of a **DEFINITY ONE** system, always wear an authorized wrist ground strap. Connect the strap to the ground connector provided on the system cabinet.

💡 **NOTE:**

All of the circuit pack slots in the CMC are “universal slots.” Any slot can contain any type of port circuit pack.

Circuit pack slot loading

1. Install the TN795 Processor circuit pack in slot 2 of the cabinet. See Figure 1-13.

2. A TN744D Call Classifier/Tone Detector circuit pack is required. Install the TN744D into any port slot except for slots 1 and 2 (slot 3 is preferred but not required.)

3. Load all port circuit packs. See Table 1-3 for the recommended circuit pack layout.
Install and Cable the Cabinet

1. Slots 1 - 5
2. Slots 6 - 10
3. 650 A Power Unit
4. For Flash Disk (PCMCIA)

Figure 1-13. Cabinet and slot numbering
1. Cross-connect the port circuit packs to the MDF. See Figure 1-14.
Figure 1-14. Example MDF connections
Off-premises circuit protection

Protection from hazardous voltages and currents is required for all off-premises (out of building) trunks, lines, and terminal installations. Both over-voltage protection (lightning, power induction, and so forth), and sneak current protection are required. Sneak current protectors must be either UL listed/CSA certified, or must comply with local safety standards.

Sneak current protectors must have a maximum rating of 350 mA and a minimum voltage rating of 600V, or as required by local regulations. The following devices protect the system from over-voltages:

- Analog trunks use the 507B sneak protector or equivalent. Over-voltage protection is normally provided by the local telephone company.
- Analog voice terminals use one of the following types of combined over-voltage and sneak current protection, or equivalent:
 - Carbon block with heat coil for UL code 4B1C
 - Gas tube with heat coil for UL code 4B1E-W
 - Solid state with heat coil for UL code 4C1S
- DCP and ISDN-BRI terminals use the solid state 4C3S-75 with heat coil protector, or equivalent.
- DS1/T1 circuits require isolation from exposed facilities. This isolation may be provided by a channel service unit (CSU) (T1), or other equipment that provides equivalent protection.
Install sneak fuse panels

Sneak current protection is required between the incoming RJ21X or RJ2GX network interface and the system for both trunk and off-premises circuit packs. The model 507B sneak current fuse panel, or equivalent, is recommended for sneak current protection. See Figure 1-15.

Figure notes

1. 507B Sneak current protector (price element code: Comcode 107435091)
2. 25-pair male connector (In) (Comcode 846300994)
3. 25-pair female connector (Out) (Comcode 846300994)
4. 220029 fuses (inside panel). Use a small screwdriver to pry top cover off

Figure 1-15. Model 507B sneak fuse panel
Each column of sneak fuse panels requires approximately 8 inches (20 cm) of horizontal wall space. Connector cables connect the network interface to the sneak fuse panel. Also, use 157B connecting blocks equipped with SCP-110 protectors for sneak current protection.

NOTE:
Sneak current protectors with a rating of 350 mA at 600 Volts must be UL listed for United States installations and Canadian Safety Association (CSA) certified for Canadian installations. The panel contains two 25-pair connectors, fuse removal tool, and fifty 220029 Sneak Fuses (and 2 spares). Use the SCP-110 protectors with 110-type hardware and on the 507B Sneak Fuse Panel. The SCP-110 Protectors can be ordered separately and installed on the 157B connecting block. Fifty protectors are required per block.

1. Install the 507B near the network interface or MDF with locally-obtained #12 x 3/4-inch screws (or equivalent).
Table 1-4 is a pinout of the cable wiring and associated fuse numbers.

Table 1-4. Sneak fuse connector pinout

<table>
<thead>
<tr>
<th>Connector Pin Numbers</th>
<th>Pair/Fuse Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>26/1</td>
<td>1</td>
</tr>
<tr>
<td>27/2</td>
<td>2</td>
</tr>
<tr>
<td>28/3</td>
<td>3</td>
</tr>
<tr>
<td>29/4</td>
<td>4</td>
</tr>
<tr>
<td>30/5</td>
<td>5</td>
</tr>
<tr>
<td>31/6</td>
<td>6</td>
</tr>
<tr>
<td>32/7</td>
<td>7</td>
</tr>
<tr>
<td>33/8</td>
<td>8</td>
</tr>
<tr>
<td>34/9</td>
<td>9</td>
</tr>
<tr>
<td>35/10</td>
<td>10</td>
</tr>
<tr>
<td>36/11</td>
<td>11</td>
</tr>
<tr>
<td>37/12</td>
<td>12</td>
</tr>
<tr>
<td>38/13</td>
<td>13</td>
</tr>
<tr>
<td>39/14</td>
<td>14</td>
</tr>
<tr>
<td>40/15</td>
<td>15</td>
</tr>
<tr>
<td>41/16</td>
<td>16</td>
</tr>
<tr>
<td>42/17</td>
<td>17</td>
</tr>
<tr>
<td>43/18</td>
<td>18</td>
</tr>
<tr>
<td>44/19</td>
<td>19</td>
</tr>
<tr>
<td>45/20</td>
<td>20</td>
</tr>
<tr>
<td>46/21</td>
<td>21</td>
</tr>
<tr>
<td>47/22</td>
<td>22</td>
</tr>
<tr>
<td>48/23</td>
<td>23</td>
</tr>
<tr>
<td>49/34</td>
<td>24</td>
</tr>
<tr>
<td>50/25</td>
<td>25</td>
</tr>
</tbody>
</table>
Label the main distribution frame

Figure 1-16 shows the graphic symbols used on the supplied labels for the system, cross-connections, information outlets, and cables.

1. Write the floor and building identification on each label as required.
2. Insert the labels into the plastic holders.
3. Snap the holders into the appropriate locations on the MDF.

Figure notes

1. Floor and building identification
2. Cabinet
3. Carrier
4. Slot
5. Information outlet
6. Site/satellite closet
7. Tie circuit
8. Floor
9. Building

Figure 1-16. Label graphic symbols and nomenclature

4. Label the cables as required using the supplied labels. Label code number 220A (comcode 103970000) contains all required labels.
Set ringing option

Figure notes

2 - Ringing option switch

≡ NOTE:
Look at the label on the side of the power supply to see how to set switch.

Figure 1-17. Ringing option selection
Figure notes

1. PCMCIA slots
2. Red LED
3. Green LED
4. Amber LED
5. PCMCIA In-Use LED
6. Emergency Transfer Switch
7. Shutdown Complete — safe to pull board when green LED is on
8. Shutdown Switch — gracefully shuts down system

Figure 1-18. TN795 circuit pack faceplate
Install and wire telephones and other equipment

NOTE:

Only 1 pair of wires is available for emergency transfer, and 1 pair of wires is available for Attendant Console power.

The wiring procedures are similar for most DEFINITY system telephones and other equipment. This chapter provides wiring examples for similar installation procedures. Actual wiring procedures may vary at each site.

The system can connect to all DTE terminals. The system can have RS-232 (or EIA-232) or DCP interfaces.

All wiring pinouts for port circuit packs are in the tables at the end of this chapter.

See Figure 1-32 for punch-down information for common circuit packs. The figure shows the colors of the punch-downs and is best viewed from CD-ROM or on-line.

After installing the hardware, the data for the system and telephone features is administered. These procedures are provided in *DEFINITY Enterprise Communications Server Release 8.2 Administrator's Guide*, 555-233-506.

Telephone connection examples

The 302C1 Attendant Console (AC) describes a typical telephone connection. This information is typical of the 603E, 84xx (4-wire), and 94xx telephones. The AC always requires auxiliary (adjunct) power (-48 VDC). See Figure 1-19. Only 1 console can be powered by the system through the auxiliary (AUX) connector. The primary console should be powered from the system so it has the same power failure backup as the system.

The maximum cabling distance for the console powered from the cabinet is 350 feet (100 meters) using 24 AWG (#5) (0.26 mm²) wire.

The general steps to connect a telephone are:

1. Choose a device to connect such as a 302C1 Attendant Console.
2. Choose the port circuit pack and its carrier and slot number, such as TN754C, Carrier A, Slot 06.
3. Choose a port circuit on the port circuit pack, such as Port 05.
4. Install cross-connect jumpers to wire the terminal to the port circuit pack. See Figure 1-19. This pinout is for a 4-wire Digital Line circuit pack.
Install and Cable the Cabinet

Install and wire telephones and other equipment

Figure 1-19. 302C1 to digital line circuit pack wiring

Figure notes

1. 302C1 Attendant Console
2. 4-wire digital line circuit pack
3. -48 VDC from adjunct power
4. Ground from adjunct power
Connect adjunct power

The 400B2 adapter is convenient for connecting local -48 VDC power to a modular plug. See Figure 1-20.

Figure notes

1. Surface-mounted information outlet
2. To individual power unit (such as 1151A or 1151A2)
3. 400B2 adapter
4. To telephone
5. Destination service access point (DSAP) power cord

Figure 1-20. 400B2 adapter connecting to a modular plug

Adjunct power can be provided from the equipment room or equipment closet with 1145B power unit. The AUX connector (J1) on the processor interface cable can provide power for 1 Attendant Console.

Adjunct power can be provided locally at the telephone or console by the 1151A or 1151A2 Power Supply.
Station wiring examples

This section shows the wiring connections for the various types of stations. See Figure 1-43, Table 1-44, and Table 1-44.

Figure 1-21. Typical station wiring connections
Install and Cable the Cabinet

Install and wire telephones and other equipment

Table 1-5. Wiring color code

<table>
<thead>
<tr>
<th>Station Type</th>
<th>Wire Color (Tip/Ring)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog</td>
<td>yellow/blue</td>
</tr>
<tr>
<td>2-wire DCP</td>
<td>white/orange</td>
</tr>
<tr>
<td>4-wire DCP</td>
<td>red/blue</td>
</tr>
<tr>
<td></td>
<td>red/orange</td>
</tr>
<tr>
<td>Hybrid</td>
<td>white/blue</td>
</tr>
<tr>
<td></td>
<td>white/orange</td>
</tr>
<tr>
<td></td>
<td>white/green</td>
</tr>
<tr>
<td>Power</td>
<td>white/red</td>
</tr>
</tbody>
</table>

Table 1-6. Stations connections

<table>
<thead>
<tr>
<th>Station Type</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog or 2-wire DCP</td>
<td>T=1, R=26</td>
</tr>
<tr>
<td>BRI</td>
<td>T=1, R=26</td>
</tr>
<tr>
<td></td>
<td>T1=3, R1=28</td>
</tr>
<tr>
<td>4-wire DCP</td>
<td>T=2, R=27</td>
</tr>
<tr>
<td></td>
<td>T1=3, R1=28</td>
</tr>
<tr>
<td>Hybrid</td>
<td>T=1, R=26</td>
</tr>
<tr>
<td></td>
<td>T1=2, R1=27</td>
</tr>
<tr>
<td></td>
<td>T2=3, R2=28</td>
</tr>
<tr>
<td>Power</td>
<td>4, 29</td>
</tr>
</tbody>
</table>
Analog tie trunk example

Figure 1-22. Analog tie trunk cross-connect

1. Before installing the Tie Trunk circuit pack, set the option switches as described in Chapter 1, “Install and Cable the Cabinet”.

2. Install cross-connect jumpers to connect the pins from the Tie Trunk circuit pack to the appropriate leads on the external tie trunk. Determine names of the tie trunk leads from the manufacturer or supplier of the external trunk circuit. The example in Figure 1-22 shows a DEFINITY System tie trunk connected to a DEFINITY System tie trunk.

Install and Cable the Cabinet

Install and wire telephones and other equipment

Digital tie trunk example

Figure notes

1. External trunk
2. DS1 interface circuit pack, position 1CA06
3. LO
4. LO (Balanced output pair)
5. LI
6. LI (Balanced input pair)

Figure 1-23. Digital tie trunk wiring

1. Before installing the DS1 Interface circuit pack, set the option switches as shown in Chapter 1, “Install and Cable the Cabinet”.
2. Install cross-connect jumpers to connect the pins from the digital trunk circuit pack to appropriate pins on the external digital trunk.
Install and Cable the Cabinet

Install and wire telephones and other equipment

Cable examples for tie trunk connectivity

DS1 tie trunks provide a 1.544 Mbps (T1) or 2.048 Mbps (E1) digital data service between 2 collocated systems or between the system and a data network. The following cables can be used:

- **C6C Connector Cable** — 50-foot (15.2-m) shielded cable with a 50-pin male connector on 1 end and a 15-pin male connector on the other end. Use to connect a DS1 tie trunk circuit pack to a Channel Service Unit.

- **C6D Connector Cable** — 50-foot (15.2-m) shielded cable with a 50-pin male connector on each end. Use to connect a DS1 tie trunks in collocated cabinets.

- **C6E Connector Cable** — 100-foot (30.5-m) shielded cable with a 50-pin male connector on 1 end and a 50-pin female connector on the other end. Use as an “extension” cable between the DS1 tie trunk circuit pack and other connector cables.

- **C6F Connector Cable** — 50-foot (15.2-m) shielded cable with a 50-pin male connector on 1 end and a 3 inch (7.62-cm) stub on the other end. Use to connect the DS1 tie trunk circuit pack to channel multiplexers requiring hardwired connections. See Table 1-7 for a pinout.

Table 1-7. Pinout of C6F cable

<table>
<thead>
<tr>
<th>Wire color</th>
<th>Lead designation</th>
<th>Pin number</th>
</tr>
</thead>
<tbody>
<tr>
<td>White/Green</td>
<td>LI (High Side)</td>
<td>47</td>
</tr>
<tr>
<td>Green</td>
<td>LI</td>
<td>22</td>
</tr>
<tr>
<td>White/Brown</td>
<td>LO</td>
<td>48</td>
</tr>
<tr>
<td>Brown</td>
<td>LO (High Side)</td>
<td>23</td>
</tr>
<tr>
<td>White/Slate</td>
<td>LBACK2</td>
<td>49</td>
</tr>
<tr>
<td>Slate</td>
<td>LBACK1</td>
<td>24</td>
</tr>
</tbody>
</table>

DS1 tie trunks between collocated systems

Two DS1 tie trunk circuit packs can exist in collocated systems. A DS1 tie trunk circuit pack in 1 system can connect to a DS1 tie trunk in another system. Use a C6D cable if the distance is less than 50 feet (15.24 m). If the distance is greater than 50 feet (15.24 m), use a C6E cable.

NOTE:
The maximum distance between cabinets is 1310 feet (399.3 m).
DS1 tie trunks using T1 channel service unit

Figure 1-24 shows a DS1 tie trunk connected to an external T1 Channel Service Unit (CSU). A 120A2 enhanced Integrated Channel Service Unit (ICSU) can be used in place of a T1 external CSU. The CSU or ICSU interfaces the DS1 tie trunks with the 1.544 Mbps digital facility. Contact your Lucent Technologies representative for maximum cabling distances.

Figure notes
1. To DS1 tie trunk circuit pack 5. Ring (R)
2. C6C cable (If distance is over 50 feet (15.24 m), use C6E cable.) 6. Tip 1(T1)
3. T1 external CSU or 120A2 ICSU 7. Ring1 (R1)
4. Tip (T) 8. 1.544 Mbps T1 interface
9. To T1 carrier

Figure 1-24. Typical connections to channel service unit
3-pair and 4-pair modularity

Figure 1-25 shows 3-pair and 4-pair modularity from the port circuit pack to the voice or data terminal. Most terminals connect to an information outlet (modular jack) installed at the work location.

Figure notes:
1. Port circuit pack
2. 25-pair connector pins (3-pair modularity)
3. MDF pins (3-pair modularity)
4. Input to information outlet (4-pair modularity)
5. Output from information outlet (4-pair modularity)
6. Voice or data terminal pins
7. Adjunct power

Figure 1-25. 3-pair and 4-pair modularity
Adjunct power connections

Figure 1-26 shows typical connection locations for adjunct power.

Figure notes

1. Typical display telephone
2. Individual power supply (such as 1151A, not used if item 14 is used)
3. 400B2 adapter
4. Information outlet (modular jack)
5. 4-pair D-Inside Wire (DIW) cable
6. Satellite site or adapter location
7. 25-pair D-Inside Wire (DIW) cable
8. Station side of MDF
9. 100P6A patch cord or jumpers
10. System side of MDF
11. 25-pair cable to digital line circuit pack
12. Equipment room
13. Satellite location
14. Bulk power supply (such as 1145B). Install at satellite location or equipment room (not both).

Figure 1-26. Example adjunct power connections
Local and phantom power

The Attendant Console's (AC) maximum distance from the system is limited. See Table 1-8.

Table 1-8. Attendant Console cabling distances

<table>
<thead>
<tr>
<th>Enhanced Attendant Console (302C1)</th>
<th>24 AWG Wire (0.26 mm²)</th>
<th>26 AWG Wire (0.14 mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With Selector Console</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phantom powered</td>
<td>800 Feet (244 Meters)</td>
<td>500 Feet (152 Meters)</td>
</tr>
<tr>
<td>Locally powered</td>
<td>5000 Feet (1524 Meters)</td>
<td>3400 Feet (1037 Meters)</td>
</tr>
<tr>
<td>Without Selector Console</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phantom powered</td>
<td>1400 Feet (427 Meters)</td>
<td>900 Feet (274 Meters)</td>
</tr>
<tr>
<td>Locally powered</td>
<td>5000 Feet (1524 Meters)</td>
<td>3400 Feet (1037 Meters)</td>
</tr>
</tbody>
</table>

Auxiliary power

The nonessential functions of an AC and its optional 26A1 or 24A1 selector console derive power from an auxiliary power source. During short power outages, provide auxiliary power for an AC through this cable so the console remains fully operational.

NOTE:

Only 1 console can derive auxiliary power from the system and through the auxiliary cable located in the trunk/auxiliary field.

A console’s maximum distance from its auxiliary power source is:

- 800 feet (244 m) for a 302A1
- 350 feet (107 m) for a 301B1 and 302C1

An AC can also derive auxiliary power from:

- Individual 1151A or 1151A2 power supply
- MSP-1 power supply
- 258A-type adapters
- Bulk power supplies such as the 1145A1
Install Attendant Console — optional

To install the optional AC:

1. Position the Attendant Console in the desired location and connect the modular cord to the information outlet.
2. Install labels per the Attendant Console form and Display Module form assignments.
3. Install a Digital Line circuit (DLC) pack in the assigned carrier slot (if required).

Hard-wire bridging

⚠️ CAUTION:

Bridging or paralleling these endpoints can cause electrical damage to the consoles or cause the circuit pack to remove power from the consoles.

Analog type hard-wire bridging is not allowed for 4-wire (only) DCP endpoints, because hard-wire bridging provides no way of combining the digital output of 2 bridged DCP sets. Also, a bridged endpoint causes the added load to degrade the DCP signal.

Dual wiring of 2-wire and 4-wire endpoints

Do not simultaneously wire a 2-wire and 4-wire endpoint to the same equipment location in an MDF, even though they connect to different colored wire pairs. The system uses separate circuit packs to interface 2- and 4-wire endpoints, and none are capable of interfacing both.

Install 26B1 Selector Console — optional

To install the optional Selector Console:

1. Connect the supplied 3-foot (0.9 m) D8AC cable to the modular jack on the bottom of the 26B1 Selector Console.
2. Route the cable to the Attendant Console and connect to the DXS/BLF jack.
3. Attach labels according to the Attendant Console form.
Connect external alarms and auxiliary connections

NOTE:
The AUX connector is part of the Processor Interface cable assembly (J1). When the wiring and administration is complete, give these wiring records to the Customer System Administrator for troubleshooting purposes.

Alarm input

Alarms can be generated on adjunct equipment, sent to the DEFINITY ONE system, and recorded and reported as “external alarms.”

CAUTION:
Pins 26 and 1 on the AUX connector are dedicated to the UPS alarm input. Using these pins for other alarm inputs will cause the DEFINITY ONE system to reset.

1. Connect 1 major alarm input wire pair and 1 minor alarm input wire pair to the auxiliary field from the AUX connector (J1 on Processor Interface Cable). See Table 1-53 and Figure 1-54.

Table 1-9. Alarm inputs at AUX connector

<table>
<thead>
<tr>
<th>Alarm input type</th>
<th>Color</th>
<th>AUX connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor</td>
<td>White-Blue</td>
<td>AP2 (Pin 27)</td>
</tr>
<tr>
<td></td>
<td>Blue-White</td>
<td>Ground (Pin 2)</td>
</tr>
<tr>
<td>Major (UPS)</td>
<td>White-Orange</td>
<td>AP2 (Pin 26)</td>
</tr>
<tr>
<td></td>
<td>Orange-White</td>
<td>Ground (Pin 1)</td>
</tr>
</tbody>
</table>

Alarm output

The system provides a relay contact closure that can operate a customer-provided alarm, such as a light or bell. The customer provides the circuitry and power source. The alarm device must not exceed a rating of more than 30 VAC RMS or 60 VDC at 0.75 Amps.

The following are procedures to connect alarm output.

1. Connect the external alarm output. See Table 1-54.
2. Type change system-parameters maintenance and press ENTER.
3. Change the “CPE Alarm Activation Level” field to the desired alarm level and press ENTER.

Table 1-10. Alarm output at AUX connector

<table>
<thead>
<tr>
<th>Alarm output type</th>
<th>Color</th>
<th>AUX connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXTALMA</td>
<td>Violet-Green</td>
<td>(Pin 48)</td>
</tr>
<tr>
<td>EXTALMB</td>
<td>Green-Violet</td>
<td>(Pin 23)</td>
</tr>
</tbody>
</table>

UPS alarm connection

Figure notes

1. Lucent UPS
2. Z3A2 alarm adapter
3. RJ45 (D8W) cable
4. 103A or modular jack
5. Pin 26, white-orange
6. Pin 1, orange-white
7. Cross-connect field
8. 25-pair cable
9. Processor interface cable (AUX connector)
10. DEFINITY ONE

Figure 1-27. UPS connection to DEFINITY ONE
Emergency transfer and auxiliary power

NOTE:
Only 1 emergency transfer power panel and 1 auxiliary power connection is provided per system.

Connect emergency transfer power and auxiliary power as shown in Table 1-11. Auxiliary power includes power to an Attendant Console or adjunct device.

Table 1-11. Emergency transfer and auxiliary power

<table>
<thead>
<tr>
<th>Power type</th>
<th>Color</th>
<th>AUX connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Transfer</td>
<td>Black-Blue</td>
<td>XFER48 (Pin 36)</td>
</tr>
<tr>
<td></td>
<td>Blue-Black</td>
<td>Ground (Pin 46)</td>
</tr>
<tr>
<td>Adjunct -48 VDC</td>
<td>Brown-Yellow</td>
<td>ACC48A (Pin 19)</td>
</tr>
<tr>
<td></td>
<td>Yellow-Brown</td>
<td>Ground (Pin 44)</td>
</tr>
</tbody>
</table>

Telephone pin designations

Table 1-12 provides pack and pin designations.

Table 1-12. Port circuit pack and telephone pin designations

<table>
<thead>
<tr>
<th>Pin on Modular Plug</th>
<th>4-wire; 302C1, 8400-Series, 603E, 9403, 9434</th>
<th>2-wire; 302C1, 8400-Series, 603E, 9403, 9410, 9434</th>
<th>8510T BRI (with adjunct speaker phone)</th>
<th>Analog Station, Modem</th>
<th>Z3A1 & Z3A2 ADU, Data Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TXT</td>
<td>TX</td>
<td>PXA</td>
<td>ADU</td>
<td>Data Line</td>
</tr>
<tr>
<td>2</td>
<td>TXR</td>
<td>T</td>
<td>PX</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PXT</td>
<td>TXT</td>
<td>R</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>PXR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td>PXT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PXR</td>
<td>TXR</td>
<td>PXR</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-48VDC</td>
<td>(-48VDC)</td>
<td>(-48VDC)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>GRD</td>
<td>GRD</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>circuit pack</td>
<td>4-wire digital (8 ports)</td>
<td>2-wire digital (16 or 24 ports)</td>
<td>4-wire BRI Trunk Side</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>PX</td>
<td>PBX transmit Tip (A)</td>
<td>Tip (A)</td>
<td>Analog line (16 or 24 ports)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>TX</td>
<td>Terminal transmit Ring (B)</td>
<td>TX</td>
<td></td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Install the BRI terminating resistor

The resistors balance the cable plant between the receiver and the transmitter on the interface. When using the TN2198 ISDN-BRI 2-Wire U Interface circuit pack, use an NT1.

A terminating resistor is always required near the terminal when the BRI S-type interface circuit pack (TN556 BRI 4-Wire S-NT Line circuit pack) is used (see #5ESS Switch Integrated Services Digital Network Customer Premises Planning Guide, 533-700-100). The resistor is built into the NT1 and can be 1 of 3 values, depending on the configuration and the distance from the NT1 to the ISDN terminal. The NT1 controls the resistor value; if needed, place a terminating resistor adapter near the terminal and in the satellite closet or work location.

⚠️ CAUTION:
The 440A4 terminating resistor and 110RA1-12 terminating resistor block are Underwriter Laboratories (UL) listed. Most new installations are the 110RA1-12 terminating resistor block. The following installation instructions should be observed.

- Never install telephone wiring during a lightning storm.
- Never install telephone jacks in wet locations unless the jack is specifically designed for wet locations.
- Never touch uninsulated wires or terminals unless the telephone line has been disconnected at the network interface.
- Use caution when installing or modifying telephone lines.
Terminating resistor adapter

Figure 1-28 shows an 8-pin 440A4 terminating resistor adapter. The adapter has an 8-wide plug at 1 end, a short cord, and an 8-wide jack at the opposite end.

Figure notes

1. 8-wide plug
2. 8-wide jack

Figure 1-28. 8-wide terminating resistor adapter (440A4)
Closet mounted (110RA1-12)

The 110RA1-12 terminating resistor block consists of twelve 2-pair circuits and provides the 100 Ohm termination used for ISDN-BRI circuits.

Figure 1-29 shows the wiring of the 110RA1-12. Three rows of 110D 4-connector blocks contain resistors and capacitors. The bottom row is designated as the input row and the top and middle rows are designated as the output rows. The circuit assembly is mounted on a standard 110A 100-pair mounting base.

Figure notes
1. Circuit 1
2. Circuit 12
3. Output row “A”
4. Output row “B”
5. Input row “C”
6. Only first circuit shown to all 12 circuits (2APR) per block
7. 110D 4-connector block

Figure 1-29. Terminating resistor block (110RA1-12)
Figure 1-30 shows the wiring connections for the 110RA1-12 terminal block. The TN556 BRI switch port is terminated to bottom row C.

Figure notes

1. Part of terminating resistor block
2. White or purple field
3. Part of 4-pair blue field
4. From ISDN T-interface circuit (2-pair)
5. To ISDN S/T-interface terminals
6. 2-pair cross-connect
7. Basic multi-point option
8. 4-pair horizontal cables
9. Row “A”
10. Row “B”
11. Row “C”

Figure 1-30. Typical installation of terminating resistor block

For point-to-point wiring, the top row connects to the blue station field. The pair connects from the 110RA1-12 to the standard 4-pair circuit. Pair 1 from the 110RA1-12 connects to Pair 1 of the station field, and Pair 2 connects to Pair 3 of the station field.

Connect row B (output) to the second terminal common to the multi-point circuit to accommodate two terminal basic multi-point applications.
Install multi-point adapters

Use multi-point adapters to provide signal fanout of the T-interface. BR851-B or the 367A perform fanout at the work station. These adapters support more than 1 ISDN terminal per horizontal 4-pair D-inside wire (DIW). To support multiple horizontal runs, a MDF with multiple common rows performs fanout in the satellite closet. The 110RA1-12 provides fanout for two horizontal runs and contains the 100 Ohm terminating resistor. Use this for basic multi-point or point-to-point with terminating resistor in the closet. Other fanout blocks include the 110AB1-025M and the 110AB1-050M.

BR851-B adapter (T-adapter)

The BR851-B supports 2 terminals on 1 multi-point BRI at the work station and is used to fanout transmission and power. See Figure 1-31.

Figure notes

1. Wire pairs
2. Pin numbers
3. Modular plug (male)
4. Female
5. T-Type adapter (BR851-B)

Figure 1-31. Wiring diagram of BR851-B
The 367A adapter provides fanout for up to 7 terminals. See Figure 1-32.

Figure notes
1. Jack 1
2. Jack 2
3. Jack 8
4. 367A adapter

Figure 1-32. Wiring diagram of 367A adapter
Basic multi-point installation distances

Figure 1-33 provides cabling information for fanout of ISDN-BRI multi-point installations. The terminating resistor is located in the satellite closet. All distances assume 24 AWG (0.26 mm²) D-Inside Wire (DIW).

Figure 1-33. Basic multi-point with one work location

Figure notes
1. S-interface source (TN556)
2. Terminating resistor
3. Satellite closet
4. Maximum distance from S-interface source to work location (1600 feet) (488 m)
5. Maximum distance from satellite closet to work location (250 feet) (76 m)
6. System cabinet
7. Terminating endpoint 1
8. Terminating endpoint 2
9. Work location
10. Maximum distance from information outlet to terminating endpoint (33 feet) (10 m)
11. Information outlet
Install off-premises station wiring

The local telephone company provides the cabling for off-premises stations. These stations can appear on any of the RJ21X network interfaces provided for the CO trunks.

⚠️ CAUTION:

Use only an FCC-approved (or equivalent) analog type telephone (such as a 2500-type) as an off-premises station. The TN746B and TN2183 Analog Line circuit packs can be connected to off-premises stations.

1. Install an A25D cable between the RJ21X network interface and a sneak fuse panel.
2. At the MDF, connect jumper wires between 1 row/connecting block in the green field and up to 3 rows/connecting blocks in the purple field to concentrate the analog line pairs.
3. Connect an A25D cable between the sneak fuse panel and the terminal block connector associated with the green row in Step 2.
4. Install a green label on the terminal block to identify the remote location.

Install off-premises or out-of-building stations

Out-of-building campus stations are telephones not physically located in the same building as the equipment room yet located on the same property.

Analog off-premises stations

Figure 1-34 shows the connections for 1 to 8 off-premises analog telephones. Only analog telephones connected to TN742, TN746B, TN2183, or TN769 Analog Line circuit packs can be installed out-of-building.

The maximum distance from the system cabinet to the out-of-building voice terminal is 6000 feet (1828.8 meters) using 24 AWG (0.26 mm²) wire.
Install and Cable the Cabinet

Install off-premises station wiring

Figure 1-34. Connections for 1 to 8 out-of-building analog telephones

Figure notes

1. Locally engineered cables
2. Out-of-building wiring
3. Multi-pair protector units (primary protectors with heat coils or equivalent with sneak current protection)
4. 356A adapter
5. B25A cable
6. Out-of-building analog telephones
7. Part of MDF
8. Station side (white field)
9. System side (purple field)
10. Cross-connect jumpers
11. To analog line circuit pack (TN2183, TN769, TN742, or TN746B)
Figure 1-35 shows the connections for up to 24 off-premises analog telephones, with concentrations of analog line pairs used at both buildings to minimize the off-premises wiring required. At the MDF, jumpers must be connected between 1 row/connecting block in the white field and up to 3 rows/connecting blocks in the purple field. At the station location, a WP-90929, List 1 Concentrator Cable is used. There are 8 station appearances on each of the 3 fingers of the concentrator cable. See Figure 1-35.

Figure notes

1. Locally engineered cables
2. Multi-pair protector units (primary protectors with heat coils or equivalent with sneak current protection)
3. B25A cable
4. Concentrator cable (WP90929 List 1)
5. 356A adapter
6. Out-of-building wiring
7. Out-of-building analog telephones
8. Part of MDF
9. Station side (white field)
10. System side (purple field)
11. Cross-connect jumpers
12. To TN2183, TN769, TN742, or TN746B analog line circuit pack

Figure 1-35. Connections to 24 out-of-building telephones
Circuit protectors

Both building entrances require Carbon block or equivalent protection and sneak current protection. Provide this protection with a 4-type protector. The 4-type protector is equipped with a heat coil or a 3-type protector plus a separate sneak current protector.

The 4-type protector is the preferred device. For installations not using primary protection, always use 4-type protectors. When the 3-type protector is already installed, a separate sneak current protector is required. The multi-pair protector units and the off-premises cabling must be locally engineered. Connectorized multi-pair protector units (female 25-pair connector) are recommended. Table 1-13 shows the recommended protectors.

Table 1-13. Analog line circuit protectors

<table>
<thead>
<tr>
<th>Primary¹</th>
<th>Primary (with heat coil)</th>
<th>Sneak current protectors¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>3B1A (carbon)</td>
<td>4B1C (carbon)</td>
<td>220029 Fuse</td>
</tr>
<tr>
<td>3B1E-W (wide-gap gas tube)</td>
<td>4B1E-W (wide-gap gas tube)</td>
<td>SCP-1</td>
</tr>
<tr>
<td>3C1S (solid state)</td>
<td>4C1S (solid state)</td>
<td></td>
</tr>
</tbody>
</table>

¹. The 3-type protectors should only be used if they are already part of the existing protection system. A sneak current protector is always required when a 3-type primary protector is used.

The maximum range of out-of-building analog telephones (500-, 2500-, or 7100-types) connected to an analog line circuit pack should be such that the maximum loop resistance does not exceed 1300 Ohms.

The following voice terminals cannot be installed in an exposed environment:

- 7300-type voice terminals connected to TN762 Hybrid Line circuit packs
- Multi-button Electronic Telephone (MET) sets connected to TN735 MET Line circuit packs
- Analog telephones connected to TN746 Analog Line circuit packs

See Table 1-4 for circuit protector ordering information (comcodes).
Digital out-of-building telephones

Use the following equipment to protect digital out-of-building voice terminals and digital circuit line packs at both building entrances:

- 4C3S-75 Enhanced protector
- ITW Linx Enhanced Protector

These units provide primary and sneak current protection. The 4C3S-75 is equipped with a heat coil for sneak current protection while the ITW Linx is equipped with replaceable fuses for sneak current protection.

Use the 4C3S-75 only with Vintage 14 or newer TN754 circuit packs. The 4C3S-75 can be used on all vintages of the TN754B circuit packs. The ITW Linx may be used on all vintages of the TN754 circuit packs. Table 1-67 lists the approved protectors.

NOTE:
The TN2181 (2-Wire 16 Port Digital Line circuit pack) may not be approved for some out-of-building uses. Contact your Lucent Technologies representative for more information.

Table 1-14. Digital voice circuit protectors

<table>
<thead>
<tr>
<th>Circuit pack</th>
<th>Enhanced primary protector (with sneak current protection)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN754B/all vintages</td>
<td>4C3S-75 or ITW Linx</td>
</tr>
<tr>
<td>TN2181</td>
<td>4C3S-75 or ITW Linx</td>
</tr>
<tr>
<td>TN2224B/all vintages</td>
<td>4C3S-75 or ITW Linx</td>
</tr>
</tbody>
</table>

When possible, all new and reused wiring installations should use blocks that accept the standard 5-pin plug-in 4C3S-75 protector. However, this may not be cost-effective in some cases: for these installations, the ITW Linx protector may be installed. For example, if screw-type carbon block protectors (or other comparable plug-incompatible types) are in place, it may be too costly to re-terminate the outside cable on a 5-pin mounting block for only a few out-of-building terminals.

The ITW Linx Enhanced Protector may be installed in series with existing primary protection. Note the 4C3S-75 protector cannot be installed in series with other types of primary protection, but must be installed as the only protection on the line entering the building. For the 4C3S-75 protector, various 25-, 50-, and 100-pair protector panels are equipped with 110-type connecting blocks and/or RJ21X connectors. The ITW Linx Enhanced Protector mounts directly on connecting blocks and requires a separate ground bar.
Install and Cable the Cabinet

Install emergency transfer panel and associated telephones

The maximum range for out-of-building digital voice terminals is:
- 3400 feet (1036 m) when using 24 AWG (0.26 mm²) wire
- 2200 feet (670 m) when using 26 AWG (0.14 mm²) wire

With the use of a data link protector (an isolating transformer used to remove phantom power on the system side and re-introduce it on the terminal side), the range can extend to
- 5000 feet (1524 m) using 24 AWG (0.26 mm²) wire or
- 4000 feet (1219 m) using 26 AWG (0.14 mm²) wire

When using a protector, the voice terminal must be locally powered by an external power supply or through the AC power cord provided with some of the 7400-type voice terminals. Install the protector on the equipment side of the protection in both buildings.

See Table 1-4 for circuit protector and data link protector comcodes.

Install emergency transfer panel and associated telephones

NOTE:
Install only 1 emergency transfer power panel per system.

An 808A Emergency Transfer Panel (or equivalent), mounted next to the trunk/auxiliary field, provides emergency transfer capability. See Figure 1-69. Also see Table 1-55 for the pinout of the AUX (J1) connector. The transfer panel provides emergency trunk bypass or power-fail transfer for up to 5 incoming CO trunk loops to 5 selected station sets. The 808A equipment’s Ringer Equivalency Number (REN) is 1.0 Amp.

Use analog telephones for emergency transfer. The 500 and 2500 type telephones can also be used as normal extensions. Emergency transfer capability may be provided on analog CO and Wide Area Telecommunications Service (WATS) trunks.

At the MDF, the unit is controlled by a connection to a yellow terminal row/connecting block in the trunk/auxiliary field. The unit is controlled by -48 VDC from the EM TRANS RELAY PWR terminals.

Install the emergency transfer panel

The following example shows how to install an 808A Emergency Transfer Panel.

1. Install the transfer panel on any mounting frame in either a vertical or horizontal position. The housing has ears for screw-mounting and cutouts for snap-mounting the unit in an 89-type mounting bracket.
Install the panel so it can be accessed only by authorized personnel. The location must meet standard environmental considerations such as temperature and humidity.

2. Verify dial tone is present at each trunk circuit.

Figure notes
1. 808A emergency transfer panel
2. Circuit start selection switches
3. Trunk identification label
4. 25-pair male connector

Figure 1-36. 808A emergency transfer panel
3. Locate the circuit start selection switches (the first 10 two-position switches on the left side of the 808A. See Figure 1-36.) These switches set each of the 5 incoming trunk lines to either loop start or ground start. Two switches are used for each of the 5 circuits; switches 1 and 2 are used for circuit 1, switches 3 and 4 are used for circuit 2, and so forth. See Table 1-15.

Table 1-15. Trunk/test switches

<table>
<thead>
<tr>
<th>Switch number</th>
<th>Circuit number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>Not Used</td>
</tr>
<tr>
<td>12</td>
<td>Test Switch</td>
</tr>
</tbody>
</table>

4. Connect a 25-pair cable between the male RJ21 25-pair connector on the 808A and the yellow field on the MDF. Table 1-16 shows the pinouts.

5. Make cross-connections for each emergency trunk/emergency station pair. See Figure 1-37 and Figure 1-38.

6. On the trunk identification label at the bottom of the panel, record the trunk line, extension, and location for each circuit.

7. To each voice terminal designated as an emergency terminal, attach a label identifying it as such. The labels are provided with the unit.

8. Check the system for normal operation as follows:
 a. Place the test switch (switch 12) in NORMAL OPERATION.
 b. Ensure the power supply is providing -48 VDC at 80 mA maximum. The power LED should be ON.
 c. Check wiring connections.
 d. Verify there is dial tone on all emergency transfer sets.
Install and Cable the Cabinet
Install emergency transfer panel and associated telephones

Table 1-16. Pin assignments for 25-pair connector on 808A

<table>
<thead>
<tr>
<th>Pin</th>
<th>Color</th>
<th>Designation</th>
<th>Connector/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>W-BL</td>
<td>TTC1</td>
<td>Tip-PBX Trunk Circuit 1</td>
</tr>
<tr>
<td>1</td>
<td>BL-W</td>
<td>RTC1</td>
<td>Ring-PBX Trunk Circuit 1</td>
</tr>
<tr>
<td>27</td>
<td>W-O</td>
<td>TTK1</td>
<td>Tip-CO Trunk Circuit 1</td>
</tr>
<tr>
<td>2</td>
<td>O-W</td>
<td>RTK1</td>
<td>Ring-CO Trunk Circuit 1</td>
</tr>
<tr>
<td>28</td>
<td>W-G</td>
<td>TLC1</td>
<td>Tip-PBX Line Port 1</td>
</tr>
<tr>
<td>3</td>
<td>G-W</td>
<td>RLC1</td>
<td>Ring-PBX Line Port 1</td>
</tr>
<tr>
<td>29</td>
<td>W-BR</td>
<td>TST1</td>
<td>Tip-Emergency Terminal 1</td>
</tr>
<tr>
<td>4</td>
<td>BR-W</td>
<td>RST1</td>
<td>Ring-Emergency Terminal 1</td>
</tr>
<tr>
<td>30</td>
<td>W-S</td>
<td>TTC2</td>
<td>Tip-PBX Trunk Circuit 2</td>
</tr>
<tr>
<td>5</td>
<td>S-W</td>
<td>RTC2</td>
<td>Ring-PBX Trunk Circuit 2</td>
</tr>
<tr>
<td>31</td>
<td>R-BL</td>
<td>TTK2</td>
<td>Tip-CO Trunk Circuit 2</td>
</tr>
<tr>
<td>6</td>
<td>BL-R</td>
<td>RTK2</td>
<td>Ring-CO Trunk Circuit 2</td>
</tr>
<tr>
<td>32</td>
<td>R-O</td>
<td>TLC2</td>
<td>Tip-PBX Line Port 2</td>
</tr>
<tr>
<td>7</td>
<td>O-R</td>
<td>RLC2</td>
<td>Ring-PBX Line Port 2</td>
</tr>
<tr>
<td>33</td>
<td>R-G</td>
<td>TST2</td>
<td>Tip-Emergency Terminal 2</td>
</tr>
<tr>
<td>8</td>
<td>G-R</td>
<td>RST2</td>
<td>Ring-Emergency Terminal 2</td>
</tr>
<tr>
<td>34</td>
<td>R-BR</td>
<td>TTC3</td>
<td>Tip-PBX Trunk Circuit 3</td>
</tr>
<tr>
<td>9</td>
<td>BR-R</td>
<td>RTC3</td>
<td>Ring-PBX Trunk Circuit 3</td>
</tr>
<tr>
<td>35</td>
<td>R-S</td>
<td>TTK3</td>
<td>Tip-CO Trunk Circuit 3</td>
</tr>
<tr>
<td>10</td>
<td>S-R</td>
<td>RTK3</td>
<td>Ring-CO Line Port 3</td>
</tr>
<tr>
<td>36</td>
<td>BK-BL</td>
<td>TLC3</td>
<td>Tip-PBX Line Port 3</td>
</tr>
<tr>
<td>11</td>
<td>BL-BK</td>
<td>RLC3</td>
<td>Ring-PBX Line Port 3</td>
</tr>
<tr>
<td>37</td>
<td>BK-O</td>
<td>TST3</td>
<td>Tip-Emergency Terminal 3</td>
</tr>
<tr>
<td>12</td>
<td>O-BK</td>
<td>RST3</td>
<td>Ring-Emergency Terminal 3</td>
</tr>
<tr>
<td>38</td>
<td>BK-G</td>
<td>TTC4</td>
<td>Tip-PBX Trunk Circuit 4</td>
</tr>
<tr>
<td>13</td>
<td>G-BK</td>
<td>RTC4</td>
<td>Ring-PBX Trunk Circuit 4</td>
</tr>
<tr>
<td>39</td>
<td>BK-BR</td>
<td>TTK4</td>
<td>Tip-CO Trunk Circuit 4</td>
</tr>
<tr>
<td>14</td>
<td>BR-BK</td>
<td>RTK4</td>
<td>Ring-CO Trunk Circuit 4</td>
</tr>
<tr>
<td>40</td>
<td>BK-S</td>
<td>TLC4</td>
<td>Tip-PBX Line Port 4</td>
</tr>
<tr>
<td>15</td>
<td>S-BK</td>
<td>RLC4</td>
<td>Ring-PBX Line Port 4</td>
</tr>
</tbody>
</table>

Continued on next page
Install and Cable the Cabinet

9. Check the system for emergency transfer operation as follows:
 a. Place the test switch (switch 12) in the ACTIVATED position.
 b. Ensure that the power LED should be OFF.
 c. Verify there is CO dial tone for all emergency transfer sets.

Table 1-16. Pin assignments for 25-pair connector on 808A — Continued

<table>
<thead>
<tr>
<th>Pin</th>
<th>Color</th>
<th>Designation</th>
<th>Connector/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>41</td>
<td>Y-BL</td>
<td>TST4</td>
<td>Tip-Emergency Terminal 4</td>
</tr>
<tr>
<td>16</td>
<td>BL-Y</td>
<td>RST4</td>
<td>Ring-Emergency Terminal 4</td>
</tr>
<tr>
<td>42</td>
<td>Y-O</td>
<td>TTC5</td>
<td>Tip-PBX Trunk Circuit 5</td>
</tr>
<tr>
<td>17</td>
<td>O-Y</td>
<td>RTC5</td>
<td>Ring-PBX Trunk Circuit 5</td>
</tr>
<tr>
<td>43</td>
<td>Y-G</td>
<td>TTK5</td>
<td>Tip-CO Trunk Circuit 5</td>
</tr>
<tr>
<td>18</td>
<td>G-Y</td>
<td>RTK5</td>
<td>Ring-CO Trunk Circuit 5</td>
</tr>
<tr>
<td>44</td>
<td>Y-BR</td>
<td>TLC5</td>
<td>Tip-PBX Line Port 5</td>
</tr>
<tr>
<td>19</td>
<td>BR-Y</td>
<td>RLC5</td>
<td>Ring-PBX Line Port 5</td>
</tr>
<tr>
<td>45</td>
<td>Y-S</td>
<td>TST5</td>
<td>Tip-Emergency Terminal 5</td>
</tr>
<tr>
<td>20</td>
<td>S-Y</td>
<td>RST5</td>
<td>Ring-Emergency Terminal 5</td>
</tr>
<tr>
<td>46</td>
<td>V-BL</td>
<td>COM1</td>
<td>Common 1 Relay Contact</td>
</tr>
<tr>
<td>21</td>
<td>BL-V</td>
<td>NO1</td>
<td>Normally Open 1 Contact</td>
</tr>
<tr>
<td>47</td>
<td>V-O</td>
<td>NC2</td>
<td>Normally Closed 2 Contact</td>
</tr>
<tr>
<td>22</td>
<td>O-V</td>
<td>NC1</td>
<td>Normally Closed 1 Contact</td>
</tr>
<tr>
<td>48</td>
<td>V-G</td>
<td>COM2</td>
<td>Common 2 Relay Contact</td>
</tr>
<tr>
<td>23</td>
<td>G-V</td>
<td>NO2</td>
<td>Normally Open 2 Contact</td>
</tr>
<tr>
<td>49</td>
<td>V-BR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>BR-V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>V-S</td>
<td>GRD</td>
<td>Ground From PBX</td>
</tr>
<tr>
<td>25</td>
<td>S-V</td>
<td>-48PX</td>
<td>-48V from Alarm Panel (AUX Cable)</td>
</tr>
</tbody>
</table>
10. Connect the 808A to the MDF with a B25A or A25B cable. **Figure 1-37** shows the connections at the trunk/auxiliary field for a telephone used only for emergency transfer.

Figure notes

1. To network interface circuitry
2. To CO trunk circuit pack
3. To blue or white station distribution field
4. To power transfer unit
5. To control carrier AUX connector

Figure 1-37. Connections for telephone used for emergency transfer
Install and Cable the Cabinet

Install emergency transfer panel and associated telephones

Figure 1-38 shows the connections at the trunk/auxiliary field for a telephone used for emergency transfer and as a normal extension.

Figure notes

1. To network interface facility
2. To blue or white station field
3. To analog line circuit pack
4. To CO trunk circuit pack
5. To power transfer unit
6. To control carrier AUX connector

Figure 1-38. Connections for telephone used for emergency transfer and as normal extension
Install telephone for power transfer unit

Follow the appropriate procedure for your installation.

Trunk/auxiliary field: telephone used only for emergency transfer

1. Connect a pair of wires between the -48V and GRD terminals on the yellow emergency transfer row/connecting block and the EM TRANS RELAY PWR terminal. See Figure 1-73.
2. Connect CO trunk leads from the purple field to the TC terminals on the yellow emergency transfer row/connecting block for each trunk.
3. Connect CO trunk leads from the green field to the TK terminals on the yellow emergency transfer row/connecting block for each trunk.
4. Connect the ST leads on the yellow emergency transfer row/connecting block for each emergency transfer telephone to the ST terminal appearance in the yellow trunk/auxiliary field. The ST terminal leads should be terminated on the following pairs: 1, 4, 7, 10, 13, 16, 19, or 22 (the first pair of any 3-pair group).
5. Connect the ST leads from the terminal in Step 4 to the assigned terminal in the blue or white station distribution field.

Trunk/auxiliary field: telephone used for emergency transfer and as normal extension

1. Connect a pair of wires between the -48V and GRD terminals on the yellow emergency transfer row/connecting block to the EM TRANS RELAY PWR terminal.
2. Connect CO trunk leads from the purple field to the TC terminals on the yellow emergency transfer row/connecting block for each trunk.
3. Connect CO trunk leads from the green field to the TK terminals on the yellow emergency transfer row/connecting block for each trunk.
4. Connect telephone leads from the purple analog line board row/connecting block to the LC terminals on the yellow emergency transfer row/connecting block for each telephone.
5. Connect ST leads on the yellow emergency transfer row/connecting block for each emergency transfer telephone to the ST terminal appearance in the purple trunk/auxiliary field.
6. Connect the ST leads from the terminal in Step 5 to the assigned terminal in the blue or white station distribution field.

Telephone installation

1. Connect the telephone to the information outlet.
2. Install patch cords/jumper wires between the system side and the station side of the station distribution field on the MDF.
Connect modem to telephone network

1. Cross-connect the network jack on the modem to the network interface (via a 103A or modular wall jack). See Table 1-17 for the pinout.

Table 1-17. Pinout of network jack

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Unused</td>
</tr>
<tr>
<td>2</td>
<td>Tip</td>
</tr>
<tr>
<td>3</td>
<td>Ring</td>
</tr>
<tr>
<td>4</td>
<td>Unused</td>
</tr>
</tbody>
</table>

Figure notes

1. Pin 1 of network jack
2. Modem

Figure 1-39. Network jack on U.S. robotics modem
Connect modem

The U.S. Robotics external modem is the recommended external modem for Release 2.0. A locally obtained, type-approved external modem may be used. Contact your Lucent Technologies representative for information.

If any other Robotics modem is installed, see the setup instructions provided with that modem.

External modem option settings

Use Table 1-18 to check or set the 8 option switches on the U.S. Robotics modem.

Table 1-18. U.S. Robotics model external modem switch settings

<table>
<thead>
<tr>
<th>Switch</th>
<th>Setting</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OFF (Up)</td>
<td>DTR (Data Terminal Ready) override</td>
</tr>
<tr>
<td>2</td>
<td>OFF (Up)</td>
<td>Verbal result codes (text-formatted feedback characters such as connected or no carrier)</td>
</tr>
<tr>
<td>3</td>
<td>ON (Down)</td>
<td>Enable result codes</td>
</tr>
<tr>
<td>4</td>
<td>OFF (Up)</td>
<td>Displays keyboard commands (local echo)</td>
</tr>
<tr>
<td>5</td>
<td>OFF (Up)</td>
<td>Sets auto answer</td>
</tr>
<tr>
<td>6</td>
<td>OFF (Up)</td>
<td>CD (Carrier Detect) override (modem sends CD signal on connect, drops CD on disconnect)</td>
</tr>
<tr>
<td>7</td>
<td>OFF (Up)</td>
<td>Power-on and ATZ reset software defaults (loads Y or Y1 configuration from NVRAM)</td>
</tr>
<tr>
<td>8</td>
<td>ON (Down)</td>
<td>AT (Attention) command set recognition (enables recognition, smart mode)</td>
</tr>
</tbody>
</table>

The modem is pre-configured to operate correctly. See “Modem configuration and administration” on page 9-5 for procedures on how to verify that the correct defaults are set; how to configure the modem, if necessary; and how to test the modem.
Set neon voltage to prevent ring ping

† NOTE:
If the ringing option is set to 50 Hz, neon voltage is not available. If 25 Hz is selected, the maximum voltage is 120 volts. See “Set ringing option” on page 1-38.

† NOTE:
Set the control to OFF if there are no neon message waiting lamps or if LED message lamps are used. See Figure 1-40.

Figure 1-40. Setting the neon voltage

1. Call a telephone with a neon message indicator and leave a message.
2. Check for “ring ping” (single ring pulse) each time the lamp flashes (approximately every 3 seconds).
3. Adjust the control clockwise in small increments until the ring ping stops. Ensure that the message lamp still lights when the adjustment is finished.
Complete installation

1. Enter **logoff** and press **ENTER** to prevent unauthorized changes to data.
2. Set the left and right doors onto the hinge pins and close the doors. The doors must be closed to prevent EMI emissions. Tighten the door screws.
3. Set the right cover panel onto the right panel and secure. Do not use force.

View LEDs to determine power and fan alarm state

Use the LEDs on the front of each power unit to determine its state.

1. **Table 1-19** shows the LED and alarm conditions. Ring voltage and neon bus output do not activate alarm status.

<table>
<thead>
<tr>
<th>Condition</th>
<th>LED status</th>
<th>Alarm state</th>
<th>Fan alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Red off Yellow on</td>
<td>open</td>
<td>high</td>
</tr>
<tr>
<td>No Input Power</td>
<td>Red off Yellow off</td>
<td>closed</td>
<td>open</td>
</tr>
<tr>
<td>One or More DC Outputs</td>
<td>Red on Yellow off</td>
<td>closed</td>
<td>no state</td>
</tr>
<tr>
<td>Present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan Alarm</td>
<td>Red on Yellow off</td>
<td>closed</td>
<td>low</td>
</tr>
<tr>
<td>Install and Cable the Cabinet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>View LEDs to determine power and fan alarm state</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This chapter, exclusive of installation procedures, provides background information on connectivity and access to aid understanding and implementation of subsequent chapters. For installation procedures, see Chapter 3, “System Initialization”.

Physical connections are as follows:

- “Physical connections” on page 2-2
 - “Via a PCMCIA ethernet (NIC) network connection” on page 2-2
 - “Via local monitor/mouse/keyboard” on page 2-2
 - “Via RAS (modem) dial up” on page 2-3
 - “Via customer LAN” on page 2-11

The access method is determined by the task or access situation:

- “Access methods” on page 2-16
 - “Via a Telnet session” on page 2-16
 - “Via a Web browser session” on page 2-18
 - “Via pcAnywhere” on page 2-21

- “System administration/DEFINITY site administration (DSA)” on page 2-26
- “DEFINITY ONE Lucent personnel logins” on page 2-28

This chapter first shows the procedures for physical connection to DEFINITY ONE. Once you are physically connected to DEFINITY ONE, you must access the system in one of several ways.
Connectivity and Access to DEFINITY ONE

Physical connections

(See Appendix H for a tear-out “cheat sheet” detailing physical connection and access methods, and login information.)

NOTE:
Detailed descriptions of the operation of the Microsoft Windows operating system and environments are beyond the scope of this document. Please refer to your Microsoft documentation for details concerning the Windows 95/98 and Windows NT systems.

Physical connections

Via a PCMCIA ethernet (NIC) network connection

Follow the procedure, “Connect the laptop computer to DEFINITY ONE” on page C-2, in Appendix C, “Miscellaneous Procedures”. PCMCIA is the preferred procedure for making the physical connection.

Via local monitor/mouse/keyboard

Use this method when plugging the monitor into DEFINITY ONE, thus making it look like a PC. The processor interface cable is on slot 2 of DEFINITY ONE. Customers have their own monitor/mouse/keyboard setup.

1. Plug the monitor into the processor interface cable on the back of DEFINITY ONE.
2. Plug the mouse into the processor interface cable on the back of DEFINITY ONE.
3. Plug the keyboard into the processor interface cable on the back of DEFINITY ONE.

NOTE:
If these devices are plugged in while the system is running, you must reboot so that the system will recognize these peripherals. Once recognized by the system, the devices are hot pluggable.
Via RAS (modem) dial up

This connection method enables Lucent services-related personnel, INADS, or customers to dial in remotely using a modem. On DEFINITY ONE, the Windows NT Remote Access Service (RAS) is listening for incoming calls from COM1, to which a modem is connected. Use the standard Windows NT dial up networking operation to set up this connection from a Services laptop computer as per the following procedure.

Create a connection icon for DEFINITY ONE

If a connection icon already exists, proceed directly to “Dial up” on page 2-5. Otherwise, follow these steps:

1. Double click “Make New Connection” on the Network Neighborhood Dialup Server Control Panel.

 ![Make New Connection](image)

 - Enter the name of the computer you are dialing (be sure to select the appropriate modem).
 - Click Next.

2. Enter the name of the computer you are dialing (be sure to select the appropriate modem).

3. Click Next.
4. Enter the area code and phone number of the system you are calling, then click Next.

Dial up

1. On the laptop computer, double click **My Computer**.

2. Double click **Dial Up Networking**.

 A similar screen displays:

3. Double click the machine name to which dial up networking has been administered. For this example, the machine name is “estonia”.

4. To access the Dial-up Networking dialogue box, double click **My Computer** on the desktop.

 A similar screen displays:

5. Double click **Dial-Up Networking** in the **My Computer** window.
A similar screen displays.

The following steps describe how to make a new connection:

1. To create a new connection, double click \textit{Make New Connection} in the \textit{Dial-Up Networking} window.

2. Double click the new dial-up icon, in this example, \textbf{Estonia}.

 The new icon appears in the Dial-Up Networking window below:
3. Right-click the new icon to enable the associated properties window. A similar screen displays:

 ![Properties Window Screenshot]

4. Click the Server Types tab of the associated properties window.

5. Under Allowable network protocol, select **TCP/IP**.
6. Click the **TCP/IP Settings** button.
A similar screen displays:

7. In the TCP/IP Settings window, select **Server assigned IP address**.
8. Select **Server assigned name server addresses**.
9. Select **Use IP header compression** and ensure that the **Use default gateway on remote network** is not checked.
10. Click **OK**.
A similar screen displays:

![Connect To Screen]

The user name and password on this screen must be rasaccess with the appropriate password. Note that the password will be the same for each DEFINITY system being contacted.

11. Click Connect.

12. A similar screen displays:

![Connect Screen]

A network password is not needed unless disks will be mounted, etc.
13. Leave the domain entry blank and click OK.

The above popup screen indicates that the laptop is trying to dial the
DEFINITY ONE server.

After a connection is established, a similar screen displays:

This indicates that the laptop is connected to the DEFINITY ONE LAN. The
dial up connection is established.

Once the dial up connection is established, the caller must use one of 3
access methods. See “Access methods” on page 2-16.

Via customer LAN

Customers may decide to install their LAN, which connects to the ethernet jack of
the processor interface cable. To configure DEFINITY ONE as a node on the
customer's network, see “Administer customer’s LAN interface” on page 3-7.
This interface must be administered within DEFINITY before the Windows LAN
interface can be used by any DEFINITY application. See Figure 2-12. This form
needs to be administered only once for all uses.
DEFINITY LAN gateway (DLG)

The Processor Ethernet and proprietary ASAI Adjunct Links must be enabled on the Customer Options screen before the DLG can be administered. To administer the DLG function for connection to CentreVu-CT, create an entry on the node names form within DEFINITY. This defines the CentreVu CT server's name and address. See Figure 2-2

![Image of Node names form for CentreVu-CT](image)

Figure 2-1. Node names form for CentreVu-CT
The link must be administered on the IP services form to use the Processor Ethernet. The service type must be *adjlk1* and only one link to CentreVu-CT is permitted. The local node entry of "procr" indicates the use of the Windows LAN interface. The local port number is set to 5678. The remote port is always zero. Note that the client link number is handled automatically and is NOT administered. It is set to one (1) on the client side. Event Minimization is disabled and cannot be enabled.
Figure 2-3. IP Services form for CentreVu-CT on the Windows LAN

If it is desired to use the C-LAN interface instead, then the IP-services form will change as illustrated in figure Figure 2-4. In this example, clan-1 must be administered on the node names form also.
<table>
<thead>
<tr>
<th>Enabled</th>
<th>Service Type</th>
<th>Local Node</th>
<th>Local Port</th>
<th>Remote Node</th>
<th>Remote Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>ADJLK1</td>
<td>clan-1</td>
<td>5678</td>
<td>centrevu:server</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 2-4. IP Services form for CentreVu-CT on C-LAN
Access methods

Access DEFINITY ONE through the following methods:

- "Via a Telnet session" on page 2-16
- "Via a Web browser session" on page 2-18
- "Via pcAnywhere" on page 2-21

Via a Telnet session

Use this access method to:

- Register DEFINITY ONE with INADS
- Activate license files
- Execute GAS commands from a bash shell
- Access DEFINITY ONE SAT session
- Set up the IP address for DEFINITY ONE using setip command

See Appendix C, “Connect to SAT session via Telnet” for information on connecting to SAT via Telnet.

NOTE:
The IP address differs depending on the type of physical connection established. See Chapter H, “Installation Connectivity Quick Reference”.

1. On the laptop, click Start > Run from the Windows task bar. The Run dialog box displays.

If you are using a PCMCIA direct connection, continue to Step 2.

2. Enter telnet {DEFINITY ONE IP Address}. Click OK.
A Telnet session opens on your desktop.
NOTE:
There are two different scenarios, depending on whether the license file has already been installed.

a. If no license file is installed, you are prompted for your login and password. The only valid login is lucent3. Use the appropriate password and continue to step 3.

b. If the license file is installed, you will receive a challenge response instead of a password prompt as shown in the figures below. Use any valid Lucent login. See “DEFINITY ONE Lucent personnel logins” on page 2-28 for a list of valid logins. Continue to step 3.
3. Enter User Name and Password at the prompts. Once the Lucent Access Control (LAC) process accepts these inputs, it allows admission into the system.

4. To continue enter a command.

![Telnet Window]

Via a Web browser session

Customers or Lucent personnel use this method of access to DEFINITY ONE (Windows NT or Windows 95 on their PC) to:

- Administer DEFINITY and AUDIX (WEB access to DSA)
- Backup and restore
- Shut down the system
- Activate and stop pcAnywhere
- Download DSA and Message Manager

The software can be downloaded to the technician’s laptop or a computer on the customer’s network. The web browser provides a single point from which to start administration activity.

The web browser interface is available for use once a physical connection is established.

1. Open your web browser.

If your physical connection is a dial-up or PCMCIA direct connection, complete step 2. If not, go to step 3.
2. Verify that you are not using a proxy server:
 - If using Netscape, click Edit > Preferences > Advanced > Proxies and ensure that Direct Connection to the Internet is checked.
 - If using Internet Explorer, click View > Internet Options > Connection and ensure that Bypass Proxy Server for Local (Intranet) Addresses is checked.

3. Type http://<ip address> in the address area of the web browser. The IP address also can be the name of the machine used. See Appendix H, "Installation Connectivity Quick Reference".

 The DEFINITY ONE home page displays:

4. Click Administer System.

 A similar screen displays:

 ![Username and Password Required](image)

5. Type user name and password.

6. Click OK.
7. Read the screen and click **Continue**.

Once permissions are granted, the software allows you to navigate through the system.

A similar screen displays:
Via pcAnywhere

The following procedures describe how to start pcAnywhere on DEFINITY ONE and how to start a client session in two ways:

- “Start a pcAnywhere client session from the laptop computer”
- “Start a pcAnywhere Java client session via the Web browser”

⚠️ CAUTION:

Turn off pcAnywhere when done.

Start the pcAnywhere application on DEFINITY ONE

The customer or Lucent personnel uses pcAnywhere whenever direct access to Windows NT desktop on DEFINITY ONE is required for such actions as:

- Setting system clock
- Mapping drives
- Accessing NT operations
- Upgrading software

To access pcAnywhere:

1. Run Netscape or Internet Explorer and verify that the browser is not using a proxy server:

 - If using Netscape, click Edit > Preferences > Advanced > Proxies and ensure that Direct Connection to the Internet is selected.
 - If using Internet Explorer, click View > Internet Options > Connection and ensure that Bypass Proxy Server for Local (Intranet) Addresses is selected.
2. In the browser window, type:

`http://<IP address>`

The DEFINITY ONE home page displays.

3. Click **Administer System**.

A similar screen displays:

4. Enter user name and password (**lucent3**)

5. Click **OK**.

6. On the resulting administration screen, click **Start** > **Host** > **Service** to activate the pcAnywhere host.

NOTE:

This can also be accomplished through the pcAnywhere GAS command in a bash shell. See Appendix G, “GAS Commands in the bash shell”.
Start a pcAnywhere client session from the laptop computer

NOTE:
If your laptop computer does not have pcAnywhere, you can use it through the Java client provided via the web interface. See the next procedure, “Start a pcAnywhere Java client session via the Web browser” on page 2-24.

1. Click Start > Programs > pcAnywhere.
2. Within pcAnywhere, if you have a client icon for DEFINITY ONE, double click this icon. Otherwise create one as follows:
 a. On the pcAnywhere screen, click Remote Control.
 b. Click Add Remote Control Item.
 c. Give the new remote control item a unique name.

 NOTE:
 Once this icon is created, it can be used to connect to any DEFINITY ONE over a generic PCMCIA connection.

 d. Click Next.
 e. Select tcp/ip as the connection device.
 f. In the machine name field, type <IP address>.
 g. Click Next.

 NOTE:
 You may check the Automatically begin remote session upon wizard completion box if you want to bring up the session as you exit the wizard.

 h. Click Finish.
 i. If you did not check the box in step g, double click the newly created icon.
 A connection to DEFINITY will be established.
 j. When prompted for a login ID use lucent3.
k. Leave the domain entry blank.

l. When prompted for a password, enter the appropriate password.

The Windows NT desktop of the DEFINITY ONE system will be displayed on the laptop.

NOTE:
When using pcAnywhere, the Windows NT desktop overlays the Windows 95 desktop, it is sometimes difficult to know which desktop screen is being referenced. For example, to access the **Start** menu of the laptop's Windows 95 desktop, you may have to scroll the Windows NT desktop up or down using the scroll bar on the right side of the pcAnywhere screen. You may want to temporarily reduce the pcAnywhere screen when access to the Windows 95 desktop is required.

Start a pcAnywhere Java client session via the Web browser

This procedure allows access to DEFINITY ONE via a java client on a web browser.

1. Start your web browser.
2. Click **Start Java Client** on your computer.

NOTE:
pcAnywhere software does not have to be loaded on your PC or laptop. The web browser needs to be either Netscape Navigator version 4.1 or later or Internet Explorer version 4.0 or later. The Java client is known as “pcAnywhere EXPRESS.”

A license agreement appears.

3. Click **Yes**.

NOTE:
If you click **No** to this message or any other message, or if you reject anything at any time, a connection will not be made. If you click **Back** on the web browser window, a screen appears on which other actions (including attempting to reconnect) can be performed.

A warning that the Java applet is requesting additional privileges may appear. It is trying to contact the DEFINITY ONE server. If this happens, click the **Grant** button. Also click **Remember this decision** if you do not want to see this warning again.

A connect window displays, asking you to choose which system to connect to. Only one TCP/IP host will be shown: `<IP address>` (unless you are connected via the customer's LAN).
4. Highlight this and click **Connect**.

If no hosts are shown, the pcAnywhere server on DEFINITY ONE is probably not running. If this is the case, ensure that you activated pcAnywhere properly. If you are sure that it is running, enter `<IP address>` in the Host Name: field and click **Connect**.

A “Connecting to Host” window appears for a while, and is replaced by a “Security Dialog” window.

5. Type the **Login Name** and **Password**. Use *lucent3* and its password.

Another “Connecting to Host” window appears for a while and then the web browser window contains a view of the DEFINITY ONE’s main console screen.

The screen will probably be larger than the web browser window and so scroll bars will show and can be used to look at different parts. The **Full Screen** icon in the top toolbar can be clicked and the DEFINITY ONE screen becomes as large as the PC or laptop’s screen and scroll bars are no longer needed. When this is done, the toolbar is hidden, and the right arrow button in the upper left corner can be clicked to display the toolbar again.

⚠ **WARNING:**

Changing the window size of your web browser window (by dragging a corner or maximizing) or going to other links with that window will either disconnect the session or attempt to run a new session. Use only the controls on the pcAnywhere EXPRESS toolbar until you are ready to disconnect.

💡 **NOTE:**

To continue to use the web browser while you are connected through pcAnywhere EXPRESS, use the web browser’s new window feature.

6. Click the **End Session** icon to cause a confirmation window to appear.

7. Click “Yes” to disconnect from DEFINITY ONE and allow the web browser window to be used again.
System administration/DEFINITY site administration (DSA)

DSA provides the standard Windows look and feel for performing basic switch administration. This includes wizards, tabbed windows, menus, and dockable windows. Customers who use DSA may administer telecommunications equipment as only a portion of their job responsibilities, and few will be expert users.

DSA offers customers a graphically-enhanced command line interface (called the Graphically Enhanced DEFINITY Interface, or GEDI) and a terminal emulation mode for SAT administration.

Access commands are available in the DEFINITY ONE system from the DSA application. Once the application is connected to the switch, commands can be entered on the command line in a similar way to using the SAT screen, or commands can be selected from the command lists appearing in the left frame of the screen, as shown in the screen below.
Use the [HELP] key for a list of options.

For help with DSA, click the Help menu. For further information regarding the operation of the DSA application, see “System administration/DEFINITY site administration (DSA)” on page 2-26.
DEFINITY ONE Lucent personnel logins

These are the DEFINITY ONE logins for Lucent personnel. See "Enable customer logins" on page 3-5 for further information on logins.

<table>
<thead>
<tr>
<th>Logins to enter system</th>
<th>Logins to enter DEFINITY</th>
<th>Logins to enter AUDIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>lucent1</td>
<td>dinit</td>
<td>atsc</td>
</tr>
<tr>
<td>lucent2</td>
<td>dinads</td>
<td>acraft</td>
</tr>
<tr>
<td>lucent3</td>
<td>dcraft</td>
<td>acraft</td>
</tr>
</tbody>
</table>

- Each row of logins has the same password. For example, the lucent1, dinit, and atsc logins all have the same password.
- The lucent logins are used for web browser and pcAnywhere access.
- All logins work for Telnet access.
- The d and a logins (columns 2 and 3) are used for DSA access.
System Initialization

This chapter describes the procedures needed to initialize the DEFINITY ONE system and is organized as follows:

- “Power up and observe LEDs” on page 3-2
- “Connect the laptop computer to DEFINITY ONE” on page 3-2
- “Start a Telnet session” on page 3-2
- “Verify the software version number” on page 3-2
- “Determine the serial number” on page 3-3
- “Obtaining a license file” on page 3-3
- “Resolve alarms” on page 3-4
- “Place a test call” on page 3-5
- “Enable customer logins” on page 3-5
- “Administer DEFINITY ONE” on page 3-6
 - Set the Time/Day on DEFINITY ONE
 - Check System Status from bash
 - DEFINITY Commands
 - Modem Set-up
- “Set up Call Accounting” on page 3-11
- “Administer DEFINITY for AUDIX initialization” on page 3-13
- “AUDIX administration” on page 3-22
- “Download Message Manager and DSA” on page 3-25
Power up and observe LEDs

See “LED boot sequence” on page E-1.

Connect the laptop computer to DEFINITY ONE

For this procedure, see “Connect the laptop computer to DEFINITY ONE” on page C-2.

Start a Telnet session

See “Via a Telnet session” on page 2-16 for an explanation of how to start a Telnet session.

Verify the software version number

The following procedure verifies the software version number with the CD-ROM that shipped with the system.

1. From the bash prompt, type swversion and press ENTER. This will display information about the version of software running on the system. The first line will display a string like: Release=G3V8c.02.0.014.0, which shows the load number of the software; in this case, load 14.

2. Remove the CD-ROM that shipped with the system in the door of the cabinet. Verify that the load number stamped on the CD-ROM matches the load number found in step 1.

3. If the load numbers match, continue to determine the serial number. If the load numbers do not match, the system software may need to be updated before proceeding further; see “Update software” on page 5-1. If the software on the hard drive is newer than the software on the CD-ROM, then escalate the problem.
Determine the serial number

1. From the bash prompt, type `serialnumber` and press \[\text{ENTER}\].
 The serial number is read and displayed.

2. Ensure that the serial number matches the label on the front of the circuit pack. If it does not match, use the serial number you obtained from the software mechanism — not from the label.

 \[\text{NOTE:}\]
 The serial number obtained in Step 1 is the number embedded in the firmware and must be used.

Obtaining a license file

The procedure required for the installation technician to obtain a license file includes tasks performed by both the technician and the DEFINITY Database Administration (DBA) Group at INADS.

License file installation information is available online. For further information, contact your Lucent technical services representative.

- For external access: www.lucent-teamworks.com
- For internal access: http://info.dr.lucent.com/~epr/contry

 \[\text{NOTE:}\]
 These procedures may not be applicable to international applications. For assistance, contact your Lucent representative.

1. Connect to the Laptop Computer following the procedure, “Connect the laptop computer to DEFINITY ONE” on page C-2.
2. Establish a Telnet session following the procedure “Via a Telnet session” on page 2-16.
3. At the LAC prompt, type `bash`.
4. Call (800) 248-1234 and press the numbers for the INADS administrator group (6 and then 2).
5. Ask for the license file by supplying the following information:
 - Human Resources ID (HRID)
 - DOSS order number
 - TN795 serial number
 - Installation Location (IL) code
 - INADS modem telephone number
The database administrator at INADS assigns a RAS IP address. INADS will execute the following steps using a set IP command:

- Execute the `setip` command on DEFINITY ONE by typing `setip ras =` and the INADS IP address. See “`setip command`” on page G-5 and “`Setting the name of the switch`” on page C-15.
- Reboot the system, using the `reboot nice` command in the bash shell.

6. One the system has rebooted, notify INADS that the system is ready to be dialed into. The INADS database group will establish connection to the system and download the license file.

7. Register adjuncts if applicable. Inform INADS if there are any other products to be registered, such as DEFLAN, CMS, etc., especially if there are products that should alarm to INADS. Also tell INADS if there are any external devices to alarm off the switch.

The `installconfig` command is run by the DEFINITY Database Administration Group (DBA). The command takes information from the license file for the system to reboot. After the system starts again, DEFINITY ONE’s user IDs with new passwords are set that correspond to what was in the install file. The control file has the serial number of the TN795 circuit pack and is valid only on this circuit pack. The control file cannot be used to activate software on any other DEFINITY ONE system. See Figure G-1.

The system is ready and all applications on the DEFINITY ONE platform are automatically started by the Watchdog process.

The DEFINITY ONE Emergency Transfer light goes out.

The installation is complete. Since translations were not removed, they are still present on the system. A restore is not needed during the normal installation.

Since the system rebooted, the browser and pcAnywhere connections will be lost.

Resolve alarms

Resolve any alarms using `DEFINITY ONE Communications Server Maintenance`, (555-233-111).

Check system status

See “`Lucent access controller bash commands`” on page G-1 for information about bash commands that are used in installation and administration.

1. Bring up a bash shell.
2. To verify system health, execute `d1stat` and `alarmstat`.
Place a test call

1. From any telephone connected to a digital line circuit pack, call any nearby telephone connected to an analog line circuit pack.
2. Verify that the dial tone, ringing pattern, and talk path are acceptable.
3. Place a call through the Central Office (outside call) to any nearby telephone.
4. Verify that the dial tone, ringing pattern, and talk path are acceptable.

Enable customer logins

This section contains information on:

- """ on page 3-5
- “Enable customer Web logins” on page 3-6

See Appendix B, “Set Up and Use of Customer Logins” for information and procedures on:

- AUDIX logins for customer accounts (vm, sa, browse)
- Customer logins to the web interface
- User level logins within DEFINITY

Table 3-1. DEFINITY customer logins

<table>
<thead>
<tr>
<th>DEFINITY customer logins</th>
<th>Comments</th>
<th>Default password</th>
</tr>
</thead>
<tbody>
<tr>
<td>defty1</td>
<td>This is the customer level “super user” login within the DEFINITY application. Its use should be restricted to the system administrator. This login can be used to create additional DEFINITY logins. See the DEFINITY command add login.</td>
<td></td>
</tr>
</tbody>
</table>

Enable AUDIX logins

See Appendix B, “Set Up and Use of Customer Logins”. Appendix B also includes information on the AUDIX logins sa, vm, and browse, and the uses of each login as well as AUDIX commands accessible to each login.
Enable customer Web logins

When the system leaves the factory, the only login that has access to the web interface is the login NTadmin. The customer may wish to create additional logins; for example, to download the Message manager. See Appendix B, “Windows NT logins for the customer” on page B-3.

Enable DEFINITY Logins

See “DEFINITY logins for the customer” on page B-9

Administer DEFINITY ONE

DEFINITY ONE commands

DEFINITY ONE bash commands are useful for administration and installation tasks. These commands are allowed for the Lucent services login. See “Lucent access controller bash commands” on page G-1, and DEFINITY ONE Communications System Maintenance, (555-233-111) (also on the documentation CD), for information about these commands.

Set date/time/time zone (Windows NT)

Set the computer and DNS name to 8 characters or less. For example, define.

NOTE:
pcAnywhere does not have to be used for connection via a monitor and keyboard. It is used if you are accessing DEFINITY ONE via a PCMCIA ethernet card, LAN, or RAS connection.

The following procedure describes setting the date and time.

1. Connect to the DEFINITY ONE desktop by following the procedure, “Via a PCMCIA ethernet (NIC) network connection” on page 2-2 or “Via local monitor/mouse/keyboard” on page 2-2.

2. Click Settings > Control Panel.

The Control Panel screen displays.

3. Click Date/Time.

The Date/Time Properties screen displays.

 a. Select the correct day, month, and year.

 b. Click Time Zone.
1. Select the correct time zone.
 If you are in an area that does not go on daylight savings time, uncheck the box before, **Automatically adjust clock for daylight savings change.**

Administer customer’s LAN interface

The customer's LAN connects to the ethernet jack of the processor interface cable. See "**setip command**" on page G-5 for more information on the **setip** command from the command line interface. See Windows Help for the Windows NT method to change interface parameters.

The customer provides:

- IP address
- Subnet mask
- Default gateway

In the event that a customer needs a new IP address, customers can access the NT desktop via pcAnywhere.

Change customer options

Refer to **DEFINITY Enterprise Communications Server Release 8.2 Administrator's Guide**, (555-233-506) to view a sample screen.

The following DEFINITY features are part of the basic software package and do not require activation. They default to **y** (yes) on the Optional Features form.

- ARS/AAR Partitioning
- Emergency Access to Attendant
- Service Observing

NOTE:
A **lucent1** login is required to change customer options. Contact your regional Customer Software Administrator (CSA) to perform this function.

1. In a SAT session or DSA window, type **change system-parameters customer-options** and press **ENTER**.
2. Using the customer order, enable the optional features purchased by the customer (as shown by PEC codes on the customer order).
3. Press **ENTER** when finished to submit the form.
4. Log off and then log back in to set the customer option changes.
5. Type **save translations**.
Set country options

Some of the country options must be set on the change system parameters country options screen, displayed below, to turn off the red alarm LEDs.

1. Enter change system-parameters country options and press ENTER.
2. A similar screen displays:

```
Companding Mode: Mu-Law
Base Tone Generator Set: 1
446Hz Puls-dial Tone? n
446Hz Secondary-dial Tone? n
Analog Ringing Cadence: 1
Set Layer T timer T1 to 30 seconds? n
Analog Line Transmission: 1
6/48Vx Display Character Set: Roman
Houler Tone After Busy? n
Disconnect on No Answer by Call Type? n
Tone Detection Parameters:
Tone Detection Mode: 6
Interdigit Pause: short
```

The default (United States) companding mode is mu-law. If the country uses A-Law companding, proceed to the next step.

3. Enter A-Law.
4. Click ENTER.

NOTE:
Other items eventually need to be entered on this screen, but this is all that is needed to turn the red alarm LEDs off.

The country codes are set as needed according to the following fields:

1. Digital Loss Plan:
2. Analog Ringing Cadence:
3. Analog Line Transmission:

See Table 3-9.

Log into the System

1. Verify that the screen displays: Login:
2. Enter craft.
3. Click ENTER.
4. Enter crftpw.
5. Click ENTER.

The password does not display as it is entered. The screen displays the system software version and the following terminal types: (513, 715, 4410, 4425, VT220): [513].

6. Enter the type of management terminal (such as 715).

7. Click ENTER.

Check System Status

The system status may suggest problem areas. Refer to DEFINITY Enterprise Communications Server Release 8, Maintenance for R8csi.

To access system status:

1. Enter status system all-cabinets.
2. Click Enter.
3. Verify that the screen displays the service state of in for all appropriate areas.

Table 3-2. Country Codes

<table>
<thead>
<tr>
<th>Country</th>
<th>Code</th>
<th>Country</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>1</td>
<td>France</td>
<td>12</td>
</tr>
<tr>
<td>Australia</td>
<td>2</td>
<td>Germany</td>
<td>13</td>
</tr>
<tr>
<td>Japan</td>
<td>3</td>
<td>Czechoslovakia</td>
<td>14</td>
</tr>
<tr>
<td>Italy</td>
<td>4</td>
<td>Russia</td>
<td>15</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>5</td>
<td>Argentina</td>
<td>16</td>
</tr>
<tr>
<td>Singapore</td>
<td>6</td>
<td>Greece</td>
<td>17</td>
</tr>
<tr>
<td>Mexico</td>
<td>7</td>
<td>China</td>
<td>18</td>
</tr>
<tr>
<td>Belgium</td>
<td>8</td>
<td>Hong Kong</td>
<td>19</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>9</td>
<td>Thailand</td>
<td>20</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>10</td>
<td>Macedonia</td>
<td>21</td>
</tr>
<tr>
<td>Spain</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Set up your system

You are now ready to follow procedures to launch your system including:

- Setting up dial plans, feature access codes (FACs), and extension ranges
- Adding extensions for users
Setting up special features
Setting up routing
Assigning and changing users

See “Configure DSA” on page 7-7 to set up DSA.

For more information, see:
- DEFINITY System's Little Instruction Book for Basic Administration, (555-230-727)
- DEFINITY System's Little Instruction Book for Advanced Administration, (555-233-712)
- DEFINITY System's Little Instruction Book for Basic Diagnostics, (555-233-713)
- The on-line DSA help

Add translations

Administer telephone features

1. Administer these features (DEFINITY Translations, AUDIX Mailboxes, etc.) per customer order via one of two ways:
 a. DSA (web)
 DSA must be installed on the laptop or remote PC that is connected to the system
 Connect the PCMCIA card with the laptop or through Remote PC using the web browser (Windows Explorer or Netscape).
 b. Lucent Access Control (LAC) [telnet]
 (For direct SAT access without going through DSA)
 Telnet to DEFINITY ONE through the LAC to receive the SAT screen. See “Start a Telnet session” on page 3-2.
Set up Call Accounting

Lucent Technologies provides the following call accounting products to help reduce telephone expenses, optimize resources, assign costs, identify abuse, and clearly understand telephone expenses and convey that understanding to others:

- Telecommunications Management System (TMS)
- Call Accounting System NT (CAS-NT)
- Call Accounting System (CAS) for Windows

The following is an example of how to set up one of these products, Call Accounting System (CAS) for Windows, a comprehensive call accounting package that runs on a PC as a Windows application. It receives Call Detail Records (CDRs) from a switch on premises and processes the information into management reports. DEFINITY ONE creates the CDR file where the CDR records are written and the file is put into a directory. CAS for Windows is widely compatible and requires little maintenance, even while collecting data, generating reports, and managing remote data collection sites.

CAS for Windows needs access to come across the network to access the file and directory with full read and write permissions. DEFINITY ONE has to share the CDR directory with full permissions. This procedure will only work if you have a keyboard and monitor, pcAnywhere, or have already mapped your PC to the drive on DEFINITY ONE.

NOTE:
Depending on the customer’s specific network, the setting up of CAS for Windows access will vary. See the system/network administrator to ensure that proper permissions are set up for the file and directory.

1. From the DEFINITY ONE desktop, right click **Start**, either locally or through pcAnywhere.
2. Click **Explore**.
 The **Windows Explorer** screen displays.
3. Click + by the D drive.
 The D drive folders display.
4. Click + by **Lucent Data**.
 The **Lucent Data** folders display.
5. Click **Cdr**.

 If cdr has been enabled in the switch, you see two files, cdr.out and cas.in.

 The CAS for Windows (CDR Collection device) obtains the CDR records from cas.in and then removes that file. The current CDR records are placed in cdr.out. When this file reaches a certain size, the cdr.out file is renamed cas.in. CAS for Windows obtains those CDR records from cas.in as more current records are placed in cdr.out.

 In order for CAS for Windows to remove cas.in, the CDR folder must be shared with permissions granted to the user login under which CAS for Windows is running.

6. Right click **cdr**.
7. Click **Properties**.
8. Click **Sharing**.

 The **CDR Properties** screen displays.
9. Click **Shared As**.
10. Click **Permissions**.

 The **Access Through Shared Permissions** screen displays and highlights **Everyone / Full Control**.
11. Click **OK**.

 The **Properties** screen displays.
12. Click **Security**.
13. Click **Permissions**.

 The **Directory Permissions** screen displays.
14. Click **Add**.

 The **Add Users and Groups** screen and the groups display.
15. Click **Show Users**.
16. Highlight the login under which CAS for Windows will be running. (See the LAN administrator if you do not know the user.)
17. Click **Add**.

 The **Add Names** box displays the user.
18. Click **Full Control** under **Type of Access**.
19. Click **OK**.

 The **Directory Permissions** screen displays.
20. Click OK.

The CDR Properties screen displays.

21. Click OK.

The hand on cdr indicating sharing displays.

Administer DEFINITY for AUDIX initialization

Check the Dial Plan

The dial plan tells the system how to interpret dialed digits and how many digits to expect for certain calls. For example, if a 9 is dialed to access an outside line, the dial plan tells the system to find an external trunk for a dialed string beginning with 9.

To check the dial plan:

1. At the SAT or DSA window, enter disp dial.

 The Dial Plan Record form displays, which should have the correct local node number and extension length.

<table>
<thead>
<tr>
<th>Display dialplan</th>
<th>DIAL PLAN RECORD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Local Node Number: 13</td>
</tr>
<tr>
<td>Uniform Dialing Plan: 4-digit</td>
<td></td>
</tr>
<tr>
<td>ETR Routing Pattern:</td>
<td></td>
</tr>
<tr>
<td>FIRST DIGIT TABLE</td>
<td></td>
</tr>
<tr>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>1: 1 - 2 - 3 - 4 - 5 - 6 - 7: extension</td>
<td></td>
</tr>
<tr>
<td>3:</td>
<td></td>
</tr>
<tr>
<td>4:</td>
<td></td>
</tr>
<tr>
<td>5:</td>
<td></td>
</tr>
<tr>
<td>6:</td>
<td></td>
</tr>
<tr>
<td>7: dac</td>
<td></td>
</tr>
<tr>
<td>8:</td>
<td></td>
</tr>
<tr>
<td>9: dac</td>
<td></td>
</tr>
<tr>
<td>*: fac</td>
<td></td>
</tr>
<tr>
<td>#: fac</td>
<td></td>
</tr>
</tbody>
</table>

2. Make note of the local node number (first digit) and the extension length. The number of digits or the local node number can only be changed through the web interface.

3. Press [F1] [Cancel].

Check Hunt Groups

1. At the SAT or DSA window, type list hunt group.
The Hunt Groups form displays.

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Ext</th>
<th>Type</th>
<th>MEAS</th>
<th>Vec</th>
<th>MCH</th>
<th>Que No.</th>
<th>Ext</th>
<th>Ctrl</th>
<th>Notify/ Dem</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>monroe voice hunt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>paradox voice hunt</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>rossville voice hunt</td>
<td></td>
</tr>
</tbody>
</table>

2. Note the following information about the AUDIX hunt group:
 - Grp No.
 - Grp Name
 - Ext.

3. Press [Cancel].

Check Class of Service

1. At the SAT or DSA window, type **disp cos**.

The Class of Service form displays.

2. Find the COS you plan to use for the AUDIX port stations, it is usually COS 5.
3. Ensure that Data Privacy and Restrict Call Fwd-Off Net are set to **y**.
4. Ensure the other fields are set to **n**.
5. Press [Cancel].
Check Class of Restriction

1. At the SAT or DSA window, type **disp cor 1**, where 1 is the COR you plan to use for the AUDIX port stations.

The Class of Restriction form displays.

```
COR Number: 1
COR Description: audix

FRL? 7
APLTF y

Can Be Service Observed? n
Can Be a Service Observer? n

Calling Party Restriction: none
Called Party Restriction: none

Time of Day Chart: 1
Forced Entry of Account Codes? n

Priority Queuing? n
Direct Agent Calling? n

Restriction Override: none
Facility Access Trunk Test? n

Restricted Call List? n
Can Change Coverage? n

Access to MCF? y
Fully Restricted Service? n

Category for WFC HIN? 7
Send HIN for WEC? n
MF HIN Prefix: Automatic Charge Display? n
Near System Music on Hold? y
PASTE (Display PBX Data on Phone)? n
Can Be Picked Up By Directed Call Pickup? n
Can Use Directed Call Pickup? n

Group Controlled Restriction: inactive
```

2. Ensure that the COR has an FRL of 7 to allow for Outcalling and Fax Print.
3. Ensure that Calling Party Restriction is set to **none**.
4. Ensure that Time of Day Chart is set to 1.
5. Press (F7) [Next Page].

Page 2 of the Class of Restriction form displays.
6. Press (F7) [Next Page].

Page 3 of the Class of Restrictions form displays.

```
COR Number: 1
COR Description: audix

FRL? 7
APLTF y

Can Be Service Observed? n
Can Be a Service Observer? n

Calling Party Restriction: none
Called Party Restriction: none

Time of Day Chart: 1
Forced Entry of Account Codes? n

Priority Queuing? n
Direct Agent Calling? n

Restriction Override: none
Facility Access Trunk Test? n

Restricted Call List? n
Can Change Coverage? n

Access to MCF? y
Fully Restricted Service? n

Category for WFC HIN? 7
Send HIN for WEC? n
MF HIN Prefix: Automatic Charge Display? n
Near System Music on Hold? y
PASTE (Display PBX Data on Phone)? n
Can Be Picked Up By Directed Call Pickup? n
Can Use Directed Call Pickup? n

Group Controlled Restriction: inactive
```

107 y 127 y 247 y 367 y 487 y 687 y 727 y 847 y
15 u 135 u 255 u 375 u 495 u 615 u 735 u 855 u
27 u 147 u 267 u 387 u 507 u 627 u 747 u 867 u
39 u 157 u 277 u 397 u 517 u 637 u 757 u 877 u
49 u 167 u 287 u 407 u 527 u 647 u 767 u 887 u
59 u 177 u 297 u 417 u 537 u 657 u 777 u 897 u
69 u 187 u 307 u 427 u 547 u 667 u 787 u 907 u
79 u 197 u 317 u 437 u 557 u 677 u 797 u 917 u
89 u 207 u 327 u 447 u 567 u 687 u 807 u 927 u
99 u 217 u 337 u 457 u 577 u 697 u 817 u 937 u
109 u 227 u 347 u 467 u 587 u 707 u 827 u 947 u
119 u 237 u 357 u 477 u 597 u 717 u 837 u 957 u
```
7. Ensure that all fields are set to y so there are no restrictions.

   ![NOTE]
   Pay attention to toll fraud issues.

8. Press [Cancel].

**Change the Dial Plan**

To change the dial plan, enter `disp dial` at the SAT or DSA Window.

1. Enter `change dialplan`.
2. Press Return.

The Dial Plan Record screen displays:

![Dial Plan Record Screen]

3. Click the field in the row 7, column 3.

   This field defines system function when users dial any number from 700 to 799

4. Enter `dac` in the selected field.
5. Press Enter to save your changes.
Add extension ranges

New extension can be added as your needs grow. Each new extension must belong to a range that is defined in the dial plan.

To add a set of extension stats, for example, start with 3 and are 4 digits, such as 3000-3999:

1. Enter change dialplan and press Return

The dial plan record screen appears:

```
1: 2: extension
3:
4:
5:
6:
7: dac
8: dac
9: dac
0: fac
+; fac
#; fac
```

2. Click row 3 in the column 4.
3. Enter extension in the selected field.
4. Press ENTER to save your changes.

Add stations

Stations are added by entering a change machine command with the starting and ending numbers. For example, 0000--9999 starting and ending range for a 4-digit extension length.

This procedure sets up stations for AUDIX ports.

1. At the SAT or DSA window, enter `add sta <number>`, where `number` is the station you want to use for the first AUDIX port.
The Station form displays.

2. Type **2500** in the Type field.
3. Type **01A1201** in the Port field.

**NOTE:**
This is a virtual port used to communicate between DEFINITY and AUDIX.

4. Type a name in the Name field.
5. Enter the correct COR and COS.
6. Ensure that Tests? is set to **n**.
7. Press **Next Page**.

Page 2 of the Station form displays.

8. Ensure that LWC Reception is set to **audix**.
9. Ensure that all other fields, except for Switchhook Flash and Adjunct Supervision, are set to **n**.
10. Press **Next Page**.
Page 3 of the Station form displays.

11. Ensure that Line Appearance is set to call-appr.

12. Press [Enter].

13. Type `duplicate station <number>`, where `<number>` is the station you set up for the first AUDIX port.

14. The Duplicate Station form displays.

15. Add the 7 remaining stations.

This allows you to add all the stations at the same time on the same form.
Make a Hunt Group

1. At the SAT or DSA window, type **add hunt next**.
   
   The Hunt Group form displays.

   ![Hunt Group Form](image)

   - **Group Number**: 9
   - **Group Name**: AUDIX
   - **Group Extension**: 2999
   - **Group Type**: ucd-mia
   - **Message Center**: audix
   - **Calling Party Number to INTUITY AUDIX**: n
   - **First Announcement Extension**: __
   - **Delay (sec)**: __

2. Note the Group Number.
3. Type a name in the Group Name field.
4. Type the Group Extension, that is the Extension from the Hunt Groups form.
5. Ensure that Group Type is set to **ucd-mia**.
6. Ensure that Queue is **y** and Queue Length is **8**.
7. Press **[Next Page]**.
8. The Hunt Group form displays.

   ![Next Page Form](image)

9. Ensure that Message Center is set to **audix**.
10. Press **(TAB)**.

    The Calling Party Number to INTUITY AUDIX field appears.
11. Ensure that this field is set to **n**.
12. Ensure that LWC Reception is set to none.

13. Press [Next Page].

You receive page 3 of the Hunt Group form.

14. Type the extensions of the 8 stations you entered before.

15. Press [Enter].

Change Coverage Path

1. At the SAT or DSA window, type add cov pa 1.

You receive the Coverage Path form.

2. Ensure that Number of Rings is set to 3.

3. Ensure that Point1 is set to the AUDIX hunt group that you previously set up.

4. Press F3 [Enter].
Add test phones

1. At the SAT or DSA window, type `add sta next`.

   - **Extension:** 2009
   - **Type:** 61090n
   - **Lock Messages:** n
   - **Security Code:**
   - **TN:** 1
   - **Coverage Path 1:** 1
   - **Coverage Path 2:**
   - **COS:** 1
   - **Name:** test station 1
   - **Port:**
   - **Hunt-to Station:**
   - **Speakerphone:** 2-way
   - **Display Language:** English
   - **Personalized Ringing Pattern:**
   - **Message Lamp Ext:** 2099
   - **Mute Button Enabled:** y

2. Type the type of phone you are using in the Type field.
3. Type the port in the Port field.
4. In the Coverage Path 1 field, type the number of the coverage path you just created or changed.
5. Fill in any other appropriate fields.

**AUDIX administration**

This section provides information about AUDIX commands and administering AUDIX initialization. For additional information about AUDIX administration, refer to the *AUDIX Administration PDF files* on the Documentation CD and *DEFINITY ONE Communications System AUDIX Command Line Administration Quick Reference* (555-233-737).
AUDIX commands

Commands available to change system settings and subscriber information in the AUDIX application are executable from the AUDIX command prompt. Users access the AUDIX command prompt from the DSA or Telnet interface. To view a list of commands, click F6 [Choices], from the command prompt. The following AUDIX screen displays:

Adding an AUDIX subscriber

After completing the machine level translations, subscribers must be added to the DEFINITY ONE system. The following forms detail the addition of AUDIX subscribers. Enable the AUDIX forms via DSA or Telnet.

1. Start at the AUDIX command prompt screen.
2. Enter the command Add Subscriber and the extension number that the new subscriber will use.
3. Enter the data for the subscriber on page 1 of the Add Subscriber Form as detailed in Table 3-24.
Add Subscriber Form, page 1

<table>
<thead>
<tr>
<th>Field</th>
<th>Valid input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Subscribers Name</td>
<td>This is the name of the subscriber. In the example above: Jones, John</td>
</tr>
<tr>
<td>Extension</td>
<td>Extension number</td>
<td>This is the extension number assigned on DEFINITY for the subscriber</td>
</tr>
<tr>
<td>Password</td>
<td>Can be alpha or numeric</td>
<td>Subscribers password. Input a temporary password and instruct the new subscriber to change their password when they log in to AUDIX</td>
</tr>
<tr>
<td>COS</td>
<td>class00 to class11</td>
<td>Class of service; contains features that a AUDIX subscriber could be enabled to use. Setup the Class of Service on the system before adding subscribers.</td>
</tr>
</tbody>
</table>

4. Press [Enter] to save the information.

When adding subscribers to AUDIX, the preferred method is to first set up a Class of Service (COS) for a group of AUDIX subscribers. Using this method the data is filled in for you on page 2 of the Add Subscriber form. The following is an example of page 2 of the Add Subscriber form.

Press [ENTER] to execute or press [CANCEL] to abort
enter command: add subscriber 2600
Add Subscriber Form, page 2

```
monroe Active Alarms: WA Logins: 1
add subscriber 2600

SUBSCRIBER CLASS OF SERVICE PARAMETERS
Addressing Format: extension Login Announcement Set: System
System Multilingual is OFF Call Answer Primary Ann. Set: System
Call Answer Language Choice? n Call Answer Secondary Ann. Set: System

PERMISIIONS
Type: call-answer Announcement Control? n Outcalling? n

INCOMING MAILBOX Order: fifo Category Order: nuo
Retention Times (days), New: 10 Old: 10 Unopened: 10
OUTGOING MAILBOX Order: fifo Category Order: unfda
Retention Times(days), File Cab: 10 Delivered/Nondeliverable: 10

Voice Mail Message (seconds), Maximum Length: 1200 Minimum Needed: 32
Call Answer Message (seconds), Maximum Length: 1200 Minimum Needed: 8
End of Message Warning Time (seconds):
Maximum Mailing Lists: 25 Total Entries in all Lists: 250
Mailbox Size (seconds), Maximum: 1200 Minimum Guarantee: 0
Press [ENTER] to execute or press [CANCEL] to abort
enter command: add subscriber 2600
```

Download Message Manager and DSA

Install Message Manager

See Chapter 8, “Message Manager Installation” for instructions on installing Message Manager.

Download DSA

> NOTE:
The IP address will be different depending on the type of physical connection established.

1. Enable your browser (Start > Programs > Netscape or Internet Explorer).
2. Type http://<IP address> in the address area of the web browser.
The home page displays:

3. Click **Administer System**.

   A similar screen displays:

   ![Username and Password Required](image)

   **Username and Password Required**

   Enter username for august@lucent.com at augst1@lucent.com.

   **User Name:**

   **Password:**

   ![OK and Cancel buttons](image)

4. Type the user name and password.

   **NOTE:**

   The Lucent Services representative uses the logins **lucent1**, **lucent2**, or **lucent3** and the NT password from the LAC password/ASG challenge. The customer uses an appropriate password to log in, such as NTadmin.
5. After reading the screen, click **Continue**.

The following screen displays:

6. Click **Download Software**.
The Software Download screen displays:

- **DSA** (DEFINITY Site Administration)
  Download DSA to your computer to remotely administer Definity ECS and Infinity Audit
  (15.8 MB, updated: Aug 3rd, 1999)
- **Message Manager**
  Download Message Manager Software to your computer to access your Infinity Audit messages.

7. Click **DSA**.
   The Save As dialog box displays.

8. Choose a destination, such as the desktop.
   The Locations Saved To screen displays. When DSA is saved, it reverts to the Software Download screen.

9. Double click on the application name in the directory where you saved it.
   The Unpacking DEFINITY Site Administration screen and a Welcome screen display.

10. Click **Next**.
11. The DEFINITY Site Administration screen, including an Installing screen and related information, displays:

```
Press Next.

12. Click Finish when the “please wait” message disappears.

A README file displays that contains useful information about DSA. DSA is installed on your PC and a DSA icon appears under Start > Programs > DEFINITY Site Administration.
Start a DSA session

DSA can be started as a normal application from Windows at the start button. To start a DSA session:

1. Enable your browser (Start > Programs > Netscape or Internet Explorer).
2. Type http://<IP address> in the address area of the web browser.
 The DEFINITY ONE home page displays:
3. Click Administer System.
 A similar screen displays:
4. Type your user name and password.

NOTE:
The Lucent Services representative uses the logins lucent1, lucent2, or lucent3 and the NT password from the LAC password/ASG challenge. The customer uses an appropriate password to log in, such as NTadmin.
5. The following screen displays:

NOTICE:

By use of this system, you accept the terms and conditions of the license agreements for all third-party software included with this product. Failure to comply with these agreements could result in legal action by the third-party vendor(s).

This product is designed for the use of authorized Lucent Technologies products only. Use of this system for any other third-party applications is strictly prohibited and will result in the modification of Lucent Technologies warranty and post-warranty obligations.

This system is restricted to authorized users for legitimate business purposes. Unauthorized access is a criminal violation of the law. Copyright (c) 1992 - Lucent Technologies Unpublished & Not for Publication

- Don't show this message again

[Continue]

6. After reading the screen, click **Continue**.

The following screen displays:

- **System Administration**
 - DEFINITY KX on Bosma
 - Intuity AIXX on Bosma
 - Default AUDIX Settings
 - AUDIX Networking

- **System Maintenance**
 - Backup & Restore
 - Shutdown or Restart Bosma

- **Remote Control - ppcAnywhere**
 - Start Host Service on Bosma
 - Stop Host Service on Bosma
 - Start Java Client on your computer

 The first two links will work only if you have already installed DEFINITY Site Administration on your computer.

 Click on the Download Software link at the left to install DEFINITY Site Administration.
7. Click DEFINITY ECS or INTUITY AUDIX on <machine name> in the right pane.

 This will launch DSA.

8. Set up daily automatic backups of AUDIX. Backups can be to the LAN, PCMCIA card, or preferably, to a directory on your server. See “Backup and restore main menu” on page C-23.

Scheduling backups

See “Adding a new scheduled backup (multiple backup schedules)” on page C-27.
This chapter provides information to administer digital networking after the initial system administration is complete. For further information, see INTUITY AUDIX Administration.

This chapter is organized as follows:

- “Initial administration tasks” on page 4-1
- “Viewing the Feature Options window” on page 4-3
- “Changing the number of administered remote users” on page 4-5
- “Administering networking channels” on page 4-6
- “Changing local machine information” on page 4-7
- “Adding a remote machine” on page 4-12
- “Performing a full remote update” on page 4-21
- “Resetting automatic deletion of nonadministered remote users” on page 4-21
- “Viewing remote extensions” on page 4-22

Initial administration tasks

To perform initial administration, complete the tasks shown in sequential order in Table 4-1. Confirm that each of the tasks are performed, as some may have been completed by the technician at installation.

The design center provides information for completing digital networking administration. Ensure that you have design center specifications for TCP/IP, network channels, the local machine, and all remote machines.
Table 4-1. Initial administration tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Screens, windows, or commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Windows NT and switch administration (normally done by the technician at the time of installation).</td>
<td>Define the machine name, TCP/IP address, and the switch to work with AUDIX digital networking.</td>
<td>Windows NT Settings screens and Switch screens</td>
</tr>
<tr>
<td>View digital networking settings. See “Viewing the Feature Options window” on page 4-3.</td>
<td>Verify that the purchased digital networking options are correctly displayed.</td>
<td>List Configuration Window</td>
</tr>
<tr>
<td>Verify or change the number of administered remote users (normally done by the technician at the time of installation). See “Changing the number of administered remote users” on page 4-5.</td>
<td>Define the number of administered remote users to be equal to or greater than the number of all mailboxes on all remote systems.</td>
<td>System Parameters Limits Screen</td>
</tr>
<tr>
<td>Administer network channels (normally done by the technician at the time of installation). See “Administering networking channels” on page 4-6.</td>
<td>Enable the channels to create a communication link between the ACCX card and the switch or the LAN card and the LAN.</td>
<td>Networking Channel Administration Window</td>
</tr>
<tr>
<td>Change the local machine. “Changing local machine information” on page 4-7.</td>
<td>Define local machine information for digital networking.</td>
<td>Machine Profile Screen; Local Machine Administration Window</td>
</tr>
<tr>
<td>Add a remote machine or change a remote machine (normally done by the technician at the time of installation). See “Adding a remote machine” on page 4-12.</td>
<td>On the local machine, define information about each remote machine, including the machine name, password, connection type, and dial string.</td>
<td>Digital Network Machine Administration Window; Machine Profile Screen</td>
</tr>
<tr>
<td>Administer the AUDIX system on the remote machines.</td>
<td>On each remote machine, define information about the local machine.</td>
<td>Remote Machine Profile Screen of the remote machine</td>
</tr>
<tr>
<td>Perform a full remote update. See “Performing a full remote update” on page 4-21.</td>
<td>Manually run a remote update for each remote machine to bring the network up to date immediately.</td>
<td>get remote update command</td>
</tr>
</tbody>
</table>

Continued on next page
Table 4-1. Initial administration tasks — Continued

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Screens, windows, or commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set automatic deletion of nonadministered remote users. See “Resetting automatic deletion of nonadministered remote users” on page 4-21.</td>
<td>Sets the system to delete nonadministered remote users automatically.</td>
<td>System Parameters Features Screen</td>
</tr>
<tr>
<td>View remote extensions. See “Viewing remote extensions” on page 4-22.</td>
<td>Check that remote users were added to the local database.</td>
<td>List Remote Extensions Screen</td>
</tr>
<tr>
<td>Record remote machine names.</td>
<td>Record the names of remote systems so that local users hear voiced confirmations when addressing messages to users on those remote systems.</td>
<td>Use the telephone to perform this task.</td>
</tr>
</tbody>
</table>

Viewing the Feature Options window

View the Feature Options window to see the purchased options for digital networking. This window is display only, and can be changed only by certified Lucent Technologies personnel.

To display the Feature Options window:

1. Start at the AUDIX Command Prompt screen.
Screen 4-1. AUDIX command prompt screen

2. At the enter command: prompt, enter list configuration

The List Configuration Screen displays:

Screen 4-2. List Configuration Screen

3. Contact your Lucent Technologies representative if you need more than the enabled number of ports or if you want to add TCP/IP networking.
Changing the number of administered remote users

The number of administered remote users must be equal to or greater than the number of mailboxes on all remote systems networked with this local system.

To change the number of administered remote users:

1. Start at the AUDIX command prompt screen.

2. Enter `change system-parameters limits` at the `enter command` prompt.

 The System-Parameters Limits Screen displays:

 ![System-Parameters Limits Screen](Image)

3. Enter the number of remote users in the Administered Remote: field.

4. Press F3 [Enter] to save the information in the system database.

 The cursor returns to the command line, and the system displays the following message:

 Command Successfully Completed.

5. Enter `exit` or another administrative command at the `enter command:` prompt.
Administering networking channels

Enable the network channels so the local AUDIX system can exchange voice messages over the digital network. Enabling the channels creates a communication link between the ACCX card and the switch or between the LAN card and the LAN and/or the wide area network (WAN).

To enable the network channels:

1. Start at the DEFINITY ONE main page from Internet Explorer or Netscape, and select Administer System > AUDIX Networking > Administrative Menu > Network Channel Administration.

 The system displays the Network Channel Administration Window.

 Screen 4-4. Network Channel Administration Window

 2. Click Enable for each channel in the Channel Configuration column.

 3. Click Save.

 The system takes a few seconds to change the hardware configuration. The system displays a confirmation message when the process finishes.
Changing local machine information

You can change local machine information on the Machine Profile Screen for the Local Machine and on the Local Machine Administration window.

NOTE:
If you change the local machine profile, contact all remote network administrators and inform them of the changes.

Changing the local machine profile

1. Start at the AUDIX command prompt screen.
2. Enter `change machine` at the `enter command:` prompt.

 The system displays the Machine Profile Screen for the Local Machine, Page 1.

 ![Screen 4-5. Local Machine Profile Screen, Page 1](image)

3. Complete the fields on this screen using the information from the table below.

 NOTE:
 The Machine Name, Type, Location, Extension Length, and Voice ID fields are display only and cannot be changed except via the web page.
Table 4-2. Field definitions; local machine profile screen, page 1

<table>
<thead>
<tr>
<th>Field</th>
<th>Valid input</th>
<th>Procedure/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Name</td>
<td>Display only</td>
<td>Displays the Machine Name for the local machine. This value comes from the network settings in Windows NT.</td>
</tr>
<tr>
<td>Machine Type</td>
<td>Display only</td>
<td>Displays local.</td>
</tr>
<tr>
<td>Location</td>
<td>Display only</td>
<td>Displays local.</td>
</tr>
<tr>
<td>Voiced Name?</td>
<td>y = yes, n = no</td>
<td>The Voice Name field contains an n until you record a name for the machine. This field automatically changes to y when you record a name for the machine.</td>
</tr>
<tr>
<td>Extension Length</td>
<td>an integer, 3 through 10</td>
<td>Enter the length of extensions on the local system. The value you enter must match the extension length in your dial plan.</td>
</tr>
<tr>
<td>Voice ID</td>
<td>Display only</td>
<td>Displays a system-assigned identifier that you must use to identify the machine if you decide to record machine names.</td>
</tr>
<tr>
<td>Default Community</td>
<td>an integer, 1 through 15</td>
<td>If you have administered your system to use community sending restrictions, enter the default community number for your user population.</td>
</tr>
<tr>
<td>Prefix</td>
<td>0 to 21 alphanumeric characters</td>
<td>Prefixes can be used on the local machine, but they limit the functionality and are not recommended. For a detailed discussion of the use and implications of prefixes, see the AUDIX Fax Administration documentation.</td>
</tr>
</tbody>
</table>

Continued on next page
4. When you have finished entering information on this screen, press F7 [NextPage].

Table 4-2. Field definitions; local machine profile screen, page 1 — Continued

<table>
<thead>
<tr>
<th>Field</th>
<th>Valid input</th>
<th>Procedure/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Ext.</td>
<td>a 3-digit to 10-digit string</td>
<td>Enter the starting extensions for the ranges of telephone numbers used on the local system. (Designate a block of switch extensions that can be used at the local system when assigning users.) For example, if your system uses extensions between 2000 and 3000, enter 2000 in the Start Ext. field. Up to 10 different ranges can be specified to pinpoint the exact set of extension blocks used by the local system. The length of the start and end extension must agree with the Extension Length field. For a 5-digit extension, the default is 00000 to 99999.</td>
</tr>
<tr>
<td>End Ext.</td>
<td>a 3-digit to 10-digit string</td>
<td>Enter the ending extensions for the ranges of telephone numbers used on the local system. For example, if your system uses extensions between 2000 and 3000, enter 3000 in the End Ext. field.</td>
</tr>
<tr>
<td>Warnings</td>
<td>Display only</td>
<td>This field displays a warning when a duplication or overlap of an extension range for another machine is being assigned.</td>
</tr>
</tbody>
</table>
The system displays Machine Profile Screen for the Local Machine, Page 2.

Screen 4-6. Local Machine Profile Screen, Page 2

5. Complete the fields on this screen using the information provided in the following table.

Table 4-3. Field definitions; local machine profile screen, page 2

<table>
<thead>
<tr>
<th>Field</th>
<th>Valid input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow Automatic Full Updates</td>
<td>y = yes</td>
<td>If y, the local AUDIX system automatically requests full updates from remote systems. If n, the local AUDIX system does not automatically request full updates from remote systems.</td>
</tr>
<tr>
<td></td>
<td>n = no</td>
<td></td>
</tr>
<tr>
<td>Updates:</td>
<td></td>
<td>If y, this local AUDIX system will accept updated user database information from any remote machine (the Updates In field must also be set to y on the remote Machine Profile screen setup on the local AUDIX system for each remote machine). If n, the local AUDIX system will not accept updates from any remote machine regardless of the entry on the remote Machine Profile screen. Set this field to y only after testing the network end-to-end during initial administration.</td>
</tr>
</tbody>
</table>

Continued on next page
When you finish updating the local machine information, press F3 [Enter] to save the information in the system database.

The cursor returns to the command line, and the system displays the following message:

Command Successfully Completed.

Enter exit or another administrative command at the enter command: prompt.

Completing the Local Machine Administration window

1. Start at the DEFINITY ONE home page from the web browser and select Administer System > AUDIX Networking > Administrative Menu > Local Machine Administration

<table>
<thead>
<tr>
<th>Field</th>
<th>Valid input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Updates: Out?</td>
<td>y = yes</td>
<td>If you enter y, updates to user database information for local users are sent to a remote machine (the Updates Out field must also be set to y on the remote Machine Profile screen set up on the local AUDIX system for each remote machine). If you enter n, updates will not be sent to any remote machine regardless of the entry for this field on the remote Machine Profile screen. Set this field to yes only after testing the network end-to-end during initial administration.</td>
</tr>
<tr>
<td>Network Turnaround</td>
<td>y = yes</td>
<td>To disable this feature system-wide, enter n on the local Machine Profile screen. To enable the feature, enter y on the local Machine Profile screen and on the appropriate remote Machine Profile screens on this local system. If enabled, a network connection that originated from this local AUDIX system is allowed to turn around after the local AUDIX system has sent all of its network data to any remote machine. The remote machine may then return update information, voice mail, and status on the same connection.</td>
</tr>
<tr>
<td></td>
<td>n = no</td>
<td></td>
</tr>
</tbody>
</table>
The Local Machine Administration Window displays:

```
Local Machine Administration

<table>
<thead>
<tr>
<th>Local Machine Name</th>
<th>drryon1</th>
<th>Connection Type</th>
<th>TCP/IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>135.9.191.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Password</td>
<td>drryon1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Help | Change | Cancel
```

Screen 4-7. Local Machine Administration

2. Change the password if necessary.

 You cannot change the value in any fields except the Password field. To change other values, see “Changing the local machine profile” on page 4-7.

3. Click Save.

 The system updates the information and displays a confirmation message.

Adding a remote machine

If you want users on the local machine to be able to exchange messages with AUDIX users on another machine, you must provide information to the local machine about the remote machine.

⇒ NOTE:

The AUDIX system accepts only one local machine. Do not attempt to add a second local machine. Use the instructions in this section only to add remote machines.

Completing the Digital Network Machine Administration window (via Web browser)

To enter information for connecting to the remote machine:

1. Start at the DEFINITY ONE home page and select Administer System > AUDIX Networking > Administrative Menu > Remote Machine Administration > Digital Machine Administration

The system displays the Digital Machine Administration window.

![Digital Machine Administration window](image)

Screen 4-8. Digital Machine Administration window

3. Complete the fields in this window using the information provided in **Table 4-1**.

Table 4-4. Field definitions; Digital Network Machine Administration

<table>
<thead>
<tr>
<th>Field</th>
<th>Valid input</th>
<th>Procedure/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Name</td>
<td>1 to 10 alphanumeric characters; see guidelines at right</td>
<td>Enter the unique name of the remote machine. Each remote machine must have a unique name, not only from other remote machines, but from all machines on the network, including fax call delivery machines and the local AUDIX.</td>
</tr>
<tr>
<td>TCP/IP Address</td>
<td>Numeric address string in the format nnn.nnn.nnn.nnn</td>
<td>The IP address of the remote machine.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 4-4. Field definitions; Digital Network Machine Administration — Continued

<table>
<thead>
<tr>
<th>Field</th>
<th>Valid input</th>
<th>Procedure/Description</th>
</tr>
</thead>
</table>
| Message Transmission | 24-hour clock time in the format $hh:mm$ | **Start Time** — Enter the starting time for a message transmission period to the remote system, such as 00:01 for 1 minute after midnight.
End Time — Enter the ending time for a message transmission period to the remote system, such as 23:59 for 1 minute before midnight.
Interval — Enter the interval at which the local AUDIX system will call this remote system, such as 00:05 for every 5 minutes. The AUDIX system checks the queue at this interval and calls the remote system if something is in the queue for this remote system.
Stagger start times and intervals for each remote system so the local AUDIX system is not trying to call all remote systems at the same time. |
| Password | 5-digit to 10-digit alphanumeric characters | Enter the password exactly as it is administered on the remote system. |
| Send Multimedia Messages? | yes, no | Select yes if the remote machine will accept multimedia messages (such as fax and text messages).
Select no if the remote machine will not accept multimedia messages. |
4. When you finish entering information for a remote machine, click **Save**. The system adds the information and displays a confirmation message.

5. Add another remote machine if needed.

Completing the Machine Profile screen for the remote machine (via AUDIX)

Use the Machine Profile screen to enter networking information required for each remote machine, such as address ranges and remote update information.

To enter networking information on the Machine Profile screen:

> **NOTE:**
> The Digital Network Machine Administration window must be completed for a remote machine before completing the Machine Profile screen for that machine.

1. Start at the AUDIX command prompt screen.

2. Enter `change machine remote_machine_name` at the **enter command**: prompt.

 The system displays the Machine Profile screen for a remote machine, page 1.

Table 4-4. Field definitions; Digital Network Machine Administration — Continued

<table>
<thead>
<tr>
<th>Field</th>
<th>Valid input</th>
<th>Procedure/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Type</td>
<td>See description at right</td>
<td>Enter the machine type. To see a list of valid machine types, click the dropdown arrow and select the appropriate machine type from the available types.</td>
</tr>
</tbody>
</table>
NOTE: If you do not know the names of the remote machines, enter list machines at the enter command: prompt. The system displays a list of all machines administered on the system.

3. Complete the fields in this window using the information provided in Table 4-5.

NOTE: The Machine Name, Type, Location, and Voice ID fields are display only and cannot be changed.

Table 4-5. Field definitions; remote machine profile screen, page 1

<table>
<thead>
<tr>
<th>Field</th>
<th>Valid input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Name</td>
<td>Display only</td>
<td>Displays the machine name for this remote machine entered on the Digital Network Machine Administration window.</td>
</tr>
<tr>
<td>Type</td>
<td>Display only</td>
<td>Displays the machine type for this remote machine entered on the Digital Network Machine Administration window.</td>
</tr>
<tr>
<td>Location</td>
<td>Display only</td>
<td>Displays the location remote-digital.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 4-5. Field definitions; remote machine profile screen, page 1 — Continued

<table>
<thead>
<tr>
<th>Field</th>
<th>Valid input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voiced Name?</td>
<td>y = yes</td>
<td>The Voice Name field contains an n until you record a name for the machine. This field automatically changes to y when you record a name for the machine.</td>
</tr>
<tr>
<td></td>
<td>n = no</td>
<td></td>
</tr>
<tr>
<td>Extension Length</td>
<td>An integer from 3 to 10</td>
<td>Enter the length of extensions on the local system. The value you enter must match the extension length in your dial plan.</td>
</tr>
<tr>
<td>Voice ID</td>
<td>Display only</td>
<td>Displays a system-assigned identifier that you must use to identify the machine if you decide to record machine names.</td>
</tr>
<tr>
<td>Default Community</td>
<td>An integer from 1 to 15</td>
<td>If you have administered your system to use community sending restrictions, enter the default community number for your user population.</td>
</tr>
</tbody>
</table>
| Prefix | 0 to 21 alphanumeric characters | Enter the prefix digits. A user enters the prefix before the remote user’s extension when addressing voice messages. To simplify this task, use a short, descriptive prefix. The total length of the prefix plus the extension must not exceed 25 characters. The system uses the prefix only to identify users. It is not used for dialing out, so it does not need to match an area code or office code. The following are examples of possible prefixes:

No prefix — The prefix is required only when one or more of the remote users share the same extension numbers as the local users (the extension ranges of the two systems overlap). If there are no overlapping extension numbers, a prefix is not needed.

Public network access code — When addressing a message to a remote user, the local user enters the remote user’s number as if placing a call to that user.

Location code — This method simplifies addressing messages by requiring only an alphanumeric code in front of the extension number. Location codes are shorter and often easier to remember.

Continued on next page
<table>
<thead>
<tr>
<th>Field</th>
<th>Valid input</th>
<th>Description</th>
</tr>
</thead>
</table>
| Start Ext. | A 3-digit to 10-digit string | Enter the starting extensions for the ranges of telephone numbers used on the local system. (Designate a block of switch extensions that can be used at the local system when assigning users.)
For example, if your system uses extensions between 2000 and 3000, enter **2000** in the Start Ext. field.
Up to 10 different ranges can be specified to pinpoint the exact set of extension blocks used by the local system. The length of the start and end extension must agree with the Extension Length field. For a 5-digit extension, the default is 00000 to 99999. |
| End Ext. | A 3-digit to 10-digit string | Enter the ending extensions for the ranges of telephone numbers used on the local system. For example, if your system uses extensions between 2000 and 3000, enter **3000** in the End Ext. field. |
| Warnings | Display only | This field displays a warning when a duplication or overlap of an extension range for another machine is being assigned. |

4. Press F7 [NextPage].

The system displays the Machine Profile screen for a remote machine, page 2.
5. Complete the fields in this window using the information provided in Table 4-6.
Table 4-6. Field definitions; remote machine profile screen, page 2

<table>
<thead>
<tr>
<th>Field</th>
<th>Valid Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send to Non-Administered Recipients?</td>
<td>y = yes</td>
<td>Enter y if the system will attempt to deliver messages to non-administered remote recipients. Enter n if messages cannot be sent to nonadministered recipients.</td>
</tr>
<tr>
<td>Updates: In?</td>
<td>y = yes</td>
<td>Enter y if the local system will accept updated database information from the remote system (the Updates Out field must also be set to y on the local Machine Profile screen). Set to y only after testing the network end-to-end during initial administration.</td>
</tr>
<tr>
<td>Updates: Out?</td>
<td>y = yes</td>
<td>Enter y if the local system will send updated database information to the remote system (the Updates In field must also be set to y on the local Machine Profile screen). Set to y only after testing the network end-to-end during initial administration.</td>
</tr>
<tr>
<td>Network Turnaround</td>
<td>y = yes</td>
<td>If you are conducting an acceptance test, enter n. After the acceptance tests, enter y if a network connection that originated from this remote system is allowed to turn around after the remote system has sent all of its network data to the local system. The local system may then return update information, voice mail, and status on the same connection. This feature reduces toll charges and increases the efficiency of the system in networks with more than 10 machines. The Network Turnaround field must be set to y on the local Machine Profile screen for this feature to work between the local system and the remote system.</td>
</tr>
</tbody>
</table>

6. **Press F3 [Enter]** to save the information.

 The cursor returns to the command line, and the system displays the following message:

 Command Successfully Completed.
7. Press F3 [Cancel] to return to the command line.

8. Enter exit or another administrative command at the enter command: prompt.

Performing a full remote update

If you have the system set to perform automatic daily updates, you only need to perform the full remote update to update the system after making changes to remote machine connections or to verify changes of data you just entered.

To update the remote user information immediately:

1. Start at the AUDIX command prompt screen.

2. Enter get remote update machine_name at the enter command: prompt, where machine_name is the name of the remote machine.

 The system displays the Remote Update Request confirmation screen.

3. Press F3 [Enter] to continue.

 The cursor returns to the command line, and the system displays the following message:
 Command Successfully Completed.

4. Enter exit or another administrative command at the enter command: prompt.

Resetting automatic deletion of nonadministered remote users

To conserve server space by automatically deleting nonadministered remote users:

1. Start at the AUDIX command prompt screen.

2. Enter change system-parameters features at the enter command: prompt.

 The system displays the System-Parameters Features, page 1 screen.

3. Press F7 [NextPage] three times to display the System-Parameters Features, Page 4 screen.

4. In the Days without Activity: field, type the number of days. Type 0 if you do not want to automatically delete nonadministered remote subscribers.

5. In the Even If on a Mailing List? field, type n to retain information for nonadministered remote subscribers that are on a subscriber's mailing list.
6. Press F3 [Enter] to save the changes.
 The cursor returns to the command line, and the system displays the following message:
 Command Successfully Completed.

7. Enter **exit** or another administrative command at the **enter command:** prompt.

Viewing remote extensions

To verify that the local machine database updated the remote subscriber information, view the remote extensions:

1. Start at the AUDIX command prompt screen.

2. Enter **list remote-extensions machine_name** at the **enter command:** prompt, where the machine_name is the local machine of the remote subscribers.
 The system displays the List Remote Extensions screen.

3. Press **F7 [NextPage]** to display additional pages of the list.

4. Press **F1 [Cancel]** to return the cursor to the command line.

5. Enter **exit** or another administrative command at the **enter command:** prompt.
Upgrade and Repair Procedures

This chapter provides the procedures to upgrade and repair the DEFINTY ONE system.

This chapter is organized as follows:

- “Update software” on page 5-1
- “Replace the TN795 circuit pack” on page 5-4
- “Replace the hard disk” on page 5-4
- “Replace the PCMCIA flash disk (hot pluggable)” on page 5-6
- “Access Diskeeper software to defragment the disk” on page 5-6

Update software

This procedure upgrades the system from Release 1.0 to Release 2.0. Lucent applications cannot be running during an upgrade.

Install license file

License file installation information is available online. For further information, contact your Lucent technical services representative.

- For external access: www.lucent-teamworks.com
- For internal access: http://info.dr.lucent.com/~epr/contry
Prepare for the update

1. Prepare laptop for update (share laptop CD drive or map to laptop). See “Map DEFINITY ONE to the laptop computer's CD-ROM drive” on page C-13.

2. Connect the laptop computer using the procedure “Connect the laptop computer to DEFINITY ONE” on page C-2.

3. Back up all translations by following the appropriate backup procedure. See “Perform immediate backup” on page C-23.

4. Start a pcAnywhere session using “Via pcAnywhere” on page 2-21 and Access the DEFINITY ONE.

 The DEFINITY ONE desktop displays.

5. Click Start>Run>bash to enable a console bash shell on the DEFINITY ONE.

6. In the console bash, enter shutdown all to stop all running system applications.

 NOTE:
 During the shutdown process, open a second console bash and, if desired, use the d1stat command to check the status of the shutdown.

 NOTE:
 Install a new license file if the processor board has been changed or the software is upgraded to a new release. Use the procedure “Obtaining a license file” on page 3-3. Do not reboot until the installconfig procedure is complete. This procedure is not yet valid for international applications. For assistance, contact your Lucent representative.
Run the update

Update system

1. Insert the customer's CD into the laptop CDROM drive.
2. Map the CD-ROM from the laptop to DEFINITY ONE using the procedure “Map DEFINITY ONE to the laptop computer's CD-ROM drive” on page C-13 in Appendix C, “Miscellaneous Procedures”.
3. Click on the shared drive.
5. Select the options, as indicated. (The install process takes approximately 20-30 minutes).
6. When the installation completes, click Finish. The system automatically reboots.
7. Restore the translations.
8. Reboot the system.
9. Open a console bash and enter d1stat. When DEFINITY is up, check for dial tone.

Upgrade pcAnywhere

NOTE: This section provides information to upgrade pcAnywhere from Version 8 to Version 9.

1. Share laptop CD drive or map to laptop. See “Map DEFINITY ONE to the laptop computer's CD-ROM drive” on page C-13.
2. Connect the laptop computer using the procedure “Connect the laptop computer to DEFINITY ONE” on page C-2.
3. Telnet to the LAC using “Via a Telnet session” on page 2-16 and open a bash shell.
4. At the prompt, enter pcAnywhere -remove f:, where f is the drive letter that refers to the CD-ROM. Wait for system reboot. This can take up to 10 minutes, not including reboot.
5. Telnet to the LAC using “Via a Telnet session” on page 2-16 and open a bash shell.
6. At the prompt, enter pcAnywhere -install. Wait for the system to reboot. This can take up to 10 minutes, not including reboot.
7. Telnet to the LAC using “Via a Telnet session” on page 2-16 and open a bash shell.
8. At the prompt, enter pcAnywhere -admin. When the bash prompt returns, the pcAnywhere update is complete.
Replace the TN795 circuit pack

NOTE:
When the TN795 circuit pack is changed out, for repair or upgrade, a new license file must be obtained and the installconfig process must be used. DEFINITY and INTUITY AUDIX will not start if the license file does not match the new TN795 serial number.

1. Shut down the system.
2. Remove the TN795 circuit pack.
3. Remove the hard disk from the failed TN795 circuit pack.
4. Insert the hard disk onto the new TN795 circuit pack.
5. Boot the system.

Follow the procedures to install a new license file, including running the `setup` command. See “ Obtaining a license file ” on page 3-3 for more details.

NOTE:
The system will boot but DEFINITY ONE applications will not run because the serial number on the disk does not match the serial number on the board. Because the hard disk is reused, the system has the old password file that was on the system before the board failed. To log in you must obtain the appropriate password from the TSO.

Replace the hard disk

To replace the hard disk perform the following procedures:

Remove the old disk

1. Shut down the system.
2. Remove the TN795 circuit pack.
3. Remove the failed hard disk from the TN795 circuit pack.

Add the new hard disk

1. Insert the new hard disk onto the board, ensuring it is the appropriate hard disk for the given circuit pack and software release.
2. The disk comes pre-loaded with all the necessary DEFINITY ONE software; however, the DEFINITY ONE applications will not run until you install the new license file. See “ Obtaining a license file ” on page 3-3.
Verify the software on the new hard disk

1. Once the system reboots, connect the services laptop computer to DEFINITY ONE per “Connect the laptop computer to DEFINITY ONE” on page C-2.

2. Telnet to the LAC as per “Via a Telnet session” on page 2-16 and Access to DEFINITY ONE.

3. Log in and run a bash session.
 The browser prompts for a login and password. Because the new hard disk does not have a password file, the system reverts to the factory default login of lucent3.

4. Execute swversion and verify the software on the hard drive matches that on the customer's CD. If it does not, see “Update software” on page 5-1.

5. Enter fwversion. Record the current boot code release number. Compare the boot code number with the number on the Software Release letter. It may be necessary to download new boot code.

Restore customer’s data

1. Enable a browser on the laptop and load the DEFINITY ONE Home Page. For information on how to start a web browser, see “Via a Web browser session” on page 2-18.

2. Navigate the browser to the backup and restore screens.
 The browser prompts for a login and password. Because the new hard disk does not have a password file, the system reverts to the factory default login of lucent3.

3. Follow the steps for restoring the customer's data. The customer may have backed up to their local network or the PCMCIA flash disk.
 If the customer backed up to the PCMCIA flash disk, then whatever was backed up last will be restored. If the registry was backed up, the restore will update LAN information allowing DEFINITY ONE to be seen from the customer's network.
 If the customer backed up to the local network or failed to back up the registry, run setip with the cust option to re-establish DEFINITY ONE on the customer's network.

4. After restoring, follow the procedures to install a new license file, including running the setip command. See “Obtaining a license file” on page 3-3.
 After installing the license file, the system restarts and all applications load. The logins and passwords have been updated by the installiconfig command.
5. Note that the NT logins of **vm**, **sa**, **browse**, and **NTadmin** are reset to their factory defaults. Tell the customer to reset these passwords and to reinstall other NT accounts they may have created.

 > **NOTE:**
 > The DEFINITY-specific customer logins should work as they were restored with the previous restore.

6. If necessary, upgrade the software on the disk by following “**Update software**” on page 5-1. Always upgrade the software before installing the new license file.

 > **NOTE:**
 > It is not necessary to install a license file between loads in the same release, such as Release 2.0 to Release 2.0.

Replace the PCMCIA flash disk (hot pluggable)

This procedure describes replacement of the PCMCIA flash disk.

1. Verify that disk is not in use (check LED on front panel).
2. Unplug old disk and insert new disk.
3. Run translation backup to verify health.

Access Diskeeper software to defragment the disk

 > **NOTE:**
 > Do not defragment during scheduled DEFINITY maintenance. Open a SAT session and enter change system-parameters maintenance and press ENTER. Note the scheduled maintenance times.

Diskeeper software automatically defragments the disk. The C drive is defragmented once every Sunday at 3:00 a.m., and the D drive once every day between 2:00 a.m. and 4:00 a.m. These times may change.

Set up a schedule for manually defragmenting the disk. A help file is accessible through the control GUI.
Upgrade and Repair Procedures

Access Diskeeper software to defragment the disk

Change the default times on Diskeeper

1. From the DEFINITY ONE desktop, click Start > Programs > Executive Software > Diskeeper.

 The Diskeeper Menu displays.

2. Select Set It and Forget It.

4. Select Set It and Forget It - Partition Scheduling window appears.

5. Set new times for automatic defragging. This changes the default times.

6. Click Start.

7. Click Close.
<table>
<thead>
<tr>
<th>Upgrade and Repair Procedures</th>
<th>5-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Diskeeper software to defragment the disk</td>
<td></td>
</tr>
</tbody>
</table>
This chapter provides the tasks required to install equipment associated with upgrading an existing DEFINITY ONE system.

For more information about installing adjuncts and peripheral devices, see DEFINITY Enterprise Communications Server Release 8.2 Installation for Adjuncts and Peripherals, (555-233-116).

This chapter is organized as follows:

- “Add circuit packs” on page 6-2
- “Add CO, FX, WATS, and PCOL” on page 6-2
- “Add DID trunks” on page 6-3
- “Add tie trunks” on page 6-4
- “Add DS1 tie and OPS” on page 6-6
- “Add speech synthesis” on page 6-6
- “Add Code Calling access” on page 6-6
- “Add pooled modem” on page 6-7
- “Multiple integrated recorded announcements” on page 6-9
- “Add ISDN-PRI” on page 6-10
- “Add IP trunk” on page 6-13
- “Add DOLAN and C-LAN functionality” on page 6-21
Add circuit packs

When installing additional features or equipment, it may be necessary to install additional circuit packs. For a list of allowable circuit packs, see “Allowable and non-allowable circuit packs” on page 1-24. This is a general procedure to use when adding features or equipment that require adding circuit packs.

1. Log onto the system and answer y to the Suppress Alarm Origination question during login.
2. Install the circuit pack in the carrier.
3. Type `change circuit-pack`.
4. Verify the circuit pack appears in the listing.
5. If the circuit pack code does not appear, type the code manually in the proper slot.
6. Type `test board long` command to test the board.
7. Log off the system after the addition (and any required administration) is complete.

For information about administering circuit packs and other equipment, see the DEFINITY Enterprise Communications Server Release 8.2 Administrator's Guide, (555-233-506).

Add CO, FX, WATS, and PCOL

Requirements

Each Central Office (CO), Foreign Exchange (FX), Personal Central Office Line (PCOL), or Wide Area Telecommunications Service (WATS) trunk connects to 1 port of either an 8-port TN747B or to 1 of several CO trunk circuit packs.
Installation

1. Determine the port assignment of the trunk from Trunk Group form.

<table>
<thead>
<tr>
<th>EXAMPLE:</th>
<th>Port Number</th>
<th>3</th>
<th>A</th>
<th>07</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet</td>
<td>Carrier</td>
<td>Slot</td>
<td>Circuit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Port Network)</td>
<td>(or Compact Modular Cabinet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Install a TN747B or a CO Trunk circuit pack in the assigned carrier slot (if an additional circuit pack is required).

3. Administer the forms listed under CO, FX, WATS, or PCOL Trunk Group in *DEFINITY Enterprise Communications Server Release 8.2 Administrator's Guide*, (555-233-506).

Add DID trunks

Requirements

Each Direct Inward Dial (DID) trunk connects to 1 port DID Trunk circuit pack or to 1 port of an assortment of DID trunk circuit packs.

Installation

1. Determine the port assignment of the trunk from Trunk Group form.

<table>
<thead>
<tr>
<th>EXAMPLE:</th>
<th>Port Number</th>
<th>1</th>
<th>A</th>
<th>07</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet</td>
<td>Carrier</td>
<td>Slot</td>
<td>Circuit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Port Network)</td>
<td>(or Compact Modular Cabinet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Install a DID Trunk circuit pack in assigned carrier slot (if an additional circuit pack is required).

Add tie trunks

Requirements

Each tie trunk connects to 1 port of a 4-port tie trunk circuit pack or to an assortment of international tie trunk circuit packs.

Installation

1. Determine the port assignment of the trunk from Trunk Group form.

EXAMPLE:

<table>
<thead>
<tr>
<th>Port Number</th>
<th>3</th>
<th>A</th>
<th>02</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabinet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Port Network)</td>
<td>(or Compact Modular Cabinet)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Install tie trunk or an international tie trunk circuit pack in assigned carrier slot (if an additional circuit pack is required).

3. For customer-owned (not leased) tie-trunk facilities (such as campus environments), tie trunk circuit packs provide signaling capabilities beyond those specified by the industry-wide E&M standard. Use Figure 6-1 and Table 6-1 to choose the preferred signaling format, set switches on the circuit pack, and administer the port.

Table 6-1. Tie trunk option-switch settings and administration

<table>
<thead>
<tr>
<th>Installation situation</th>
<th>Preferred signaling format</th>
<th>E&M/SMPLX switch</th>
<th>Prot/Unprot switch</th>
<th>Administered port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumstance</td>
<td>To System</td>
<td>Far-End</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collocated</td>
<td>DEFINITY</td>
<td>E&M Type 1</td>
<td>E&M</td>
<td>Unprotected</td>
</tr>
<tr>
<td></td>
<td>Collocated Net Integrated</td>
<td>Any PBX</td>
<td>E&M</td>
<td>Unprotected</td>
</tr>
<tr>
<td>Inter-Building</td>
<td>DEFINITY</td>
<td>Protected Type 1</td>
<td>Protected</td>
<td>Type 1</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td>Protected Type 1</td>
<td>Type 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard Plus Protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collocated</td>
<td>Net Integrated</td>
<td>E&M Type 1</td>
<td>E&M</td>
<td>Type 1</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6-1. Tie Trunk circuit packs (component side)
Add DS1 tie and OPS

Service interruption

Because the addition of DS1 tie-trunk service may require a service interruption, notify the customer when the addition will occur.

Add speech synthesis

The TN725B Speech Synthesizer circuit pack is required when Voice Message Retrieval, Automatic Wakeup, or Do Not Disturb features are activated. The TN725B circuit pack does not require administration.

1. Determine the port assignment of the Speech Synthesizer circuit pack being added.
2. Install the TN725B Speech Synthesizer circuit pack in the designated carrier slot.

Add Code Calling access

The tones for the Code Calling feature are generated by the TN2182/B Tone-Clock circuit pack in the port networks.

Add pooled modem

Modem pooling supports two types of conversion resources: “integrated” and “combined.”

The integrated type requires a TN758 pooled modem circuit pack for each two conversion resources provided.

The combined type requires a port on a digital Line circuit pack and a port on either an 8-port or 16-port analog line circuit pack for each conversion resource provided.

1. Determine the port assignment of the circuit packs to be added (if required).
2. Install the appropriate circuit packs in assigned carrier slot (if required).
3. For Paradyne 3800-Series modems:
 a. Type `AT&F&D2&S4\D3S2=128x7V2S7=60S85=1` and press Enter.
 b. Type `ATY0S10=100S78=2M0E0\N1&W` and press Enter.
4. For other types of modems, see the vendor’s documentation.

Settings for modem connected to data module

1. Type `add data-module next` and press Enter.
2. Type `pdm` in the Type field.
3. Type `x` in the Port field.
4. Type `dte` in the Connected to field and press Enter.
5. Type `add station next` and press Enter.
6. Type `2500` in the Type field.
7. Type `x` in the Port field.
8. Type `n` in the Tests field and press Enter.
9. Type `add modem-pool next` and press Enter.
10. Type `combined` in the Group Type field.
11. Type `5` in the Hold Time (min) field.
12. Type `two-way` in the Direction field.
13. Type `9600` in the Speed field.
14. Type `Full` in the Duplex field.
15. Type `async` in the Synchronization field.
16. Type the port pair assignments in the Analog and Digital fields and press Enter.
Settings for modem connected to the data terminal equipment (DTE)

1. Type **add station next** and press **Enter**.
2. Type **2500** in the **Type** field.
3. Type the port assignment in the **Port** field and press **Enter**.

Table 6-2. 7400A options — attention control modems

<table>
<thead>
<tr>
<th>Set option display</th>
<th>Option</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set 300 Speed?</td>
<td>300</td>
<td>Note 1</td>
</tr>
<tr>
<td>Set 1200 Speed?</td>
<td>1200</td>
<td>Note 1</td>
</tr>
<tr>
<td>Set 2400 Speed?</td>
<td>2400</td>
<td>Note 1</td>
</tr>
<tr>
<td>Set 4800 Speed?</td>
<td>4800</td>
<td>Note 1</td>
</tr>
<tr>
<td>Set 9600 Speed?</td>
<td>9600</td>
<td>Note 1</td>
</tr>
<tr>
<td>Set 19200 Speed?</td>
<td>19200</td>
<td>Note 1</td>
</tr>
<tr>
<td>Set AT Control?</td>
<td>AT</td>
<td>ON</td>
</tr>
<tr>
<td>Set CI Lead?</td>
<td>CI</td>
<td>Note 2</td>
</tr>
<tr>
<td>Set CI2 Lead?</td>
<td>CI2</td>
<td>Note 2</td>
</tr>
<tr>
<td>Set CH Lead</td>
<td>CH</td>
<td>Note 2</td>
</tr>
<tr>
<td>Set CH2 Lead?</td>
<td>CH2</td>
<td>Note 2</td>
</tr>
<tr>
<td>Set LL Lead?</td>
<td>LL</td>
<td>Note 2</td>
</tr>
<tr>
<td>Set REMOTE Loop?</td>
<td>REMLOOP</td>
<td>Grant</td>
</tr>
<tr>
<td>Set RL Lead?</td>
<td>RL</td>
<td>Note 2</td>
</tr>
<tr>
<td>Set SIGLS Disc?</td>
<td>SIGLS DISC</td>
<td>ON</td>
</tr>
<tr>
<td>Set TM Lead?</td>
<td>TM</td>
<td>Note 2</td>
</tr>
</tbody>
</table>

NOTE:
1. Set speed to match remote modem. At least one speed must be set ON.

NOTE:
2. Set to match remote modem.
Multiple integrated recorded announcements

There are 2 methods of providing integrated announcements on DEFINITY ONE. Both methods for announcements can be used in the same system. The methods are:

- TN750C Announcement Circuit Pack

TN750C announcement circuit pack

The TN750C circuit pack contains on-board flash memory that provides internal backup of announcements. Thus, the TN750C circuit pack does not require the save and restore processes. Announcements cannot be backed up and restored to an external device with a DEFINITY ONE system.

The TN750C circuit pack can replace a TN750 or TN750B. The difference in operation is that the TN750C automatically restores and reports the availability of announcements from its internal flash memory in 5 minutes, rather than the 40 minutes for the TN750 or TN750B.

If a circuit pack already has announcements in its flash memory, the yellow LED flashes as the announcements copy to the voice RAM.

Add TN750C circuit packs

Follow this procedure to add the circuit packs:

1. Insert the TN750C into a vacant slot in a carrier.
2. Administer new announcements to that TN750C slot by executing the change announcements <location> command.
4. Wait until the announcements copy from voice RAM to the on-board flash memory (the yellow LED on the TN750C starts and then stops flashing). This takes about 10 minutes.
Move a single announcement to another announcement circuit pack

Follow this procedure to move a single announcement to another announcement circuit pack.

1. Enter the change announcements command to change the circuit pack locations of a particular announcement. (You may also change the compression rate at this time.)

Add ISDN-PRI

T1 (North American Standard)

This procedure describes adding a T1 line.

1. Use a TN767F or TN767E (or later version) circuit pack to set up an ISDN PRI trunk. Ensure that the dip switch on the board is set for 24 channels. If you are using Facility Associated Signaling (FAS), 23 channels are available to be used as trunk group members. Channel 24 must be used to create a signaling group for the trunk groups. If you are using Non Facility Associated Signaling (NFAS), it is possible, in some instances, to use all 24 channels for trunk group members.

2. To create a PRI trunk:
 a. Enter ADD DS1 (board location) at the SAT terminal session.
 b. Enter the required information on the DS1 form.
 c. Create a signaling group using the ADD SIG NEXT command. If you are using FAS signaling, use the 24th channel on your DS1 board as the D-channel for your signaling group. If you are using NFAS signaling, enter N in the associated signaling field. List the trunk board location in the Trunk Board field.
 d. Create a trunk group by using the ADD TRUNK NEXT command:
 1. Complete the required information on the Trunk Group Form pages.
 2. Enter the port locations of the trunk members on the Trunk Group Member page.
 3. Enter the correct signaling group number.
E1 (International Standard)

1. Use a TN464F circuit pack. Ensure the dip switch on the board is set for 30 channels (E-1). If you are using Facility Associated Signaling (FAS), 29 channels are available to be used as trunk group members. Channel 16 must be used to create a signaling group for the trunk groups. If you are using Non Facility Associated Signaling (NFAS), it is possible to use all 30 channels for trunk group members in some instances.

2. To create a trunk group, do the following:
 a. Determine the slot assignment of the circuit packs to be added.
 b. Install the DS1 interface circuit pack in the assigned carrier slot.
 c. Enter ADD DS1 (board location) at the SAT terminal session.
 d. Enter the required information on the DS1 form.
 e. Create a signaling group using the ADD SIG NEXT command. If you are using FAS signaling, use the 16th channel on your DS1 board as the D-channel for your signaling group. If you are using NFAS signaling, enter N in the associated signaling field. List the trunk board location in the Trunk Board field.
 f. Create a trunk group by using the ADD TRUNK NEXT command:
 1. Complete the required information on the Trunk Group Form pages.
 2. Enter the port locations of the trunk members on the Trunk Group Member page.
 3. Enter the correct signaling group number.

Add circuit packs

1. Determine the slot assignment of the circuit packs to be added.
2. Install the DS1 Interface circuit pack in the assigned carrier slot.

Install cables

Install cables from the cabinet to the MDF as required.

Enter added translations

Resolve alarms

1. Examine the alarm log. Resolve any alarms that may exist using *DEFINITY ONE Communications System Release 2.0 Maintenance*, (555-233-111).

Save translations

1. Enter **save translation** and press Enter. This instructs the system to take all translation information in memory and write it to the translation cards.

2. Update backup cards, if necessary.
Add IP trunk

The DEFINITY IP Trunk lets you integrate LAN applications into the DEFINITY communications network. It is implemented using the TN802B MAPD, which is a Windows NT server residing on a circuit pack inside DEFINITY ONE. Installing the DEFINITY IP Trunk involves the following steps:

1. Prepare for installation
2. Check your shipment
3. Connect the modem (optional)
4. Connect the IP trunk server to your local area network

Prepare for installation

Make ready the following before your shipment arrives.

- Three adjoining, unoccupied slots in the DEFINITY ONE.
 The IP-trunk circuit pack occupies only one slot, but needs the two slots to its left for clearance.
- A 10/100 BaseT Ethernet connection into your local area network
- A valid, unused IP address on your network that can be assigned to the IP Trunk server
- A technician's laptop computer
- A mouse, keyboard, and VGA monitor with Windows NT loaded for use during the installation of the server
- An analog telephone line reserved for the IP-trunk diagnostic modem
- A valid international telephone number reserved for the IP-trunk diagnostic modem
- Symantec pcAnywhere software
 This third-party application lets Lucent support personnel control the MAPD processor remotely, via the modem, during maintenance and troubleshooting.
- AC power outlets for the modem and monitor
Check your shipment

When your DEFINITY IP Trunk order arrives, check the contents.

1. Before opening the shipping carton, inspect it for damage. If the box is damaged, do not open it. Inform the shipping company, and ask for instructions on filing a claim.

2. If the box is undamaged, check the contents against the packing slip. Check the condition of each component, and note any damage or missing contents on the packing slip. The carton should contain the following for each IP Trunk ordered: See Table 6-3.

 - TN802B MAPD circuit pack
 - US Robotics Sportster external modem
 The modem permits Lucent support personnel to remotely maintain and troubleshoot your system.
 - TN802B external cable assembly
 The TN802B external cable assembly is a bundle of cables with an amphenol connector at the end of the bundle and various PC-type connectors (VGA, USB, mouse, keyboard, Ethernet, modem, and COM2) at the ends of the individual cables. See Figure 6-2. It should be labeled at the point where the bundle enters the amphenol connector.

Table 6-3. Required hardware

<table>
<thead>
<tr>
<th>Comcode/Code quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>108525528</td>
<td>TN799B C-LAN circuit pack. One TN799B supports more than one TN802B</td>
</tr>
<tr>
<td>1</td>
<td>H600-512, G1 external cable assembly</td>
</tr>
<tr>
<td>J58890MA-1 L30 more</td>
<td>TN802B IP Interface Assembly</td>
</tr>
<tr>
<td>601939804 1 or more</td>
<td>259A connector</td>
</tr>
<tr>
<td>1</td>
<td>CATS or better cable</td>
</tr>
<tr>
<td>407633999</td>
<td>U.S. Robotics Sportster external modem, Model USR 33.6 EXT (U.S. customers only). Non-U.S. customers must provide a modem comparable to this model.</td>
</tr>
<tr>
<td>1</td>
<td>20-ft BD-25 serial cable from modem to TN802B external cable assembly (U.S. customers only). Non U.S. customers must provide a serial cable.</td>
</tr>
</tbody>
</table>
Hardware Additions

Add IP trunk

Figure 6-2. TN802B external cable assembly

Install the TN802B MAPD

The TN802B circuit pack is hot-swappable, so it is not necessary to power down the carrier.

1. Ensure there is room to install the TN802B circuit pack. To accommodate the width of the circuit pack, you must have at least 3 adjacent free slots. (If you put the TN802B circuit pack in slot 7, you must have 2 adjacent slots.)

2. Insert the TN802B circuit pack in the most right slot (the one reserved for IP trunking).

3. Connect the P1 amphenol connector on the TN802B external cable connector to the leftmost backplane connector looking from the rear (of the 3 slots required for the TN802B).

Figure Notes

1. To P1 on cabinet backplane
2. To VGA monitor
3. To USB (not used)
4. To keyboard
5. To mouse
6. To Ethernet
7. To modem (optional)
8. To COM2 (not used)
Connect the modem (optional)

The modem lets Lucent technicians remotely service and troubleshoot your system.

1. Connect the RS232 port of the modem to the MODEM cable of the TN802B external cable assembly.

2. Connect an analog phone line to the most left analog-line port on the modem.

3. Ensure that the modem’s DIP switches are set as indicated in Figure 6-3.

4. Plug the modem into an AC power outlet.

Figure 6-3. External modem connections

Figure Notes

1. Connect analog line here.
3. Connect MODEM connector here.

2. DIP switch 5 must be up.

Connect the IP trunk server to your local area network

Connect the ethernet cable

1. Connect the network cable to the ethernet connector on the TN802B external cable assembly.
Connect a monitor

You need a VGA monitor to log onto the Windows NT Server and to configure the network software.

1. Attach a VGA monitor to the VGA cable of the TN802B external cable assembly.
2. Attach the keyboard to the KEYBOARD cable of the TN802B external cable assembly.
3. Attach the mouse to the MOUSE cable of the TN802B external cable assembly.
4. Plug the monitor into an AC power receptacle, and turn it on.

Log onto the IP trunk server

Log onto the IP trunk server as follows.

1. Press the CTRL, ALT, and DELETE keys simultaneously.
2. Type administrator in the User Name field.
3. Leave the Password field blank, and click OK.
4. After logging on the first time, change the administrator password and, if desired, the user name, to ensure security. See your Windows NT Server documentation for details.

Assign a server name and domain name

Windows NT Server identifies servers using a server name plus a domain name that locate the named server in a particular part of the network. The TN802B is shipped with a generic server name and a generic domain name. You should assign replacement names that are meaningful within your network.

1. Click My Computer from the Windows NT desktop.
2. Click Control Panel in the My Computer window.
3. Click Network in the Control Panel window.
4. Click Identification, then Change.
5. Type the new name in the Computer Name box.
6. Type the name you chose for the IP-trunk domain in the Domain box.
7. Click OK > OK.
8. Click Close.
9. When prompted, choose one of the following options:
 - If you have not administered IP addresses, click No.
 - If you have administered IP addresses, restart Windows NT so that the new names take effect.
Check network services

When the server restarts, ensure that the required network services have started correctly.

1. Click **My Computer** from the Windows NT desktop.
2. Click **Control Panel** in the My Computer window.
3. Click **Network** in the Control Panel window.
4. Click **Services** in the Network window.
5. Ensure that the following services are listed:
 - Computer Browser
 - Microsoft Internet Information Server 2.0 needed
 - NetBIOS Interface
 - RPC Configuration
 - Server
 - Workstation
6. Click **Protocols**, and examine the Network Protocols. TCP/IP should be the only protocol listed.
7. Click **OK**.

Assign an IP address

1. Click **My Computer** from the Windows NT desktop.
2. Click **Control Panel** in the My Computer window.
3. Click **Network** in the Control Panel window.
4. Click **Protocols** in the Network window.
5. Click **TCP/IP Protocol** from the list.
6. Click **Properties** in the Network window.
7. Click **Specify an IP address**.

8. Type a valid IP address for the IP Trunk server in the **IP Address** field.

9. Type the appropriate subnet mask in the **Subnet Mask** field.

10. If you use gateways, type the IP address of the default gateway for the IP Trunk server in the **Default Gateway** field.

11. Click **OK**.

12. If Windows NT responds with the “At least one of the adapter cards has an empty primary WINS address. Do you want to continue?” message, click **Yes**.

13. Click **Bindings** to make the changes.

 NetBIOS Interface, Server, and Workstation should now be enabled. If any are disabled (marked a red circle with a line through it), review the network-configuration steps above for omissions or errors.

14. Click **Close**.

15. Restart your computer.
Test the connection to the LAN

To test IP connections ping the IP trunk server and ping a known computer connected to your network.

1. In the Windows task bar, click Start > Programs > Command Prompt.

2. At the command prompt, type ping nnn.nnn.nnn.nnn (where nnn.nnn.nnn.nnn is the IP address of the IP trunk server).
 - If everything is configured correctly, the system replies with the following:
 Reply from nnn.nnn.nnn.nnn: bytes=32 time<##ms TTL=###
 - If no reply, verify the IP-address information and check the connectivity including the cabling.

3. At the command prompt, type ping nnn.nnn.nnn.nnn (where nnn.nnn.nnn.nnn refers to the IP address of another computer on the network).
 - If there is connectivity, the system replies with the following:
 Reply from nnn.nnn.nnn.nnn: bytes=32 time<##ms TTL=###
 - If no reply, verify the IP-address information and check the connectivity including the cabling. Consult your IP-network administrator.

4. Type exit and press Enter.

Test the modem

1. Check for dial tone.

Set up network-trust relationships

After all DEFINITY IP Trunk servers are in their own domain, establish trust relationships between domains to allow for remote administration. To establish trust relationships, see your Windows NT Server 4.0 documentation.

Administer the IP trunk

The TN802 circuit pack is now installed in the DEFINITY carrier and connected to the IP network. You can now use the Configuration Manager software (pre-installed on the TN802 hard disk) and DEFINITY ECS switch administration software to prepare the IP Trunk for use. See the DEFINITY ECS Release 8.2 Administrator's Guide, (555-233-506) for more information.
Add DOLAN and C-LAN functionality

DEFINITY ONE Release 2.0 uses DEFINITY Release 8.2, which allows the use of IP Softphones. In addition, co-resident C-LAN functionality can be optionally purchased. The DEFINITY ONE Windows NT LAN interface may be used in place of the C-LAN circuit pack for those cases where DSO capability through the C-LAN is not required. DCS using DSO will still be supported via a separate C-LAN. The Windows NT LAN interface (co-resident C-LAN) will also be used to connect CMS, BCMS, and Centre Vu CT. See the DEFINITY ONE Release 2.0 Overview, (555-233-001).

DEFINITY IP Solutions software

The DEFINITY IP Solutions software operates both as an IP gateway and gatekeeper. As a gateway it converts voice traffic to data transmission over IP networks. As a gatekeeper, it provides IP endpoints with secure access to the DEFINITY system. This connection lets users take advantage of all applications residing on the system, including voice mail, computer-telephone integration, call center, wireless, and call control features, such as conferencing, call forward, transfer, hold, speed-dial, and multiple-line appearances.

The software supports Distributed Communications System DCS and Q-Signaling (QSIG) protocols over IP networks to operations across multiple sites. The DEFINITY IP Solutions Software can be managed through the server's existing system administration tools, and can take advantage of the DEFINITY system's call routing and cost accounting, self diagnostics, security toll fraud protection, and remote access applications. It enables IP telephones to communicate with analog, digital, and ISDN phones on the DEFINITY network, and supports the H.323 protocols and standard application programming interfaces, including TAPI, TSAPI and JTAPI.

DEFINITY ONE Release 2.0 adds optional enhancements that are well suited to small call centers. Several new co-resident applications free up slots in the cabinet, including C-LAN functionality, Announcement functionality (now part of Release 2.0) and DEFINITY LAN Gateway. In most cases, with these applications co-resident, separate C-LAN and announcement boards are not required and MAP-D is not required for DEFINITY LAN Gateway. Also BCMS Vu and CentreVu CT reside on a separate server, which is LAN connected and enables DEFINITY ONE to interface with these applications.
<table>
<thead>
<tr>
<th>Hardware Additions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add DOLAN and C-LAN functionality</td>
</tr>
</tbody>
</table>
DEFINITY Site Administration (DSA)

This chapter provides information about DSA, the system management tool integrated into the platform. See “Download Message Manager and DSA” on page 3-25.

This chapter is organized as follows:

- “Interactions with switches and voicemail systems” on page 7-2
- “What DSA does” on page 7-3
- “Components of DSA” on page 7-4
- “How DSA works” on page 7-6
- “DSA help” on page 7-7
- “Configure DSA” on page 7-7
 - “Adding DEFINITY ONE Switch Administration Item” on page 7-8
 - “Adding DEFINITY ONE Voice Mail Administration item” on page 7-16

As previously stated, DEFINITY ONE applications are pre-loaded on the hardware platform. The actual set up of customer translations are administered through a common system management tool, DSA, which is integrated into the platform.

DSA is an all-purpose telecommunications management tool aimed at small- to mid-sized companies, such as small businesses, motels, and branch offices of large companies.
Interactions with switches and voicemail systems

DSA is a Windows 95/98 and NT application that is not client-server based. It communicates directly with switches and AUDIX systems as follows:

- Through a direct hardware connection within a DEFINITY ONE computer
- Over a LAN
- With a modem or data module

DEFINITY ONE, as shipped, allows installation personnel to connect to switches and voicemail systems through the direct hardware connection in the DEFINITY ONE computer. To optimize the efficiency of DEFINITY ONE and DSA, and because administrators may not want to work directly on the DEFINITY ONE computer, install DSA software on a separate computer and connect to the switch in any of the other three ways listed above.

If installation personnel choose to install DSA on a separate computer, that computer must fulfill the following requirements:

Windows 95/98 configuration:

- Processor: 486/Pentium
- RAM: 16MB/32 MB
- Available Disk Space: 100 MB minimum
- CD-ROM
- Printer port: Standard PC printer port or LAN connection
- Available Serial Ports: One free serial port or LAN connection is required for a connection to the switch
- TCP/IP LAN: Optional, depending on configuration
- Display: SVGA with minimum screen resolution of 800 x 600

Windows NT configuration:

- Processor: Pentium
- RAM: 64 MB
- Available Disk Space: 100 MB minimum
- CD-ROM
- Printer port: Standard PC printer port or LAN connection
- Available Serial Ports: A modem connection or a LAN connection is required for a connection to the switch
DEFINITY ONE™ Communications System Release 2.0
Installation and Upgrades 555-233-109
DEFINITY Site Administration (DSA)
What DSA does

What DSA does

DSA performs most types of switch administration activities (except for the “monitor” commands). Switch administration activities include:

- Adding phones to the system, including identifying which extensions or ports are available
- Scheduling activities to run at a later date and time
- Scheduling activities to run repeatedly
- Assigning telephone feature buttons
- Creating or modifying coverage paths
- Adding or modifying hunt groups
- Administering pickup groups
- Administering bridged appearances
- Resolving and monitoring alarms
- Changing a user’s personal information, such as the name, set type, location, etc.
- Moving or removing agents or stations
- Determining how well/whether a station is operating
- Testing stations or trunks
- Setting up vectors
- Performing AUDIX administration activities, including setting up a voicemail account for a new phone

Setting up a voicemail account is part of the DSA User Administration wizard. For all other AUDIX tasks, administrators must use DSA’s terminal emulation feature to open an AUDIX terminal emulation window.

Besides switch administration functions, DSA has its own administration activities. These activities help set up DSA to communicate with switches and AUDIXes, organize telecommunications data, and specify DSA will work. These DSA administration activities include:

- Setting up direct, modem/data module, and LAN connections between DSA and switches or AUDIX systems
- Entering DSA-specific data, such as time-out intervals, number of times to retry tasks, and other system options

- TCP/IP LAN: Optional, depending on configuration
- Display: SVGA with minimum screen resolution of 800 x 600
■ Using the history, schedule, and connection viewers to track the status of administration tasks

■ Organizing systems and task shortcuts in the browser tree

Components of DSA

DSA provides a central window that allows access to switches and AUDIX systems. The pictures below show the main DSA screen.

Figure 7-1. DSA window with tasks pane and status viewer or history pane
As a default setting, the left-pane shows the task wizards that DSA offers for performing frequent tasks. Users can use task wizards to create common tasks and schedule those tasks to run on the system and/or save the tasks to the DSA browser tree. Users can create the following tasks with the task pane:

- **Start GED** — Any administration activity that can be accomplished with the Graphically Enhanced DEFINITY interface (GEDI), and includes almost all DEFINITY ONE administration
- **User Administration** — Adding phones, removing phones, and changing a phone user's name in DEFINITY ONE and AUDIX
- **Find and Replace** — Changing, finding, or removing something across an entire switch
- **Import Data** — Copy and paste data from a spreadsheet to a grid in DSA
- **Export Data** — Save switch data to an external file
- **Use Template** — Add objects, such as a phone, to a switch, using an existing template
- **Create New Template** — Create a template to use when adding objects to the switch
DEFINITY Site Administration (DSA)

How DSA works

- Add Bridged Appearance — Create a bridged call appearance on a phone
- Generate Call Accounting — Select call accounting data and save it as an external file
- Browse Dial Ranges — View the dialing ranges specified by a switch’s dial plan
- Find Unused Extension — Search a switch for the next available extension after a specified extension
- Browse Unused Ports — View a list of unused ports on a switch.
- Browse Stations — View a selected or complete list of stations on a switch
- Monitor Trunks — Tell DSA to periodically check for out-of-service trunks and notify the user
- Start Emulation — Access a switch or AUDIX via terminal emulation
- Add Switch — Set up a connection from DSA to a DEFINITY switch
- Add Voice Mail System — Set up a connection from DSA to an AUDIX system
- Print Button Labels

Clicking the Tree tab on the left-pane displays the DSA browser tree. This tree is a Windows Explorer-like view of all of the switches and AUDIX systems connected to DSA, the tasks a user has created, and the button label templates. Users can:

- Expand nodes in the tree
- Move items
- Cut, copy, or delete items
- Add or paste items to the tree
- Rename items
- Change an item’s properties
- Connect to a switch

How DSA works

In DSA, any switch or AUDIX administration activity is called a task. When using DSA to perform a switch or AUDIX administration task, enter the task into DSA and then tell DSA when to run the task. For example, to add a phone to the system for a new employee, create a task in DSA that adds the phone (and, optionally, the associated voicemail account), and then tell DSA to add the new phone immediately or at a later time.
When the task runs, DSA connects to the appropriate switch or AUDIX, runs the task, and displays feedback about the task in the schedule tab. Depending on the instructions from the user, DSA will either disconnect from the switch or make the connection idle when it is finished running the task.

DSA help

DSA provides the following information to help administrators:

- Guided tour — The guided tour orients users to the DSA interface, explains what the different areas of the DSA screens are for, and orients users to what DSA is and how to get started. Users can launch the Guided Tour by choosing Guided Tour from the Help menu.

- Online Help with Demonstrations — The online help system tells how to administer DSA, how to perform basic switch administration and troubleshooting, and how to connect to an AUDIX. Many topics include a Show Me button. When a user clicks Show Me, a short animated demonstration of the task plays. To open the help system, choose Contents from the Help menu.

- Show Me demonstrations — Users can launch a list of Show Me demonstrations by choosing Show Me from the Help menu.

- Connection support — Clicking Help on a connection error message will launch a series of troubleshooting screens to walk users through solving common connection problems.

Configure DSA

When DSA is initially installed on a client machine, it needs to be configured to communicate with both the switch application (DEFINITY) as well as the voice mail applications (AUDIX) on the DEFINITY ONE platform.

When it runs initially, after downloading, DSA asks if it should create a new entry for the Switch. To create a new entry for the switch, do the following:

1. Answer yes to creating a new switch.
2. Complete the Switch Properties information and apply it.
3. Answer yes to the request for creating a new entry for a voice mail application.
4. Complete the Voice Mail System Properties information and apply it.
Both Switch access and voice mail access are now configured through DSA to DEFINITY ONE.

NOTE: To create a new entry for a different system, perform the following procedure.

Adding DEFINITY ONE Switch Administration Item

1. Click file > new > Switch. A screen similar to the one below displays.

![Switch Properties window]

2. Enter a name in the System name field. As a technician configuring DSA on your laptop, use a generic name, as you will be able to use this connection item for all DEFINITY ONE machines connected over the PCMCIA physical connection.
3. Enter a login name and Password.

For Lucent Personnel enter one of the dxxxx logins (dinit, dinads, dcraft) depending on the level of access desired along with the appropriate password. The password will be unique for each DEFINITY ONE system.

For non-Lucent personnel, enter your valid DEFINITY login with its appropriate password. See “Enable customer logins” on page 3-5.

Log in to DEFINITY with ASG enabled

If the system is ASG-enabled:

1. Click the login manually to system check box. An emulator screen displays, prompting for login.

Log in as dxxxx. You will be issued a challenge; respond correctly.
If you respond successfully, you will start to see data scroll by. The system will ask for terminal type; do NOT enter a terminal type. Simply click on the Continue button at the bottom of the screen as in the screen below.
Once you have populated the fields on the Switch Properties page, the screen should look similar to the one below.
2. Click on the Add button at the bottom of the screen. This is used to add a physical connection mechanism from the client machine to the DEFINITY ONE. Clicking on the Add button will pop up a screen similar to the one below.

![Connection Properties](image)

- **NOTE:**
 Regardless of the physical connection used, that is, local monitor/keyboard/mouse, PCMCIA, RAS modem or customer LAN, THE CONNECTION TYPE IS ALWAYS A LAN CONNECTION.

- **NOTE:**
 By default the Modem or data module connection radio button is highlighted. Be sure to click on the LAN connection radio button.

3. Host: For the host address, enter the IP address that is commensurate with the physical connection mechanism used to connect to the DEFINITY ONE. See “Installation Connectivity Quick Reference” on page H-1.

4. Port: For the port number, ALWAYS use port 23.
5. Click on the Apply followed by OK. This dismisses the Connection Properties page and put you back at the Switch Properties page, similar to the one below.

![Switch Properties](image)

NOTE:
For a Switch (DEFINITY) connection, add two identical connection entries by repeating steps 3, 4, 5 and 6. This allows you to use the wizards.
After having created the second LAN connection item, your Switch Properties screen should look similar to the one below.

6. Click on the OK button to complete the addition of the Switch item.
By clicking on the **Tree** tab on the DSA window, you can see the newly added DEFINITY ONE Switch Administration item. The screen will look similar to the one below.
Adding DEFINITY ONE Voice Mail Administration item

For a new Voice Mail Administration item, click on file > new > Voice Mail System. A screen similar to the one below will appear.

1. Enter a name in the System name field. For technicians that are configuring DSA on their laptops, use a generic name, as you will be able to use this connection item for all DEFINITY ONE machines connected over the PCMCIA physical connection.

2. Enter a login name and Password.

 For Lucent Personnel enter one of the axxxx logins (atsc or acraft) depending on the level of access desired along with the appropriate password.

 For non-Lucent personnel enter one of the valid AUDIX Customer logins (sa, vm, or browse) along with the appropriate password.
Log in to AUDIX with ASG enabled

If the system is ASG-enabled, then you must click the login manually to system check box. When you try to initiate a connection, an emulator screen will pop up, prompting for login.

Log in as axxxx. You will be issued a challenge to which you must respond correctly.

The system will ask for terminal type; do NOT enter a terminal type. Simply click on the Continue button at the bottom of the screen.
Once you have populated the fields on the Voice Mail System Properties page, the screen should look similar to the one below.
3. Click on the Add button at the bottom of the screen. This is used to add a physical connection mechanism from the client machine to the DEFINITY ONE. Clicking on the Add button will pop up a screen similar to the one below.

![Connection Properties](image)

NOTE:
Regardless of the physical connection used, that is, Local monitor/keyboard/mouse, PCMCIA, RAS modem or customer LAN, THE CONNECTION TYPE IS ALWAYS A NETWORK CONNECTION.

NOTE:
By default the Modem or data module connection radio button is highlighted; be sure to click on the LAN connection radio button.

4. Host: For the host address, enter the IP address that is commensurate with the physical connection mechanism used to connect to the DEFINITY ONE. See [Chapter H, “Installation Connectivity Quick Reference”](#).

5. Port: For the port number, ALWAYS use port 23.
6. Click on Apply followed by OK, this will dismiss the Connection Properties page and put you back at the Voice Mail Properties page, similar to the one below.

![Voice Mail System Properties](image)

7. Click on the OK button to complete the addition of the Voice Mail System Administration item.
By clicking on the **Tree** tab on the DSA window you can see the newly added DEFINITY ONE Switch Administration item. The screen will look similar to the one below.

Starting a Switch Administration session

To launch a GEDI session:

1. Click on the tree tab of the DSA window
2. Right click on the newly created Switch Item (DEFINITY ONE Switch in our example)
3. Click on **General**
4. Click on **Start GEDI**

While the connection is being established, a screen similar to the one below will be displayed.
Once the connection has completed, a screen similar to the one below displays.

To launch an emulation session:

1. Click on the Tree tab of the DSA window
2. Right click on the newly created Switch Item (DEFINITY ONE Switch).
3. Click on Advanced
4. Click on either 4410 Emulation or 513 Emulation

While the connection is being established, a screen similar to the one below will be displayed.
Once the connection has completed, a screen similar to the one below displays.

Starting a Voice Mail Administration session

1. Click on the **Tree** tab of the DSA window
2. Right click on the newly created Voice Mail System Item (DEFINITY ONE AUDIX in our example)
3. Click on either 4410 Emulation or 513 Emulation

While the connection is being established, a screen similar to the one below displays.
When the connection completes, a screen similar to the one below displays.
Message Manager Installation

This chapter provides the tasks required to install Message Manager:

- "Introduction" on page 8-1
- "Pre-Installation considerations" on page 8-2
- "Installation to a client PC" on page 8-8

Introduction

The Lucent Technologies INTUITY Message Manager is a tool for handling multimedia messages with use of a personal computer (PC).

Message Manager visually accesses the AUDIX messaging system through a local area network (LAN) connection. When connected to a LAN, the AUDIX system is referred to as the "AUDIX server".

The following describes the process for installing client copies of Message Manager on individual AUDIX users’ PCs.

Standard features

This Windows-based application provides the following features:

- Visual display of the AUDIX mailbox capable of playing voice messages, viewing faxes and text messages, and launching or exporting file attachments, through a simple graphic interface
- A Personal Address Book on the PC, independent of the AUDIX server
- Personal folders for sorting and storing messages on the PC, independent of the AUDIX server
Pre-Installation considerations

This section describes installation requirements and options for setting up and running Message Manager 4.5.

PC requirements

Minimum hardware and software required:

- A compatible operating system:
 - Windows NT Version 3.51, with Service Pack 5
 - Windows NT Version 4.0
 - Windows 95

- A minimum 486, 66 MHz PC with 16 Mbytes of RAM and 19 Mbytes of available hard disk storage (assuming a Personal Address Book with 400 entries). Exception:
 - The tutorial requires an additional 10 Mbytes of disk storage.
 - The operating system may require additional RAM for improved performance (for example, 32 Mbytes of RAM for Windows NT).

- Soundcard support for playing and recording messages and greetings on the PC, depending on availability of sound card, speakers, and microphone.

- Remote, off-site access to messages through a high-speed modem and TCP/IP (PPP) access to a LAN, depending on hardware availability

- The ability to receive, create, and send text messages and attached files

- Fax messaging, including receiving, forwarding, deleting, printing, or creating fax messages, depending on the release and configuration of the AUDIX server.

- Related Documentation

The following information is available:

- The Message Manager section of the AUDIX electronic documentation describes preparation of the AUDIX system for Message Manager.

- The Guide Builder program creates a customized quick reference user guide that describes the features and use of AUDIX and Message Manager.

- The custom.txt file appears when Message Manager users select About Your System from the Help menu. As the system administrator, you can revise the custom.txt file to include information useful to your subscribers. See “Updating your site-specific information” on page 8-17.
Message Manager Installation

Pre-Installation considerations

- VGA or higher monitor (color recommended)
- LAN interface card
- Windows Sockets (WINSOCK.DLL) access to TCP/IP (either through a NetWare Loadable Module or TCP/IP protocol stack)
- Mouse supported by Microsoft Windows (recommended)
- Microsoft Windows-compatible sound card with speakers and a microphone (for remote access)
- Speakerphone, telephone headset, or a Microsoft Windows-compatible sound card with speakers, microphone, or a computer headset for hands-free operation (optional)

Installation requirements

Ensure the PC and LAN will support Message Manager before installing. Perform the following:

- On the PC, log into the network and enable Microsoft Windows
- Obtain a server name or TCP/IP address of a workstation in your network from the LAN administrator and run the ping program from a DOS prompt in Windows ("ping" the address or name). A ping from the DOS shell without Windows running is not a valid test. For assistance ask your LAN administrator how to access or use this utility.
- If the ping fails or the system hangs, install Message Manager and on the Help icon in the program group. For additional options, search for “General Troubleshooting.”
- The executable Message Manager software and a copy of the software CD must be in different directories if a shared copy of Message Manager is installed for users to run on the LAN and the Message Manager software is copied to the LAN for easy distribution.
- Administrative privileges or login as Administrator are required to install the fax package on Windows NT.
Operating system considerations

The Message Manager Setup program automatically tailors Message Manager to work with the operating system installed on a PC. Operating system considerations are:

- Message Manager Release 4.5 runs as a 32-bit application on Windows 95 and Windows NT (NT version 3.51 requires Service Pack 5).
- Message Manager Release 4.5 cannot run on Windows 3.1, 3.11, or NT 3.51 without Service Pack 5. Obtain Message Manager Release 4.3 to run Message Manager on a 6-bit system.
- Reinstall Message Manager when changing operating systems. Message Manager must be installed separately for each operating system if the PC runs multiple operating systems (such as Windows NT and Windows 95).

Select installation type

Several methods of installation and operation are available for Message Manager. On completion of the install process, select the following type of installation (Refer to Table 8-1 for advantages/disadvantages):

- Single User Install. Install a copy of Message Manager on each user’s PC using either of the following distribution methods:
 — Share or copy the CD included in the installation package.
 — Download compressed Message Manager files from the DEFINITY Office browser interface or the intranet.
- Copy from LAN Server. Install a copy of Message Manager by accessing the software through a LAN file server. This allows administrators easy distribution of Message Manager through a LAN rather than sharing the CD or downloading compressed files. See “Installing Message Manager from a LAN server” on page 8-14.
- Run from LAN Server. All users on a LAN server share a single copy of Message Manager. The Message Manager software that is only on the LAN file server, can easily be updated by the LAN administrator. See “Installing and accessing a shared copy of Message Manager” on page 8-10.
- Automated Installation. Start an automatic installation to load on users’ computers with an entire set of application software, including Message Manager, as defined by the company. This allows administrators to easily distribute a uniform set of user software to all computers. See “Using the automated installation process” on page 8-15.
Table 8-1. Advantages and disadvantages of installation and operation choices

<table>
<thead>
<tr>
<th>Install method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single user install from a CD</td>
<td>■ Fast load for users with slow LAN connection (remote access)</td>
<td>■ Administrator cannot password-protect the CD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>■ Requires CD distribution at each update</td>
</tr>
<tr>
<td>Single user install via browser download</td>
<td>■ Users can install the software</td>
<td>■ Increases network traffic during installation</td>
</tr>
<tr>
<td></td>
<td>■ Stand alone executable that requires only temporary LAN access during install</td>
<td></td>
</tr>
<tr>
<td>LAN distribution</td>
<td>■ Fast load for users with LAN connection</td>
<td>■ Requires disk space on LAN server</td>
</tr>
<tr>
<td></td>
<td>■ Secure — directory can be password-protected</td>
<td>■ Increases network traffic during installation</td>
</tr>
<tr>
<td></td>
<td>■ No CD to manage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ Easily updated if software changes</td>
<td></td>
</tr>
<tr>
<td>Shared copy on LAN</td>
<td>■ Saves disk space on user's computers</td>
<td>■ Requires disk space on LAN server</td>
</tr>
<tr>
<td></td>
<td>■ Secure — software can be password-protected</td>
<td>■ Can greatly increase network traffic</td>
</tr>
<tr>
<td></td>
<td>■ No diskettes to manage</td>
<td>■ May have much slower execution speed, depending on LAN performance</td>
</tr>
<tr>
<td></td>
<td>■ Easily updated if software changes</td>
<td></td>
</tr>
<tr>
<td>Automated installation</td>
<td>■ Simplest install for users</td>
<td>■ System administrator must custom-build, load, and distribute installation media</td>
</tr>
<tr>
<td></td>
<td>■ Administrator resources required only initially</td>
<td>■ Requires software media distribution at each update</td>
</tr>
<tr>
<td></td>
<td>■ Fast load for users with slow LAN connection (remote access)</td>
<td></td>
</tr>
</tbody>
</table>
Upgrade considerations

If upgrading from an earlier release of Message Manager to Release 4.5, either replace the existing version of Message Manager or keep two versions of Message Manager installed on the same PC.

Before installation

Make a backup copy of the following directories and contents:
- Workbench (Workbnch)
- Personal Folders (default names are PF1, PF2, PF3, PF4, and PF5)
- Address Book (PBOOK.MDB)

During installation

Complete the following:
- Close all Windows programs, including the current version of Message Manager
- To save a copy of the current Message Manager software, select a new directory name and program group when installing Release 4.5
- Installing Message Manager "basic" software removes the fax print drivers from the computer. In addition, there can be two releases of Message Manager installed, but only one set of fax print drivers.
- Install (or reinstall) the fax software that corresponds with the Message Manager release for faxing after installing the basic software.

After installation

Take note of the following:
- Message Manager Release 4.5, opening the first time, prompts the option of converting the existing workbench and personal folders to the new release.
 - If converted, the messages are longer accessible by earlier releases of Message Manager.
 - If personal folders are not converted, new personal folders must be set up in Release 4.5 under the main screen File menu. To later convert a personal folder, select the folder as a Release 4.5 personal folders.
Release 4.5 uses the Address Book, Personal Folders, and Workbench files located in the directory established with the previous version of Message Manager. To protect files from deletion, use File Manager or Explorer to copy the following directories and files to the Release 4.5 directory:

- PF1, PF2, PF3, PF4, and PF5 (and contents). Select Set Personal Folder Properties from the File menu to set each new file location.
- Workbench (and its contents). Select the Workbench Directory from the File menu to set the new file location.
- PBOOK.MDB. Open the Personal Address Book, select Open from the File menu, go to the new location, and select PBOOK.MDB.

The installation process provides several shortcut icons in the Message Manager Windows program group and Start menu. The following icons are valid for Message Manager Release 4.5:

- Fax Cover Page Wizard
- Help - US English
- Message Manager
- Personal Address Book
- ReadMe

Uninstalling Message Manager

Previous versions of Message Manager remain on the system until replaced or removed. The method used to uninstall Message Manager varies with the Message Manager release:

- To remove Message Manager Release 4.3 or earlier, overwrite the files by loading Message Manager 4.5 into the same directory, or delete the Message Manager directory and files. See "Upgrade considerations" on page 8-6.
- To remove Message Manager Release 4.5 or later, run unwise.exe from the Message Manager directory.
Installation to a client PC

Select the following during installation:

- Installation type to perform
- Parts of the application to install (basic and/or fax packages). For Windows NT, log in as Administrator to install the fax package.
- To run Message Manager from the PCs or share a copy from the LAN. See “Select installation type” on page 8-4.
- Optional back up of files (upgrades and reinstalls)

Single user installation process

The default method of installation, described in Table 8.2, is from a CD or intranet site to a single PC. Subsequent sections describe additional install and operation methods (install from a LAN, run shared copy from a LAN, and automated install).

1. Perform one of the following installation options:
 - Obtain the Installation CD.
 - Download the Message Manager software file to a temporary directory from the DEFINITY Office browser page or an intranet site designated by the system administrator. Select File Explorer and double click to decompress the file.
 - Navigate to a LAN directory designated by the system administrator.

2. Run setup.exe.

3. Complete the steps listed in Table 8-2 to install Message Manager Release 4.5.
Table 8-2. Single user install screens

<table>
<thead>
<tr>
<th>Screen name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome</td>
<td></td>
</tr>
<tr>
<td>License File</td>
<td>The Message Manager CD includes the following tools:</td>
</tr>
<tr>
<td></td>
<td>▪ Install description</td>
</tr>
<tr>
<td></td>
<td>▪ User Overview/Tutorial</td>
</tr>
<tr>
<td></td>
<td>▪ Documentation</td>
</tr>
<tr>
<td>Tell Me About…</td>
<td></td>
</tr>
<tr>
<td>Select Installation Type</td>
<td>The following installation choices are described in “Select installation type” on page 8-4:</td>
</tr>
<tr>
<td></td>
<td>▪ Single User Install (Continue with the instructions in this table)</td>
</tr>
<tr>
<td></td>
<td>▪ Shared Installation (Go to “Installing and accessing a shared copy of Message Manager” on page 8-10)</td>
</tr>
<tr>
<td></td>
<td>▪ Copy for LAN Installation (Go to “Installing Message Manager from a LAN server” on page 8-14)</td>
</tr>
<tr>
<td></td>
<td>▪ Automated Installation is available, although it is not a selection on the Installation Type screen. (Go to “Using the automated installation process” on page 8-15)</td>
</tr>
<tr>
<td>Important! message</td>
<td>Close open software applications. For Windows NT, you must have administrative privileges or be logged in as Administrator to successfully install the fax package.</td>
</tr>
<tr>
<td>Select Destination Directory</td>
<td>To load the program in a directory other than the default, select the directory of choice. If creating a new directory, type the directory path in the Select Destination Directory dialog box.</td>
</tr>
<tr>
<td>Backup Replaced Files</td>
<td>Save Backup files in the Backup directory. Personal Folders, Workbench, and Address Book files are not automatically backed up; see “Upgrade considerations” on page 8-6.</td>
</tr>
<tr>
<td>Select Components</td>
<td>Select Message Manager and FAX for a complete installation. Select fax to add it to a previous installation.</td>
</tr>
<tr>
<td>Enter FAX Information</td>
<td>If FAX is selected on the Select Components screen, enter the Server ID and Extension. The information determines which AUDIX mailbox opens when the user creates a fax. Select Options/Preferences in Message Manager to add or update later.</td>
</tr>
</tbody>
</table>

Continued on next page
4. Restart Windows to complete the installation process.

Installing and accessing a shared copy of Message Manager

To install a shared copy the system administrator installs a single, shared executable copy of the software on a LAN server, customizes certain files, and installs (or notifies users to install) Message Manager on users' PCs. When Message Manager is installed on the PCs, a minimal set of files load, including msg_mgr.ini, Personal Folders, and the Message Manager print driver (if fax package installed).

The application loads from the server to the client computer's RAM when user double clicks the Message Manager icon. Message Manager can run throughout the day without affecting other users.

1. Run setup.exe.
2. Complete the steps in Table 8-3 to install Message Manager Release 4.5 on the LAN server.
Table 8-3. Shared installation Setup.exe screens

<table>
<thead>
<tr>
<th>Screen name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome</td>
<td></td>
</tr>
<tr>
<td>License File</td>
<td></td>
</tr>
<tr>
<td>Tell Me About…</td>
<td>The Message Manager CD includes the following tools:</td>
</tr>
<tr>
<td></td>
<td>■ Install description</td>
</tr>
<tr>
<td></td>
<td>■ User Overview/Tutorial</td>
</tr>
<tr>
<td></td>
<td>■ Documentation</td>
</tr>
<tr>
<td>Select Installation Type</td>
<td>Select Shared Installation. Installation options are described in “Select installation type” on page 8-4.</td>
</tr>
<tr>
<td>Important! message</td>
<td>Close open software applications. For Windows NT, administrative privileges or login as Administrator are required to install the fax package.</td>
</tr>
<tr>
<td>Select Destination Directory</td>
<td>Designate or create the directory on the LAN server to contain the Message Manager software. To load the program in a directory other than default, browse to the directory of choice. To create a new directory, type the directory path in the Select Destination Directory dialog box.</td>
</tr>
<tr>
<td>Backup Replaced Files</td>
<td>Save Backup files in the Backup directory. Personal Folders, Workbench, and Address Book files are not automatically backed up; see “Upgrade considerations” on page 8-6.</td>
</tr>
<tr>
<td>Select Components</td>
<td>For a complete installation, select Message Manager and FAX. Select FAX to add fax to a previous installation.</td>
</tr>
<tr>
<td>Enter FAX Information</td>
<td>For shared Installations leave these fields blank. The information determines which AUDIX mailbox opens when the user creates a fax. Select Options/Preferences in Message Manager to add or update later.</td>
</tr>
</tbody>
</table>

Continued on next page
3. Customize either of the following text files to user needs:
 - custom.txt — This is the file that Message Manager users see when About Your System... is selected from the Message Manager Help menu. See “Updating your site-specific information” on page 8-17.
 - hints.txt — This file contains a description of each program group icon.

4. Install (or instruct users to install) the necessary user files and print driver to each individual PC by from the LAN to the shared directory (created during the LAN server install above) and run the SH_Setup.exe program. The following table includes a description of the SH_Setup.exe install process.

Table 8-4. Shared installation Sh_Setup.exe screens

<table>
<thead>
<tr>
<th>Screen name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome</td>
<td></td>
</tr>
<tr>
<td>License File</td>
<td></td>
</tr>
<tr>
<td>Important! message</td>
<td>Close open software applications. For Windows NT, administrative privileges or login as Administrator are required to install the fax package.</td>
</tr>
<tr>
<td>Select Destination Directory</td>
<td>Load only a minimal set of files of the client PC. To load the program in a directory other than default, browse to the directory of choice. To create a new directory, type the directory path in the Select Destination Directory dialog box.</td>
</tr>
</tbody>
</table>

Continued on next page
5. Restart Windows to complete the installation process.
Installing Message Manager from a LAN server

The system administrator copies and decompresses the software from the CD to a LAN server. Specific files are customized and Message Manager Release 4.5 is installed (or users are notified to install) to individual PCs.

1. Run setup.exe.
2. Complete the steps Table 8-5 to copy and decompress the installation files.

Table 8-5. LAN installation screens

<table>
<thead>
<tr>
<th>Screen name</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome</td>
<td></td>
</tr>
<tr>
<td>License File</td>
<td></td>
</tr>
<tr>
<td>Tell Me About…</td>
<td>The Message Manager CD includes the following information tools:</td>
</tr>
<tr>
<td></td>
<td>■ Install description</td>
</tr>
<tr>
<td></td>
<td>■ User Overview/Tutorial</td>
</tr>
<tr>
<td></td>
<td>■ Documentation</td>
</tr>
<tr>
<td>Select Installation Type</td>
<td>Select Copy for LAN Installation. Installation choices are described in “Select installation type” on page 8-4.</td>
</tr>
<tr>
<td>Select Destination Directory</td>
<td>Select or type the directory path in the Select Destination Directory dialog box.</td>
</tr>
<tr>
<td>Ready to Install,</td>
<td>Select Next on the Ready to Install screen. The Status light displays and a list of installed files appears.</td>
</tr>
<tr>
<td>Installation Status</td>
<td></td>
</tr>
<tr>
<td>Indicator</td>
<td></td>
</tr>
<tr>
<td>hints.txt</td>
<td>The hints.txt screen describes each program group icon.</td>
</tr>
</tbody>
</table>

3. Customize any of the following text files to meet user needs:
 ■ custom.txt — This file appears when users select About Your System... from the Message Manager Help menu. See “Updating your site-specific information” on page 8-17.
 ■ docs.txt — This file, viewable during the install process, describes the electronic user documents.
 ■ hints.txt — This file contains a description of each program group icon.
install.txt — This file, viewable during the install process, describes the install choices.

readme.txt — This file contains late-breaking information about Message Manager Release 4.5. It is viewable at the end of the Single User Install process.

tutorial.txt — This file, viewable during the install process, describes the computer-based overview tutorial.

4. Install (or instruct users to install) the application to each PC from the LAN to the shared directory. Perform the “Single user installation process” on page 8-8.

Using the automated installation process

The system administrator updates the silent.txt (template) file and installs the software from the LAN to users’ computers.

1. Copy the silent.txt text from the Message Manager Release 4.5 CD to the PC. The file contains the following text:

rem This is the Prototype Silent Install Settings File

rem This file is used to create a Silent Installation of
rem Message Manager version 4.5

rem To use this settings file, invoke the installation rem as follows:
rem
rem <path>\Setup.EXE /M=<path2>\Silent.TXT
rem
rem Where <path> is the location of the Setup.EXE installation rem executable
rem and <path2> is the location of the Silent.TXT file being rem used

rem Following are the Variables and values required for rem installation. Spelling and Capitalization are rem CRITICAL!

rem Following line is required - do not change
SILENT=1

rem Following line is required - do not change
INSTALLTYPE=A

rem Following line is required - do not change
LANGUAGES=A
rem Following is for "What to Install"
rem
rem use A for Basic, B for FAX, AB for both
COMPONENTS=AB

rem Following is used only for FAX install
rem
rem Provide the values for the FAX Server and Extension
rem Spelling is critical
rem
rem if left blank, install will use the previous values
rem from the msg_mgr.INI file (if present)
FAXSERVER=
FAXEXTENSION=

rem Following is for Installation Location
rem
rem Directory location for Installation
rem
rem Example - MAINDIR=C:\MSG_MGR
rem Example - MAINDIR=C:\Program Files\Lucent\Message Manager
MAINDIR=C:\Program Files\Lucent\Message Manager

rem Following is for Backup of replaced files during
rem installation
rem
rem Use A for True, B for False
DOBACKUP=A
rem Following is for backup directory
rem If backup is not selected, file name is not used
BACKUP=C:\Program Files\Lucent\Message Manager\backup

rem Following is the Name of the Program Manager Group
rem for Message Manager installation.
rem Spelling is critical
GROUP=Message Manager

rem Following is the re-boot flag
rem Windows must be re-booted before using Message Manager
rem Setting this flag will cause the install to query the
rem user about the reboot
rem Clearing this flag will not reboot, and will not ask
rem the user
rem Use S for System Reboot (recommended), W for Windows
rem reboot, and nothing for no reboot.
RESTART=S

rem End of silent install parameters
2. Customize silent.txt to specify the following:
 - COMPONENTS
 - FAXSERVER
 - FAXEXTENSION
 - MAINDIR
 - DOBACKUP

3. Follow the instructions in silent.txt to enable the automatic installation process.

Updating your site-specific information

Message Manager Release 4 and later allows users or administrators to update a custom file with site-specific information such as the AUDIX server ID, prefixes, text-addressing format, feature-access codes, and help numbers. Users select About Your System in the customs file from the Help menu on the Message Manager main screen.

To update the default custom file or supply a quick-reference file:

1. Access the Message Manager Release 4.5 directory.

2. Locate the default custom.txt file template provided with Message Manager. To update this file:
 - Open the custom.txt file using any ASCII text editor.
 - Follow the instructions in the template and save the file.

3. To install a custom file of a different type (such as doc or hlp):
 - Move or rename the default custom.txt file template.
 - Put custom file in the same directory as the executable Message Manager msg_mgr.exe file. Name the file “custom”.
 - If you use a file type other than txt, there must be a computer application associated with that extension, or the custom file will not run.
Updating the custom file varies according to the installation setup:

- Users sharing a copy of Message Manager on a LAN server access the same custom file, which is either the default template or the system administrator’s version. If the administrator later updates the custom file, users access the new version the next time Message Manager is run.

- Users installing a personal copy of Message Manager on a PC from a LAN server initially obtain the custom file (either the default or the administrator’s version) from the server. If this file is later updated, users must manually copy it from the server or reinstall Message Manager.

- Users installing a Message Manager CD must update custom files independently. The administrator may provide a modified custom file for users to copy to an application directory after installation (distributed on diskette, as an attached file, or through a LAN server). If so, include directions for users to rename or remove the old or default custom.txt file.
Troubleshooting

This chapter provides information specific to troubleshooting installation problems. Problem types can:

- Be new and never worked through before
- Occur after installation
- Occur after installation has worked

The following sections apply:

- “Install Wizard error messages” on page 9-2
- “Platform troubleshooting commands” on page 9-5
- “Modem configuration and administration” on page 9-5
Install Wizard error messages

Error messages can occur with the DEFINITY ONE Install Wizard. Error messages and possible explanation/remedies are presented on the next page:

<table>
<thead>
<tr>
<th>Error message</th>
<th>Possible explanation/remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unable to set the registry default root to HKEY_LOCAL_MACHINE</td>
<td>The registry key HKEY_LOCAL_MACHINE is not accessible from the install wizard. Ensure that the registry key is accessible.</td>
</tr>
<tr>
<td>DEFINITY ONE is still running. Shut it down and restart install.</td>
<td>Install wizard cannot execute while DEFINITY ONE is running. The command, shutdown all, shuts down the applications related to DEFINITY ONE. After this command executes, rerun the install wizard.</td>
</tr>
<tr>
<td>Unable to shut the CornerStone logger down. Manually shut it down and restart the install program.</td>
<td>Execute C:\LucentSoftware\CornerStone\mtce\bin\csShutdownlog.exe. Execute the command C:\LucentSoftware\CornerStone\bin\cslog_server.exe -UnregServer. The CornerStone logger should shut down. Rerun the install wizard.</td>
</tr>
<tr>
<td>Unable to register the following files xxxx,yyyy,.....</td>
<td>The install program is unable to self register the files. Register the DLLs manually using the command regsvr32.</td>
</tr>
<tr>
<td>Unable to Reboot workstation Reboot now</td>
<td>Install wizard tried to reboot the workstation, but was not successful. Reboot attempted because some of files were not installed properly (may be in use). Manually push the shutdown button on the front of the TN795 and power cycle.</td>
</tr>
<tr>
<td>Unable to set xxxx:yyyy from [ffff]</td>
<td>Install wizard could not read the key yyyy from section xxxx in the ini file ffff. Check:</td>
</tr>
<tr>
<td>- The ini file ffff should be in the same directory as Setup.exe (install wizard).</td>
<td></td>
</tr>
<tr>
<td>- The ini file ffff should have read permissions.</td>
<td></td>
</tr>
<tr>
<td>- The ini file ffff has the section xxxx and a value for the key yyyy.</td>
<td></td>
</tr>
<tr>
<td>Unable to determine screen resolution</td>
<td>Escalate</td>
</tr>
<tr>
<td>Error message</td>
<td>Possible explanation/remedy</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Screen resolution must be at least 640x480.</td>
<td>Install wizard requires that the screen resolution be at least 640x480.</td>
</tr>
<tr>
<td>Unable to determine the operating system</td>
<td>Escalate</td>
</tr>
<tr>
<td>Unable to determine operating system version</td>
<td>Escalate</td>
</tr>
<tr>
<td>Operating system must be Window NT 4.0.</td>
<td>The underlying OS is not Windows NT 4.0.</td>
</tr>
<tr>
<td>Must have administrator privileges to run this program</td>
<td>Installer does not have administrative privileges.</td>
</tr>
<tr>
<td>Unable to get free disk space on X drive</td>
<td>Escalate</td>
</tr>
<tr>
<td>Not enough space on X drive for new install. Space required is Y.</td>
<td>Free up space and ensure that there is at least Y MB space on drive X.</td>
</tr>
<tr>
<td>Not enough space on X drive for an upgrade. Space required is Y.</td>
<td>Free up space and ensure there is at least Y MB space on drive X.</td>
</tr>
<tr>
<td>Unable to parse path</td>
<td>Escalate</td>
</tr>
<tr>
<td>Unable to remove last slash from path</td>
<td>Escalate</td>
</tr>
<tr>
<td>Unable to get current path</td>
<td>Escalate</td>
</tr>
<tr>
<td>Unable to create [XXXX]</td>
<td>Escalate</td>
</tr>
<tr>
<td>Unable to create a target directory</td>
<td>Ensure that the path is syntactically correct and you have access rights to the target drive.</td>
</tr>
<tr>
<td>Unable to allocate memory required to complete the copy file process</td>
<td>Free memory by terminating as many running applications as possible.</td>
</tr>
<tr>
<td>Not enough disk space on target drive to copy the files</td>
<td>Free disk space on target drive.</td>
</tr>
<tr>
<td>Unable to open the input file</td>
<td>Ensure the source file is a valid file name, and the source file and target directory exist.</td>
</tr>
<tr>
<td>Unable to copy the requested file</td>
<td>Escalate</td>
</tr>
<tr>
<td>Target file is read-only.</td>
<td>Remove read-only attribute from target file and try again.</td>
</tr>
<tr>
<td>A self-registering file did not register successfully.</td>
<td>Escalate</td>
</tr>
</tbody>
</table>
Install Wizard error messages

<table>
<thead>
<tr>
<th>Error message</th>
<th>Possible explanation/remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown error</td>
<td>Escalate</td>
</tr>
<tr>
<td>Unable to copy file [X]</td>
<td>Escalate</td>
</tr>
<tr>
<td>Unable to get directory name</td>
<td>Escalate</td>
</tr>
<tr>
<td>Unable to parse directory</td>
<td>Escalate</td>
</tr>
<tr>
<td>Unable to create Substring section list</td>
<td>Escalate</td>
</tr>
<tr>
<td>Unable to open file X</td>
<td>Escalate</td>
</tr>
<tr>
<td>Unable to merge [X] into the Registry</td>
<td>Escalate</td>
</tr>
<tr>
<td>Translation ID interval expiration</td>
<td>Login INADS. Reset Translation ID. Save Translation.</td>
</tr>
</tbody>
</table>

The following warnings (insignificant errors) may be generated by the installconfig wizard. Attempt to manually resolve these. Note them in the log book and continue. They are:

- Unable to get the AUDIX extension length
- Unable to add DSA shortcut to Start Menu
- Unable to reset AUDIX extension length to xxxx
- Unable to get file size
- Unable to get the product version from the last install
- Unable to create directory
Platform troubleshooting commands

For a complete list of commands, see “Lucent access controller bash commands” on page G-1. Detailed strategic analysis of each command is found in DEFINITY ONE Communications System Release 2.0 Maintenance (555-233-111).

Modem configuration and administration

The following procedures describe how to check settings and test the external modem:

- “Configure modem” on page 9-5
- “Verify INADS modem settings” on page 9-5
- “Verify external modem option settings” on page 9-6
- “Configure External Option Modem” on page 9-6
- “Test the external modem” on page 9-8

NOTE:
The modem (U.S. Robotics Model) is preconfigured to work correctly.

Configure modem

Verify INADS modem settings

No external modem installed

If no external modem is connected to INADS (no INADS Alarm Origination), proceed as follows:

1. Enter `display system-parameters maintenance` and press `ENTER`.
2. Verify that the Alarm Origination Activated to OSS Numbers field is set to n and press `ENTER`.
3. Verify that Cleared Alarm Notification and Restart Notification are set to n.

External modem installed

1. Enter `display system-parameters maintenance` and press `ENTER`.
2. Verify that the Alarm Origination Activated to OSS Numbers field is set to y and press `ENTER`.
3. Verify that the Cleared Alarm Notification and Restart Notification fields are set to y.
Verify external modem option settings

1. Follow the procedure Start a pcAnywhere Client Session from the Laptop Computer to connect to pcAnywhere.

2. Click **Start > Settings > Control Panel**.

3. Double click **Modems**.

 A **Modem Properties** screen displays that shows the US Robotics 336K FAX Ext modem.

4. Click **Next**.

 Another **Modem Properties** screen displays.

5. Verify the modem port is attached to COM1.

6. Click **Next**.

 Another **Modem Properties** screen displays.

7. Right click **Properties**.

8. The **Properties** screen displays.

 Verify speed and speaker volume defaults are set.

9. Click **Connection**.

10. Verify that **Data bits** is 8, **Parity** is none, and **Stop bits** is 1.

11. Click **Advanced**.

 The **Advanced Connection Settings** screen displays.

12. Verify that the defaults are set.

13. Click **OK > Close**.

14. Configure External Option Modem

[NOTE:]

This procedure is necessary if the factory shipped modem is not used.

1. Start a pcAnywhere Client Session from the Laptop Computer to connect to pcAnywhere.

2. Click **Start > Settings > Control Panel**.

3. Double click **Modems**.
4. Click **Don’t detect my modem. I will select it from a list.**

5. Click **Next.**

Install New Modem screen displays

6. Click **Add.**

Install New Modem screen displays.

7. Select the manufacturer (**3COM Corp**) and the model (**US Robotics 336K FAX Ext**).

8. Click **Next.**

9. Select the port the modem is attached to (**COM1**).

10. Click **Next.**

The Modem Setup screen states that you need to restart the modem before using it.

11. Click **Finish > OK.**

Another Install New Modem screen states that the modem is set up successfully. The Modem Properties screen displays.

Configure the installed modem

1. Right click **Properties.**

The Properties screen displays.

2. Click **OK** to accept speed and speaker volume defaults.

3. Click **Connection** tab.

4. Click **OK** to accept the defaults For **Data bits** (8), **Parity** (none), **Stop bits** (1), and Call Preference.

5. Click the **Advanced** button.

The Advanced Connection Settings screen displays.
6. Click **OK** to accept the defaults.

7. Click **OK > Close**.

 The **Modem Properties** screen displays.

8. Click **Close**.

 The following message displays: “Dial-up Networking requires configuring because the list of installed modems has changed. Would you like to do this now?”

9. Click **Yes**.

10. The **Remote Access Setup** screen confirms that the modem is configured.

Test the external modem

1. At the SAT session, type `change system parameters maintenance`, and Click (ENTER) or Submit.

2. Ensure that the Test Remote Access Port field is set to **y**.

3. Type `test pr-maintenance` and Click (ENTER) or **Submit**.

4. Verify that test 230 passes.

 For more information See *DEFINITY Enterprise Communications System R7 Administration for Network Connectivity* (555-233-501).
This chapter provides information about software copy protection.

Software copy protection mechanisms

This section provides information about software copy protection methods for the installation, repair, and upgrade of procedures related to the TSC/COE.

Copying software from one machine to another is more of an issue with DEFINITY ONE's Windows NT platform running the three primary applications (DEFINITY, AUDIX, and DSA) than with a proprietary system.

Security measures add a level of impedance (time, money, expertise, etc.) to the process to discourage copying without permission. The possibility exists for someone with physical access to break into a system. There are two types of software protection in the DEFINITY ONE environment: feature and copy protection.

Feature protection

Feature protection has specific feature protection capabilities or capacities within an application. It controls the capabilities provided by the application. For example, the DEFINITY feature Translation copy protection supports a "customer options" administration form to tailor operation of DEFINITY to a specific customer.
Copy protection

Copy protection prevents software copying. A special mechanism associated with the DEFINITY ONE license file prevents the software from running on other systems.
This appendix provides the following information for TN760D Tie Trunk and TN464E/F option settings, connector and cable diagrams, and pinout charts.

- “TN760E tie trunk option settings” on page A-1
- “TN464F option settings” on page A-4
- “Connector and cable diagrams — pinout charts” on page A-6

TN760E tie trunk option settings

The TN760E Tie Trunk circuit pack interfaces between 4 tie trunks and the TDM bus. Two tip and ring pairs form a 4-wire analog transmission line. An E and M pair are DC signaling leads used for call setup. The E-lead receives signals from the tie trunk and the M-lead transmits signals to the tie trunk.

To choose the preferred signaling format (Table A-1 and Table A-2), set the switches on the TN760D and administer the port using Figure A-1 and Table A-3.
Table A-1. Signaling formats for TN760E

<table>
<thead>
<tr>
<th>Mode</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>E & M</td>
<td>Type I Standard (unprotected)</td>
</tr>
<tr>
<td>E & M</td>
<td>Type I Compatible (unprotected)</td>
</tr>
<tr>
<td>Protected</td>
<td>Type I Compatible, Type I Standard</td>
</tr>
<tr>
<td>Simplex</td>
<td>Type V</td>
</tr>
<tr>
<td>E & M</td>
<td>Type V</td>
</tr>
<tr>
<td>E & M</td>
<td>Type V Revised</td>
</tr>
</tbody>
</table>

Table A-2. Signaling type summary

<table>
<thead>
<tr>
<th>Signaling type</th>
<th>Transmit (M-Lead)</th>
<th>Receive (E-Lead)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On-Hook</td>
<td>Off-Hook</td>
</tr>
<tr>
<td>Type I Standard</td>
<td>ground</td>
<td>battery</td>
</tr>
<tr>
<td>Type I Compatible</td>
<td>open¹/battery</td>
<td>ground</td>
</tr>
<tr>
<td>Type V</td>
<td>open¹/battery</td>
<td>ground</td>
</tr>
<tr>
<td>Type V Reversed</td>
<td>ground</td>
<td>open</td>
</tr>
</tbody>
</table>

1. An open circuit is preferred instead of battery voltage.
Figure A-1. TN760D tie trunk circuit pack (component side)

Table A-3. TN760E option switch settings and administration

<table>
<thead>
<tr>
<th>Installation situation</th>
<th>Preferred signaling format</th>
<th>E&M/SMPLX switch</th>
<th>Prot/Unprot switch</th>
<th>Administered port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collocated</td>
<td>To</td>
<td>System</td>
<td>Far-end</td>
<td></td>
</tr>
<tr>
<td>Collocated</td>
<td>DEFINITY</td>
<td>E&M Type 1</td>
<td>E&M</td>
<td>Unprotected</td>
</tr>
<tr>
<td></td>
<td>Collocated</td>
<td>E&M Type 1</td>
<td>E&M</td>
<td>Type 1 Compatible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-Building</td>
<td>DEFINITY</td>
<td>Protected Type 1</td>
<td>Protected Type 1</td>
<td>Protected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard</td>
<td>Standard</td>
<td>Type 1 Compatible</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protection Unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collocated</td>
<td>Net Integrated</td>
<td>E&M Type 1</td>
<td>Any PBX</td>
<td>Unprotected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard</td>
<td>E&M</td>
<td>Type 1</td>
</tr>
</tbody>
</table>

/750165 REP 150286
TN464F option settings

The TN464E/F DS1/E1 Interface - T1/E1 circuit pack interfaces between a 24- or 32-channel Central Office/ISDN or tie trunk and the TDM bus.

Set the switches on the circuit pack to select bit rate and impedance match. See Table A-4 and Figure A-2. If the top switch setting is set to 32 Channel, set the lower switch setting to either 120 Ohm or 75 Ohm.

Table A-4. Option switch settings on TN464F

<table>
<thead>
<tr>
<th>Bit Rate</th>
<th>Impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 Channel 2.048 Mbps</td>
<td>Coaxial requiring 888B adapter</td>
</tr>
<tr>
<td>24 Channel 1.544 Mbps</td>
<td>Twisted pair</td>
</tr>
</tbody>
</table>

120 Ohms Twisted pair
75 Ohms Coaxial requiring 888B adapter
32 Channel 2.048 Mbps
24 Channel 1.544 Mbps
Figure Notes

1. TN464F
2. Option Switch
3. 24/32 Channel Selector (24CH shown)
4. 75/120 Ohm Selector (120 Ohm shown)

Figure A-2. TN464E/F option settings
Connector and cable diagrams —
pinout charts

See Table A-5 for typical lead designations. The circuit packs and auxiliary equipment are classified as shown in the following tables.

Table A-5. Lead and color designations

<table>
<thead>
<tr>
<th>Cross-connect pin</th>
<th>Color</th>
<th>Amphenol pin</th>
<th>Backplane pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W-BL</td>
<td>26</td>
<td>102</td>
</tr>
<tr>
<td>2</td>
<td>BL-W</td>
<td>01</td>
<td>002</td>
</tr>
<tr>
<td>3</td>
<td>W-O</td>
<td>27</td>
<td>103</td>
</tr>
<tr>
<td>4</td>
<td>O-W</td>
<td>02</td>
<td>003</td>
</tr>
<tr>
<td>5</td>
<td>W-G</td>
<td>28</td>
<td>104</td>
</tr>
<tr>
<td>6</td>
<td>G-W</td>
<td>03</td>
<td>004</td>
</tr>
<tr>
<td>7</td>
<td>W-BR</td>
<td>29</td>
<td>105</td>
</tr>
<tr>
<td>8</td>
<td>BR-W</td>
<td>04</td>
<td>005</td>
</tr>
<tr>
<td>9</td>
<td>W-SL</td>
<td>30</td>
<td>106</td>
</tr>
<tr>
<td>10</td>
<td>SL-W</td>
<td>05</td>
<td>006</td>
</tr>
<tr>
<td>11</td>
<td>R-BL</td>
<td>31</td>
<td>107</td>
</tr>
<tr>
<td>12</td>
<td>BL-R</td>
<td>06</td>
<td>007</td>
</tr>
<tr>
<td>13</td>
<td>R-O</td>
<td>32</td>
<td>108</td>
</tr>
<tr>
<td>14</td>
<td>O-R</td>
<td>07</td>
<td>008</td>
</tr>
<tr>
<td>15</td>
<td>R-G</td>
<td>33</td>
<td>109</td>
</tr>
<tr>
<td>16</td>
<td>G-R</td>
<td>08</td>
<td>009</td>
</tr>
<tr>
<td>17</td>
<td>R-BR</td>
<td>34</td>
<td>110</td>
</tr>
<tr>
<td>18</td>
<td>BR-R</td>
<td>09</td>
<td>010</td>
</tr>
<tr>
<td>19</td>
<td>R-SL</td>
<td>35</td>
<td>111</td>
</tr>
<tr>
<td>20</td>
<td>SL-R</td>
<td>10</td>
<td>011</td>
</tr>
<tr>
<td>21</td>
<td>BK-BL</td>
<td>36</td>
<td>112</td>
</tr>
<tr>
<td>22</td>
<td>BL-BK</td>
<td>11</td>
<td>012</td>
</tr>
<tr>
<td>23</td>
<td>BK-O</td>
<td>37</td>
<td>113</td>
</tr>
<tr>
<td>24</td>
<td>O-BK</td>
<td>12</td>
<td>013</td>
</tr>
</tbody>
</table>

Continued on next page
Table A-5. Lead and color designations — Continued

<table>
<thead>
<tr>
<th>Cross-connect pin</th>
<th>Color</th>
<th>Amphenol pin</th>
<th>Backplane pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>BK-G</td>
<td>38</td>
<td>302</td>
</tr>
<tr>
<td>26</td>
<td>G-BK</td>
<td>13</td>
<td>202</td>
</tr>
<tr>
<td>27</td>
<td>BK-BR</td>
<td>39</td>
<td>303</td>
</tr>
<tr>
<td>28</td>
<td>BR-BK</td>
<td>14</td>
<td>203</td>
</tr>
<tr>
<td>29</td>
<td>BK-SL</td>
<td>40</td>
<td>304</td>
</tr>
<tr>
<td>30</td>
<td>SL-BK</td>
<td>15</td>
<td>204</td>
</tr>
<tr>
<td>31</td>
<td>Y-BL</td>
<td>41</td>
<td>305</td>
</tr>
<tr>
<td>32</td>
<td>BL-Y</td>
<td>16</td>
<td>205</td>
</tr>
<tr>
<td>33</td>
<td>Y-O</td>
<td>42</td>
<td>306</td>
</tr>
<tr>
<td>34</td>
<td>O-Y</td>
<td>17</td>
<td>206</td>
</tr>
<tr>
<td>35</td>
<td>Y-G</td>
<td>43</td>
<td>307</td>
</tr>
<tr>
<td>36</td>
<td>G-Y</td>
<td>18</td>
<td>207</td>
</tr>
<tr>
<td>37</td>
<td>Y-BR</td>
<td>44</td>
<td>308</td>
</tr>
<tr>
<td>38</td>
<td>BR-Y</td>
<td>19</td>
<td>208</td>
</tr>
<tr>
<td>39</td>
<td>Y-SL</td>
<td>45</td>
<td>309</td>
</tr>
<tr>
<td>40</td>
<td>SL-Y</td>
<td>20</td>
<td>209</td>
</tr>
<tr>
<td>41</td>
<td>V-BL</td>
<td>46</td>
<td>310</td>
</tr>
<tr>
<td>42</td>
<td>BL-V</td>
<td>21</td>
<td>210</td>
</tr>
<tr>
<td>43</td>
<td>V-O</td>
<td>47</td>
<td>311</td>
</tr>
<tr>
<td>44</td>
<td>O-V</td>
<td>22</td>
<td>211</td>
</tr>
<tr>
<td>45</td>
<td>V-G</td>
<td>48</td>
<td>312</td>
</tr>
<tr>
<td>46</td>
<td>G-V</td>
<td>23</td>
<td>212</td>
</tr>
<tr>
<td>47</td>
<td>V-BR</td>
<td>49</td>
<td>313</td>
</tr>
<tr>
<td>48</td>
<td>BR-V</td>
<td>24</td>
<td>213</td>
</tr>
<tr>
<td>49</td>
<td>V-SL</td>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>50</td>
<td>SL-V</td>
<td>25</td>
<td>200</td>
</tr>
</tbody>
</table>
Processor external cable pinout

Table A-6 shows the pinout for the processor external cable.

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Processor (P1) (amphenol connector)</th>
<th>AUX (J1)</th>
<th>Modem (P2)</th>
<th>Mouse</th>
<th>Keyboard</th>
<th>USB</th>
<th>VGA</th>
<th>Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC48A</td>
<td>12</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP1 (alarm in)</td>
<td>2</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP2 (alarm in)</td>
<td>27</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTALMA</td>
<td>4</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXTALMB</td>
<td>3</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XFER48</td>
<td>38</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUND</td>
<td>25</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD-CTS</td>
<td>21</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD-DCD</td>
<td>46</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD-DSR</td>
<td>8</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD-DTR</td>
<td>7</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD-GRD</td>
<td>20</td>
<td></td>
<td>1 & 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD-RTS</td>
<td>34</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD-RXD</td>
<td>33</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOD-TXD</td>
<td>45</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOUSE-DAT</td>
<td>18</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOUSE-GRD</td>
<td>31</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOUSE-VCC</td>
<td>6</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOUSE-CLK</td>
<td>5</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KYBD-DAT</td>
<td>30</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KYBD-GRD</td>
<td>17</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KYBD-VCC</td>
<td>16</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KYBD-CLK</td>
<td>29</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB-VCC</td>
<td>15</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB-DAT</td>
<td>40</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB-DAT+</td>
<td>42</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRD</td>
<td>41</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGA-RED</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Continued on next page
Table A-6. Processor external cable pinout — Continued

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Processor (P1) (amphenol connector)</th>
<th>AUX (J1)</th>
<th>Modem (P2)</th>
<th>Mouse</th>
<th>Keyboard</th>
<th>USB</th>
<th>VGA</th>
<th>Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGA-GREEN</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGA-BLUE</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRD</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRD</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRD</td>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRD</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGA-PWR</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRD</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGA-HSYNC</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGA-VSYNC</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETH-RD+</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ETH-RD-</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ETH-TD+</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ETH-TD-</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RX-</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX+</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX-</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RX+</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GROUND</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
- AUX is a 50-pin receptacle, Modem is a 25-pin D-sub plug, Mouse is a 6-pin miniature DIN receptacle, Keyboard is a 6-pin miniature DIN receptacle, USB is a type A receptacle, VGA is a 15-pin D-sub receptacle, and Ethernet is an 8-pin jack.
Table A-7. Port circuit pack lead designations

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T.1</td>
<td>T.1</td>
<td>T.1</td>
<td>T.1</td>
<td>T.1</td>
<td>T.1</td>
</tr>
<tr>
<td>2</td>
<td>T.1</td>
<td>T.1</td>
<td>T.1</td>
<td>R.1</td>
<td>R.1</td>
<td>R.1</td>
</tr>
<tr>
<td>3</td>
<td>TXT.1</td>
<td>T.1</td>
<td>TXT.1</td>
<td>T.1</td>
<td>S.1</td>
<td>T.1</td>
</tr>
<tr>
<td>4</td>
<td>TXR.1</td>
<td>R.1</td>
<td>TXR.1</td>
<td>S.1</td>
<td>BR.1</td>
<td>T.1</td>
</tr>
<tr>
<td>5</td>
<td>PXT.1</td>
<td>E.1</td>
<td>PXT.1</td>
<td>LT.1</td>
<td>C_SYNC*</td>
<td>T.3</td>
</tr>
<tr>
<td>6</td>
<td>PXR.1</td>
<td>M.1</td>
<td>PXR.1</td>
<td>S1.1</td>
<td>LR.1</td>
<td>R.3</td>
</tr>
<tr>
<td>7</td>
<td>T.2</td>
<td>T.2</td>
<td>T.2</td>
<td>R.2</td>
<td>R.2</td>
<td>T.4</td>
</tr>
<tr>
<td>8</td>
<td>R.2</td>
<td>R.2</td>
<td>R.2</td>
<td>R.2</td>
<td>R.2</td>
<td>R.4</td>
</tr>
<tr>
<td>9</td>
<td>TXT.2</td>
<td>T.2</td>
<td>TXT.2</td>
<td>S.2</td>
<td>BT.2</td>
<td>TDATA*</td>
</tr>
<tr>
<td>10</td>
<td>TXR.2</td>
<td>R.2</td>
<td>TXR.2</td>
<td>S.2</td>
<td>BR.2</td>
<td>TRSYNC</td>
</tr>
<tr>
<td>11</td>
<td>PXT.2</td>
<td>E.2</td>
<td>PXT.2</td>
<td>S.2</td>
<td>LT.2</td>
<td>GRD</td>
</tr>
<tr>
<td>12</td>
<td>PXR.2</td>
<td>M.2</td>
<td>PXR.2</td>
<td>S1.2</td>
<td>LR.2</td>
<td>SCLK*</td>
</tr>
<tr>
<td>13</td>
<td>T.3</td>
<td>T.3</td>
<td>T.3</td>
<td>R.3</td>
<td>R.3</td>
<td>R.7</td>
</tr>
<tr>
<td>14</td>
<td>R.3</td>
<td>R.3</td>
<td>R.3</td>
<td>R.3</td>
<td>R.3</td>
<td>R.7</td>
</tr>
<tr>
<td>15</td>
<td>TXT.3</td>
<td>T.3</td>
<td>TXT.3</td>
<td>S.3</td>
<td>BT.3</td>
<td>T.8</td>
</tr>
<tr>
<td>16</td>
<td>TXR.3</td>
<td>R.3</td>
<td>TXR.3</td>
<td>S.3</td>
<td>BR.3</td>
<td>R.8</td>
</tr>
<tr>
<td>17</td>
<td>PXT.3</td>
<td>E.3</td>
<td>PXT.3</td>
<td>S.3</td>
<td>LT.3</td>
<td>T.5</td>
</tr>
<tr>
<td>18</td>
<td>PXR.3</td>
<td>M.3</td>
<td>PXR.3</td>
<td>S1.3</td>
<td>LR.3</td>
<td>R.9</td>
</tr>
<tr>
<td>19</td>
<td>T.4</td>
<td>T.4</td>
<td>T.4</td>
<td>R.4</td>
<td>R.4</td>
<td>T.6</td>
</tr>
<tr>
<td>21</td>
<td>TXT.4</td>
<td>T.4</td>
<td>TXT.4</td>
<td>S.4</td>
<td>BT.4</td>
<td>T.7</td>
</tr>
<tr>
<td>22</td>
<td>TXR.4</td>
<td>R.4</td>
<td>TXR.4</td>
<td>S.4</td>
<td>BR.4</td>
<td>LI (RX)</td>
</tr>
<tr>
<td>23</td>
<td>PXT.4</td>
<td>E.4</td>
<td>PXT.4</td>
<td>S.4</td>
<td>LT.4</td>
<td>T.8</td>
</tr>
<tr>
<td>24</td>
<td>PXR.4</td>
<td>M.4</td>
<td>PXR.4</td>
<td>S1.4</td>
<td>LR.4</td>
<td>T.9</td>
</tr>
<tr>
<td>25</td>
<td>T.5</td>
<td>T.5</td>
<td>T.5</td>
<td>R.5</td>
<td>R.5</td>
<td>T.10</td>
</tr>
<tr>
<td>26</td>
<td>R.5</td>
<td>R.5</td>
<td>R.5</td>
<td>R.5</td>
<td>R.5</td>
<td>R.10</td>
</tr>
<tr>
<td>27</td>
<td>TXT.5</td>
<td>T.5</td>
<td>TXT.5</td>
<td>S.5</td>
<td>BT.5</td>
<td>T.11</td>
</tr>
<tr>
<td>28</td>
<td>TXR.5</td>
<td>R.5</td>
<td>TXR.5</td>
<td>S.5</td>
<td>BR.5</td>
<td>R.11</td>
</tr>
<tr>
<td>29</td>
<td>PXT.5</td>
<td>E.5</td>
<td>PXT.5</td>
<td>S.5</td>
<td>LT.5</td>
<td>T.12</td>
</tr>
<tr>
<td>30</td>
<td>PXR.5</td>
<td>M.5</td>
<td>PXR.5</td>
<td>S1.5</td>
<td>LR.5</td>
<td>R.12</td>
</tr>
<tr>
<td>31</td>
<td>T.6</td>
<td>T.6</td>
<td>T.6</td>
<td>R.6</td>
<td>R.6</td>
<td>T.13</td>
</tr>
<tr>
<td>33</td>
<td>TXT.6</td>
<td>T.6</td>
<td>TXT.6</td>
<td>S.6</td>
<td>BT.6</td>
<td>RDATA</td>
</tr>
<tr>
<td>34</td>
<td>TXR.6</td>
<td>R.6</td>
<td>TXR.6</td>
<td>S.6</td>
<td>BR.6</td>
<td>TDATA</td>
</tr>
<tr>
<td>35</td>
<td>PXT.6</td>
<td>E.6</td>
<td>PXT.6</td>
<td>S.6</td>
<td>LT.6</td>
<td>TRSYNC</td>
</tr>
<tr>
<td>36</td>
<td>PXR.6</td>
<td>M.6</td>
<td>PXR.6</td>
<td>S1.6</td>
<td>LR.6</td>
<td>GRD</td>
</tr>
<tr>
<td>37</td>
<td>T.7</td>
<td>T.7</td>
<td>T.7</td>
<td>R.7</td>
<td>R.7</td>
<td>T.14</td>
</tr>
<tr>
<td>38</td>
<td>R.7</td>
<td>R.7</td>
<td>R.7</td>
<td>R.7</td>
<td>R.7</td>
<td>T.15</td>
</tr>
<tr>
<td>39</td>
<td>TXT.7</td>
<td>T.7</td>
<td>TXT.7</td>
<td>S.7</td>
<td>BT.7</td>
<td>T.16</td>
</tr>
</tbody>
</table>

Continued on next page
Cable Pinouts

Connector and cable diagrams — pinout charts

Table A-7. Port circuit pack lead designations — Continued

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>TXR.7 R1.7 TXR.7 S21.7 BR.7 GRD T13 T21 R20</td>
</tr>
<tr>
<td>41</td>
<td>PXT.7 E.7 PXT.7 S.7 LT.7 GRD T13 T21</td>
</tr>
<tr>
<td>42</td>
<td>PXR.7 M.7 PXR.7 S1.7 LR.7 R13 R21</td>
</tr>
<tr>
<td>43</td>
<td>T.8 T.8 T.8 T.8 T.8 C_PRES* T.14 T.22</td>
</tr>
<tr>
<td>44</td>
<td>R.8 R.8 R.8 R.8 R.8 R.8 R.14 R.22</td>
</tr>
<tr>
<td>45</td>
<td>TXT.8 T1.8 TXT.8 S2.8 BT.8 T15 T23</td>
</tr>
<tr>
<td>46</td>
<td>TXR.8 R1.8 TXR.8 S21.8 BR.8 DC2_DATA R15 R23</td>
</tr>
<tr>
<td>47</td>
<td>PXT.8 E.8 PXT.8 S.8 LT.8 T.16 T.24</td>
</tr>
<tr>
<td>48</td>
<td>PXR.8 M.8 PXR.8 S1.8 LR.8 LO (TX) R.16 R.24</td>
</tr>
<tr>
<td>49</td>
<td>GRD GRD GRD GRD GRD LBACK2 GRD GRD</td>
</tr>
<tr>
<td>50</td>
<td>GRD GRD GRD</td>
</tr>
</tbody>
</table>

* Denotes high side of line.

Table A-8. DS1 interface cable H600-307 (and C6C)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Color</th>
<th>Designation</th>
<th>Pin</th>
<th>Color</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>W-BL</td>
<td></td>
<td>03</td>
<td>BL-W</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>W-G</td>
<td>LI (High)</td>
<td>11</td>
<td>W-G</td>
<td>LI (High)</td>
</tr>
<tr>
<td>22</td>
<td>G-W</td>
<td>LI</td>
<td>03</td>
<td>G-W</td>
<td>LI</td>
</tr>
<tr>
<td>48</td>
<td>W-BR</td>
<td>LO</td>
<td>09</td>
<td>W-BR</td>
<td>LO</td>
</tr>
<tr>
<td>23</td>
<td>BR-W</td>
<td>LO (High)</td>
<td>01</td>
<td>BR-W</td>
<td>LO (High)</td>
</tr>
<tr>
<td>49</td>
<td>W-SL</td>
<td>LOOP2</td>
<td>06</td>
<td>W-SL</td>
<td>LOOP2</td>
</tr>
<tr>
<td>24</td>
<td>SL-W</td>
<td>LOOP1</td>
<td>05</td>
<td>SL-W</td>
<td>LOOP1</td>
</tr>
</tbody>
</table>

All other pins are empty.
Table A-9 shows the pinouts for the TN2185 ISDN-BRI 4-wire S Interface.

Table A-9. TN2185 ISDN-BRI — 4-Wire S interface pinout

<table>
<thead>
<tr>
<th>Port</th>
<th>Signal</th>
<th>Cross-connect pin</th>
<th>Color</th>
<th>Amphenol pin</th>
<th>Backplane pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TXT.1</td>
<td>1</td>
<td>W-BL</td>
<td>26</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>TXR.1</td>
<td>2</td>
<td>BL-W</td>
<td>01</td>
<td>002</td>
</tr>
<tr>
<td></td>
<td>PXT.1</td>
<td>3</td>
<td>W-O</td>
<td>27</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>PXR.1</td>
<td>4</td>
<td>O-W</td>
<td>02</td>
<td>003</td>
</tr>
<tr>
<td>2</td>
<td>TXT.2</td>
<td>5</td>
<td>W-G</td>
<td>28</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>TXR.2</td>
<td>6</td>
<td>G-W</td>
<td>03</td>
<td>004</td>
</tr>
<tr>
<td></td>
<td>PXT.2</td>
<td>7</td>
<td>W-BR</td>
<td>29</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>PXR.2</td>
<td>8</td>
<td>BR-W</td>
<td>04</td>
<td>005</td>
</tr>
<tr>
<td>3</td>
<td>TXT.3</td>
<td>9</td>
<td>W-SL</td>
<td>30</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>TXR.3</td>
<td>10</td>
<td>SL-W</td>
<td>05</td>
<td>006</td>
</tr>
<tr>
<td></td>
<td>PXT.3</td>
<td>11</td>
<td>R-BL</td>
<td>31</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>PXR.3</td>
<td>12</td>
<td>BL-R</td>
<td>06</td>
<td>007</td>
</tr>
<tr>
<td>4</td>
<td>TXT.4</td>
<td>13</td>
<td>R-O</td>
<td>32</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>TXR.4</td>
<td>14</td>
<td>O-R</td>
<td>07</td>
<td>008</td>
</tr>
<tr>
<td></td>
<td>PXT.4</td>
<td>15</td>
<td>R-G</td>
<td>33</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>PXR.4</td>
<td>16</td>
<td>G-R</td>
<td>08</td>
<td>009</td>
</tr>
<tr>
<td>5</td>
<td>TXT.5</td>
<td>17</td>
<td>R-BR</td>
<td>34</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>TXR.5</td>
<td>18</td>
<td>BR-R</td>
<td>09</td>
<td>010</td>
</tr>
<tr>
<td></td>
<td>PXT.5</td>
<td>19</td>
<td>R-SL</td>
<td>35</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>PXR.5</td>
<td>20</td>
<td>SL-R</td>
<td>10</td>
<td>011</td>
</tr>
<tr>
<td>6</td>
<td>TXT.6</td>
<td>21</td>
<td>BK-BL</td>
<td>36</td>
<td>112</td>
</tr>
<tr>
<td></td>
<td>TXR.6</td>
<td>22</td>
<td>BL-BK</td>
<td>11</td>
<td>012</td>
</tr>
<tr>
<td></td>
<td>PXT.6</td>
<td>23</td>
<td>BK-O</td>
<td>37</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>PXR.6</td>
<td>24</td>
<td>O-BK</td>
<td>12</td>
<td>013</td>
</tr>
<tr>
<td>7</td>
<td>TXT.7</td>
<td>25</td>
<td>BK-G</td>
<td>38</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td>TXR.7</td>
<td>26</td>
<td>G-BK</td>
<td>13</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>PXT.7</td>
<td>27</td>
<td>BK-BR</td>
<td>39</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>PXR.7</td>
<td>28</td>
<td>BR-BK</td>
<td>14</td>
<td>203</td>
</tr>
</tbody>
</table>

Continued on next page
Table A-9. TN2185 ISDN-BRI — 4-Wire S interface pinout — Continued

<table>
<thead>
<tr>
<th>Port</th>
<th>Signal</th>
<th>Cross-connect pin</th>
<th>Color</th>
<th>Amphenol pin</th>
<th>Backplane pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>TXT.8</td>
<td>29</td>
<td>BK-SL</td>
<td>40</td>
<td>304</td>
</tr>
<tr>
<td></td>
<td>TXR.8</td>
<td>30</td>
<td>SL-BK</td>
<td>15</td>
<td>204</td>
</tr>
<tr>
<td></td>
<td>PXT.8</td>
<td>31</td>
<td>Y-BL</td>
<td>41</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>PXR.8</td>
<td>32</td>
<td>BL-Y</td>
<td>16</td>
<td>205</td>
</tr>
</tbody>
</table>

Table A-10 shows the pinout for the TN793 and TN2793 24-Port Analog Line circuit pack.

Table A-10. TN793 Analog line circuit pack pinout

<table>
<thead>
<tr>
<th>Port</th>
<th>Signal</th>
<th>Cross-connect pin</th>
<th>Color</th>
<th>Amphenol pin</th>
<th>Backplane pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>T.1</td>
<td>1</td>
<td>W-BL</td>
<td>26</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>R.1</td>
<td>2</td>
<td>BL-W</td>
<td>01</td>
<td>002</td>
</tr>
<tr>
<td>2</td>
<td>T.2</td>
<td>3</td>
<td>W-O</td>
<td>27</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>R.2</td>
<td>4</td>
<td>O-W</td>
<td>02</td>
<td>003</td>
</tr>
<tr>
<td>3</td>
<td>T.3</td>
<td>5</td>
<td>W-G</td>
<td>28</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>R.3</td>
<td>6</td>
<td>G-W</td>
<td>03</td>
<td>004</td>
</tr>
<tr>
<td>4</td>
<td>T.4</td>
<td>7</td>
<td>W-BR</td>
<td>29</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>R.4</td>
<td>8</td>
<td>BR-W</td>
<td>04</td>
<td>005</td>
</tr>
<tr>
<td>5</td>
<td>T.5</td>
<td>9</td>
<td>W-SL</td>
<td>30</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>R.5</td>
<td>10</td>
<td>SL-W</td>
<td>05</td>
<td>006</td>
</tr>
<tr>
<td>6</td>
<td>T.6</td>
<td>11</td>
<td>R-BL</td>
<td>31</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>R.6</td>
<td>12</td>
<td>BL-R</td>
<td>06</td>
<td>007</td>
</tr>
<tr>
<td>7</td>
<td>T.7</td>
<td>13</td>
<td>R-O</td>
<td>32</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>R.7</td>
<td>14</td>
<td>O-R</td>
<td>07</td>
<td>008</td>
</tr>
<tr>
<td>8</td>
<td>T.8</td>
<td>15</td>
<td>R-G</td>
<td>33</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>R.8</td>
<td>16</td>
<td>G-R</td>
<td>08</td>
<td>009</td>
</tr>
<tr>
<td>9</td>
<td>T.9</td>
<td>17</td>
<td>R-BR</td>
<td>34</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>R.9</td>
<td>18</td>
<td>BR-R</td>
<td>09</td>
<td>010</td>
</tr>
<tr>
<td>10</td>
<td>T.10</td>
<td>19</td>
<td>R-SL</td>
<td>35</td>
<td>111</td>
</tr>
</tbody>
</table>

Continued on next page
Table A-10. TN793 Analog line circuit pack pinout — Continued

<table>
<thead>
<tr>
<th>Port</th>
<th>Signal</th>
<th>Cross-connect pin</th>
<th>Color</th>
<th>Amphenol pin</th>
<th>Backplane pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.10</td>
<td>20</td>
<td>SL-R</td>
<td>10</td>
<td>011</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>T.11</td>
<td>21</td>
<td>BK-BL</td>
<td>36</td>
<td>112</td>
</tr>
<tr>
<td>R.11</td>
<td>22</td>
<td>BL-BK</td>
<td>11</td>
<td>012</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>T.12</td>
<td>23</td>
<td>BK-O</td>
<td>37</td>
<td>113</td>
</tr>
<tr>
<td>R.12</td>
<td>24</td>
<td>O-BK</td>
<td>12</td>
<td>013</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>T.13</td>
<td>25</td>
<td>BK-G</td>
<td>38</td>
<td>302</td>
</tr>
<tr>
<td>R.13</td>
<td>26</td>
<td>G-BK</td>
<td>13</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>T.14</td>
<td>27</td>
<td>BK-BR</td>
<td>39</td>
<td>303</td>
</tr>
<tr>
<td>R.14</td>
<td>28</td>
<td>BR-BK</td>
<td>14</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>T.15</td>
<td>29</td>
<td>BK-SL</td>
<td>40</td>
<td>304</td>
</tr>
<tr>
<td>R.15</td>
<td>30</td>
<td>SL-BK</td>
<td>15</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>T.16</td>
<td>31</td>
<td>Y-BL</td>
<td>41</td>
<td>305</td>
</tr>
<tr>
<td>R.16</td>
<td>32</td>
<td>BL-Y</td>
<td>16</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>T.17</td>
<td>33</td>
<td>Y-O</td>
<td>42</td>
<td>306</td>
</tr>
<tr>
<td>R.17</td>
<td>34</td>
<td>O-Y</td>
<td>17</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>T.18</td>
<td>35</td>
<td>Y-G</td>
<td>43</td>
<td>307</td>
</tr>
<tr>
<td>R.18</td>
<td>36</td>
<td>G-Y</td>
<td>18</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>T.19</td>
<td>37</td>
<td>Y-BR</td>
<td>44</td>
<td>308</td>
</tr>
<tr>
<td>R.19</td>
<td>38</td>
<td>BR-Y</td>
<td>19</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>T.20</td>
<td>39</td>
<td>Y-SL</td>
<td>45</td>
<td>309</td>
</tr>
<tr>
<td>R.20</td>
<td>40</td>
<td>SL-Y</td>
<td>20</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>T.21</td>
<td>41</td>
<td>V-BL</td>
<td>46</td>
<td>310</td>
</tr>
<tr>
<td>R.21</td>
<td>42</td>
<td>BL-V</td>
<td>21</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>T.22</td>
<td>43</td>
<td>V-O</td>
<td>47</td>
<td>311</td>
</tr>
<tr>
<td>R.22</td>
<td>44</td>
<td>O-V</td>
<td>22</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>T.23</td>
<td>45</td>
<td>V-G</td>
<td>48</td>
<td>312</td>
</tr>
<tr>
<td>R.23</td>
<td>46</td>
<td>G-V</td>
<td>23</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>T.24</td>
<td>47</td>
<td>V-BR</td>
<td>49</td>
<td>313</td>
</tr>
</tbody>
</table>

Continued on next page
Table A-10. TN793 Analog line circuit pack pinout — Continued

<table>
<thead>
<tr>
<th>Port</th>
<th>Signal</th>
<th>Cross-connect pin</th>
<th>Color</th>
<th>Amphenol pin</th>
<th>Backplane pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.24</td>
<td>48</td>
<td>BR-V</td>
<td>24</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>49</td>
<td>V/SL</td>
<td>50</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td>SL/V</td>
<td>25</td>
<td>214</td>
<td></td>
</tr>
</tbody>
</table>
Table A-11. Circuit pack and auxiliary equipment classifications

<table>
<thead>
<tr>
<th>Analog Line (8)</th>
<th>2-Wire Digital & Analog Line (16) and (24)</th>
<th>Data Line & Digital Line 4-Wire</th>
<th>Digital Line 2-Wire 24 Ports</th>
<th>Hybrid Line</th>
<th>MET¹ Line</th>
<th>AUX Trunk</th>
<th>Central Office Trunk</th>
<th>Central Office Trunk 3-Wire</th>
<th>DID/DIOD Trunk</th>
<th>Tie Trunk</th>
<th>DS1 Tie Trunk</th>
<th>Four Port DIOD³</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN431</td>
<td>TN468B</td>
<td>TN564B</td>
<td>TN763D</td>
<td>TN422</td>
<td>TN459B</td>
<td>TN449</td>
<td>TN477</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN411B</td>
<td>TN448</td>
<td>TN413</td>
<td></td>
<td>TN421</td>
<td>TN436B</td>
<td>TN760D</td>
<td>TN722B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN742</td>
<td>TN746</td>
<td></td>
<td></td>
<td>TN438B</td>
<td>TN753</td>
<td>TN760C</td>
<td>TN464F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN769</td>
<td>TN746B</td>
<td></td>
<td></td>
<td>TN447</td>
<td>TN2146</td>
<td>TN434</td>
<td>TN2207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN2181</td>
<td></td>
<td></td>
<td></td>
<td>TN465C</td>
<td>TN414</td>
<td>TN415</td>
<td>TN2464</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN2183</td>
<td></td>
<td></td>
<td></td>
<td>TN747B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN793</td>
<td></td>
<td></td>
<td></td>
<td>TN2138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN2793</td>
<td></td>
<td></td>
<td></td>
<td>TN2147C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN2215</td>
<td></td>
<td></td>
<td></td>
<td>TN2148</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN791</td>
<td></td>
</tr>
<tr>
<td>TN2214</td>
<td></td>
</tr>
</tbody>
</table>

1. MET = Multibutton Electronic Telephone
2. DID/DIOD = Direct Inward Dialing/Direct Inward Outward Dialing
3. DIOD = Direct Inward Outward Dialing
Table A-12. Circuit pack and auxiliary equipment leads (pinout charts)

<table>
<thead>
<tr>
<th>Connector pin numbers</th>
<th>Color</th>
<th>Connector and cable diagrams —pinout</th>
<th>Analog line 8 ports</th>
<th>2-Wire digital line 16 ports</th>
<th>Analog digital line 24 ports</th>
<th>Hybrid line 2-wire 24 ports</th>
<th>4-wire 24 ports</th>
<th>2-wire 12 ports</th>
<th>4-wire 12 ports</th>
<th>MET trunk T1 Trk</th>
<th>AUX trunk T1 Trk</th>
<th>CO trunk 3-wire</th>
<th>DID/DIOD trunk 3-wire</th>
<th>CO trunk 3-wire</th>
<th>Did/Diod trunk 3-wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-BL 26</td>
<td>T1</td>
<td>R4</td>
<td>T1</td>
</tr>
<tr>
<td>W-O 27</td>
<td>T2</td>
<td>R3</td>
<td>T2</td>
</tr>
<tr>
<td>O-W 28</td>
<td>T3</td>
<td>P-1</td>
<td>T3</td>
</tr>
<tr>
<td>W-G 29</td>
<td>T4</td>
<td>P-4</td>
<td>T4</td>
</tr>
<tr>
<td>W-BR 30</td>
<td>T5</td>
<td>P-5</td>
<td>T5</td>
</tr>
<tr>
<td>R-W 31</td>
<td>T6</td>
<td>P-6</td>
<td>T6</td>
</tr>
<tr>
<td>W-R 32</td>
<td>T7</td>
<td>P-7</td>
<td>T7</td>
</tr>
<tr>
<td>O-R 33</td>
<td>T8</td>
<td>P-8</td>
<td>T8</td>
</tr>
<tr>
<td>R-G 34</td>
<td>T9</td>
<td>P-9</td>
<td>T9</td>
</tr>
<tr>
<td>R-BR 35</td>
<td>T10</td>
<td>P-10</td>
<td>T10</td>
</tr>
<tr>
<td>R-R 37</td>
<td>T12</td>
<td>P-12</td>
<td>T12</td>
</tr>
</tbody>
</table>

Continued on next page
Table A-12. Circuit pack and auxiliary equipment leads (pinout charts)

<table>
<thead>
<tr>
<th>Connector</th>
<th>Pin numbers</th>
<th>Two-Wire line and analog line 16 ports</th>
<th>Digital line 2-4 ports</th>
<th>Hybrid line 4-wire</th>
<th>Digital line 2-wire 24 ports</th>
<th>Hybrid line 2-wire 3-wire</th>
<th>Digital line 2-wire 24 ports</th>
<th>Hybrid line 2-wire 3-wire</th>
<th>Digital line 2-wire 24 ports</th>
<th>Hybrid line 2-wire 3-wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK-BK</td>
<td>26</td>
<td>T7, T11</td>
<td>C74, S74</td>
<td>TX74, T74</td>
<td>R7, T11</td>
<td>CT4, X4</td>
<td>PXT4, T12</td>
<td>P-4, S4</td>
<td>P-14, S14, T14</td>
<td></td>
</tr>
<tr>
<td>BL-BK</td>
<td>37</td>
<td>R7, T11</td>
<td>C74, S74</td>
<td>TX74, T74</td>
<td>R7, T11</td>
<td>CT4, X4</td>
<td>PXT4, T12</td>
<td>P-4, S4</td>
<td>P-14, S14, T14</td>
<td></td>
</tr>
<tr>
<td>BK-O</td>
<td>38</td>
<td>R7, T11</td>
<td>C74, S74</td>
<td>TX74, T74</td>
<td>R7, T11</td>
<td>CT4, X4</td>
<td>PXT4, T12</td>
<td>P-4, S4</td>
<td>P-14, S14, T14</td>
<td></td>
</tr>
<tr>
<td>BK-G</td>
<td>39</td>
<td>R7, T11</td>
<td>C74, S74</td>
<td>TX74, T74</td>
<td>R7, T11</td>
<td>CT4, X4</td>
<td>PXT4, T12</td>
<td>P-4, S4</td>
<td>P-14, S14, T14</td>
<td></td>
</tr>
<tr>
<td>BK-BK</td>
<td>40</td>
<td>R7, T11</td>
<td>C74, S74</td>
<td>TX74, T74</td>
<td>R7, T11</td>
<td>CT4, X4</td>
<td>PXT4, T12</td>
<td>P-4, S4</td>
<td>P-14, S14, T14</td>
<td></td>
</tr>
<tr>
<td>G-BK</td>
<td>41</td>
<td>R7, T11</td>
<td>C74, S74</td>
<td>TX74, T74</td>
<td>R7, T11</td>
<td>CT4, X4</td>
<td>PXT4, T12</td>
<td>P-4, S4</td>
<td>P-14, S14, T14</td>
<td></td>
</tr>
<tr>
<td>BK-Y</td>
<td>42</td>
<td>R7, T11</td>
<td>C74, S74</td>
<td>TX74, T74</td>
<td>R7, T11</td>
<td>CT4, X4</td>
<td>PXT4, T12</td>
<td>P-4, S4</td>
<td>P-14, S14, T14</td>
<td></td>
</tr>
<tr>
<td>Y-BL</td>
<td>43</td>
<td>R7, T11</td>
<td>C74, S74</td>
<td>TX74, T74</td>
<td>R7, T11</td>
<td>CT4, X4</td>
<td>PXT4, T12</td>
<td>P-4, S4</td>
<td>P-14, S14, T14</td>
<td></td>
</tr>
<tr>
<td>Y-G</td>
<td>44</td>
<td>R7, T11</td>
<td>C74, S74</td>
<td>TX74, T74</td>
<td>R7, T11</td>
<td>CT4, X4</td>
<td>PXT4, T12</td>
<td>P-4, S4</td>
<td>P-14, S14, T14</td>
<td></td>
</tr>
<tr>
<td>Y-Y</td>
<td>45</td>
<td>R7, T11</td>
<td>C74, S74</td>
<td>TX74, T74</td>
<td>R7, T11</td>
<td>CT4, X4</td>
<td>PXT4, T12</td>
<td>P-4, S4</td>
<td>P-14, S14, T14</td>
<td></td>
</tr>
<tr>
<td>S-Y</td>
<td>46</td>
<td>R7, T11</td>
<td>C74, S74</td>
<td>TX74, T74</td>
<td>R7, T11</td>
<td>CT4, X4</td>
<td>PXT4, T12</td>
<td>P-4, S4</td>
<td>P-14, S14, T14</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Table A-12. Circuit pack and auxiliary equipment leads (pinout charts)

<table>
<thead>
<tr>
<th>Color</th>
<th>Connector pin numbers</th>
<th>Analog line 8 ports</th>
<th>2-Wire digital line and analog line 16 ports</th>
<th>Data line and digital line 4-wire</th>
<th>Digital line 2-wire 24 ports</th>
<th>Hybrid line</th>
<th>MET line</th>
<th>AUX trunk</th>
<th>CO Trk</th>
<th>CO trunk 3-wire</th>
<th>DID/ DIOD trunk</th>
<th>Tie Trk</th>
<th>DS1 tie trunk</th>
<th>Four port DIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-O</td>
<td>47</td>
<td>T8</td>
<td>T14</td>
<td>T22</td>
<td>V1T8</td>
<td>T8</td>
<td>T8</td>
<td>LI*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O-V</td>
<td>22</td>
<td>R8</td>
<td>R14</td>
<td>R22</td>
<td>V1R8</td>
<td>R8</td>
<td>R8</td>
<td>LI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V-G</td>
<td>48</td>
<td>T15</td>
<td>TXT8</td>
<td>T23</td>
<td>CT8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LO</td>
</tr>
<tr>
<td>G-V</td>
<td>23</td>
<td>R15</td>
<td>TXT8</td>
<td>T23</td>
<td>CT8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LO*</td>
</tr>
<tr>
<td>V-BR</td>
<td>49</td>
<td>T16</td>
<td>PXT8</td>
<td>T24</td>
<td>P-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LBACK2</td>
</tr>
<tr>
<td>BR-V</td>
<td>24</td>
<td>R16</td>
<td>PXR8</td>
<td>R24</td>
<td>P-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LBACK1</td>
</tr>
<tr>
<td>V-S</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>S-V</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page

The wire colors in this chart apply only to B25A and A25B cables. H600-307 cable colors are not shown.

The following abbreviations apply for all circuit packs unless otherwise noted:

- **T,R** PBX transmit voice T Tip(A) Green
- **T1,R1** PBX receive voice R Ring(B) Red
- **M** PBX transmit signal S Sleeve
- **E** PBX receive signal PX PBX transmit
- **TX** Terminal transmit
- **LI, LI** Digital Trunk IN LO, LO Digital Trunk OUT

The following wire colors apply in the above chart:

- **W** White S Slate (Grey)
- **BL** Blue R Red
- **O** Orange BK Black
- **G** Green Y Yellow
- **BR** Brown V Violet
Cable Pinouts

Connector and cable diagrams — pinout

A-20
Set Up and Use of Customer Logins

This chapter provides information about the setup and use of customer logins:

- “Customer access” on page B-1
- “Windows NT logins for the customer” on page B-3
- “NT login types for the customer” on page B-3
- “Enabling Windows NT customer logins” on page B-7
- “DEFINITY logins for the customer” on page B-9
- “Installing and configuring DSA on a workstation” on page B-13
- “Installing DSA” on page B-13
- “Configuring DSA” on page B-13
- “Downloading Message Manager” on page B-13

Customer access

In DEFINITY ONE Release 2.0, the Lucent Access Control (LAC) module allows access to a “shell” (=bash) using any valid Windows NT login. This enhancement allows a customer to use a login, such as NTADMIN, to access Windows NT via a “bash shell”. This feature is not intended to be used by Lucent Services personnel who continue to use the Lucent Services logins (lucent1, lucent2, lucent3).

In Release 1.0 the LAC module listened only on TCP port 23. A connection to this port produced different results depending on the login used. For example, a services login (lucent1, lucent2, lucent3) resulted in the “lac” prompt to select DEFINITY, Audix, or a Bash shell. An alias login, such as donut, resulted in a DEFINITY SAT screen without a LAC prompt. This continues to be supported in Release 2.0, but is being deprecated in favor of the use of separate telnet ports for direct access to DEFINITY and AUDIX.
If the telnet session is established to TCP port 22, and the login has privileges to access DEFINITY, a connection is made directly to a DEFINITY SAT without a LAC prompt. If the caller logs off, the telnet session is terminated.

If the telnet session is established to TCP port 24, and the login has privileges to access AUDIX, a connection is made directly to an AUDIX Forms Controller administration screen without a LAC prompt. If the caller logs off, the telnet session is terminated.

The same logins are used with ports 22, and 24, as well as 23. The difference is that a direct connection is made to the appropriate application without a LAC prompt or having to use an alias login.

See “System administration/DEFINITY site administration (DSA)” on page 2-26.
Windows NT logins for the customer

Several Windows NT login groups and associated logins are pre-installed for customer use from the factory. See Table B-1.

The login IDs in the last two columns of Table B-1 are for customer use. The following describes use and administration of these logins.

Table B-1. Windows NT logins

<table>
<thead>
<tr>
<th>Windows NT login group</th>
<th>Logins for customer use</th>
<th>Default password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrators</td>
<td>NTadmin</td>
<td>NTadmin1</td>
</tr>
<tr>
<td>Guest - disabled</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>lucent</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>officeadmin</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>officeuser</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>Power Users</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Users</td>
<td>browse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sa</td>
<td></td>
</tr>
</tbody>
</table>

1. To be administered
2. To be administered

⚠️ WARNING:
The logins in the Lucent group of Table B-1 are for the exclusive use of Lucent Technologies Services personnel. These logins are established and updated automatically by Lucent software. DO NOT ALTER THESE LOGINS IN ANY MANNER. To do so may render the system unserviceable and may require a partial or complete reinstallation of the software by Lucent personnel.

NT login types for the customer

Administrator login

- NTadmin

This is a standard Windows NT administrator account used to administer network parameters and similar functions.
AUDIX logins

- browse
 This login is used in the Voice Messaging application. See the INTUITY AUDIX documentation or Table B-2 for a list of commands accessible to the browse login. This login is disabled from the factory. It must be enabled and a password chosen before it can be used.

- vm
 This login is used in the Voice Messaging application. See the INTUITY AUDIX documentation or Table B-2 for a list of commands accessible to the vm login. This login is disabled from the factory. It must be enabled and a password chosen before it can be used.

- sa
 This login is used in the Voice Messaging application. It has full customer administration privileges. See the INTUITY AUDIX documentation or Table B-2 for a list of commands accessible to this login. This login is disabled from the factory. It must be enabled and a password chosen before it can be used.

NOTE:
The stand-alone INTUITY AUDIX system login “sa” normally produces a menu. This feature is not supported on DEFINITY ONE. All logins result in a Forms Screen interface.

<table>
<thead>
<tr>
<th>Command</th>
<th>sa</th>
<th>vm</th>
<th>browse</th>
</tr>
</thead>
<tbody>
<tr>
<td>add</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>audit</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>change</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>copy</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>display</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>exit</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>get</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>help</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>list</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Continued on next page
Table B-2. AUDIX commands versus logins for sa, vm, and browse — *Continued*

<table>
<thead>
<tr>
<th>Command</th>
<th>Login</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sa</td>
</tr>
<tr>
<td>logoff</td>
<td>✓</td>
</tr>
<tr>
<td>print</td>
<td>✓</td>
</tr>
<tr>
<td>remove</td>
<td>✓</td>
</tr>
<tr>
<td>reset</td>
<td>✓</td>
</tr>
<tr>
<td>test</td>
<td>✓</td>
</tr>
<tr>
<td>toggle</td>
<td>✓</td>
</tr>
<tr>
<td>trace</td>
<td>✓</td>
</tr>
</tbody>
</table>

Customer Web access logins

The following login groups are used for web access:

- **Officeadmin**

 Login IDs in this group are installed from the factory. This login group facilitates access via the DEFINITY ONE web interface. Group members select administrative privileges via the web interface. The NTadmin account is used to establish an account in this group. Generally, an account in the Officeadmin group is used to download DSA from the DEFINITY ONE Web page.

- **Officeuser**

 Login IDs in this group are installed from the factory. This login facilitates download of client software, such as Message Manager. Group members have access for client download only. The NTadmin account is used to establish an account in this group. An Officeuser group account is generally used to download Message Manager from the DEFINITY ONE Web page.

- **anonymous**

 The anonymous login is for very limited access via the web interface to load a software patch. See Table B-2 "AUDIX commands versus logins".
Table B-3. Web access rights/officeadmin and officeuser access

<table>
<thead>
<tr>
<th>Directory</th>
<th>Use</th>
<th>Login group</th>
<th>Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>c:\LucentWeb\Public</td>
<td>DEFINITY ONE Home Page</td>
<td>anonymous</td>
<td>read</td>
</tr>
<tr>
<td></td>
<td></td>
<td>officeuser</td>
<td>read</td>
</tr>
<tr>
<td></td>
<td></td>
<td>officeadmin</td>
<td>read</td>
</tr>
<tr>
<td></td>
<td></td>
<td>administrators</td>
<td>full control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lucent</td>
<td>full control</td>
</tr>
<tr>
<td>c:\LucentWeb\admin\audix\html</td>
<td>AUDIX networking HTML pages</td>
<td>anonymous</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>officeuser</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>officeadmin</td>
<td>read</td>
</tr>
<tr>
<td></td>
<td></td>
<td>administrators</td>
<td>full control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lucent</td>
<td>full control</td>
</tr>
<tr>
<td>c:\LucentWeb\admin\audix\cgi</td>
<td>AUDIX networking cgi scripts</td>
<td>anonymous</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>officeuser</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>officeadmin</td>
<td>execute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>administrators</td>
<td>full control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lucent</td>
<td>full control</td>
</tr>
<tr>
<td>c:\LucentWeb\admin\user\html</td>
<td>Pages for non administrator users e.g. download</td>
<td>anonymous</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>officeuser</td>
<td>read</td>
</tr>
<tr>
<td></td>
<td></td>
<td>officeadmin</td>
<td>full control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>administrators</td>
<td>read</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lucent</td>
<td>full control</td>
</tr>
<tr>
<td>c:\LucentWeb\admin\user\cgi</td>
<td>cgi scripts for non administrator users. e.g. download</td>
<td>anonymous</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>officeuser</td>
<td>execute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>officeadmin</td>
<td>execute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>administrators</td>
<td>full control</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lucent</td>
<td>full control</td>
</tr>
<tr>
<td>c:\LucentWeb\admin\html</td>
<td>Platform HTML pages</td>
<td>anonymous</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>officeuser</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td></td>
<td>officeadmin</td>
<td>read</td>
</tr>
<tr>
<td></td>
<td></td>
<td>administrators</td>
<td>read</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lucent</td>
<td>full control</td>
</tr>
</tbody>
</table>

Continued on next page
Enabling Windows NT customer logins

Only the Administrator can enable customer logins.

Activate pcAnywhere

1. On a DEFINITY ONE LAN workstation enable a web browser and the DEFINITY ONE web page. Click Administrator System on this web page and login as NTadmin using the default password. On the administration page click Activate pcAnywhere.

A pcAnywhere client must be installed on the workstation. This client may be purchased from a local supplier or Symantec Corporation. Alternately, a JAVA client may be downloaded from the DEFINITY ONE administration page, the same page the pcAnywhere host is activated in step 1.

2. Activate the pcAnywhere client on the workstation.

3. Login to the DEFINITY ONE system, using the NTadmin account.
Setup login accounts

1. Start the NT user manager on the DEFINITY ONE desktop. Click (Start > Programs > Administrative Tools > User Manager)

2. Change the password for the NTadmin account.

3. Activate and set passwords for the browse, vm, and sa accounts. This also can be done via the command line tool net user. See “Lucent access controller bash commands” on page G-1.

4. Create three Windows NT accounts in the Officeadmin group for three application administrators. These accounts are used to download DSA software. The account names can be chosen as desired. For this example they are called D1user1, D1user2, and D1user3.

5. Create one Windows NT account in the Officeuser group for download of the INTUITY Message Manager Software. The NTadmin account should be used for NT administration only. The account name can be chosen as desired. For this example it is called D1WEB.

6. Disconnect from pcAnywhere.

> NOTE:
The NTadmin account can be used for download, but should be used for NT administration only.
DEFINITY logins for the customer

In addition to the logins maintained in the Windows operating system, there are customer level logins within the DEFINITY application that do NOT appear as Windows logins. The default password should be changed by the customer during installation.

Table B-4. DEFINITY customer logins

<table>
<thead>
<tr>
<th>DEFINITY customer logins</th>
<th>Comments</th>
<th>Default password</th>
</tr>
</thead>
<tbody>
<tr>
<td>defty1</td>
<td>This is the customer level “super user” login within the DEFINITY application. Its use should be restricted to the system administrator. This login can be used to create additional DEFINITY logins. See the DEFINITY command add login.</td>
<td></td>
</tr>
</tbody>
</table>

Release 2.0 provides enhanced login/password security by adding a security feature that allows users to define their own DEFINITY logins/passwords and to specify a set of commands for each login.

- The system allows up to 14 simultaneous connections (logins) to DEFINITY ONE. (DEFINITY can have 5 connections, AUDIX can have 4 connections, and the rest of the connections are reserved for shell commands.)

- Each DEFINITY ONE login name can be customized
 - Logins must be 3 to 6 alphabetic/numeric characters, or a combination of both.
 - A password must be from 4 to 11 characters in length and contain at least 1 alphabetic and 1 numeric symbol.

Password aging is an optional feature that the super-user administering the logins can activate (see below).

> **NOTE:**

If several users are logging in and out at the same time, a user may see the message: `Transient command conflict detected; please try later`. After the “users” have completed logging in or out, the terminal is available for use.
Forced password aging (DEFINITY-specific)

Forced password aging operates as follows:

- The password for each login can be aged starting with the date the password was created, or changed, and continuing for a specified number of days (1 to 99).

- 7 days before the password expiration date, the user is notified that the password is about to expire at the login prompt.

- When the password expires the user is required to enter a new password into the system before logging in.

- If a login is added or removed, the “Security Measurement” reports are not updated until the next hourly poll, or a clear measurements security-violations command is entered.

- Once a non-super-user has changed the password, the user must wait 24 hours to change the password again.

Logoff notification (DEFINITY-specific)

Security is enhanced by providing a logoff notification screen to a system administrator at log off while either the facility test call or remote access features are still administered. The administrator can be required to acknowledge the notification before completing the logoff process. Logoff notification is administered on the Login Administration screen.

Super_User (DEFINITY)

Lucent delivers Release 2.0 of DEFINITY ONE to the customer with one customer “super-user” login/password defined. The customer administers additional login/passwords as needed. The super-user login has full customer permissions and can customize any login created.

Login permissions for a specified login can be set by the super-user to block any object that may compromise switch security. Up to 40 administration or maintenance objects commands can be blocked for a specified login id.
Administer login command permissions

Users with super-user permissions can set the permissions of logins they create by performing a change permissions <login-name> command. This causes the Login Permissions form to display. The Login Permissions form allows the user to control access to various categories of commands for a given login. It also permits restricting access to objects (forms) on an individual basis for up to 40 objects. Restricting an object means that no commands may be performed on that object by that login (add, change, remove, etc.) The three main categories of commands are:

- Common Command
- Administration Commands
- Optional Maintenance Commands

Each category of commands has sub-categories that, when set to y, allow access to objects associated with that sub-category. If the category is set to n, the user is not able to add, remove, or change commands on objects under that sub-category. If the display category is y, the login will list or display the object in most cases. If the super-user wants to restrict access to all commands associated with an individual object in a subcategory, the Additional Restrictions field is set to y. This causes 2 additional pages to be added to the permissions form. Scroll these pages and press Help. Individual objects will be displayed in alphabetical order. Enter the object that you want to restrict access to into the fields and submit the form. Up to 40 objects may be restricted. A restricted login cannot access any of the commands associated with that login. Note that permissions cannot be changed for the login and you cannot create Additional Restrictions without full super-user permissions.

DEFINITY commands for user login

DEFINITY commands refer to the set of commands that execute under the DEFINITY application running on the ProductName system platform and which can be accessed through the SAT session or the DEFINITY Site Administration application.

These commands are grouped into three command categories. Each of the three command categories has a group of command subcategories listed under them, and each command subcategory has a list of command objects that the commands acts on. A super-user can set a user's permissions to restrict or block access to any command in these categories. These categories are displayed on the Command Permissions Categories form. The three main categories are:

- Common Commands
 - Display Administrative and Maintenance Data
 - System Measurements
Password expiration

If your password has expired, the following message displays:

```
Login: telmgr
Password: 
Your Password has expired, enter a new one.

Reenter Current Password: 
New Password: 
Reenter New Password: 
```

Figure 10-1. Password expiration screen

If your password is within 7 days of the expiration date, the following message displays:

WARNING: Your password will expire in X days
Installing and configuring DSA on a workstation

Installing DSA

An Administrator only can download DSA.

Steps required to obtain DEFINITY Site Administration (DSA) software from the system are:

1. On a workstation enable a web browser and the DEFINITY ONE web page. Click Administrator System and then login as NTadmin using the appropriate password. On the administration page, click Download Software.
2. On the Web page, click the selection to download DSA. Select a directory to save the self extracting file to be downloaded. Place the file in any temporary directory.
3. When download completes, close all applications and double click the downloaded file to execute.
4. Follow the screen prompts to complete installation. DSA will install an icon on the desktop.

Configuring DSA

See “Configure DSA” on page 7-7 for instructions to configure DSA. When prompted for logins, use your customer logins where appropriate - vm, sa, or browse for AUDIX and defty1 or other DEFINITY customer accounts for DEFINITY.

Downloading Message Manager

The steps required to obtain the INTUITY Message Manager software from the DEFINITY ONE system are as follows:

1. On the desktop where Message Manager is to be installed, activate your favorite browser and bring up the home page for the DEFINITY ONE system.

 The name or IP address of the DEFINITY ONE system must be obtained from the administrator of the customer's network where DEFINITY ONE is installed.

2. On the DEFINITY ONE home page, click User Services.
3. When prompted for a user ID, type D1WEB and use the password supplied by your system administrator.
 Holders of more privileged accounts may also use their IDs, for example, NTADMIN, D1user1, etc.

4. Click **Download Message Manager**.
 This downloads a self-extracting file to the desktop.

5. When download is complete, exit all applications on the desktop and double click the downloaded file.

6. Follow the prompts to complete the installation. See “**Installing Message Manager from a LAN server**” on page 8-14.
This following provides the procedures used in the installation process.

- **Connectivity**
 - “Connect the laptop computer to DEFINITY ONE” on page C-2
 - “Verify the connection from DEFINITY ONE to the laptop computer” on page C-11
 - “Restore the laptop settings” on page C-12
 - “Map DEFINITY ONE to the laptop computer’s CD-ROM drive” on page C-13

- “Setting the name of the switch” on page C-15

- “Connect to SAT session via Telnet” on page C-16

- **Backup and Restore**
 - “Perform backup” on page C-18
 - “Backup via the Web interface” on page C-20
 - “Backup and restore main menu” on page C-23
 - “Perform immediate backup” on page C-23
 - “Viewing backup progress” on page C-25
 - “Backing up to a LAN address” on page C-25
 - “Viewing scheduled backups” on page C-27
 - “Adding a new scheduled backup (multiple backup schedules)” on page C-27
 - “Accessing backup information” on page C-28
 - “Perform restore” on page C-29
Connect the laptop computer to DEFINITY ONE

The technician’s laptop computer (referred to as “laptop”) connects to the DEFINITY ONE system via a PCMCIA card in the TN795 circuit pack. The laptop computer requires the following equipment:

Table C-1. Required technician’s laptop equipment checklist

<table>
<thead>
<tr>
<th>Part number</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop computer with PCMCIA network interface card (NIC) running Windows 95/98</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3CCFE575BT (cabled version, has an RJ45 on end of cable) or 3CXFE57B5T(X jack)</td>
<td>PCMCIA NIC with RJ45 connector for DEFINITY ONE Comcode 408276897</td>
<td>1</td>
</tr>
</tbody>
</table>
| 848477634 | Cable assembly to connect NICs:
 ■ D8W cable
 ■ RJ45 coupler (BRIA4P)
 ■ RJ45 crossover cable (approx. 12 feet) | 1 |

NOTE:
When changing information, ensure both old and new information is recorded. The DEFINITY ONE system, configured at the factory, serves as an endpoint of a private LAN with a PC.

WARNING:

The “3COM Megahertz 10/100 LAN CardBus” PCMCIA card must be used. Other types of cards do not work. This card has either part number 3CCFE575BT or 3CXFE575BT, depending on the cable arrangements. In addition, a special crossover cable, comcode 848477634, must be used. See Figure C-1.
Figure Notes

1. Laptop computer
2. PCMCIA NIC
3. D8W cable
4. RJ45 coupler (BRIA4P)
5. RJ45 crossover cable
6. PCMCIA NIC (3CXFE575BT shown)
7. RJ45 connector

Figure C-1. Laptop connectivity
Install the ethernet card

1. Ensure the laptop power is off.
2. Insert a PCMCIA ethernet card into the laptop.

 NOTE:
 The ethernet card can be any brand or model desired. A card with 100 Megabit capability provides faster response.

3. Insert a 3COM Megahertz 10/100 LAN CardBus Network Interface Card into the PCMCIA slot of the DEFINITY ONE system. It is NOT necessary to power down the DEFINITY ONE before inserting the PCMCIA disk card.

 NOTE:
 If you will be performing backup procedures, insert a new PCMCIA card in the free slot in the TN795 circuit pack. Do not unplug the flash disk.

4. Using the RJ45 crossover cable, an RJ45 coupler (BRIA4P) and a D8W cable, connect the 3COM card in the TN795 circuit pack to the Ethernet card in the laptop. See Figure C-1.

 NOTE:
 The green LED on the 3COM Megahertz 10/100 LAN Card Bus PC card in the TN795 circuit pack should be lit, indicating physical connectivity. If neither of the 2 LEDs is lit, there is an open circuit between the laptop and DEFINITY ONE. The top LED on the 3COM NIC indicates a 10-Mbps connection speed. The bottom LED indicates a 100-Mbps connection speed.

5. Power up the laptop and start Windows 95 or 98.

Configure the PCMCIA ethernet client on the laptop

1. Right click **Network Neighborhood** to configure the network PCMCIA interface to communicate to the DEFINITY ONE system.
A menu similar to the following displays:

![Menu](image)

NOTE:
The following details are for a specific version of Windows 95. Other system versions may have screens that are slightly different.

2. Click **Properties**.
A similar screen displays:
3. Click the **Identification** tab.

 A similar screen displays:

 ![Network Configuration Screen](image)

 - **Computer name:** tech1
 - **Workgroup:** services
 - **Computer Description:** services laptop

4. Record the Computer name and Workgroup entries but DO NOT click OK. These are tech1 and services in the above screen. This information is needed for certain operations, such as software installation.

 NOTE:

 The technician's laptop is set up with the Computer name “CSE” and the Workgroup “OEM.”

5. Click the **Configuration** tab.
A similar screen displays. The contents of this screen varies, depending on the configuration of the laptop. Select the entry corresponding to the PCMCIA Ethernet card inserted in step 1 of "Install the ethernet card" on page C-4.

6. Click **File and Print Sharing** to make file and print sharing active.

7. A similar screen displays:

 ![File and Print Sharing](image)

 Check the box: **I want to be able to give others access to my files.**
8. Click **OK**.

Return to the following screen:

![Network Configuration Screen]

If the “Windows Logon” is not the Primary Network Logon, click the pull-down menu for the Primary Network Logon and select **Windows Logon**.

NOTE:
Before continuing, record the current settings under the Access Control tab. This information is needed to restore the laptop after work is completed with **DEFINITY ONE**.

9. Click **Access Control**
10. Ensure that **Share Level Access Control** is selected.
11. Click **OK**.

If a warning screen displays: Do you want all connections to shared directories disabled, select Yes. The connections will be restored following a restart.
A screen displays: Do you want to restart your computer now. Select No.

12. Right click on Network Neighborhood and select Properties to return to the Network screen.

Select TCP/IP Xircom CreditCard Ethernet Adapter 10/100.

13. Click Properties.

A similar screen displays: Click the IP Address tab.

14. Record each tab before proceeding.

This information is needed to restore the laptop to its current settings once work with the DEFINITY ONE system is completed.

15. Ensure that Specify an IP address is selected. Type 192.11.13.5 as the IP Address and 255.255.255.252 as the Subnet Mask.

16. Click on the DNS configuration tab. Click the Disable DNS radio button.

17. Click on the WINS configuration tab. Click the Disable WINS Resolution radio button.
18. Click on the Gateway tab. If a gateway is shown, record the gateway number. Highlight the gateway and select Remove.

19. Click OK here and in the following windows.

A similar screen displays:

![System Settings Change](image)

20. Click Yes to restart your computer.

21. When the laptop reboots, verify that it is now connected to the DEFINITY ONE system. See "Verify the connection from DEFINITY ONE to the laptop computer" on page C-11.

Verify the connection from DEFINITY ONE to the laptop computer

1. Start a DOS shell on the laptop by clicking Start > Programs > MS-DOS.

2. In the DOS window type ping 192.11.13.6 and press (ENTER).

A series of four similar replies indicating successful response should display:

```
Reply from 192.11.13.6 bytes=32 time=1ms TTL=128
```

3. If a timeout reply displays, check cabling or review the previous setup steps. Also verify that DEFINITY ONE is operating normally and referencing the LEDs on the front panel of the TN795 circuit pack. See Table E-5
Restore the laptop settings

This procedure restores the settings on the technician's laptop computer to their state prior to connecting to the DEFINITY ONE system.

1. Right click Network Neighborhood. Select Properties.

 A dialogue box titled Network displays.

2. Click the Configuration tab on the File and Print Sharing button. Check “I want to be able to give others access to my files.”

 Click the pull-down menu for the Primary Network Logon, and select Client for Microsoft Networks.

3. Click the Identification tab and enter the Computer name and workgroup.

4. Click the Access Control tab and check the appropriate boxes so that this screen matches its earlier settings.

5. Click the Configuration tab.

 ■ If a dialog box appears notifying you that the security provider could not be found, click Yes.

 ■ If a dialog box called “Authenticator type” appears, select Windows NT Domain, and click OK.

6. Double click the modified component in the List Box, “The following network components are installed”. This should be the TCP/IP Xircom CreditCard Ethernet Adapter 10/100.

7. The screen TCP/IP Properties displays.

8. Enter the original IP address and subnet mask.

9. Click the DNS Configuration tab to enable DNS. Enter the appropriate information.

10. Click the WINS Configuration tab to enable WINS. Enter the appropriate information.

11. Click the Gateway tab (if a gateway was used) and enter the appropriate information.

12. Click OK to close the TCP/IP dialogue box.

13. A screen displays: Do you want to restart your computer?. Click Yes.

When rebooted, the laptop returns to its original settings.
Map DEFINITY ONE to the laptop computer’s CD-ROM drive

1. On the laptop, double click My Computer. Right click the CD-ROM drive icon.

2. Select Sharing from the pop-up menu. The following screen displays:

 ![Sharing Settings Screen]

3. When the screen displays, the default Not Shared will be selected. Click Shared As and enter a Share Name. Click Full beneath Access Type.

 This enables a Full Access Password text box at the bottom of the screen.

4. Enter a password in the above text box.

 NOTE:
 A password is needed to map the network drive from DEFINITY ONE back to the laptop.
5. Click **Apply** to display the password confirmation screen. The following screen displays:

![Password Confirmation Screen]

6. Click **OK** on the CD-ROM sharing screen in the Properties dialogue box.

The CD-ROM drive is now shared. The following procedures describe how to map the CD-ROM drive from DEFINITY ONE to the laptop.

1. Establish a pcAnywhere connection from the laptop to DEFINITY ONE.

2. On the DEFINITY ONE desktop, right click **My computer** and select **Map Network Drive** on the resulting pop-up window. The following screen displays:

![Map Network Drive Screen]
3. Select the drive letter indicated or a new one on the Map Network Drive screen. In the Path field, enter `\xxxx\CDROM` where `xxxx` is the name of the laptop (noted in an earlier procedure). When shared, the CD-ROM is the applicable share drive.

4. Leave the Connect As field blank. Click Reconnect to deselect the login.

5. Click OK. The following dialogue box displays, prompting for login and password information:

 ![Enter Network Password dialog](image)

 6. Click OK.

A DEFINITY ONE drive (Drive E in this case) is mapped to the laptop’s CD-ROM drive.

Setting the name of the switch

Setting the NT name

To set the machine name, in a bash shell, type `setip name=machineName`. Limit the machine name to 10 characters. `Setip` will allow you to enter more characters, however AUDIX only displays the first 10 characters of the machine name in its administration window.

Ex: `setip name=mysite`

After setting the machine name, the `setip` command displays both the old and new settings.

Reboot the DEFINITY ONE. Enter `reboot nice` from a console bash shell.

Updating AUDIX machine name

1. Once NT reboots, Update AUDIX. Enable the DEFINITY ONE web page using a browser. Click the **Administer System** hot link. The web page prompts for login and password. Use the `lucent3` login with the new password supplied by INADS.
2. Click the AUDIX Networking link. Click the Administrative Menu link after the page loads. Click the Local Machine Administration link to load the Local Machine Administration web page. Click the change button in the middle of the page for AUDIX to re-populate its databases with the current settings.

3. Exit the web pages and restart AUDIX.

Restarting AUDIX

Enable a telnet session to a LAC bash shell on DEFINITY ONE. Execute a `shutdown` AUDIX command at the shell prompt. Select `start AUDIX` when shutdown completes. When AUDIX restarts it recognizes the new machine.

Change system name

1. When the system is up, enable a DEFINITY SAT session, using either telnet or DSA. Login as dinit (lucent1 will grant the same permissions) with the appropriate password.

2. Enter change system-parameters features. On page 4, change the switch name to match the NT and AUDIX switch names.

Connect to SAT session via Telnet

This method of access is used primarily by technicians who use one of the services logins. This connection type will access a SAT emulator to administer and maintain the DEFINITY ONE.

1. Enter a command to continue after admittance in to the DEFINITY ONE system. See “Via a Telnet session” on page 2-16. In this example, the command entered was `definity`. The next screen shows the initial DEFINITY SAT screen

2. Enter the terminal type.
Connect to SAT session via Telnet

The screen shows login and password fields. You are automatically logged in to the DEFINITY SAT session by the LAC.

NOTE:
Two new terminal types have been added: NTT and SUNT.

- Use NTT from a Windows platform.
- Use SUNT from a Sun Microsystems platform.

The following screen displays when the terminal type is entered:

Once you are logged in as user lucent1, lucent2, or lucent3, you can exit the DEFINITY SAT session and start an AUDIX session without having to re-authenticate.
Perform backup

Backup procedures prevent loss of data due to system errors. Backups can be either immediate or scheduled. You can execute backup procedures to either the LAN or the PCMCIA flash card from the command line and web browser.

Insert a PCMCIA card into the free slot on the TN795 circuit pack. For alternative backup, obtain a network location from the customer. The following are bash shell procedures when using a LAN resident PC that is not DEFINITY ONE but is connected to the same LAN as DEFINITY ONE.

Click Start > Run from the Windows task bar. The Run dialog box displays:

1. Enter `telnet {DEFINITY ONE Name, or IP Address}`. Click OK.
2. A telnet session opens on the desktop. Enter the login and challenge response at the prompts.
Once the Lucent Access Control (LAC) process accepts your inputs, it grants admittance to the DEFINITY ONE system.

3. Type `bash` and press `ENTER`.

 The machine name and login ID displays as your prompt.

 OR:

 At a DEFINITY ONE desktop, log in to Windows NT. Click **Start > Run** from the Windows task bar. The **Run** dialog box displays.

 ![Run dialog box](image)

 1. Enter `bash` and click **OK**.

 2. A telnet session opens on the desktop. Enter User Name and Password.

 The DEFINITY ONE system grants admittance once inputs are accepted.

 3. Type `d1backup <data-set> <destination>` and press **ENTER**.
4. Enter one or more of the following parameters (separate multiple choices with a space) for backup:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>deftran</td>
<td>DEFINITY Translations</td>
</tr>
<tr>
<td>vmnamtran</td>
<td>Voice Names and Translations</td>
</tr>
<tr>
<td>vmmmsgtran</td>
<td>Message Bodies and Translations</td>
</tr>
<tr>
<td>vmannounce</td>
<td>Announcement Sets</td>
</tr>
<tr>
<td>vmmnammsgtran</td>
<td>Voice Names, Messages, and Translations</td>
</tr>
<tr>
<td>registry</td>
<td>NT registry</td>
</tr>
<tr>
<td>sam</td>
<td>NT Passwords Login and Policy</td>
</tr>
<tr>
<td>defann</td>
<td>DEFINITY Announcements</td>
</tr>
<tr>
<td>lac</td>
<td>Password and License Server File</td>
</tr>
</tbody>
</table>

The destination is **pcmcia** or a directory name.

If a directory name is entered, a network drive must be mapped as the F: drive. Use the web interface to map a network drive.

The following is an example of how to enter information for backup procedures:

```
LAC:> d1backup deftran vmnamtran pcmcia
```

NOTE:
When executing this command, there may be a delay of 1 to 2 minutes because AUDIX Networking is shutting down and auditing the AUDIX databases. AUDIX restarts when the backup completes.

Backup via the Web interface

The following are web interface procedures:

1. Open Internet Explorer.
2. Enter **http://<IP address>** in the address area of the web browser.
The DEFINITY ONE Home page displays:

3. Click **Administer System**.

The following screen displays:

![Username and Password Required](image)

3. Click **Administer System**.

The following screen displays:

4. Enter your login ID and password.

The login ID must have the correct backup permissions and be a member of the DEFINITY ONE Administrator’s login group.

The following Notice screen displays:
5. Click **Continue**.

The following screen displays:

Click Backup and Restore to open main backup menu.
Backup and restore main menu

From the backup and restore main menu, you can:

- Perform immediate backups
- Schedule multiple backups
- Restore backups
- Access last scheduled backup information
- View contents of backup location

NOTE:
As you navigate the backup and restore screens, the main menu items remain available. Use the Back button to return to previous screens.

Perform immediate backup

To perform an immediate backup, click Immediate Backup.

The following screen displays:
1. From the Destination menu, select a backup destination. This can be a LAN address or a PCMCIA Flash Disk.

2. Select items for immediate backup.

3. Click Backup.

NOTE:
When backing up to a LAN address, a shared drive must be installed on a non-DEFINITY ONE machine.

After you click Backup, the following screen displays:
Viewing backup progress

To view backup progress, click View Backup Progress.

The following screen displays:

- Immediate Backup
- Scheduled Backups
- Restore
- Last scheduled backup results
- Contents of backup location

Backup in progress

Choose items for immediate backup
- DFNITY announcements
- DFNITY translation files
- NT Registry
- NT passwords & policies
- LAC password & license server files
- Auxix announcements
- Auxix translations & messages
- Auxix translations & names
- Auxix translations
- home from Auxix

Destination: remote

Warning: Before starting this backup operation, any previous backup data from the destination will be erased.

Click Other locations.

Backing up to a LAN address

You can back up your data to a LAN address using the Other locations feature.

To back up data to a LAN address:

1. Click Other locations.
The following screen displays:

2. Enter LAN location information.
3. Click Verify.

The following screen displays:

4. Click Continue to return to the Immediate backup screen.
5. Select items to back up and select Backup.
Viewing scheduled backups

To view scheduled backups:

1. Click Scheduled Backups.

The following screen displays:

From this screen, you can add, edit, or delete scheduled backups.

Adding a new scheduled backup
(multiple backup schedules)

To add a new scheduled backup to the list:

1. On the Current list of scheduled backup jobs screen, click Add new schedule.

The following screen displays:
2. Select backup destination either to a LAN address or a PCMCIA Flash Disk.

3. Select items for scheduled backup.

4. Select a day and time for the backup.

5. Click Submit.

Accessing backup information

To review previous backups, click Last scheduled backup results.

The following screen displays:

To view contents click Contents of backup location.

The following screen displays:

Scroll to the location of backup contents and click Display or click Other locations.
The following screen displays:

NOTE:
The backup feature can be disabled and later enabled to allow you to perform another function. If disabled, the current schedules remain intact.

Perform restore

1. Click Restore.

 The following screen displays:

 2. Select the restore source.

 3. Select items to restore.
4. Click Restore.

 The following screen displays:

   ```
   ▪ Immediate Backup
   ▪ Scheduled Backups
   ▪ Restore
   ▪ Last scheduled backup results
   ▪ Contents of backup location
   
   Restore in progress ...
   
   Source: pmcm
   
   View restore progress.
   
   Note: DEFINITY ONE applications are being stopped as part of the restore operation.
   When restore is done, you will need to reboot the system.
   ```

5. After the restore is completed, reboot the system.

 ➤ NOTE:

 A reboot is required. The restored translations will not be used if the DEFINITY ONE is not rebooted.
Recovery

This chapter provides information about system recovery. This chapter is organized as follows:

- “DEFINITY ONE system level shutdown and restart” on page D-1
- “DEFINITY software reset (recovery)” on page D-4
- “Reset System 1 (DEFINITY warm start)” on page D-4
- “Reset System 2 (DEFINITY cold start)” on page D-4
- “Reset System 3 (DEFINITY reboot)” on page D-5
- “Reset System 4 (DEFINITY reboot)” on page D-5
- “Reset System 5 (System reboot)” on page D-5

When the system is initially powered up, or when an existing system experiences a catastrophic fault that interrupts its basic functions, the system reboots.

DEFINITY ONE system level shutdown and restart

The following table presents system level shutdown and restart actions that can be initiated by the system technician, the customer, and by hardware. The state of the shutdown and restart actions is indicated by the state of the LEDs on the TN795 processor circuit pack (See Appendix E). More details about the use of the user commands can be found in DEFINITY ONE Communications System Release 2.0 Maintenance (555-233-111).
Table D-1. Shutdown and restart actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Entry</th>
<th>Originated by</th>
<th>Action Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>"reboot nice"</td>
<td>command line entry from a bash</td>
<td>technician</td>
<td>Shuts down all applications with campon to wait for AUDIX users to logoff. The system restarts automatically.</td>
<td>Used for a system reboot after changing an NT level parameter that requires a system reboot. This may take an unacceptably long time due to campon of AUDIX logons.</td>
</tr>
<tr>
<td>[campon]</td>
<td>session</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"reboot immediate"</td>
<td>command line entry from a bash</td>
<td>technician</td>
<td>Shuts down all applications without waiting for AUDIX users to log off. The system restarts automatically.</td>
<td>Used for a system reboot with a guaranteed reboot time of a few minutes. This action does not wait for AUDIX users to be logged off from AUDIX.</td>
</tr>
<tr>
<td></td>
<td>session</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"shutdown all"</td>
<td>command line entry from a bash</td>
<td>technician</td>
<td>Shuts down application software while leaving NT up. An optional “campon” option may be used to wait for AUDIX users to log off.</td>
<td>Used for system upgrade. The campon option may cause an unacceptable wait time. The “start all” command can be used to restart the application software.</td>
</tr>
<tr>
<td>[campon]</td>
<td>session</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"shutdown audix"</td>
<td>command line entry from a bash</td>
<td>technician</td>
<td>Shuts down AUDIX while leaving DEFINITY and NT up. An optional “campon” option may be used to wait for AUDIX users to log off.</td>
<td>Used to shut down AUDIX if the machine name is changed. The “start audix” command can be used to restart AUDIX. The campon option may cause an unacceptable wait time.</td>
</tr>
<tr>
<td>[campon]</td>
<td>session</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"shutdown system"</td>
<td>command line entry from a bash</td>
<td>technician</td>
<td>Shuts down the system without restarting it. An optional “campon” options may be used to wait for AUDIX users to log off. The system does not restart automatically.</td>
<td>Used to shut down the system in preparation for removing AC power or removing the TN795 Processor circuit pack. The campon option may cause an unacceptable wait time. The system can be restarted only by removing and restoring power or reseating the TN795.</td>
</tr>
<tr>
<td></td>
<td>session</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Table D-1. Shutdown and restart actions — Continued

<table>
<thead>
<tr>
<th>Action</th>
<th>Entry</th>
<th>Originated by</th>
<th>Action</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>“delayed shutdown” button</td>
<td>web page from a web browser</td>
<td>technician/customer</td>
<td>Wait for AUDIX users to log off before starting a system shutdown. The system may or may not restart automatically, depending on a “restart” option.</td>
<td>Used to shut down the system in preparation for removing AC power or removing the TN795 Processor circuit pack</td>
</tr>
<tr>
<td>“immediate shutdown” button</td>
<td>web page from a web browser</td>
<td>technician/customer</td>
<td>Do not wait for AUDIX users to log off before starting a system shutdown. The system may or may not restart automatically, depending on a “restart” option.</td>
<td>Used to shut down the system in preparation for removing AC power or removing the TN795 Processor circuit pack</td>
</tr>
<tr>
<td>shutdown button on the faceplate of the TN795 processor board</td>
<td>Faceplate of the TN795 processor board</td>
<td>technician/customer</td>
<td>Shut down the system after closing all applications. The system will not restart automatically.</td>
<td>Used to shut down the system in preparation for removing AC power or removing the TN795 Processor circuit pack. The system can be restarted only by removing and restoring power or reseating the TN795.</td>
</tr>
<tr>
<td>Detection of the loss of AC power by the UPS</td>
<td>Wiring from the UPS Z3A2 alarm adapter to the Major Alarm lead on the TN795</td>
<td>Loss of AC power for more than one minute</td>
<td>Shut down the system after closing all applications. The system will restart automatically upon restoration of AC power.</td>
<td>Provides a graceful shutdown when AC power is lost for more than one minute.</td>
</tr>
</tbody>
</table>

T able D-1. Shutdown and restart actions — Continued
DEFINITY software reset (recovery)

There are severe reset levels available to restart DEFINITY software. These resets can be user initiated with the reset system n command (where n is the reset level). They may also be automatically initiated by system software in response to certain error conditions.

A system is reset due to a loss of power, or through:

- Reset commands entered during a SAT terminal session.
- Maintenance software, from which the system can reset itself. (This process starts when certain software and hardware errors are detected by the software.)

⚠️ WARNING:

When the system is rebooted or reset at level 2, 3, 4, or 5, all voice terminal and attendant console features are adversely affected. Users should be advised of services that are lost and that, as a result, must be reactivated.

The SAT display and circuit pack LEDs indicate the progress of the recovery process.

Reset System 1 (DEFINITY warm start)

- This recovery takes about 60 seconds.
- All software is reset.
- All stable phone calls remain up.
- In-progress calls are dropped.
- No new calls can be made during this time.

Reset System 2 (DEFINITY cold start)

The following are reset:

- All software
- TDM Bus
- All Port circuit packs

All telephone sessions are dropped. Telephones begin to reconnect to the switch within 60 seconds.
Reset System 3 (DEFINITY reboot)

This is the same as Reset System 4 (see below). This command is retained for consistency with other DEFINITY products.

Reset System 4 (DEFINITY reboot)

- Emergency Transfer is invoked in this reset.
- System processes are reloaded from hard disk into memory
- All port circuit packs are reset.
- All telephone sessions are dropped.

Telephones begin to reconnect to the switch within 60 seconds.

Reset System 5 (System reboot)

This is the same as Reset System 4 (see above).
Recovery

DEFINITY software reset (recovery)
This chapter provides information about the LED boot sequence of the TN795 circuit pack.

This chapter is organized as follows:

- “LED boot sequence” on page E-1
- “TN795 processor circuit pack” on page E-1
- “TN795 processor circuit pack LEDs (after booting)” on page E-2
- “LED states” on page E-5

LED boot sequence

The following describes the LED boot sequence.

TN795 processor circuit pack

When power is first applied to DEFINITY ONE, or when the system reboots, the LEDs on the TN795 circuit pack will light according to this sequence:

1. All lights on the TN795 will rapidly blink in sequence, from bottom to top (also known as “racing lights”).

2. Within 1 minute, the second light from the top will blink green:
 - When the LED is more on than off it indicates BIOS loading
 - More off than on indicates NT loading

3. The third LED from the top will blink amber to indicate application firmware loading.
4. When firmware is loaded, the LEDs will blink in sequence again (racing lights), then all LEDs will light and then go off.

The DEFINITY ONE system is now under normal operating conditions. When the system is operating normally the following occurs:

- The amber LED (third from the top) will blink quickly once every 10 seconds, indicating the firmware/NT watchdog processes are communicating.
- Another blinking LED (clock) flashes when the firmware for the clock is communicating.

Any other LEDs that are illuminated indicate an alarm or problem with DEFINITY ONE. For more information about alarms, see Chapter 6, DEFINITY ONE NT Log Events and Alarms in *DEFINITY ONE Communications System Maintenance*, (Document No. 555-233-111).

The emergency transfer LED is on if a reset 4 occurs or if power is cycled.

TN795 processor circuit pack LEDs (after booting)

The front panel has two groups of LEDs. One group indicates the status of the pack, and the other group (which includes the Major, Minor, and Warning alarms) reflects maintenance conditions in the entire system.

- Red (alarm) — the system has detected a fault in this circuit pack.

 ➤ **NOTE:** Alarms on the PROCR, PR-MAINT, SW-CTL, and PKT-INT maintenance objects are indicated by the red LED on the Processor circuit pack.

- Green (test) — the system is running tests on this circuit pack.
- Amber — in an operating system, this LED indicates that the handshaking between the firmware and the NT operating system is occurring by flashing briefly once every 10 seconds.
- PCMCIA (amber) — the flash disk is in use
- MAJOR ALARMS (red)
- MINOR ALARMS (red)
- CLOCK (amber) — blinks once every 4 seconds.
- EM XFER (red) — indicates emergency transfer has been invoked

➤ **NOTE:** If the AC power cord is unplugged, the emergency transfer feature invokes, however the EMERGENCY TRANSFER LED (red) is not lit due to loss of AC power. The system gracefully shuts down in about 3 minutes.
■ OK REMOVE (green) — steady indicates that it is OK to remove the TN795 processor circuit pack.

⚠ WARNING:

DO NOT REMOVE the TN795 circuit pack unless the Complete *Shutdown* LED is illuminated. Failure to heed this warning may result in loss of data and/or damage to equipment.
Figure Notes

1. PCMCIA slots
2. Red LED
3. Green LED
4. Amber LED
5. PCMCIA In Use LED
6. Emergency Transfer On/Auto/Off switch
7. Complete Shutdown — safe to pull board when green LED is on steady
8. Shutdown switch — gracefully shuts down system

Figure E-1. TN795 circuit pack faceplate
LED states

The following table summarizes the TN795 circuit pack LED states.

Table E-1. TN795 circuit pack LED states

<table>
<thead>
<tr>
<th>LED name</th>
<th>LED color</th>
<th>Boot Sequence = 3 min., 45 sec.</th>
<th>Shutdown Sequence 1-3min</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>TN795 CP A Alarm</td>
<td>red</td>
<td>on on on</td>
<td>sw on on on</td>
<td></td>
</tr>
<tr>
<td>TN795 Test</td>
<td>green</td>
<td>off on on</td>
<td>sw sw off on flash 2</td>
<td></td>
</tr>
<tr>
<td>TN795 In Use</td>
<td>yellow</td>
<td>off off flash 1</td>
<td>sw sw on off on flash 2</td>
<td></td>
</tr>
<tr>
<td>PCMCIA</td>
<td>yellow</td>
<td>on on sw</td>
<td>sw sw on off on</td>
<td></td>
</tr>
<tr>
<td>Major Alarm</td>
<td>red</td>
<td>off off sw</td>
<td>sw sw off off off</td>
<td></td>
</tr>
<tr>
<td>Minor Alarm</td>
<td>red</td>
<td>off off off</td>
<td>sw sw off off</td>
<td></td>
</tr>
<tr>
<td>Clock Status</td>
<td>yellow</td>
<td>off off off</td>
<td>clk clk off off</td>
<td></td>
</tr>
<tr>
<td>ETR</td>
<td>red</td>
<td>on on on</td>
<td>sw sw on on</td>
<td></td>
</tr>
<tr>
<td>OK to Remove</td>
<td>green</td>
<td>on off off</td>
<td>off flash 3 on on</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(a) 40 sec.</td>
<td>(b) 40 sec. (c) 80 sec. (d) 30 sec. (e)</td>
<td></td>
</tr>
</tbody>
</table>

闪光1—800ms ON, 200ms OFF
闪光2—500ms ON, 500ms OFF
闪光3—200ms ON, 800ms OFF
闪光4—200ms OFF on every sanity heartbeat
闪光5—1 sec ON, 1 sec OFF
sw—Software Controlled
clk—Similar to the TN2182 Tone/Clock LED
<table>
<thead>
<tr>
<th>LED Boot Sequence/TN795 Processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED boot sequence</td>
</tr>
</tbody>
</table>
Status LEDs

This chapter provides information about the Status LEDs.

This chapter is organized as follows:

- “Attendant console LEDs” on page F-1
- “Other circuit packs” on page F-1
- “Circuit pack status LEDs” on page F-2
- “Power supply LEDs” on page F-3

Attendant console LEDs

The console has two red LEDs, labeled ALM and ACK. The left LED lights steadily when there is a Major or Minor alarm at the switch cabinet. The right LED lights steadily if the alarm has been successfully reported to INADS. If the system is unable to report the alarm to INADS, the LED flashes, thus signaling the attendant to call INADS and report the alarm. The system calls INADS automatically if it uses a modem.

Other circuit packs

Some LEDs may be lit upon power up on the other circuit packs. Under normal operation, LEDs should not light on the circuit packs, with the following exception: A solid green LED on any circuit pack indicates that diagnostic tests are being executed on that circuit pack.
Circuit pack status LEDs

Each circuit pack has three LEDs on the front panel visible at the front of the carrier. On all circuit packs, except the 650A Power Unit, the LEDs indicate:

1. Red (alarm) — If the circuit pack is communicating with the system, the system has detected a fault in this circuit pack. An on-board alarm for this circuit pack is displayed in the Alarm Log.

 The circuit pack also lights this LED when either the circuit pack has not yet initialized communication with the system or when the circuit pack loses contact with the system and stops functioning (circuit pack is said to be “in reset”). In these cases, there may not be an alarm in the Alarm Log. To determine if the red LED is lit because the circuit pack is not in contact with the system, issue the list configuration board PCSS command, where PCSS refers to the slot containing this circuit pack. If the system does not detect the circuit pack, this command returns Identifier not assigned or no board.

 If the circuit pack has just been inserted, the system may still be initializing the circuit pack. If, after 5 minutes, the circuit pack still has not initialized communications with the system, check the MO for any special instructions. If the MO does not provide the needed information, perform the following steps:

 - Check the Error Log for TONE-BD and TDM-BUS errors. Follow appropriate sections for any TONE-BD and TDM-BUS errors.
 - Reseat the suspect circuit pack.

 WARNING:

 Reseating the TN795 may be very destructive. This should be done only if the Complete Shutdown LED is illuminated. Otherwise, you must shut down before reseating.

 Wait 5 minutes. Then issue the list configuration board PCSS command. If the result indicates that the system still has not registered the circuit pack, go to next step.

 - If the system seems to be functioning correctly, but the circuit pack does not start communicating with the system, replace the circuit pack.

2. Green (test) — the system is running tests on this circuit pack.

3. Yellow (busy) — indicates that the circuit pack is in use.
NOTE:
A port circuit pack also lights its red LED when it performs initialization tests (for example, when the circuit pack is initially inserted into the system). If all initialization tests pass, the red LED is turned off. If any initialization tests fail, the red LED remains lighted and the circuit pack is not placed into service.

During the various states of operation (start-up testing, normal operation, circuit failure, and so forth) circuit pack status LED indications appear as shown in Table F-1.

Table F-1. Control and port circuit pack status LEDs

<table>
<thead>
<tr>
<th>Equipment type</th>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Circuit Packs</td>
<td>Red</td>
<td>On briefly during power up, circuit pack reseating, resetting, and system reset. Steadily on if circuit pack fails start-up test or fails while in use. Off during normal operation.</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>Briefly on during circuit pack testing following power up, circuit pack reseating, and system reset. Off during periodic, scheduled, and system technician demanded testing.</td>
</tr>
<tr>
<td></td>
<td>Yellow</td>
<td>On when any port in the circuit pack is in use, otherwise, off.</td>
</tr>
</tbody>
</table>

Power supply LEDs

Table F-2 shows the LED and alarm conditions for the 650A Power Supply. Ring voltage and neon bus output do not activate alarm status.
<table>
<thead>
<tr>
<th>Condition</th>
<th>LED status</th>
<th>Alarm state</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Red off；Yellow on</td>
<td>Open</td>
</tr>
<tr>
<td>No input power</td>
<td>Red off；Yellow off</td>
<td>Closed</td>
</tr>
<tr>
<td>DC output not present (except Neon)</td>
<td>Red on；Yellow off</td>
<td>Closed</td>
</tr>
<tr>
<td>Fan alarm</td>
<td>Red on；Yellow on</td>
<td>Closed</td>
</tr>
</tbody>
</table>
GAS Commands in the bash shell

This chapter provides information about bash (Bourne Again Shell) commands that are used in the installation process. It also includes information on the setup command. These commands are not available to the customer.

Lucent access controller bash commands

The following commands are useful during installation and maintenance tasks and are allowed for the lucent logins. After opening the LAC bash shell, enter the name of the command. Refer to DEFINITY ONE Release 2.0 Communications System Maintenance (555-233-111) for more detailed information.

Table G-1. bash commands for lucent logins

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarmorig</td>
<td>Turns on alarm origination from the GAM (INADS)</td>
</tr>
<tr>
<td>alarmstat</td>
<td>Gives global alarm status (major, minor, or none) for the GAM, DEFINITY, and AUDIX</td>
</tr>
<tr>
<td>autobackup</td>
<td>Enables and disables backup commands</td>
</tr>
<tr>
<td>backupparams</td>
<td>Enables day and time destination</td>
</tr>
<tr>
<td>backupsource</td>
<td>Selects the data to be backedup</td>
</tr>
<tr>
<td>cleargamalarm</td>
<td>Clears all GAM alarms after failure conditions are repaired</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1backup</td>
<td>No help</td>
</tr>
<tr>
<td>d1restore</td>
<td>No help</td>
</tr>
<tr>
<td>d1stat</td>
<td>Displays the status of all the application groups running on the system.</td>
</tr>
<tr>
<td></td>
<td>Displays the current status of each application.</td>
</tr>
<tr>
<td></td>
<td>Applications states are: Up, Down, or Partially Up.</td>
</tr>
<tr>
<td></td>
<td>Displays all the processes associated with an application regardless of its state.</td>
</tr>
<tr>
<td>downloadboot</td>
<td>Enables download of boot image to firmware</td>
</tr>
<tr>
<td>identbackup</td>
<td>No help</td>
</tr>
<tr>
<td>installbackup</td>
<td>No help</td>
</tr>
<tr>
<td>installconfig</td>
<td>Installs license file (INADS)</td>
</tr>
<tr>
<td>environment</td>
<td>Displays the TN795 temperature and voltage ranges</td>
</tr>
<tr>
<td>ftpserv</td>
<td>Enables the ftp service</td>
</tr>
<tr>
<td>fileversion</td>
<td>Queries Windows NT for executable file</td>
</tr>
<tr>
<td>fwversion</td>
<td>Displays command version number</td>
</tr>
<tr>
<td>gamalarmstat</td>
<td>Displays GAM alarm information formatted as follows:</td>
</tr>
<tr>
<td></td>
<td>mm/dd/yyyy = month/day/year</td>
</tr>
<tr>
<td></td>
<td>NT Event Log Name= System</td>
</tr>
<tr>
<td></td>
<td>Alarm Source= NT</td>
</tr>
<tr>
<td></td>
<td>NT Event Type = Error</td>
</tr>
<tr>
<td></td>
<td>Alarm Type = Major</td>
</tr>
<tr>
<td></td>
<td>Event ID= Event field in NT Event Log</td>
</tr>
<tr>
<td></td>
<td>ACKed= ACKed, NACKED, FAILURE, NO_OSS_RESPONSE</td>
</tr>
<tr>
<td>lucent help</td>
<td>Lists all bash commands</td>
</tr>
<tr>
<td>net user</td>
<td>Used to add/activate logins, change passwords</td>
</tr>
<tr>
<td>oss</td>
<td>Sets telephone numbers for outgoing INADS calls</td>
</tr>
</tbody>
</table>

Continued on next page
Table G-1. bash commands for lucent logins — *Continued*

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcAnywhere</td>
<td>If no argument is given, pcAnywhere will start. If <code>?</code> is typed, help is displayed, if <code>-v</code> is typed, the version of the command is displayed, and if <code>-c</code> is typed, pcAnywhere is stopped.</td>
</tr>
<tr>
<td>post</td>
<td>If no argument is given, postcodes are sent to the 860 firmware with the results sent to standard output.</td>
</tr>
<tr>
<td>product id</td>
<td>If no argument is given, the command displays product-id information for GAM and AUDIX.</td>
</tr>
<tr>
<td>rasdrop</td>
<td>If no argument is given, rasdrop schedules the RAS service to stop and restart in 2 minutes from when it was run.</td>
</tr>
<tr>
<td>reboot</td>
<td>Reboots system as follows:</td>
</tr>
<tr>
<td></td>
<td>nice: Shuts down applications and Windows NT in a graceful manner</td>
</tr>
<tr>
<td></td>
<td>immediate: reboots the system without waiting for the applications to shut down, causing possible loss of voice messages that are being recorded and all calls drop</td>
</tr>
<tr>
<td>restartcause</td>
<td>Displays the restart causes for system (for technician/TSC)</td>
</tr>
<tr>
<td>serialnumber</td>
<td>Reads and displays the serial number of the circuit pack</td>
</tr>
<tr>
<td>setup</td>
<td>Sets the IP address, subnet mask, and default gateway of the LAN interface to the customer’s LAN (out the splitter cable). Turns on RAS. Reboot is required for this to take effect.</td>
</tr>
<tr>
<td>shutdown</td>
<td>Shuts down:</td>
</tr>
<tr>
<td></td>
<td>all: Lucent DEFINITY ONE applications</td>
</tr>
<tr>
<td></td>
<td>system: all Lucent DEFINITY ONE applications and Windows NT</td>
</tr>
<tr>
<td></td>
<td>appname: AUDIX. For example: Shutdown AUDIX.</td>
</tr>
<tr>
<td></td>
<td>camp-on: (optional AUDIX feature) notifies users that a system shutdown will happen and waits for users to end their sessions before shutting down.</td>
</tr>
</tbody>
</table>

Continued on next page
GAS Commands in the bash shell

Lucent access controller bash commands

Table G-1. bash commands for lucent logins — Continued

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>siteconfig</td>
<td>Prompts the user with a warning message and request confirmation</td>
</tr>
<tr>
<td>start</td>
<td>Called from a bash shell on Contry to start an application through Watchdog.</td>
</tr>
<tr>
<td>swversion</td>
<td></td>
</tr>
<tr>
<td>terminate</td>
<td>Called from a bash shell on Contry to terminate applications</td>
</tr>
<tr>
<td>versiondiff</td>
<td>Compares NT executables against version entered at the command line</td>
</tr>
<tr>
<td>vilog</td>
<td>Merges and displays the various log files in the system</td>
</tr>
</tbody>
</table>

LAC commands

Table G-2. LAC commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDIX</td>
<td>Connect to INTUITY AUDIX SAT</td>
</tr>
<tr>
<td>bash</td>
<td>Invokes the bash shell, The bash shell has commands that are useful for administration and installation.</td>
</tr>
<tr>
<td>DEFINITY</td>
<td>Connect to SAT</td>
</tr>
<tr>
<td>cmd</td>
<td>Brings up a DOS prompt</td>
</tr>
<tr>
<td>exit</td>
<td>exits the bash shell</td>
</tr>
<tr>
<td>installconfig</td>
<td>Install configuration</td>
</tr>
<tr>
<td>siteconfig</td>
<td>Sets passwords for NT Administrator and Guest logins (Ntadmin, user)</td>
</tr>
</tbody>
</table>
setup command

Use the `setup` command from a LAC bash shell to set certain NT specific settings. To get to a bash shell:

1. Telnet to the DEFINITY ONE over any interface.
2. Login.
3. Enter bash at the LAC prompt.

Once you are in a LAC bash shell you can run `setup`.

NOTE:
Setup settings require a reboot before taking effect. Set all necessary parameters before issuing the reboot command.

Displaying current settings

To display current settings, Run `setup` with no parameters.

Setup allows setting the customer's LAN address along with subnet mask, gateway, DNS and WINS settings. It also allows setting the machine name and the RAS IP addresses.

Setting the machine name in NT

To set the machine name:

1. In a bash shell, type `setup name=machineName`. Limit the machine name to 10 characters. Setup allows you to enter more characters; however AUDIX only displays the first 10 characters of the machine name in its administration window.

Ex: `setup name=mysite`

NOTE:
After having set the machine name, the `setup` command displays the new settings and the old settings.

NOTE:
You will also need to set the host name. See “Setting DNS addresses and host name” on page G-6
Setting RAS IP address

INADS will provide this IP address.

To set the RAS IP address:

1. In a LAC bash shell, type `setip ras=<ip-address>`

 Ex: `setip ras=10.21.0.53`

 NOTE: This command not only sets the RAS IP address, it also starts the service. Turn off RAS service if system is set up without a modem.

After having set the RAS IP address, the `setip` command displays the new settings and as the old settings.

Setting the customer’s LAN, DNS and WINS information

Setting LAN address

To set the customer LAN address:

1. Get the IP address, subnet mask, and default gateway addresses from the customer.
2. From a LAC bash shell, run the `setip cust=ip-addr,netmask[,gateway]`. The gateway address is optional but the ip-address and subnet mask are required.

 Ex: `setip cust=155.9.162.121,255.255.255.0,155.9.162.2`

After setting the customer’s IP address, the `setip` command displays the new and the old settings.

Setting DNS addresses and host name

If the customer is using DNS you can set DNS information with the `setip dns=name,domain-name,primary-ns-ip-addr[,secondary-ns-ip-address]`, This sets the DNS host name, domain name, and the list of name server IP addresses.

The customer may have one, two, or more different domain name servers (DNS).

 Ex: `setip dns=CustomerHost,CustomerDomain.com,155.9.1.10,155.9.15.14`

After having set the customer’s DNS IP addresses, the `setip` command displays the old settings as well as the new settings.
Setting WINS addresses

If the customer is using WINS you can set WINS information with the `setip wins=[ip-addr-primary[,ip-addr-backup]]`. This will set the IP address of the primary and secondary IP addresses for the windows NetBios on the TCP name server.

Ex: `setip wins=155.9.145.1,155.9.145.4`

After setting the customer's WINS IP address, the `setip` command displays the new and the old settings.

Once you have set all the appropriate settings for your location, enter `reboot nice` to restart the system with the new settings.

Other commands

ftpserv command

The `ftpserv` command is executed from a console bash shell and turns on the FTP server. If you attempt to ftp into the DEFINITY ONE and receive a connection refused message, then ftp is not running.

To turn on ftp enter: `ftpserv`

To turn off ftp enter: `ftpserv -c`

pcAnywhere command

The pcAnywhere command turns the pcAnywhere host service on and off.

To turn on pcAnywhere enter `pcanywhere`.

To turn off pcAnywhere enter `pcanywhere -c`.

d1stat command

The `d1stat` command is used from a LAC bash shell to determine the current status of each application.

Ex. `estonia-lucent1>d1stat`

```
NT             11/11 UP
NTras           2/ 2 UP
NTweb           1/ 1 UP
pcAnywhere      0/ 1 DOWN
NTconsole       2/ 2 UP
NTplatform      6/ 6 UP
CoResServ       5/ 5 UP
DEFINITY       51/51 UP
```
GAS Commands in the bash shell

Other commands

<table>
<thead>
<tr>
<th>Service</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CornerStone</td>
<td>4/ 4 UP</td>
</tr>
<tr>
<td>AUDIX</td>
<td>15/33 PARTIALLY UP</td>
</tr>
<tr>
<td>AUDIXNet</td>
<td>0/ 5 DOWN</td>
</tr>
<tr>
<td>MISC</td>
<td>24/ 0 UP</td>
</tr>
</tbody>
</table>

net user commands

The net user commands manipulate NT level logins on the DEFINITY ONE system and can be used to add new logins, change passwords on existing logins, or simply to enable/disable existing NT accounts.

To add a new user, execute the following command from a bash shell:

```bash
net user username password
```

To change the password of an existing login, execute the following command from a bash shell:

```bash
net user username newpassword
```

To enable an existing login that is disabled, execute the following command from a bash shell:

```bash
net user username /active
```
This appendix provides a tear-out quick reference sheet about connectivity, including physical connection, access, and login information.

<table>
<thead>
<tr>
<th>Physical Connection</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Monitor/Mouse/Keyboard</td>
<td>127.1</td>
</tr>
<tr>
<td>PCMCIA Network Connection</td>
<td>192.11.13.6</td>
</tr>
<tr>
<td>RAS Modem (Dial-up)</td>
<td>10.21.0.X (X is Customer Dependent — Lucent Assigned)</td>
</tr>
<tr>
<td>Customer’s LAN</td>
<td>Customer Dependent (default login value of 192.11.13.9)</td>
</tr>
</tbody>
</table>

Once connected, there are several ways to access DEFINITY ONE, as shown in the next table.

<table>
<thead>
<tr>
<th>Access Method</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telnet</td>
<td><code><ip addr> [Start] Run...</code></td>
</tr>
<tr>
<td>DSA</td>
<td>using appropriate ip-addrs</td>
</tr>
<tr>
<td>Web Browser</td>
<td><code>http://<ip-addr></code></td>
</tr>
<tr>
<td>pcAnywhere</td>
<td>use appropriate ip-addrs</td>
</tr>
</tbody>
</table>
The following table shows Lucent Personnel Login information.

<table>
<thead>
<tr>
<th>Logins to enter system</th>
<th>Logins to enter DEFINITY</th>
<th>Logins to enter AUDIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>lucent1</td>
<td>dinit</td>
<td>atsc</td>
</tr>
<tr>
<td>lucent2</td>
<td>dinads</td>
<td>acraft</td>
</tr>
<tr>
<td>lucent3</td>
<td>dcraft</td>
<td>acraft</td>
</tr>
</tbody>
</table>

- Each row of logins has the same password. For example, the `lucent1`, `dinit`, and `atsc` logins all have the same password.
- The lucent logins are used for web browser and pcAnywhere access.
- All logins can be used for telnet access.
- The `d` and `a` logins (columns 2 and 3) are used for DSA access.
Glossary

A

AAR
 See Automatic Alternate Routing (AAR).

AC
 1. Alternating current.
 2. See analog.

Access Security Gateway (ASG)
 A feature built into the Lucent Access Control (LAC) module that authenticates and protects logins to the LAC.

administer
 To access and change parameters associated with the services or features of a system.

analog
 The representation of information by continuously variable physical quantities such as amplitude, frequency, and phase. See also digital.

analog data
 Data that is transmitted over a digital facility in analog (PCM) form. The data must pass through a modem either at both ends or at a modem pool at the distant end.

analog telephone
 A telephone that receives acoustic voice signals and sends analog electrical signals along the telephone line. Analog telephones are usually served by a single wire pair (tip and ring). The model-2500 telephone set is a typical example of an analog telephone.

ARS
 See Automatic Route Selection (ARS).

ASCII (American Standard Code for Information Interchange)
 The standard code for representing characters in digital form. Each character is represented by an 8-bit code (including parity bit).

Audio Information Exchange (AUDIX)
 A fully integrated voice-mail system. Can be used with a variety of communications systems to provide call-history data, such as subscriber identification and reason for redirection.

AUDIX
 See Audio Information Exchange (AUDIX).

Automatic Alternate Routing (AAR)
 A feature that routes calls to other than the first-choice route when facilities are unavailable.

Automatic Route Selection (ARS)
 A feature that allows the system to automatically choose the least-cost way to send a toll call.
B

Basic Rate Interface (BRI)
A standard ISDN frame format that specifies the protocol used between two or more communications systems. BRI runs at 192 Mbps and provides two 64-kbps B-channels (voice and data) and one 16-kbps D-channel (signaling). The D-channel connects, monitors, and disconnects all calls. It also can carry low-speed packet data at 9.6 kbps.

Bash (Bourne Again Shell)
Unix-like command line interpreter.

C

cabinet
Housing for racks, shelves, or carriers that hold electronic equipment.

cable
Physical connection between two pieces of equipment (for example, data terminal and modem) or between a piece of equipment and a termination field.

cable connector
A jack (female) or plug (male) on the end of a cable. A cable connector connects wires on a cable to specific leads on telephone or data equipment.

call accounting system (CAS)
This software feature provides recording, costing, and reporting of call detail records. Recording includes the capability to set record discard criteria that allow the customer to specify the data recorded. Costing uses tariff databases and user-defined parameters. Reporting produces both periodic reports for individual users, organizations, accounts, user-defined criteria, and demand statistics.

Call Detail Recording (CDR)
Textual Representation of call traffic

carrier
An enclosed shelf containing vertical slots that hold circuit packs.

CAS
See call accounting system (CAS)

central office (CO)
The location housing telephone switching equipment that provides local telephone service and access to toll facilities for long-distance calling.

central office (CO) codes
The first three digits of a 7-digit public-network telephone number in the United States.

central office (CO) trunk
A telecommunications channel that provides access from the system to the public network through the local CO.

circuit
1. An arrangement of electrical elements through which electric current flows.
2. A channel or transmission path between two or more points.
circuit pack
A card on which electrical circuits are printed, and IC chips and electrical components are
installed. A circuit pack is installed in a switch carrier.

communications system
The software-controlled processor complex that interprets dialing pulses, tones, and keyboard
characters and makes the proper connections both within the system and external to the system.
The communications system itself consists of a digital computer, software, storage device, and
carriers with special hardware to perform the connections. A communications system provides
voice and data communications services, including access to public and private networks, for
telephones and data terminals on a customer's premises. See also switch.

compact modular cabinet (CMC)
The chassis and shelf hardware used to support the DEFINITY ONE hardware platform, derived
from (actually the same as) the DEFINITY ProLogix cabinet.

D
digital
The representation of information by discrete steps. See also analog.
digital trunk
A circuit that carries digital voice and/or digital data in a telecommunications channel.

E
E1
A digital transmission standard that carries traffic at 2.048 Mbps. The E1 facility is divided into 32
channels (DS0s) of 64 kbps information. Channel 0 is reserved for framing and synchronization
information. A D-channel occupies channel 16.

F
FAC
Feature Access Code
FAS
Facility-associated signaling

G
GAS
See Global Administration Subsystem (GAS)
GEDI
Graphically Enhanced DEFINITY interface. Is an enhanced system access terminal (SAT) with a
Windows look.

Global Administration Subsystem (GAS)
A module that provides command line access to certain administration and maintenance functions
needed by services tools and provides administration support for parameters in the
DEFINITY ONE system that are not otherwise provided by the DEFINITY ONE applications.
Global Alarm Module (GAM)
A Windows NT process that coordinates alarm reporting for the DEFINITY ONE platform. Its primary functions are to accept and forward alarms from the applications, generate alarms for Windows NT, and manage the communication links to the Operations Support Systems (OSSs) via the Windows NT TAPI interface.

Global Sanity Keeper (GSK)
A module that ensures that all authorized Lucent applications are executing on a DEFINITY ONE server. It contains two major components, a watchdog process and a license server.

Glue Application/Module
A DEFINITY ONE application whose purpose is to integrate functionality for most or all other DEFINITY ONE applications. Examples include Watchdog, Lucent Access Control (LAC), Global Alarm Module (GAM), Global Administration Subsystem (GAS), and Backup/Restore.

Graphical User Interface (GUI)
The use of pictures rather than just words to represent the input and output of a program. A program with a GUI runs under some windowing system (for example, X Window System, Microsoft Windows, Acorn RISC OS, and NEXTSTEP). The program displays certain icons, buttons, dialogue boxes etc., in its windows on the screen and the user controls it mainly by moving a pointer on the screen (typically controlled by a mouse) and selecting certain objects by pressing buttons on the mouse while the pointer is pointing at them.

Integrated Services Digital Network (ISDN)
A public or private network that provides end-to-end digital communications for all services to which users have access by a limited set of standard multipurpose user-network interfaces defined by the CCITT. Through internationally accepted standard interfaces, ISDN provides digital circuit-switched or packet-switched communications within the network and links to other ISDNs to provide national and international digital communications. See also Integrated Services Digital Network Basic Rate Interface (ISDN-BRI) and Integrated Services Digital Network Primary Rate Interface (ISDN-PRI).

Integrated Services Digital Network Basic Rate Interface (ISDN-BRI)
The interface between a communications system and terminal that includes two 64-kbps B-channels for transmitting voice or data and one 16-kbps D-channel for transmitting associated B-channel call control and out-of-band signaling information. ISDN-BRI also includes 48 kbps for transmitting framing and D-channel contention information, for a total interface speed of 192 kbps. ISDN-BRI serves ISDN terminals and digital terminals fitted with ISDN terminal adapters. See also Integrated Services Digital Network (ISDN) and Integrated Services Digital Network Primary Rate Interface (ISDN-PRI).

Integrated Services Digital Network Primary Rate Interface (ISDN-PRI)
The interface between multiple communications systems that in North America includes 24 64-kbps channels, corresponding to the North American digital signal level-1 (DS1) standard rate of 1.544 Mbps. The most common arrangement of channels in ISDN-PRI is 23 64-kbps B-channels for transmitting voice and data and 1 64-kbps D-channel for transmitting associated B-channel call control and out-of-band signaling information. With nonfacility-associated signaling (NFAS), ISDN-PRI can include 24 B-channels and no D-channel. See also Integrated Services Digital Network (ISDN) and Integrated Services Digital Network Basic Rate Interface (ISDN-BRI).

INTUITY AUDIX
The INTUITY AUDIX application resides on DEFINITY ONE with the Cornerstone platform to provide subscriber messaging capabilities, including call answering and voice mailbox services.
INTUITY Message Manager
A Windows-based software product that allows INTUITY AUDIX users to receive, store, and send their voice/fax messages from a PC. The software also enables users to create and send multimedia messages that include voice, fax, text, and file attachment components.

ISDN
See Integrated Services Digital Network (ISDN).

L

LAC
See Lucent Access Control (LAC).

LED
See light-emitting diode (LED).

License Server
A component of the Global Sanity Keeper (GSK) that looks for a special encrypted control file whose contents indicate which serial number of the TN795 Processor card is permitted to execute on and which application are allowed to run. If the file is not present, no licenses are granted. If the file is present, the license information is read from the file.

light-emitting diode (LED)
A semiconductor device that produces light when voltage is applied. LEDs provide a visual indication of the operational status of hardware components, the results of maintenance tests, the alarm status of circuit packs, and the activation of telephone features.

local area network (LAN)
A networking arrangement designed for a limited geographical area. Generally, a LAN is limited in range to a maximum of 6.2 miles and provides high-speed carrier service with low error rates. Common configurations include daisy chain, star (including circuit-switched), ring, and bus.

Lucent Access Control (LAC)
A module that governs maintenance access to the Lucent application software.

M

maintenance
Activities involved in keeping a telecommunications system in proper working condition: the detection and isolation of software and hardware faults, and automatic and manual recovery from these faults.

major alarm
An indication of a failure that has caused critical degradation of service and requires immediate attention. Major alarms are automatically displayed on LEDs on the attendant console and maintenance or alarming circuit pack, logged to the alarm log, and reported to a remote maintenance facility, if applicable.

MAPD
Multiapplication platform for DEFINITY

memory
A device into which information can be copied and held, and from which information can later be obtained.
minor alarm
An indication of a failure that could affect customer service. Minor alarms are automatically displayed on LEDs on the attendant console and maintenance or alarming circuit pack, sent to the alarm log, and reported to a remote maintenance facility, if applicable.

modem
A device that converts digital data signals to analog signals for transmission over telephone circuits. The analog signals are converted back to the original digital data signals by another modem at the other end of the circuit. (MOdulator-DEModulator)

multileg cable, also called an octopus cable or a splitter cable
Processor interface cable

N

NFAS
See Nonfacility-associated signaling (NFAS).

node
A switching or control point for a network. Nodes are either tandem (they receive signals and pass them on) or terminal (they originate or terminate a transmission path).

Nonfacility-associated signaling (NFAS)
A method that allows multiple T1 and/or E1 facilities to share a single D-channel to form an ISDN-PRI. If D-channel backup is not used, one facility is configured with a D-channel, and the other facilities that share the D-channel are configured without D-channels. If D-channel backup is used, two facilities are configured to have D-channels (one D-channel on each facility), and the other facilities that share the D-channels are configured without D-channels.

NT Operating System
The Windows 32-bit operating system engineered by Microsoft. NT Servers provided centralized security, fault tolerance and additional connectivity while managing NT Workstations over a network.

O

Oryx API (OAPI)
Terminates the Oryx calls from the DEFINITY application and converts them to Windows NT primitives. Provides information through optical calls (for example, time of day and RYON board serial number) and supports the DEFINITY SAT interface.

OSS
Operations Support System

OSSI
Operational Support System Interface

P

PCMCIA
Personal Computer Memory Card International Association
port
A data- or voice-transmission access point on a device that is used for communicating with other devices.

port network (PN)
A cabinet containing a TDM bus and packet bus to which the following components are connected: port circuit packs, one or two tone-clock circuit packs, a maintenance circuit pack, service circuit packs, and (optionally) up to four expansion interface (EI) circuit packs in DEFINITY ECS. Each PN is controlled either locally or remotely by a switch processing element (SPE).

port-network connectivity
The interconnection of port networks (PNs), regardless of whether the configuration uses direct or switched connectivity.

Primary Rate Interface (PRI)
A standard ISDN frame format that specifies the protocol used between two or more communications systems. PRI runs at 1.544 Mbps and, as used in North America, provides 23 64-kbps B-channels (voice or data) and one 64-kbps D-channel (signaling). The D-channel is the 24th channel of the interface and contains multiplexed signaling information for the other 23 channels.

processor interface cable
Octopus cable, splitter cable, or multileg cable. See Chapter 1.

processor port network (PPN) control carrier
A carrier containing the maintenance circuit pack, tone/clock circuit pack, and SPE circuit packs for a processor port network (PPN) and, optionally, port circuit packs.

remote maintenance board (RMB)
A board provided in adjunct processors that intelligently monitors the system hardware for health status. These include environmental conditions, PC heartbeat, and sanity checks. The RMB functionality also allows modem access to the TN parent board.

RS-232C
A physical interface specified by the Electronic Industries Association (EIA). RS-232C transmits and receives asynchronous data at speeds of up to 19.2 kbps over cable distances of up to 50 feet.

Sanity Keeper
See Global Sanity Keeper.

single-carrier cabinet
A combined cabinet and carrier unit that contains one carrier. See also multileg cable, also called an octopus cable or a splitter cable.

Station Message Detail Recording (SMDR)
This software feature transmits detailed information on all incoming and outgoing calls on specified trunk groups through an switch processing element (SPE) port to an external output device, that logs the data. SMDR is one facet of the more general Call Detail Recording (CDR) feature.

switch
Any kind of telephone switching system. See also communications system.
switch-processing element (SPE)
A complex of circuit packs (processor, memory, disk controller, and bus-interface cards) mounted in a PPN control carrier. The SPE serves as the control element for that PPN and, optionally, for one or more EPNs.

system administrator
The person who maintains overall customer responsibility for system administration. Generally, all administration functions are performed from the Management Terminal. The switch requires a special login, referred to as the system administrator login, to gain access to system-administration capabilities.

T

TCP/IP
Transmission Control Protocol/Internet Protocol

U

Update
A modification to a release of software, such as applying patches to a DEFINITY ONE Release 2.0 system.

Upgrade
Replacement of an existing system software release with a later release, such as upgrading from DEFINITY ONE Release 1.0 to Release 2.0.

V

Virtual Fabric Manager (VFM)
A module that allows the use of DEFINITY ECS code in a hardware environment that differs from the one for which it was designed. One side of the VFM talks to DEFINITY ECS in protocols it understands and changes these into methods and messages to perform needed operations in the DEFINITY ONE environment.

W

Watchdog
A component of the Global Sanity Keeper (GSK) that is responsible for starting up the DEFINITY ONE application software, including the downloading of the MPC860 application firmware. Watchdog is the first DEFINITY ONE process to run.
Index

Numerics

25-pair cable pinout, 1-70
302C1 attendant consoles, 1-40
367A adapter, 1-61
3-pair and 4-pair modularity, 1-49
400B2 adapters, 1-42

A

AC load center, 1-12
AC power
 checking, 1-12
 ground wiring, 1-16
AC power and ground, 1-12
AC power supply, 1-12
AC voltage test, 1-12
accounting
 set up system, 3-11
adapters
 400B2, 1-42
 BR851-B, T-60
adding
 circuit packs, 6-2
 CO trunk, 6-2
 code calling access, 6-6
 DID trunk, 6-3
 FX trunk, 6-2
 PCOL trunk, 6-2
 pooled modem, 6-7
 remote machines, 4-12
 speech synthesis, 6-6
 tie trunk, 6-4
 WATS trunk, 6-2
adjunct power, 1-42
adjunct power connection, 1-42
administering
 DEFINITY for AUDIX initialization, 3-13
administering circuit packs, 3-10
administration
 AUDIX, 3-22
 initial tasks, 4-2
 digital networking, 4-1
 modem, 9-5
alarm
 connections, 1-53
 origination disable procedure, 9-5
 relay contact, 1-53
alarm output, 1-53
analog tie trunk, 1-45
APP connector information, 1-40, A-6, A-13, A-17 to A-19
approved grounds, 1-13, 1-16
attendant console, 1-40
 302C1, 1-40
 maximum cabling distance, 1-40
attendant consoles
 302C1, 1-40
 LEDs, F-1
AUDIX administration, 3-22
AUDIX commands, 3-23
AUDIX initialization, 3-13
 add stations, 3-17
 add test plans, 3-22
 change coverage plan, 3-21
 check class of restriction, 3-15
 check class of service, 3-13, 3-14
 check dial plan, 3-13
 check hunt groups, 3-13
 make a hunt group, 3-20
AUDIX networking, 4-1
auxiliary equipment pin designations, A-17 to A-19
auxiliary equipment pinout information, 1-40, A-6, A-13
auxiliary power, 1-55

B
backup procedures, C-18
bit rate
 setting, A-4
BR851-B adapter, 1-60
BRI
 multipoint cabling distances, 1-62
 terminating resistor, 1-56
building steel
 grounding, 1-13

C
cabinets
 cross connecting to MDF, 1-24
 floor-mounting, 1-7
 power switches, 1-15
 wall mounting, 1-8
cable
 diagrams, 1-40
 pinout
 25-pair, 1-70
cable pinouts, A-1
cables
 diagrams, A-6, A-13, A-17 to A-19
call accounting, 3-11
Call Accounting System (CAS) for Windows, 3-11
carrier address ID
 setting, 1-6
CAS for Windows
 setting, 3-11
change machine command, 4-7
change machine remote_machine_name, 4-15
change machine remote_machine_name command, 4-15
change system-parameter limits command, 4-5
changing customer options, 3-7
check AC power, 1-12
Circuit Pack
 TN750C, 6-9
circuit pack
 TN795, 5-2
Circuit packs
 slot loading, 1-29
circuit packs
 adding, 6-2
 administering, 3-10
 allowable for CMC, 1-24
 complete list, 1-24
 installation, 1-29
 installation order, 1-31
 LEDs, F-2
 pin designations, A-17 to A-19
 status LEDs, F-3
 TN2185 ISDN-BRI 4-wire S Interface, A-12
 TN2224 Digital Line, A-10, A-16
 TN744D call classifier/tone detector, 1-29
 TN795 processor, 1-29
circuit protection
 off premises, 1-33
CMC cabinet
 equipment packed with, 1-3
CMCs
 allowable circuit packs, 1-24
CO trunk, adding, 6-2
code calling access, adding, 6-6
cold starts
 with translations loading, D-5
comcodes
 equipment packed with CMC, 1-4
commands, 4-15
 categories, B-11
 change machine, 4-7
 change system-parameter limits, 4-5
 DEFINITY for user, B-11
commercial AC power, 1-T2
components
 unique to DEFINITY ONE, 1-2
concrete encased ground, 1-13
configuring
 customer LAN, 2-11
Connect
 laptop, 3-2
 connect
 adjunct power, 1-42
 connect AC power, 1-T2
 connect power cords, 1-18
 connecting
 management terminal, 1-40
 connecting laptop computer, C-2
 connections
 ITS
 network, 6-16
copy protection, 10-2
coupled bonding conductor, 1-17, 1-18
coupled bonding conductors (CBC)
installing, 1-18
Create a connection icon for DEFINITY ONE, 2-3
customer LAN
configuring, 2-11
customer options
changing, 3-7
customer’s order
checking, 1-2

copy protection, 10-2
coupled bonding conductor, 1-17, 1-18
coupled bonding conductors (CBC)
installing, 1-18
Create a connection icon for DEFINITY ONE, 2-3
customer LAN
configuring, 2-11
customer options
changing, 3-7
customer’s order
checking, 1-2

D

date
setting, 3-6
DC power
signaling leads, A-1
DEFINITY logins, B-9
DEFINITY Site Administration, 7-1
DEFINITY Site Administration (DSA), 7-1
defragment
Diskeeper, 5-6
digital networking, 4-1
adding remote machines, 4-12
administering networking channels, 4-6
changing local machine information, 4-7
changing local machine profiles, 4-7
completing remote machine profiles, 4-15
feature options, 4-3
initial administration, 4-1
local machine information, 4-7
networking channels, 4-6
number of users, 4-5
remote machine profiles, 4-15
remote users, 4-5
verifying purchased options, 4-3
digital tie trunk, 1-46
Diskeeper, 5-6
DSA, 7-1
adding new switch configuration, 7-8
adding new voicemail item, 7-16
components, 7-4
configuring, 7-7
download, 3-25
hardware configuration, 7-2
help, 7-7
launching emulation session, 7-22
launching GEDI session, 7-21
launching voicemail administration session, 7-23
logins, B-13
start a session, 3-30
switches, 7-2
voicemail, 7-2
E

electrical connection, 1-12
emergency transfer power panel, 1-55, 1-68
eergency transfer telephone, 1-75
equipment
 checking, 1-2
 comcodes for CMC equipment, 1-4
 packed with CMC cabinet, 1-3
 unpacking, 1-2
equipment checklist, C-2
equipment room hardware
 installing, 1-24
error messages
 installation wizard, 9-2
external modem
 installing, 1-23
 U.S. Robotics, 1-23, 1-77
external modem option settings, 1-23, 1-77
external modems
 type-approved, 1-23

F

faceplates
 TN795 processor circuit packs, 1-39, E-4
feature protection, 10-1
flash disk
 replace, 5-6
floor grounds, 1-14
floor-mount cabinet, 1-7
FX trunk, adding, 6-2

G

ground
 rings, 1-13
Ground Block Installation to Right Panel, 1-16
ground blocks
 installing, 1-16
ground wiring
 AC, 1-16
grounds
 approved floor, 1-14
 building steel, 1-13
 concrete encased, 1-13
 water pipes, 1-13
H

hard disk
 replacing, 5-4
hardware
 additions, 6-1
hunt groups, 3-13

I

impedance, setting, A-4
INADS
 Modem, 9-5
initialization
 AUDIX, 3-22
install circuit packs, 1-29
install coupled bonding conductors, 1-18
install external modem, 1-23
install ground block, 1-16
install main distribution frame and external modem, 1-21
install sneak fuse panels, 1-34
install system cabinet, 1-6
install telephones, 1-40
installation error messages, 9-2
integration process
 connecting
 ITS components, 6-16
 ITS to the network, 6-16
Internet Telephony Server
 connecting components, 6-16
 logging on, 6-17
 network services, changing, 6-18
IP address
 assign, 6-18
IP Trunk, 6-13
ISDN
 BRI
 fanout of multipoint installations, 1-62
 terminating resistor, 1-56

L

label main distribution frames, 1-37
labels
 main distribution frame, 1-37
LAN
 IP Trunk, 6-13
LAN connection, 6-20
LAN interface, 3-7
laptop computer
 connecting, C-2
 mapping DEFINITY ONE to CD-ROM drive, C-13
 verifying connection, C-11
lead designations, A-6
 port board, 1-55
 telephones, 1-55
LEDs
 alarms, E-2
 attendant console, F-1
 circuit packs, F-2
 indicators on maintenance/processor circuit packs, E-2
 power supply, F-3
 TN795 processor circuit packs, E-2
License File, 3-3
local machines
 changing information, 4-7
logging on to the ITS, 6-17
login groups, B-3
login names, B-3
logins
 administering command permissions, B-11
 AUDIX, 3-5
 AUDIX commands, B-4
 AUDIX with ASG enabled, 7-9, 7-17
 customer, 3-5, 3-6
 customer AUDIX, B-4
 customer DEFINITY, B-9
 customer Web access, B-5
 customer Windows NT, B-3, B-7
 web, 3-6

M

main distribution frames
 installing external modem, 1-21
 labeling, 1-37
major alarm contact, 1-53
mapping
 DEFINITY ONE to laptop computer's CD-ROM drive, C-13
Material Stocking Location (MSL), 1-2
MDF mounting, 1-21
MDFs
 cross connecting cabinet, 1-24
measurements
 security, B-10
Message Manager
 automated installation, 8-15
 downloading, B-13
 features, 8-1
 install, 3-25
 installation types, 8-4
 installing, 8-1
 installing from LAN server, 8-8, 8-14
 installing shared copy, 8-10
 introduction, 8-1
 operating system considerations, 8-4
Message Manager ("continued")
 pre-installation procedures, 8-2
 single user installation, 8-8
 uninstalling, 8-7
 updating site-specific information, 8-17
 upgrades, 8-6
modem
 administration, 9-5
 external, switch settings, 1-23, 1-77
 INADS, 9-5
 setup, 9-5
modem, pooled, 6-7
modems
 installing external, 1-23
modularity
 3-pair, 1-49
 4-pair, 1-49
Mounting MDFs, 1-21
multipoint
 figure, 1-62
 multipoint adapters, 1-60

N

name
 domain, 6-17
 server, 6-17
National Electrical Code (NEC)
 grounding rules, 1-12
National Fire Protection Agency (NFPA), 1-12
neon voltage (ring ping), 1-78
network
 configuration
 changing network services, 6-18
 logging on, 6-17
 ITS
 connecting, 6-16
 networking channels
 digital networking, 4-6
 nonadministered remote users
 deleting, 4-21
NT1 network interface, 1-56

O

off-premises circuit protection, 1-33
off-premises stations, 1-63
order, 1-31
P

Password Expiration screen, B-12
PCMCIA Flash disk
 replace, 5-6
PCOL trunk, adding, 6-2
pin designations
 auxiliary equipment, A-17 to A-19
 circuit packs, A-17 to A-19
pinout information
 auxiliary equipment, 1-40, A-6, A-13
 circuit packs, 1-40, A-6, A-13
 connector and cable diagrams, A-6
 port, 1-55
 processor interface cable, A-8
 telephones, 1-55
 TN2185 ISDN-BRI, A-12
pinouts
 auxiliary, A-17 to A-19
 circuit packs, A-17 to A-19
pinouts, cable, A-1
pooled modem, adding, 6-7
port circuit pack pinout information, 1-55
power cords
 connecting, 1-18
 routing, 1-18
power holdover, 1-14
power supply
 LEDs, F-3
power switches
 cabinet, 1-15
Pre-installation procedures
 Message Manager, 8-2
Processor Interface cable
 connection, 1-20, 1-53
 pinout, A-8
processor interface cables
 connecting, 1-23

R

remote machines
 adding, digital networking, 4-12
 completing profiles, 4-15
remote users
 digital networking, 4-5
repair procedures, 5-1
reset system 3, D-5
reset system 5, D-5
ring ping, 1-78
ringing option
 setting, 1-38
route power cords, 1-18
S

security
measurements, B-10
selector consoles
26B1 selector console, 1-52
set carrier address ID, 1-6
set ringing option, 1-38
setting
bit rate, A-4
CAS for Windows, 3-11
date, 3-6
line impedance, A-4
time, 3-6
setting up system, 3-7
shipping errors
checking, 1-2
signaling leads, DC power, A-1
single-point ground block, 1-16
single-point grounds, 1-16
slot loading of circuit packs, 1-29
sneak current
fuses, 1-35
sneak current fuse panels, 1-34
sneak current protection, 1-34
sneak fuse panels
installing, 1-34
software copy protection mechanisms, 10-1
Software Version, 3-2
speech synthesis, adding, 6-6
Super_User, B-10
switch settings
external modem, 1-23, 1-77
TN464 circuit pack, A-4
TN760 tie trunk, A-1
system cabinet
installing, 1-6
System Initialization, 3-1
system reboots, D-5
system resets
reasons for, D-4

T

T1 Channel Service Unit, 1-48
telephone
emergency transfer, 1-75
pinout information, 1-55
telephone connection, 1-40
telephone connections, 1-40
telephone features
administering, 3-10
telephones
installing, 1-40
terminal
 connections, 1-40
terminating resistor, 1-56
terminating resistor adapter, 1-57
terminating resistor block, 1-58
Test Call, 3-5
tie trunk
 adding, 6-4
 analog wiring example, 1-45
 circuit pack option settings, A-1
digital wiring, 1-46
time
 setting, 3-6
TN2181 pinout information, 1-55
TN2224 Digital Line, A-10, A-16
TN2793, A-13
TN464 circuit pack
 option settings, A-4
TN750C, 6-9
TN760 circuit pack
 option settings, A-1
TN793, A-13
TN795
 replace the circuit pack, 5-2
TN795 processor circuit packs
 faceplate, 1-39, E-4
 LEDs, E-2
Translation Copy Protection, 10-1
translations
 save procedure, 1-40
troubleshooting, 9-1
trunks
 adding, 6-2
type-approved external modem, 1-77
type-approved external modems, 1-23

U

U.S. Robotics modem, 1-23, 1-77
Uninstalling
 Message Manager, 8-7
uninterruptible power supply (UPS), 1-14
update procedures, 5-1
Upgrades
 Message Manager, 8-6
UPS, 1-14

V

verifying connection from DEFINITY ONE to laptop computer, C-11
W

wall-mount cabinet, 1-8
waterpipes
 grounding, 1-13
WATS trunk, adding, 6-2
Windows NT logins, B-7
wiring
 analog tie trunk, 1-45
 digital tie trunk, 1-46
 pin designations, A-17 to A-19
 pinouts, 1-40, A-6, A-13
 Processor Interface cable, 1-20, 1-53
 processor interface cable, 1-23
 telephone connection, 1-40
wiring example
 302C Attendant Console, 1-40
 3-pair and 4-pair modularity, T-49
 analog tie trunk, 1-45
 attendant console, T-40
 digital tie trunk, 1-46
 telephone connection, 1-40