INTEGRATED SYSTEMS

IMX/GMX 256

INSTALLATION AND FIELD MAINTENANCE MANUAL

Part No. 440.8074
Issue 1, November 1994
With the new 1995 North American Numbering Plan software releases, the IMX 256 and GMX-256 products are identical except for the station instruments that can be installed on them. To provide better service, condense reference materials, streamline training, and facilitate technical support, the installation manuals for the two systems have been combined into one generic manual.

When using this combined manual to help sell, install, or service a particular system, be aware that not all of the station instruments described in this manual are available on both products. Listed below are the station instruments that can be installed on each product.

IMX 256 Station Instruments
- Digital **Keysets** (including **PCDPMs & MDPMs**)
- IMX AIM **Keysets** (including “dual-circuit” **keysets**)
- IMX **(non-AIM) Keysets**
- G X **Keysets**
- Attendant Computer Consoles
- Digital **DSS/BLF Units**
- IMX **DSS/BLF Units**
- GX **DSS/BLF Units**
- Enhanced Single-Line Sets (**ESLSs**)
- IMX **Single-Line Instruments (**SLIs**)
- Single-Line DTMF Sets

GMX-256 Station Instruments
- Inter-Tel/DVK **Keysets**
- GMX **Keysets**
- G X **Keysets**
- Attendant Computer Consoles
- Inter-Tel/DVK **DSS/BLF Units**
- GMX **DSS/BLF Units**
- GX **DSS/BLF Units**
- GMX Single-Line Instruments (**SLIs**)
- GX **SLIs**
- Single-Line DTMF Sets

Part No. 440.8074
Issue 1, November 1994
IMX 256 ISSUE 2 — INDEX OF NEW FEATURES

For those individuals who are already familiar with the Issue 1 manuals for the IMX 256 and GMX-256 Systems, the following new items are documented in this combination manual. For complete information on each item, refer to the page numbers following the brief explanation. Also, throughout the manual, “change bars” like the one at the right have been placed in the margins to indicate any new or revised information since the original manuals.

IMX and GMX Combined Into One Manual

With the new 1995 North American Numbering Plan software releases, the IMX 256 and GMX-256 products are identical except for the station instruments that can be installed on them. To provide better service, condense reference materials, streamline training, and facilitate technical support, the installation manuals for the two systems have been combined into one generic manual. When using this combined manual to help sell, install, or service a particular system, be aware that not all of the station instruments described in this manual are available on both products. See page 2-2 for a list of the station instruments that can be installed on each product.

North American Numbering Plan (NANP)

The growth of telecommunications services has created an increasing demand for more telephone numbers. To meet the demand, Bellcore has prepared a long-range North American Numbering Plan (NANP) to provide additional telephone numbers. The plan expands the capacity of the current numbering system by making area and office codes interchangeable. That is, numbering patterns formerly reserved for office codes can be used as new area codes and office codes within existing area codes can have the same pattern as other area codes. This version of software supports the new numbering plan. See pages 4-28 and 5-90.

Home And Local Area Codes

In many areas, the telephone company has created call-cost arrangements that refer to “home” and “local” area codes. The home area code is the area code within which the system resides. The local area codes are additional area codes that, when called, use the local or toll local call-cost rate instead of the long distance rate. Up to three local area codes can be programmed and then extended within toll restriction programming to provide proper call costing. See pages 4-29 and 5-171.

Loop Start Trunk Glare Protection

During a “glare” connection, the software now allows the incoming call to remain connected, while still protecting against possible toll fraud. See pages 2-14 and 5-68.

Station Exchange

This programmable station feature allows a station user to exchange the extension numbers of two station circuits. This swaps the database and user programmed features of the extension numbers between two station circuits without the need for database programming. The circuit number of the station locations are unchanged, but the extension numbers are changed. See pages 4-99 and 5-31.

Digital Cards, Dial Keysets, and Digital DSS/BLF Units

The IMX 256 System can now support the digital station instruments originally designed for the Inter-Tel Axxess System. See pages 2-2, 2-8, 2-12, 2-13, 2-21 to 2-27, 2-33, 2-34, 2-44, 3-7, 3-22, 3-28, 3-29, 3-47, 3-48, 3-62 to 3-70, 3-90, 3-91, 4-21, 4-40, 4-50, 5-24, 5-47, 5-135, 6-3, 7-1, and 7-3.

All digital keysets utilize DSP shared resources for speakerphones, and Executive Digital Keysets have enhanced displays. See pages 2-22,440, and 4-41.

APC Data Port Module (PCDPM) must be installed on digital keysets to provide the secondary voice path needed for the OHV feature. See pages 2-23, 3-66, and 4-61.

A customer-provided, modem-equipped data device may be attached to any digital keyset with a PC Data Port Module (PCDPM) and a Modem Data Port module (MDPM) installed. See pages 2-23, 3-70, and 4-101.

Feature And Speed-Dial Keys On DSS/BLF Units

DSS/BLF Units can have feature keys or system speed-dial keys programmed in their keymaps. See pages 4-50, 4-87, and 5-50.
INDEX OF NEW FEATURES (continued)

Keyset “Hot” Dial Pad Keys

There is a system-wide option that, if enabled, allows keyset users to dial line access codes and feature codes without lifting the handset or pressing the SPKR or SPCL key. This programmable feature is called “hot dial pad” to indicate that the dial pad keys are always activated. See pages 4-4, 4-42, and 5-68.

Private Intercom Call Override

If a keyset station has the Private Intercom Override feature enabled, the user can place a handsfree call by pressing * or # when calling a keyset station that has handsfree mode disabled. See pages 4-56, 5-30, and 5-52.

“Silent” Ring Tone Selection

When setting the ring tone on a keyset, the keyset user can enter 0 to disable ring tones. See page 4-48.

Toll Security Feature Set

The Extended software package now includes the following Toll Security features:

Weekly Toll Limits: When enabled, the weekly toll limit feature keeps track of the accumulated call cost for specified types of toll calls. The feature can monitor 7- and 10-digit toll calls and/or operator-assisted/international calls. Alarm messages have been added for toll limit management. See pages 4-10, 4-30, 4-62, 4-63, 4-83, 4-112, 4-125, 5-97, and 6-8.

Inter-Tel Services: The weekly toll limit feature can only be enabled by Inter-Tel Services. See page 6-41.

Enhanced DISA Security Codes: DISA security codes can be 4-7 digits long. ADISA caller will have only three opportunities to enter a valid security code. If the caller fails three times, the failure will generate a system alarm and that trunk will be inoperable for five minutes. See pages 4-38, 5-111, 5-115, and 6-8.

DISA Toll Restriction: DISA lines can be given day and/or night mode toll restrictions like those for individual stations (except LCR-Only). See pages 4-38, 5-106, 5-111, and 5-116.

SMDR Blocked DISA Calls Option: A programming flag has been added to SMDR that allows blocked DISA calls to appear in the SMDR report. See pages 4-38, 4-123, and 4-124.

DISA And Hunt Group Information In SMDA Summary Reports

DISA call information has been added to the System Summary report and a new Hunt Group option has been added to the Summary Report. See pages 4-38, 4-115, 4-118, and 5-140.

End-Of-Dialing Digit Suppression

Display and Redial: A system programming flag allows the programmer to specify whether all dialed digits or just the digits that make up the valid call are displayed and stored in the redial buffer. If desired, the “extra” digits used for dial-up banking machine, voice mail, automated attendant, or other purposes can be suppressed. Suppressing the extra digits prevents entries, such as PIN numbers and other codes, from being displayed when they are dialed. See pages 4-93 and 5-69.

SMDR Reports: A programming flag has been added to the SMDR report programming prompts that allows you to specify whether all dialed digits or just the digits that make up the valid call appear in the SMDR report. See pages 4-123 and 5-142.

Account Code Enhancements

LCR Toll Forced Account Code: Forced account codes for toll calls only can be programmed for stations with LCR-Only toll restriction in day and night modes. When this account code type is enabled, the user only has to enter an account code if the system detects that a toll call has been dialed when LCR is used. See pages 4-33, 4-66, 5-32, and 5-55.

Validated Forced Account Codes: Forced account codes can be validated or non-validated. See page 4-66, 5-32, 5-33, and 5-55.
INDEX OF NEW FEATURES (continued)

Voice Mail/Computer Enhancements

Do-Not-Disturb Breakthrough: Normally, calls to a station through DISA, the automated attendant, or a voice computer are not blocked by placing the station in do-not-disturb. If desired, individual stations can be set to prevent these calls from breaking through do-not-disturb. See pages 4-14, 4-21, 4-38, 5-30, and 5-52.

Voice Mail/Computer Hunt Groups In All Software Packages: In any software package, any hunt group can be designated as a voice computer hunt group. See pages 4-16, 4-21, 5-61, and 5-62.

Automated Attendant Hunt Groups: Voice computer hunt groups can be designated as automated attendant hunt groups. See pages 4-21 and 5-63.

Dial Rules: Voice mail/computer hunt groups can be assigned dial rules. See pages 4-21 and 5-63.

Recall Destination: A voice mail/computer hunt group can have an assigned recall destination. See pages 4-21 and 5-64.

Overflow/Announcement Stations: Voice mail/computer hunt groups can serve as overflow/announcement stations. See page 5-66.

DTMF Feedback Tones: The progress tones that are normally sent to a voice computer can be replaced with DTMF "feedback" tones that determine call status. See pages 4-21, 5-31, and 5-52. If feedback tones are enabled, the "extended" set of feedback tones can also be enabled in system-wide programming. See pages 5-67 and 5-68.

Allow Cross-Tenant Voice Mail/Computer Traffic: The programmer can determine whether voice mail units and voice mail computers will be allowed to place intercom calls, forward intercom calls, or transfer intercom or outside calls to stations that are in different tenant groups. See pages 4-21 and 5-67.

Version Feature Code: When entered at a voice computer port this feature code generates a four-digit DTMF code that indicates the last four digits of the software part number. It is used by voice processing software to ensure that the KSU software is compatible with the voice processing features. See page 4-7.

Remote Hunt Group Remove/Replace

The Hunt Group Remove/Replace feature can be controlled from the attendant’s station using the Remote Hunt Group Replace feature code. See pages 4-10, 4-19, and 4-111.

Hunt Group Enhancements

There is a system option that can be enabled to send all unanswered hunt group calls first to the announcement station and then to the overflow station. See pages 4-17 and 5-68.

If a station that receives a recalling hunt group call chooses to transfer the call back to the hunt group, the call retains its original queue position in the hunt group. Also, calls that go to the announcement and overflow stations do not lose their places in the queue. While the call is at a playback device announcement or overflow station (except voice computer overflow/announcement stations) it continues to circulate through the hunt group. If a hunt group member picks up the call, it is pulled back from a playback device overflow/announcement station and connected to the hunt group station. See pages 4-18 and 4-19.

Station Off-Hook Alarm

The STATION OFF HOOK alarm now indicates the station that is off hook. Also, the alarm clears automatically when the station user hangs up. See pages 4-122, 4-125, and 6-8.

Equal Access “101XXXX” Numbers Supported

The system supports the “101XXXX” and “10XXX” equal access numbers. Toll restriction SCOS 7 has also been modified to support equal access dialing. See pages 4-27, 4-28, and 5-88, and 5-113.

Password Required

The password prompt will always appear when a programmer logs in to a programming session. In the default state there is no database programming password and pressing RETURN will allow access to the database. See page 5-10.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEX OF NEW FEATURES</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>FCC REGULATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>SAFETY REGULATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>LIMITED WARRANTY</td>
<td>xx</td>
</tr>
<tr>
<td>OVERVIEW</td>
<td>1-1</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1-1</td>
</tr>
<tr>
<td>2. System Capacities</td>
<td>1-1</td>
</tr>
<tr>
<td>3. Software Packages</td>
<td>1-2</td>
</tr>
<tr>
<td>4. Hardware Summary</td>
<td>1-3</td>
</tr>
<tr>
<td>5. Installation, Programming, And Maintenance Summary</td>
<td>1-3</td>
</tr>
<tr>
<td>6. Features Summary</td>
<td>1-4</td>
</tr>
<tr>
<td>SPECIFICATIONS</td>
<td>2-1</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>2-2</td>
</tr>
<tr>
<td>2. Cabling And The Main Distribution Frame (MDF)</td>
<td>2-4</td>
</tr>
<tr>
<td>3. Equipment Cabinet</td>
<td>2-6</td>
</tr>
<tr>
<td>4. Station Instruments</td>
<td>2-21</td>
</tr>
<tr>
<td>5. Additional System Equipment</td>
<td>2-31</td>
</tr>
<tr>
<td>INSTALLATION</td>
<td>3-1</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>3-2</td>
</tr>
<tr>
<td>2. System Installation Outline</td>
<td>3-2</td>
</tr>
<tr>
<td>3. Pre-Installation Checklist</td>
<td>3-3</td>
</tr>
<tr>
<td>4. Station Cabling</td>
<td>3-6</td>
</tr>
<tr>
<td>5. Assembling The Main Distribution Frame (MDF) Backboard</td>
<td>3-9</td>
</tr>
<tr>
<td>6. Equipment Cabinet Installation</td>
<td>3-35</td>
</tr>
<tr>
<td>7. Station Installation</td>
<td>3-62</td>
</tr>
<tr>
<td>8. SMDR/SMDA Output Device Installation</td>
<td>3-98</td>
</tr>
<tr>
<td>9. External Paging Equipment Installation</td>
<td>3-98</td>
</tr>
<tr>
<td>10. External Music Source Installation</td>
<td>3-99</td>
</tr>
<tr>
<td>11. Preventative Maintenance</td>
<td>3-99</td>
</tr>
<tr>
<td>12. Post-Installation Checklist</td>
<td>3-100</td>
</tr>
</tbody>
</table>
CONTENTS

FEATURES

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>4-4</td>
</tr>
<tr>
<td>2. Accessing The Features</td>
<td>4-4</td>
</tr>
<tr>
<td>3. System Organization</td>
<td>4-12</td>
</tr>
<tr>
<td>4. Trunk Features</td>
<td>4-24</td>
</tr>
<tr>
<td>5. Station Instruments</td>
<td>4-40</td>
</tr>
<tr>
<td>6. User-Programmable Feature Keys</td>
<td>4-51</td>
</tr>
<tr>
<td>7. Automatic Call Access (Keysets Only)</td>
<td>4-52</td>
</tr>
<tr>
<td>8. Music-On-Hold And Background Music</td>
<td>4-53</td>
</tr>
<tr>
<td>9. Signals And Tones</td>
<td>4-54</td>
</tr>
<tr>
<td>10. Intercom Galls</td>
<td>4-55</td>
</tr>
<tr>
<td>11. Inter-Station Messages</td>
<td>4-58</td>
</tr>
<tr>
<td>12. Off-Hook Voice Announce (OHVA)</td>
<td>4-61</td>
</tr>
<tr>
<td>13. Outside Galls</td>
<td>4-62</td>
</tr>
<tr>
<td>14. Placing Calls On Hold</td>
<td>4-67</td>
</tr>
<tr>
<td>15. Call Waiting</td>
<td>4-69</td>
</tr>
<tr>
<td>16. Call Transfer</td>
<td>4-70</td>
</tr>
<tr>
<td>17. Reverse Transfer And Group Call Pick-Up</td>
<td>4-73</td>
</tr>
<tr>
<td>18. Call Privacy And Privacy Release</td>
<td>4-74</td>
</tr>
<tr>
<td>19. Barge (Keysets Only)</td>
<td>4-75</td>
</tr>
<tr>
<td>20. Conference Galls</td>
<td>4-76</td>
</tr>
<tr>
<td>21. System Forwarding</td>
<td>4-79</td>
</tr>
<tr>
<td>22. Call Forwarding</td>
<td>4-82</td>
</tr>
<tr>
<td>23. Speed Dialing</td>
<td>4-85</td>
</tr>
<tr>
<td>24. Optional System Directory — Intercom And Outside (Keysets Only)</td>
<td>4-90</td>
</tr>
<tr>
<td>25. House Phone</td>
<td>4-92</td>
</tr>
<tr>
<td>26. Redialing</td>
<td>4-93</td>
</tr>
<tr>
<td>27. Paging</td>
<td>4-94</td>
</tr>
<tr>
<td>28. Remove From Paging</td>
<td>4-94</td>
</tr>
<tr>
<td>29. Do-Not-Disturb</td>
<td>4-95</td>
</tr>
<tr>
<td>30. Cancel Miscellaneous Operations</td>
<td>4-97</td>
</tr>
<tr>
<td>31. Hookflash</td>
<td>4-97</td>
</tr>
<tr>
<td>32. Reminder Messages (Keysets Only)</td>
<td>4-98</td>
</tr>
<tr>
<td>33. Optional Station Exchange Feature</td>
<td>4-99</td>
</tr>
<tr>
<td>34. Optional Data Device Attachments (Keysets Only)</td>
<td>4-101</td>
</tr>
<tr>
<td>35. Attendant Features</td>
<td>4-103</td>
</tr>
<tr>
<td>36. Record Keeping And Maintenance Features</td>
<td>4-114</td>
</tr>
</tbody>
</table>
PROGRAMMING

1. Introduction .. 5-3
2. System Set-Up For Programming 5-3
3. Session Timer And Screen Saver 5-11
4. Microsoft Windows .. 5-11
5. How To Use The Programming Windows 5-12
6. Applications Menu .. 5-15
7. Default Values ... 5-24
8. Station Programming — Individual Station Information 5-25
9. Station Programming — Batch Programming Options 5-44
10. System-Wide Features ... 5-54
11. Toll Restriction ... 5-88
12. Least-Cost Routing (LCR) .. 5-98
13. Trunk Programming .. 5-103
14. Attendants ... 5-132
15. Station Message Detail .. 5-137
16. Service ... 5-145

TROUBLESHOOTING

1. Introduction .. 6-1
2. Troubleshooting Checklist ... 6-1
3. Light-Emitting Diode (LED) Indications 6-1
4. Alarm Messages And Field Service Diagnostics 6-8
5. Troubleshooting Charts ... 6-12
6. Customer Support ... 6-41
7. Defective Unit Return Policy 6-41

REPLACEMENT PARTS

1. Introduction .. 7-1
2. Ordering Procedure .. 7-1
3. Replacement Parts List ... 7-1
4. Recommended Spare Parts .. 7-1

APPENDIX A- GX STATION INSTRUMENTS

1. Overview .. A-1
2. Specifications ... A-1
3. Installation .. A-4
4. Features .. A-10
5. Programming .. A-10
Contents

APPENDIX B — GMX STATION INSTRUMENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Overview</td>
<td>B-1</td>
</tr>
<tr>
<td>2. Specifications</td>
<td>B-1</td>
</tr>
<tr>
<td>3. Installation</td>
<td>B-5</td>
</tr>
<tr>
<td>4. Features</td>
<td>B-10</td>
</tr>
<tr>
<td>5. Programming</td>
<td>B-10</td>
</tr>
<tr>
<td>INDEX</td>
<td>I-1</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Voice Channel Allocation</td>
<td>2-7</td>
</tr>
<tr>
<td>2-2</td>
<td>Digital AC Transformer Requirements</td>
<td>2-24</td>
</tr>
<tr>
<td>2-3</td>
<td>Executive Digital Keyset (also called Executive Digital Terminal)</td>
<td>2-33</td>
</tr>
<tr>
<td>2-4</td>
<td>Standard Digital Keyset (also called Standard Digital Terminal)</td>
<td>2-34</td>
</tr>
<tr>
<td>2-5</td>
<td>IMX 24-Line Keyset</td>
<td>2-35</td>
</tr>
<tr>
<td>2-6</td>
<td>IMX 24-Line AIM Keyset</td>
<td>2-36</td>
</tr>
<tr>
<td>2-7</td>
<td>IMX 12-Line Keyset</td>
<td>2-37</td>
</tr>
<tr>
<td>2-8</td>
<td>IMX 12-Line AIM Keyset</td>
<td>2-38</td>
</tr>
<tr>
<td>2-9</td>
<td>IMX 8-Line Keyset</td>
<td>2-39</td>
</tr>
<tr>
<td>2-10</td>
<td>IMX 8-Line AIM Keyset</td>
<td>2-40</td>
</tr>
<tr>
<td>2-11</td>
<td>Inter-Tel/DVK 24-Line Keyset</td>
<td>2-41</td>
</tr>
<tr>
<td>2-12</td>
<td>Inter-Tel/DVK 12-Line Keyset</td>
<td>2-42</td>
</tr>
<tr>
<td>2-13</td>
<td>Inter-Tel/DVK 8-Line Keyset</td>
<td>2-43</td>
</tr>
<tr>
<td>2-14</td>
<td>Digital Direct Station Selection/Busy Lamp Field (DSS/BLF) Unit</td>
<td>2-44</td>
</tr>
<tr>
<td>2-15</td>
<td>IMX DSS/BLF Unit</td>
<td>2-45</td>
</tr>
<tr>
<td>2-16</td>
<td>Inter-Tel/DVK DSS/BLF Unit</td>
<td>2-46</td>
</tr>
<tr>
<td>2-17</td>
<td>Enhanced Single-Line Set (ESLS)</td>
<td>2-47</td>
</tr>
<tr>
<td>2-18</td>
<td>Single-Line Instrument (SLI)</td>
<td>2-48</td>
</tr>
</tbody>
</table>

INSTALLATION

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Digital Keyset Modular Jack Assembly Wiring</td>
<td>3-7</td>
</tr>
<tr>
<td>3-2</td>
<td>Analog Station Modular Jack Assembly Wiring</td>
<td>3-8</td>
</tr>
<tr>
<td>3-3</td>
<td>Sample MDF Block Layout And Cable Assignments</td>
<td>3-10</td>
</tr>
<tr>
<td>3-4</td>
<td>Example Of Ferrite Bead Installation</td>
<td>3-12</td>
</tr>
<tr>
<td>3-5</td>
<td>LGC/LSC Block Cable Terminations (Method A)</td>
<td>3-13</td>
</tr>
<tr>
<td>3-6</td>
<td>LGC/LSC Block Cable Terminations (Method B)</td>
<td>3-14</td>
</tr>
<tr>
<td>3-7</td>
<td>IDC Block Cable Terminations</td>
<td>3-15</td>
</tr>
<tr>
<td>3-8</td>
<td>EMC Block Cable Terminations</td>
<td>3-16</td>
</tr>
<tr>
<td>3-9</td>
<td>T1 Span Terminations From RJ48C Jacks</td>
<td>3-18</td>
</tr>
<tr>
<td>3-10</td>
<td>Modular Jack Assembly Wiring For T1 Spans</td>
<td>3-18</td>
</tr>
<tr>
<td>3-11</td>
<td>T1 Span Terminations From RJ-Type Blocks</td>
<td>3-19</td>
</tr>
<tr>
<td>3-12</td>
<td>Using The T1 Card’s Optional DB15 Connector</td>
<td>3-20</td>
</tr>
<tr>
<td>3-13</td>
<td>Digital KSC Block Cable Terminations For Keysets</td>
<td>3-22</td>
</tr>
<tr>
<td>3-14</td>
<td>Analog KSC Block Cable Terminations</td>
<td>3-23</td>
</tr>
<tr>
<td>NUMBER</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Figure 3-15.</td>
<td>Installing 8-Line IMX AIM Keysets Two To A Circuit</td>
<td>3-24</td>
</tr>
<tr>
<td>Figure 3-16.</td>
<td>KSC-D Block Cable Terminations For Dual-Circuit Keysets</td>
<td>3-25</td>
</tr>
<tr>
<td>Figure 3-17.</td>
<td>SLC Block Cable Terminations</td>
<td>3-26</td>
</tr>
<tr>
<td>Figure 3-18.</td>
<td>IDC Block Cable Terminations</td>
<td>3-27</td>
</tr>
<tr>
<td>Figure 3-19.</td>
<td>Station Cable Terminations On The Station Block</td>
<td>3-28</td>
</tr>
<tr>
<td>Figure 3-20.</td>
<td>RCPU Card Cable Terminations</td>
<td>3-31</td>
</tr>
<tr>
<td>Figure 3-21.</td>
<td>Modular Jack Assembly Wiring For Optional T1 Alarm Relays</td>
<td>3-33</td>
</tr>
<tr>
<td>Figure 3-22.</td>
<td>Connecting Two T1 Cards Together</td>
<td>3-34</td>
</tr>
<tr>
<td>Figure 3-23.</td>
<td>Power Cable Connectors On The Telecom Motherboard</td>
<td>3-36</td>
</tr>
<tr>
<td>Figure 3-24.</td>
<td>Connecting The Power Cable To The Telecom Motherboard</td>
<td>3-37</td>
</tr>
<tr>
<td>Figure 3-25.</td>
<td>Cable Connections To The Power Supply Chassis</td>
<td>3-38</td>
</tr>
<tr>
<td>Figure 3-26.</td>
<td>Power Supply Module Installation</td>
<td>3-40</td>
</tr>
<tr>
<td>Figure 3-27.</td>
<td>Equipment Cabinet Grounding</td>
<td>3-41</td>
</tr>
<tr>
<td>Figure 3-28.</td>
<td>Power Supply Connector Pinouts And Voltage Test Point Locations</td>
<td>3-43</td>
</tr>
<tr>
<td>Figure 3-29.</td>
<td>RCPU Card</td>
<td>3-46</td>
</tr>
<tr>
<td>Figure 3-30.</td>
<td>Digital Keyset Card (DKSC)</td>
<td>3-48</td>
</tr>
<tr>
<td>Figure 3-31.</td>
<td>Keyset Card (KSC Or KSC-D)</td>
<td>3-50</td>
</tr>
<tr>
<td>Figure 3-32.</td>
<td>Single-Line Card (SLC)</td>
<td>3-52</td>
</tr>
<tr>
<td>Figure 3-33.</td>
<td>Inward Dialing Card (IDC)</td>
<td>3-53</td>
</tr>
<tr>
<td>Figure 3-34.</td>
<td>Loop/Ground Start Card (LGC)</td>
<td>3-55</td>
</tr>
<tr>
<td>Figure 3-35.</td>
<td>Loop Start Card (LSC)</td>
<td>3-56</td>
</tr>
<tr>
<td>Figure 3-36.</td>
<td>E&M Card (EMC)</td>
<td>3-58</td>
</tr>
<tr>
<td>Figure 3-37.</td>
<td>T1C Card (T1C)</td>
<td>3-60</td>
</tr>
<tr>
<td>Figure 3-38.</td>
<td>Standard Digital Keyset LCD Installation</td>
<td>3-63</td>
</tr>
<tr>
<td>Figure 3-39.</td>
<td>Digital Keyset Self-Test Key Matrix</td>
<td>3-65</td>
</tr>
<tr>
<td>Figure 3-40.</td>
<td>Digital PC Data Port Module (PCDPM) Installation</td>
<td>3-68</td>
</tr>
<tr>
<td>Figure 3-41.</td>
<td>Sample Digital PCDPM Cable Connections</td>
<td>3-69</td>
</tr>
<tr>
<td>Figure 3-42.</td>
<td>Digital Modem Data Port Module (MDPM) Installation</td>
<td>3-70</td>
</tr>
<tr>
<td>Figure 3-43.</td>
<td>IMX 24/12-Line Keyset LCD Installation</td>
<td>3-72</td>
</tr>
<tr>
<td>Figure 3-44.</td>
<td>Bottom Of 8-Line Dual-Circuit IMX AIM Keyset</td>
<td>3-76</td>
</tr>
<tr>
<td>Figure 3-45.</td>
<td>IMX Keyset Data Port Module Installation</td>
<td>3-79</td>
</tr>
<tr>
<td>Figure 3-46.</td>
<td>IMX Keyset LRA Set-Up</td>
<td>3-80</td>
</tr>
<tr>
<td>Figure 3-47.</td>
<td>Inter-Tel/DVK 24-Line Keyset “Large” LCD Installation</td>
<td>3-82</td>
</tr>
<tr>
<td>Figure 3-48.</td>
<td>Inter-Tel/DVK 12/8-Line Keyset “Small” LCD Installation</td>
<td>3-84</td>
</tr>
<tr>
<td>Figure 3-49.</td>
<td>Inter-Tel/DVK Data Port Module Installation</td>
<td>3-88</td>
</tr>
<tr>
<td>Figure 3-50.</td>
<td>Inter-Tel/DVK LRA Set-Up</td>
<td>3-89</td>
</tr>
<tr>
<td>NUMBER</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Figure 3-51.</td>
<td>Back Of Digital DSS/BLF Unit</td>
<td>3-91</td>
</tr>
<tr>
<td>Figure 3-52.</td>
<td>Inter-Tel/DVK DSS/BLF Unit Control Board</td>
<td>3-94</td>
</tr>
<tr>
<td>Figure 3-53.</td>
<td>SLI Control Board</td>
<td>3-96</td>
</tr>
<tr>
<td>Figure 3-54.</td>
<td>Bottom Of ESLS</td>
<td>3-97</td>
</tr>
</tbody>
</table>

FEATURES

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4-1.</td>
<td>T1 Span Applications</td>
<td>4-36</td>
</tr>
<tr>
<td>Figure 4-2.</td>
<td>SMDA Account Code Report Format</td>
<td>4-117</td>
</tr>
<tr>
<td>Figure 4-3.</td>
<td>SMDA Summary Report Format</td>
<td>4-118</td>
</tr>
<tr>
<td>Figure 4-4.</td>
<td>SMDA Detailed Report Format</td>
<td>4-120</td>
</tr>
<tr>
<td>Figure 4-5.</td>
<td>SMDR Report Format</td>
<td>4-124</td>
</tr>
</tbody>
</table>

PROGRAMMING

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 5-1.</td>
<td>T1 Applications And Programming</td>
<td>5-124</td>
</tr>
<tr>
<td>Figure 5-2.</td>
<td>Customized Programming Report Samples</td>
<td>5-156</td>
</tr>
<tr>
<td>Figure 5-3.</td>
<td>Sample Board-To-Voice Bus Mapping Report</td>
<td>5-173</td>
</tr>
<tr>
<td>Figure 5-4.</td>
<td>Individual Station Programming (STN)</td>
<td>5-174</td>
</tr>
<tr>
<td>Figure 5-5.</td>
<td>Key Assignments (KEY)</td>
<td>5-177</td>
</tr>
<tr>
<td>Figure 5-6.</td>
<td>Ring Zone Programming (ZONE)</td>
<td>5-188</td>
</tr>
<tr>
<td>Figure 5-7.</td>
<td>Station Features (SFEA)</td>
<td>5-189</td>
</tr>
<tr>
<td>Figure 5-8.</td>
<td>Account Codes (ACCT)</td>
<td>5-190</td>
</tr>
<tr>
<td>Figure 5-9.</td>
<td>Do-Not-Disturb And Reminder Messages (MESG)</td>
<td>5-195</td>
</tr>
<tr>
<td>Figure 5-10.</td>
<td>Extensions, Usernames, And Feature Codes (EXT)</td>
<td>5-197</td>
</tr>
<tr>
<td>Figure 5-11.</td>
<td>Hunt Groups (HUNT)</td>
<td>5-202</td>
</tr>
<tr>
<td>Figure 5-12.</td>
<td>Misc. System-Wide Information (MISC)</td>
<td>5-203</td>
</tr>
<tr>
<td>Figure 5-13.</td>
<td>Page Zones (PAGE)</td>
<td>5-204</td>
</tr>
<tr>
<td>Figure 5-14.</td>
<td>Relays (RLAY)</td>
<td>5-204</td>
</tr>
<tr>
<td>Figure 5-15.</td>
<td>System Forwarding Paths (SFWD)</td>
<td>5-205</td>
</tr>
<tr>
<td>Figure 5-16.</td>
<td>System Speed Dial (SSPD)</td>
<td>5-206</td>
</tr>
<tr>
<td>Figure 5-17.</td>
<td>System Timer (TIMR)</td>
<td>5-207</td>
</tr>
<tr>
<td>Figure 5-18.</td>
<td>Tenant Groups (TNT)</td>
<td>5-210</td>
</tr>
<tr>
<td>Figure 5-19.</td>
<td>Carriers And Allowed Long Distance (ALT)</td>
<td>5-211</td>
</tr>
<tr>
<td>Figure 5-20.</td>
<td>Area/Office Code Restriction User Groups (AREA)</td>
<td>5-212</td>
</tr>
<tr>
<td>Figure 5-21.</td>
<td>Station Class Of Service/LCR Advances (SCOS)</td>
<td>5-213</td>
</tr>
<tr>
<td>Figure 5-22.</td>
<td>Toll Security (TOLL)</td>
<td>5-216</td>
</tr>
<tr>
<td>Figure 5-23.</td>
<td>Least-Cost Routing (LCR)</td>
<td>5-217</td>
</tr>
<tr>
<td>Figure 5-24.</td>
<td>Individual Trunk (INDT)</td>
<td>5-223</td>
</tr>
<tr>
<td>Figure 5-25.</td>
<td>Trunk Groups, Did Groups & Ring-In/Answer Patterns (TRNK)</td>
<td>5-224</td>
</tr>
<tr>
<td>NUMBER</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Figure 5-26.</td>
<td>T1 Programming (T1)</td>
<td>5-227</td>
</tr>
<tr>
<td>Figure 5-27.</td>
<td>Attendants — Alias Programming (ALSS)</td>
<td>5-228</td>
</tr>
<tr>
<td>Figure 5-28.</td>
<td>Attendants — DSS/BLF Units (DSS)</td>
<td>5-229</td>
</tr>
<tr>
<td>Figure 5-29.</td>
<td>Call Cost (COST)</td>
<td>5-230</td>
</tr>
<tr>
<td>Figure 5-30.</td>
<td>SMDA (SMDA)</td>
<td>5-231</td>
</tr>
<tr>
<td>Figure 5-31.</td>
<td>SMDR (SMDR)</td>
<td>5-232</td>
</tr>
<tr>
<td>Figure 5-32.</td>
<td>Error Reports (ERR)</td>
<td>5-233</td>
</tr>
<tr>
<td>Figure 5-33.</td>
<td>Passwords (PASS)</td>
<td>5-233</td>
</tr>
<tr>
<td>Figure 5-34.</td>
<td>Serial Port Configuration (PORT)</td>
<td>5-234</td>
</tr>
<tr>
<td>Figure 5-35.</td>
<td>System Configuration (CONF)</td>
<td>5-235</td>
</tr>
</tbody>
</table>

TROUBLESHOOTING

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 6-1.</td>
<td>Light-Emitting Diode (LED) Indications</td>
<td>6-3</td>
</tr>
<tr>
<td>Figure 6-2.</td>
<td>System Troubleshooting Chart</td>
<td>6-14</td>
</tr>
<tr>
<td>Figure 6-3.</td>
<td>CO Trunk Troubleshooting Chart</td>
<td>6-18</td>
</tr>
<tr>
<td>Figure 6-4.</td>
<td>Feature Troubleshooting Chart</td>
<td>6-24</td>
</tr>
<tr>
<td>Figure 6-5.</td>
<td>Keyset Troubleshooting Chart</td>
<td>6-30</td>
</tr>
<tr>
<td>Figure 6-6.</td>
<td>Single-Line Set Troubleshooting Chart</td>
<td>6-36</td>
</tr>
<tr>
<td>Figure 6-7.</td>
<td>DSS/BLF Unit Troubleshooting Chart</td>
<td>6-39</td>
</tr>
</tbody>
</table>

REPLACEMENT PARTS

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 7-1.</td>
<td>Replacement Parts</td>
<td>7-1</td>
</tr>
<tr>
<td>Figure 7-2.</td>
<td>Recommended Spare Parts</td>
<td>7-5</td>
</tr>
</tbody>
</table>

APPENDIX A

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure A-1.</td>
<td>GX 24-Line Keyset</td>
<td>A-3</td>
</tr>
<tr>
<td>Figure A-2.</td>
<td>GX Keyset Bottom</td>
<td>A-5</td>
</tr>
<tr>
<td>Figure A-3.</td>
<td>GX DSS/BLF Unit Bottom</td>
<td>A-9</td>
</tr>
<tr>
<td>Figure A-4.</td>
<td>Key Assignments (KEY)</td>
<td>A-11</td>
</tr>
</tbody>
</table>

APPENDIX B

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure B-1.</td>
<td>GMX 24-Line Keyset</td>
<td>B-3</td>
</tr>
<tr>
<td>Figure B-2.</td>
<td>GMX 12-Line Keyset</td>
<td>B-4</td>
</tr>
<tr>
<td>Figure B-3.</td>
<td>GMX 24-Line Keyset Data Port Module Installation</td>
<td>B-7</td>
</tr>
<tr>
<td>Figure B-4.</td>
<td>GMX DSS/BLF Unit Bottom</td>
<td>B-9</td>
</tr>
<tr>
<td>Figure B-5.</td>
<td>Key Assignments (KEY)</td>
<td>B-11</td>
</tr>
</tbody>
</table>
FCC REGULATIONS

IMPORTANT:

1. This equipment complies with Part 68 of FCC rules. On the back of the equipment cabinet is a label that contains, among other information, the FCC registration number and ringer equivalence number (REN) for this equipment. Customers connecting this equipment to the telephone network shall, before such connection is made, give notice to the telephone company of the particular line(s) to which such connection is to be made, and shall provide the telephone company with the following information:
 - Complies with Part 68 of FCC rules
 - FCC registration number: BE2USA-60751-MF-E (for MF-rated systems) or BE2USA-61845-KF-E (for KF-rated systems)
 - Quantities and USOC numbers of required interface jacks (see chart on next page)
 - Sequence in which trunks are to be connected
 - Ringer equivalence number (REN) or service order code (SOC), as applicable, by position (see chart on next page)
 - Facility interface code (FIC) by position (see chart on next page)

The telephone company should also be given notice upon final disconnection of this equipment from the particular line(s).

It is also the responsibility of the customer to provide the telephone company with registration numbers of any other devices which are configured for connection to the telephone network.

2. This equipment cannot be used on public coin service provided by the telephone company. Connection to party line service is subject to state tariffs. (Contact the state public utility commission, public service commission, or corporation commission for information.)

3. If this equipment causes harm to the telephone network, the telephone company will notify the customer in advance that service may be temporarily discontinued. But if advance notice is not practical, the telephone company will notify the customer as soon as possible. Also, the customer will be advised of the right to file a complaint with the FCC, if necessary.

4. The telephone company may make changes in its facilities, equipment, operations, or procedures which may affect the operation of this equipment. If so, the customer shall be given advance notice so that any necessary modifications can be made in order to maintain uninterrupted service.

5. If trouble is experienced with this equipment, contact a local authorized factory service representative for repairs and/or warranty information. The customer, users, and unauthorized technicians should not repair, make adjustments to, or attempt to service this equipment in any way.

In the event of trouble with the telephone line(s), this equipment must be disconnected from the telephone line(s). If trouble ceases, the equipment must be repaired by an authorized factory service representative. If the trouble continues to occur with the equipment disconnected, the telephone company should be notified that they have a problem. If this is the case, repairs or adjustments made by the telephone company will be made at their expense.

6. Allowing this equipment to be operated in such a manner as to not provide proper answer supervision signaling is in violation of Part 68 of FCC rules. This equipment returns answer supervision signals to the public telephone network when: answered by the called station, answered by the attendant, routed to a recorded announcement that can be administered by the equipment user, and routed to a dial prompt. This equipment also returns answer supervision on all DID calls forwarded back to the public telephone network. Permissible exceptions are: a call is unanswered, busy tone is received, and reorder tone is received.
<table>
<thead>
<tr>
<th>TYPE OF PORT INTERFACE</th>
<th>FACILITY INTERFACE CODE (FIC)</th>
<th>SERVICE ORDER CODE (SOC) OR REN</th>
<th>USOC JACK CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Wire Loop</td>
<td>02LS2</td>
<td>0.6B</td>
<td>RJ21X</td>
</tr>
<tr>
<td>2-Wire Ground*</td>
<td>02GS2</td>
<td>0.6B</td>
<td>RJ21X</td>
</tr>
<tr>
<td>2-Wire DID**</td>
<td>02RV2-T</td>
<td>0.0B</td>
<td>RJ21X</td>
</tr>
<tr>
<td>OPX Class C***</td>
<td>0L13C</td>
<td>9.0F</td>
<td>RJ21X</td>
</tr>
<tr>
<td>2-Wire, Type I E&M</td>
<td>TL11M</td>
<td>9.0F</td>
<td>RJ21X</td>
</tr>
<tr>
<td>2-Wire, Type II E&M</td>
<td>TL12M</td>
<td>9.0F</td>
<td>RJ2FX</td>
</tr>
<tr>
<td>4-Wire, Type I E&M</td>
<td>TL31M</td>
<td>9.0F</td>
<td>RJ2GX</td>
</tr>
<tr>
<td>4-Wire, Type II E&M</td>
<td>TL32M</td>
<td>9.0F</td>
<td>RJ2HX</td>
</tr>
<tr>
<td>D4 Superframe</td>
<td>04DU9-B</td>
<td>6.0P</td>
<td>RJ48C</td>
</tr>
<tr>
<td>Extended Superframe</td>
<td>04DU9-C</td>
<td>6.0P</td>
<td>RJ48C</td>
</tr>
<tr>
<td>(ESF)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESF with B8ZS</td>
<td>04DU9-S</td>
<td>6.0P</td>
<td>RJ48C</td>
</tr>
</tbody>
</table>

* Available with MF-rated systems only. According to FCC regulations, tariffs do not permit the use of ground-starter facilities with RF-rated systems.

** When using T1 facilities to provide DID service, do not use the DID facility interface code (FIC) as listed above; instead, provide the telephone company with DID answer supervision code "AS.2" and the FIC for the requested T1 service.

*** Also interfaces with Class A and B.

7. This equipment does not currently comply with the amended Part 64 of FCC rules (CC Docket No. 91-35), which requires that equipment sold and installed in the "call aggregator" market (i.e., hotels, motels, hospitals, universities, etc.) must allow users equal access to the long distance carriers of their choice (i.e., must allow the 10XXX dialing sequences normally used for "operator-assisted" calls, while blocking those normally used for "direct-dial" calls). In the future, this equipment may be modified to comply with this requirement.

NOTICE: THE TELEPHONE INSTRUMENTS SPECIFICALLY DESIGNED FOR THIS SYSTEM HAVE HEARING-AID COMPATIBLE HANDSETS THAT ARE IN COMPLIANCE WITH SECTION 68.316 OF THE FCC RULES.

WARNING: This equipment generates and uses radio frequency energy and if not installed and used properly, that is, in strict accordance with the manufacturer’s instructions, may cause interference to radio and television reception. It has been type tested and found to comply with the limits for a Class A computing device in accordance with the specifications in Subpart J of Part 15 of FCC Rule. Operation of this equipment in a residential area may cause unacceptable interference to radio and TV reception requiring the operator to take whatever steps are necessary to correct the interference. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient the receiving antenna
- Relocate the equipment cabinet with respect to the receiver
- Check that the equipment cabinet and receiver are not on the same circuit; the equipment cabinet must be powered from an isolated, dedicated AC outlet

If necessary, the user should consult the dealer or an experienced radio/television technician for additional suggestions. The user may find the following booklet prepared by the FCC helpful: “How to Identify and Resolve Radio-TV Interference Problems”

If RFI problems persist, contact Inter-Tel Customer support.
SAFETY REGULATIONS

The Inter-Tel IMX and GMX 256 Systems are listed by Communication Certification Laboratory (CCL) as meeting the Product Safety Requirements of UL 1459, Standard for Telephone Equipment. CCL is approved by the Occupational Health and Safety Administration (OSHA) as a Nationally Recognized Testing Laboratory (NRTL). Before installation, also check the local electrical codes for important information concerning the installation of telephone and electronic equipment.

The following safety information is reprinted from UL 1459.

IMPORTANT SAFETY INSTRUCTIONS

When using your telephone equipment, basic safety precautions should always be followed to reduce the risk of fire, electric shock, and injury to persons, including the following:

1. Read and understand all instructions.
2. Follow all warnings and instructions marked on the product.
3. Unplug this product from the wall outlet before cleaning. Do not use liquid cleaners or aerosol cleaners. Use a damp cloth for cleaning.
4. Do not use this product near water (for example, in a wet basement).
5. Do not place this product on an unstable cart, stand, or table. The product may fall, causing serious damage to the product.
6. Slots and openings in the cabinet and the back or bottom are provided for ventilation, to protect it from overheating; these openings must not be blocked or covered. This product should never be placed near or over a radiator or heat register. This product should not be placed in a built-in installation unless proper ventilation is provided.
7. This product should be operated only from the type of power source indicated in the manual. If you are not sure of the type of power source to your building, consult your dealer or local power company.
8. This product is equipped with a three-wire grounding type plug, a plug having a third (grounding) pin. This plug will only fit into a grounding type power outlet. This is a safety feature. If you are unable to insert the plug into the outlet, contact your electrician to replace your obsolete outlet. Do not defeat the safety purpose of the grounding type plug.
9. Do not allow anything to rest on the power cord. Do not locate this product where the cord will be abused by persons walking on it.
10. Do not use an extension cord with this product’s AC power cord. The AC outlet for this product should not be used for any other electrical equipment.
11. Never push objects of any kind into this product through cabinet slots as they may touch dangerous voltage points or short out parts that could result in a risk of fire or electric shock. Never spill liquid of any kind on the product.
12. To reduce the risk of electric shock, do not disassemble this product, but take it to a qualified serviceman when some service or repair work is required. Opening or removing covers may expose you to dangerous voltages or other risks. Incorrect reassembly can cause electric shock when the product is subsequently used.
13. Unplug this product from the wall outlet and refer servicing to qualified service personnel under the following conditions:
 A. When the power supply cord or plug is damaged or frayed.
 B. If liquid has been spilled into the product.
 C. If the product has been exposed to rain or water.
 D. If the product does not operate normally by following the operating instructions. Adjust only those controls that are covered by the operating instructions because improper adjustment of other controls may result in damage and will often require extensive work by a qualified technician to restore the product to normal operation.
 E. If the product has been dropped or the cabinet has been damaged.
 F. If the product exhibits a distinct change in performance.
14. Avoid using a telephone (other than a cordless type) during an electrical storm. There may be a remote risk of electric shock from lightning.
15. Do not use the telephone to report a gas leak in the vicinity of the leak.

SAVE THESE INSTRUCTIONS
LIMITED WARRANTY

For a period of one (1) year from the date of shipment to Buyer, INTER-TEL warrants the Equipment (except for fuses and lamps) to be free from defects in material, workmanship, or both, and to comply with specifications for the Equipment, as set forth in the Installation and Field Maintenance Manual. Buyer’s sole and exclusive remedy for breach of this Limited Warranty shall be to have the defective Equipment (or parts) repaired or replaced at INTER-TEL’s option. Shipping costs incurred returning warranty work to INTER-TEL shall be paid for by the Buyer. This Limited Warranty extends only to the Buyer, not to any customer, user, or third party. This Limited Warranty does not apply to Equipment (or parts) damaged by improper handling, normal wear and tear, accidents, lightning damage, negligence, or improper use or maintenance, and does not apply to Equipment altered without authorization by INTER-TEL. This Limited Warranty does not extend to any claims, suits, damages, liabilities, costs, and expenses arising from any act, action, or inaction of Buyer. Although the Moss-Magnuson Act should not apply, in the event that it is held to apply by a court of competent jurisdiction, the implied warranty of fitness for a particular purpose shall extend for the one-year (1-year) period from the date that the Equipment was shipped to the Buyer.

This warranty is in lieu of and excludes all other warranties, express or implied, including, but not limited to, the implied warranty of merchantability or fitness for a particular purpose. There are no warranties which extend beyond this limited warranty. In no event shall INTER-TEL be liable for loss of anticipated profits, incidental or consequential damages, loss of time or other losses incurred by Buyer in connection with the purpose, possession, operation, or use of the equipment, such claims being expressly waived by the installing company.

For complete information on returning equipment, refer to the current Inter-Tel Material Return Policy (document part number 835.1065). This document includes specific information on the following subjects: warranty, procedures to follow when returning equipment, equipment damaged in shipment, insurance, repair policy, and advance replacement policy.
OVERVIEW

CONTENTS

1. Introduction ... 1-1
2. System Capacities ... 1-1
3. Software Packages ... 1-2
4. Hardware Summary ... 1-3
5. Installation, Programming, And Maintenance Summary 1-3
6. Features Summary
 A. System Features .. 1-4
 B. Keyset Features .. 1-4
 C. Enhanced Single-Line Set (ESLS) Features ... 1-5
 D. Single-Line Instrument (SLI) Features ... 1-6
 E. Direct Station Selection/Busy Lamp Field (DSS/BLF) Unit Features 1-7
 F. Attendant Computer Console Features ... 1-7
 G. Attendant Features .. 1-7
 H. Maximum Capacities ... 1-8

1. INTRODUCTION

1.1 The 256 System is a state-of-the-art, digital, voice/data, hybrid telephone system. As a hybrid system, it incorporates many of the user-friendly features of key systems with many of the expanded features and flexibility of private branch exchange (PBX) systems.

1.2 The 256 System is designed to meet the needs of growing businesses. In fact, the system’s unique structure (including digital signal processing) allows it to be easily adapted and expanded as business communication needs change. The modular design makes the system easy to install and service. And, the programmable features provide an abundance of user-friendly applications to meet each customer's needs. Highlights of the system’s design include:

- Advanced microprocessor technology.
- Modular, easily replaceable hardware with add-on capabilities for optional features.
- Flexible programming to customize many system and station features.

2. SYSTEM CAPACITIES

2.1 The equipment cabinet has 16 slots for station and trunk cards. The actual number of stations and trunks available depends on the number and type of cards, station instruments, and power supply modules installed.

2.2 For example, if all 16 cards are station cards, there can be a maximum of 256 station instruments installed. Or, if only one of the cards is a type of Keyset Card (required), four are T1 Cards (the maximum allowed), and the other 11 are Loop/Ground Start Cards, the system maximum is 16 stations (using digital keysets or using 8-line IMX AIM keysets, which can be installed two to a circuit) and 184 trunks. Of course, in most circumstances, the maximums listed below will never be reached due to the variety of cards and station instruments installed.

2.3 A fully-equipped 256 System has the capacity for up to:

- 256 Ports (16 available card slots with a maximum 16 circuits per card equals 256 ports. Although it is theoretically possible to equip more than 256 ports [e.g., using T1 Cards and/or digital or 8-line IMX AIM keysets], the system limits the number to 256. See page 2-6 for more information.)
216-220 Non-Blocking Voice Channels (The exact number of voice channels available depends on the number of DTMF decoders installed in the system. The voice channels are available for outside calls, intercom calls, and paging on a first-come, first-served basis. See page 2-6 for more information.)

184 Central Office (CO) Trunks (Loop start and/or ground start trunks installed in increments of up to eight or 24, depending on the number of Loop/Ground Start Cards [LSCs], Loop Start Cards [LSCs], and/or T1 Cards [T1Cs] installed in the equipment cabinet. LSCs and LSCs can have up to eight CO trunks installed, while T1Cs can have up to 24 CO trunk circuits installed.)

NOTE: The system is limited to a maximum of four T1 Cards. (Four cards with up to 24 circuits per card equals 96 possible T1 trunk circuits.)

184 Direct Inward Dialing (DID) Trunks (Direct station access trunks installed in increments of up to eight or 24, depending on the number of Inward Dialing Cards [IDCs] and/or T1 Cards installed in the equipment cabinet). IDCs can have up to eight DID trunks installed, while T1Cs can have up to 24 DID trunk circuits installed.)

140 E&M Trunks (Special “tie” trunks between two supporting telephone systems [e.g., between two 256 Systems] installed in increments of up to four or 24, depending on the number of E&M Cards [EMCs] and/or T1 Cards installed in the equipment cabinet. EMCs can have up to four E&M trunk circuits installed, while T1Cs can have up to 24 E&M trunk circuits installed.)

256 Stations (Combinations of keysets, DSS/BLF Units, Attendant Computer Consoles, and single-line sets in increments of up to eight or 16, depending on the number of Digital Keyset Cards [DKSCs], Keyset Cards [KSCs or KSCs], Single-Line Cards [SLCs], and/or Inward Dialing Cards [IDCs] installed in the equipment cabinet. KSCs can have from eight to 16 stations connected depending on the type of keysets used, SLCs can have up to 16 stations connected, and IDCs can have up to eight.)

NOTE: At least one DKSC, KSC, or KSC-D must be installed to provide an attendant (equipped with a display keyset or an Attendant Computer Console) to program selected system data, act as the attendant for unsupervised CO recalls, receive system alarm messages, etc.

50 Keyset Circuits Equipped With Direct Station Selection/Busy Lamp Field (DSS/BLF) Units (Digital DSS/BLF Units are physically attached to and programmed to be used with specific digital keysets. Up to four units may be attached to one keyset. The units are powered by their own AC transformers and do not require a DKSC circuit that is separate from the keyset's circuit. Analog keysets, analog DSS/BLF Units, and Attendant Computer Consoles use separate KSC or KSC-D circuits. For each analog DSS/BLF Unit installed, one less analog keyset or Attendant Computer Console may be installed. Up to four analog DSS/BLF Units may be connected to a single Keyset Card, and as many units as desired can be used with a single keyset. See page 2-7 for more information.)

3. SOFTWARE PACKAGES

3.1 The IMX 256 System is available in five software “packages” (refer to REPLACEMENT PARTS for the part numbers). The customer can choose between one KF-rated system and four MP-rated systems. The KF-rated system permits only one trunk to be accessed per trunk key, and users can access only one auto trunk and only one trunk in each of the trunk groups. The MP-rated systems permit one-key access to multiple outgoing trunks. The five software packages are listed below.

- MF-rated, Basic package:
 - This software package has all of the features described in this manual except Toll Security, Intercom/Outside Directory, Automated Attendant, Station Message Detail Accounting (SMDA), T1, and E&M.

- MF-rated, Extended package:
 - This software package has all of the features described in this manual except T1 and E&M.

- MF-rated, Extended plus T1 and E&M package:
 - This software package has all of the features described in this manual.

- KF-rated, Extended plus T1 and E&M package:
 - This software package has all of the features described in this manual except Least-Cost Routing (LCR).

3.2 The IMX 256 system has an additional software package that has all of the features described in this manual, plus it allows the GX station instruments to be installed on the system. (Refer to Appendix A in the back of the manual for complete information.)
NOTE: According to FCC regulations, if a customer wishes to change from an existing RF-rated system to an MF-rated system (or vice versa), the installing company must advise the customer “to notify the telephone company of the change if they want the [RF or MF] rate and that they may have to certify in writing to the telephone company that the equipment is configured as a key system and pay appropriate service order charges.”

4. HARDWARE SUMMARY

4.1 The SPECIFICATIONS section of this manual explains environmental requirements of the system, describes the hardware, and gives pre-installation information. The hardware descriptions include: equipment cabinet, power supply, circuit cards, station instruments, and additional equipment needed for the optional features.

5. INSTALLATION, PROGRAMMING, AND MAINTENANCE SUMMARY

5.1 The modular design and self-diagnostic capabilities of the system facilitate installation and repair with minimal down-time. Strict quality control standards for manufacturing and thorough field testing provide the system with the reliability demanded by today’s high-technology market.

5.2 The INSTALLATION section contains instructions for assembling the main distribution frame (MDF) and for installing the equipment cabinet, power supply, circuit cards, station instruments, and other optional hardware.

5.3 The PROGRAMMING section describes the procedures for programming the system features. After the system is installed, the flexible software allows the database to be customized to meet the customer’s needs. An external, customer-provided, IBM AT-compatible personal computer (PC) is used to perform this task.

5.4 The TROUBLESHOOTING section gives instructions for correcting system problems and replacing defective parts. Part numbers and a recommended inventory of spare parts are listed in the REPLACEMENT PARTS section.
6. FEATURES SUMMARY

6.1 System, keyset, single-line set, DSS/BLF Unit, Attendant Computer Console, and attendant features are listed on the following pages. *Those features marked with an asterisk (*) require additional equipment.* For complete descriptions and operating instructions, refer to the SPECIFICATIONS and FEATURES sections of this manual.

A. SYSTEM FEATURES

Hardware and General System Features

- Five available software packages
- Flexible station instrument configuration and numbering plan
- Two DB9 connectors on the ROM Central Processing Unit (RCPU) Card for connecting optional SMDR/SMDA output devices or an external (IBM AT-compatible) PC for programming
- Easily accessible system voltage test points on the front edge of the RCPU Card
- Database battery back-up with voltage test points
- Adjustable baud rates for on-site programming and the optional SMDR/SMDA output devices (110, 300, 600, 1200, 2400, 4800, 9600, and 19200 baud)
- Computer modem with software auto-baud on the RCPU Card for remote programming (300 and 1200 baud)
- Variable system timers
- Industry-standard message waiting capability on SLCs (using -108VDC derived from a combination of system voltages)
- *Optional Station Message Detail Recording (SMDR) and/or Station Message Detail Accounting (SMDA) output device(s)*
- *1 relay on the RCPU Card is dedicated as a power failure transfer relay; the other relay is a general purpose relay that can be used for night transfer, general signaling devices, etc.*
- Optional Attendant Computer Consoles (personal computers equipped with headsets; allow the user to view system activity on the monitor and to process calls and messages using the keyboard)
- *Two optional external music sources
- *Optional off-premises extensions (OPXs) with variable ring cadence
- *Optional OPX repeaters
- *Optional multi-port voice mail system
- *Optional talkback speaker equipment

- *Optional facsimile machine
- *Optional doorbox
- *Optional battery back-up
- *Optional external paging equipment
- *Optional playback devices for use with the automated attendant and hunt group features

System Organization and Record Keeping Features

- Ten paging zones and nine external paging ports
- *Station Message Detail Recording (SMDR)
- *Station Message Detail Accounting (SMDA) available only in the Extended and Extended Plus Tl and E&M software packages
- *Programmable reports for toll restriction, Least-Cost Routing (LCR), and station data
- Call cost accounting (estimated)
- Forced, forced LCR toll, standard, optional, and class-of-service account codes (forced account codes can be validated or non-validated)
- Flexible attendant arrangements
- Tenant groups and departments
- *Hunt groups with individually-programmed timers (may have optional overflow and announcement stations with playback devices)
- System alarm display and reporting
- Voice computer hunt groups with optional DTMF feedback tones

Trunk Features

- Auto trunks and trunk groups (restricted to accessing a single trunk on KF-rated systems)
- Automatic incoming trunk answering
- Dual-tone multi-frequency (DTMF) or dial-pulse signaling
- Loop start and/or ground start compatibility
- Hybrid balancing (ideal, loaded, or unloaded) for optimal CO trunk performance
- CO trunk receive and transmit adjustments for optimal voice volume levels
- Relaxed ring detection (ground start trunks on LGCs only)
- Outgoing-access, allowed-answer, and ring-in assignments on a station-by-station basis (day lists and night lists)
- Day and night modes of operation (by tenant group)
- Day and night toll restriction on a station-by-station basis (including provisions for eight area/office code
restriction user groups and PBX, absorbed-digit, and equal access dialing)

- Least-Cost Routing (LCR) (may be programmed on a station-by-station basis to be transparent to the user) - not available in the KF-rated, Extended plus TI and E&M software package
- System-wide Call Privacy Release option
- Trunk reseize capability on a station-by-station basis

- Direct Inward System Access (DISA) - in the Extended and Extended plus TI and E&M software packages, DISA lines can have toll restriction class of service similar to station toll restrictions
- * Automated attendant - available only in the Extended and Extended plus TI and E&M software packages
- Basic TI trunk emulation
- Basic E&M networking (tie trunks)
- Direct inward dialing (DID) trunks
- Flexible DID ring-in assignments
- Programmable wink, immediate, or delay start options for DID and E&M trunks
- Toll Security with weekly limits for 7- and 10-digit and/or operator-assisted and international calls - available only in the Extended and Extended plus TI and E&M software packages

General Station Features

- Programmable feature codes for easy station operation
- Call privacy/privacy release
- Station-to-station intercom calls
- Off-Hook Voice Announce (OHVA) calls (the ability to place or receive OHVA calls depends on the type of station instrument used, and may be enabled/disabled on a station-by-station basis)
- Inter-station messages and message cancel
- Station exchange
- Ring intercom always
- Private intercom call override
- Automatic camp on to busy stations, trunks, and LCR (ability to camp on to LCR may be disabled on a station-by-station basis)
- Busy trunk/station callback (queue)
- Individual hold
- Call splitting
- Hold recall

- Call waiting
- Call transfer to outside telephone numbers and extension numbers
- Transfer to hold
- Transfer recall
- Reverse transfer and group call pick-up
- Conference calls - capacity ranges from 10 simultaneous three-party conferences to four simultaneous 6-party conferences
- System forwarding (routes calls based on the type of call and the status of the intended station)
- Call forward to extension numbers and hunt group pilot numbers
- Call forward to outside telephone numbers
- System speed dialing (including non-display and tenant-specific numbers) - can be programmed to override station class of service
- Station speed dialing
- Redial (last number dialed or, at keysets only, last number saved)
- Do-not-disturb with customized messages (the ability to place a station in do-not-disturb may be enabled/disabled on a station-by-station basis)
- Cancel miscellaneous operations
- Hookflash (over all types of trunks)
- Hunt group remove/replace
- House phone
- Silent messaging (leaves a message at a station without placing an actual call)

B. KEYSET FEATURES

- Various digital and analog keyset models are available (for a complete listing of all the keyset models available and the optional equipment that may be installed on them, refer to pages 2-21 and 2-25 in SPECIFICATIONS)
- Digital keysets, AIM keysets, and Inter-Tel/DVK keysets allow the users to individually control voice and tone volume levels for intercom calls, outside calls, background music, etc.

* Liquid crystal display (LCD) (optional on some models) for viewing: numbers dialed; speeddial numbers; inter-station, do-notdisturb, and reminder messages; date/time; keyset identification; station programming; etc.

- Optional Data Port Module on IMX 12-/24-line keysets and Inter-Tel/DVK keysets for installing a modem-equipped data device (for simultaneous
voice/data communication), or for installing a loud ringing adapter (LRA) and signaling device(s)

- * Optional Personal Computer Data Port Module (PCDPM) on digital keysets for off-hook voice announce receive capability and to allow a digital DSS/BLF Unit and/or an optional Modem Data Port Module to be installed
- * Optional Modem Data Port Module (MDPM) on digital keysets for installing a modem-equipped data device (for simultaneous voice/data communication) or a single-line set -requires a PCDPM

- 12-key pushbutton keypad
- “Hot” keypad-allows dialing of feature codes, extension numbers, and trunk access codes without pressing the SPCL key or lifting the handset
- Up to 20 key maps for determining the exact layout and function of the keys
- Feature keys for one-key access to feature codes (some of the keys may be designated as user programmable)
- IC/CO speed-dial (SD) keys with light-emitting diode (LED) indicators
- Call appearance keys with LED indicators (for incoming call indication/access)
- Secondary call keys with LED indicators (show ring-in indications for the designated ‘Primary” station)
- Individual trunk keys with LED indicators (for incoming and outgoing call indication/access)
- Trunk group keys with LED indicators (for outgoing call access and trunk group status)
- Integrated speakerphone (allows handsfree operation on outside calls and intercom calls)
- Speakerphone on/off
- Slide-out directory card
- Ring and voice volume controls
- User-programmable ring tone
- Self-test function
- Hearing aid-compatible (HAC) handset
- Reversible baseplate and cradle hook for wall mounting
- * Optional headset
- * Optional handset amplifier
- * Background music (two sources)
- Microphone mute
- Handsfree answer enable/disable
- On-hook dialing/monitoring
- System hold
- Station call monitoring (hunt group supervisors only)
- Call barge (break through to a busy station)
- Do-not-disturb override (the ability to override do-not-disturb may be enabled/disabled on a station-by-station basis)
- Activity release feature (primarily intended for use with the Attendant Computer Console; entering this feature code terminates any current activity and returns the station to idle or dial tone)
- Page remove/replace
- Intercom (extension number) and outside (system speeddial number) directories — available only in the Extended and Extended plus T1 and E&M software packages
- Automatic intercom and/or outside call access

C. ENHANCED SINGLE-LINE SET (ESLS) FEATURES

- 12-key pushbutton keypad
- User-programmable feature keys for one-key access to feature codes
- Timed hookflash (FLASH) key
- Neon lamp for message waiting indication
- Ring volume control
- Selectable ring tone (HI or LO)
- Hearing aid-compatible (HAC) handset
- Reversible baseplate and cradle hook for wall mounting
- Selectable AC/DC ringer
- * Optional handset amplifier

D. SINGLELINE INSTRUMENT (SLI) FEATURES

- 12-key pushbutton keypad
- User-programmable feature keys for one-key access to feature codes
- Timed hookflash (FLASH) key
- Ring volume control
- Hearing aid-compatible (HAC) handset
- Reversible baseplate for wall mounting
- Selectable AC/DC ringer
- Optional message waiting indication tones
- * Optional handset amplifier
E. DIRECT STATION SELECTION_BUSY LAMP FIELD (DSS/BLF) UNITFEATURES

- Up to 50 keyset circuits may have units installed
- Each unit has 60 keys with LED indicators for one-key access to up to 60 extension numbers (the LEDs show the status of the assigned stations and/or hunt groups)
- Up to eight key maps for determining the layout and numbers accessed by the keys

F. ATTENDANT COMPUTER CONSOLE FEATURES

- IBM XT-, AT-, or 386-compatible computer
- CGA, EGA, or VGA monitor and Monitor Interface Card
- 122-key custom keyboard
- Headset operation
- Visual display of system call activity, system directory, system alarms, date and time, etc.
- Automatic call priority
- Quick, simple call answering and transfer

NOTE: For additional information on the Attendant Computer Console, along with detailed installation and programming instructions, refer to the manual included with the console.

G. ATTENDANT FEATURES

- System speed-dial number/name programming
- Remote canceling of do-not-disturb and call forward for stations served
- System alarm reporting/clearing
- Enable/disable system night mode
- Set date and time of day
- Attendant recall
- System do-not-disturb and reminder message programming
- Station feature programming (user name, tenant group, department, and attendant)
- Immediate off-hook voice announce (OHVA) calls (requires special programming and an Attendant Computer Console or a DSS/BLF Unit)
- Enable/disable background music to external paging speaker(s)
- Trunk maintenance feature for taking trunks out of service and placing them back in again
- SMDA report can be generated at any time by entering a feature code
H. MAXIMUM CAPACITIES

6.2 Some of the features have maximum capacities that are dependent on the availability of system channels and/or circuits. The features with such capacities are listed in the following table.

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-blocking voice channels/ports</td>
<td>220</td>
</tr>
<tr>
<td>Paging zones</td>
<td>10</td>
</tr>
<tr>
<td>External paging ports</td>
<td>9</td>
</tr>
<tr>
<td>Conference circuits available</td>
<td>32</td>
</tr>
<tr>
<td>Parties per conference</td>
<td>8</td>
</tr>
<tr>
<td>Simultaneous conferences</td>
<td>10a</td>
</tr>
<tr>
<td>System speed dialing</td>
<td></td>
</tr>
<tr>
<td>Numbers per system</td>
<td>400</td>
</tr>
<tr>
<td>Digits per number</td>
<td>32</td>
</tr>
<tr>
<td>Station speed dialing</td>
<td></td>
</tr>
<tr>
<td>Numbers per keyset = CO</td>
<td>10</td>
</tr>
<tr>
<td>Numbers per keyset = IC</td>
<td>10</td>
</tr>
<tr>
<td>Numbers per single-line set</td>
<td></td>
</tr>
<tr>
<td>CO and/or IC</td>
<td>10</td>
</tr>
<tr>
<td>Digits per entry = CO</td>
<td>16</td>
</tr>
<tr>
<td>Digits per entry = IC</td>
<td>4b</td>
</tr>
<tr>
<td>Redial numbers per station</td>
<td>1</td>
</tr>
<tr>
<td>Digits per number</td>
<td>48</td>
</tr>
<tr>
<td>LCR</td>
<td></td>
</tr>
<tr>
<td>Route groups</td>
<td>19</td>
</tr>
<tr>
<td>Facility groups</td>
<td>24</td>
</tr>
<tr>
<td>Trunk groups per facility group</td>
<td>47</td>
</tr>
<tr>
<td>Dial rules (16 digits each)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
</tr>
<tr>
<td>Programmable</td>
<td>29</td>
</tr>
<tr>
<td>Facility group callback requests per system</td>
<td>50</td>
</tr>
<tr>
<td>Camp on by a station</td>
<td>1</td>
</tr>
<tr>
<td>Stations camped on to a station</td>
<td>255</td>
</tr>
<tr>
<td>Stations camped on to a tmnk group</td>
<td>240</td>
</tr>
<tr>
<td>Inter-station messages per system</td>
<td>286</td>
</tr>
<tr>
<td>Programmable reminder messages</td>
<td>20</td>
</tr>
<tr>
<td>Message requests per system</td>
<td>120</td>
</tr>
<tr>
<td>Do-not-disturb messages</td>
<td>20</td>
</tr>
<tr>
<td>Messages per system</td>
<td>256</td>
</tr>
<tr>
<td>Ring-in/allowed-answer patterns</td>
<td>40</td>
</tr>
<tr>
<td>System forwarding paths</td>
<td></td>
</tr>
<tr>
<td>Paths per station</td>
<td>200</td>
</tr>
<tr>
<td>Points per path</td>
<td>3</td>
</tr>
<tr>
<td>Points per path</td>
<td>4</td>
</tr>
<tr>
<td>Toll restriction user groups</td>
<td>8</td>
</tr>
<tr>
<td>Extended area codes per group</td>
<td>4</td>
</tr>
<tr>
<td>Allowed long distance numbers</td>
<td>20</td>
</tr>
<tr>
<td>Digits per number</td>
<td>10</td>
</tr>
<tr>
<td>Alternate carrier numbers</td>
<td>20</td>
</tr>
<tr>
<td>Digits per number</td>
<td>10</td>
</tr>
<tr>
<td>Account codes</td>
<td></td>
</tr>
<tr>
<td>Forced</td>
<td>256</td>
</tr>
<tr>
<td>Standard</td>
<td>128</td>
</tr>
<tr>
<td>Class-of-service</td>
<td>256</td>
</tr>
<tr>
<td>Digits per code</td>
<td>8</td>
</tr>
<tr>
<td>SMDA account codes</td>
<td>255c</td>
</tr>
<tr>
<td>Attendants</td>
<td></td>
</tr>
<tr>
<td>Attendant Computer Consoles</td>
<td>256</td>
</tr>
<tr>
<td>DSS/BLF-equipped circuits</td>
<td>50</td>
</tr>
<tr>
<td>Extension numbers per DSS/BLF Unit</td>
<td>60</td>
</tr>
<tr>
<td>Hunt groups</td>
<td></td>
</tr>
<tr>
<td>Per system</td>
<td>20</td>
</tr>
<tr>
<td>Stations per hunt group</td>
<td>480d</td>
</tr>
<tr>
<td>Announcement stations per hunt group</td>
<td>3</td>
</tr>
<tr>
<td>Overflow stations per group</td>
<td>1</td>
</tr>
<tr>
<td>Overflow counts</td>
<td>0–127e</td>
</tr>
<tr>
<td>Tenant groups</td>
<td></td>
</tr>
<tr>
<td>Departments per tenant group</td>
<td>8</td>
</tr>
<tr>
<td>Trunks</td>
<td></td>
</tr>
<tr>
<td>Auto trunks</td>
<td>184</td>
</tr>
<tr>
<td>CO/E&M trunk groups</td>
<td>47</td>
</tr>
<tr>
<td>Trunks per group</td>
<td>184</td>
</tr>
<tr>
<td>DID trunk groups</td>
<td>11</td>
</tr>
<tr>
<td>Trunks per group</td>
<td>184</td>
</tr>
<tr>
<td>DID entries</td>
<td>400f</td>
</tr>
<tr>
<td>Entries per DID group</td>
<td>400f</td>
</tr>
<tr>
<td>Map group assignments</td>
<td></td>
</tr>
<tr>
<td>Keyset</td>
<td>20</td>
</tr>
<tr>
<td>DSS/BLF</td>
<td>8</td>
</tr>
<tr>
<td>Secondary call key stations per primary station</td>
<td>10</td>
</tr>
<tr>
<td>Secondary call keys per station</td>
<td>16</td>
</tr>
</tbody>
</table>

a. 3-party
b. If using three-digit extension numbers, an extension number can be preceded with a pound (#) to speed dial private intercom calls to the station. Or, a "4" (the default feature code for reverse transfer) may be entered before a station extension number or hunt group pilot number to quickly reverse transfer (pick up) calls from that station or hunt group.

c. Plus 1 overflow
d. As many as desired until a total of 480 for all hunt groups is reached
e. Or unlimited
f. As many as desired until a total of 400 for all DID trunk groups is reached
SPECIFICATIONS

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>2-2</td>
</tr>
<tr>
<td>2. Cabling And The Main Distribution Frame (MDF)</td>
<td>2-4</td>
</tr>
<tr>
<td>A. Station Connections</td>
<td>2-4</td>
</tr>
<tr>
<td>B. Trunk Connections</td>
<td>2-5</td>
</tr>
<tr>
<td>3. Equipment Cabinet</td>
<td>2-6</td>
</tr>
<tr>
<td>A. Equipment Cabinet Description</td>
<td>2-6</td>
</tr>
<tr>
<td>B. Functional Description</td>
<td>2-6</td>
</tr>
<tr>
<td>C. Environmental Requirements</td>
<td>2-8</td>
</tr>
<tr>
<td>D. System Power Supply</td>
<td>2-8</td>
</tr>
<tr>
<td>E. Circuit Cards</td>
<td>2-10</td>
</tr>
<tr>
<td>4. Station Instruments</td>
<td>2-21</td>
</tr>
<tr>
<td>A. IMX 256 Keysets</td>
<td>2-21</td>
</tr>
<tr>
<td>B. GMX-256 Keysets</td>
<td>2-25</td>
</tr>
<tr>
<td>C. IMX 256 DSS/BLF Units</td>
<td>2-27</td>
</tr>
<tr>
<td>D. GMX-256 DSS/BLF Units</td>
<td>2-28</td>
</tr>
<tr>
<td>E. Attendant Computer Consoles</td>
<td>2-28</td>
</tr>
<tr>
<td>F. Single-Line Sets</td>
<td>2-29</td>
</tr>
<tr>
<td>G. Off-Premises Extensions (OPXs)</td>
<td>2-30</td>
</tr>
<tr>
<td>H. Playback Devices</td>
<td>2-30</td>
</tr>
<tr>
<td>5. Additional System Equipment</td>
<td>2-31</td>
</tr>
<tr>
<td>A. Personal Computer (PC) For On-Site Or Stand-Alone/Remote</td>
<td>2-31</td>
</tr>
<tr>
<td>Programming</td>
<td>2-31</td>
</tr>
<tr>
<td>B. Programming PC And SMDR/SMDA Output Device Requirements</td>
<td>2-31</td>
</tr>
<tr>
<td>C. System Battery Back-Up</td>
<td>2-32</td>
</tr>
<tr>
<td>D. Additional Information</td>
<td>2-32</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 This section of the manual describes the following 256 System hardware:
- Cabling and the Main Distribution Frame (MDF)
- Equipment Cabinet
- Power Supply
- Circuit Cards
- Station Instruments
- Additional System Equipment

1.2 The 256 System has 16 slots available for station and trunk cards. The maximum number of stations and trunk9 that can be installed depend on the number and type of cards, station instruments, and power supply modules used. For example, there could be as many as 184 trunks installed (using one Keyset Card [required], four T1 Cards [the maximum allowed], and 11 other-type trunk cards). Or, there could be as many as 256 stations (using a combination of digital keysets, 8-line IMX AIM keysets, and single-line sets).

1.3 The trunks and stations are controlled by the circuit cards in the equipment cabinet.

1.4 A wide variety of station instruments can be used on the Inter-Tel IMX and GMX-256 Systems, including:

IMX 256 Digital Station Instruments
- Standard Digital Keysets (also referred to as Standard Digital Terminals) - display and non-display
- Executive Digital Keysets (also referred to as Executive Digital Terminals) - display only
- Digital Direct Station Selection/Busy Lamp Field (DSS/BLF) units

IMX 256 Analog Station Instruments
- 24-Line AIM Keysets (display only)

GMX-256 Analog Station Instruments
- Inter-Tel/DVK 24-Line Keysets (standard and display)
- Inter-Tel/DVK 12-Line Keysets (standard and display)
- Inter-Tel/DVK 8-Line Keysets (standard and display)
- GMX 24-Line Keysets (standard and display)
- GMX 12-Line Keysets (non-display only)
- GX 24-Line Keysets (standard and display)
- Attendant Computer Consoles
- Inter-Tel/DVK Direct Station Selection/Busy Lamp Field (DSS/BLF) Units (single or tandem)
- GMX DSS/BLF Units (single only)
- GX DSS/BLF Units (single or tandem)
- GMX Single-Line Instruments (SLIs)
- GX SLIs
- Industry-Standard Single-Line, Dual-Tone Multi-Frequency (DTMF) Sets

NOTE: With the proper software package, the Inter-Tel GX station instruments can also be installed on the IMX 256 System. Refer to Appendix A in the back of the manual for complete information.

GMX-256 Analog Station Instruments
- Inter-Tel/DVK 24-Line Keysets (standard and display)
- Inter-Tel/DVK 12-Line Keysets (standard and display)
- Inter-Tel/DVK 8-Line Keysets (standard and display)
- GMX 24-Line Keysets (standard and display)
- GMX 12-Line Keysets (non-display only)
- GX 24-Line Keysets (standard and display)
- Attendant Computer Consoles
- Inter-Tel/DVK Direct Station Selection/Busy Lamp Field (DSS/BLF) Units (single or tandem)
- GMX DSS/BLF Units (single only)
- GX DSS/BLF Units (single or tandem)
- GMX Single-Line Instruments (SLIs)
- GX SLIs
- Industry-Standard Single-Line, Dual-Tone Multi-Frequency (DTMF) Sets

NOTE: For more information on the GX and GMX station instruments, refer to appendixes A and B in the back of this manual.
1.5 A wide variety of optional system equipment can also be installed, including:

- Off-premises extensions (OPXs) and OPX repeaters, refer to pages 2-30 and 3-30.
- Playback devices, see pages 2-30 and 3-95.
- Output device(s) for the Station Message Detail Recording (SMDR), error recording, and Station Message Detail Accounting (SMDA) features, refer to pages 2-31 and 3-98.
- System battery back-up (uninterruptable power supply or standby power supply), refer to page 2-32.
- Two external music sources, refer to pages 2-10 and 3-99.
- Power failure transfer equipment, refer to pages 2-11 and 3-30.
- Night switch equipment, refer to pages 2-11 and 3-30.
- General signaling devices, refer to pages 2-11 and 3-30.
- External paging speaker equipment, refer to pages 2-6 and 3-98.
- Doorbox, refer to page 2-32.
- Multi-port voice mail equipment, refer to page 2-32.
- Facsimile machine, refer to page 2-32.
- Talkback speaker equipment, refer to page 2-32.
2. CABLING AND DISTRIBUTION FRAME (MDF)

2.1 Connections between the trunks, station instruments, external equipment, and the station and trunk circuit cards are made at the MDF. The MDF is made up of industry-standard, 66M1-50-type terminal blocks and, if using T1 Cards, eight-conductor (RJ48C) modular jack assemblies. Bridging clips are used on all terminal blocks to complete the connections. As many as 17 blocks may be needed, including any combination of the following:

- **1-15** blocks for CO trunk terminations and Loop/ Ground Start Card (LGC) and/or Loop Start Card (LSC) terminations.
- **1-15** blocks for DID trunk terminations and Inward Dialing Card (IDC) terminations.
- **1-15** blocks for E&M trunk terminations and E&M Card (EMC) terminations.
- **1-16** blocks for station cabling terminations and Digital Keyset Card (DKSC), Keyset Card (KSC or RX-D), Single-Line Card (SLC), and/or Inward Dialing Card (IDC) terminations.
- **1** block for optional system equipment terminations and ROM Central Processing Unit (RCPU) Card terminations.

2.2 The MDF requires at least a 4 x 8-foot (1.2 x 2.4-meter), 3/4-inch plywood backboard. (Depending on the number of stations and trunks installed, a larger backboard may be necessary.) This will allow room to mount the terminal blocks, modular jack assemblies, and any optional peripheral equipment.

A. STATION CONNECTIONS

2.3 For each keyset, analog DSS/BLF Unit, Attendant Computer Console, single-line set, and playback device, three-pair (24 AWG) twisted cable is run from the station location to the MDF. All station cables are terminated on blocks at the MDF and on six-conductor modular jack assemblies at the station locations.

NOTE: It is recommended that three-pair twisted cable and six-conductor modular jacks be used for all station connections. This allows the various types of station instruments to be easily interchanged if necessary. However, if desired, ESLs, SLIs, single-line DTMF sets, and playback devices can be installed using one-pair twisted cable and four-conductor modular jacks.

2.4 Industry-standard, 25-pair telephone cable is used to connect the station blocks to their corresponding station cards. Female 50-pin amphenol-type connectors on the cables attach to the male connectors on the station cards in the cabinet.

2.5 To meet Part 15 of FCC Regulations, all station cables must be equipped with ferrite beads. Two ferrite "split" beads (two half beads) are installed on each 25-pair cable just below the amphenol-type connector. The beads help to reduce electromagnetic interference (EMI) and radio frequency interference (RFI).

NOTE: Each ferrite split bead, which is actually half of a full bead, is ordered individually (see REPLACEMENT PARTS for the part number). Two split beads are required to form one complete bead.
B. TRUNK CONNECTIONS

2.6 The CO, DID, and E&M trunks are terminated on telephone company RI-type blocks, as required by FCC regulations. Cross-connect cable is used to connect the RI-type blocks to the CO, DID, and E&M terminal blocks on the MDF. The trunks are then connected to the Loop/Ground Start Cards (LGCs), Loop Start Cards (LSCs), Inward Dialing Cards (IDCs), and/or E&M Cards (EMCs) using industry-standard, 25-pair cable. Female 50-pin amphenol-type connectors on the cables attach to the male connectors on the cards.

2.7 To meet Part 15 of FCC Regulations, all trunk cables must be equipped with ferrite beads. Two ferrite “split” beads (two half beads) are installed on each 25-pair cable just below the amphenol-type connector. The beads help to reduce electromagnetic interference (EMI) and radio frequency interference (RFI).

NOTE: Each ferrite split bead, which is actually half of a full bead, is ordered individually (see REPLACEMENT PARIS for the part number). Two split beads are required to form one complete bead.

2.8 T1 spans are terminated on telephone company RJ48C modular jacks (or on RI-type blocks that are then cross-connected to modular jack assemblies), as required by FCC regulations. Four-pair, non-reversing, mod-to-mod line cord is used to connect each T1 span directly to the T1 jack on the corresponding T1 Card. (Or, to use the optional DB15 connector instead, see page 3-20.)

2.9 It is recommended that gas discharge tubes with silicon avalanche suppressors be installed on all non-T1 trunks for lightning protection. (For T1 spans, the CSU itself provides the lightning protection.) Also, in areas with frequent occurrences of lightning, it is recommended that the cable between the telephone company termination and the gas discharge tubes be at least 75 feet long (the cable may be coiled up if desired).

2.10 The 256 System has the following trunk characteristics:

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss from:</td>
<td></td>
</tr>
<tr>
<td>CO to keyset</td>
<td>0dB(@1kHz, 0 ft.)</td>
</tr>
<tr>
<td>CO to single-line set</td>
<td>0dB(@1kHz, 0 ft.)</td>
</tr>
<tr>
<td>CO to CO</td>
<td>0dB(@1kHz, 0 ft.)</td>
</tr>
<tr>
<td>Ringer equivalence</td>
<td>0.6dB</td>
</tr>
<tr>
<td>Ringing voltage</td>
<td>40VRMS minimum</td>
</tr>
<tr>
<td>Ring frequency</td>
<td>17–63Hz</td>
</tr>
<tr>
<td>Loop current</td>
<td>20mA minimum</td>
</tr>
</tbody>
</table>

| PROTECTION | |
| Tip-to-ring | 400V transient |
3. EQUIPMENT CABINET

A. EQUIPMENT CABINET DESCRIPTION

3.1 The 256 equipment cabinet houses the system power supply, the Telecom Motherboard, a 17-slot card file assembly, and the circuit cards, including: ROM Central Processing Unit (RCPU) Card, Ti Cards (T1Cs), E&M Cards (EMCs), Loop/ground Start Cards (LGCS), Loop Start Cards (LSCs), Digital Keyset Cards (DKSCs), Keyset Cards (KSCs or KSC-Ds), Single-Line Cards (SLCs), and Inward Dialing Cards (IDCs).

3.2 Equipment cabinet dimensions are as follows:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>26.0 in. (66.0 cm.)</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>32.0 in. (81.3 cm.)</td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>23.0 in. (58.4 cm.)</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Empty</td>
<td>98 lbs. (44 kg.)</td>
<td></td>
</tr>
<tr>
<td>- Loaded</td>
<td>146 lbs. (66 kg.)</td>
<td></td>
</tr>
</tbody>
</table>

B. FUNCTIONAL DESCRIPTION

3.3 Together, the circuit cards in the equipment cabinet perform the switching activities for the system; detect incoming calls, process data-controlled features; control the interaction of station instruments, trunks, and intercom calls; etc.

3.4 The system is a microprocessor-controlled, pulse code modulation (PCM), time-division multiplex (TDM) system. Memory includes 512K bytes read-only memory (ROM) and 512K bytes random access memory (RAM) on the ROM Central Processing Unit (RCPU) Card. In addition, each keyset contains a microprocessor that communicates via a Keyset Card with the microprocessor on the RCPU Card.

3.5 The 256 circuitry and software combine to produce an "integrated switching matrix" of 256 time slots (8 PCM highways = 32 time slots). Of the 256 time slots, 32 are reserved for conferencing and four are reserved for DTMF decoders. If additional DTMF decoders are installed (up to four), additional time slots are also reserved. This leaves between 216 and 220 time slots available for voice channels. (For a diagram of the system voice channel allocation, refer to Figure 2-1 on page 2-7.) Therefore, the total number of non-blocking voice channels available ranges from 216 to 220 (depending on the number of additional DTMF decoders installed on the RCPU Card).

3.6 Whenever there is a change in the system's circuit card configuration, all equipped cards are assigned to one of the PCM highways (also called buses). The individual circuits on each card may use only those voice channels available on the assigned PCM highway. The software automatically distributes the cards to make the best possible use of the available voice channels.

3.7 If there is a large number of cards installed, two or more cards may be assigned to the same PCM highway. The voice channels on each PCM highway are then allocated to the assigned cards for outside calls, intercom calls, and pages on a first-come, first-served basis. Since each two-way conversation requires two voice channels, the maximum number of simultaneous two-way conversations available ranges from 108 to 110.

3.8 If, on a single PCM highway, there are more ports equipped than there are voice channels, there is a remote possibility that all the voice channels could be in use at one time (see Figure 2-1 on page 2-7). If this happens, a user attempting to place a call or page hears reorder tones and must try again (the system also generates an error message to indicate that no voice channels were available). Generally, a voice channel will be available on the second attempt.

NOTE: It is possible to equip more ports than there are available voice channels, especially when installing a number of T1 spans, single-line sets, digital keysets, or 8-line IMX AIM keysets installed two to a circuit. (In fact, the programmer can equip up to 256 ports.) For total non-blocking applications, it is necessary to limit the number of circuit cards installed in the cabinet. (Refer to PROGRAMMING, page 5-172, for information on designating certain circuit cards as non-blocking and generating voice channel allocation data for traffic analysis.)

3.9 As many as nine external paging ports can be used for connecting external paging speaker equipment. Each external paging port requires an available SLC, LGC, or LSC circuit.

NOTE: When installing external paging equipment on an LGC or LSC circuit, use a paging amplifier that provides talk battery. When installing external paging equipment on an SLC circuit, use a paging amplifier that does not provide talk battery.

CAUTION
Using a paging amplifier with talk battery on an SLC circuit will damage the card.

3.10 The 256 System has two music channels. If desired, two different music-on-hold sources (port 1 and port 2) may be connected to the RCPU Card. By entering a feature code, individual keyset users can choose to listen to background music from either of the two music sources. Internal users will also hear music from the selected source when on hold and when camped on. For outside callers, the source for the Music-On-Hold feature is assigned on a trunk group-by-trunk group basis.
3.11 The card slot on the far right (17th slot) of the cabinet is reserved for the RCPU Card. Other than that, any station or trunk card may be placed in any of the remaining 16 slots.

NOTE: Information on the type of card installed in each card slot must be entered through database programming. See page 5-170 in **PROGRAMMING**.

3.12 The Telecom Motherboard power cable, which comes already installed in the equipment cabinet, connects the system power supply to the Telecom Motherboard.

FIGURE 2-1. VOICE CHANNEL ALLOCATION

![Voice Channel Allocation Diagram](image)

NOTE: The above example shows a sample voice channel allocation for one **PCM** highway (voice bus) in a heavily-loaded equipment cabinet. The system has assigned one **T1** Card, one Single-Line Card, and one Inward Dialing Card to the same **PCM** highway. If all three cards are designated as “blocking” in database programming, the 48 circuits will vie for the 32 voice channels on a first-come, first-served basis. If, however, the **T1** Card is designated as “non-blocking,” the system will rebalance the cards so that the **T1** Card is assigned to a highway that has no more than 32 equipped ports. (Refer to **PROGRAMMING**, page 5-172, for information on designating certain circuit cards as non-blocking and generating voice channel allocation data for traffic analysis.)
ENVIROMENTAL REQUIMENTS

3.13 The equipment cabinet and the station instruments require the following environmental conditions:

<table>
<thead>
<tr>
<th>REQUIREMENTS</th>
<th>IN OPERATION</th>
<th>IN STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Cabinet)</td>
<td>32° to 104° F</td>
<td>–40° to 185° F</td>
</tr>
<tr>
<td></td>
<td>0° to 40° C</td>
<td>–40° to 85° C</td>
</tr>
<tr>
<td>(Station Instruments)</td>
<td>32° to 113° F</td>
<td>–40° to 185° F</td>
</tr>
<tr>
<td></td>
<td>0° to 45° C</td>
<td>–40° to 85° C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>5% to 95%</td>
<td>5% to 95%</td>
</tr>
<tr>
<td>(Non-condensing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td>up to 10,000 ft. (3,048 m.)</td>
<td>Up to 40,000 ft. (12,192 m.)</td>
</tr>
</tbody>
</table>

NOTE: It is recommended that the maximum operating temperature (as stated above) **never** be exceeded. Therefore, when **installing** the equipment cabinet and station instruments, allow a sufficient margin for error in case of air conditioning failure, routine mechanical maintenance, plant shutdown, etc. As a general guideline, if the conditions are suitable for office personnel, they are also suitable for all equipment and station instrument operation. A properly controlled environment will help to extend the operating life of the equipment.

3.14 While in operation, a fully-loaded equipment cabinet generates approximately 1,000 British Thermal Units (BTUs) of heat per hour. The maximum amount of heat generated per individual station instrument is 6.8 BTUs per hour.

NOTE: This information is provided so that any cooling needed to meet the proper environmental conditions (as listed in the chart) can be calculated.

D. SYSTEM POWER SUPPLY

3.15 The system power supply is installed to provide power to the circuit cards and to all stations. The power supply itself is comprised of a metal chassis with various modules installed.

3.16 The power supply **must** have an isolated, dedicated, 105–125VAC, 15A, 57–63Hz, single-phase commercial power source (for details, refer to the first NOTE on page 3-3 in INSTALLATION).

3.17 All systems are equipped with one Quad Module (+5V, –5V, +12V, and –12V) and one Master 30V Module. Depending on the number and type of **keysets** installed, one or two Slave 30V Modules may also be needed (see the following paragraph for details). If any AC-ringing single-line devices are to be used, a Ring Generator Module must be installed. If any SLCs, IDCs, LCSs, or EMCs are used, a –48V Module must be installed. KSCs, LSCs, and T1Cs do not use –48VDC. (Refer to REPLACEMENT PARIS for the part numbers of the various power supply modules.)

3.18 Based on the number of dual-circuit **8-line** IMX AIM **keysets and** other-type **keysets** installed, the following chart can be used to determine the number of Slave 30V Modules needed. (The programming PC will also display a message if an additional module is needed.) If it is determined that two Slave 30V Modules are needed, a version C power supply chassis and version C power supply modules must be used (see paragraphs 3.21 and 3.22).

$$\text{(S-line AMs X 0.0755) + (other analog keysets X 0.125) + (digital keysets X 0.060)} = y$$

If $y \leq 8$, only the Master 30V Module is required.

If $y > 8$, but $y \leq 16$, one Slave 30V Module is also required.

If $y > 16$, two Slave 30V Modules are also required.

3.19 Located on the front side of the power supply chassis are the ON/OFF power switch, a 10A or 15A fuse that isolates the AC power source from the system, and the removable cover plate.

3.20 Located on the back side of the power supply chassis are the AC power cable, all of the connectors for the various power cables, and a grounding lug to connect the equipment cabinet to an earth ground.

Power Supply Modules

3.21 Currently, there are three versions of power supply modules used on the 256 System: (A) part numbers 440.0102-0106, (B) part numbers 440.011% 0122, and (C) part numbers 440.0112–0115. (Refer to REPLACEMENT PARTS for a complete list of the part numbers.)

3.22 Version A and B power supply modules are compatible with each other, and they use the same chassis. However, due to numerous design enhancements, version C modules and chassis are not compatible with versions A and B. Either use all version A and B power supply modules and chassis, or use all version C modules and chassis. **Do not mix** the two types.
3.23 The version A Ring Generator Module has a 3 amp fuse, while all other version A power supply modules have 6 amp fuses. Maximum power outputs for each version A module are shown below.

<table>
<thead>
<tr>
<th>QUAD MODULE</th>
<th>48V MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5VDC, 18A</td>
<td>-48VDC, 5A</td>
</tr>
<tr>
<td>-5VDC, 4A</td>
<td></td>
</tr>
<tr>
<td>+12VDC, 6A</td>
<td></td>
</tr>
<tr>
<td>12VDC, 5A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MASTER</th>
<th>SLAVE 30V MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>+30VDC, 8A</td>
<td>+30VDC, 8A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RING GENERATOR MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>90VAC (RMS), 20W</td>
</tr>
<tr>
<td>Ring Frequency, 20Hz</td>
</tr>
</tbody>
</table>

NOTE: For easier power supply module removal, each version C power supply chassis is shipped with an extractor tool attached to the inside, front cover. The extractor tool may be used with version B and C modules only.

Voltage Surge and Spike Protection

3.25 To reduce the effects of AC voltage surges and spikes that may cause system malfunctions, false logic, and/or damage to the electronic components, a surge/spike protector is provided. (Refer to REPLACEMENT PARTS for the part number.) Its specifications are:

- Clamp voltage transients at 300VDC within 5 nanoseconds when exposed to waveforms as described in the ANSI/IEEE Standard C62.41-1980 (IEEE 587).
- Reduces RFI/EMI noise by at least 20dB at frequencies between 5kHz and 30MHz.

Battery Back-Up

3.26 To provide back-up power in the event of a power failure or brownout condition, the power supply can have optional battery back-up using a customer-provided uninterruptable power supply (UPS) unit or a standby power supply (SPS) unit. Refer to page 2-32 for more information.
E. CIRCUIT CARDS

3.27 In addition to the power supply, the equipment cabinet houses the Telecom Motherboard and the circuit cards that control and coordinate the functions of the system. Up to 17 cards may be connected to the Telecom Motherboard, including:

- ROM central Processing unit (RCPU) Card — required
- Keyset Card (DKSC, KSC, or KSC-D) — at least one is required
- Single-Line card (SLC)
- Inward Dialing Card (IDC)
- Loop/Ground Start Card (LGC)
- Loop Start Card (LSC)
- B&M Card (BMC)
- T1 Card (T1C)

- Refer to page 2-21 for station capacities.

3.28 Descriptions of the cards are given in the following paragraphs. Drawings of the cards are located in the INSTALLATION section.

ROM Central Processing Unit (RCPU) Card

3.29 The RCPU Card contains the main controlling microprocessor and associated control logic and memory circuits. It is under the control of a program, stored in the ROM, which is activated when the system is powered up. ROMs containing the system software are installed on the RCPU Card before it is installed in the equipment cabinet.

3.30 The RCPU Card contains the following system resources:

- Two R5-232-C (DB9) connectors (9-pin subminiature "D" male connectors) for connecting SMDR/SMDA output devices and/or a personal computer for programming the system database (see page 2-31 for requirements).

- Voltage test points for checking the system +5VDC, -5VDC, +12VDC, -12VDC, +30VDC, -48VDC, and AC ring voltage levels. To measure system voltage levels, voltmeter probes are inserted into the ground test point and the desired voltage test point. Refer to INSTALLATION, page 3-45, for details.

- LED indicators show main processor operation (CPU ACTIVE), major system alarms (MAJOR ALARM), minor system alarms (MINOR ALARM), database error occurrences (DATABASE ERROR), database back-up battery connection (BATTERY OFF), high power supply temperature (POWER ALARM), and external clock activity (EXTERNAL CLOCK ACTIVE). Refer to TROUBLESHOOTING for detailed LED information.

- Reset switch is used to manually reset the system during troubleshooting. This is a software reset (minor reset), not a hardware reset (major reset). Pushing this switch does the following:

 - Preserves the battery-backed database information, non-conference calls in progress, outside calls being dialed from keyset stations, inter-station messages, calls on individual hold, do-not-disturb messages, and reminder messages. A call on system hold is changed to stand-by hold at the station that placed it on hold.

 - Restores DTMF decoders, modem access, and speech channels, and resets the station clocks to match the system clock. Updates trunk key, DSS/BLF key, speed-dial key, and feature key lamp status.

 - Interrupts system operation, which disconnects pages in progress, calls ringing in, calls using the conference resources (as described on the next page), and calls using DTMF decoders. Commander calls are disconnected and queue requests are canceled.

 - Terminates system and user programming.

- Database back-up battery (3.6V, 1/2AA lithium battery) that can support the database for at least two months of accumulated system down time.

- Battery voltage test points and check button for checking the database back-up battery charge. If the battery voltage is not greater than 2.5VDC, replace the battery.

- Battery back-up jumper strap for activating the database back-up battery. The jumper strap should be placed in the ON position (over the top two pins) before the RCPU Card is installed. When the card is taken out of service for repair or storage, the jumper strap should be placed in the OFF position (lower two pins) to preserve the battery charge.

NOTE: Placing the BATTERY jumper strap in the OFF position erases the database.

- Male 50-pin amphenol-type connector for connecting up to two music sources, a power failure transfer relay, and a general purpose relay:

 - Up to two external music sources (such as radios, tape players, etc.) may be connected to the RCPU Card. AGC circuits on the RCPU Card automatically hold the volume of each music source to a predetermined level that is slightly lower than the normal voice volume, as required by FCC regulations. Optimal input level is 0.775VRMS (0dB). For installation instructions, see page 3-99.

- Refer to page 3-99 for station capacities.

- Refer to page 2-21 for station capacities.
Relay 1, which is the power failure transfer relay (and cannot be changed), can be used to connect one or more single-line sets to predetermined CO trunks in the event of processor card failure or a power failure. (If ground start trunks are used, the single-line set must be equipped with a ground start button.) The output is a normally-open DPDT relay that is held closed during system operation. Additional equipment needed includes a customer-provided PFT relay card and card mounting case. The RCPU Card relay contact ratings are listed below. (See also page 2-32.)

RCPU Card Relay Contact Ratings

<table>
<thead>
<tr>
<th>Current</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6A</td>
<td>125VAC</td>
</tr>
<tr>
<td>0.6A</td>
<td>110VDC</td>
</tr>
<tr>
<td>2.0A</td>
<td>30VDC</td>
</tr>
</tbody>
</table>

Relay 2 can be used to activate an external signaling device when a call rings in on assigned CO trunks. The dry contacts follow the normal keyset CO ringing cycle (two seconds on/four seconds off). Ring in for the relay can be programmed for day and/or night modes.

Or, relay 2 can be used for night switch to turn on or off lights, an alarm system, or other devices. The relay, which is activated when an attendant in the designated tenant group places the system in night mode, causes the swing connection to move from the “break” to the “make” position.

Or, relay 2 can be used for activating external paging. The relay, which is activated when the paging zone to which it is assigned is accessed by a station user, causes the swing connection to move from the “break” to the “make” position. This contact can be used to activate the microphone input of an externally-mounted paging amplifier.

- **Music-on-hold (MOH) jumper** straps for enabling one or both of the external music sources that are heard by callers when they are placed on hold or camped on. If connecting an external music source, place the associated jumper strap in the ON position (over the top two pins). Then, in the database, each trunk group can be assigned music port 1, music port 2, silence, or tick-tones. Refer to PROGRAMMING, page 5-103.

- **300-baud and 1200-baud modem interface** for remote programming. When the system is in the default configuration, the 300-baud Bell modem is assigned extension number 270, the 1200-baud Bell modem is 271, the 300-baud CCITT modem is 272, and the 1200-baud CCITT modem is 273. Any attendant can transfer a call to the modem, or it can be accessed directly using DISA.

- **Conferencing resources** for connecting up to 32 parties in multiple conferences. There can be up to 10 simultaneous three-way conferences or four simultaneous eight-party conferences. Except for the fact that there can be only eight parties involved in a single conference, any combination using the 32 dedicated conference circuits is possible. The conferencing resources also support the Call Forward, Call Transfer, Station Call Monitoring, and DISA features when two trunks are connected. Conferencing utilizes a zero dB loss function so that there is no substantial loss in voice volume no matter how many people are in the conference.

- **DTMF decoding circuits** (four) are used when single-line sets are dialing and when features such as DISA and Automated Attendant are used. They are also used for the Unsupervised CO Call Continuation feature (as described in paragraph 4.88 on page 4-37). These four decoders convert DTMF signals to the digital codes used by the system. They are in use only while the dialed number is being processed, not for the duration of the call. If all four DTMF decoders are busy, the user may camp on.

NOTE: If necessary, up to four additional DTMF decoding circuits can be added to the RCPU Card by installing DTMF Expansion Chips (two chips per circuit; four chips per kit). Refer REPLACEMENT PARIS for the part number.

- **Tone generating circuit** generates DTMF tones whenever needed by the system (for example, when a station user uses one of the system auto-dial features, such as LCR, Call Forward To The public Network, Station or System Speed Dialing, etc.). The circuit is also used to produce all of the system tones (busy, reorder, do-not-disturb, etc.) heard by digital keyset, single-line set, DISA, and automated attendant users. (Analog keysets generate their own system tones.)

- **A-law/mu-law jumper** strap for choosing the method of encoding sampled audio waveforms used in pulse code modulation systems. Domestic telephone companies use the mu-law method. The a-law method is widely used outside of North America.
Keyset Cards (DKSCs, KSCs, or KSC-Ds) and Single-Line Cards (SLCs)

331 Station instruments are connected to the station cards in the equipment cabinet. Digital keysets are connected to Digital Keyset Cards. Analog keysets, analog DSS/BLF Units, and Attendant Computer Consoles are connected to Keyset Cards. Enhanced Single-Line Sets (ESLSs), Single-Line Instruments (SLIs), industry-standard single-line DTMF sets, and playback devices are connected to either Single-Line Cards (AC-ringing instruments only) or Inward Dialing Cards (AC or DC). For more information on Inward Dialing Cards, refer to page 2-15.

Digital Keyset Card (DKSC): Each DKSC provides up to 16 circuits for connecting digital keysets. Each circuit has a self-correcting thermistor to protect the system from damage due to a short circuit in the station cabling. If a short circuit causes a thermistor to open, it will automatically close when the short is removed.

3.32 Digital Keyset Card (DKSC): Each DKSC provides up to 16 circuits for connecting digital keysets. Each circuit has a self-correcting thermistor to protect the system from damage due to a short circuit in the station cabling. If a short circuit causes a thermistor to open, it will automatically close when the short is removed.

3.33 Up to 50 digital keysets may be equipped with up to four digital DSS/BLF Units each. The units are connected in series to the PC Data Port Module (PCDPM) on the back of the corresponding keyset. Unlike analog units, digital DSS/BLF Units do not require station cabling separate from the keyset’s cabling; instead, they are powered by their own AC transformer.

3.34 Each DKSC has a green LED (CARD ON-LINE) to indicate the card’s functional readiness and 16 green LEDs (CIRCUIT BUSY) to indicate whether any circuit on the card is busy (see Figure 3-30 on page 3-48).

3.35 Each DKSC comes equipped with one Digital Signal Processor (DSP) that provides resources for up to 12 shared speakerphones. If desired, a second DSP can be installed to provide an additional 12 shared speakerphone resources.

NOTE: For information on using shared speakerphones for digital keysets, see page 4-40 in FEATURES.

Keyset Card (KSC or KSC-D): Each KSC (or KSC-D, see the following note) provides up to eight circuits for connecting analog keysets, analog DSS/BLF Units, and Attendant Computer Consoles to the system. Up to 50 KSC circuits can be used for installing analog DSS/BLF Units. As many as four analog units can be connected to a single card. Some KSCs have a 2A, 250VAC, AGC 2 (fast-acting) fuse to protect the system from damage due to a short circuit in the station cabling. Newer version KSCs have eight self-correcting thermistors (one for each circuit) instead of the fuse. If a short circuit causes a thermistor to open, it will automatically close when the short is removed.

NOTE: To install any 8-line IMX AIM keysets two to a circuit, the new “dual-circuit” version Keyset Card (KSC-D) must be used (see REPLACEMENT PARTS for the part number). To install 8-line AIM keysets one to a circuit, either the KSC or the KSC-D can be used.

3.37 Each KSC has an LED (CARD ACTIVE) to indicate the card’s functional readiness. In addition, each individual circuit on each card has an LED to indicate the circuit’s activity (lit green) or failure (lit red).

Single-Line Card (SLC): SLCs are used for connecting AC-ringing ESLSs, SLIs, single-line DTMF sets, and playback devices. They can also be used for connecting external paging equipment. Off-premises stations cannot be legally connected to SLCs; instead, Inward Dialing Cards (IDCs) must be used (see page 2-15). Some SLCs have a fuse to protect the -48V output. This fuse cannot be replaced in the field. If the fuse is defective, the entire card must be sent in for repair. Newer version SLCs have a self-correcting thermistor instead of the fuse. If a short circuit causes a thermistor to open, it will automatically close when the short is removed.

NOTE: For optimal performance, it is recommended that voice mail units and automated attendant playback devices be installed on IDC circuits rather than SLC circuits. Doing this mutes any DTMF digits automatically dialed by the system (e.g., those generated when transferring or forwarding an outside caller to voice mail).

3.39 Each SLC has an LED (CARD ACTIVE) to indicate the card’s functional readiness. In addition, each individual circuit on each card has an LED to indicate the circuit’s activity (lit green) or failure (lit red).

Station configuration: Station instrument configuration depends on the number and type of station cards installed in the equipment cabinet. There can be any combination of station cards allowing combinations of keysets in eight-station increments or 16-station increments if using digital keysets or 8-line dual-circuit IMX AIM keysets and single-line sets or playback devices in increments of 16 (using SLCs) or in increments of eight (using IDCs).

NOTE: At least one Keyset Card (DKSC, KSC, or KSC-D) must be installed to provide an attendant (equipped with a display keyset or an Attendant Computer Console) that can receive system alarm messages, program system data, act as the attendant for unsupervised CO recalls, etc.

3.41 Each station card circuit is assigned a hardware address number according to the card’s slot in the equip...
ment cabinet and the location of the circuit on the card. For example, circuit 1.2 is the second circuit on the first card installed in the equipment cabinet.

NOTE: In the default database configuration, there are no keyset circuits assigned for 8-line dual-circuit IMX AIM keysets installed two to a circuit (e.g., 1.2A and 1.2B).

3.42 When the system is first powered up, the default configuration is used to assign extension numbers to the station circuits. On IMX 256 Systems, card slots 1-4 are considered KSCs or KSC-Ds, slots 5-6 are DKSCs, slots 7-g are unassigned, slots 9-12 are SLCs, and slots 13-16 are LGCs. On GMX-256 Systems, card slots 1-8 are considered KSCs or KSC-Ds, slots 9-12 are SLCs, and slots 13-16 are LGCs. Changes to the default configuration can be made through database programming.

Refer to PROGRAMMING, page 5-170, for more information.

3.43 The system assigns extension number 100 to station circuit 1.1, extension number 101 to station circuit 1.2, and so on to match the initial configuration. Circuit 1.1 is equipped as the primary attendant’s keyset when the system is in the default configuration. If desired, the circuits can be assigned different extension numbers and/or four-digit extension numbers through database programming. Refer to PROGRAMMING, page 5-58, for more information.

NOTE: When 8-line IMX AIM keysets are assigned to dual circuits, the “B” circuits do not have extension numbers until they are assigned in database programming.
Loop/Ground Start Cards (LGCs) and Loop Start Cards (LSCs)

3.44 Each LGC and LSC has circuitry for up to eight trunks. LGC and LSC circuits may also be used for installing external paging equipment. LSCs can only have loop start trunks connected to them. LGCs can have either loop start or ground start trunks. Each individual circuit on the LGC has two jumper straps for designating whether the circuit is loop start or ground start. Individual trunks may be designated as either loop start or ground start in database programming.

NOTE: For each LGC circuit, both jumper straps must be in the proper (LS or GS) position. If the strap settings are mixed, or if one or both of the straps is missing, the circuit will not function properly. Also, when setting the straps, note the unique ordering of the LGC circuits as shown in Figure 3-34 on page 3-55.

3.45 For optimal CO trunk transmission performance, each LGC and LSC circuit should be “hybrid balanced” in database programming. Hybrid balancing refers to selecting the balance network — ideal, loaded, or unloaded—that best matches the trunk’s impedance. Refer to PROGRAMMING, page 5-147, for details.

3.46 Should voice transmit or voice receive volume problems occur, the receive gain and/or the transmit gain for individual trunks can be adjusted in database programming. Refer to PROGRAMMING, page 5-103, for additional information.

3.47 Each LGC and LSC has 16 specially designed fuses soldered to the card to protect it from large voltage surges due to lightning. If a fuse is open (blown), it may mean that other parts of the card have also been damaged. For this reason, open fuses must not be replaced in the field. Instead, the entire card must be returned for testing and possible repair. Failure to follow this policy will void the warranty on the card.

3.48 When the system is in the default configuration, all trunks are configured for M’MF signaling. If necessary, some or all of the trunks can be reprogrammed for dial-pulse signaling through database programming. Although both the LGC and the LSC can use dial-pulse trunks, the pulse circuitry on the LGC is more sophisticated and may provide better performance in certain situations.

NOTE: Single-line sets generate their own DTMF tones when dialing. If used on dial-pulse trunks, both the DTMF tones generated by the phone and the dial-pulse signals generated by the system are sent to the central office, which may be a problem if the central office recognizes both. To avoid this problem, single-line sets should be restricted to LCR only when using dial-pulse trunks. Then, only the LCR-generated dial-pulse signals will be sent to the central office.

3.49 With loop start trunks, it is sometimes possible for the user to attempt to place an outgoing call and instead be connected to an incoming call on the same trunk. This unintended connection, called glare, is due to the natural switching delay characteristics of the telco equipment and the system. Previously, if the user did not dial a valid outside number, the glare connection was dropped. The software now allows the incoming call to remain connected, while still protecting against possible toll fraud. A new system-wide programmable option, called Drop Incomplete Outgoing Calls, has been added to the Miscellaneous System-Wide information screen, as shown on page 5-67 in PROGRAMMING.

3.50 The CO circuits are assigned hardware address numbers according to the card’s slot in the equipment cabinet and the location of the circuit on the card. For example, when using the initial configuration (see paragraph 3.42), CO circuit 13.4 is the fourth circuit on the 13th card (an LGC) installed.

3.51 When the system is in the default configuration, the first four trunk keys on each keyset are assigned as call keys for incoming call indication/access. (The ANSWER key may also be used to access incoming calls.) No individual trunk keys or trunk group keys are assigned. Key assignments can be designated in database programming. Refer to PROGRAMMING, page 5-44, for more information.

3.52 CO trunk groups may be assigned on a tenant-by-tenant basis. Up to 47 CO trunk groups can be distributed among the tenant groups. Refer to FEATURES, page 4-15, for more information.
Inward Dialing Cards (IDCs)

3.53 IDCs are used for connecting direct inward dialing (DID) trunks and off-premises single-line stations. Like SLCs (described on page 2-12), IDCs may also be used for connecting on-premises single-line sets and playback devices. In fact, for optimal performance, it is recommended that voice mail units and automated attendant playback devices be installed on IDC circuits rather than SLC circuits. Doing this mutes any DTMF digits automatically dialed by the system (e.g., those generated when transferring or forwarding an outside caller to voice mail).

NOTE: IDCs do not support message waiting applications. If single-line sets with message waiting lamps are installed on IDCs, the lamps will not function.

3.54 On older-version IDCs, each IDC circuit has a 2-pin AC ENABLE jumper strap that must be removed when installing a DID trunk or a DC-ringing station. AC-ringing off-premises stations can be connected directly to IDC circuits provided that both the optional -48V Module and the optional Ring Generator Module are installed in the power supply chassis (external HVRA Units, power supplies, and ring generators are not needed).

3.55 On newer-version IDCs, each IDC circuit has a 3-pin RING SELECT jumper strap that must be set in either the AC/OPX position (over the bottom two pins) or the DC/DID position (over the top two pins).

NOTE: When setting the jumper straps on either version card, note the unique ordering of the IDC circuits as shown in Figure 3-33 on page 3-53.

3.56 Each IDC can have up to eight DID trunks or up to eight single-line sets, or any combination of the two.

3.57 DID trunks may be programmed to ring in to individual stations, multiple stations, or hunt groups. Or, they may be programmed to ring in at a single station, the DID call will follow any programmed forward.

3.58 DID trunk groups may be assigned on a tenant-by-tenant basis. Up to 11 DID trunk groups can be distributed among the tenant groups. Refer to FEATURES, page 4-15, for more information. Also, DID trunk groups may be designated as immediate start, wink start, or delay start in database programming.

3.59 Each IDC has 16 specially-designed fuses soldered to the card to protect it from large voltage surges due to lightning. If a fuse is open (blown), it may mean that other parts of the card have also been damaged. For this reason, open fuses must not be replaced in the field. Instead, the entire card must be returned for testing and possible repair. Failure to follow this policy will void the warranty on the card.
E&M Cards (EMCs)

3.60 E&M trunks, also called “tie” lines, are special trunks that tie individual telephone systems together. They allow the users of either telephone system transparent access to the users and resources of the other telephone system, often for less than what it would cost to use normal long distance service.

3.61 E&M (literally “ear” and “mouth”) refers to the pair of wires that carry the signals between the trunk equipment and a separate signaling unit. The M lead transmits a ground or battery condition to the signaling equipment, while the E lead receives open or ground signals from the signaling equipment.

3.62 If designated for “auto ring-in,” E&M trunks may be programmed to ring in to individual stations, multiple stations, or hunt groups on the other telephone system. (If programmed to ring in at a single station, the E&M call will follow any programmed forward.)

3.63 If designated for “dial repeating,” E&M trunks may be programmed to ring in as DISA calls.

3.64 Additionally, LCR may be used to turn what would normally be a long distance call into a local call. For example, when a call is made from one telephone system to a long distance number that is local to the other telephone system, LCR could be programmed to route the call through the E&M network to make a local call from the other telephone system.

3.65 Each EMC has circuitry for up to four E&M trunks. Each individual circuit on the EMC has two jumper straps, one for selecting the signaling type (1, 2, 4, or 5) and one for selecting the audio type (2-wire or 4-wire). The signaling and audio type for each circuit must also be programmed in the database.

3.66 Although not currently operational, the EMC is equipped with a “make-busy” switch for removing all circuits on the card from service and placing them back in again. The switch is reserved for possible future use.

3.67 For optimal E&M trunk transmission performance, each 2-wire EMC circuit should be “hybrid balanced” in database programming (4-wire circuits cannot be hybrid balanced). Hybrid balancing refers to selecting the balance network — ideal, loaded, or unloaded — that best matches the trunk’s impedance. Refer to PROGRAMMING, page 5-147, for details.

3.68 Should voice transmit or voice receive volume problems occur, the receive gain and/or the transmit gain for individual E&M trunks can be adjusted in database programming. Refer to PROGRAMMING, page S-103, for additional information.

3.69 Each EMC has 24 specially designed fuses soldered to the card to protect it from large voltage surges due to lightning. If a fuse is open (blown), it may mean that other parts of the card have also been damaged. For this reason, open fuses must not be replaced in the field. Instead, the entire card must be returned for testing and possible repair. Failure to follow this policy will void the warranty on the card.

3.70 When the system is in the default configuration, all E&M trunks are configured for DTMF signaling and dial repeating. If necessary, some or all of the trunks can be reprogrammed for dial-pulse signaling and/or auto ring-in through database programming.

3.71 The E&M circuits are assigned hardware address numbers according to the card’s slot in the equipment cabinet and the location of the circuit on the card. For example, E&M circuit 13.4 refers to the fourth circuit on the 13th card (an EMC) installed in the equipment cabinet.

3.72 When the system is in the default configuration, the first four trunk keys on each keyset are assigned as call keys for incoming call indication/access. (The ANSWER key may also be used to access incoming calls.) No individual E&M trunk keys or trunk group keys are assigned. Key assignments can be designated in database programming. Refer to PROGRAMMING, page 5-44, for more information.

3.73 E&M trunk groups may be assigned on a tenant-by-tenant basis. Up to 47 E&M trunk groups can be distributed among the tenant groups. Refer to FEATURES, page 4-15, for more information. Also, E&M trunk groups may be designated as immediate start, wink start, or delay start in database programming.
T1 Cards (T1Cs)

NOTE: The acronym for the T1 Card — T1C — should not be confused with the special T1C digital carrier system (which operates at twice the data rate of the standard T1 carrier system). The 256 T1 Card does not support T1C.

3.74 The term “T1” refers to a specific digital method of transmitting voice and data; it is the basic 24-channel time-division multiplex (TDM), 1.544 Mb/s pulse code modulation (PCM) system as used in the United States.

3.75 The T1 standard, which was developed as a method of reducing cabling and increasing transmission quality between distant central offices, is actually a subset of a multi-level Digital Signal (DS) scheme. In popular usage, T1 refers to the DS1 rate as transmitted via any type of media (e.g., copper wire, fiber optics, or microwave).

3.76 Since each T1 span actually consists of 24 individual circuits (or channels) multiplexed together, it is often less expensive to purchase a single T1 span than it is to purchase multiple individual trunks. Each of the 24 T1 circuits can be programmed as a loop start, ground start, DID, E&M, or OPX trunk (or as unequipped). Any combination is possible.

3.77 “Fractional” T1, often called FT1, is a special T1 service where only a portion of the 24 channels are used and paid for. To implement fractional T1 (if available), equip only those circuits that are provided.

NOTE: Currently, the T1 Card is used to transmit voice signals only, not data. In the future, data transmissions over T1 circuits may also be supported.

3.78 To interface with the public network, each T1 Card must be equipped with a customer-provided, onboard Channel Service Unit (CSU) or a customer-provided, external CSU. If the optional on-board CSU is installed, the programmer must select the line build-out (LBO) attenuation, which is determined by the distance to the nearest public network T1 repeater. (This information is available from the T1 provider.) If an external CSU is installed instead, the programmer must select the DSX-1 line length, which is determined by the distance from the T1 Card to the external CSU. (The card and the external CSU must be located in the same building, and the cabling between them must be less than 655 feet.)

NOTE: The on-board CSU can now be purchased directly from Inter-Tel using part number 440.3004.

3.79 Although most T1 interfaces will be with the public network, it is possible to use T1 Cards to connect two telephone systems together (e.g., two 256 Systems). To do this without CSUs, the two systems must be located in the same building and the cabling between them must be less than 655 feet. If each system is equipped with a CSU, they may be located in separate buildings and the cabling between them may be as long as 6000 feet. (See page 3-34 for more information on connecting two 256 T1 Cards together.)

NOTE: For information on programming various types of T1 installations, refer to pages 5-122 to 5-129.

3.80 In the future, a T1 span could possibly be used to connect the 256 System to a host computer via a digital multiplexed interface (DMI). Also, the T1 Card has been designed to interface with the coming Integrated Services Digital Network (ISDN) features, when available.

3.81 When a T1 span is used to connect a 256 System to the public network or to another telephone system, it is important that the two endpoints communicate at the same frequency. Since it is practically impossible for both endpoints to have clocks running at identical frequencies, one endpoint is given “master” clock status and the other endpoint is given “slave” clock status. The slave clock can then extract and lock onto the master clock frequency from the incoming T1 information. This master/slave synchronization is programmed in the database. When connected to the public network, the 256 System is automatically designated as the slave clock.

3.82 When information (currently, voice only) is transmitted over a T1 span, a “framing” bit is added so that the receiving end can recognize where the information begins and ends (as long as the clock circuitry of the two endpoints is synchronized). Currently, the 256 System supports the two major types of framing schemes in use today: D4 Superframe, which is the most common, and Extended Superframe (ESF), which is required to support future ISDN and DMI features. For voice transmissions, D4 Superframe is quite adequate. However, for data transmissions (not currently supported), ESF is much more reliable and efficient.

3.83 Digital information is transmitted over the T1 span as a series of 1s and 0s (e.g., ...1000 0000 0001...). If there are too many consecutive zeroes, the T1 clock extraction circuitry will not operate correctly. To prevent this, T1 carrier equipment limits the number of consecutive zeroes. The 256 System supports the two major types of zero code suppression schemes in use today: Alternate Mark Inversion (AMI), also called bit-7 stuffing, and Bipolar Eight Zero Substitution (B8ZS). Again, for voice transmissions, AMI is quite adequate. However, for 64 kb/s clear channel data transmissions (not currently supported), B8ZS is required.
3.84 Like the T1 repeater distance, the framing scheme type and zero code suppression scheme type are also available from the T1 provider. In fact, when ordering a T1 span, always request the following information from the T1 provider:

- Framing scheme: D4 Superframe or ESF
- Zero code suppression scheme: AMI or B8ZS
- If the optional on-board CSU is to be installed, distance from the MDF to nearest public network T1 repeater (for determining the line build-out attenuation): 0-1599 feet (15dB), 1600-2999 feet (7.5dB), or 3000-6000 feet (0dB)

3.85 Each T1C has circuitry for up to 24 trunk channels. The 24 channels (or circuits) can be any combination of loop start trunks, ground start trunks, DID trunks, E&M trunks, or OPX trunks.

3.86 The T1 Card itself is equipped with the following resources:

- **LED indicators** are provided to show the status of each circuit and to show T1 trunk alarms and board-level error occurrences. Refer to the TROUBLE-SHOOTING section of this manual for additional LED information.

- **Audio jack** (8-pin, a-conductor modular jack) for possible future use.

 NOTE: The audio jack is currently used for engineering diagnostic purposes only.

- **Alarm relay jack** (8-pin, 8-conductor modular jack) for connecting optional T1 alarm signaling devices. The T1 Card relay contact ratings are:

 T1C RELAY CONTACT RATINGS

 - 0.6A at 125VAC
 - 0.6A at 110VDC
 - 2.0A at 30VDC

- **Serial port jack** (RS-232-C, 8-pin, &conductor modular jack) for possible future use.

 NOTE: The serial port jack is currently used for engineering diagnostic purposes only.

- **T1 span jack** (RJ48C, 8-pin, 8-conductor modular jack) for connecting a single, 24-channel T1 span to the T1 Card. (If this jack is used, do not use the optional DB15 connector also provided on the card.)

 NOTE: All T1 spans should be disconnected from their cards before turning the system power on or off.

- **Dual bantam jack** (with transmit and receive audio ports) for connecting T1 test equipment to the T1 Card and monitoring the transmit and receive signals.

CAUTION

When a live T1 span is installed on the T1 Card, test equipment should be used for monitoring purposes only. Do not attempt to send signals over either the transmit or receive audio ports on the T1 Card if a T1 span is installed. Also, be sure the test equipment is set in the "bridge" mode.

- Optional T1 span DB15 connector (15-pin sub miniature “D” female connector) for connecting a single, 24-channel T1 span to the T1 Card.

 NOTE: In certain situations (e.g., when using an external CSU equipped with a DB15 connector), it may be more convenient to use the optional DB15 connector instead of the standard RJ48C jack also provided on the card.

- **Make-busy switch with LED** for removing all circuits on the card from service and placing them back in again. Pressing the switch will light the LED and begin the process of "busy ing out" each circuit not in use. The circuits that are in use are then busied out as soon as the users hang up. When all circuits are busied out, the make-busy LED and all 24 circuit LEDs flash slowly, and the card can be removed from its slot in the cabinet. If the card is not removed within a certain amount of time, a programmable timer expires and the card returns to normal operation; however, the make-busy LED will then flash rapidly until the make-busy switch is released.

- **Channel Service Unit (CSU) connector** for installing the optional on-board CSU Module. If the T1 Card interfaces with the public network, either the on-board CSU Module or an external CSU must be connected to the card.

- **DSX/CSU jumper plug** for indicating whether the on-board CSU is installed. If the on-board CSU is installed, place the jumper plug in the CSU position. If there is no on-board CSU, place the jumper plug in the DSX position. This information must also be programmed in the database.

- **Line build-out jumper plug** for selecting the proper line build-out (LBO) attenuation of the T1 span connected to the card. This selection is necessary only if the optional on-board CSU is installed. If the distance between the equipment cabinet and the closet public network T1 repeater is less than 1600 feet, place the jumper plug in the 15dB position. If the distance is between 1600 and 2999 feet, place the jumper plug in the 7.5dB position. And, if the distance is
between 3000 and 6000 feet, place the jumper plug in the 0dB position. This information, which can be obtained from the T1 provider, must also be programmed in the database.

3.87 Compared to the other trunk cards in the system, the T1 Card is very sophisticated and offers some unique programming options. The information that is programmed common to all T1 Cards installed in the system includes:

- **Dialing feedback configuration:** When a number is dialed over a T1 circuit, the user hears the feedback from the signals (either M’MF or dial-pulse, depending on how the circuit is designated). By adjusting the DTMF gain control or the dial-pulse gain control (from -15dB to 15dB), the programmer can determine how loud the signals appear to the user. If the circuit is designated for dial-pulse signaling, the programmer can also select the type of dial-pulse tone the user hears (23 different tones are available).

- **Error thresholds:** The programmer can set numerical thresholds (number per hour and number per day) for certain T1 Card errors. If a threshold is exceeded, an error is printed on the SMDR report.

- **Reference clock back-up priorities:** One of the T1 Cards installed in the system must be programmed as the system reference clock (see “reference clock programming” following paragraph 3.88). If more than one T1 Card is installed in the system, the programmer may designate one or more of the cards as a “backup” to the system reference clock. Then, if the T1 Card acting as the system reference clock fails or is taken out of service, the next T1 Card on the back-up priority list takes over.

3.88 The information that is programmed specific to each T1 Card installed in the system includes:

- **Card type:** The programmer must select the type of framing scheme, D4 Superframe or Extended Superframe (ESF), used by the T1 span connected to each card.

- **Zero code suppression scheme:** The programmer must select the type zero suppression scheme, AMI (bit-stuffing) or Bipolar Eight Zero Substitution (B8ZS), used by the T1 span connected to each card.

- **PCM encoding law:** In pulse code modulation (PCM) systems, there are two primary methods of encoding analog signals (sampled audio waveforms) into digital signals. In North America and Japan, the “mu-law” method is normally used. In other places, like Europe, the “a-law” method is widely used. The programmer must select both the transmit and receive method of encoding used by the T1 Card. In the United States, this will almost always be mu-law to mu-law.

- **Relay activation:** If desired, the programmer may enable the two relays, T1 line error and T1 line OK, on the T1 Card.

- **Channel service unit (CSU):** The programmer must designate whether the optional on-board CSU is installed on the T1 Card. The database selection must match the jumper selection on the card.

- **Line build-out (LBO):** If the optional on-board CSU is installed, the programmer must designate the LBO attenuation of the T1 span connected to the card. This value is determined by the distance to the nearest public network T1 span or the T1 Card.

- **DSX-1 line length:** If the optional on-board CSU is not installed, the programmer must designate the length of the cabling between the T1 Card and the external CSU, or between the T1 Card and the other telephone system to which it is connected.

- **Reference clock programming:** The programmer must first designate whether the T1 Card is connected to the public network. If it is, the card is automatically designated as a slave clock (the public network always acts as the master clock). If the card is not connected to the public network, but is instead connected to another T1 Card or a card in another telephone system, the programmer must designate whether the card is a master clock or a slave clock (in relation to the card on the other end).

In addition, one of the T1 Cards installed in the system must be programmed as the system reference clock. The reference clock then becomes the clock for all the other cards in the system. If there is no T1 Card acting as the reference clock, the Matrix Card becomes the system reference clock.

If a T1 Card is designated as both a master clock and the system reference clock, the programmer must then designate whether the card’s on-board oscillator is the source of the clock or whether there is an external clock.

NOTE: The external clock option is provided for possible future use only. For now, always designate the card’s on-board oscillator as the source of the clock.

- **Test tone:** If desired, the programmer can transmit a digital test tone (1007Hz, 0dBm, sine wave) over the selected T1 circuit. The tone can be verified by monitoring the transmit audio port on the card’s dual bantam jack.
Error diagnostics: If desired, the programmer can generate the current T1 error counts (by hour and by day) for the selected card. The error counts can be displayed in a graphical or tabular format, printed (stand-alone/remote only), or saved in a file for future reference.

3.89 The information that is programmed specific to each circuit (i.e., each of the 24 channels) on the T1 Card includes:

- Circuit type: Each individual circuit can be programmed as a loop start, ground start, DID, E&M, or OPX trunk.

- Digital gain control: As with the other trunk cards, should voice transmit or voice receive volume problems occur, the programmer can adjust the receive gain and/or the transmit gain (-15dB to 15dB) for individual T1 circuits.

- DTMF or dial-pulse signaling: When the system is in the default configuration, all trunk circuits are configured for DTMF signaling. If necessary, some or all of the circuits can be reprogrammed for dial-pulse signaling.

3.90 The T1 circuits are assigned hardware address numbers according to the card’s slot in the equipment cabinet and the location of the circuit on the card. For example, T1 circuit 6.21 is the 21st circuit on the 6th card, a T1C, installed in the equipment cabinet.

3.91 Special T1 cabling requirements: It is recommended that special high-speed data cable with the following characteristics be used for all T1 installations:

- 22 AWG
- Individually shielded two-pair (or with the transmit and receive pairs run in separate cables or binder groups)
- ABAM or PIC (a level-3 cable designed specifically for the T-carrier transmission rate)
- Maximum capacitance of 15pF/ft.
- Maximum attenuation of 5dB/1000 ft. at 772kHz and 70 F

NOTE: The programming prompts for LBO attenuation and DSX-1 line length assume that proper T1 cable (with the above characteristics) is being used. When transmitting over shorter distances (e.g., when the nearest public network T1 repeater is less than 2000 feet from the MDF), it may be possible to use standard two-pair voice frequency cable instead; however, the programmer may have to compensate by selecting longer LBO distances or DSX-1 line lengths. Also, no matter which type of cable is used, the transmit and receive pairs must be shielded from each other (or run in separate cables or binder groups).

3.92 If the optional DB15 connector on the T1 Card is used in place of the standard RJ48C jack, a flat, 28AWG, twisted-pair ribbon cable with a maximum capacitance of 16pF/ft. may be used for distances of up to 50 feet (see page 3-20 for more information). For distances longer than 50 feet, use the special high-speed data cable described in paragraph 3.91.
4. STATION INSTRUMENTS

4.1 A wide variety of station instruments can be used on the 256 System. The combination of station instruments depends on the number and type of station cards installed.

4.2 The system capacity for stations is as follows:

<table>
<thead>
<tr>
<th>Total Station Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyssets</td>
</tr>
<tr>
<td>Using Digital Keysets Only</td>
</tr>
<tr>
<td>Using 6-Line Dual-Circuit AIMs Only</td>
</tr>
<tr>
<td>Attendant Computer Consoles</td>
</tr>
<tr>
<td>Single-Line Sets</td>
</tr>
<tr>
<td>DSS/BLF Units</td>
</tr>
<tr>
<td>Using Digital units only</td>
</tr>
<tr>
<td>Using Analog units only</td>
</tr>
</tbody>
</table>

* At least one Keyset Card must be installed to provide an attendant (equipped with a display keyset or an Attendant Computer Console) to receive system alarm messages, program system data, and receive unsupervised CO recalls. When the system is in the default configuration, circuit 1.1 is designated as a keyset and the primary attendant.

NOTE: Since most systems will be installed with a variety of station and trunk cards and a variety of station instruments, the maximum station and trunk capacities listed in this manual will rarely be reached.

A. IMX 256 KEYSETS

4.3 Refer to page 3-71 for keyset installation instructions. The following digital and analog models are available:

- Standard Digital Keysets (also referred to as Standard Digital Terminals) — display and non-display
- Executive Digital Keysets (also referred to as Executive Digital Terminals) — display only
- 24-Line AIM Keysets (display only)
- 12-Line AIM Keysets (display only)
- 8-Line Dual-Circuit AIM Keysets (display only)
- 24-Line Keysets (standard and display)
- 12-Line Keysets (standard and display)
- 8-Line Keysets (non-display only)

NOTE: With the proper software package, the Inter-Tel GX station instruments can be installed on the system. Refer to Appendix A in the back of the manual for complete information.

4.4 For illustrations of the keysets (and other station instruments), refer to the drawings beginning on page 2-33. The feature keys, speeddial keys, call keys, and station programmable keys shown in the drawings are as they appear when the system is in the default configuration.

4.5 The approximate dimensions of both the Standard and Executive Digital Keysets are:

- Height 3.0 in. (7.6 cm.)
- Width 7.5 in. (19.1 cm.)
- Length 9.0 in. (22.9 cm.)
- Weight 2.3 lb. (1.0 kg.)

4.6 The IMX 12-line and 24-line keyset dimensions are:

- Height 5.5 in. (14.0 cm.)
- Width 9.0 in. (22.9 cm.)
- Length 9.5 in. (24.1 cm.)
- Weight 3.1 lb. (1.4 kg.)

4.7 The IMX 8-line keyset dimensions are:

- Height 4.5 in. (11.4 cm.)
- Width 6.5 in. (16.5 cm.)
- Length 9.5 in. (24.1 cm.)
- Weight 2.5 lb. (1.1 kg.)

4.8 All keysets (except as noted) have the following design features in their default configuration:

- 12-key pushbutton keypad
- A variety of feature keys (some of which may be designated as user programmable)
- IC/CO speed-dial (SD) keys with light-emitting diode (LED) indicators (8-line keysets do not have SD keys in the default configuration)
- Four call keys with LED indicators for incoming call access and indication
- Integrated speakerphone (digital keysets have access to shared speakerphone resources)
- Ring and voice volume controls (digital and AIM keysets have UP and DOWN keys for adjusting volume levels)
- Slide-out directory card
- Self-test feature (for testing keyset functions)
- Hearing aid-compatible (HAC) handset
- Reversible baseplate for wall mounting and reversible cradle hook for holding the handset on wall-mounted keysets
Integrated Speakerphone

4.9 A built-in, integrated speakerphone is standard in all IMX analog keysets. All digital keysets have a speaker and a microphone for handsfree intercom reply, but they do not have a true integrated speakerphone. However, the DSP(s) on the associated DKSC can be used to provide shared integrated speakerphone circuitry. (See page 4-40 for more information.)

NOTE: If there are no DSP speakerphone resources available when a digital keyset user attempts to use the speakerphone, the MUTE key lights and display keysets show NO SPKR AVAIL COME OFF HOOK. The user can only monitor the call and must lift the handset to speak.

4.10 The integrated speakerphone allows users to place and receive outside calls and intercom calls without lifting the handset. Once a call is connected, the keyset user may speak handsfree over the speakerphone or lift the handset to speak privately. When using the handset, the user may switch to the speakerphone by pressing the SPKR key and replacing the handset. If enabled, pages and/or background music may be broadcast over the speaker when the phone is not being used.

Liquid Crystal Display (LCD)

4.11 All Executive Digital Keysets and all IMX AIM keysets (24-line, II-line, and S-line) come equipped with LCDs. Standard Digital Keysets and standard IMX 24-line and II-line keysets can be converted to display sets by installing the appropriate LCD Unit (see REPLACEMENT PARTS for the part number). Non-AM 8-line keysets cannot be equipped with displays.

4.12 Each “display” keyset has a liquid crystal display (LCD) with two 16-character lines. The display helps the user to process calls more efficiently and professionally. There are display messages for date and time, numbers dialed, call cost data, reminders, do-not-disturb, forwarding, voice mail processing, incoming calls, station and system status, system alarms, and programming. These displays are indicated throughout the FEATURES section of the manual.

4.13 Executive Digital Keysets have four additional 16-character display lines that are associated with the eight menu selection keys that border them. The menu display changes to reflect the functions of the menu keys. Pressing the key next to the displayed option selects that option. Refer to page 4-41 in FEATURES for information about the available menu options.

Electret Circuitry

4.14 All newer keysets and handsets have been designed using “electret” microphone circuitry, rather than the “dynamic” microphone circuitry used on many previous Inter-Tel keyset models. Electret keysets and handsets are not electrically compatible with dynamic keysets and handsets.

4.15 If a dynamic handset is attached to an electret keyset, the handset transmit levels will be noticeably lower. If an electret handset is attached to a dynamic keyset, the handset will not transmit. (In both cases, neither the keyset nor the handset will be damaged.)

4.16 Electret keysets can be identified by the manufacturer’s label on the bottom of the keyset. Electret handsets can be identified by the “El” embossed in the recess for the wall-mount hook (near the receiver).

Optional Headsets

4.17 A headset may be attached to any keyset by unplugging the handset from the handset jack on the base of the keyset, plugging the headset into the handset jack, and entering a feature code to enable the headset. The SPKR key, which is used to turn the headset on and off, is lit when placing and receiving calls and unlit when the headset is not in use. The keysets are compatible with industry-standard, four-conductor, modular headsets. The headsets can have electret or dynamic microphones, as needed (or carbon-microphone headsets that are connected to the keyset through an externally-powered jackset, which makes the headset dynamic-compatible). Refer to page 3-77 for installation instructions.

Optional Handset Amplifiers

4.18 The typical handset amplifier is an external device that plugs into the keyset (where the handset is normally connected); the handset is then plugged into the amplifier. Receiver voice volume is controlled by turning a thumbwheel (or similar control) located on the amplifier. Such amplifiers are generally equipped with a transformer that requires a 110VAC outlet. Refer to page 3-77 for installation instructions. AIM keysets do not require handset amplifiers.
Optional Personal Computer Data Port Module (PCDPM) for Digital Keysets

4.19 For off-hook voice announce receive capability, and to allow an optional digital DSS/BLF Unit and/or an optional Modem Data Port Module to be installed, any digital keyset may be equipped with an optional PC Data Port Module (part no. 550.3014). See page 3-66 for instructions on installing the PC Data Port Module.

NOTE: PCDPMs require AC transformers when they are connected to DSS/BLF Units only. PCDPMs do not require AC transformers when they are used for off-hook voice announce only or have attached MDPMs. For a diagram of AC transformer requirements, refer to Figure 2-2 on page 2-24.

Optional Modem Data Port Module (MDPM) for Digital Keysets

4.20 Digital keysets equipped with PC Data Port Modules may also be equipped with optional Modem Data Port Modules (part no. 550.3015). The MDPM contains a jack that can be used to connect a device (such as a Personal computer equipped with a modem) to the keyset. Each MDPM is powered by its own AC transformer.

NOTE: MDPMs always require their own separate AC transformers. For a diagram of AC transformer requirements, refer to Figure 2-2 on page 2-24.

4.21 The data device attached to the MDPM must have a direct-connection modem. The modem must be externally powered (or capable of operating on 20mA of loop current) and have an RJ11 CO interface. The data device can be used by the associated keyset(s) to communicate with remote data equipment over voice channels being used for CO or intercom calls. Refer to pages 3-78 and 4-101 for installation and operation instructions.

Optional Data Port Module for IMX 12-Line and 24-Line Keysets

4.22 All IMX 12-line and 24-line keysets may be equipped with optional Data Port Modules (refer to REPLACEMENT PARTS for the part number). The module contains a four-conductor, RJ11 modular jack that can be used to connect either a data device (such as a personal computer equipped with a modem) or a loud ringing adapter (LRA) and an external signaling device (such as a loud bell, horn, flashing light, etc.) to the keyset. The Data Port Module is a source for 20-26mA of loop current (constant current source). Refer to page 3-78 for instructions on installing the optional Data Port Module.

4.23 Specifications for modem-equipped data device: The data device must have a direct-connection modem. The modem must be externally powered (or capable of operating on 20mA of loop current) and have an RJ11 CO interface. The data device can be used with the keyset to communicate with remote data equipment over voice channels being used for CO or intercom calls. Refer to pages 3-78 and 4-101 for installation and operation instructions.

4.24 Specifications for loud ringing adapter (LRA): An external LRA may be connected to the Data Port Module to provide a relay for controlling external signaling devices. The LRA is connected to the Data Port Module, and the external signaling device is connected to the LRA. Refer to page 3-80 for installation instructions. Each time the keyset rings, the Data Port Module provides 20-26mA of loop current to the LRA. This causes the LRA contacts to close and activates the signaling device. The LRA is not affected by the ring tone or the ringer volume of the keyset. The LRA must be capable of operating on 20mA current (approximately 20VDC).

5-Line IMX AIM Keysets On Dual Circuits

4.25 If desired, new 8-line IMX AIM keysets can be installed two to a circuit using the new “dual-circuit” version Keyset Card (KSC-D). (To install 8-line AIM keysets one to a circuit, either the KSC or the KSC-D can be used.) There are jumper straps on the back of the 8-line AIM keyset to select the baud rate (2400 baud for two to a circuit; 1200 baud for one to a circuit) and to select the circuit position (A or B), depending on how the keyset’s circuit will be designated in database programming.

4.26 Each 8-line AIM keyset is shipped with a standard (six-foot, three-pair) “flat” line cord for connecting the keyset to its corresponding modular jack assembly. For most installations, this flat line cord is more than adequate. However, when 8-line AIM keysets are installed two to a circuit, low-level crosstalk between the two stations sharing the circuit may occur in certain situations. This is because the wires in a flat line cord are parallel to each other for long distances, thereby providing a susceptibility to audio bleedover. The level of crosstalk is dependent on the voice volume of the users, the length of the line cord, and the station cable loop length.

4.27 To eliminate this low-level crosstalk, if necessary, replace the flat line cord with a twisted-pair line cord that has the following characteristics:

- Telco orientation (rather than data)
- 26-gauge, stranded
- 6 to 8 twists per foot
Equipped with connectors designed specifically for round, twisted-pair line cord.

4.28 Charcoal and grey twisted-pair line cords of various lengths can be purchased from a local supply house or directly from a cable distributor, such as:

American Sources
Interstate Business Park #806
Fredericksburg, VA 22405
Phone: (703) 899-3777
FAX: (703) 371-4350
Pt. No.: LCM650xL (Grey), LCM660xL (Charcoal)
(where \(x \) = length in feet; e.g., LCM6502.5L is a 25 ft. grey cord)

FIGURE 2-2. DIGITAL AC TRANSFORMER REQUIREMENTS

\[\text{AC} = \text{AC transformer required} \]

(for off-hook voice announce only)

NOTE: Digital DSS/BLF Units and MDPMs always require their own separate AC transformers. PCDPMs require AC transformers when they are connected to DSS/BLF Units only. PCDPMs do not require AC transformers when they are used for off-hook voice announce only or have attached MDPMs.
B. GMX-256 KEYSETS

4.29 A maximum of 128 keysets can be connected to the GMX-256 System. Refer to page 3-81 for GMX-256 keyset installation instructions. The following analog models are available:

- Inter-Tel/DVK 24-Line Keysets (standard and display)
- Inter-Tel/DVK 12-Line Keysets (standard and display)
- Inter-Tel/DVK 8-Line Keysets (standard and display)
- GMX 24-Line Keysets (standard and display)
- GMX 12-Line Keysets (non-display only)
- GX 24-Line Keysets (standard and display)

NOTE For more information on the GX and GMX keysets, refer to appendixes A and B in the back of this manual.

4.30 For illustrations of the Inter-Tel/DVK keysets, refer to the drawings beginning on page 2-33. The feature keys, speed-dial keys, call keys, and station programmable keys shown in the drawings are as they appear when the system is in the default configuration.

4.31 The Inter-Tel/DVK 24-line keyset dimensions are:

- Height 3.8 in. (9.7 cm.)
- Width 9.2 in. (16.5 cm.)
- Length 9.5 in. (24.1 cm.)
- Weight 2.8 lb. (1.3 kg.)

4.32 The Inter-Tel/DVK 12-line keyset and 8-line keyset dimensions are:

- Height 3.8 in. (9.7 cm.)
- Width 7.0 in. (17.8 cm.)
- Length 9.5 in. (24.1 cm.)
- Weight 2.5 lb. (1.1 kg.)

4.33 All Inter-Tel/DVK keysets have the following design features in their default configuration:

- 12-key pushbutton keypad
- A variety of feature keys (some of which may be designated as user programmable)
- IC/CO speed-dial (SD) keys with light-emitting diode (LED) indicators
- Four call keys with LED indicators for incoming call access and indication
- Integrated speakerphone
- Ring and voice volume controls (using the VOL Up and VOL DN keys)
- Slide-out directory card
- Self-test feature (for testing keyset functions)
- Hearing aid-compatible (HAC) handset
- Reversible baseplate for wall mounting

Integrated Speakerphone

4.34 A built-in, integrated speakerphone is standard in all keysets. The integrated speakerphone allows users to place and receive outside calls and intercom calls without lifting the handset. Once a call is connected, the keyset user may speak handsfree over the speakerphone or lift the handset to speak privately. When using the handset, the user may switch to the speakerphone by pressing the SPKR key and replacing the handset. If enabled, pages and/or background music may be broadcast over the speaker when the phone is not being used.

Liquid Crystal Display (LCD)

4.35 Each “display” keyset has a liquid crystal display (LCD) with two 16-character lines. The display helps the user to process calls more efficiently and professionally. There are display messages for date and time, numbers dialed, call cost data, reminders, do-not-disturb, forwarding, voice mail processing, incoming calls, station and system status, system alarms, and programming. These displays are indicated throughout the FEATURES section of the manual.

4.36 All standard Inter-Tel/DVK keysets can be converted to display sets by installing an LCD Unit. The 24-line keysets use the large LCD Kit (part no. 828.1166). The 12-line and 8-line keysets use the small LCD Kit (part no. 828.1165).

Electret Circuitry

4.37 All newer keysets and handsets have been designed using “electret” microphone circuitry, rather than the “dynamic” microphone circuitry used on many previous Inter-Tel keyset models. Electret keysets and handsets are not electrically compatible with dynamic keysets and handsets.

4.38 If a dynamic handset is attached to an electret keyset, the handset transmit levels will be noticeably lower. If an electret handset is attached to a dynamic keyset, the handset will not transmit. (In both cases, neither the keyset nor the handset will be damaged.)

4.39 Electret keysets can be identified by the manufacturer’s label on the bottom of the keyset. Electret handsets can be identified by the “EI” embossed in the recess for the wall-mount hook (near the receiver).
Optional Headsets

4.40 A headset may be attached to any keyset by unplugging the handset from the handset jack on the base of the keyset, plugging the headset into the handset jack, and entering a feature code to enable the headset. The SPKR key, which is used to turn the headset on and off, is lit when placing and receiving calls and unlit when the headset is not in use. The keysets are compatible with industry-standard, four-conductor, modular headsets that have dynamic microphones, or carbon-microphone headsets that are connected to the keyset through an externally powered jackset (which makes the headset dynamic-compatible). Refer to page 3-86 for installation instructions.

Optional Data Port Module

4.41 All Inter-Tel/DVKeysets may be equipped with optional Data Port Modules (refer to REPLACEMENT PARTS for the part number). The module contains a four-conductor, RJ11 modular jack that can be used to connect either a data device (such as a personal computer equipped with a modem) or a loud ringing adapter (LRA) and an external signaling device (such as a loud bell, horn, flashing light, etc.) to the keyset. The Data Port Module is a source for 20-26mA of loop current (constant current source). Refer to page 3-87 for instructions on installing the optional Data Port Module.

4.42 Specifications for modem-equipped data device: The data device must have a direct-connection modem. The modem must be externally powered (or capable of operating on 20mA of loop current) and have an RJ11 CO interface. The data device can be used with the keyset to communicate with remote data equipment over voice channels being used for CO or intercom calls. Refer to pages 3-87 and 4-101 for installation and operation instructions.

4.43 Specifications for loud ringing adapter (LRA): An external LRA may be connected to the Data Port Module to provide a relay for controlling external signaling devices. The LRA is connected to the Data Port Module, and the external signaling device is connected to the LRA. Refer to page 3-89 for installation instructions. Each time the keyset rings, the Data Port Module provides 20-26mA of loop current to the LRA. This causes the LRA contacts to close and activates the signaling device. The LRA is not affected by the ring tone or the ringer volume of the keyset. The LRA must be capable of operating on 20mA current (approximately 20vDC).
C. IMX 256 DSS/BLF UNITS

4.44 The IMX 256 System can have as many as 50 keyset circuits equipped with DSS/BLF Units. For example, there could be a maximum of 50 digital keysets (i.e., DKSC circuits) equipped with up to four digital DSS/BLF Units each. Or, there could be a maximum of 50 KSC or KSC-D circuits equipped with one analog DSS/BLF Unit each. Or, there could be any combination of the two using up to 50 keyset circuits.

4.45 Each unit provides one-key access to 60 numbers. The numbers can be station extension numbers, hunt group pilot numbers, system feature codes, or system speed-dial numbers.

4.46 Digital DSS/BLF Units are physically attached to and programmed to be used with specific digital keysets. The units are connected in series to the PC Data Port Module (PCDPM) on the back of the corresponding keyset. Unlike analog units, digital DSS/BLF Units do not require station cabling separate from the keyset’s cabling; instead, they are powered by their own AC transformer. If desired, all units can be connected to keysets installed on the same Digital Keyset Cards. (Refer to page 3-90 for digital DSS/BLF Unit installation instructions.)

NOTE: Digital DSS/BLF Units always require their own separate AC transformers. For a diagram of AC transformer requirements, refer to Figure 2-2 on page 2-24.

4.47 Analog DSS/BLF Units are programmed to be used with specific analog keysets, but are not physically attached to the keysets. The units can be distributed among several keysets or, if desired, they can be assigned to one keyset. Each unit requires a KSC or KSC-D circuit that is separate from the keyset’s circuit. If 50 station circuits are used for analog DSS/BLF Units, 50 fewer analog keysets and/or Attendant Computer Consoles can be installed. Up to four analog units can be installed on a single Keyset Card. (Refer to page 3-92 for IMX DSS/BLF Unit installation instructions.)

4.48 For illustrations of the DSS/BLF Units (and other station instruments), refer to the drawings beginning on page 2-33.

4.49 Digital DSS/BLF Unit dimensions are:

- Height 3.0 in. (7.6 cm.)
- Width 7.5 in. (19.1 cm.)
- Length 9.0 in. (22.9 cm.)
- Weight 1.7 lb. (0.8 kg.)

4.50 IMX DSS/BLF Unit dimensions are:

- Height 5.5 in. (14.0 cm.)
- Width 9.0 in. (22.9 cm.)
- Length 9.6 in. (24.1 cm.)
- Weight 2.0 lb. (0.9 kg.)

4.51 As stated earlier, each DSS/BLF Unit provides one-key access to up to 60 numbers. These numbers can be station extension numbers, hunt group pilot numbers, system feature codes, or system speed-dial numbers. The layout of the keys and the numbers they access are assigned using one of up to eight key maps in database programming.

4.52 Together, the lamps in the keys create a busy lamp field that indicates the status of each station or hunt group assigned to the keys. The LED indicator in the key is solidly lit when the associated station is busy, flashes slowly when the station is in do-not-disturb, flashes fast when the station has a call ringing in, or flutters continuously if the station is causing a STATION OFF-HOOK system alarm. If assigned to a hunt group, the LED indicator is solidly lit when all stations in the hunt group are unavailable (busy, forwarded, in do-not-disturb, or removed from the hunt group) and it flashes fast when a call is camped on to a hunt group.
D. GMX-256 DSS/BLF UNITS

453 There can be a maximum of 50 Direct Station Selection/Busy Lamp Field (DSS/BLF) Units installed on the GMX-256 System, including any of the following:

- Inter-Tel/DVK DSS/BLF Units - single or tandem
- GMX DSS/BLF Units - single only
- GX DSS/BLF Units - single or tandem

NOTE: For more information on the GMX and GX station instruments, refer to appendixes A and B in the back of the manual.

454 A DSS/BLF Unit consists of either a single unit or two units connected together to form a tandem unit. Each single unit provides one-key access to 60 numbers, while tandem units provide access to 120 numbers. The numbers can be station extension numbers, hunt group pilot numbers, system feature codes, or system speed-dial numbers.

455 The 50 single/tandem units can be distributed among several keysets or, if desired, they can be assigned to one keyset. (Refer to page 3-93 for DSS/BLF Unit installation instructions.)

456 DSS/BLF Units are programmed to be used with specific keysets, but are not physically attached to the keysets. Each unit requires a KSC-D circuit that is separate from the keyset’s circuit. If 50 station circuits are used for DSS/BLF Units, 50 fewer keysets and/or Attendant Computer Consoles can be installed. Up to four units can be installed on a single Keyset Card.

457 For an illustration of the DSS/BLF Unit (and other Inter-Tel/DVK station instruments), refer to the drawings beginning on page 2-33. DSS/BLF Unit dimensions are:

- Height 3.8 in. (9.7 cm.)
- Width 7.0 in. (17.8 cm.)
- Length 9.5 in. (24.1 cm.)
- Weight 2.5 lb. (1.1 kg.)

458 As stated earlier, each single DSS/BLF Unit provides one-key access to up to 60 numbers. These numbers can be station extension numbers, hunt group pilot numbers, or system feature codes, or system speed-dial numbers. The layout of the keys and the numbers they access are assigned using one of up to eight key maps (12 in expanded systems) in database programming. The intercom number/key assignments are programmed in two lists, DSS 1 and DSS 2. Single DSS/BLF Units can be assigned with either list. Tandem Inter-Tel/DVK units are assigned with the DSS 1 list, then an internal strap is set to identify the key arrangement each individual unit will use.

459 Together, the lamps in the keys create a busy lampfield that indicates the status of each station/hunt group assigned to the keys. The LED indicator in the key is solidly lit when the associated station is busy, flashes slowly when the station is in do-not-disturb, flashes fast when the station has a call ringing in, or flutters continuously if the station is causing a STATION OFF-HOOK system alarm. If assigned to a hunt group, the LED indicator is solidly lit when all stations in the hunt group are unavailable (busy, forwarded, in do-not-disturb, or removed from the hunt group) and it flashes fast when a call is camped on to a hunt group.

E. ATTENDANT COMPUTER CONSOLES

460 The Attendant Computer Console is an IBM-compatible personal computer that is connected to an available KSC or KSC-D circuit (they cannot be connected to DKSC circuits). The computer contains a proprietary circuit card and special software. It is primarily designed for use by attendants of larger 256 Systems — those systems with so many station users that it would make using DSS/BLF Units somewhat awkward. However, due to its enhanced functionality, including electronic text messaging and directory dialing, the Attendant Computer Console is also an attractive option for smaller 256 Systems as well.

461 Attendant Computer Console design features include:

- IBM XT-, AT-, or 386-compatible processing unit
- CGA, EGA, or VGA monitor and Monitor Interface Card
- 122-key custom keyboard
- Headset operation
- Specially-designed circuit card and interface software

NOTE: For additional information on the Attendant Computer Console, along with detailed installation and programming instructions, refer to the manual included with the console.
F. SINGLE-LINE SETS

4.62 Up to 240 single-line sets may be installed on the 256 System. The models available are:

- Enhanced Single-Line Sets (ESLSs) - available on IMX 256 Systems only
- Single-Line Instruments (SLIs)
- Industry-standard, single-line DTMF sets

4.63 For illustrations of the ESLS and SLI (and other station instruments), refer to the drawings beginning on page 2-33. The feature keys shown in the drawings are as they appear when the system is in the default configuration.

4.64 The dimensions of the ESLS are:

- Height 45 in. (11.4 cm.)
- Width 6.5 in. (16.5 cm.)
- Length 9.5 in. (24.1 cm.)
- Weight 2.2 lb. (1.0 kg.)

4.65 The dimensions of the SLI are:

- Height 3.5 in. (8.8 cm.)
- Width 7.5 in. (18.8 cm.)
- Length 9.0 in. (22.5 cm.)
- Weight 2.0 lb. (0.9 kg.)

4.66 ESLS design features include:

- Nine user-programmable feature keys and a non-programmable timed hookflash (FLASH) key
- A neon light for message waiting indication
- A ring volume thumbwheel control
- Hearing aid-compatible (HAC) handset (may be equipped with a handset amplifier as described on page 2-22)

4.67 SLI design features include:

- Four user-programmable feature keys and a non-programmable timed hookflash (FLASH) key
- A ring volume thumbwheel control
- Hearing aid-compatible (HAC) handset (may be equipped with a handset amplifier as described on page 2-22)

4.68 Single-line set users access some station features simply by lifting the handset and pressing a feature key (or entering a feature code). Other features are accessed using a combination of a hookflash (FLASH key) and a feature key or code. Refer to the FEATURES section of this manual for details.

4.69 When single-line sets are connected to Single-Line Cards (SLCs), they must be equipped with AC ringers (ESLSs and SLIs have internal jumper straps that can be moved to set the ringer for AC or UC). When connected to Inward Dialing Cards (IDCs), single-line sets may have AC ringers by setting the IDC circuit for AC ringing, or they may have DC ringers by setting the circuit for DC ringing. (Refer to page 3-95 for single-line set installation instructions.)

NOTE: IDCs do not support message waiting applications. If single-line sets with message waiting lamps are installed on IDCs, the lamps will not function.
G. OFF-PREMISES EXTENSIONS (OPXs)

4.70 An OPX is an AC ringer-equipped ESLS, SLI, or single-line DTMF set that is placed in a remote location and connected to the system through a telephone company OPX circuit or a customer-provided circuit.

4.71 Off-premises stations are connected to Inward Dialing Cards (up to eight circuits on a card) or T1 Cards (up to 24 circuits on a card). If necessary, the receive gain and/or the transmit gain for each circuit can be adjusted in database programming (see page 5-30 for details).

NOTE: If connecting OPXs, Inward Dialing Cards must be used. FCC regulations prohibit connecting OPXs to Single-Line Cards.

4.72 The OPX circuits provided by the telephone company are identified with Facility Interface Codes (FIC): Class A, OL13A; Class B, OL13B; or Class C, OL13C. The service order code is 9.0F (fully protected private circuit). If the impedance does not exceed a loop measurement of 800 ohms (loop of 15,600 feet using 24AWG wire), a customer-provided circuit between the remote location and the system may be used.

4.73 The 800-ohm loop limitation is usually suitable for accessing on-premises stations from off-premises stations. However, for applications where one off-premises station will be calling another through the station card, the impedance between the two off-premises stations (both circuits added together) must be less than 800 ohms (loop measurement). In this situation, a Class A or B FIC circuit is preferable.

4.74 When an IDC circuit is designated for OPX use in database programming (see page 5-170), its voice volume levels are increased approximately 3dB over normal single-line set voice volume levels. This is an attempt to compensate for any loss in the external OPX circuit. However, in certain off-premises applications, the voice volume levels may still be unacceptable. This degradation in voice volume is due to the natural voice frequency range limitations of the telephone company or customer-provided circuit. To increase the frequency range, installation of a two-wire, negative impedance repeater unit is recommended. Such units typically provide from 0-15 decibels of voice volume gain and allow regulation of the gain in each direction when simultaneous voice transmission occurs. The switching sensitivity on the unit should also be adjustable.

4.75 The repeater unit is installed at the MDF between the station block and the cabling to the off-premises station. (Refer to page 3-30 for OPX installation instructions.) When ordering a repeater unit, consult with the supplier for ordering the proper mounting shelf and power supply for the unit. Additional information on operating and adjusting the repeater unit is generally included with the product.

H. PLAYBACK DEVICES

4.76 A playback device is an answering machine that answers the call, plays a message, and then disconnects from the call. Playback devices are installed like single-line sets, using three-pair twisted cable and six-conductor modular jacks (or, if desired, one-pair twisted cable and four-conductor modular jacks). The device must be capable of the following functions: detect ringing, provide ring trip, and automatically disconnect when the announcement is completed.

4.77 Because most playback devices respond to AC ring signals, they are attached to SLC circuits or IDC circuits that are set for AC ringing. If the playback device responds to DC ring signals, an Inward Dialing Card circuit that is set for DC ringing must be used. (Refer to page 3-95 for playback device installation instructions.)

NOTE: For optimal performance, it is recommended automated attendant playback devices be installed on IDC circuits rather than SLC circuits.

4.78 Hunt groups can have two special stations that help process calls: announcement stations and overflow stations. These stations can be equipped with station instruments or playback devices. Automated attendant stations can also be equipped with playback devices. (See FEATURES, page 4-17.)

4.79 The playback device is programmed as a regular single-line station and is assigned an extension number. If the device is sensitive to camp-on tones and disconnects calls, the programmer can disallow the camp-on tone for that station circuit (refer to PROGRAMMING, page 5-30).
5. ADDITIONAL SYSTEM EQUIPMENT

A. PERSONAL COMPUTER (PC) FOR ON-SITE OR STAND-ALONE/REMOTE PROGRAMMING

5.1 The device used for on-site or stand-alone/remote programming must be an IBM AT-compatible PC with a minimum: 5MB available memory on the hard disk drive, 5¼-inch (1.2MB) or 3½-inch (1.44MB) double sided/high density floppy disk drive, 640k RAM (with minimum 512k available), MS-DOS 3.3, and an EGA graphics monitor. A programming mouse is optional (if used, install on an unassigned COM port). For remote maintenance, a 300-baud or 1200-baud modem is also needed. (See PROGRAMMING, page 5-3, for additional information on remote system maintenance.) To connect the PC to the RCPU Card for on-site programming, refer to the following information.

B. PROGRAMMING PC AND SMDR/SMDA OUTPUT DEVICE REQUIREMENTS

5.2 The on-site programming PC and the optional output device(s) for the Station Message Detail Recording (SMDR) and Station Message Detail Accounting (SMDA) features must have the characteristics described in the following paragraphs.

5.3 To connect a PC or an output device to one of the DB9 serial ports (PORT A or PORT B) on the RCPU Card, one end of the cable between the two must have an RS-232-C-compatible, female 9-pin subminiature “D” connector. The other end of the cable must be compatible with the output device. Consult the owner’s guide for the device to verify that the pin functions are the same as those shown in the following chart. If necessary, rewire the connector on the device to match the requirements.

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>FUNCTION</th>
<th>PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Carrier Detect (DCD)</td>
<td>Signal to 256</td>
<td>1</td>
</tr>
<tr>
<td>Receive Data (RXD)</td>
<td>Data to 256</td>
<td>2</td>
</tr>
<tr>
<td>Transmit Data (TXD)</td>
<td>Data from 256</td>
<td>3</td>
</tr>
<tr>
<td>Data Terminal Ready (DTR)</td>
<td>Signal from 256</td>
<td>4</td>
</tr>
<tr>
<td>Signal Ground</td>
<td>Reference Ground</td>
<td>5</td>
</tr>
<tr>
<td>Data Set Ready (DSR)</td>
<td>Signal to 256</td>
<td>6</td>
</tr>
<tr>
<td>Request To Send (RTS)</td>
<td>Signal from 256</td>
<td>7</td>
</tr>
<tr>
<td>Clear To Send (CTS)</td>
<td>Signal to 256</td>
<td>8</td>
</tr>
<tr>
<td>Ring Indicator</td>
<td>Signal to 256</td>
<td>9</td>
</tr>
</tbody>
</table>

*True = steady signal >+5V

5.4 The following cable can be created to connect one of the DB9 ports on the RCPU Card to the DB25 port found on some PCs and output devices.

5.5 The following cable can be created to connect one of the DB9 ports on the RCPU Card to the DB9 port found on some PCs and output devices.

5.6 When the system is in the default configuration, the 256 output device ports (PORT A and PORT B) are enabled for “software” handshaking. Most output devices are designed for software handshaking, which is the use of “X-ON” and “X-OFF” characters to indicate readiness to send or receive data. Refer to the device’s operating manual to determine if it uses X-ON/X-OFF characters.

5.7 If the device does not support X-ON/X-OFF characters, hardware handshaking may be enabled (see PROGRAMMING, page 5-169). When enabled for hardware handshaking, signals are sent over the connector pins to indicate readiness to send or receive data. The 256 DB9 port will send a logic true (+5V) on pin 4 (Data Terminal Ready) and pin 7 (Request To Send) when it is ready to receive data. In addition, the 256 DB9 port will monitor pin 6 (Data Set Ready), pin 8 (Clear To Send), or both (depending on how the 256 System is programmed) and will only send data if it receives a logic true (+5V) over the programmed pin(s). If the 256 DB9 port receives a logic false (<5V) to indicate that the buffer on the attached device is full, it will not send data.

5.8 To meet Part 15 of FCC Regulations, all RS-232-C cables must be equipped with ferrite beads. Two ferrite “split” beads (two half beads) are installed on each cable just below where the cable connects to the system. The
beads help to reduce electromagnetic interference (EMI) and radio frequency interference (RFI).

NOTE: Each ferrite split bead, which is actually half of a full bead, is ordered individually (see REPLACEMENT PARTS for the part number). Two split beads are required to form one complete bead.

5.9 The on-site programming PC and SMDR/SMDA output devices must communicate at 110, 300, 600, 1200, 2400, 4800, 9600, or 19200 baud. (NOTE: The 19200 baud rate is for outgoing data only. The maximum programming baud rate is 9600.) System baud rates are set independently in database programming.

Other specifications include:
- The data format must be 8 bit standard ASCII.
- Parity is off (ignored).
- Communication is full duplex.
- There is one start bit and one stop bit.

5.10 The output devices, whether used for SMDR or SMDA, must be able to print reports with a width of 80 characters. The devices must not have cables longer than 50 feet (15 meters).

C. SYSTEM BATTERY BACK-UP

5.11 To provide back-up power in the event of an AC power failure or brownout condition, the 256 System power supply can have optional battery back-up using a customer-provided uninterruptable power supply (UPS) unit or standby power supply (SPS) unit.

5.12 It is recommended that a power supply unit with the following characteristics be installed:
- Sine wave output
- Transfer time of less than 20 milliseconds
- Output rating of 700 Watts (minimum needed for a fully populated system; for smaller system requirements, contact Customer Support)
- External or internal batteries
- Low voltage cutoff circuit of 105VAC (minimum)

NOTE: Even if the power supply unit has the specifications listed above, it cannot be guaranteed that it will work properly with the 256 System. Contact Customer Support for a listing of approved UPS/SPS power supplies and installation instructions.

5.13 Batteries connected in series form a “string.” The voltage of the string is equal to the sum of the individual battery voltages. For example, five 6V batteries connected in series form a 30V battery pack. If desired, connect two strings in parallel to double the amp/hour rating, which results in longer discharge rates; the voltage level remains the same as a single string.

5.14 Batteries must be fully charged when installed. Charge each individually using a constant-voltage, current-limited charger with less than three percent ripple. The charge voltage per cell must be set according to the manufacturer’s specifications. Be careful not to damage the batteries by overcharging them. For example, new Globe brand batteries require 25 days of float voltage or 25-30 discharge cycles to attain full capacity. Initial capacity might only be 80 percent of rated capacity.

5.15 All batteries should be of the same age and AH rating. Some manufacturers date batteries by stamping them with a date code. For example, Globe stamps their batteries with a code such as 410-B, where 4 = the last digit of year, 10 = the month, and B = the type of electrolyte. If a battery in a string needs to be replaced, the age of the string will determine if a fresh battery can be added. If the string is two to three years old, adding a fresh battery will reduce the life of the entire string. This is because a fresh battery will be overcharged, while the older batteries are undercharged.

5.16 Batteries may give off explosive and/or corrosive gases. To reduce the effects of this gas, place the batteries (or battery compartment) in a well-ventilated room and coat the terminals with an anti-corrosive agent. Avoid storing batteries: they will self-discharge and their capacity decreases with age. If you must store batteries, recharge them every six months. Recharge time may vary depending on the charger’s current limit and the battery’s state of charge.

D. ADDITIONAL INFORMATION

5.17 If necessary, contact Inter-Tel Customer Support for additional information on the optional equipment listed below:
- OPX Repeaters
- LRAs and External Signaling Devices
- Standby Power (system battery back-up)
- Multi-Port Voice Mail
- Facsimile Machine
- Doorbox
- Lightning and AC Surge Protection
- Multiple External Paging Zones and Talkback Speakers
- Headsets
- Playback Devices
- Power Failure Transfer
Figure 2-3. Executive **Digital Keyset** (also called Executive Digital Terminal)

- **Hearing Aid-Compatible (HAC) Handset**
- **LCD with Six 16-Character Lines**
- **8 LCD Menu Selection Keys**
- **4 Call Keys**
- **Internal Speaker**
- **5 Speed-Dial Keys**
- **14 Feature Keys**
- **2 LCD Feature Directory Scroll Keys**
- **12-Key Pushbutton Keypad**
- **Ring and Voice Volume Controls**
- **Handsfree Microphone** (underneath edge)

NOTE: The keys are shown as they appear in the default key map configuration.
FIGURE 2-4. STANDARD DIGITAL KEYSET (also called Standard Digital Terminal)

NOTE: The keys are shown as they appear in the default key map configuration.
FIGURE 2-5. IMX 24-LINE KEYSET

NOTE: The keys are shown as they appear in the default key map configuration.
FIGURE 2-6. IMX 24-LINE AIM KEYSET

NOTE The keys are shown as they appear in the default key map configuration.
FIGURE 2-7. IMX 12-LINE KEYSET

NOTE: The keys are shown as they appear in the default key map configuration.
FIGURE 2-8. IMX 12-LINE AIM KEYSET

NOTE: The keys are shown as they appear in the default key map configuration.
FIGURE 2-9. IMX 8-LINE KEYSET

NOTE: The keys are shown as they appear in the default key map configuration.
FIGURE 2-10. IMX 8-LINE AIM KEYS

HEARING AID-COMPATIBLE (HAC) HANDSET

32-CHARACTER LCD

INTERNAL SPEAKER

4 CALL KEYS

14 FEATURE KEYS

4 STATION PROGRAMMABLE KEYS (5-8)

RING AND VOICE VOLUME CONTROLS

HANDSFREE MICROPHONE (underneath edge)

12-KEY PUSHBUTTON KEYPAD

NOTE: The keys are shown as they appear in the default key map configuration.
FIGURE 2-11. INTER-TEL/DVK 24-LINE KEYSET

HEARING AID-COMPATIBLE HANDSET

4 CALL KEYS

OPTIONAL 32-CHARACTER LCD

8 STATION PROGRAMMABLE KEYS (5-12)

12 UNDEFINED KEYS (13-24)

18 FEATURE KEYS

INTERNAL SPEAKER

10 SPEED-DIAL KEYS

RING AND VOICE VOLUME CONTROLS

12-KEY PUSHPUSH KEYPAD

HANDSFREE MICROPHONE

NOTE: The keys are shown as they appear in the default key map configuration.
NOTE: The keys are shown as they appear in the default key map configuration.
FIGURE 213. INTER-TEL/DVK 8-LINE KEYSET

NOTE: The keys are shown as they appear in the default key map configuration.
FIGURE 2-14. DIGITAL DIRECT STATION SELECTION/BUSY LAMP FIELD (DSS/BLF) UNIT

60 DSS/BLF AND/OR FEATURE KEYS
FIGURE 2-15. IMX DSS/BLF UNIT
FIGURE 2-16. INTER-TEL/DVK DSS/BLF UNIT
FIGURE 2-17. ENHANCED SINGLELINE SET (ESLS)

NOTE: The keys are shown as they appear in the default key map configuration.
FIGURE 2-18. SINGLELINE INSTRUMENT (SLI)

NOTE: The keys are shown as they appear in the default key map configuration.
INSTALLATION

CONTENTS

1. Introduction ... 3-2
2. System Installation Outline .. 3-2
3. Pre-Installation Checklist .. 3-3
 A. Establish Suitable Environmental Conditions For The System 3-3
 B. Assemble The Necessary Tools And Supplies 3-3
 C. Plan Station Locations And Types Of Station Instruments 3-4
 D. Assemble The Optional Equipment 3-5
4. Station Cabling .. 3-6
 A. Running Cable ... 3-6
 B. Terminating The Cables At Station Locations 3-7
5. Assembling The Main Distribution Frame (MDF) Backboard 3-9
 A. Connecting The Trunk Cables To The MDF 3-11
 B. Connecting T1 Spans To The MDF 3-17
 C. Connecting Station Cables To The MDF 3-21
 D. Station Loop Resistance Test 3-29
 E. Connecting Optional Off-Premises Extensions (OPXs) 3-30
 F. Connecting The RCPU Card To The MDF 3-30
 G. Connecting Optional T1 Alarm Relay Devices To The MDF 3-33
 H. Connecting Two 256 Systems Together Using T1 Cards 3-34
6. Equipment Cabinet Installation .. 3-35
 A. Unpack The Equipment ... 3-35
 B. Check The Equipment Cabinet Pre-Assembly 3-35
 C. Install The Power Supply Modules 3-39
 D. Install The Circuit Cards 3-44
 E. Check The Circuit Card Installation 3-61
 F. Complete The Equipment Cabinet Installation 3-61
7. Station Installation ... 3-62
 A. IMX 256 Digital Keyset Installation 3-62
 B. IMX 256 Analog Keyset Installation 3-71
 C. GMX-256 Analog Keyset Installation 3-81
 D. IMX 256 Digital DSS/BLF Unit Installation 3-90
 E. IMX 256 Analog DSS/BLF Unit Installation 3-92
 F. GMX-256 Analog DSS/BLF Unit Installation 3-93
 G. Attendant Computer Console Installation 3-93
 H. Single-Line Set And Playback Device Installation 3-95
8. SMDR/SMDA Output Device Installation 3-98
9. External Paging Equipment Installation 3-98
10. External Music Source Installation 3-99
11. Preventative Maintenance .. 3-99
12. Post-installation Checklist 3-100
1. INTRODUCTION

1.1 This section describes the recommended procedures for installing the 256 System hardware. Refer to SPECIFICATIONS for hardware descriptions.

2. SYSTEM INSTALLATION OUTLINE

2.1 System installation is performed in the following order. Detailed instructions and figures for each step are located throughout the INSTALLATION section.

(1) Plan the installation, including the equipment cabinet and main distribution frame (MDF) location, station locations, cable runs, and optional equipment.

(2) Run cables to the keysets, analog Direct Station Selection/Busy Lamp Field (DSS/BLF) Units, Attendant Computer Consoles, single-line sets, and playback devices. Run wiring to any optional equipment, such as power failure transfer equipment, external paging equipment, general signaling devices, music sources, etc.

(3) Terminate the station cables on modular jack assemblies at the station locations.

(4) Mount the MDF backboard and assemble the terminal blocks on the backboard. If any T1 spans are to be installed, terminate them on eight-conductor modular jack assemblies at the MDF.

NOTE: The T1 span is typically connected to the standard RJ48C modular jack provided on the T1 Card. However, in certain situations (e.g., when using an external CSU equipped with a DB15 connector), it may be more convenient to use the card’s optional DB15 connector instead. Refer to page 3-20 for more information.

(5) Connect the trunks, station cables, and circuit card cables to the corresponding terminal blocks (or, for T1, modular jack assemblies).

(6) Perform the station loop resistance test for each station cable.

(7) Assemble the equipment cabinet.

(8) Install the system power supply modules in the power supply chassis.

(9) Install the circuit cards in the equipment cabinet and connect them to the cables (or line cords) that run from the MDF blocks (or MDF modular jack assemblies).

(10) Install the station instruments and any optional station equipment, such as headsets, handset amplifiers, and Data Port Modules.

(11) Install any optional system equipment, such as output device(s) for station message detail recording (SMDR) and station message detail accounting (SMDA), external paging network, external music source(s), voice mail, etc.

(12) Ensure that all equipment is working properly.

(13) Refer to the PROGRAMMING section of this manual to configure and program the system.

NOTICE

This IMX/GMX 256 Installation and Field Maintenance Manual instructs certified field technicians on the proper installation practices for the 256 System. This manual does not provide step-by-step instructions for premises wiring practices as dictated by the National Electrical Code, which includes, but is not limited to, cable layouts, cable installation, AC power installation, proper AC grounding, eliminating or preventing external interferences (including, but not limited to, RFI, EMI, lightning, AC power disturbances, static discharge), and other telephony practices standard within the industry. Cable installers, electricians, and field technicians are expected to be properly trained and, if applicable, licensed in their trade practices. Official 256 certification is required for technical assistance.
3. PRE-INSTALLATION CHECKLIST

3.1 To make installation easier, use the checklist on the following pages when preparing to install the system. (Hardware specifications are included in the SPECIFICATIONS section.)

A. ESTABLISH SUITABLE ENVIRONMENTAL CONDITIONS FOR THE SYSTEM

- Locate the equipment cabinet within 5 feet (1.5 meters) of an isolated, dedicated, 105–125VAC, 57-63Hz, 15A, single-phase commercial power source.

 NOTE: This must be an isolated, dedicated AC circuit for proper operation. All three wires (power, neutral, and ground) must be run separately from the outlet to the breaker panel without being bonded to any other wire or circuit. DO NOT plug any other equipment into this outlet. To maintain the protection provided by the isolated, dedicated circuit, the length of the AC power cord limits the distance between the power supply and the outlet; DO NOT use an extension cord. Also, to protect the system from AC voltage surges, a surge/spike protector is supplied with the system (refer to page 2-9 for specifications).

- Select the equipment cabinet location to minimize cable run length. Station instruments connected to the system must not exceed the limits (using 24AWG wire) listed in the table on page 3-29. The ohm values are loop measurements; feet (meter) values are the maximum one-way measurements from the equipment cabinet.

- Do not expose the equipment cabinet location to direct sunlight, high humidity, heat, dust, or strong magnetic fields (such as those generated by heavy motors and large copy machines).

- The MDF requires a 4 x 8-foot (1.2 x 2.4-meter), 3/4-inch plywood backboard. This should provide sufficient room for all blocks and peripheral equipment.

- For cooling purposes, provide ample air space around the equipment cabinet assembly (minimum one foot on all sides). Other than the programming PC, do not place or store items on top of the equipment cabinet.

- The SMDR/SMDA output device(s) must not have cables longer than 50 feet (15 meters).

- Locate the equipment in a climate-controlled room with the following environmental conditions:

<table>
<thead>
<tr>
<th>REQUIREMENTS</th>
<th>IN OPERATION</th>
<th>IN STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-32°F to 104°F</td>
<td>-40°F to 185°F</td>
</tr>
<tr>
<td>Equipment Cabinet</td>
<td>0°F to 40°C</td>
<td>-40°F to 85°C</td>
</tr>
<tr>
<td>Temperature</td>
<td>32°F to 113°F</td>
<td>-40°F to 185°F</td>
</tr>
<tr>
<td>Station Instruments</td>
<td>0°F to 45°C</td>
<td>-40°F to 85°C</td>
</tr>
<tr>
<td>Relative Humidity (Non-Condensing)</td>
<td>5% to 95%</td>
<td>5% to 95%</td>
</tr>
<tr>
<td>Altitude</td>
<td>up to 10,000 ft. (3,048 m.)</td>
<td>Up to 40,000 ft. (12,192 m.)</td>
</tr>
</tbody>
</table>

NOTE: It is recommended that the maximum operating temperature (as stated above) never be exceeded. Therefore, when installing the equipment cabinet and station instruments, allow a sufficient margin for error in case of air conditioning failure, routine maintenance, plant shutdown, etc. As a general rule, if conditions are suitable for office personnel, they are also suitable for all equipment and station instrument operation. A properly controlled environment will help to extend the operating life of the equipment.

From UL 1459, a product safety specification governing telephone equipment:

- Never install telephone wiring during a lightning storm.

- Never install telephone jacks in wet locations unless the jack is specifically designed for wet locations.

- Never touch uninsulated telephone wires or terminals unless the telephone line has been disconnected at the network interface.

- Use caution when installing or modifying telephone lines.

B. ASSEMBLE THE NECESSARY TOOLS AND SUPPLIES

- Industry-standard, three-pair (six-conductor) twisted cable to run from the MDF to all station instruments, including: keysets, analog DSS/BLF Units, Attendant Computer Consoles, ESLSs, SLls, single-line DTMF sets, and playback devices. (For exceptions, see the NOTE on page 3-6.)

- Six-conductor modular jack assemblies for all station instruments. (For exceptions, see the NOTE on page 3-6.)

- A high-impedance digital multimeter to check the power supply and ensure correct wiring of the modular jack assemblies. Multimeter accuracy must be ±0.5% or better.

- Standard terminal blocks (66M1-50 type) and bridging clips for constructing the MDF.
Industry-standard, 25-pair cable for connecting the MDF terminal blocks to the circuit cards in the equipment cabinet.

Industry-standard, cross-connect wire may be needed for certain applications.

50-pin female amphenol-type connectors (with recommended non-conducting, plastic covers) and a connecting machine.

Ferrite beads for all station, trunk, and RS-232-C cables. (Refer to SPECIFICATIONS, page 2-4.)

Gas discharge tubes with silicon avalanche suppressors for lightning protection on the CO, DID, OPX, and E&M trunks.

Grounding terminal and 10AWG wire for grounding the equipment cabinet.

Standard telephone hand tools and the mounting hardware for the MDF backboard, trunk and station blocks, modular jack assemblies, etc.

Programm@PC for customizing the database (refer to page 2-31 for specifications).

For T1 spans terminated on an RJ-type block (see Figure 3-11 on page 3-19):

- Eight-conductor modular jack assemblies (one for each T1 span installed).
- Four-pair, non-reversing, mod-to-mod line cords (one for each T1 span installed).
- T1 cable -enough to extend from each telco termination to the MDF (see page 2-20 for cable specifications).

C. PLAN STATION LOCATIONS AND TYPES OF STATION INSTRUMENTS

NOTE: For information on the GX and GMX station instruments, refer to appendixes A and B in the back of this manual.

- Prepare a cable identification plan using station circuit numbers; do not use extension numbers (see page 3-6 for details).

- Keysets: The IMX 256 System has the capacity for up to 256 keysets if using the new digital keysets or 8-line IMX AIM keysets, which can be installed two to a circuit. The GMX-256 System has the capacity for up to 128 keysets. Refer to SPECIFICATIONS, starting on page 2-21, for a listing of the available keyset models and for more information on maximum station capacities. Excluding nondisplay only models, all standard keysets can be converted to display keysets by installing optional Liquid Crystal Display (LCD) Units (see REPLACEMENT PARTS for part number).

NOTE: The equipment cabinet has 16 slots for station and trunk cards. The actual number of stations and trunks available depends on the number and type of cards, station instruments, and power supply modules installed.

- DSS/BLF Units: Up to 50 keyset circuits can be equipped with DSS/BLF Units. Digital units are powered by their own AC transformers and do not require a DKSC circuit that is separate from the keyset's circuit. Each analog unit requires one KSC or KSC-D circuit and its own cabling. As many as four analog units can be installed on a single KSC.

- Attendant Computer Consoles: If desired, up to 128 Attendant Computer Consoles can be installed on the system. The consoles are connected to KSC or KSC-D circuits.

NOTE: For additional information on the Attendant Computer Console, along with detailed installation and programming instructions, refer to the manual included with the console.
--- **Single-Line** Sets: Up to 240 single-line sets can be installed on the system. They can be Enhanced Single-Line Sets (ESLSs), Single-Line Instruments (SLIs), or industry-standard, single-line DTMF sets.

--- **Playback Devices:** Playback devices can be used in place of single-line stations. They are especially useful as hunt group overflow/announcement stations and automated attendant stations. (Refer to page 2-30 for specifications.)

D. ASSEMBLE THE OPTIONAL EQUIPMENT

--- Headsets for keyset stations and handset amplifiers for keyset stations or single-line set stations.

--- Digital keyset Personal Computer Data Port Modules (PCDPMs) for using Off-Hook Voice Announce (OHVA) features, and for installing a digital DSS/BLF Unit and/or an optional Modem Data Port Module.

--- Digital keyset Modem Data Port Modules (MDPMs) for connecting modem-equipped data devices or single-line sets.

--- Analog keyset Data Port Modules for hooking up either modem-equipped data terminals or loud ringing adapters and external signaling devices.

--- SMDR/SMDA output device(s) must not have cables longer than 50 feet (15 meters). (See page 2-31 for specifications.)

--- System battery back-up [uninterruptable power supply or standby power supply. (Refer to page 2-32 for specifications.)

--- OPX repeater(s) for amplifying voice volume levels, if necessary. (Refer to page 2-30 for specifications.)

--- Up to two external music sources.

--- External paging speakers and amplifier(s). (Refer to the NOTE and CAUTION on page 2-6.)

--- General signaling devices.

--- Power failure transfer equipment (customer-provided PFT relay card, card mounting case, and external power source).

--- Electronic equipment (alarms, lights, etc.) to connect to the night transfer relay and/or the T1 alarm relays.

--- For on-site or stand-alone/remote system programming, an IBM AT-compatible personal computer with a minimum: 6 megabytes (MB) available memory on the hard disk drive, 5¼-inch (1.2MB) or 3½-inch (1.44MB) double sided/high density floppy disk drive, 640k RAM (with minimum 512k available), MS-DOS 3.3 (or 5.0, 6.0, or 6.2), and an EGA graphics monitor. A programming mouse is optional (if used, install on an unassigned COM port). For remote maintenance, a 300-, 1200-, or 2400-baud modem is also needed. (See page 5-3 for more information.)

--- Doorbox equipment. (Refer to page 2-32.)

--- Voice mail equipment. (Refer to page 2-32.)

--- Facsimile machine. (Refer to page 2-32.)

--- Talkback speakers and external control unit. (Refer to page 2-32.)
4. STATION CABLING

4.1 Floor plans should be developed to aid in proper station cabling in a star (home run) configuration from the equipment cabinet. The cables are run from the station locations to the station blocks at the MDF. Refer to page 2-4 for cabling requirements.

4.2 Both ends of each cable should be labeled with the station’s circuit number (hardware address). The circuit number (XY) designates the card’s position in the equipment cabinet (X = 1-16) and the circuit position on the card (Y = 1-16 for DKSCs; Y = 1-8 for KSCs, KSC-Ds, and IDCs; Y = 1-16 for SLCs). For example, circuit number 4.6 identifies the sixth circuit on the card installed in slot number four.

NOTE: When IMX keysets are installed two to a circuit, the circuit number is separated into two parts (A and B) in database programming (e.g., circuit 4.6A and 4.6B).

4.3 When the system is first powered up, the default configuration is used to assign extension numbers to the station circuits. On IMX 256 Systems, card slots 1-4 are considered KSCs or KSC-Ds, slots 5-6 are DKSCs, slots 7-8 are unassigned, slots 9-12 are SLCs, and slots 13-16 are LGCs. On GMX-256 Systems, card slots 1-8 are considered KSCs or KSC-Ds, slots 9-12 are SLCs, and slots 13-16 are LGCs. Changes to the default configuration can be made through database programming. Refer to PROGRAMMING, page 5-170, for more information.

4.4 The system assigns extension number 100 to station circuit 1.1, extension number 101 to station circuit 1.2, and so on to match the initial configuration. Circuit 1.1 is equipped as the primary attendant’s keyset when the system is in the default configuration. Through database programming the circuits can be assigned different extension numbers and/or be changed to four-digit extension numbers. Refer to PROGRAMMING, page 5-58, for more information.

NOTE: “B” circuit IMX AIM keysets do not have extension numbers until assigned one in database programming.

4.5 Each analog DSS/BLF Unit requires a KSC or KSC-D circuit and cabling that is separate from the keyset’s circuit and cabling. If 50 keyset circuits are used for analog DSS/BLF Units, 50 fewer analog keysets and/or Attendant Computer Consoles can be installed. Up to four units can be installed on a single Keyset Card.

A. RUNNING CABLE

NOTE: It is recommended that three-pair twisted cable and six-conductor modular jacks be used for all station connections. This allows the various types of station instruments to be easily interchanged, if necessary. However, digital keysets, ESLs, SLIs, single-line DTMF sets, and playback devices can be installed using one-pair twisted cable and four-conductor modular jacks. (If three-pair cable is used for wiring digital keysets, single-line sets, and playback devices as recommended, extra terminal blocks and the use of cross-connect wiring techniques are required.)

4.6 From the MDF location, run industry standard, three-pair (six-conductor) twisted (24AWG, level-1 or better) cable to keysets, analog DSS/BLF Units, Attendant Computer Consoles, single-line sets, and playback devices. Follow these guidelines:

- Install proper type cable for the application according to the National Electrical Code and local building codes.
- Avoid cable runs parallel to fluorescent light fixtures or AC lines not in conduit. If these obstacles are unavoidable, run the cables across them at right angles.
- Do not run station cables inside electrical conduit already occupied by AC power cable. (To do so is a violation of the National Electrical Code.)
- Do not run cables near equipment with electric motors or through strong magnetic fields, such as those generated by large copy machines, arc welding equipment, heavy motors, etc.
- Do not place station cables where they can be stepped on or where they can be rolled over by office furniture.
- Ifusingmulti-pair (e.g., 25-pair) cable runs to multiple station locations, do not include AC-ringing single-line sets, AC-ringing auxiliary equipment, or trunks in a cable being used for analog keysets, Attendant Computer Consoles, or analog DSS/BLF Units. Stations using analog keyset circuits should be routed in separate multi-pair cable runs.
- Do not exceed the loop limit measurements (using 24AWG wire) for the station cable lengths as outlined in the table on page 3-29. The ohm values are loop measurements; feet (meter) values are the maximum one-way measurements from the equipment cabinet.
4.7 Since the IMX 256 System utilizes digital voice and data transmission between the digital keysets and the equipment cabinet, there are some additional digital keyset-only cabling requirements:

- Do not use shielded cable, and do not use cable smaller than 24AWG.
- Do not parallel cables (i.e., do not “double up on the copper”).
- Do not “bridge” or “Y” off the cable to another location.
- Unlike analog keysets, the digital keysets do not need to be routed in separate multi-pair cable runs. For example, if using 25-pair cable runs to multiple station locations, it is acceptable to include single-line sets, auxiliary equipment, and trunks in a cable being used for digital keysets.

B. TERMINATING THE CABLES AT STATION LOCATIONS

Digital Keysets

4.8 Terminate the digital keyset station cables on four- or six-conductor modular jack assemblies at the station locations.

4.9 Do not mount the assemblies on the wall at this time; they will be wall mounted later when the station instruments are installed. Refer to Figure 3-1 below for a wiring diagram.

CAUTION

If the tip and ring is reversed when installing a digital keyset, the keyset will not function.

FIGURE 3-1. DIGITAL KEYSET MODULAR JACK ASSEMBLY WIRING

FOR DIGITAL KEYSETS USING FOUR-CONDUCTOR JACKS

FOR DIGITAL KEYSETS USING SIX-CONDUCTOR JACKS
Analog Station Instruments

4.10 Terminate the analog keyset, analog DSS/BLF Unit, Attendant Computer Console, single-line set, and playback device station cables on six-conductor modular jack assemblies at the station locations. (For exceptions to this, refer to the NOTE following section A on the previous page.)

4.11 Do not mount the assemblies on the wall at this time; they will be wall mounted later when the station instruments are installed. Refer to Figure 3-2 below for a wiring diagram.

CAUTION
If the power pair (W/BL, BL/W) is reversed, installing a keyset, Attendant Computer Console, or DSS/BLF Unit will open the fuse or associated thermistor on the Keyset Card. If the card has a fuse, this affects operation of all station instruments connected to that card. If tip and ring (W/BL, BL/W) is reversed for DC-ringing single-line sets, the instrument may ring continuously.

FIGURE 3-2. ANALOG STATION MODULAR JACK ASSEMBLY WIRING

NOTE: The W/BL and BL/W conductors for the two types of stations are reversed. If the type of station instrument is changed, the modular jack must be rewired.
5. ASSEMBLING THE MAIN DISTRIBUTION FRAME (MDF) BACKBOARD

5.1 The main distribution frame (MDF) is the point at which the station instruments, trunks, and auxiliary system equipment are connected to terminal blocks (or, in the case of T1 spans and optional T1 equipment, modular jack assemblies are used instead). These terminal blocks (or modular jacks) are then connected to the 256 System. It is extremely important that the connections be made carefully and accurately.

NOTE: To simplify the MDF installation instructions, this manual outlines basic one block to one card installation using bridging clips. However, it is quite acceptable, and in some situations more functional, to use additional blocks and then cross connect between them.

5.2 Assemble the MDF as follows:

1. Mount at least a 4 × 8-foot (1.2 × 2.4-meter), g-inch plywood backboard at the MDF location. (Depending on the number of stations and trunks to be installed, a larger backboard may be necessary.)

2. Attach the 66M1-50-type terminal blocks to the plywood backboard. Refer to Figure 3-3 on the next page for a sample MDF block layout and cable assignments. Blocks include:
 - Up to 15 blocks for connecting CO trunks and the 25-pair cables for the Loop/Ground Start Cards (LGCs) and/or the Loop Start Cards (LSCs).
 - Up to 16 blocks for connecting station cables and the 25-pair cables for the station cards — Digital Keyset Cards (DKSCs) for digital keysets; Keyset Cards (KSCs or KSC-Ds) for analog keysets, analog DSS/BLF Units, and Attendant Computer Consoles; Single-Line Cards (SLCs) for single-line sets and playback devices; and Inward Dialing Cards (IDCs) for off-premises extensions and/or on-premises single-line sets and playback devices.

3. If any T1 spans or any optional T1 alarm signaling devices are to be installed, attach eight-conductor modular jack assemblies to the MDF as required. (For complete information on installing T1 spans, refer to page 3-17.)
FIGURE 3-3. SAMPLE MDF BLOCK LAYOUT AND CABLE ASSIGNMENTS
A. CONNECTING THE TRUNK CABLES TO THE MDF

C o Trunks

5.3 Connect the CO trunks and Loop/Ground Start Card (LGC) and/or Loop Start Card (LSC) cables as outlined below. Note that step 2 mentions two installation methods. Although the first method is more flexible, the second method can be used to minimize the number of terminal blocks that are used. Refer also to Figures 3-5 and 3-6 on the following pages.

1. Cross connect the CO trunks from the telephone company RJ-type blocks to the right side of the LGC/LSC blocks.

 NOTE: For additional lightning protection, see paragraph 5.6 on the next page.

2. **Method A:** Using enough 25-pair cable to run from the LGC/LSC blocks to the cards, make the termination cables. Attach a 50-pin female amphenol-type connector to one end of each LGC/LSC cable. Label each connector and cable end with the appropriate slot number (for example, SLOT-15). These connectors will be attached to the cards after they are installed in the equipment cabinet.

 Method B: Using enough 25-pair cable to run from the LGC/LSC blocks to the cards, make the special termination cables. Attach up to three 50-pin female amphenol-type connectors to one end of each LGC/LSC cable as shown in Figure 3-6. Connect CO trunks 1-8 to one connector, trunks 9-16 to another connector, trunks 17-24 to a third connector, and so on for each cable. Label each connector with the appropriate slot number (for example, SLOT-15). These connectors will be attached to the cards after they are installed in the equipment cabinet.

3. Using standard electrical tape, tape two ferrite split beads around each 25-pair cable just below the amphenol-type connector (as shown in Figure 3-4 on the next page).

4. Terminate the other end of each 25-pair cable on the left side of the corresponding LGC/LSC block.

5. Install bridging clips to complete the connections.

DID Trunks

5.4 Connect the Direct Inward Dialing (DID) trunks and Inward Dialing Card (IDC) cables as follows. Refer to Figure 3-7 on page 3-15 and Figure 3-19 on page 3-28.

 NOTE: Resides DID trunks, IDCs can also be used to install single-line sets, playback devices, and off-premises stations. Any combination using the eight circuits on the card is possible. Refer to pages 3-21 to 3-28 for station installation instructions.

1. Cross connect the DID trunks from the telephone company RJ-type blocks to the right side of the IDC blocks.

 NOTE: For additional lightning protection, see paragraph 5.6 on the next page.

2. Using enough 25-pair cable to run from the IDC blocks to the Inward Dialing Cards, make the termination cables. Attach a 50-pin female amphenol-type connector to one end of each IDC cable. Label each connector and cable end with the appropriate slot number (for example, SLOT-16). These connectors will be attached to the Inward Dialing Cards after the circuit cards are installed in the equipment cabinet.

3. Using standard electrical tape, tape two ferrite split beads around each 25-pair cable just below the amphenol-type connector (as shown in Figure 3-4 on the following page).

4. Terminate the other end of each 25-pair cable on the left side of the corresponding IDC block.

5. Install bridging clips to complete the connections.
E&M Trunks

5.5 Connect E&M trunks and E&M Card (EMC) cables as follows. Refer to Figure 3-g on page 3-16.

1. Cross **connect** the E&M trunks from the telephone company RJ-type blocks to the **right** side of the EMC blocks.

 NOTE: For additional lightning protection, see paragraph 5.6.

2. **Using enough 25-pair cable to run from the EMC blocks** to the E&M Cards, make the termination cables. Attach a **50-pin** female amphenol-type connector to one end of each EMC cable. Label each connector and cable end with the appropriate slot number (for example, SLOT-16). These connectors will be attached to the E&M Cards after the telecommunication cards are installed in the equipment cabinet.

3. **Using standard electrical tape,** tape two ferrite split beads around each 25-pair cable just below the amphenol-type connector (as shown in Figure 3-4 below).

4. Terminate the other end of each 25-pair cable on the **left** side of the corresponding EMC block.

5. **Install bridging clips** to complete the connections.

Lightning Protection

5.6 For additional lightning protection, install gas discharge tubes with silicon avalanche suppressors to ground (grounding rod or copper, cold water pipe) on each CO, DID, E&M, and OPX trunk. This must be done external to the system. Each gas discharge tube is installed directly between the telephone company RI-type block and the system’s CO/DID/E&M/OPX input. This protection should give energy absorption and filter low-level surge potentials. (For installation instructions and specific recommendations, contact Customer Support.)

5.7 Also, in areas with **frequent** occurrences of lightning, it is recommended that the cable between the telephone company RJ-type blocks and the gas discharge tubes be at least 75 feet long (the cable may be coiled up if desired).

FIGURE 3-4. EXAMPLE OF FERRITE BEAD INSTALLATION
FIGURE 3-5. LGC/LSC BLOCK CABLE TERMINATIONS (METHOD A)
FIGURE 3-6. **LGC/LSC BLOCK CABLE TERMINATIONS (METHOD B)**

![Diagram of LGC/LSC Block Cable Terminations (Method B)]
NOTE: The AC Enable terminations shown above are used only when installing single-lines sets and playback devices, not DID trunks. For information on their use, refer to the following pages.
NOTE: Depending on the area of the country and/or the specific type of E&M trunk ordered, one or more of the cable pairs shown above may not always be needed. For each E&M trunk to be installed, terminate all cable pairs provided by the telephone company, as shown in the pinout above.
B. CONNECTING T1 SPANS TO THE MDF

5.8 The installation procedure used to connect T1 spans at the MDF is dependent on the type of termination used by the telephone company and how close it is to the MDF. The T1 spans may be terminated on RJ48C modular jacks or on RJ-type terminal blocks.

5.9 Follow one of the three T1 termination methods (A, B, or C) outlined on the following pages.

NOTE: The T1 span is typically connected to the standard RJ48C jack provided on the T1 Card. However, in certain situations (e.g., when using an external CSU equipped with a DB15 connector), it may be more convenient to use the card’s optional DB15 connector instead. Refer to page 3-20 for more information.

Method A — T1 Spans Terminated On RJ48C Jacks Near The MDF

5.10 Install T1 spans terminated on RJ48C jacks near the MDF as outlined in below.

Plug one end of a four-pair, non-reversing (straight through), mod-to-mod line cord into each telephone company RJ48C jack. The other end of each line cord will later be plugged into the T1 jack on the corresponding T1 Card.

NOTE: Make sure the connectors on the ends of each line cord are properly attached. If any of the wires are cracked or broken, T1 transmission problems can occur.

Method B — T1 Spans Terminated On RJ48C Jacks Away From The MDF

5.11 Install T1 spans terminated on RJ48C jacks away from the MDF as outlined in the following steps. Refer to Figure 3-9 on the next page for a diagram of the complete layout.

(1) Mount one eight-conductor modular jack assembly next to each telephone company RJ48C jack.

(2) For each modular jack assembly mounted in step 1, also mount a corresponding eight-conductor modular jack assembly on the MDF backboard.

(3) To connect the modular jack assemblies mounted in steps 1 and 2:

 a. Run T1 cable between the corresponding modular jack assemblies.

 NOTE: If the telephone company termination is more than 2000 feet from the MDF, special T1 cable must be used (see page 2-20 for cable specifications). For shorter distances, two lengths of standard two-pair voice-frequency cable (one cable for transmit and one cable for receive) may be used instead.

 b. Wire each end of the cable onto their respective modular jack assemblies. Refer to Figure 3-10 on the next page for a diagram of the wiring.

(4) At the telephone company termination, plug one end of a four-pair, non-reversing (straight through), mod-to-mod line cord into each RJ48C jack and plug the other end into the corresponding modular jack assembly next to it.

(5) At the MDF backboard, plug one end of a four-pair, non-reversing (straight through), mod-to-mod line cord into each modular jack assembly. The other end of each line cord will later be plugged into the T1 jack on the corresponding T1 Card.

NOTE: Make sure the connectors on the ends of each line cord are properly attached. If any of the wires are cracked or broken, T1 transmission problems can occur.
FIGURE 3-9. **T1 SPAN TERMINATIONS FROM RJ48C JACKS**

![Diagram showing T1 span terminations from RJ48C jacks]

FIGURE 3-10. MODULAR JACK ASSEMBLY WIRING FOR T1 SPANS

![Diagram showing modular jack assembly wiring for T1 spans]

NOTE: OUT = transmit to network, IN = receive from network
Method C — T1 Spans Terminated On An RJ-Type Block

5.12 Install the T1 spans as outlined in the following steps. Refer to Figure 3-11 below for a diagram of the complete layout.

(1) On the MDF backboard, mount one eight-conductor modular jack assembly for each T1 span termination on the telephone company RJ-type block(s).

(2) Connect T1 cable between the telephone company terminations and the corresponding modular jack assemblies as follows:

NOTE: If the telephone company termination is more than 2000 feet from the MDF, special T1 cable must be used (see page 2-20 for cable specifications). For shorter distances, two lengths of standard two-pair voice-frequency cable (one cable for transmit and one cable for receive) may be used instead.

a. Terminate one end of a six-pair cable on each modular jack assembly. Refer to Figure 3-10 on the previous page.

b. Terminate the other end of the six-pair cable on the right side of the T1 RJ-type terminal block.

(3) Plug one end of a four-pair, non-reversing (straight through), mod-to-mod line cord into each modular jack assembly (mounted in step 1). The other end of each line cord will later be plugged into the T1 jack on the corresponding T1 Card.

NOTE: Make sure the connectors on the ends of each line cord are properly attached. If any of the wires are cracked or broken, T1 transmission problems can occur.

FIGURE 3-11. T1 SPAN TERMINATIONS FROM RJ-TYPE BLOCKS
Using The Optional DB15 Connector In Place Of The RJ48C Jack

5.13 The three T1 installation methods described on the preceding pages show the T1 span being connected to the RJ48C jack on the T1 Card. However, in certain situations (e.g., when using an external CSU equipped with a DB15 connector), the installer may wish to use the card’s optional DB15 connector instead.

5.14 The pin functions of the T1 Card DB15 connector (U-pin subminiature “D” female connector) are as follows:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tip (Out)</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Ring (Out)</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Tip 1 (In)</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Ring 1 (In)</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.15 To connect the DB15 connector on the T1 Card to a DB15 connector coming from the T1 span, a flat, 28AWG, twisted-pair ribbon cable with a maximum capacitance of 16pF/ft., may be used for distances up to 50 feet, as shown in the figure below. For distances longer than 50 feet, use the special high-speed data cable described in paragraph 3.91 on page 2-20.

FIGURE 3-12. USING THE T1 CARD'S OPTIONAL DB15 CONNECTOR

[Diagram showing pin connections]

NOTE: OUT = transmit to network, IN = receive from network.
C. CONNECTING STATION CABLES TO THE MDF

5.16 Each type of station instrument is connected to a specific station card. Digital keysets are connected to DKSCs. Analog keysets, analog DSS/BLF Units, and Attendant Computer Consoles are connected to KSCs or KSC-Ds. Single-line sets and playback devices are connected to SLCs and/or IDCs.

NOTE: Resides single-line sets, playback devices, and off-premises extensions, IDCs can also be used to install DID trunks. Any combination using the eight circuits on the card is possible. Refer to pages 3-11 to 3-15 for DID trunk installation instructions.

5.17 After the station cables are run, connect them and the 25-pair cables to the station blocks on the MDF as follows:

1. Ensure that both ends of each station cable are labeled with the circuit number of the associated station instrument.

2. Terminate each station cable on the right side of the corresponding station block. Refer to Figures 3-13 through 3-19 on the following pages for station cable terminations.

NOTE: For simplicity, Figures 3-13, 3-17, and 3-18 show digital keysets, single-line sets, and playback devices being installed using one-pair cable and four-conductor modular jacks. Of course, if three-pair cable and six-conductor modular jacks are used instead (as is recommended), extra terminal blocks and the use of cross-connect wiring techniques are required.

3. Using enough 25-pair cable to run from each block to each station card in the equipment cabinet, make the termination cables. Attach a 50-pin female amphenol-type connector to one end of each cable. Label each connector and cable end with the appropriate slot number (for example, SLOT-2). These connectors will be attached to the station cards after the circuit cards are installed.

4. Using standard electrical tape, tape two ferrite split beads around each 25-pair cable just below the amphenol-type connector (as shown in Figure 3-12).

NOTE: Ferrite beads must be installed to meet Part 15 of FCC regulations. Refer to REPLACEMENT PARTS for the part number.

5. Terminate the other end of each 25-pair cable on the left side of the corresponding station block.

NOTE: If necessary, any of the eight circuits on an IDC can be enabled for AC ringing to be used with off-premises extensions or on-premises AC-ringing equipment. To do this, each circuit can be strapped directly at the IDC terminal block (as shown in Figure 3-18 on page 3-27) or on the card itself (as described on page 3-51).

6. DO NOT attach bridging clips until the loop resistance tests have been performed (as described on page 3-29).
FIGURE 3-13. DIGITAL KSC BLOCK CABLE TERMINATIONS FOR KEYSETS

NOTE: For simplicity, this figure shows keysets being installed using one-pair cable and four-conductor modular jacks. Of course, if two-pair cable or three-pair cable is used instead, extra terminal blocks and the use of cross-connect wiring techniques are required. Note that tip and ring are connected to the second pair of terminals (black and yellow) on the modular jack.
FIGURE 3-14. ANALOG KSC BLOCK CABLE TERMINATIONS

KSC

MODULAR JACK ASSEMBLY

TO KEYSET, ATTENDANT CONSOLE, OR DSS/BLF

W6L +30VDC
W/O PRI
W/G SEC

KEYSET CARD

AMPHENOL-TYPE CONNECTOR

66M1-50-TYPE BLOCK (PART OF MDF)
FIGURE 3-15. INSTALLING 8-LINE IMX AIM KEYSETS TWO TO A CIRCUIT

NOTE: This illustration shows three common methods for installing two 8-line IMX AIM keysets on a single KSC-D circuit. For a detailed wiring diagram of method A, refer to the following-page.
FIGURE 3-16. KSC-D BLOCK CABLE TERMINATIONS FOR 8-LINE IMX AIM KEYSETS INSTALLED TWO TO A CIRCUIT

NOTE: This illustration details one common method for wiring two 8-line IMX AIM keysets to a single KSC-D circuit. For a simple illustration of some alternative installation methods, refer to the previous page.
NOTE: For simplicity, this figure shows single-line sets and playback devices being installed using one-pair cable and four-conductor modular jacks. Of course, if three-pair cable and six-conductor modular jacks are used instead (as is recommended), extra terminal blocks and the use of cross-connect wiring techniques are required.
FIGURE 3-18. IDC BLOCK CABLE TERMINATIONS

NOTE: For simplicity, this figure shows single-line sets and playback devices being installed using one-pair cable and four-conductor modular jacks. Of course, if three-pair cable and six-conductor modular jacks are used instead (as is recommended), extra terminal blocks and the use of cross-connect wiring techniques are required.
FIGURE 3-19. STATION CABLE TERMINATIONS ON THE STATION BLOCK

<table>
<thead>
<tr>
<th>AMPHENOL</th>
<th>CABLE PAIR</th>
<th>DKSC</th>
<th>KSC or KSC-D</th>
<th>SLC</th>
<th>IDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>W - BL</td>
<td>CKT 1 TIP</td>
<td>CKT 1 +30VDC</td>
<td>CKT 1 TIP</td>
<td>CKT 1 TIP</td>
</tr>
<tr>
<td>1</td>
<td>B L - w</td>
<td>CKT 1 RING</td>
<td>CKT 1 GND</td>
<td>CKT 1 RING</td>
<td>CKT 1 RING</td>
</tr>
<tr>
<td>27</td>
<td>w - o</td>
<td>CKT 2 TIP</td>
<td>CKT 1 PRIMARY PATH</td>
<td>CKT 2 TIP</td>
<td>CKT 2 TIP</td>
</tr>
<tr>
<td>2</td>
<td>0 - w</td>
<td>CKT 2 RING</td>
<td>CKT 1 PRIMARY PATH</td>
<td>CKT 2 RING</td>
<td>CKT 2 RING</td>
</tr>
<tr>
<td>28</td>
<td>W - G</td>
<td>CKT 3 TIP</td>
<td>CKT 1 SECONDARY PATH</td>
<td>CKT 3 TIP</td>
<td>CKT 3 TIP</td>
</tr>
<tr>
<td>3</td>
<td>G - W</td>
<td>CKT 3 RING</td>
<td>CKT 1 SECONDARY PATH</td>
<td>CKT 3 RING</td>
<td>CKT 3 RING</td>
</tr>
<tr>
<td>29</td>
<td>W - BR</td>
<td>CKT 4 TIP</td>
<td>CKT 2 +30VDC</td>
<td>CKT 4 TIP</td>
<td>CKT 4 TIP</td>
</tr>
<tr>
<td>4</td>
<td>B R - w</td>
<td>CKT 4 RING</td>
<td>CKT 2 GND</td>
<td>CKT 4 RING</td>
<td>CKT 4 RING</td>
</tr>
<tr>
<td>30</td>
<td>w - s</td>
<td>CKT 5 TIP</td>
<td>CKT 2 PRIMARY PATH</td>
<td>CKT 5 TIP</td>
<td>CKT 5 TIP</td>
</tr>
<tr>
<td>5</td>
<td>s - w</td>
<td>CKT 5 RING</td>
<td>CKT 2 PRIMARY PATH</td>
<td>CKT 5 RING</td>
<td>CKT 5 RING</td>
</tr>
<tr>
<td>31</td>
<td>R - BL</td>
<td>CKT 6 TIP</td>
<td>CKT 2 SECONDARY PATH</td>
<td>CKT 6 TIP</td>
<td>CKT 6 TIP</td>
</tr>
<tr>
<td>6</td>
<td>B L - R</td>
<td>CKT 6 RING</td>
<td>CKT 2 SECONDARY PATH</td>
<td>CKT 6 RING</td>
<td>CKT 6 RING</td>
</tr>
<tr>
<td>32</td>
<td>R - 0</td>
<td>CKT 7 TIP</td>
<td>CKT 3 +30VDC</td>
<td>CKT 7 TIP</td>
<td>CKT 7 TIP</td>
</tr>
<tr>
<td>7</td>
<td>0 - R</td>
<td>CKT 7 RING</td>
<td>CKT 3 GND</td>
<td>CKT 7 RING</td>
<td>CKT 7 RING</td>
</tr>
<tr>
<td>33</td>
<td>R - G</td>
<td>CKT 8 TIP</td>
<td>CKT 3 PRIMARY PATH</td>
<td>CKT 8 TIP</td>
<td>CKT 8 TIP</td>
</tr>
<tr>
<td>8</td>
<td>G - R</td>
<td>CKT 8 RING</td>
<td>CKT 3 PRIMARY PATH</td>
<td>CKT 8 RING</td>
<td>CKT 8 RING</td>
</tr>
<tr>
<td>34</td>
<td>R - BR</td>
<td>CKT 9 TIP</td>
<td>CKT 3 SECONDARY PATH</td>
<td>CKT 9 TIP</td>
<td>CKT 9 TIP</td>
</tr>
<tr>
<td>9</td>
<td>B R - R</td>
<td>CKT 9 RING</td>
<td>CKT 3 SECONDARY PATH</td>
<td>CKT 9 RING</td>
<td>CKT 9 RING</td>
</tr>
<tr>
<td>35</td>
<td>R - S</td>
<td>CKT 10 TIP</td>
<td>CKT 4 +30VDC</td>
<td>CKT 10 TIP</td>
<td>NOT USED</td>
</tr>
<tr>
<td>10</td>
<td>S - R</td>
<td>CKT 10 RING</td>
<td>CKT 4 GND</td>
<td>CKT 10 RING</td>
<td>NOT USED</td>
</tr>
<tr>
<td>36</td>
<td>BK - BL</td>
<td>CKT 11 TIP</td>
<td>CKT 4 PRIMARY PATH</td>
<td>CKT 11 TIP</td>
<td>CKT 1 AC ENABLE</td>
</tr>
<tr>
<td>11</td>
<td>BL - BK</td>
<td>CKT 11 RING</td>
<td>CKT 4 PRIMARY PATH</td>
<td>CKT 11 RING</td>
<td>CKT 1 AC ENABLE</td>
</tr>
<tr>
<td>37</td>
<td>BK - 0</td>
<td>CKT 12 TIP</td>
<td>CKT 4 SECONDARY PATH</td>
<td>CKT 12 TIP</td>
<td>CKT 2 AC ENABLE</td>
</tr>
<tr>
<td>12</td>
<td>0 - BK</td>
<td>CKT 12 RING</td>
<td>CKT 4 SECONDARY PATH</td>
<td>CKT 12 RING</td>
<td>CKT 2 AC ENABLE</td>
</tr>
<tr>
<td>38</td>
<td>B K - G</td>
<td>CKT 13 TIP</td>
<td>CKT 5 +30VDC</td>
<td>CKT 13 TIP</td>
<td>CKT 3 AC ENABLE</td>
</tr>
<tr>
<td>13</td>
<td>G - BK</td>
<td>CKT 13 RING</td>
<td>CKT 5 GND</td>
<td>CKT 13 RING</td>
<td>CKT 3 AC ENABLE</td>
</tr>
<tr>
<td>39</td>
<td>BK - BR</td>
<td>CKT 14 TIP</td>
<td>CKT 5 PRIMARY PATH</td>
<td>CKT 14 TIP</td>
<td>CKT 4 AC ENABLE</td>
</tr>
<tr>
<td>14</td>
<td>BR - BK</td>
<td>CKT 14 RING</td>
<td>CKT 5 PRIMARY PATH</td>
<td>CKT 14 RING</td>
<td>CKT 4 AC ENABLE</td>
</tr>
<tr>
<td>40</td>
<td>BK - S</td>
<td>CKT 15 TIP</td>
<td>CKT 5 SECONDARY PATH</td>
<td>CKT 15 TIP</td>
<td>CKT 5 AC ENABLE</td>
</tr>
<tr>
<td>15</td>
<td>S - BK</td>
<td>CKT 15 RING</td>
<td>CKT 5 SECONDARY PATH</td>
<td>CKT 15 RING</td>
<td>CKT 5 AC ENABLE</td>
</tr>
<tr>
<td>41</td>
<td>Y - BL</td>
<td>CKT 16 TIP</td>
<td>CKT 6 +30VDC</td>
<td>CKT 16 TIP</td>
<td>CKT 6 AC ENABLE</td>
</tr>
<tr>
<td>16</td>
<td>BL - Y</td>
<td>CKT 16 RING</td>
<td>CKT 6 GND</td>
<td>CKT 16 RING</td>
<td>CKT 6 AC ENABLE</td>
</tr>
<tr>
<td>42</td>
<td>Y - 0</td>
<td>NOT USED</td>
<td>CKT 6 PRIMARY PATH</td>
<td>NOT USED</td>
<td>CKT 7 AC ENABLE</td>
</tr>
<tr>
<td>17</td>
<td>0 - Y</td>
<td>NOT USED</td>
<td>CKT 6 PRIMARY PATH</td>
<td>NOT USED</td>
<td>CKT 7 AC ENABLE</td>
</tr>
<tr>
<td>43</td>
<td>Y - G</td>
<td>NOT USED</td>
<td>CKT 6 SECONDARY PATH</td>
<td>GROUND</td>
<td>CKT 8 AC ENABLE</td>
</tr>
<tr>
<td>18</td>
<td>G - Y</td>
<td>NOT USED</td>
<td>CKT 6 SECONDARY PATH</td>
<td>GROUND</td>
<td>CKT 8 AC ENABLE</td>
</tr>
<tr>
<td>44</td>
<td>Y - BR</td>
<td>NOT USED</td>
<td>CKT 7 +30VDC</td>
<td>GROUND</td>
<td>GROUND</td>
</tr>
<tr>
<td>19</td>
<td>BR - Y</td>
<td>NOT USED</td>
<td>CKT 7 GND</td>
<td>GROUND</td>
<td>GROUND</td>
</tr>
<tr>
<td>45</td>
<td>Y - s</td>
<td>NOT USED</td>
<td>CKT 7 PRIMARY PATH</td>
<td>GROUND</td>
<td>GROUND</td>
</tr>
<tr>
<td>20</td>
<td>S - Y</td>
<td>NOT USED</td>
<td>CKT 7 PRIMARY PATH</td>
<td>GROUND</td>
<td>GROUND</td>
</tr>
<tr>
<td>46</td>
<td>V - BL</td>
<td>NOT USED</td>
<td>CKT 7 SECONDARY PATH</td>
<td>GROUND</td>
<td>GROUND</td>
</tr>
<tr>
<td>21</td>
<td>BL - V</td>
<td>NOT USBD</td>
<td>CKT 7 SECONDARY PATH</td>
<td>GROUND</td>
<td>GROUND</td>
</tr>
<tr>
<td>47</td>
<td>V - 0</td>
<td>NOT USBD</td>
<td>CKT 8 +30VDC</td>
<td>GROUND</td>
<td>GROUND</td>
</tr>
<tr>
<td>22</td>
<td>0 - v</td>
<td>NOT USED</td>
<td>CKT 8 GND</td>
<td>GROUND</td>
<td>GROUND</td>
</tr>
<tr>
<td>48</td>
<td>V - G</td>
<td>NOT USED</td>
<td>CKT 8 PRIMARY PATH</td>
<td>GROUND</td>
<td>GROUND</td>
</tr>
<tr>
<td>23</td>
<td>G - V</td>
<td>NOT USED</td>
<td>CKT 8 PRIMARY PATH</td>
<td>GROUND</td>
<td>GROUND</td>
</tr>
<tr>
<td>49</td>
<td>V - BR</td>
<td>NOT USED</td>
<td>CKT 8 SECONDARY PATH</td>
<td>GROUND</td>
<td>-48V</td>
</tr>
<tr>
<td>24</td>
<td>BR - V</td>
<td>NOT USED</td>
<td>CKT 8 SECONDARY PATH</td>
<td>GROUND</td>
<td>-48V</td>
</tr>
<tr>
<td>50</td>
<td>V - s</td>
<td>NOT USED</td>
<td>NOT USED</td>
<td>GROUND</td>
<td>GROUND</td>
</tr>
<tr>
<td>25</td>
<td>s - v</td>
<td>NOT USED</td>
<td>NOT USED</td>
<td>-48V</td>
<td>-48V</td>
</tr>
</tbody>
</table>

Page 3-28
D. STATION LOOP RESISTANCE TEST

5.18 Perform the loop resistance test for each station cable individually.

1. Ensure that bridging clips have not been installed on the station blocks and that the station instrument is not connected to the modular jack assembly.

2. Place a short across the RED and GREEN wires on the modular jack assembly.

3. At the MDF, measure the resistance across the WHITE/BLUE and BLUE/WHITE wires on the right (station) side of the station block. The reading should not exceed the limits (for 24AWG wire) listed in the chart below (ohm values are the loop measurements; feet/meter values are the maximum one-way measurements from the equipment cabinet).

NOTE: Excessive and/or improperly made connections increase the resistance of a cable, which reduces the allowable cable run length.

Remove the short after the test is complete.

Repeat this test for each station cable.

Install bridging clips on the station blocks to complete the cable connections.

TYPE OF INSTRUMENT

Digital Keysets (both Standard and Executive, display and non-display)	103 ohms/2000 ft. (609 m.)
Digital Keysets with attached PC and Modem Data Port Modules	103 ohms/2000 ft. (609 m.)
From Modern Data Port Modules to single-line sets	195 ohms/3800 ft. (1158 m.)
IMX 12-Line and 24-Line Keysets (standard and display)	65 ohms/1260 ft. (384 m.)
IMX 12-Line and 24-Line Keysets with Data Port Modules	50 ohms/970 ft. (295 m.)
IMX 12-Line and 24-Line AIM Keysets	82 ohms/1590 ft. (484 m.)
IMX 12-Line and 24-Line AIM Keysets with Data Port Modules	66 ohms/1280 ft. (390 m.)
IMX 8-Line Keysets	75 ohms/1460 ft. (445 m.)
IMX 8-Line AIM Keysets (when installed one to a circuit)	103 ohms/2000 ft. (609 m.)
IMX 8-Line AIM Keysets (when installed two to a circuit)*	77 ohms/1500 ft. (457 m)*
Inter-Tel/DVK Keysets (standard and display)	82 ohms/1590 ft. (484 m.)
Inter-Tel/DVK Keysets with Data Port Modules	66 ohms/1280 ft. (390 m.)
IMX and Inter-Tel/DVK DSS/BLF Units	65 ohms/1260 ft. (384 m.)
EDSLs (AC or DC)	800 ohms/15560 ft. (4742 m.)
SSLs (AC or DC)	800 ohms/15560 ft. (4742 m.)
Playback Devices (AC or DC)	800 ohms/15560 ft. (4742 m.)
Industry-Standard, Single-Line DTMF Sets (AC or DC)	800 ohms/15560 ft. (4742 m.)

* The actual loop limits for d-line AIM keysets installed two to a circuit varies according to the type of installation method used, as shown in Figure 3-15 on page 3-24. If method A is used (separate cabling), the loop limit for each keyset (as measured from the equipment cabinet to the station location) must not exceed 77 ohms/1500 ft. (457 m). If methods B or C are used (shared cabling), the loop limit for each keyset is reduced to 51 ohms/1000 ft. (305 m). Also note that if shielded cable is used for any type of non-digital keyset installation, the actual loop limit may be reduced by as much as 20% because the foil wrapped around the wires in the cable acts as a capacitor. Do not use shielded cable for digital keyset installations. Longer loop lengths can be achieved by using heavier gauge cable, such as 22AWG.

For additional station cabling requirements, refer to page 3-6.
E. CONNECTING OPTIONAL OFF-PREMISES EXTENSIONS (OPXs)

5.19 Off-premises extensions are remote ESLs, SLIs, or single-line DTMF sets that are connected to the 256 System through telephone company OPX circuits (or customer-provided circuits). At the MDF, the circuits are connected to Inward Dialing Cards (IDCs).

NOTE: IDCs do not support message waiting applications. If single-line sets with message waiting lamps are installed on IDCs, the lamps will not function.

5.20 Off-premises station instruments must be AC-ringer-equipped. The IDC’s onboard high-voltage ringing adapter (HVRA) provides isolation from the telephone company OPX circuits as required by FCC regulations.

5.21 Each IDC can support up to eight off-premises extensions. The individual IDC circuits used for the OPXs must be strapped for AC ringing. They can be strapped directly at the IDC terminal block (as shown in Figure 3-18 on page 3-27) or on the card itself (as described on page 3-51). (On premises, IDC circuits can be used for installing AC or DC voice mail units, digital attendants, etc.)

5.22 In certain off-premises applications, voice volume levels may not be acceptable. This degradation in voice volume is due to the natural voice frequency range limitations of the telephone company or customer-provided circuit. To increase the voice frequency range, installation of a 2-wire, negative impedance repeater unit is recommended. (Refer to page 2-30 for specifications.)

5.23 The repeater unit is installed at the MDF between the IDC terminal block and the cabling to the off-premises single-line station. For proper installation with the 256 System, the following are connected to the appropriate “pins” on the repeater unit (refer to the manufacturer’s instructions for proper pin locations):
- Battery (-24 to -56VDC), Ground, System Tip, System Ring, OPX Tip, and OPX Ring. For complete installation instructions, contact Customer Support.

Information on operating and adjusting the repeater unit is included with the product.

5.24 Install the off-Premises extensions as follows (refer to Figure 3-18 on page 3-27):

1. At the MDF, terminate each telephone company OPX circuit (or customer-provided circuit) on the right side of the appropriate IDC terminal block.
2. Install bridging clips on the IDC block(s) to complete the connection.
3. At the off-premises location, terminate each telephone company OPX circuit (or customer-provided circuit) on the appropriate single-line set modular jack assembly.

F. CONNECTING THE RCPU CARD TO THE MDF

5.25 The RCPU Card is terminated at the MDF so that it can be connected to a variety of optional equipment, including: music sources, power failure transfer equipment, signaling devices, night transfer equipment, etc. Connect the RCPU Card to the MDF as follows:

1. Using enough 25-pair cable to run from the RCPU Card terminal block to the RCPU Card in the equipment cabinet, make a termination cable. Attach a 50-pin female amphenol-type connector to the RCPU Card end of the cable. Label the connector “RCPU Card”. This connector will be attached to the RCPU Card after the circuit cards are installed in the equipment cabinet.
2. Terminate the other end of the cable on the left side of the RCPU Card block.
3. Terminate the desired optional equipment on the right side of the RCPU Card block as shown in Figure 3-20 on the following two pages.
4. Install bridging clips on the RCPU Card block to complete the installation.
FIGURE 3-20. RCPU CARD CABLE TERMINATIONS

(RCPU (PART OF MDF))

<table>
<thead>
<tr>
<th>RCPU CARD</th>
<th>AMPHENOL-TYPE CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/B/L</td>
<td>26 MOH1A</td>
</tr>
<tr>
<td>B/W/L</td>
<td>1 MOH1B</td>
</tr>
<tr>
<td>W/G</td>
<td>27 MOH2A</td>
</tr>
<tr>
<td>W/G</td>
<td>2 MOH2B</td>
</tr>
<tr>
<td>W/R</td>
<td>29 DGN (NOT USED)</td>
</tr>
<tr>
<td>R/A</td>
<td>4 R1A-NC (USED INTERNALLY FOR PPT RELAY)</td>
</tr>
<tr>
<td>R/G</td>
<td>5 DGN (NOT USED)</td>
</tr>
<tr>
<td>G/R</td>
<td>6 DGN (NOT USED)</td>
</tr>
<tr>
<td>B/R</td>
<td>30 DGN (NOT USED)</td>
</tr>
<tr>
<td>R/L</td>
<td>31 DGN (NOT USED)</td>
</tr>
<tr>
<td>R/L</td>
<td>32 DGN (NOT USED)</td>
</tr>
<tr>
<td>B/R</td>
<td>33 DGN (NOT USED)</td>
</tr>
<tr>
<td>B/R</td>
<td>34 R2A-NC</td>
</tr>
<tr>
<td>R/G</td>
<td>35 R2A-NO</td>
</tr>
<tr>
<td>R/G</td>
<td>36 R2A-NO</td>
</tr>
<tr>
<td>B/R</td>
<td>37 R2A-NC</td>
</tr>
<tr>
<td>R/G</td>
<td>38 R2A-NO</td>
</tr>
<tr>
<td>R/G</td>
<td>39 R2A-NO</td>
</tr>
<tr>
<td>B/R</td>
<td>40 R2A-NC</td>
</tr>
<tr>
<td>B/R</td>
<td>41 R2A-NO</td>
</tr>
</tbody>
</table>

66M1-50-TYPE BLOCK

(CONTINUED ON THE NEXT PAGE)
FIGURE 3-20. RCPU CARD TERMINATIONS (CONT'D)

RCPU
(CONTINUED FROM
THE PREVIOUS
PAGE)

AMPHENOL-
TYPE
CONNECTOR

66M1-50-TYPE
BLOCK
(PART OF MDF)
G. CONNECTING OPTIONAL T1 ALARM RELAY DEVICES TO TEE MDF

5.26 In addition to the T1 span connection (as outlined on page 3-17), T1 Cards may also be connected to optional T1 alarm signaling devices.

5.27 Terminate each T1 Card alarm relay on the MDF as follows:

1. Run cable from the optional T1 alarm signaling device(s) to the MDF.
2. At the MDF, mount an eight-conductor modular jack assembly.
3. Wire the cable(s) onto the modular jack. Refer to Figure 3-21 below for a diagram of the wiring.

NOTE: For information on Programming T1 alarm relays, refer to page 5-129 in the PROGRAMMING section of the manual.

4. Plug one end of a four-pair, non-reversing (straight through), mod-to-mod line cord into the modular jack assembly. The other end of the line cord will later be plugged into the alarm relay jack on the corresponding T1 Card.

FIGURE 3-21. MODULAR JACK ASSEMBLY WIRING FOR OPTIONAL T1 ALARM RELAYS

![Diagram of Modular Jack Assembly and T1 Card Alarm Relay Jack](image-url)
H. CO-G TWO 256 SYSTEMS TOGETHER USING T1 CARDS

5.28 Although most T1 interfaces will be with the public network, it is possible to use T1 Cards to connect two telephone systems together (e.g., two 256 Systems). To do this without CSUs, the two systems must be located in the same building and the cabling between them must be less than 655 feet. If each system is equipped with a CSU, they may be located in separate buildings and the cabling between them may be as long as 6000 feet.

5.29 In addition, when connecting two 256 Systems together, the line cord (or cabling) between the two T1 Cards must be wired so that the receive pair (tip1 in and ring1 in) on each card is connected to the transmit pair (tip out and ring out) on the other card, as shown in the figure below. (For information on programming various types of T1 installations, refer to pages 5-122 to 5-129.)

FIGURE 3-22. CONNECTING TWO T1 CARDS TOGETHER
6. EQUIPMENT CABINET INSTALLATION

A. UNPACK THE EQUIPMENT

6.1 Unpack the equipment and inspect the equipment cabinet and all accompanying parts following these guidelines:

(1) Check the parts against the packing slip and inspect them for damage. If any item is missing or damaged, contact Customer Support immediately.

(2) Check all circuit card assemblies as follows:

 NOTE: The cards contain static-sensitive components. Handle all cards by the edges only; however, avoid touching the gold contacts on the side of the card that plugs into the equipment cabinet. (For additional precautionary information, refer to the CAUTION on page 3-44.)

 c. Check each card to ensure there is no shipping foam or tape attached.

 d. Inspect each card for shorted components.

 e. Return all cards to their protective bags until they are ready to be installed in the equipment cabinet.

B. CHECK THE EQUIPMENT CABINET PREASSEMBLY

6.2 The equipment cabinet is shipped partially assembled. To ensure that none of the items have been damaged or have become unattached during shipment, follow the instructions below and refer to the drawings on the following pages.

(1) Position the equipment cabinet near the MDF backboard.

(2) If desired, the equipment cabinet front door and back panel may be removed for easier access to the internal structure.

To remove the backpanel:

a. Turn the two locking screws on the panel and allow the panel to open from the top.

b. Lift the panel up off of the supporting pins and set the panel aside.

NOTE: A set of keys for the lock on the front door is taped to the inside of the back panel.

To remove the front door:

a. Unlock the door, open it, and (if applicable) unhook the wire cable or chain between the cabinet and the door.

b. Pull/push the two spring-loaded retention bars in the appropriate direction and slide the door off. Set the door aside.

(3) Check to see that the Telecom Motherboard is securely installed in the rear of the equipment cabinet (there should be 10 6-32 x 5/8-inch screws with self-locking star washers holding the card in place).

(4) Check to make sure that the metal power supply chassis is securely installed in the equipment cabinet (the bottom edge of the chassis fits under a metal lip, and there should be three 8-32 x 1/2-inch screws with self-locking star washers holding the chassis in place).

(5) Ensure that the Telecom Motherboard power cable is securely attached to both the Telecom Motherboard and the back of the power supply chassis:

a. At the rear of the cabinet, confirm that the 26 small power cable connectors are attached to the appropriate connectors on the Telecom Motherboard. (Refer to Figures 3-23 and 3-24 on pages 3-36 and 3-37.)

b. At the rear of the cabinet, confirm that the four large power cable connectors are attached to the appropriate connectors on the back of the power supply chassis. (Refer to Figure 3-25 on page 3-38.)
FIGURE 3-23. POWER CABLE CONNECTORS ON THE TELECOM MOTHERBOARD

BACK SIDE OF TELECOM MOTHERBOARD

CPCP

CPCN

DGND
+5V

-12COM

+5VA

-5VA

+12V

+30V

VRING

-48V

KGN

RESV2*

B

+5 SEN RTN

+5 SEN

D

DGND
+5V

-12COM*

AGND*

BGND

+12V

VRING*

-48V

KGN

RESV1*

E

CPCP*

CPCN*

AGND

BGND

RESV2*

RESV1*

KEY TO ABBREVIATIONS

A = Analog
B = Battery (-48VDC)
D = Digital
K = Keyset (+30VDC)
CPCP = Card Pre-Charge Positive
CPCN = Card Pre-Charge Negative
* = Not Currently Used
FIGURE 3-24. CONNECTING THE POWER CABLE TO THE TELECOM MOTHERBOARD

<table>
<thead>
<tr>
<th>CONNECTOR</th>
<th>WIRE COLOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>CPCP</td>
<td>ORANGE (18 GAUGE)</td>
</tr>
<tr>
<td>CPCN</td>
<td>RED (18 GAUGE)</td>
</tr>
<tr>
<td>AGND</td>
<td>PURPLE (14 GAUGE)</td>
</tr>
<tr>
<td>BGND</td>
<td>ORANGE/RED (18 GAUGE)</td>
</tr>
<tr>
<td>RESV2</td>
<td>NOT CURRENTLY USED</td>
</tr>
<tr>
<td>DGND</td>
<td>BROWN (14 GAUGE)</td>
</tr>
<tr>
<td>+5V</td>
<td>GREEN/BLACK (18 GAUGE)</td>
</tr>
<tr>
<td>-12COM</td>
<td>GREEN (18 GAUGE)</td>
</tr>
<tr>
<td>+12V</td>
<td>BLUE (18 GAUGE)</td>
</tr>
<tr>
<td>+30V</td>
<td>WHITE/YELLOW (18 GAUGE)</td>
</tr>
<tr>
<td>+5VA</td>
<td>GRAY/BLACK (18 GAUGE)</td>
</tr>
<tr>
<td>VRING</td>
<td>ORANGE/BROWN (18 GAUGE)</td>
</tr>
<tr>
<td>KGND</td>
<td>WHITE/BROWN (18 GAUGE)</td>
</tr>
<tr>
<td>-5VA</td>
<td>YELLOW (18 GAUGE)</td>
</tr>
<tr>
<td>-48V</td>
<td>ORANGE/YELLOW (18 GAUGE)</td>
</tr>
<tr>
<td>RESV1</td>
<td>NOT CURRENTLY USED</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>+5 SEN RTN</td>
<td>BLACK (22 GAUGE)</td>
</tr>
<tr>
<td>+5 SEN</td>
<td>RED (22 GAUGE)</td>
</tr>
<tr>
<td>AGND</td>
<td>NOT CURRENTLY USED</td>
</tr>
<tr>
<td>BGND</td>
<td>ORANGE (14 GAUGE)</td>
</tr>
<tr>
<td>RESV2</td>
<td>NOT CURRENTLY USED</td>
</tr>
<tr>
<td>-12COM</td>
<td>NOT CURRENTLY USED</td>
</tr>
<tr>
<td>+12V</td>
<td>WHITE (18 GAUGE)</td>
</tr>
<tr>
<td>+30V</td>
<td>WHITE/GREEN (18 GAUGE)</td>
</tr>
<tr>
<td>DGND</td>
<td>YELLOW (18 GAUGE)</td>
</tr>
<tr>
<td>+5V</td>
<td>PURPLE (18 GAUGE)</td>
</tr>
<tr>
<td>+5VA</td>
<td>WHITE/BLACK (18 GAUGE)</td>
</tr>
<tr>
<td>VRING</td>
<td>NOT CURRENTLY USED</td>
</tr>
<tr>
<td>KGND</td>
<td>WHITE/RED (18 GAUGE)</td>
</tr>
<tr>
<td>-5VA</td>
<td>GRAY (18 GAUGE)</td>
</tr>
<tr>
<td>-48V</td>
<td>ORANGE/GREEN (18 GAUGE)</td>
</tr>
<tr>
<td>RESV1</td>
<td>NOT CURRENTLY USED</td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>ALARM</td>
<td>ORANGE (22 GAUGE)</td>
</tr>
<tr>
<td>CPCP</td>
<td>NOT CURRENTLY USED</td>
</tr>
<tr>
<td>CPCN</td>
<td>NOT CURRENTLY USED</td>
</tr>
</tbody>
</table>
FIGURE 3-25. CABLE CONNECTIONS TO THE POWER SUPPLY CHASSIS

BACK SIDE OF POWER SUPPLY CHASSIS

AC POWER CABLE

NOT CURRENTLY USED

TO TELECOM MOTHERBOARD

(Via the Telecom Motherboard Power Cable)
c. INSTALL THE POWER SUPPLY MODULES

CAUTION

HIGH VOLTAGE. When the system power is turned on, each module contains both 350VDC and 110VAC. Before inserting or removing the power supply modules, make sure that the AC POWER switch has been turned OFF for at least five minutes. Failure to allow the high voltage to dissipate can cause bodily injury.

6.3 Install the power supply modules as follows:

NOTE: Refer to page 2-S in SPECIFICATIONS for information concerning chassis and module compatibilities.

(1) Ensure that the system AC power cable is not plugged in and the AC POWER switch on the front of the power supply is OFF.

(2) At the front of the cabinet, remove the screws to the front cover of the power supply chassis, and set the cover aside.

NOTE: For easier power supply module removal, each version C power supply chassis is shipped with an extractor tool attached to the inside of the front cover. The extractor tool may be used with version B and C modules only.

(3) With the components facing right, insert the power supply modules in the appropriate slots.

NOTE: Refer to Figure 3-26 on the next page for slot locations.) Note the following requirements:

CAUTION

When inserting the power supply modules, be sure that each module is fully seated in the appropriate slot. If a module is not securely seated when power is turned on, the power supply and circuit cards may be damaged.

(4) Slide the front cover of the power supply chassis into place and replace the screws.

CAUTION

Always replace the front cover before turning on the system power.

(5) Ground the system according to the instructions on page 3-41.

NOTE: DO NOT plug in the system AC power cable until the power supply electrical test, as outlined on page 3-42, has been performed.

- All systems must be equipped with a Quad Module and a Master 30V Module.
- Depending on the number and type of keysets to be installed, one or two Slave 30V Modules may also be needed (see page 2-8 for detail).

NOTE: If it is determined that two Slave 30V Modules are needed, a version C power supply chassis and version C power supply modules must be used.
- If any AC-ringing single-line devices are to be used, a Ring Generator Module must be installed.
- If any Single-Line Cards (SLCs), Inward Dialing Cards (IDCs), Loop/Ground Start Cards (LGCs), or E&M Cards (EMCs) are used, a -48V Module must be installed.

NOTE: Loop Start Cards (LSCs) and T1 Cards (T1Cs) do not require a -48V Module.
NOTE: With newer-version power supply chassis, there is more flexibility as to which type of power supply module can be installed in which slot (e.g., some slots can be equipped with either a 30V Module or a -48V Module). To ensure proper installation, refer to the slot labels provided on the chassis.
Grounding Requirements

6.4 The equipment cabinet must be properly grounded to an earth ground point. A copper, cold water pipe is usually a good ground point.

NOTE: According to UL 1459, “an insulated grounding conductor that is not smaller in size and equivalent in insulation material and thickness to the grounded and ungrounded branch-circuit supply conductors, except that it is green with or without one or more yellow stripes, is to be installed as part of the circuit that supplies the product or system.” Also, “the attachment-plug receptacles in the vicinity of the product or system are all to be of a grounding type, and the grounding conductors serving these receptacles are to be connected to earth ground at the service equipment.”

6.5 The grounding wire should be **10AWG** or larger and should not exceed 25 feet (7.5 meters) to help provide **RFI/EMI** protection, or should not exceed 10 feet (3 meters) to help provide both **RFI/EMI** and lightning protection.

6.6 To ground the system (see Figure 3-27 below):

1. Ensure that the system AC power cable is not plugged into the AC outlet.
2. Mount a grounding **terminal** on the MDF backboard and connect it to:
 - a. An earth ground.
 - b. The ground lug on the back side of the power supply chassis.
 - c. Battery compartments, if used.
 - d. Trunk gas discharge tubes, if used.

6.7 If AC power-related problems appear on the system while in operation, one of the following three methods can be used to test the ground:

- Use a digital multimeter to measure the difference of potential between the equipment cabinet ground point and the power neutral, and between the equipment cabinet ground point and the third wire ground. If the voltage measurement exceeds **0.5V**, noise may develop on the system. If this occurs, call an electrician.

- Use a Megger to test the ground point. (A Megger should be available through the local power company.) The reading should be 5 ohms or less.

- Unplug the AC power cord from the outlet and **insert** a ground isolation plug into the outlet. Plug the AC power cord into the ground isolation plug. If the problem ceases, call an electrician. When finished, remove the ground isolation plug to restore ground protection.

FIGURE 3-27. EQUIPMENT CABINET GROUNDING

[Diagram of equipment cabinet grounding with labels: POWER SUPPLY CHASSIS, GROUNDING TERMINAL, #10 GROUND WIRE, EARTH GROUND]
Power Supply Electrical Test

6.8 Perform the following electrical check on the power supply.

(1) Ensure that the system AC Power cable is not plugged in and the AC POWER switch on the front of the power supply is OFF.

(2) Check the condition of the fuse located on the front of the power supply chassis. It should be a 250VAC, 10/15A, time-delay Buss SC-10/15 (or equivalent).

(3) Plug the surge/spike protector provided with the system into a 105-125VAC, 57-63Hz, 15A, single-phase commercial power source.

NOTE: This MUST be an isolated, dedicated circuit. **DO NOT USE** an extension cord when installing the power supply. Also, **DO NOT** plug any other equipment into the same AC outlet.

(4) Plug the system AC Power cable into the surge/spike protector and turn ON the AC POWER switch.

(5) Referring to Figure 3-23 on page 3-36, measure the following system voltages on the back of the Telecom Motherboard. A digital voltmeter of ±0.5% accuracy is required. Use ground as a reference. The measurements should be within the limits listed in the following chart. *(If necessary, remove each power cable connector one at a time and measure the voltage inside the connector.)*

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5VDC</td>
<td>±20%VDC</td>
</tr>
<tr>
<td>+5VDC</td>
<td>±20%VDC</td>
</tr>
<tr>
<td>-12VDC</td>
<td>±20%VDC</td>
</tr>
<tr>
<td>+12VDC</td>
<td>±20%VDC</td>
</tr>
<tr>
<td>+30VDC</td>
<td>±20%VDC</td>
</tr>
<tr>
<td>-48VDC</td>
<td>±20%VDC</td>
</tr>
<tr>
<td>VRING (90VAC)</td>
<td>±20%VAC</td>
</tr>
<tr>
<td>PWRALARM (+4.5VDC)</td>
<td>±20%VDC</td>
</tr>
<tr>
<td>CPCP (+5.5VDC)</td>
<td>±20%VDC</td>
</tr>
<tr>
<td>CPCN (-0.5VDC)</td>
<td>±20%VDC</td>
</tr>
</tbody>
</table>

NOTE: The CPCP measurement should be .7V (±0.20V) higher than the actual +5V measurement. The CPCN measurement should be .7V (±0.20V) lower than the actual ground measurement.

(6) **If the voltages are within the specified limits,** skip to step 8.

If voltage measurements are not within the specified limits, remove the Power cable(s) from the power supply and check the voltages **directly** at the individual connectors on the back of the power supply chassis. Refer to Figure 3-28 on page 3-43.

(7) **If the voltages at the individual connectors are within the specified limits,** replace the defective cable(s).

If voltage measurements at the individual connectors are not within the specified limits, replace the defective power supply module(s) and/or the Power supply chassis.

(8) **Turn OFF** the AC POWER switch.
FIGURE 3-28. POWER SUPPLY CONNECTOR PINOUTS AND VOLTAGE TEST POINT LOCATIONS

BACK SIDE OF POWER SUPPLY CHASSIS

NOT USED

VRING
BGND
BGND
-48V
-48V

CONNECTORS TO TELECOM MOTHERBOARD
(Via the Telecom Motherboard Power Cable)

NOT USED

+5V
+5V SENSE
+5V SEN RTN
+5V ANLG

DGROUND
DGROUND
+5V

CPCN
-12V COM

+12V
+12V

PWR ALM
-5V ANLG
AGND

-5V ANLG

NOT USED
D. INSTALL THE CIRCUIT CARDS

6.9 With the exception of the RCPU Card (which is installed in the last slot -slot 17), the circuit cards can be installed in any card slot. However, to facilitate installation and programming, it is recommended that the cards be installed to match the default configuration as closely as possible. (Refer to page 2-13 in SPECIFICATIONS for information on the default configuration.)

CAUTION
The cards and components are static sensitive. Handle the cards by the edges only and keep them in their protective bags until they are to be installed. Do not bend or touch the pins of the components or subject them to a static charge. When working with the cards, use a properly terminated anti-static wrist strap and cover the work surface with the bag that protected the card during shipping. Any static charge (no matter how small the charge) must be discharged from the body before touching the cards or components. The warranty for this equipment does not cover damage caused by static or mishandling. Cards or components damaged in such a manner will not be replaced.

ROM Central Processing Unit (RCPU) Card

6.10 Before installing the RCPU Card, install the PAL (U6) and the five ROMs (U85-U89) that contain the software.

(1) Check the part numbers on the labels of the software components. They must all be the same number and should match the number of the software package the customer purchased. (Refer to REPLACEMENT PARTS for part numbers.) The five available software packages are:
 a. MF-rated, Basic
 b. MF-rated, Extended
 c. MF-rated, Extended plus T1 and E&M
 d. RF-rated, Extended plus T1 and E&M
 e. MF-rated, Extended plus T1, E&M, and GX (IMX systems only)

(2) Check the socket numbers printed on the labels. There should be one of each of the following: U6, U85, U86, U87, U88, and U89.

(3) Place the RCPU Card on a clean, flat, anti-static surface.

(4) Carefully install the software components in the corresponding sockets on the RCPU Card. (See Figure 3-29 on page 3-46.) The notch (or small dot in the corner indicating pin 1) on each component must match the notch of the outline silk-screened on the card — pin 1 on the chip to pin 1 on the socket.

5. Ensure that the PAL in socket U49 is labeled with part number 827.1013 and the PAL in socket U90 is labeled with part number 827.1012.

6. Check that all components are seated securely in their sockets and that no pins are bent.

6.11 If desired, up to four additional DTMF decoding circuits (besides the four that already exist) can be added to the RCPU Card. Refer to SPECIFICATIONS, page 2-11, for more information on MMF decoding circuits. To install the DTMF Expansion Chips, follow the instructions included with the kit (refer to REPLACEMENT PARTS for part numbers).

6.12 Install the RCPU Card in the equipment cabinet as follows. Refer to Figure 3-29 on page 3-46 for an illustration of the card.

(1) Ensure that all integrated circuits and components on the card are seated securely in their sockets and that no pins are bent.

(2) If connecting one or two external music sources, place the associated music-on-hold (MOH) jumper strap(s) (Port 1 or Port 2) on the RCPU Card in the ON position (over the top two pins) to enable music, or place the jumper strap(s) in the OFF position (bottom two pins) to disable music. If enabled, outside callers will hear music when placed on hold. If disabled, outside callers will not hear music when placed on hold.

NOTE: By entering a feature code, individual keyset users can choose to listen to background music from either music source. For the Music-On-Hold feature, either music source can be assigned on a trunk groupy-trunk group basis.

(3) Place the battery back-up (BATTERY) jumper strap in the ON position (over the top two pins) to enable database battery back-up. If the jumper strap is placed in the OFF position (lower two pins), the BATTERY OFF LED lights when the card is installed and AC power is on.

NOTE: The BATTERY OFF LED will not light if the jumper strap is missing.

(4) Ensure that the a-law/mu-law jumper strap is in the MU position (over the right set of pins). See page 2-11 for more information.
(5) **Make sure the power supply’s AC POWER switch is turned OFF.** Installing the RCPU Card with the power on may damage the processor.

(6) Install the RCPU Card with the components facing right in the last (17th) card slot in the equipment cabinet.

(7) **Turn ON the AC POWER switch and observe the LEDs on the front edge of the card for the following indications.** If they are incorrect, check the system voltages as outlined in step 8 and then contact Customer Support. (Refer to Figure 3-29 on page 346 for LED indicator locations.)

<table>
<thead>
<tr>
<th>NAME</th>
<th>CORRECT INDICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU ACTIVE</td>
<td>Lit (Green)</td>
</tr>
<tr>
<td>POWER ALARM</td>
<td>Off* (Red)</td>
</tr>
<tr>
<td>MAJOR ALARM</td>
<td>Off* (Red)</td>
</tr>
<tr>
<td>DATABASE ERROR</td>
<td>Off* (Red)</td>
</tr>
<tr>
<td>MINOR ALARM</td>
<td>Off* (Yellow)</td>
</tr>
<tr>
<td>EXT. CLOCK ACTIVE</td>
<td>Off (Green)</td>
</tr>
<tr>
<td>BATTERY OFF</td>
<td>Off (Red)</td>
</tr>
</tbody>
</table>

*When a new system is installed, the DATABASE ERROR LED remains lit until the system database has been initialized or programmed. The MINOR ALARM LED may also be lit and can later be cleared from an attendant station using the Clear System Alarm feature code (default is 019).

(8) Measure the following system voltages on the RCPU Card. A digital voltmeter of ±0.5% accuracy is required. Insert the “common” voltmeter probe into the ground point (TP10) and insert the other probe into the desired voltage test point. (Refer to Figure 3-29 on page 346 for system voltage test point locations.)

<table>
<thead>
<tr>
<th>TEST POINTS</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP 1 to TP 10</td>
<td>-5 ±20%VDC</td>
</tr>
<tr>
<td>TP 2 to TP 10</td>
<td>+5 ±20%VDC</td>
</tr>
<tr>
<td>TP 3 to TP 10</td>
<td>+12 ±20%VDC</td>
</tr>
<tr>
<td>TP 4 to TP 10</td>
<td>-12 ±20%VDC</td>
</tr>
<tr>
<td>TP 5 to TP 10</td>
<td>+30 ±20%VDC</td>
</tr>
<tr>
<td>TP 6 to TP 10</td>
<td>-48 ±20%VDC</td>
</tr>
<tr>
<td>TP 7 to TP 10</td>
<td>9 ±20%VDC</td>
</tr>
</tbody>
</table>

NOTE: The AC ring voltage (VRING) measured on the RCPU Card is the actual power supply ring voltage of 90VAC.

(9) **If the voltages are within tolerance,** proceed to step 10. **If the voltages are out of tolerance:**

 a. Turn OFF the AC POWER switch.
 b. Take out the RCPU Card and check for shorted components.
 c. Re-insert the card, turn ON the AC POWER switch, and check the voltages again.
 d. **If still out of tolerance,** turn OFF the AC POWER switch and replace the defective RCPU Card.

(10) While pressing the battery check button on the RCPU Card, measure the database back-up battery voltage. The voltage test points (TP8 to TP9) are located on the front edge of the card. Insert the “common” voltmeter probe into the ground point (TP9) and insert the other probe into the voltage test point (TP8). **If the voltage is not greater than 2.5VDC,** replace the battery. (Refer to Figure 3-29 on the next page for back-up battery voltage test point locations.)

NOTE: This procedure may be performed with the AC power on or off.

(11) Turn OFF the AC POWER switch.

(12) After installing the RCPU Card, optional music sources, power failure transfer equipment, signaling devices, etc. may be connected to the RCPU Card terminal block at any time. Refer to page 3-99 for external music source installation instructions.
FIGURE 3-29. RCPU CARD

LED INDICATORS
SYSTEM VOLTAGE TEST POINTS
LITHIUM BATTERY
MUSIC-ON-HOLD (MOH) STRAPS
AMPHENOL-TYPE CONNECTOR
DB9 CONNECTORS
RESET SWITCH
A-LAW/MU-LAW STRAP

-5VDC
+5VDC
+23V
-12VDC
+30VDC
-48VDC
+60VAC
+0AllERY
-BATTERY
+GROUND

CPU ACTIVE (GREEN)
POWER ALARM (RED)
MAJOR ALARM (RED)
DATABASE ERROR (RED)
MINOR ALARM (YELLOW)
EXTERNAL CLOCK ACTIVE (GREEN)
BATTERY OFF (RED)
Digital Keyset Cards (DKSCs)

6.13 Each DKSC comes equipped with one Digital Signal Processor (DSP) for shared speakerphone resources. If desired, a second DSP can be installed to provide additional speakerphone resources. Refer to SPECIFICATIONS, page 2-12, for more information.

6.14 Install the cards as described below. The part number is listed in REPLACEMENT PARTS. Refer to Figure 3-30 on page 3-48 for an illustration.

NOTE: When inserting or removing the RCPU Card, the system power must be turned off to prevent damage to the card. However, station and trunk cards can be inserted or removed with power on. (After inserting a T1 Card, wait ten seconds before inserting any other card.)

(1) If the optional DSP is to be installed:

a. Place each DKSC on a clean, flat, anti-static, non-conductive surface.

b. Carefully install the optional DSP in socket U38. (See Figure 3-30 on page 3-48.) The notch (or small dot in the corner) indicating pin 1 on each DSP must match the notch of the outline silkscreened on the card.

(2) Check to see that all components on the cards are seated securely in their sockets and that no pins are bent.

(3) Install the DKSCs one at a time in the slots to be used for digital keysets. The component sides of the cards must face right. Any type of card may be installed in any slot, and slots may be skipped, if desired. However, to facilitate installation and programming, it is recommended that the cards be installed to match the default configuration as closely as possible. (Refer to page 2-13 for information on the default configuration.)

NOTE: When powered up, the system configures the software to match the default card configuration. If the actual cards installed do not exactly match the default configuration, adjustments must be made in database programming. Circuit 1.1 is preset for the primary attendant (a KSC circuit). If changing card types (e.g., changing from an SLC to a DKSC), refer to the programming procedures on page 5-170 and to the information on pages 3-6 to 3-8.
FIGURE 3-30. DIGITAL KEYSET CARD (DKSC)

LED INDICATORS

AMPHENOL-TYPE CONNECTOR

CARD ACTIVE (GREEN)

Ckt. 1, 2
Ckt. 3, 4
Ckt. 5, 6
Ckt. 7, 8
Ckt. 9, 10
Ckt. 11, 12
Ckt. 13, 14
Ckt. 15, 16

OPTIONAL DIGITAL SIGNAL PROCESSOR
Keyset Cards (KSCs and KSC-Ds)

6.15 Install the cards as described below. Part numbers are listed in REPLACEMENT PARTS. Refer to Figure 3-31 on page 3–50 for an illustration.

NOTE: When inserting or removing the RCPU Card, the system power must be turned off to prevent damage to the card. However, station and trunk cards can be inserted or removed with power on. (After inserting a T1 Card, wait ten seconds before inserting any other card.)

1. For all **KSCs that will have any 8-line IMX AIM keysets installed:** Check the part number and label silkscreened on the card. To install **8-line IMX AIM keysets two to a circuit,** the new-dual-circuit” version Keyset Card (KSC-D) must be used (see REPLACEMENT PARTS for the part number). To install **8-line IMX AIM keysets one to a circuit,** either the KSC or the KSC-D can be used.

2. Check to see that all components on the cards are seated securely in their sockets and that no pins are bent.

3. Check the fuses. Some KSCs have a **2A, 250V, AGC 2** (fast-acting) fuse. KSC-Ds and newer version KSCs have eight self-correcting thermistors (one for each circuit) instead of the fuse. If a short circuit causes a thermistor to open, it will automatically close when the short is removed.

4. Install the **KSCs and/or KSC-Ds one at a time in the slots to be used for analog keyset, analog DSS/BLF Unit, and Attendant Computer Console connections.** The component sides of the cards must face right. Any type of card may be installed in any slot, and slots may be skipped, if desired. However, to facilitate installation and programming, it is recommended that the cards be installed to match the default configuration as closely as possible. (Refer to page 2-13 for information on the default configuration.)

NOTE: When powered up, the system configures the software to match the default card configuration. If the actual cards installed do not exactly match the default configuration, adjustments must be made in database programming. Circuit 1.1 is preset for the primary attendant (a KSC circuit). If changing card types (e.g., changing from an SLC to a KSC), refer to the programming procedures on page 5–170 and to the information on pages 3-6 to 3-8.
FIGURE 3-31. KEYSET CARD (KSC or KSC-D)

- **LED INDICATORS**
- **AMPHENOL-TYPE CONNECTOR**
- **FUSE**

(Some cards do not have a fuse; instead, they have 8 thermistors up behind the amphenol-type connector)
Single-Line Cards (SLCs) and Inward Dialing cards (IDCs)

6.16 Install the cards as described below. Part numbers are listed in REPLACEMENT PARTS. Refer to Figures 3-32 and 3-33 on pages 3-52 and 3-53 for illustrations.

NOTE: When inserting or removing the RCPU Card, the system power must be turned off to prevent damage to the card. However, station and trunk cards can be inserted or removed with power on. (After inserting a T1 Card, wait ten-seconds before inserting any other card.)

(1) For each circuit on all IDCs: On older-version IDCs, make sure the AC ENABLE jumper strap is installed (either on the card or at the block) for off-premises extensions and AC-ringing on-premises equipment. The strap must be removed for DID trunks and DC-ringing on-premises equipment. Newer-version IDCs have a 3-pin RING SELECT jumper strap that must be placed in the AC/OPX position (over the bottom two pins) or the DC/DID position (over the top two pins).

NOTE: When setting the jumper straps on either version card, note the unique ordering of the IDC circuits as shown in Figure 3-33 on page 3-53.

(2) Check to see that all components on the cards are seated securely in their sockets and that no pins are bent.

(3) Check the fuses:
- Some SLCs have a fuse that cannot be replaced in the field (see page 2-12 for more information). Newer version SLCs have a self-correcting thermistor instead of the fuse.
- Each IDC has 16 specially designed fuses that cannot be replaced in the field (see page 2-15 for more information).

(4) Install the cards one at a time. Any type of card may be installed in any slot, and slots may be skipped, if desired. However, to facilitate installation and programming, it is recommended that the cards be installed to match the default configuration as closely as possible. (Refer to page 2-13 for information on the default configuration.)

NOTE: When powered up, the system configures the software to match the default card configuration. If the actual cards installed do not exactly match the default configuration, adjustments must be made in database programming. Circuit 1.1 is preset for the primary attendant (a KSC circuit). If changing card types (e.g., changing from a KSC to an SLC), refer to the programming procedures on page 5-170 and to the information on pages 3-6 to 3-8.

- For SLCs: Install SLCs in the slots to be used for AC-ringing single-line set and AC playback device connections. The component sides of the cards must face right.

- For IDCs: Install IDCs in the slots to be used for DID trunk, off-premises extension, single-line set, and playback device connections. The component sides of the cards must face right.

NOTE: If installing off-premises extensions, refer to page 3-30 before installing any IDCs.
FIGURE 3-32. SINGLELINE CARD (SLC)

- LED INDICATORS
- CARD ACTIVE (GREEN)
- CIRCUIT 1
- CIRCUIT 2
- CIRCUIT 3
- CIRCUIT 4
- CIRCUIT 5
- CIRCUIT 6
- CIRCUIT 7
- CIRCUIT 8
- CIRCUIT 9
- CIRCUIT 10
- CIRCUIT 11
- CIRCUIT 12
- CIRCUIT 13
- CIRCUIT 14
- CIRCUIT 15
- CIRCUIT 16
- CIRCUIT 17
- CIRCUIT 18

- AMPHENOL-TYPE CONNECTOR

- FUSE
 (Some cards do not have a fuse; instead, they have a thermistor up behind the amphenol-type connector)
FIGURE 3-33. INWARD DIALING CARD (IDC)

NOTE: In place of the AC ENABLE jumper strap, newer-version IDCs have a 3-pin RING SELECT jumper strap that must be placed in the AC/OPX position (over the bottom two pins) or the DC/DID position (over the top two pins).
Loop/Ground Start Card (LGC) and Loop Start card (LSC)

6.17 Install each LGC and LSC as described below (see REPLACEMENT PARTS for the part number). Refer to Figures 3-34 and 3-35 on pages 3-55 and 3-56 for an illustration.

NOTE: When inserting or removing the RCPU Card, the system power must be turned off to prevent damage to the card. However, station and trunk cards can be inserted or removed with Power on. (After inserting a T1 Card, wait ten-seconds before inserting any other card.)

(1) Check to see that all components on the card are seated securely in their sockets and that no pins are bent.

(2) Check the fuses. There are 16 specially designed fuses on each LGC and LSC that cannot be replaced in the field (see page 2-14 for more information).

(3) For LGCs Only: Depending on the type of CO trunk to be installed on each individual LGC circuit, place the associated two jumper straps in the Proper loop start (LS) or ground start (GS) position.

NOTE: When setting the straps, note the unique ordering of the LGC circuits as shown in Figure 3-34. For each LGC circuit, both straps must be in the proper (LS or GS) Position. If the strap settings are mixed, or if one or both of the straps is missing, the circuit will not function properly.

(4) Install the LGCs and LSCs one at a time with the components facing right. They may be installed in any slot, and slots may be skipped, if desired. However, to facilitate installation and programming, it is recommended that the cards be installed to match the default configuration as closely as possible. (Refer to page 2-13 for information on the default configuration.)

NOTE: When Powered up, the system configures the software to match the default card configuration. If the actual cards installed do not exactly match the default configuration, adjustments must be made in database Programming. If changing card types (e.g., changing from an SLC to an LGC), refer to the programming procedures on page 5-170 and to the information on pages 3-6 through 3-8.
FIGURE 3-34. LOOP/GROUND START CARD (LGC)

These numbers are silkscreened on the card.

- LED INDICATORS
- AMPHENOL-TYPE CONNECTOR
- CARD ACTIVE (GREEN)
- LOOP START/GROUND START STRAPS
- FUSES

- STRAPS FOR CIRCUIT 4
- STRAPS FOR CIRCUIT 3
- STRAPS FOR CIRCUIT 2
- STRAPS FOR CIRCUIT 1
- STRAPS FOR CIRCUIT 8
- STRAPS FOR CIRCUIT 7
- STRAPS FOR CIRCUIT 6
- STRAPS FOR CIRCUIT 5
- STRAPS FOR CIRCUIT 8
FIGURE 3-35. LOOP START CARD (LSC)
E&M Card (EMC)

6.18 **Install** each EMC as described below (see REPLACEMENT PARTS for the part number). Refer to Figure 3-36 on page 3-58 for an illustration.

NOTE: When inserting or removing the RCPU Card, the system power must be turned off to prevent damage to the card. However, station and trunk cards can be inserted or removed with power on. (After inserting a T1 Card, wait ten seconds before inserting any other card.)

(1) Check to see that all components on the card are **seated securely** in their sockets and that no pins are bent.

(2) Check the fuses. There are 24 specially-designed fuses on each EMC that cannot be replaced in the field (see page 2-16 for more information).

(3) Depending on the type of E&M trunk to be installed on each individual EMC circuit, place the associated jumper plugs in the proper “signaling type” (1, 2, 4, or 5) and “audio type” (2-wire or 4-wire) positions.

NOTE: When setting the jumper plugs, note the unique ordering of the EMC circuits as shown in Figure 3-36.

(4) Install the EMCs one at a time with the **components facing** right. They may be installed in any slot, and slots may be skipped, if desired. However, to facilitate installation and programming, it is recommended that the cards be installed to match the default configuration as closely as possible. (Refer to page 2-13 for information on the default configuration.)

NOTE: When powered up, the system configures the software to match the default card configuration. If the actual cards installed do not exactly match the default configuration, adjustments must be made in database **programming.** If changing card types (e.g., changing from an LGC to an EMC), refer to the programming procedures on page 5-170 and to the information on pages 3-6 through 3-8.
FIGURE 3-36. E&M CARD (EMC)

- LED INDICATORS
- CARD ACTIVE (GREEN)
- CKT 1
- CKT 2
- CKT 3
- CKT 4
- AMPHENOL-TYPE CONNECTOR
- MAKE-BUSY, SWITCH (RESERVED FOR FUTURE USE)
- FUSES
- SIGNALING TYPE SELECTION JUMPERS
- THESE NUMBERS ARE SILKSCREENED ON THE CARD
- JUMPERS FOR CIRCUIT 2
- JUMPERS FOR CIRCUIT 1
- JUMPERS FOR CIRCUIT 3
- JUMPERS FOR CIRCUIT 4
- AUDIO SELECTION TYPE JUMPERS
- MAKE-BUSY SWITCH
- FUSES
- CKT 1
- CKT 2
- CKT 3
- CKT 4
- LEAD INDICATORS
T1 card (lx!)

6.19 Install each T1C as described below (see REPLACEMENT PARTS for the part number). Refer to Figure 3-37 on page 3-60 for an illustration.

NOTE: Like the other station and trunk cards, T1 Cards can be inserted or removed with the system power turned on, as long as the T1 span is not connected to the card. However, after inserting a T1 Card while the power is on, wait at least ten seconds before inserting any other card. Also, before removing a T1 Card while power is on, first press the make-busy switch on the card and allow the system to “busy out” the T1 span, then unplug the T1 span from the connector on the card (see page 2-18 for more information on the make-busy switch).

(1) If installing the optional on-board Channel Service Unit (CSU), follow these steps:

 a. Carefully plug the CSU into the large socket provided on the card (see Figure 3-37).
 b. Place the DSX/CSU jumper plug in the CSU (518) position.
 c. Depending on the distance to the nearest public network T1 repeater, place the line build-out (LBO) attenuation jumper plug in the appropriate position: 15dB (J21) for 0-1599 feet, 7.5dB (J20) for 2000-2999 feet, or 0dB (J19) for 3000-6000 feet.

 If the optional on-board CSU is not installed, place the DSX/CSU jumper plug in the DSX (J17) position.

(2) Check the part number of the component installed in socket U45 (see Figure 3-37).

If the component is labeled with number LXP600, a jumper plug must be installed in location J32.

If the component is labeled with number LXP602, a jumper plug must be installed in location J33.

(3) Check to make sure the remaining jumper straps and plugs are installed in the following locations on the card (see Figure 3-37 for card orientation):

<table>
<thead>
<tr>
<th>JUMPER PINS</th>
<th>STRAP/PLUG LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>J14</td>
<td>over the top two pins</td>
</tr>
<tr>
<td>J15</td>
<td>over the top two pins</td>
</tr>
</tbody>
</table>

(4) Check to see that all components on the card are seated securely in their sockets and that no pins are bent.

(5) Install the T1Cs one at a time (waiting at least ten seconds between installations if the system power is on) with the components facing right. The cards may be installed in any slot, and slots may be skipped, if desired.

NOTE: When powered up, the system configures the software to match the default card configuration (see page 2-13). If the actual cards installed do not exactly match the default configuration, adjustments must be made in database programming. If changing card types (e.g., changing from an LGC to a T1C), refer to the programming procedures on page 5-170 and to the information on pages 3-6 through 3-8.

(6) After installing the T1Cs, optional T1 alarm signaling devices may be connected to the cards at any time. Refer to page 3-33 for more information.
FIGURE 3-37. T1C CARD (T1C)

- LED INDICATORS
- AUDIO JACK
 NOT CURRENTLY USED
- ALARM RELAY JACK
- SERIAL PORT JACK
 NOT CURRENTLY USED
- T1 SPAN JACK
- BANTAM TEST JACKS
- T1 SPAN DB15 CONNECTOR
- MAKE-BUSY SWITCH
- CIRCUITS 1-24 (GREEN)
- T1 ALARMS (RED, YELLOW, BLUE)
- SECONDARY PROCESSOR ACTIVE (GREEN) / IN BATTERY (GOLD)
- CARD ACTIVE (GREEN) PROVIDING REFERENCE CLOCK (GREEN)
- DSX/CSU SELECTION JUMPER
- OPTIONAL ON-BOARD CSU
- LINE BUILD-OUT SELECTION JUMPER
E. CHECK TEE CIRCUIT CARD INSTALLATION

6.20 After all of the circuit cards have been installed in the equipment cabinet, check the installation by performing the following steps.

(1) Turn ON the AC POWER switch and observe the top (green) LED on each DKSC, KSC, KSC-D, SLC, IDC, LGC, LSC, EMC, and TIC installed in the cabinet. If the top LED on every card is lit, proceed to step 2. If not, follow these steps:

a. Remove all station and trunk cards that do not have a lit green LED and check them for shorted or loose components, bent pins, etc.

NOTE: DO NOT remove the RCPU Card with the system power turned on.

b. Re-insert the cards one at a time and check the top LED again. If the LED is not lit after 15 seconds, replace the defective card.

(2) Measure the following voltages on the RCPU Card. A digital voltmeter of ±0.5% accuracy is required. Insert the “common” voltmeter probe into the ground point (TP10) and insert the other probe into the desired voltage test point. (Refer to Figure 3-29 on page 3-46 for system voltage test point locations.)

<table>
<thead>
<tr>
<th>TEST POINTS</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP 1 to TP 10</td>
<td>-5 ±0.4VDC</td>
</tr>
<tr>
<td>TP 2 to TP 10</td>
<td>5.1 ±0.5VDC</td>
</tr>
<tr>
<td>TP 3 to TP 10</td>
<td>12.5 ±0.5VDC</td>
</tr>
<tr>
<td>TP 4 to TP 10</td>
<td>-12 ±1.1VDC</td>
</tr>
<tr>
<td>TP 5 to TP 10</td>
<td>30.5 ±0.9VDC</td>
</tr>
<tr>
<td>TP 6 to TP 10</td>
<td>-49 ±7.0VDC</td>
</tr>
<tr>
<td>TP 7 to TP 10</td>
<td>8.9 ±1.3VAC</td>
</tr>
</tbody>
</table>

NOTE: The AC ring voltage (VRING) measured on the RCPU Card is ±0.1 of the actual power supply ring voltage of 90VAC.

(3) Referring to Figure 3-23 on page 3-36, measure the following voltages on the back of the Telecom Motherboard. Use ground as a reference.

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR ALARM (+4.7VDC)</td>
<td>±0.5VDC</td>
</tr>
<tr>
<td>CPCF (+5.2VDC to +5.8VDC)</td>
<td>±0.15VDC</td>
</tr>
<tr>
<td>CPNC (-0.1VDC to -0.7VDC)</td>
<td>±0.15VDC</td>
</tr>
<tr>
<td>PWR GOOD (+4.7VDC)</td>
<td>±0.15VDC</td>
</tr>
</tbody>
</table>

NOTE: As long as the CPCP measurement is at least 0.1V higher than the actual +5V measurement and the CPCN measurement is at least 0.1V lower than the actual ground measurement, the voltages are within tolerance.

(4) If the voltages are within tolerance, proceed to the next section. If any of the voltages are out of tolerance, isolate the defective card(s) by following these steps:

a. While monitoring the out-of-tolerance voltage, remove the station and trunk cards one at a time.

b. If the voltage returns to an acceptable level, replace the defective card(s).

If the voltage remains out of tolerance, contact Customer Support.

CAUTION

DO NOT attempt to adjust the power supply voltages without first contacting Customer Support. Damage caused by unauthorized voltage adjustment is not covered by the warranty.

F. COMPLETE THE EQUIPMENT CABINET INSTALLATION

6.21 Complete the equipment cabinet installation as follows:

(1) Route the station and trunk cables (with attached female amphenol-type connectors or modular jack/DB15 connectors) through the bottom rear of the cabinet, through the cable tray, and out the front.

(2) Connect each labeled female amphenol-type connector to the SO-pin male connector on the corresponding card. For T1 trunks, connect each labeled line cord or ribbon cable to the T1 jack or DB15 connector on the corresponding T1 Card.

NOTE: Before connecting any T1 spans to the T1 Cards in the cabinet, always make sure the system power is turned on. All T1 spans should always be disconnected from their cards before turning the system power on or off.

(3) Secure each cable to the equipment cabinet with a cable tie, leaving enough slack so that the card can be removed or replaced if necessary.

(4) Replace the equipment cabinet front door and rear panel.
7. STATION INSTALLATION

7.1 Digital keysets are connected to Digital Keyset Cards. Analog keysets, analog DSS/BLF Units, and Attendant Computer Consoles are connected to Keyset Cards. ESLSs, SLIs, single-line DTMF sets, and playback devices are connected to Single-Line Cards and/or Inward Dialing Cards.

CAUTION
Connecting a station instrument to the wrong type of card can damage the instrument.

NOTE: For information on installing the GX and GMX station instruments, refer to appendixes A and B in the back of this manual.

A. IMX 256 DIGITAL KEYSET INSTALLATION

7.2 Before installing the digital keysets, unpack each one and check for damage. If items are damaged or missing, contact Customer Support. Each keyset should have the following:
- Baseplate
- One six-foot, three-pair line cord
- One handset
- One four-conductor coiled handset cord
- Slide-out directory card (IMX version)
- Extra feature key templates

Optional Liquid Crystal Display (LCD)

7.3 All Executive Digital Keysets are equipped with LCDs. Standard Digital Keysets are available in both display and non-display models. Non-display keysets can be converted to display keysets by installing an LCD Kit (part number 828.1211) as outlined below.

7.4 To convert a non-display Standard Digital Keyset to a display keyset, install the LCD Kit as outlined in the following steps (refer to Figure 3-38 on page 3-63):

(1) Unpack the LCD kit. There should be a clear plastic display window, an LCD unit, a ribbon cable, and four small Phillips-head screws.

(2) Remove the line cord and handset cord from the keyset. Then loosen the four screws on the bottom of the keyset.

(3) Carefully open the keyset to expose the control board. To fully open the keyset, disconnect the following wires from the keyset control board:
- line (J2), microphone (J4), handset (J5), and, if equipped, data port (J3). See Figure 3-38.

(4) Disconnect the speaker wires (J6) from the keyset control board.

(5) Remove the single screw securing the control board and carefully flip the control board back to expose the inside of the faceplate top housing.

(6) Remove the dummy cover from the display opening in the top housing of the faceplate by pushing on the cover from the front of the keyset. (On some models, it may also be necessary to remove tape that is securing the dummy cover from the inside.)

(7) From the inside of the faceplate top housing, insert the top edge of the clear plastic window into the display opening and slide the window up into place.

(8) Remove the covering from the LCD unit and install as follows:

a. If not already connected, slide open the bar of the clamp connector on the back of the LCD unit, insert one end of the ribbon cable into the connector, and close the bar.

NOTE: The blue stripe on the near end of the ribbon cable should be visible from the back side of the LCD unit (see Figure 3-38). Also, ensure that the metal strips on the end of the ribbon cable are fully seated and properly aligned in the connector.

b. Position the LCD unit on the clear plastic window so that the screw holes in the LCD unit align with the screw holes in the faceplate top housing. Install the four Phillips-head screws to hold the LCD unit in place.

c. Leaving the free end of the LCD ribbon cable exposed, flip the control board back over, place it in its original position, and re-insert the single screw that held it in place.

d. Slide open the bar of the LCD clamp connector (J1) on the control board (see Figure 3-38), insert the free end of the ribbon cable into the connector, and close the bar.

NOTE: The blue stripe on the free end of the ribbon cable should face down toward the keyset control board. Also, make sure the
metal strips on the end of the cable are fully seated and properly aligned in the connector.

(9) Reconnect the line (J2), microphone (J4), handset (J5), speaker (J6), and, if equipped, data port (J3) wires to the keyset control board.

(10) Ensure that the ribbon cable connecting the keyset control board (J7) to the board in the bottom of the faceplate housing is still fully seated and properly aligned.

(11) Reattach the back of the keyset.

(12) To ensure the LCD unit and keyset control board are properly connected and functioning, perform the keyset self-test as described on page 3-64.

FIGURE 3-38. STANDARD DIGITAL KEYSET LCD INSTALLATION

FACEPLATE HOUSING (INSIDE VIEW)
Digital Keyset Installation

7.5 Install all digital keysets as follows:

(1) Before mounting the modular jack assembly and connecting the keyset, measure the voltage on the YELLOW terminal of the modular jack assembly with respect to the BLACK terminal. (The “common” probe of the voltmeter is placed on the BLACK terminal.) It must measure a positive voltage. If a negative voltage is measured, check the cabling for a reversed pair.

CAUTION
If tip and ring are reversed, the keyset will not function.

(2) Mount the modular jack assembly on the wall.

(3) Attach the coiled handset cord to the handset and to the handset jack on the bottom of the keyset. Place the handset on hook.

(4) Plug one end of the line cord into the wall-mounted modular jack assembly. Plug the other end into the line cord jack on the bottom of the keyset.

NOTE: To aid in installation/troubleshooting, display keysets show their station circuit number, extension number, and assigned user name for several seconds when power is turned on and the line cord is first plugged in. This display also appears after a system reset, and whenever the line cord is removed and replaced while power is on. The station identification displays for several seconds, then the keyset changes to the appropriate display, depending on its current status.

(5) Perform the digital keyset self-test:
 a. While pressing the asterisk (*) and pound (#) keys, unplug and replace the keyset line cord.
 b. Release the keys. The keyset rings momentarily. (Display keysets show a dark display — all pixels lit.)
 c. Lift and replace the handset. The keyset rings momentarily. (Display keysets show a blank display — no pixels lit.)
 d. Lift and replace the handset. The keyset rings momentarily and all LED-equipped keys light. (Display keysets show DKTS SELF TEST LED MATRIX.) If any of the LEDs do not light, return the keyset for repair.
 e. Lift and replace the handset. The keyset rings momentarily and all of the LEDs go out. (Display keysets show DKTS SELF TEST KEY MATRIX 00.)
 f. One at a time, press each of the keys on the keyset in any order. If the key is functioning properly, a key tone (or a DTMF tone for Executive keypad keys) is heard and, on display keysets, a specific code is shown. (The proper code for each key is diagrammed in Figure 3-39 on the next page.) If the signal is not heard or the displayed code is incorrect, the key is faulty; return the keyset for repair.
 g. Lift and replace the handset. The speaker tones are broadcast over the speakerphone speaker. (Display keysets show DKTS SELF TEST SPEAKER TONES.)
 h. Lift and replace the handset. Tones of various volume levels, from softest to loudest, are broadcast over the speakerphone speaker. (Display keysets show DKTS SELF TEST SPEAKER VOLUME.)
 i. Lift the handset, then press and release the hookswitch. The handset tones are broadcast over the handset receiver. (Display keysets show DKTS SELF TEST HANDSET TONES.)
 j. Place the handset back in its cradle. The keyset rings momentarily and it takes approximately five seconds for the keyset to return to normal operation. (Display keysets show DKTS SELF TEST COMPLETED! for several seconds. Then, as described in the NOTE to step 6, the keyset’s identification displays for several seconds.)
 k. Replace the keyset if faulty.

(6) Replace the existing slide-out directory card on the bottom of the keyset with the IMX directory card included in the keyset’s box.

(7) The keyset ring tone can be changed by performing the steps described in the FEATURES section on page 443.

(8) If necessary, replace the keyset’s paper template with one labeled to match the programmed feature keys.
FIGURE 3-39. DIGITAL KEYSET SELF-TEST KEY MATRIX

<table>
<thead>
<tr>
<th>STANDARD DIGITAL KEYSET</th>
<th>EXECUTIVE DIGITAL KEYSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>28</td>
<td>36</td>
</tr>
<tr>
<td>30</td>
<td>32</td>
</tr>
<tr>
<td>38</td>
<td>3A</td>
</tr>
<tr>
<td>40</td>
<td>42</td>
</tr>
<tr>
<td>48</td>
<td>4A</td>
</tr>
<tr>
<td>52 23</td>
<td>5A 2B</td>
</tr>
<tr>
<td>24 25 2C</td>
<td>50 51</td>
</tr>
<tr>
<td>2D 34 35</td>
<td>58 59</td>
</tr>
<tr>
<td>3C 3D 44</td>
<td>55 54</td>
</tr>
<tr>
<td>4C 45 4D</td>
<td>33</td>
</tr>
</tbody>
</table>

Page 3-65
Wall Mounting Digital Keysets

7.6 To mount the keyset on a wall:

(1) Remove the keyset baseplate from the top half of the back of the keyset.

(2) Rotate the baseplate 180° and attach it to the bottom half of the back of the keyset.

NOTE: If a PCDPM is already installed inside the baseplate, first open the keyset and reroute the PCDPM-to-keyset interface cable through the knockout in the bottom half of the keyset (see Figure 3–40 on page 3–68).

(3) Using a ruler, mark the location of the keyset mounting holes on the wall. (The centers of the two perpendicular mounting holes on the back of the keyset are four inches apart.)

(4) Drive a screw into the center of each mounting hole marking. Allow the head of the screw to protrude approximately 1/4 inch.

(5) In order to hold the handset in place while the keyset is wall-mounted, slide the reversible cradle hook out, rotate it 180°, and reinsert it.

(6) Position the keyset mounting holes over the screws and slide the keyset into position on the wall. (If necessary, adjust the screws to ensure that the keyset is held firmly in place.)

Optional Headsets

7.7 Refer to Specifications, page 2–22, for headset requirements. To attach a headset to a keyset:

(1) Remove the coiled handset cord from the handset jack on the bottom of the keyset. Leave the handset in the cradle.

(2) Insert the headset modular plug into the jack. Plug in the headset power source, if used.

(3) If the headset has an on/off switch, turn on the headset.

(4) On the keyset, press SPCL and enter the Headset Enable feature code (default value is 315).

(5) To disable the headset, press SPCL and enter the Headset Disable feature code (default value is 316). Then unplug the headset and reconnect the handset.

Optional Personal Computer Data Port Modules (PCDPMs)

7.8 For off-hook voice announce receive capability, and to allow an optional digital DSS/BLF Unit and/or an optional Modem Data Port Module to be installed, any digital keyset may be equipped with an optional PC Data Port Module (part no. 550.3014).

7.9 Install the PC Data Port Module as outlined below. For diagrams of the installation, see Figures 3–40 and 3–41 on pages 3–68 and 3–69.

(1) Unplug the keyset line cord from its modular jack on the back of the keyset.

(2) Remove the keyset baseplate.

(3) On the back of the keyset, use a pair of cutting pliers to remove the plastic knockout covering the PC Data Port Module connector (J3) on the keyset control board (see Figures 3–40).

NOTE: Be careful not to let the plastic knockout fall inside the keyset. If the keyset will be wall mounted, use the knockout in the bottom half of the keyset instead (see Figure 3–40).

(4) If not already installed, attach one end of the PCDPM-to-keyset interface cable to the connector on the back of the PCDPM.

(5) Align the PC Data Port Module over the four posts protruding from the inside of the baseplate and insert the screws (do not over tighten).

(6) Plug the free end of the PCDPM-to-keyset interface cable into connector J3 on the keyset control board (where the plastic knockout was previously removed).

NOTE: Use a pencil (eraser end) or other suitable rod-like instrument to press each end of the cable connector into connector J3. Apply pressure until the connector clicks securely into place, one end at a time.

(7) If a DSS/BLF Unit will be attached to the PC Data Port Module:

a. Attach one end of a PCDPM-to-DSS interface cable (or PCDPM-to-RS232C interface cable) to the RS-232-C connector (J2) on the module, as shown in Figure 3–40. (The other end of the cable will later be attached to the DSS/BLF Unit after it is installed.)

NOTE: Pin 1 of the cable (indicated by the stripe on the edge of the cable) must correspond to pin 1 on the RS-232-C connector (indicated by the notch silkscreened on the module).
b. Plug the AC transformer cable into the power connector (P1) on the module.

NOTE: PCDPMs do **not** require AC transformers when they are used for off-hook voice announce only or have attached MDPMs. For a diagram of AC transformer requirements, see Figure 2-2 on page 2-24.

c. Plug the main AC transformer unit into an available AC power source. **DO NOT** use the outlet for the equipment cabinet.

If a Modem Data Port Module will be attached to the PC Data Port Module, plug the appropriate end of the PCDPM-to-MDPM interface cable into the SL Module connector (J1) on the module. (The other end of the cable will later be attached to the Modem Data Port Module after it is installed.)

NOTE: Pin 1 of the cable (indicated by the stripe on the edge of the cable) must correspond to pin 1 on the SL Module connector (indicated by the notch silkscreened on the module).

(8) Reattach the baseplate.

(9) **If a Modem Data Port Module will be attached to the PC Data Port Module,** refer to the instructions on page 3-70.

If a Modem Data Port Module will not be attached to the PC Data Port Module, reconnect the keyset line cord.
FIGURE 3-40. **DIGITAL PC DATA PORT MODULE (PCDPM) INSTALLATION**

INSIDE OF BASEPLATE

- RS-232-C CONNECTOR TO DSS/BLF UNIT
- POWER CONNECTOR TO AC TRANSFORMER, IF NEEDED
- MDPM CONNECTOR TO MODEM DATA PORT MODULE

BACK OF DIGITAL KEYSET

- PCDPM-TO-KEYSET INTERFACE CABLE
- IF THE KEYSET WILL BE WALL MOUNTED, OPEN THE BACK OF THE KEYSET AND REROUTE THE PCDPM-TO-KEYSET INTERFACE CABLE THROUGH THIS KNOCKOUT OVER TO CONNECTOR J3 ON THE KEYSET CONTROL BOARD.

NOTE: PCDPMs require AC transformers when they are connected to DSS/BLF Units only. PCDPMs do not require AC transformers when they are used for off-hook voice announce only or have attached MDPMs. For a diagram of AC transformer requirements, refer to Figure 2-2 on page 2-24.
FIGURE 3-41. SAMPLE DIGITAL PCDPM CABLE CONNECTIONS

PCDPM-to-KEYSET INTERFACE CABLE (813.1597)

PCDPM-to-MDPM INTERFACE CABLE (813.1585)

PC DATA PORT MODULE
(INSIDE OF BASEPLATE)

MODEM DATA PORT MODULE
(TOP COVER REMOVED)

PCDPM-to-DSS INTERFACE CABLE (813.1595)

DSS-to-DSS INTERFACE CABLE (813.1519)

CONNECTOR BOARD
(INSIDE OF BASEPLATE)

BACK OF 1ST DSS/BLF UNIT

BACK OF 2ND DSS/BLF UNIT

Same as the PCDPM-to-KEYSET INTERFACE CABLE shown above (813.1597)
Optional Modem Data Port Modules (MDPMs)

7.10 Digital keysets equipped with PC Data Port Modules may be equipped with optional Modem Data Port Modules (part no. 550.3015). The MDPM contains a four-conductor modular jack that can be used to connect a data device (such as a personal computer with a direct-connect modem) or a single-line set to the keyset.

7.11 The data device can be used by the associated keyset(s) to communicate with remote data equipment over voice channels being used for CO or intercom calls. The data device’s modem must be externally powered (or capable of operating on 20mA of loop current) and have an RJ11 CO trunk interface.

7.12 The data device can be activated by the associated keyset(s) or by an autodial modem. (For more details and an explanation of transferring the data connection, refer to page 4-101 in FEATURES.) The data device is disconnected whenever one of the following occurs: the modem attached to the keyset disconnects from the call, the called modem disconnects from the call, or the data connection is transferred to the keyset’s primary voice path and the call is disconnected.

7.13 Install the Modem Data Port Module and attach the data device as outlined below. For diagrams of the installation, see Figure 3-41 on page 3-69 and see Figure 3-42 below.

1. Ensure that the keyset line cord is unplugged from its modular jack on the back of the keyset.

2. Plug the free end of the PCDPM-to-MDPM interface cable into connector J1 on the Modem Data Port Module. (The other end of the cable was previously attached to the PC’ Data Port Module; see page 3-66.)

3. Insert the modem line cord (which would normally be connected to a CO jack) into the modular jack (J2) on the Modem Data Port Module.

4. Plug the AC transformer cable into the power connector (P1) on the Modem Data Port Module.

5. Plug the main AC transformer unit into an available AC power source. DO NOT use the outlet for the equipment cabinet.

6. Reconnect the keyset line cord.

FIGURE 3-42. DIGITAL MODEM DATA PORT MODULE (MDPM) INSTALLATION

![Diagram of Modem Data Port Module](image-url)
B. IMX 256 ANALOG KEYSET INSTALLATION

7.14 Before installing the IMX 24/12/8-line analog keysets, unpack each one and check for damage. If items are damaged or missing, contact Customer Support. Each keyset should have the following:

- Baseplate
- Extra key caps
- One six-foot, three-pair line cord
- One handset
- One four-conductor coiled handset cord
- Slide-out directory card

Liquid Crystal Display (LCD) Installation

7.15 All AIM keysets (24-line, 12-line, and 8-line) come equipped with LCDs. Standard 24-line and 12-line keysets can be converted to display keysets by installing an LCD Kit as follows (see REPLACEMENT PARTS for the part number):

1. Unpack the LCD Kit. There should be a clear plastic display window, an LCD unit, a foam pad, a ribbon cable, and two small Phillips-head screws.

2. Remove the keyset baseplate by removing the retaining screw, pressing on the bottom edge of the baseplate to release the tab, and pulling the plate off.

3. Remove the line cord and handset cord from the keyset. Then remove the four screws on the bottom of the keyset.

4. Carefully open the keyset to expose the back of the keyboard that has the LCD connector. (Refer to Figure 3-43 on page 3-72.) To fully open the keyset, the microphone and hookswitch wires (and Data Port Module wires, if attached) need to be disconnected from the keyboard.

5. Remove the cover from the display opening in the top housing of the keyset by releasing the tabs from the inside of the housing and pushing out the cover.

6. From the front of the keyset, insert one end of the clear plastic window in the display opening, with the painted side of the black edging facing the inside of the keyset. Then slightly bend the window, insert the other end into the opening, and ease the window into place.

7. Remove the covering from the LCD and install as follows:

 a. Insert one end of the ribbon cable into the black connector on the LCD unit. Ensure that the metal strips on the ribbon cable make contact with the metal tabs in the black connector.

 b. With the LCD facing up, insert the other end of the ribbon cable into the black connector on the back of the keyboard. (Refer to Figure 3-43.)

 c. Place the foam pad over the plastic window so that the opening in the pad matches the window.

 d. Position the LCD on the plastic window so that the screw holes in the LCD unit and in the keyset housing are aligned. Check that the foam padding does not show through the window. Install the screws to hold the LCD in place.

8. Reassemble the keyset. (Before closing the two halves of the keyset, remember to reconnect the hookswitch and microphone control wires. Also, if installed, reconnect the Data Port Module wires.)
FIGURE 3-43. IMX 24/12-LINE KEYSET LCD INSTALLATION
IMX 24/12/8-Line Keyset Installation

7.16 Install all IMX analog keysets as follows:

1. Before mounting the modular jack assembly and connecting the keyset, measure the voltage on the RED terminal of the modular jack assembly with respect to the GREEN terminal. (The "common" probe of the voltmeter is placed on the GREEN terminal.) It must measure +30VDC (±2.0VDC). If -30VDC is measured, check the cabling for a reversed pair.

2. Mount the modular jack assembly on the wall.

3. Remove the keyset baseplate by removing the retaining screw, pressing on the bottom edge (12-line and 24-line keysets) or the top edge (8-line keysets) of the baseplate to release the tab, and pulling the plate off.

4. For b-line IMX AIM keysets that are being installed two to a circuit: On the back of the keyset (see Figure 3-44 on page 3-76), first place the baud rate selection jumper strap (J9) in the 2400 position (over the left two pins). Then place the circuit selection switch (S1) in the appropriate A (bottom) or B (top) position, depending on how the keyset's circuit will be designated in database programming. (See also page 2-23 for special line cord requirements.)

NOTE: When 8-line IMX AIM keysets are installed two to a circuit, the circuit number is separated into two parts (A and B) in database programming (e.g., circuit 4.6A and 4.6B). Also, "B" circuit 8-line IMX AIM keysets do not have extension numbers until assigned one in database programming. If the switch selection does not match the programming selection, the keyset, when installed, will display CONFLICTING A/B SWITCH SETTING and all of the LEDs will flash.

For 8-line IMX AIM keysets that are being installed one to a circuit: On the back of the keyset (see Figure 3-44 on page 3-76), first place the baud rate selection jumper strap (J9) in the 1200 position (over the right two pins). Then place the circuit selection switch (S1) in the A (bottom) position.

5. Attach the coiled handset cord to the handset and to the handset jack on the right side of the bottom of the keyset. Place the handset on hook.

6. Plug one end of the line cord into the wall-mounted modular jack assembly. Plug the other end into the jack near the upper-left corner on the bottom of the keyset.

NOTE: To aid in installation and troubleshooting, display keysets show their station circuit number, extension number, and assigned user name for five seconds when power is turned on and the line cord is first plugged in. This display also appears after a system reset, and whenever the line cord is removed and replaced while power is on. The station identification displays for five seconds, then the keyset changes to the appropriate display, depending on its current status.

7. Perform the keyset self-test:

All non-AIM Keysets:

a. While pressing the asterisk (*) and pound (#) keys, unplug and replace the keyset line cord.

b. Release the keys. The keyset rings momentarily. (Display keysets show KTS SELF-TEST HOOKSWITCH.)

c. Lift and replace the handset to test the hookswitch. The LED-equipped keys light and the keyset rings momentarily. (Display keysets show ICT'S SELF-TEST LEDS.) If any of the LEDs do not light, return the keyset for repair.

d. Lift and replace the handset. The keyset rings momentarily and all of the LEDs go out. (Display keysets show ICT'S SELF-TEST KEYS.)

e. Press keys in the following order. A progress tone is heard and the keyset rings momentarily if the key is functioning properly. If the signals are not heard, the key was either pressed out of order or is faulty. Return the keyset for repair if any key is faulty.

12-Line and 24-Line (non-AIM) Keysets:

1. The call keys, IC/CO speeddial (SD) keys, and station programmable keys from left to right: 1, 2, 3, 4, SD1, SD6, 5, 6, 7, 8, SD2, SD7, 9, 10, 21, 22, 23, and 24.
NOTE: When testing a **12-line keyset**, a hookflash must be performed for each missing station programmable key (13-24). To do this, lift and replace the handset each time a missing key (13-24) is to be pressed.

2. Feature keys in this order: **REDIAL, SYS SPD, ANSWER, OUTGOING, SPKR, CNF, MUTE, DATA, DND, IC, MSG, HOLD, XFR, PAGE, QUE, MUSIC, and SPCL.**

3. Keypad keys in the following order: 1-9, *, 0, and #.

8-Line (non-AIM) Keysets:

1. The call keys and station programmable keys from left to right: 1, 2, 3, 4, 5, 6, 7, and 8.

2. Feature keys in this order: SPKR, IC, FWD, MSG, MUTE, CNF, DND, PAGE, ANSWER, OUTGOING, HOLD, XFR, QUE, and SPCL.

3. Keypad keys in the following order: 1-9, *, 0, and #.

AIM Keysets (24-line, 12-line, and 8-line):

a. While pressing the asterisk (*) and pound (#) keys, unplug and replace the keyset line cord.

b. Release the keys. The keyset rings momentarily. (Display shows a dark display — all pixels lit.)

c. Lift and replace the handset. The keyset rings momentarily. (Display shows a blank display — no pixels lit.)

d. Lift and replace the handset. The keyset rings momentarily and all LED-equipped keys light. (Display shows KTS SELF-TEST LED MATRIX.) If any of the LEDs do not light, return the keyset for repair.

e. Lift and replace the handset. The keyset rings momentarily and all of the LEDs go out. (Display shows KTS SELF-TEST KEY MATRIX.)

f. One at a time, press each of the keys on the keyset in any order. A progress tone (or a M’MF tone for keypad keys) is heard if the key is functioning properly. If the signals are not heard, the key is faulty. Return the keyset for repair if any key is faulty.

g. Lift and replace the handset. The audio integrated module tones are broadcast over the speakerphone speaker. (Display shows KTS SELF-TEST AIM TONES.)

h. Lift and replace the handset. Audio integrated module tones of various volume levels, from softest to loudest, are broadcast over the speakerphone speaker. (Display shows KTS SELF-TEST AIM TONE VOLUME.)

i. Lift and replace the handset. Tones of various volume levels, from softest to loudest, are broadcast over the speakerphone speaker. (Display shows KTS SELF-TEST AIM SPK VOLUME.)

j. Lift the handset, then press and release the hookswitch. Tones of various volume levels, from softest to loudest, are broadcast over the handset receiver using the primary voice path. (Display shows KTS SELF-TEST AIM XMT/RCV PRL)

k. Press and release the hookswitch. A continuous tone is broadcast over the handset receiver using the secondary voice path. (Display shows KTS SELF-TEST AIM XMT/RCV SEC.)

l. Press and release the hookswitch. (If testing an 8-line IMX AIM keyset, proceed to the next step.) A continuous tone is broadcast over the handset receiver using the secondary voice path. (Display shows KTS SELF-TEST AIM XMT/RCV SEC.)

m. Press and release the hookswitch. The handset transmitter is connected to the handset receiver via the primary voice path. (Display shows KTS SELF-TEST HOT HANDSET PRI.)

n. While speaking into the handset transmitter, determine that sidetone is being received over the handset receiver.

o. Press and release the hookswitch. (If testing an 8-line IMX AIM keyset, proceed to step q.) The handset transmitter is connected to
the handset receiver via the secondary voice path. (Display shows KTS SELF-TEST HOT HANDSET SEC.)

p. While speaking into the handset transmitter, determine that sidetone is being received over the handset receiver.

q. Press and release the hookswitch. The speakerphone microphone is connected to the handset receiver. (Display shows KTS SELF-TEST SPKRPHONE MIC.)

r. While speaking into the speakerphone microphone (or rubbing a finger over the opening to the microphone), determine that the sound is being broadcast over the handset receiver.

s. Place the handset back in its cradle. The keyset rings momentarily and it takes about ten seconds for the keyset to return to normal operation. (Display shows KTS SELF-TEST COMPLETED for about five seconds. Then, the keyset's identification, as described in the NOTE to step 6 on page 3-73, displays for about five seconds.)

t. Replace the keyset if faulty.

(8) Replace the baseplate and the retaining screw.

(9) The keyset ring tone can be changed by performing the steps described in the FEATURES section on page 4-48.

(10) If necessary, change the keycaps to match the way the keyset will be programmed to work.
FIGURE 3-44. BOTTOM OF 8-LINE DUAL-CIRCUIT IMX AIM KEYSET
Wall Mounting IMX 24/12/8-Line Keysets

7.17 To mount the keyset on a wall:

(1) Remove the keyset baseplate by removing the retaining screw, pressing on the bottom edge (12-line and 24-line keysets) or the top edge (g-line keysets) of the baseplate to release the tab, and pulling the plate off.

NOTE: To facilitate easy removal of the baseplate, the retaining screw on some keyset models has been placed on the bottom of the keyset in one of the holes used for the optional Data Port Module (the hole nearest the identification label). When mounting the keysets on a wall, remove the screw and use it to secure the baseplate to the bottom of the keyset.

(2) Rotate the baseplate so that the mounting holes are at the top. Then position the plate in the desired location on the wall.

(3) Mark the location of the keyset mounting holes on the wall. Set the baseplate aside.

(4) Drive a screw into the center of each mounting hole marking. Allow the head of the screw to protrude approximately \(\frac{1}{4} \) inch.

(5) Replace the baseplate on the keyset with the mounting holes at the top.

(6) In order to hold the handset in place while the keyset is wall-mounted:
 a. Remove the clear plastic extension number tab located underneath the handset.
 b. Locate the middle slot and slide the reversible cradle hook out, turn it over so that the hook is facing up, and reinsert it.
 c. Replace the extension number tab.

(7) Position the mounting holes of the baseplate over the screws and slide the keyset into position on the wall.

Optional Headsets

7.18 Refer to **SPECIFICATIONS**, page 2-22, for headset requirements. To attach a headset to a keyset:

(1) Remove the coiled handset cord from the handset jack on the base of the keyset. Leave the handset in the cradle.

(2) Insert the headset modular plug into the jack. Plug in the headset power source, if used.

(3) Press the SPCL key and enter the Headset Enable feature code (default value is 315), using the keyset keypad.

(4) To disable the headset, press SPCL and enter the Headset Disable feature code (default value is 316). Unplug the headset and reconnect the handset.

Optional Handset Amplifiers

7.19 Users may wish to have a handset amplifier installed. Typically, the amplifier is an external unit that is placed between the keyset and the handset (refer to page 2-22 for specifications).

7.20 To install such an amplifier:

(1) Unplug the coiled handset cord from the keyset.

(2) Plug the coiled handset cord into the amplifier jack labeled HANDSET.

(3) Plug the amplifier line cord (coming from the jack labeled TELEPHONE) into the keyset handset jack.

(4) Plug the amplifier power supply cord into an AC outlet.

(5) The handset volume can be increased or decreased, using the thumbwheel located on the amplifier. Verify that the amplifier is functioning correctly by placing a call and adjusting the volume from low to high.
Optional Data Port Module

7.21 All IMX 12-line and 24-line keysets may be equipped with optional Data Port Modules (refer to REPLACEMENT PARTS for the part number). The Data Port Module contains a four-conductor modular jack that can be used to connect either a data device (such as a personal computer with a direct-connect modem) or an LRA and an external signaling device (such as a loud bell, horn, flashing light, etc.) to the keyset.

7.22 Install the Data Port Module as outlined below. For a diagram, see Figure 3-45 on page 3-79.

1. Remove the keyset baseplate by removing the retaining screw, pressing on the bottom edge of the baseplate to release the tab, and pulling the plate off.

2. Unplug the line cord from its modular jack.

3. Remove the 10-pin shorting plug located on the keyset control card.

 NOTE: The back cover of the keyset does not need to be removed in order to reach the shorting plug.

4. Save the shorting plug by taping it to the bottom cover of the keyset or to the inside of the baseplate. The plug must be replaced if the Data Port Module is later removed.

5. Align the Data Port Module over the appropriate screw holes (see Figure 3-45) on the back cover of the keyset and insert the screws (do not over tighten).

6. Plug the Data Port Module cable into the pins on the keyset control card (where the shorting plug was previously located). Make sure the cable connector is securely seated.

7. Place jumper straps SP1, SP2, SP3, and SP4 on the Data Port Module in the appropriate positions. Depending on how the Data Port Module will be used, refer to one of the two possible settings outlined in Figure 3-45.

8. If connecting a modem-equipped data device refer to paragraphs 7.23 through 7.25.

 If connecting a loud ringing adapter and an external signaling device, refer to paragraphs 7.26 through 7.28.

7.23 To connect a modem-equipped data device:

The optional Data Port Module can be used to connect a data device (such as a personal computer) equipped with a direct-connect modem to a keyset. The data device can be used with the keyset to communicate with remote data equipment over voice channels being used for CO or intercom calls. The data device's modem must be externally powered (or capable of operating on 20mA of loop current) and have an RJ11 CO trunk interface.

7.24 The data device can be activated using the keyset or an auto-dial modem. (For more details and an explanation of monitoring or transferring the data connection, refer to page 4-101 in FEATURES). The data device is disconnected whenever one of the following occurs: the modem attached to the keyset disconnects from the call, the called modem disconnects from the call, or the data connection is transferred to the keyset's primary voice path and the call is disconnected.

7.25 Install the data device as follows:

1. Insert the modem line cord (which would normally be connected to a CO jack) into the modular jack on the keyset's Data Port Module.

2. Ensure that the jumper straps on the Data Port Module are set to the proper data device positions. Refer to Figure 3-45.

3. Plug the keyset line cord into the keyset's modular jack and reattach the baseplate.
FIGURE 3-45. IMX **KEYSET** DATA PORT MODULE INSTALLATION
7.26 To connect a Loud Ringing Adapter (LRA):
The optional Data Port Module can be used to connect external signaling equipment such as loud bells, horns, flashing lights, etc. to a keyset. This application is useful in areas where the normal ring tone of the keyset cannot be heard, such as warehouses and loading docks. The signaling device follows the normal ringing patterns of the keyset.

NOTE Since handsfree intercom calls may be difficult to hear in noisy areas, keysets with LRAs installed should be programmed for handsfree disable so that users are alerted to incoming intercom calls by continuous double ring tones. (Refer to FEATURES, page 4-55.)

7.27 An electromechanical LRA device is placed between the keyset Data Port Module and the external signaling equipment to provide the necessary interface relay. Refer to page 2-23 for LRA device specifications and recommendations. A diagram of a typical set-up is shown in Figure 3-46 below.

7.28 Install the LRA as follows:

1. Using 24AWG wire, connect the LRA device input (coil circuit) to the RED and GREEN wires on a modular jack assembly. Some devices require that polarity be observed between the LRA input and the modular jack.

 NOTE In order for the LRA device to operate properly, the maximum resistance from the modular jack to the LRA should be kept under 100 ohms.

2. Attach a mod-to-mod line cord to the modular jack assembly and to the modular jack on the keyset's Data Port Module.

3. Ensure that the jumper straps on the Data Port Module are set in the proper LRA positions. Refer to Figure 3-45 on the previous page.

4. Connect the LRA device output (contacts) to the signaling device according to the manufacturer's instructions. Use the appropriate gauge wire for handling the current/voltage rating of the signaling device.

5. Plug the keyset line cord into the modular jack on the back of the keyset and reattach the baseplate.

FIGURE 3-46. IMX KEYSET LRA SET-UP

NOTE Each time the keyset rings, the Data Port Module provides 20–26mA of loop current to the LRA. This causes the LRA contacts to close and activates the signaling device. The LRA is not affected by the ring tone or the ringer volume of the keyset. The LRA must be capable of operating on 20mA current (approximately 20VDC).
C. GMX-256 Analog Keyset Installation

7.29 Before installing keysets, unpack each one and check for damage. If items are damaged or missing, contact Customer Support. Each keyset should have the following:

- Baseplate
- Extra key caps
- One six-foot, three-pair line cord
- One handset
- One four-conductor coiled handset cord
- Slide-out directory card

Optional Liquid Crystal Displays (LCDs)

7.30 All Inter-Tel/DVK keysets (24-line, 12-line, and 8-line) are available in both standard and display models. Standard keysets can be converted to display keysets by installing the appropriate LCD Kit as outlined below and on page 3-83.

7.31 Inter-Tel/DVK 24-Line Keysets: To convert a standard Inter-Tel/DVK 24-line keyset to a display keyset, install the large LCD Kit (part no. 828.1166) as outlined in the following steps:

(1) Unpack the LCD kit. There should be a clear plastic display window, an LCD unit, a ribbon cable, and two small Phillips-head screws.

(2) Remove the keyset baseplate to expose the control board that has the LCD connector. (Refer to Figure 3-47 on the next page.)

(3) Remove the cover from the display opening in the top housing of the keyset by releasing the tabs from the inside and pushing the cover out.

(4) From the inside of the keyset, insert one of the top corners of the clear plastic window into the side of the display opening.

NOTE: The small lips on the end of the window should face to the inside of the keyset housing. Also, the window is beveled on the top and the bottom so that it will fit flush in only one direction.

(5) While slightly bending the window, insert the other top corner into the other side of the display opening, and slide the window up until it snaps into place.

(6) Remove the covering from the LCD unit and install as follows:

a. Insert one end of the ribbon cable into the black connector on the LCD unit. Ensure that the metal strips on the ribbon cable make contact with the metal tabs in the black connector.

b. With the LCD unit facing up, insert the other end of the ribbon cable into the black connector on the control board (see Figure 3-47).

c. Turn the LCD unit over and position it on the plastic window so that the screw holes in the LCD unit align with the screw holes in the keyset housing. Install the two Phillips-head screws to hold the LCD unit in place.

(7) Replace the keyset baseplate.
FIGURE 3-47. INTER-TEL/DVK 24-LINE KEYSET "LARGE" LCD INSTALLATION
7.32 Inter-Tel/DVK 12-Line and S-Line Keysets:
To convert a standard Inter-Tel/DVK 12-line or 8-line keyset to a display keyset, install the small LCD Kit (part no. 828.1165) as outlined in the following steps:

(1) Unpack the LCD kit. There should be a clear plastic display window, an LCD unit, a ribbon cable, and two small Phillips-head screws.

(2) Remove the keyset baseplate to expose the control board that has the LCD connector. (Refer to Figure 3-48 on the next page.)

(3) Remove the line cord, handset cord, and speaker wires from their connectors on the control board.

(4) On the back of the keyset, remove the two screws that secure the faceplate assembly to the keyset housing.

(5) From the front of the keyset, release the tabs that secure the top edge of the faceplate assembly to the keyset housing.

NOTE: There is a small tab protruding from the front, lower-left corner of the faceplate assembly into the keyset housing. Be careful not to break this tab when removing the faceplate assembly.

(6) Starting with the right side, carefully lift the entire faceplate assembly away from the keyset housing.

(7) Remove the cover from the display opening in the top of the faceplate assembly by releasing the tabs from the inside and pushing the cover out.

(8) From the inside of the faceplate assembly, insert one of the top corners of the clear plastic window into the side of the display opening.

NOTE: The small lips on the end of the window should face to the inside of the faceplate assembly. Also, the window is beveled on the top and the bottom so that it will fit flush in only one direction.

(9) While slightly bending the window, insert the other top corner into the other side of the display opening, and slide the window up until it snaps into place.

(10) Remove the covering from the LCD unit and install as follows:

a. Insert one end of the ribbon cable into the black connector on the LCD unit. Ensure that the metal strips on the ribbon cable make contact with the metal tabs in the black connector.

b. With the LCD unit facing up, insert the other end of the ribbon cable into the black connector on the control board (see Figure 3-48).

c. Turn the LCD unit over and position it on the plastic window so that the screw holes in the LCD unit align with the screw holes in the faceplate assembly. Install the two Phillips-head screws to hold the LCD unit in place.

(11) Carefully replace the entire faceplate assembly back in the keyset housing and replace the screws that hold it in place.

(12) Reconnect the line cord, handset cord, and speaker wires to their connectors on the control board.

(13) Replace the keyset baseplate.
FIGURE 3-48. INTER-TEL/DVK 12/8-LINE KEYSET “SMALL” LCD INSTALLATION

FACEPLATE ASSEMBLY (INSIDE VIEW)

DISPLAY WINDOW

LCD CONNECTOR

RIBBON CABLE

LCD UNIT

CONTROL BOARD
Keyset Installation

7.33 Install all Inter-Tel/DVK keysets as follows:

NOTE: For information on installing the GX and GMX keysets, see appendixes A and B in the back of this manual.

1. Before mounting the modular jack assembly and connecting the keyset, measure the voltage on the RED terminal of the modular jack assembly with respect to the GREEN terminal. (The “common” probe of the voltmeter is placed on the GREEN terminal.) It must measure +30VDC (±2.0VDC). If -30VDC is measured, check the cabling for a reversed pair.

CAUTION
If the power pair (W/BL, BL/W) is reversed, installing a keyset will open the fuse (or associated thermistor) on the KSC-D. If the card has a fuse, this affects operation of all keysets, DSS/BLF Units, and Attendant Computer Consoles connected to that card.

2. Mount the modular jack assembly on the wall.

3. Remove the keyset baseplate to expose the control board.

4. Attach the coiled handset cord to the handset and to the handset jack (J6) on the bottom of the keyset. Place the handset on hook.

5. Plug one end of the line cord into the wall-mounted modular jack assembly. Plug the other end into the line cord jack (J1) on the bottom of the keyset.

NOTE: To aid in installation and troubleshooting, display keysets show their station circuit number, extension number, and assigned user name for five seconds when power is turned on and the line cord is first plugged in. This display also appears after a system reset, and whenever the line cord is removed and replaced while power is on. The station identification displays for five seconds, then the keyset changes to the appropriate display, depending on its current status.

6. Perform the Inter-Tel/DVK keyset self-test
 a. While pressing the asterisk (*) and pound (#) keys, unplug and replace the keyset line cord.
 b. Release the keys. The keyset rings momentarily. (Display keysets show a dark display — no pixels lit.)
 c. Lift and replace the handset. The keyset rings momentarily. (Display keysets show a blank display — no pixels lit.)
 d. Lift and replace the handset. The keyset rings momentarily and all LED-equipped keys light. (Display keysets show KTS SELF-TEST LED MATRIX.) If any of the LEDs do not light, return the keyset for repair.
 e. Lift and replace the handset. The keyset rings momentarily and all of the LEDs go out. (Display keysets show KTS SELF-TEST KEY MATRIX.)
 f. One at a time, press each of the keys on the keyset in any order. A progress tone (or a DTMF tone for keypad keys) is heard if the key is functioning properly. If the signals are not heard, the key is faulty. Return the keyset for repair if any key is faulty.
 g. Lift and replace the handset. The audio integrated module tones are broadcast over the speakerphone speaker. (Display keysets show KTS SELF-TEST AIM TONES.)
 h. Lift and replace the handset. Audio integrated module tones of various volume levels, from softest to loudest, are broadcast over the speakerphone speaker. (Display keysets show KTS SELF-TEST AIM TONE VOLUME.)
 i. Lift and replace the handset. Tones of various volume levels, from softest to loudest, are broadcast over the speakerphone speaker. (Display keysets show KTS SELF-TEST AIM SPK VOLUME.)
 j. Lift the handset, then press and release the hookswitch. Tones of various volume levels, from softest to loudest, are broadcast over the handset receiver. (Display keysets show KTS SELF-TEST AIM HS VOLUME.)
 k. Press and release the hookswitch. A continuous tone is broadcast over the handset receiver using the primary voice path. (Display keysets show KTS SELF-TEST AIM XMT/RCV PRI.)
 l. Press and release the hookswitch. A continuous tone is broadcast over the handset receiver using the secondary voice path. (Display keysets show KTS SELF-TEST AIM XMT/RCV SEC.)
m. Press and release the hookswitch. The handset transmitter is connected to the handset re-
ceiver via the primary voice path. (Display \text{keysets} show KTS SELF-TEST HOT HANDSET PRL.)

\text{n. While speaking into the handset transmitter, determine that \text{sidetone} is being received over the handset receiver.}

\text{o. Press and release the hookswitch. The handset transmitter is connected to the handset receiver via the secondary voice path. (Display \text{keysets} show KTS SELF-TEST HOT HANDSET SEC.)}

\text{p. While speaking into the handset transmitter, determine that \text{sidetone} is being received over the handset receiver.}

\text{q. Press and release the hookswitch. The speakerphone microphone is connected to the handset receiver. (Display \text{keysets} show KTS SELF-TEST SPKRPHONE MIC.)}

\text{r. While speaking into the speakerphone microphone (or rubbing a finger over the opening to the microphone), determine that the sound is being broadcast over the handset receiver.}

\text{s. Place the handset back in its cradle. The \text{keyset} rings momentarily and it takes about ten seconds for the \text{keyset} to return to normal operation. (Display \text{keysets} show KTS SELF-TEST COMPLETED for about five seconds. Then, the \text{keyset}'s identification, as described in the NOTE to step 5 on page 3-85, displays for about five seconds.)}

\text{t. Replace the \text{keyset} if faulty.}

\text{(7) Replace the baseplate.}

\text{(8) The \text{keyset} ring tone can be changed by performing the steps described in the \text{FEATURES} section on page 448.}

\text{(9) If necessary, change the \text{keycaps} to match the way the \text{keyset} will be programmed to work.}

\text{Wall Mounting Keysets}

\text{7.34 To mount the \text{keyset} on a wall:}

\text{(1) Remove the \text{keyset} baseplate.}

\text{(2) Rotate the baseplate so that the mounting holes are at the top. Then position the plate in the desired location on the wall.}

\text{(3) Mark the location of the \text{keyset} mounting holes on the wall. Set the baseplate aside.}

\text{(4) Drive a screw into the center of each mounting hole marking. Allow the head of the screw to protrude approximately \(\frac{3}{4} \) inch.}

\text{(5) Replace the baseplate on the \text{keyset} with the mounting holes at the top.}

\text{(6) Position the mounting holes of the baseplate over the screws and slide the \text{keyset} into position on the wall.}

\text{Optional Headsets}

\text{7.35 Refer to \text{SPECIFICATIONS}, page 2-26, for headset requirements. To attach a headset to a \text{keyset}:}

\text{(1) Remove the coiled handset cord from the handset jack on the bottom of the \text{keyset}. Leave the handset in the cradle.}

\text{(2) Insert the headset modular plug into the jack. Plug in the headset power source, if used.}

\text{(3) If the headset has an on/off switch, turn on the headset.}

\text{(4) On the \text{keyset}, press the SPCL key and enter the headset enable feature code (default value is 315).}

\text{(5) To \text{disable the} headset, press SPCL and enter the headset disable feature code (default value is 316). Unplug the headset and reconnect the handset.}
Optional Data Port Modules

7.36 All Inter-Tel/DVKkeysets maybe equipped with optional Data Port Modules (refer to REPLACEMENT PARTS for the part number). The Data Port Module contains a four-conductor modular jack that can be used to connect either a data device (such as a personal computer with a direct-connect modem) or an LRA and an external signaling device (such as a loud bell, horn, flashing light, etc.) to the keyset.

7.37 Install the Data Port Module as outlined below. For a diagram, see Figure 349 on page 3-88.

1. Remove the keyset baseplate.
2. Unplug the line cord from its modular jack.
3. Remove the 10-pin shorting plug located on the keyset control board.
4. Save the shorting plug by taping it to the inside of the baseplate. The plug must be replaced if the Data Port Module is later removed.
5. Align the Data Port Module over the three posts protruding from the inside of the baseplate and insert the screws (do not over tighten).
6. Plug the Data Port Module cable into the pins on the keyset control board (where the shorting plug was previously located). Make sure the cable connector is securely seated.
7. Place jumper straps SP1, SP2, SP3, and SP4 on the Data Port Module in the appropriate positions. Depending on how the Data Port Module will be used, refer to one of the two possible settings outlined in Figure 3-49.

8. If connecting a modem-equipped data device, refer to paragraphs 7.38 through 7.40.

 If connecting a loud ringing adapter and an external signaling device, refer to paragraphs 7.41 through 7.43.

7.38 To connect a modem-equipped data device: The optional Data Port Module can be used to connect a data device (such as a personal computer) equipped with a direct-connection modem to a keyset. The data device can be used with the keyset to communicate with remote data equipment over voice channels being used for CO or intercom calls. The data device’s modem must be externally powered (or capable of operating on 20mA of loop current) and have an RJ11 CO trunk interface.

7.39 The data device can be activated using the keyset or an auto-dial modem. (For more details and an explanation of monitoring or transferring the data connection, refer to page 4-101 in FEATURES). The data device is disconnected whenever one of the following occurs: the modem attached to the keyset disconnects from the call, the called modem disconnects from the call, or the data connection is transferred to the keyset’s primary voice path and the call is disconnected.

7.40 Install the data device as follows:

1. Insert the modem line cord (which would normally be connected to a CO jack) into the modular jack on the keyset’s Data Port Module.
2. Ensure that the jumper straps on the Data Port Module are set to the proper data device positions. Refer to Figure 349.
3. Plug the keyset line cord into the keyset’s modular jack and reattach the baseplate.
FIGURE 3-49. INTER-TEL/DVK DATA PORT MODULE INSTALLATION

SETTING FOR DATA DEVICE

SETTING FOR LRA

JUMPER STRAPS

MODULAR JACK

DATA PORT MODULE

TO SHORTING PLUG LOCATION (on keyset control board)
7.41 To connect a Loud Ringing Adapter (LRA):
The optional Data Port Module can be used to connect
external signaling equipment such as loud bells, horns,
flashing lights, etc. to a keyset. This application is useful
in areas where the normal ring tone of the keyset cannot
be heard, such as warehouses and loading docks. The
signaling device follows the normal ringing patterns of
the keyset.

NOTE: Since handsfree intercom calls may be difficult
to hear in noisy areas, keysets with LRAs installed
should be programmed for handsfree disable so that users
are alerted to incoming intercom calls by continuous
double ring tones. (Refer to FEATURES, page 4-55.)

7.42 An electromechanical LRA device is placed be-
 tween the keyset Data Port Module and the external sig-
naling equipment to provide the necessary interface
relay. Refer to page 2-26 for LRA device specifications
and recommendations. A diagram of a typical set-up is
shown in Figure 3-50 below.

7.43 Install the LRA as follows:
(1) Using 24AWG wire, connect the LRA device in-
 put (coil circuit) to the RED and GREEN wires
on a modular jack assembly. Some devices re-
quire that Polarity be observed between the LRA
input and the modular jack.

NOTE: In order for the LRA device to operate
properly, the maximum resistance from the modular
Jack to the LRA should be kept under 100

(2) Attach a mod-to-mod line cord to the modular
Jack assembly and to the modular Jack on the
keyset's Data Port Module.

(3) Ensure that the jumper straps on the Data Port
Module are set in the proper LRA positions. Re-
fer to Figure 3-49 on the previous page.

(4) Connect the LRA device output (contacts) to the
signaling device according to the manufacturer's
instructions. Use the appropriate gauge wire for
handling the current/voltage rating of the signal-
ing device.

(5) Plug the keyset line cord into the modular Jack on
the back of the keyset and reattach the baseplate.

FIGURE 3–50. INTER-TEL/DVK LRA SET-UP

NOTE: Each time the keyset rings, the Data Port Module provides 20–26mA of loop current to the LRA. This
causes the LRA contacts to close and activates the signaling device. The LRA is not affected by the ring tone
or the ringer volume of the keyset. The LRA must be capable of operating on 20mA current (approximately
20VDC).
D. IMX 256 DIGITAL DSS/BLF UNIT INSTALLATION

7.44 Up to 50 digital keys can be equipped with up to four digital Direct Station Selection/Busy Lamp Field (DSS/BLF) Units each. Each single DSS/BLF Unit has 60 keys for directly accessing up to 60 numbers. The numbers can be station extension numbers, hunt group pilot numbers, or other system features.

NOTE: The system can have as many as 50 keyset circuits equipped with DSS/BLF Units. For example, the system could have a maximum of 50 digital keysets (i.e., DKSC circuits) equipped with up to four digital DSS/BLF Units each. Or, the system could have a maximum of 50 KSC or KSC-D circuits equipped with one analog DSS/BLF Unit each. Or, the system could have any combination of the two using up to 50 keyset circuits.

7.45 Digital DSWBLF Units are physically attached to and programmed to be used with specific digital key sets. The units are powered by their own AC transformer and do not require a DKSC circuit that is separate from the keyset's circuit. If necessary, all 16 keysets connected to the same Digital Keyset Card can be equipped with up to four digital DSWBLF Units each.

NOTE: Digital keysets cannot be equipped with analog DSS/BLF Units. Likewise, analog keysets cannot be equipped with digital DSS/BLF Units.

7.46 Unpack and inspect the DSWBLF Units before installing them.

7.47 Install each digital DSS/BLF Unit as outlined below. For diagrams of the installation, see Figures 3-41 and 3-51 on pages 3-69 and 3-91.

(1) Remove the baseplate on the back of the DSS/BLF Unit.

(2) On the connector board located in the baseplate, plug the free end of the PCDPM-to-DSS interface cable into the main RS-232-C connector (J1). (The other end of the cable was previously attached to the PC Data Port Module on the corresponding keyset; see also Figure 3-41 on page 3-69.)

(3) Plug the AC transformer cable into the power connector (J4) on the baseplate connector board. (The transformer will later be plugged into an AC power source.)

NOTE: DSS/BLF Units always require their own separate AC transformers. For a diagram of AC transformer requirements, refer to Figure 2-2 on page 2-24.

(4) To attach a second DSS/BLF Unit to the first unit (see Figure 3-41 on page 3-69):

a. Plug one end of a DSS-to-DSS interface cable into the secondary RS-232-C connector (J2) on the baseplate connector board in the first unit.

b. Remove the baseplate on the back of the second DSWBLF Unit.

c. Plug the other end of the DSS-to-DSS interface cable into the main RS-232-C connector (J1) on the baseplate connector board in the second unit.

d. Plug the AC transformer cable into the power connector (J4) on the baseplate connector board in the second unit. (The transformer will later be plugged into an AC power source.)

NOTE: If multiple DSS/BLF Units are installed, each individual unit must be equipped with its own AC transformer. In addition, the PC Data Port Module on the corresponding keyset must be equipped with its own AC transformer.

(5) To attach a third or fourth unit, repeat step 4.

(6) Perform the DSS/BLF Unit self-test:

a. While holding down the first two keys in row one (extension numbers 100 and 101 in the default database), plug the main AC transformer unit into an available AC power source. (DO NOT use the outlet for the equipment cabinet.) All the keys should light up. If an LED does not light, unplug the AC transformer unit and plug it in while holding down the first two keys in row one (ext. 100 and 101). If the test fails again, replace the DSS/BLF Unit.

b. Press each key individually (in any order) to remove the lit status. When finished, all keys should be unit. If an LED does not go out, unplug the AC transformer unit and repeat steps a and b. If the test fails again, replace the DSS/BLF Unit. After all the keys have been tested, it takes approximately five seconds for the DSS/BLF Unit to return to normal operation.

c. Replace the baseplate on the back of the DSS/BLF Unit.
FIGURE 3-51. BACK OF DIGITAL DSS/BLF UNIT

- RS-232-C CONNECTOR TO KEYSET PC DATA PORT MODULE
- RS-232-C CONNECTOR TO 2ND DSS/BLF UNIT, IF INSTALLED
- POWER CONNECTOR TO AC TRANSFORMER
- INSIDE OF BASEPLATE
E. IMX 256 ANALOG DSS/BLF UNIT
INSTALLATION

7.49 Up to 50 IMX Direct Station Selection/Busy Lamp Field (DSS/BLF) Units can be installed on the IMX 256 System. A Keyset Card (KSC or KSC-D) can support up to four analog units. Each DSS/BLF Unit has 60 keys for directly-accessing up to 60 numbers. The numbers can be station extension numbers, hunt group pilot numbers, or other system features.

NOTE: The system can have as many as 50 keyset circuits equipped with DSS/BLF Units. For example, there could be a maximum of 50 KSC or KSC-D circuits equipped with one analog DSS/BLF Unit each. Or, there could be a maximum of 50 digital keysets (i.e., DKSC circuits) equipped with up to four digital DSS/BLF Units each. Or, there could be any combination of the two using up to 50 keyset circuits.

7.49 As with keysets, analog DSS/BLF Units require three-pair cabling. After they are installed, the DSS/BLF Units must be assigned in database programming to be used along with designated keysets. As many of the units as desired can be assigned to one keyset.

NOTE: Analog keysets cannot be equipped with digital DSS/BLF Units. Likewise, digital keysets cannot be equipped with analog DSS/BLF Units.

7.50 Unpack and inspect the DSS/BLF Units before installing them. Each DSS/BLF Unit is shipped with a 7-foot line cord.

7.51 Install each IMX DSS/BLF Unit as follows:

(1) Before connecting the DSS/BLF Unit to the appropriate Keyset Card, measure the voltage on the RED terminal of the modular jack assembly with respect to the GREEN terminal. (The “common” probe of the voltmeter is placed on the GREEN terminal.) It must measure +30VDC (±2.0VDC). If -30VDC is measured, check the cabling for a reversed pair.

(2) Mount the modular jack assembly on the wall.

(3) Perform the DSS/BLF Unit self-test:

a. Plug the line cord into the modular jack assembly.

b. While holding down the key at the top of column one and the key at the top of column two, plug the line cord into the KSU jack on the bottom of the DSS/BLF Unit. All the keys should light up. If an LED does not light, remove and replace the line cord. If the test fails again, replace the DSS/BLF Unit.

c. Press each key individually (in any order) to remove the lit status. When finished, all keys should be unlit. If an LED does not go out, remove and replace the line cord and repeat steps b and c. If the test fails again, replace the DSS/BLF Unit. After all the keys have been tested, it takes approximately 10 seconds for the DSS/BLF Unit to return to normal operation.

CAUTION

If the power pair (W/BL, BL/W) is reversed, installing a DSS/BLF Unit will open the fuse (or associated thermistor) on the KSC or KSC-D. If the card has a fuse, this affects operation of all keysets, DSS/BLF Units, and Attendant Computer Consoles connected to that card.
F. GMX-256 ANALOG DSS/BLF UNIT INSTALLATION

7.52 Up to 50 single or tandem Direct Station Selection/Busy Lamp Field (DSS/BLF) Units can be installed on the system. A Keyset Card can support up to four units. Each single DSS/BLF Unit has 60 keys for directly accessing up to 60 numbers. The numbers can be either station extension numbers or hunt group pilot numbers. The numbers can be station extension numbers, hunt group pilot numbers, or other system features.

7.53 As with keysets, DSS/BLF Units require three-pair cabling. After they are installed, the DSS/BLF Units must be assigned in database programming to be used along with designated keysets. As many of the units as desired can be assigned to one keyset.

NOTE: For information on installing the GX and GMX DSS/BLF Units, refer to appendixes A and B in the back of this manual.

7.54 Unpack and inspect the DSS/BLF Units before installing them. Each DSS/BLF Unit is shipped with a 7-foot line cord.

7.55 Install each Inter-Tel/DVK DSS/BLF Unit as follows:

1. If installing a tandem unit, connect a second modular jack assembly in parallel with the existing modular jack assembly. One jack will be used for the first DSS/BLF Unit, while the other jack will be used for the second DSS/BLF Unit.

2. Before connecting the DSS/BLF Unit to the appropriate Keyset Card, measure the voltage on the RED terminal of the modular jack assembly with respect to the GREEN terminal. (The “common” probe of the voltmeter is placed on the GREEN terminal.) It must measure +30VDC (+20VDC). If -30VDC is measured, check the cabling for a reversed pair.

3. Mount the appropriate modular jack assembly on the wall.

CAUTION
If the power pair (W/BL, BL/W) is reversed, installing a DSS/BLF Unit will open the fuse (or associated thermistor) on the KSC-D. If the card has a fuse, this affects operation of all keysets, DSS/BLF Units, and Attendant Computer Consoles connected to that card.

4. Remove the four screws on the bottom of the DSS/BLF Unit and remove the bottom cover.

5. Locate the strap (J2) in the lower-right corner of the control board (see Figure 3-52 on page 3-94).

6. If the unit will be using the programmed key arrangement for DSS/BLF 1, place the strap in the DSS1 position (over the right two pins). If the unit will be using the programmed key arrangement for DSS/BLF 2, place the strap in the DSS2 position (over the left two pins).

NOTE: Tandem units should have one unit set for DSS1 and one unit set for DSS2. If tandem units have the same strap settings, there will be erroneous indications on the DSS/BLF Units and the keyset, and there may be errors throughout the system.

7. Perform the DSS/BLF Unit self-test:

a. Plug one end of the line cord into the modular jack on the unit’s control board.

b. While holding down keys 100 and 110 (default), plug the other end of the line cord into the appropriate modular jack assembly. All the keys should light up. If an LED does not light, remove and replace the line cord while holding down keys 100 and 110 (default). If the test fails again, replace the DSS/BLF unit.

c. Press each key individually (in any order) to remove the lit status. When finished, all keys should be unit. If an LED does not go out, remove and replace the line cord while holding down keys 100 and 110 (default). If the test fails again, replace the DSS/BLF unit.

d. Reassemble the DSS/BLF Unit.

G. ATTENDANT COMPUTER CONSOLE INSTALLATION

7.56 For complete information on the Attendant Computer Console, along with detailed installation and programming instructions, refer to the manual included with the console.
FIGURE 3-52. INTER-TEL/DVK DSS/BLF UNIT CONTROL BOARD
H. SINGLE-LINE SET AND PLAYBACK DEVICE INSTALLATION

Single-Line Sets

7.57 Single-line sets can be connected to either Single-Line Cards (SLCs) or Inward Dialing Cards (IDCs). If connected to SLCs, single-line sets must be equipped with AC ringers. If connected to IDCs, off-premises single-line sets must be equipped with AC ringers, while on-premises single-line sets may be equipped with either AC or DC ringers. Jumper straps on the IDC circuits can be set for AC-ringing or DC-ringing. Refer to Figure 3-33 on page 3-53 for strap locations.

NOTE: To use SLCs and IDCs, a -4SV Module must be installed in the power supply chassis. To use AC-ringing single-line devices, a Ring Generator Module must also be installed.

7.58 Enhanced Single-Line Sets (ESLSs) and Single-Line Instruments (SLIs): An internal jumper strap can be moved to set the ringer for AC or DC. (An AC ringer is required if the phone is used on an SLC or as an off-premises extension on an IDC.) Be sure the strap is set correctly for the installation; incorrect installation will cause damage to the phone. ESLSs also have a selectable ring tone jumper strap (HI or LO) located on the control board.

NOTE: IDCs do not support message waiting applications. If single-line sets with message waiting lamps are installed on IDCs, the lamps will not function.

759 Industry-standard single-line DTMF sets: If equipped with AC ringers, they may be installed on either SLCs or IDCs. If equipped with DC ringers, they must be installed on IDCs (and they must be used on-premises).

Playback Devices

7.60 Playback devices can be used in place of single-line sets on SLC or IDC circuits. These devices answer an incoming call, play a recorded message, and automatically disconnect from the call. They are installed like single-line sets, using the same cabling and modular jack assemblies. If the playback device responds to AC ring signals and is installed on an IDC circuit, the circuit must be strapped for AC ringing; if the device responds to DC ring signals, the jumper strap must be set for DC ringing. (Refer to Figure 3-33 on page 3-53.) A playback device uses the extension number that is associated with its station circuit.

7.61 Playback devices may be used with hunt groups to speed call processing. Hunt groups can have two types of special stations: announcement stations and overflow stations. Either type of station can be equipped with a station instrument that operates as a regular station or with a playback device that answers the call, then disconnects to transfer it back to the hunt group. Refer to FEATURES, page 4-17, for more information.

7.62 With the Extended and Extended plus T1 and EdM software packages, playback devices may also be used in conjunction with the automated attendant feature. In this situation, the playback device answers the call and plays a prerecorded message. After the message, the caller is disconnected from the automated attendant and hears pure system dial tone. During or after the message, the caller may dial an extension number or a hunt group pilot number. Refer to FEATURES, page 4-12, for more information.

NOTE: For optimal performance, it is recommended that voice mail units and automated attendant playback devices be installed on IDC circuits rather than SLC circuits.

Single-Line Set And Playback Device Installation

7.63 Inspect the ESLSs and SLIs before installing them. If any parts are damaged or missing, contact Customer Support.

7.64 To install a single-line set or a playback device:

(1) If installing an ESLS or SLI:
 a. Remove the baseplate and open the phone to expose the control board.

 NOTE: The back cover of the ESLS does not have to be opened to reach the straps.

 b. Place the AC/DC jumper strap in the desired position. Also, on ESLSs, place the HI/LO (selectable ring tone) jumper strap in the desired position. (Refer to Figures 3-53 and 3-54 on the following pages.)

 NOTE: On ESLSs, do not move the JMP3 jumper strap from the NORM position.

 c. Reassemble the phone.

(2) Before connecting a single-line set or playback device to the system, measure the voltage on the RED terminal of the modular jack assembly with respect to the GREEN terminal. (The common probe of the voltmeter is placed on the GREEN terminal.) It must measure -40VDC (±2VDC). If +40 is measured, check the cabling for a reversed pair.

(3) Mount the modular jack assembly on the wall.
(4) Plug one end of the line cord **into** the modular jack assembly and plug the other end into the jack on the single-line set or playback device.

(5) To wall mount an **ESLS** or SLI, refer to the instructions given for wall mounting **keysets** on page 3-77.

FIGURE 3-53. SLI CONTROL BOARD
FIGURE 3-54. BOTTOM OF ELS

AC/DC RINGER STRAP

RING TONE STRAP

Page 3-97
8. **SMDR/SMDA OUTPUT DEVICE INSTALLATION**

8.1 The output device(s) for the Station Message Detail Recording (SMDR) and Station Message Detail Accounting (SMDA) features must meet the requirements and match the RS-232-C DB9 pinouts described in SPECIFICATIONS on page 2-31. The cables for the device(s) must not be longer than 50 feet (15 meters).

8.2 To connect an output device to the RCPU Card in the equipment cabinet:

1. Match the baud rates on the output device and the serial port to which it will be attached (PORT A or PORT B). Refer to page 2-32 for the proper baud rate settings.

2. Turn on the AC power to both the device and the system before connecting the DB9 cable to the RCPU Card. This prevents any electrical surges from being transmitted by the interface.

3. Carefully connect the DB9 interface cable from the device to the appropriate connector (PORT A or PORT B) on the RCPU Card.

4. Using standard electrical tape, tape two ferrite split beads around the interface cable just below where the cable connects to the RCPU Card. (See Figure 3-4 on page 3-12 for an example of ferrite bead installation).

NOTE: Ferrite beads must be installed to meet Part 15 of FCC regulations. Refer to REPLACEMENT PARTS for the part number.

5. To set the parameters for the SMDR and SMDA outputs, refer to PROGRAMMING.

9. **EXTERNAL PAGING EQUIPMENT INSTALLATION**

9.1 Optional external paging equipment can be connected to an available SLC, LGC, or LSC circuit. Install the external paging equipment as follows:

NOTE: When installing external paging equipment on an LGC or LSC circuit, use a paging amplifier that provides talk battery. When installing external paging equipment on an SLC circuit, use a paging amplifier that DOES NOT provide talk battery.

CAUTION

Using a paging amplifier with talk battery on an SLC circuit will damage the card.

1. Cut a length of shielded speaker cable to run from the paging amplifier to the MDF backboard.

2. At the MDF, terminate one end of the cable onto tip and ring of an available SLC, LGC, or LSC circuit.

3. Connect the other end of the cable to the amplifier high-impedance input according to the manufacturer’s instructions.

4. Connect the paging speaker(s) to the amplifier using speaker cable.

5. Plug in the amplifier’s AC power cord. **DO NOT** use the outlet for the equipment cabinet or the auxiliary outlets on the back of the power supply.

6. Set the amplifier volume control to the lowest setting and turn on the amplifier.

7. From a station location, make a page by lifting the handset, pressing the PAGE key (or dialing 7 — the default Page feature code), and dialing a zone code that includes the external paging zone. Adjust the amplifier to the desired level while placing the page.
10. EXTERNAL MUSIC SOURCE INSTALLATION

10.1 If desired, up to two external music sources (Port 1 and Port 2) may be connected to the system. The first two pair of wires on the RCPU Card terminal block (see Figure 3-20 on page 3-31) are the inputs for the optional external music sources (radio, tape player, etc.). If two music sources are connected, keyset users have the option of having background music from either music source. For the Music-On-Hold feature, either music source (or silence, or tick-tones) can be assigned on a trunk group-by-trunk group basis. For more information, see SPECIFICATIONS, page 2-10.

NOTE: In some circumstances, there may be broadcast restrictions associated with the music. Check with the music’s original distributor and/or the radio station for copyright and broadcast restrictions concerning background music and music-on-hold.

10.2 If using a radio as a music source, place it 5 to 10 feet away from the equipment cabinet to avoid RFI generated by the equipment cabinet. If the radio is placed more than 10 feet away from the equipment cabinet, use twisted-pair cable. For better reception, a radio with an external antenna is recommended.

103 To install the external music source:

(1) On the RCPU Card, ensure that the appropriate music-on-hold (MOH) jumper strap (Port 1 or Port 2) is in the ON position (over the top two pins). When outside calls on trunk groups assigned to this port are placed on hold, the caller hears music.

(2) Cut a 5- to 10-foot (1.5- to 3.0-meter) length of shielded speaker cable to run from the external music source to the RCPU Card terminal block.

(3) At the MDF, terminate one end of the cable onto the Port 1 pair (W/BL-BL/W) or the Port 2 pair (W/O-O/W) of the RCPU Card terminal block.

(4) EITHER, connect the other end of the cable to the speaker output terminals of the music source.

OR, if the music source has an earphone jack, attach a 1/4-inch mini phone plug (or other specified connector) to the other end of the cable, and plug it into the earphone jack on the music source.

NOTE: If the earphone jack is “padded” so that the optimal volume level cannot be reached, the EITHER procedure may be more effective.

(5) Plug in the AC power cord for the music source. DO NOT use the outlet for the equipment cabinet or the auxiliary outlets on the back of the power supply.

(6) Turn on the AC power to the music source.

(7) From a keyset:

EITHER, select a trunk and dial the telephone number of one of the other trunks to call back into the system. Put the call on hold to hear the music.

OR, place an intercom call to another station. Put the call on hold to hear the music.

(8) While listening to music-on-hold, adjust the volume on the music source to a level within the range of the automatic gain control circuit (slightly past the point where the volume level no longer increases). The optimal input level is 0.775VRMS (0dB).

(9) If installing a second music source, repeat these steps.

11. PREVENTATIVE MAINTENANCE

11.1 For optimal system performance, periodically conduct the following preventative maintenance routines:

- Clean and Dust - To ensure proper air circulation and reduce excess heat, clean and dust the ventilation slots on the equipment cabinet, the mesh screen on the power supply chassis, and the components on the circuit cards.

- Check Component Connections - Ensure that all components on the circuit cards are seated securely in their sockets and that no pins are bent.

- Check Card Connections - Ensure that all circuit cards are seated securely in their appropriate card slots.

- Check Cable Connections - Ensure that all system power and interface cables are properly connected.

- Check System Voltages - Ensure that all system power supply voltages are within tolerance, as outlined on page 3-61.
12. POST-INSTALLATION CHECKLIST

12.1 To ensure that the system has been installed properly, review the installation outline on page 3-2. Then review the items in the following list as a final check.

- Equipment cabinet, MDF, and station locations, and cable runs meet environmental requirements and cable lengths are within loop limits.

 Ferrite beads are installed on all station, trunk, and RS-232-C cables.

 Bridging clips are installed where required on all MDF blocks.

 Gas discharge tubes with silicon avalanche suppressors are installed on the trunks for lightning protection. Also, if extra protection is desired, the cable between the telephone company RJ-type block(s) and the gas discharge tubes is at least 75 feet long.

 If off-premises extensions are used, OPX or customer-provided circuits, and OPX repeaters (if needed), are connected at the MDF.

 The equipment cabinet is attached to an approved earth ground.

- The system power supply is plugged into an isolated, dedicated AC outlet, and no other equipment has been plugged into the same outlet. An extension cord was not used. A voltage surge/spike protector is installed to reduce the effects of AC voltage surges and spikes that can cause system malfunctions, false logic, and/or damage to the electronic components.

- Power supply voltages are in tolerance.

- Amphenol-type connectors, modular jack connectors, and station instrument line cords are all connected securely. All keyset, DSS/BLF Unit, Attendant Computer Console, single-line, and playback device stations are working properly.

- All optional equipment is properly installed and working correctly (for example, printer has paper and ribbon, radio is tuned to a station, etc).

- CO dial tone is present and calls can be placed and received using all trunks. (Refer to FEATURES and PROGRAMMING for configuring the system and for programming outgoing access, allowed answer, and ring in.)

- After programming the system, the database is saved. (Refer to the PROGRAMMING section for details.)
FEATURES

CONTENTS

1. Introduction .. 4-4
2. Accessing The Features ... 4-4
 A. Feature Codes .. 4-4
 B. Feature Keys .. 4-4
 C. SPCL And FLASH Keys .. 4-4
 D. Trunk Access Codes .. 4-5
 E. General Feature Codes ... 4-5
 Keyset-Only Feature Codes 4-8
 G. Attendant Feature Codes 4-10
 H. Extension Numbers .. 4-11
3. System Organization .. 4-12
 A. Flexible Attendant Arrangements 4-12
 B. Optional Automated Attendant 4-12
 C. Tenant Groups .. 4-15
 D. Hunt Groups .. 4-16
 E. Voice Mail/Voice Computer Hunt Groups 4-21
4. Trunk Features ... 4-24
 A. Dual-Tone Multi-Frequency (DTMF) Or Dial-Pulse Signaling 4-24
 B. Outgoing-Access, Allowed-Answer, And Ring-In Assignments 4-24
 C. Ring-In/Answer Patterns 4-25
 D. Ring Zones ... 4-25
 E. Signal Devices .. 4-25
 F. Day And Night Modes .. 4-25
 G. Trunk Restriction And Station Toll Restriction 4-26
 H. Optional Weekly Toll Limits 4-30
 I. Trunk Group Assignments And Automatic Answer/Select 4-31
 J. Least-Cost Routing (LCR) 4-32
 E&M Trunks .. 4-34
 L. T1 Spans ... 4-35
 M. Direct Inward Dialing (DID) 4-37
 N. Loop And Ground Start Trunks 4-37
 O. Trunk Maintenance ... 4-37
 Direct Inward System Access @ISA) 4-38
5. Station Instruments .. 4-40
 A. Keysets ... 4-40
 B. Single-Line Sets ... 4-49
 C. Direct Station Selection/Busy Lamp Field (DSS/BLF) Units 4-50
 D. Attendant Computer Consoles 4-50
6. User-Programmable Feature Keys 4-51
7. Automatic Call Access (Keysets Only) 4-52
8. Music-On-Hold And Background Music 4-53
CONTENTS

9. Signals And Tones ... 4-54
 A. Ring Signals .. 4-54
 B. Call Processing Signals 4-54
10. Intercom Calls .. 4-55
 A. Programming For Private Intercom Calls 4-55
 B. Station-To-Station Calling 4-55
 C. Intercom Camp On And Busy Station Callback (Queue) 4-57
II. Inter-Station Messages ... 4-58
 A. Leaving Messages .. 4-58
 B. Responding To Messages 4-59
12. Off-Hook Voice Announce (OHVA) 4-61
13. Outside Calls .. 4-62
 A. Placing Outside Calls .. 4-62
 B. Receiving Outside Calls 4-64
 C. Keyset On-Hook Dialing And Monitoring 4-64
 D. Trunk Camp On And Busy 'Dunk Callback (Queue) 4-65
 E. Account Codes .. 4-66
14. Placing Calls On Hold .. 4-67
 A. Individual Hold ... 4-67
 B. System Hold .. 4-67
 C. Consultation Hold ... 4-68
 D. Call Splitting .. 4-68
 E. Hold Recall .. 4-68
 F. Microphone Mute .. 4-68
15. Call Waiting .. 4-69
16. Call Transfer .. 4-70
 A. Transfer To An Extension Number 4-70
 B. Transfer To Hold .. 4-71
 C. Transfer Recalls .. 4-71
 D. Transfer To An Outside Number Or E&M Destination 4-72
17. Reverse Transfer And Group Call Pick-Up 4-73
 A. Reverse Transfer ... 4-73
 B. Group Call Pick-Up ... 4-73
18. Call Privacy And Privacy Release 4-74
19. Barge (Keysets Only) .. 4-75
20. Conference Calls .. 4-76
 A. Placing A Conference Call 4-76
 B. Add Parties To A Conference 4-77
 C. Exiting A Conference .. 4-77
21. System Forwarding .. 4-79
22. Call Forwarding ... 4-82
CONTENTS

23. Speed Dialing ... 4-85
 A. System Speed Dialing ... 4-85
 B. Station Speed Dialing .. 4-88

24. Optional System Directory — Intercom And Outside [Keysets Only] 4-90
 A. Intercom Directory .. 4-90
 B. Outside Directory ... 4-91

25. House Phone .. 4-92

26. Redialing .. 4-93

27. Paging ... 4-94

28. Remove From Paging .. 4-94

29. Do-Not-Disturb .. 4-95

30. Hookflash ... 4-97

31. Cancel Miscellaneous Operations 4-97

32. Reminder Messages [Keysets Only] 4-98

33. Optional Station Exchange Feature 4-99

34. Optional Data Device Attachments [Keysets Only] 4-101

35. Attendant Features ... 4-103
 A. Using The DSS/BLF Unit .. 4-103
 B. Attendant Recall .. 4-105
 C. Placing The System In Night Mode 4-106
 D. Programming Specific Station Information 4-107
 E. Programming System Reminder Messages 4-109
 F. Programming System Do-Not-Disturb Messages 4-110
 G. Setting Time Of Day And Date 4-111
 H. Remote Hunt Group Remove/Replace 4-111
 I. Remote Station Feature Cancel 4-111
 J. Generating An SMDA Report 4-111
 K. Paging Speaker Background Music (Primary Attendant Only) 4-111
 L. System Alarm Reporting ... 4-112
 M. Placing A Trunk Out Of Service For Maintenance 4-113

36. Record Keeping And Maintenance Features 4-114
 A. Call Cost Accounting .. 4-114
 B. Station Message Detail Accounting (SMDA) 4-115
 C. Station Message Detail Recording (SMDR) 4-123
 D. System Error Reporting .. 4-125
 E. Power Failure Capabilities 4-125
1. INTRODUCTION

1.1 The 256 System, in addition to its sleek, modular appearance and easy installation and programming, provides many user-friendly features. To describe the system features, this FEATURES section has been divided into the following sections:

- **Accessing the Features:** This section contains a list of the feature codes and their definitions.

- **System Organization:** This section describes possible attendant arrangements, automated attendants, tenant groups and hunt groups.

- **Trunk Features:** This section explains the trunk functions and programmable features, including: dual-tone multi-frequency (DTMF) or dial-pulse signaling; outgoing access, allowed-answer, and ring-in assignment; day and night modes of operation; trunk and toll restriction; trunk group assignments; Least-Cost Routing (LCR); T1; E&M; Direct Inward Dialing (DID); Direct Inward System Access (DISA); trunk maintenance; and loop and ground start trunks.

- **Station Instruments:** This section describes the station instruments of the 256 System. Available station instruments include keysets, single-line sets, Direct Station Selection/Busy Lamp Field (DSS/BLF) Units, and Attendant Computer Consoles.

- **Intercom, Outside, and General Call Processing Features:** Several sections explain the use of the station features that are available to all station users, including intercom call features, outside call features, and general call processing features.

- **Attendant Features:** This section explains the special attendant-only features and the use of the DSS/BLF Unit. Attendant Computer Console instructions are covered in the manual included with the Attendant Computer Console unit.

- **Record Keeping and Maintenance Features:** For record keeping purposes, the 256 System offers Station Message Detail Recording (SMDR) and Station Message Detail Accounting (SMDA). A system error reporting feature provides self-diagnostic information to make the system more reliable and easier to service.

2. ACCESSING THE FEATURES

2.1 Each of the station features is assigned a feature code. Using the station's keypad, these codes are entered to access trunks, process calls, and use special features. Complete explanations of the features and instructions for using them are covered later in this section of the manual.

2.2 The codes shown on the following pages are the values that are assigned when the system is in the default state. If desired, they can be changed in database programming to any one- to four-digit value.

CAUTION

Changing a feature code may affect the availability of other features. See PROG 07-07, page 5-30, for details.

B. FEATURE KEYS

2.3 **Keysets,** Enhanced Single-Line Sets (ESLSs), and Single-Line Instruments (SLIs) have feature keys that allow one-key dialing of feature codes. Information is programmed in the database to determine the arrangement of the feature keys and their default values. If desired, some of the keyset feature keys can be designated as user-programmable keys. All ESLS and SLI feature keys (except the FLASH key) are user-programmable.

C. SPCL AND FLASH KEYS

2.4 In some instances, feature codes are entered immediately after lifting the handset or pressing the SPKR key. Other times, the user must signal the system by pressing a designated key before entering the feature code. **Keyset** users signal the system by pressing the SPCL key. ESLS and SLI users press the FLASH key, and single-line DTMF set users perform a hookflash (press and release the hookswitch quickly). If the user does not enter a code or begin dialing before the Dial Initiation timer expires, the system sends reorder tones.

2.5 There is a system-wide option that, if enabled, allows keyset users to dial trunk access codes and feature codes without lifting the handset or pressing the SPKR or SPCL key. This programmable feature is called "hot dial pad" to indicate that the dial pad keys are always activated.
D. TRUNK ACCESS CODES

2.6 The feature codes used to access trunks are listed below.

<table>
<thead>
<tr>
<th>FEATURE NAME</th>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Trunk Selection</td>
<td>89</td>
<td>Answers the call that has been ringing or holding the longest at that station. Refer to page 4-31 for the priority list. Or, if no call is ringing or holding, the highest-numbered available auto trunk is selected for an outgoing call. (Keysets use the ANSWER key)</td>
</tr>
<tr>
<td>Least-Cost Routing</td>
<td>9</td>
<td>Allows the system to select the desired route for placing a call, as programmed in the database. (Keysets use the OUTGOING key or a call key, ESLSs use the OUT key, and SLIs use the LCR key)</td>
</tr>
<tr>
<td>Select Trunk Group 1-47</td>
<td>801-847</td>
<td>Selects an available trunk from a programmed group of trunks for placing an outside call.</td>
</tr>
</tbody>
</table>

E. GENERAL FEATURE CODES

2.7 The following pages list the general feature codes. These feature codes may be used at any station. When a default feature key can be used in place of the feature code, it is indicated at the end of the explanation. Refer to pages 4-46 and 4-49 for listings of the default feature keys.

<table>
<thead>
<tr>
<th>FEATURE NAME</th>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Trunk Answer</td>
<td>350</td>
<td>Station users with allowed answer can pick up trunks that are ringing into the system, but are not actually ringing at the stations themselves. This feature does not pick up transferred calls or recalls that are ringing at the station.</td>
</tr>
<tr>
<td>Background Music Channel Selection</td>
<td>318</td>
<td>Allows the keyset user to select the music channel that will be heard when background music is enabled at the station, or when placed on hold by another station user. Allows single-line set user to select the music channel that will be heard when the station is placed on hold by another user.</td>
</tr>
<tr>
<td>Call Forward — All Calls</td>
<td>355</td>
<td>Immediately forwards all calls to another station or to an outside telephone number. (Keysets use the FWD key)</td>
</tr>
<tr>
<td>Call Forward — If Busy</td>
<td>357</td>
<td>Immediately forwards all calls to another station or to an outside telephone number when the station is in use. (Can be assigned to the keyset FWD key)</td>
</tr>
<tr>
<td>Call Forward — If No Answer</td>
<td>356</td>
<td>Forwards all calls to another station or to an outside telephone number if not answered within a predetermined time. (Can be assigned to the keyset FWD key)</td>
</tr>
<tr>
<td>Call Forward — If No Answer/Busy</td>
<td>358</td>
<td>Forwards all calls to another station or to an outside telephone number if not answered within a predetermined amount of time, or immediately if the station is in use.. (Can be assigned to the keyset FWD key)</td>
</tr>
<tr>
<td>Call Forward -Cancel Any</td>
<td>359</td>
<td>Cancels any call forward request.</td>
</tr>
<tr>
<td>Call Splitting (Single-Line)</td>
<td>337</td>
<td>Allows the single-line station user to return to calls on individual hold, in the order they were placed on hold. (Keysets use the call and/or individual trunk keys and the HOLD key)</td>
</tr>
<tr>
<td>FEATURE NAME</td>
<td>CODE</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Cancel Misc. Operations</td>
<td>395</td>
<td></td>
</tr>
<tr>
<td>Conference</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Do-Not-Disturb</td>
<td>370</td>
<td></td>
</tr>
<tr>
<td>Do-Not-Disturb Cancel</td>
<td>371</td>
<td></td>
</tr>
<tr>
<td>Do-Not-Disturb Mode On/Off</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>Feature Key Default</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>Feature Key Display</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>Feature Key Programming</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td>Hold Individual</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>Hookflash</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Hunt Group Remove</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>Hunt Group Replace</td>
<td>323</td>
<td></td>
</tr>
<tr>
<td>Hunt Remove/Replace On/Off</td>
<td>324</td>
<td></td>
</tr>
<tr>
<td>Message</td>
<td>365</td>
<td></td>
</tr>
<tr>
<td>Message Cancel</td>
<td>366</td>
<td></td>
</tr>
<tr>
<td>Message Silent</td>
<td>378</td>
<td></td>
</tr>
<tr>
<td>Cancel Current Message</td>
<td>379</td>
<td></td>
</tr>
<tr>
<td>Optional Account Code</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEFINITION

This single feature code cancels Do-Not-Disturb, Hunt Group Remove, Page Remove, Call Forwarding, Disable Handsfree, Background Music, and Queue Request features.

Connects from three to eight parties in a conference. A conference consists of at least two stations and an outside caller, one station and two outside callers, or three stations. *(Keysets and ESLs use the CNF key)*

Halts all intercom calls, transferred calls, and pages to the station. The cancel code returns the station to normal operation. The on/off code can be used to turn Do-Not-Disturb on or off. *(Keysets use the DND key)*

Keysets, ESLs, and SLs have user-programmable feature keys that can be set to access feature codes. The keys can be set to the defined default values or they can be programmed individually. Display keyset users can view key assignments.

Places a call on hold so that it can be directly accessed only at that station or accessed through a reverse transfer from any other station. *(HOLD key)*

Sends a timed hookflash over the trunk while on an outside call.

Removes the station from the hunt group or places it in again. Does not affect non-hunt group calls. The on/off feature code can be used to toggle the feature on or off, and it can be assigned to a single feature key.

This feature code is used for leaving and retrieving a message waiting indication at a called station or the called station’s message center. Depending on how the message was left, the called station user can retrieve the message from his/her message center or from the station that left the message. *(Keysets and ESLs use the MSG key)*

Allows the station user to cancel a message waiting indication that he or she left at another station.

Leaves a message waiting indication at a station without first placing an intercom call.

Cancels a message waiting indication that is waiting at the station without requiring the user to respond to it. *(Keysets use the asterisk [*] key)*

Allows the station user to enter an optional account code for SMDR and SMDA reports during an outside call. Also used for entering a class-of-service account code before placing a call (if class-of-service account codes are enabled).

When followed by a paging zone code, it allows announcements to be made through keyset speakers and/or external paging speakers. *(Keysets use the PAGE key)*
<table>
<thead>
<tr>
<th>FEATURE NAME</th>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private CO Call</td>
<td>369</td>
<td>Allows station users to invoke call privacy on an outside call when privacy release is enabled system wide.</td>
</tr>
<tr>
<td>Queue Request</td>
<td>6</td>
<td>Requests an automatic callback when a busy trunk or station becomes available. The cancel code removes a queue request. (Keysets and ESLs use the QUE key)</td>
</tr>
<tr>
<td>Queue Request Cancel</td>
<td>376</td>
<td></td>
</tr>
<tr>
<td>Redial</td>
<td>380</td>
<td>Redials the last outside telephone number dialed or saved at the station (up to 48 digits). Also used to save numbers at keysets programmed for last number saved. (Keysets and ESLs use the REDIAL key, SLIs use the REDL key)</td>
</tr>
<tr>
<td>Reverse Transfer (Call Pick-Up)</td>
<td>4</td>
<td>Picks up a call ringing or holding at another station. Also used for the Group Call Pick-Up feature to pick up calls that are ringing at a hunt group pilot number or hunt group station.</td>
</tr>
<tr>
<td>Ring Intercom Always</td>
<td>367</td>
<td>Programs the station to always place private (non-handsfree) intercom calls. The cancel code allows the station to again place handsfree calls. The on/off feature code can be used to toggle the feature on or off, and it can be assigned to a single feature key.</td>
</tr>
<tr>
<td>Ring Intercom Always Cancel</td>
<td>368</td>
<td></td>
</tr>
<tr>
<td>Ring Intercom Always On/Off</td>
<td>377</td>
<td></td>
</tr>
<tr>
<td>Software Version Number</td>
<td>385</td>
<td>(Can be entered by a Voice Computer DTMF single-line port only) If DTMF feedback and extended DTMF tones are enabled, this generates a fourdigit DTMF code that indicates the last four digits of the software part number. It is used by voice processing software to ensure that the system software is compatible with the voice processing features.</td>
</tr>
<tr>
<td>Station Exchange</td>
<td>303</td>
<td>Allows a station user to perform an exchange between two station circuits by swapping their extension numbers. All database and station programming follows the extension numbers. A password is required when this feature is used.</td>
</tr>
<tr>
<td>Station Speed Dial</td>
<td>382</td>
<td>Dials/programs one of the 10 station speed-dial phone numbers when followed by a location code (O-9). (Keysets have IC/CO Speed-Dial [SD] keys, ESLs have PGM STN and STN SPD keys, SLIs have STN SPD key)</td>
</tr>
<tr>
<td>Station Speed Dial Programming</td>
<td>383</td>
<td>Dials one of the 400 system or tenant-specific speed-dial telephone numbers when followed by a location code (000-399). Also used for reviewing system or tenant-specific speed-dial numbers at stations and for programming speed-dial numbers at the designated keyset. (Digital keysets, IMX 12/24-line keysets, 24-line DVKS, and ESLs have SYS SPD key)</td>
</tr>
<tr>
<td>System Speed Dial</td>
<td>381</td>
<td></td>
</tr>
<tr>
<td>Transfer CO Call</td>
<td>345</td>
<td>Transfers an outside call to another station or to an outside telephone number. (Keysets use XFR key)</td>
</tr>
<tr>
<td>Transfer Intercom Call</td>
<td>346</td>
<td>Transfers an intercom call to another station or to an outside telephone number.</td>
</tr>
<tr>
<td>Transfer to Hold</td>
<td>347</td>
<td>Transfers a call to another station and places it on individual hold so that it does not ring or send call waiting signals while holding (but will ring at the station when recalling).</td>
</tr>
</tbody>
</table>
F. KEYSET-ONLY FEATURE CODES

2.8 The following pages list the keyset-only feature codes. Most of them can be used at any keyset station; however, some codes require a display and some require a Data Port Module.

<table>
<thead>
<tr>
<th>FEATURE NAME</th>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital, AIM, DVK Keyset Default Volume</td>
<td>394</td>
<td>Sets the volume levels on the audio interface module of the digital, AIM, and DVK keysets to the database-defined default values.</td>
</tr>
<tr>
<td>Automatic Intercom Access</td>
<td>362</td>
<td>Allows the keyset user to determine how ringing intercom calls will be answered: simply by lifting the handset (automatic access), or by lifting the handset and pressing the IC key. The on/off feature code can be used to toggle the feature on or off and it can be assigned to a single feature key.</td>
</tr>
<tr>
<td>Automatic Intercom Access Cancel</td>
<td>363</td>
<td></td>
</tr>
<tr>
<td>Automatic Intercom Access On/Off</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>Automatic Trunk Access</td>
<td>360</td>
<td>Allows the keyset user to determine how ringing outside calls will be answered: simply by lifting the handset (automatic access), or by lifting the handset and pressing a call key, individual trunk key or the ANSWER key. The on/off feature code can be used to toggle the feature on or off and it can be assigned to a single feature key.</td>
</tr>
<tr>
<td>Automatic Trunk Access Cancel</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>Automatic Trunk Access On/Off</td>
<td>374</td>
<td></td>
</tr>
<tr>
<td>Background Music On/Off</td>
<td>313</td>
<td>Turns on and off background music heard through the keyset speaker. (MUSIC key)</td>
</tr>
<tr>
<td>Barge</td>
<td>397</td>
<td>Connects the keyset user to an ongoing call at the called station, if the Barge option is enabled.</td>
</tr>
<tr>
<td>Call Splitting (Keyset)</td>
<td>338</td>
<td>When transferring a call, the keyset user can toggle between the call being transferred and the called party by entering this code.</td>
</tr>
<tr>
<td>Data</td>
<td>340</td>
<td>Allows operation of a data device attached to a keyset with an installed Data Port Module. Requires a Data Port Module and a modem-equipped data device. (DATA key)</td>
</tr>
<tr>
<td>Data Port Monitor</td>
<td>341</td>
<td>Permits the keyset user to lift the handset and monitor a data transmission when the data port is in use, without affecting the transmission. Requires a Data Port Module and a modem-equipped data device.</td>
</tr>
<tr>
<td>Date and Time Display</td>
<td>300</td>
<td>Displays the system date and time, user name, and extension number during a call or when other displays are shown.</td>
</tr>
<tr>
<td>Do-Not-Disturb Override</td>
<td>373</td>
<td>If enabled in the database, allows the keyset user to break through another station's do-not-disturb mode to place an intercom call to the station that is in do-not-disturb.</td>
</tr>
<tr>
<td>Handsfree Disable</td>
<td>310</td>
<td>Disables/enables the keyset's handsfree intercom answering. Incoming intercom calls ring as private calls if handsfree answering is disabled. The on/off feature code can be used to toggle the feature on or off, and it can be assigned to a single feature key.</td>
</tr>
<tr>
<td>Handsfree Enable</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>Handsfree On/Off</td>
<td>319</td>
<td></td>
</tr>
<tr>
<td>FEATURE NAME</td>
<td>CODE</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Headset Enable</td>
<td>315</td>
<td>The enable code signals the system that a headset has been connected to the keyset. The disable code returns the keyset to normal operation. The on/off feature code can be used to toggle the feature on or off, and it can be assigned to a single feature key.</td>
</tr>
<tr>
<td>Headset Disable</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Headset Mode On/Off</td>
<td>317</td>
<td></td>
</tr>
<tr>
<td>Hold System</td>
<td>33s</td>
<td>Places an outside call on system hold. It can be picked up directly at any keyset that has an individual trunk key for that trunk or by the station that placed it on hold (by pressing the flashing call or individual trunk key). The hold flash can only be seen at other stations if they have an individual trunk key for that trunk. (Cannot be used on intercom calls. If used on conference calls, the system places the parties on individual hold.)</td>
</tr>
<tr>
<td>Microphone Mute On/Off</td>
<td>314</td>
<td>Turns the microphone on or off during a call. If off (muted), the keyset user can hear the other party, but the party cannot hear the keyset user. (MUTE key)</td>
</tr>
<tr>
<td>Page Remove</td>
<td>332</td>
<td>Halts pages through the keyset speaker or allows Page them to be received again. The on/off feature can be used to toggle the feature on or off, and it can be used to assign the feature to a single feature key.</td>
</tr>
<tr>
<td>Replace</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>Page Remove/Replace On/Off</td>
<td>334</td>
<td></td>
</tr>
<tr>
<td>Redial Mode Last Number Dialed</td>
<td>320</td>
<td>Programs the keyset redial mode to store either the last outside telephone number dialed or the last outside telephone number saved.</td>
</tr>
<tr>
<td>Redial Mode Last Number Saved</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>Release</td>
<td>339</td>
<td>If on a speakerphone call (intercom or outside), entering this feature code disconnects the call and returns the keyset to the idle state. If using the handset, entering this code disconnects the call and returns the keyset to dial tone.</td>
</tr>
<tr>
<td>Reminder Message</td>
<td>305</td>
<td>The keyset user can set reminder messages that signal the station at specific times. Or, the user can cancel all reminder messages for the station.</td>
</tr>
<tr>
<td>Reminder Message Cancel</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>Ring Tone Selection</td>
<td>328</td>
<td>Selects the type of ringing alert tone that will be heard from the keyset.</td>
</tr>
<tr>
<td>Speakerphone On/Off</td>
<td>312</td>
<td>Turns the keyset speakerphone on or off for on-hook dialing, conversation, and monitoring. (SPKR key)</td>
</tr>
<tr>
<td>Station Monitoring</td>
<td>396</td>
<td>Allows a designated hunt group supervisor to monitor a station-to-outside call of anyone in the associated hunt group.</td>
</tr>
<tr>
<td>System Directory Intercom</td>
<td>307</td>
<td>Allows display keyset users to search for system extension numbers and user names. The number can then be dialed, if desired.</td>
</tr>
<tr>
<td>System Directory Outside</td>
<td>308</td>
<td>Allows display keyset users to search for system and/or tenant specific speed-dial numbers and names. The number can then be dialed, if desired.</td>
</tr>
<tr>
<td>System Feature Directory</td>
<td>309</td>
<td>This feature code is entered when an Executive Keyset user Presses the OTHER FEATURES menu key. It displays a list of features that can then be selected by pressing the associated menu keys.</td>
</tr>
</tbody>
</table>
G. ATTENDANT FEATURE CODES

2.9 The following feature codes may be used only at designated attendant stations. Non-attendant station users bear reorder tones if they attempt to use these feature codes.

<table>
<thead>
<tr>
<th>FEATURE NAME</th>
<th>CODE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancel All DND Requests</td>
<td>012</td>
<td>Cancels Do-Not-Disturb and/or Call Forwarding feature for all stations or individual stations that are served by that attendant, depending on the feature code used.</td>
</tr>
<tr>
<td>Cancel All Station FWD Requests</td>
<td>013</td>
<td></td>
</tr>
<tr>
<td>Cancel Station DND/FWD Requests</td>
<td>014</td>
<td></td>
</tr>
<tr>
<td>Cancel Station DND Request</td>
<td>015</td>
<td></td>
</tr>
<tr>
<td>Cancel Station FWD Request</td>
<td>016</td>
<td></td>
</tr>
<tr>
<td>Cancel Station DND/FWD Request</td>
<td>017</td>
<td></td>
</tr>
<tr>
<td>Clear System Alarm</td>
<td>019</td>
<td></td>
</tr>
<tr>
<td>Database Programming Enable</td>
<td>029</td>
<td></td>
</tr>
<tr>
<td>Feature Directory</td>
<td>009</td>
<td></td>
</tr>
<tr>
<td>Night Ring On/Off</td>
<td>010</td>
<td></td>
</tr>
<tr>
<td>Paging Speaker Music On/Off</td>
<td>018</td>
<td></td>
</tr>
<tr>
<td>Program Station Data</td>
<td>022</td>
<td>Reprograms specific station data, including user name, tenant group and department, and serving attendant.</td>
</tr>
<tr>
<td>Program System DND Messages</td>
<td>024</td>
<td>Reprograms up to 19 of the 20 system do-not-disturb messages.</td>
</tr>
<tr>
<td>Program System Reminder Messages</td>
<td>023</td>
<td>Reprograms any or all of the 20 system reminder messages.</td>
</tr>
<tr>
<td>Program System Speed Dial</td>
<td>020</td>
<td>Programs system-wide or tenant-specific speed-dial numbers when followed by location codes (000-399). (Also accessed by the SYS SPD key — feature code 381.)</td>
</tr>
<tr>
<td>Remote Hunt Group Replace</td>
<td>032</td>
<td>Removes a station from its assigned hunt group(s) or places it in the hunt group(s) again.</td>
</tr>
<tr>
<td>Remote Hunt Group Remove</td>
<td>033</td>
<td></td>
</tr>
<tr>
<td>Set Time of Day</td>
<td>021</td>
<td>Programs system time, date, and day of week.</td>
</tr>
<tr>
<td>SMDA</td>
<td>025</td>
<td>Generates a station message detail accounting (SMDA) report.</td>
</tr>
<tr>
<td>Trunk Maintenance</td>
<td>027</td>
<td>Removes a trunk from operation to allow service personnel to test and perform maintenance on the trunk. Can also be used to place the trunk back in service if the attendant has an individual trunk key for that trunk.</td>
</tr>
<tr>
<td>Remove All Trunks From</td>
<td>028</td>
<td>Returns all trunks to operation that have been removed using the Trunk Maintenance feature.</td>
</tr>
</tbody>
</table>

Remote Hunt Group Replace 032
Remote Hunt Group Remove 033
Set Time of Day 021
SMDA 025
Trunk Maintenance 027
Remove All Trunks From Maintenance 028

NOTE: To help avoid confusion between zone and port numbers, program external port 1 into zone 1, external port 2 into zones 2, etc.

(Primary Attendant Only) Turns background music on or off to the external paging speaker(s). After the code is entered, the desired zone is indicated by entering a port number (1-9) or 0 to turn off all ports.

NOTE: To help avoid confusion between zone and port numbers, program external port 1 into zone 1, external port 2 into zones 2, etc.

Page 4-10
H. EXTENSION NUMBERS

2.10 Extension numbers are recognized as feature codes by the system. When the system is in the default state, the extension numbers are assigned as follows:

<table>
<thead>
<tr>
<th>Attendant stations</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hunt groups</td>
<td>100-227</td>
</tr>
<tr>
<td>Modems:</td>
<td></td>
</tr>
<tr>
<td>Bell 202 (300 baud)</td>
<td>270</td>
</tr>
<tr>
<td>Bell 202 (1200 baud)</td>
<td>271</td>
</tr>
<tr>
<td>CCITT (300 baud)</td>
<td>272</td>
</tr>
<tr>
<td>CCITT (1200 baud)</td>
<td>273</td>
</tr>
</tbody>
</table>
3. SYSTEM ORGANIZATION

3.1 The 256 System is designed to allow organization of the stations into tenant groups and hunt groups for easier call processing and record keeping.

A. FLEXIBLE ATTENDANT ARRANGEMENTS

3.2 Attendants provide the following services for the stations they serve:

- Accessed by dialing "0"
- Central operators for incoming calls (if programmed for ring in)
- Message centers (if programmed)
- Recall stations for unanswered calls (day mode)
- Clear displayed system alarms
- Able to cancel Do-Not-Disturb and/or Call Forwarding for the stations they serve
- Program specific station information
- Program system do-not-disturb messages
- Program system reminder messages
- Program tenant-specific and system-wide speed-dial numbers
- Place the tenant group in night mode or day mode
- Set the system time of day, date, and day of week
- Place trunks out of service for maintenance purposes, and return them to service

3.3 In addition to the capabilities listed above, one attendant can be designated as the primary attendant who can:

- Place the entire system in night mode or day mode
- Program all system speed-dial numbers (including tenant-specific numbers), unless this ability has been assigned to another keyset
- Receive unsupervised outside call and hunt group recalls
- Turn background music on or off for the external paging speakers

3.4 All attendant stations should be equipped with display keysets to show system alarms and recall sources. If desired, each attendant's keyset can also be used with one or more DSS/BLF Units for one-key intercom access to stations and for constant station/hunt group status indications. Or, attendant stations can be equipped with Attendant Computer Consoles.

One-Attendant Operation

3.5 One attendant (generally designated as the primary attendant) has control of all the attendant features listed in paragraphs 3.2 and 3.3. All trunks (except private trunks) are usually programmed to ring in at this attendant’s station.

Multiple-Attendant Operation

3.6 The system can be assigned as many attendants as needed (up to 128 if all keyset circuits are used for single keysets, 256 if all keyset circuits are used for dual keysets). For example, there may be one or more attendants to serve each tenant group. Trunk groups are programmed to ring at any or all attendant stations. One attendant is designated as the primary attendant. With this arrangement, either the primary attendant can serve as the only system alarm station, or every attendant can receive alarm messages.

B. OPTIONAL AUTOMATED ATTENDANT

NOTE: This feature is available only in the Extended and Extended plus T1 and E&M software packages.

3.7 The Automated Attendant is a programmable feature that can be used to provide some of the services normally handled by an attendant. It allows an outside party to dial into the system and automatically access (or be transferred to) an automated attendant station, which is generally a playback device with a prerecorded message. After hearing the message, the caller is disconnected from the automated attendant and hears system dial tone. The caller may then directly dial a station extension number or hunt group pilot number.

3.8 Automated attendant stations are designated in database programming and can be assigned direct ring in for specific trunk groups. There can be up to 248 automated attendant stations.

NOTE: Due to the natural characteristics of the trunk, the volume level of DTMF tones transmitted over the trunk may be substantially reduced before reaching the 256 System. This natural degradation in tone volume may adversely affect the reliability of the Automated Attendant feature. Other factors which can affect automated attendant performance are trunk noise, the quality of the playback device, and the quality and strength of the DTMF tones generated by the off-premises phone itself.
Automated Attendant Applications

3.9 There are a number of different uses for this feature. For example, direct ring-in calls to a busy attendant could be forwarded to an automated attendant (using one of the Forwarding features). Another option is to have calls ring in directly to an automated attendant station when the system is in day and/or night mode. Or, a group of automated attendant stations could be assigned to one hunt group. In this situation, a call would ring in or be transferred to the hunt group pilot number where it would circulate until an available automated attendant station answers the call.

3.10 Another possibility is to assign an automated attendant station as an announcement or overflow station in an existing hunt group. Unlike standard announcement or overflow stations, the caller hears system dial tone after being disconnected, rather than being returned to the hunt group, and can dial an extension number.

Automated Attendant Call Processing

3.11 When a station receives a call that has been routed through the automated attendant, the call rings as a transferred call (but the display shows CALL RINGING IN ON TRNK GRP XX). If ringback tones are enabled, the caller hears ringing while the call is being transferred. If ringback is not enabled, the caller hears music (refer to PROGRAMMING, page 5-67).

3.12 If the called station is forwarded, the call follows the programmed forward. If the called station is busy or does not answer, the call is transferred to the automated attendant’s designated recall station after the appropriate Transfer timer expires. If the designated recall station does not answer the call, it is disconnected after the Abandoned Call timer expires. If the automated attendant does not have a designated recall station, the call transfers to the called party’s attendant after the appropriate Transfer timer expires.

3.13 When a hunt group pilot number receives a call that has been routed through the automated attendant, the call rings or circulates according to how the hunt group is programmed (i.e., linear, distributed, or all ring). The call is displayed as a direct ring-in call; however, the system actually processes the call as a transferred call. Refer to page 4-16 for more information on hunt group calls.

3.14 The caller cannot access trunks or any other feature through the automated attendant station. An attempt to do so automatically transfers the call to the automated attendant’s attendant.

3.15 To avoid possible camp-on tone interruptions during calls, it is recommended that camp-on tones be disallowed for the automated attendant station.

3.16 Intercom calls to an automated attendant station are handled the same as normal intercom calls. After hearing the message, the caller is disconnected from the automated attendant and is returned to intercom dial tone. Intercom callers cannot use the automated attendant features.

Playback Devices

3.17 Playback devices are generally used at the automated attendant station(s). When an outside call rings in or is forwarded to an automated attendant, the playback device plays a message (giving dialing instructions) and then disconnects from the call. The caller hears system dial tone. If using a DTMF telephone, the caller can dial a station extension number or hunt group pilot number to access the desired station or hunt group, or dial “0” for the automated attendant’s attendant. If an invalid number is dialed or the DTMF decoders are busy, the call is immediately transferred to the automated attendant’s attendant. If using a rotary telephone or if unsure of the extension number, the caller can wait for the automated attendant’s attendant to automatically be called after the SL Dial Initiation timer expires.

3.18 Playback device installation is described in INSTALLATION on page 3-95. Trunk ring-in programming is described on page 5-106. Trunks should not be programmed to ring in to multiple playback devices. Use the Call Forwarding or Hunt Group feature if multiple playback devices are to be used.

NOTE: If the automated attendant does not have an assigned attendant, calls normally routed to the automated attendant’s attendant will instead go to the primary attendant.

User-Operated Automated Attendant Station

3.19 If desired, a user-operated station can also be designated as an automated attendant station. In this situation, when a direct ring-in or transferred outside call is received, the station user answers the call, gives the necessary dialing information, and hangs up. The caller hears system dial tone and has the same options as described in paragraph 3.17. Instead of disconnecting from the call, the automated attendant station user can choose to transfer it, place it on hold, or use other call processing features. Simply hanging up on the call does not terminate it from the system.
Dialing During Recordii

3.20 A database option allows the programmer to determine if the system will accept a caller’s DTMF tones (dialed extension numbers or hunt group pilot numbers) while the automated attendant station is giving dialing instructions (rather than having to wait until they hear system dial tone after the automated attendant hangs up). If the option is enabled, callers who know the extension number of the station or hunt group they wish to call can dial the number any time after the automated attendant answers the call.

NOTE: The reliability of allowing callers to dial during the instructions may be affected by the voice characteristics of the person giving the instructions, the quality of the playback device, the trunk noise levels, the DTMF tone levels, etc. If frequent problems occur, this option should be disabled.

Automated Attendant Do-Not-Disturb Breakthrough

3.21 Direct ring-in calls are not blocked by Do-Not-Disturb; they ring at the called station. However, the database contains an option that allows or disallows automated attendant (and DISA and voice mail) calls to break through Do-Not-Disturb on a station-by-station basis.

- **If do-not-disturb breakthrough is allowed** an unanswered call is transferred to the automated attendant’s designated recall station after the appropriate Transfer timer expires.
- **If do-not-disturb breakthrough is disabled,** calls through the automated attendant to a station in do-not-disturb are immediately sent to the automated attendant’s designated recall station (or, if one does not exist, the called party’s attendant).

3.22 Allowing a voice computer acting as an automated attendant to transfer calls to stations in do-not-disturb permits the voice computer to disconnect from the call and then make a page announcement to alert the called party, if the unit has that capability. (DTMF feedback and extended DTMF tones must be enabled to use this option.)

Digit Translation

3.23 The Automated Attendant feature allows outside callers to access the system and directly dial extension numbers or hunt group pilot numbers. To simplify this process and to help prevent the system from having problems recognizing digits (due to trunk noise levels, DTMF tone levels, etc.), a feature called Digit Translation may be used. Digit translation allows callers to dial a single digit to access a designated extension number or hunt group pilot number. Up to ten digit translation storage locations (0-9) are available in database programming (refer to **PROGRAMMING**, page 5-38).

3.24 To use digit translation, the programmer enters an extension number or hunt group pilot number in the desired translation location@-9). A caller accessing the system through the automated attendant can then dial the single-digit location number to reach the designated extension number or hunt group pilot number. For example, if the pilot number for a customer support group was entered in translation location number 3, the automated attendant’s message would read something like: “Dial 3 for customer support.” *This* is easier than dialing a three-digit number, leaves less room for user error, and helps to prevent trunk noise from causing the system to make digit recognition errors.

3.25 To allow callers to dial zero for the attendant or dial station extension numbers, it is recommended that translation location numbers 0 and 1 be left blank. For example, if location 1 is assigned pilot number 231, any automated attendant caller attempting to dial a station extension number that begins with a 1 will instead be transferred to 231.
C. TENANTGROUPS

3.26 Tenant service allows the customized distribution of trunk groups and DID groups among multiple users sharing a common system and allows the attendant for each tenant group to place the associated trunk groups in day or night mode. (The primary attendant can place all trunk groups in day or night mode.) Trunk groups are assigned to the attendants on a tenant-by-tenant basis.

3.27 This form of partitioning is ideal in instances where several small businesses share a 256 System, or departments within a larger company wish to operate as separate identities for such purposes as account billing or budgeting. Along with the multiple tenant arrangements, each tenant group may be further divided into departments.

3.28 Eight tenant groups can be established in the system, with up to 10 departments in each tenant group. Each station must be assigned to one (and only one) tenant group and one (and only one) department. When the system is in the default state, all stations are in tenant group 1, department 1. Assigning groups of stations to different departments can be useful for comparing the number and estimated cost of calls that each department makes and receives. See SMDA, page 4-115, for details.

3.29 In database programming, each system speed-dial number can be programmed for use by stations in a single tenant group or by all stations in the system. The attendant for each tenant group can then program the associated tenant-specific and system-wide speed-dial numbers.

3.30 Traffic (communication) between tenant groups can be allowed or denied in database programming. If cross-tenant conversations are denied, a station can only call other stations within its tenant group and calls cannot be transferred or forwarded between tenant groups. Therefore, if cross-tenant traffic is denied, each tenant group should be assigned its own attendant. Attendants can always call any station regardless of the cross-tenant traffic option selected. Hunt groups with stations in more than one tenant group are also not affected by the cross-tenant traffic designation when an outside call rings in or is transferred to the hunt group. However, an intercom call that rings in or is transferred to the hunt group will only circulate to the stations that are within the same tenant group as the intercom caller.
D. HUNTGROUPS

3.31 The Hunt Group feature permits calls to be placed to a group of stations and to be automatically transferred to an available station within the group. Up to 20 hunt groups can be programmed in the database. In a linear or distributed hunt group, individual stations within the group can be accessed by dialing a special extension number. Stations in these groups are accessed by dialing a special extension number called a pilot number (defaults to 231-250). Individual stations within the hunt group can be accessed using their assigned extension numbers.

3.32 Each hunt group is designated as one of the following two types:

- **Station hunt groups:** These hunt groups contain keysets and/or single-line stations.
- **Voice mail/voice computer hunt groups:** Voice computer hunt groups contain single-line circuits which are designated as voice mail/voice computer stations. These hunt groups can be assigned special dial rules that signal the voice computer unit to perform such tasks as dialing a voice mail access number or the called station’s mailbox number (refer to page 4-21 for more information on voice mail groups).

Hunt Group Call Distribution

3.33 When an intercom or outside call is transferred or rings in to the pilot number, it either rings at all stations in the hunt group (all-ring) or circulates through the hunt group in linear or distributed order until answered, as described below.

- **Au-ring:** Incoming calls ring simultaneously at all stations in the hunt group. If any station is busy, the call camps on to that station and sends call waiting signals while ringing at the other stations.
- **Linear order:** Incoming calls always start circulating by ringing at the first station on the list that is stored in the database. If that station is busy, or if there is no answer before the No Answer Advance timer expires, the call goes to the next station on the list.
- **Distributed order:** To even out the call load, distributed order shifts the starting point of each call. When a station user receives a call, the next station on the list receives the next incoming call. If a station is busy, or if there is no answer before the No Answer Advance timer expires, the call goes to the next station on the list.

3.34 The order in which hunt group stations receive incoming calls is determined by a list stored in the database. A station can appear in a single list more than once and it can appear in multiple hunt group lists, if desired.

Hunt Group Call Processing

3.35 Hunt group stations receive the following indications on individual trunk keys when a call is ringing in (call keys will not show indications):

- If an outside call is ringing, each of the available hunt group stations in an all-ring hunt group or the designated station in a linear or distributed hunt group shows ring flash on the associated individual trunk key until the call is answered.
- If all stations are busy, an intercom or outside call will camp on and cause the system to send camp-on tones and display messages to all stations in the hunt group; the associated trunk key flashes. As soon as one station is available, the camp-on tone and message end, and the available station receives ringing (if the hunt group is set for linear or distributed ringing, the individual trunk key stops flashing at all other stations). Camped-on calls follow the recall route as described in paragraph 3.51.
- If every station in a linear or distributed hunt group, (or a single station in an all-ring hunt group), is in do-not-disturb or has hunt group remove enabled, an incoming call will flash on the associated individual trunk key. If all stations in an all-ring hunt group are in do-not-disturb, the trunk key flashes, but the stations do not ring. If all stations in an all-ring hunt group are forwarded, the call rings and the trunk key flashes.

3.36 Trunk groups (and DID numbers) can be programmed to ring in directly to either a pilot number or extension number(s). If assigned to a pilot number, ring in for the trunk group (or DID number) cannot be assigned to any other extension number(s).

3.37 Stations within the hunt group can receive direct trunk and DID ring-in, intercom, forwarded, or transferred calls to their individual extension numbers without affecting other stations in the hunt group.

3.38 Hunt group programming affects the Call Forwarding feature in the following ways:

- **If** a station in a hunt group is in call forward mode, the station will still receive hunt group calls.
- If an announcement or overflow station has call forward enabled, hunt group calls will not follow the forward, but will remain at the station. (An exception to this occurs when hunt groups are programmed with multiple announcement stations; refer to paragraph 3.47 on the next page.)
- Stations can forward calls to a hunt group’s pilot number.
3.39 If cross-tenant traffic is denied, hunt group stations not in the same tenant group as an intercom caller do not receive the incoming intercom call.

3.40 If an outside call rings in or is transferred to a pilot number that does not have hunt group station assignments, the call is sent to the primary attendant. If a station user attempts to transfer an intercom call to an invalid pilot number, the call is placed on transfer hold; the intercom call can be re-accessed on a keyset by pressing IC key, or on a single-line set by hanging up to allow the call to recall and then lifting the handset again. A station user attempting to place an intercom call to an invalid pilot number will hear reorder tones.

3.41 When a DISA call or a call routed through the automated attendant rings at a hunt group member’s station, it is displayed as a direct ring-in call; however, the system actually processes the call as a transferred call.

3.42 Hunt groups can be assigned as message centers and/or alternate message sources for individual stations.

Announcement And Overflow Stations

3.43 Two types of special stations can be programmed to help calls circulate through the hunt group more efficiently: hunt group announcement stations and hunt group overflow stations.

3.44 Announcement and overflow stations are not included in the hunt group list; they are individual stations or hunt group that receive unanswered calls when all of the hunt group stations are unavailable. Announcement and overflow stations can be assigned to separate stations/hunt groups or they can be the same station/hunt group. Also, each of the hunt groups can have the same announcement and overflow stations or they can be assigned different stations.

3.45 When the database is in the default state, all unanswered direct ring-in outside calls to the hunt group go first to the announcement station and then to the overflow station. Unanswered calls that were transferred to the hunt group, by default, go only to the overflow station. However, there is a system option that can be enabled to send all unanswered hunt group calls first to the announcement station and then to the overflow station. See page 5-68 in PROGRAMMING.

3.46 Announcement Stations: When the hunt group receives a call (direct ring-in and/or transfer, depending on programming), it rings at all stations or circulates in linear or distributed order until it is answered or the Announcement timer expires. If the timer expires, the unanswered call is sent to one of up to three designated announcement stations. (Paragraph 3.51 explains how unanswered calls are handled.) An announcement station can have the following types of devices:

- **Playback Device**: A playback device answers the call, plays a greeting and message, and then disconnects from the call. The call continues ringing in the hunt group while the playback device is handling the call. If a hunt group station answers the ringing call while it is at the playback device, the call will immediately leave the playback and be connected to the hunt group station.

- **Station, Hunt Group, or Voice Computer Hunt Group**: At this type of announcement station, a user greets the caller and, if desired, may return the call to the hunt group using the Call Transfer feature. The call will not automatically return to the hunt group from a station, hunt group, or voice computer hunt group announcement station.

- **Automated Attendant**: An automated attendant playback device announcement station will answer the call, play its message, and then send the call to the extension or pilot number selected by the caller. Each direct ring-in call will transfer to the announcement station(s) only once.

3.47 To handle heavy incoming traffic, each hunt group can be programmed with up to three announcement stations (or a single hunt group as the announcement station). With multiple announcement stations, an unanswered call is sent to the first announcement station on the list (after the Announcement timer expires). If the first announcement station is unavailable (no answer or busy), the call is forwarded to the second announcement station, and so on. Once the call reaches the last announcement station on the list, it remains there until the Forward No Answer timer expires. It then forwards to the first announcement station on the list and starts the process over again until it reaches an available announcement station. (The No Answer Advance timer determines how long a call will ring unanswered at an announcement station before moving to the next announcement station.)

NOTE: If a keyset or single-line set (rather than a playback device) is part of a multiple announcement station list, all calls to the station are processed according to the programmed forward condition. The station user cannot cancel the forward unless the station is removed from the multiple announcement station list in database programming; any manual call forwarding at the station will be overridden.

3.48 Overflow Stations: When an outside call is transferred to a hunt group by the announcement station (or any attendant, an automated attendant, DISA, or any station, if programmed to bypass the announcement station), it rings at all stations or circulates in linear or dis-
tributed order until it is answered or the Overflow timer expires. If unanswered when the timer expires, the call is sent to an overflow station. The overflow station can use the following types of devices:

- **Hunt Group, Voice Computer Group, or Station:** The overflow station be another hunt group, a voice computer group, or a station not in the group. If the overflow station is a hunt group, voice computer group, or a station, the call can only ring at or circulate through the hunt group once, unless the overflow station transfers it back using the Call Transfer feature.

- **Playback Device:** If the overflow station is a playback device, the programmer can determine the number of times (1-127 or unlimited) that the call will be allowed to transfer back to the hunt group and then return to the overflow station. (After the determined number of returns, the call becomes a recall.) A playback device answers the call, plays a greeting and message, and then disconnects from the call. The call continues ringing in the hunt group while the playback device is handling the call. If a hunt group station answers the ringing call while it is at the playback device, the call will immediately leave the playback and be connected to the hunt group station.

3.49 A hunt group with a playback device overflow station can be programmed, using an overflow count of 0, so that overflow calls are sent directly back to the transferring station when the Overflow timer expires. This option is set by designating that the hunt group has a playback device overflow station, then programming the overflow for immediate recall, or not assigning an overflow station.

Hunt Group Timers

3.50 Three timers are programmed on a hunt group by-hunt group basis: No Answer Advance timer, Announcement timer, and Overflow timer.

- **No Answer Advance:** Determines the amount of time a call will ring at a hunt group station (unanswered) before advancing to the next station on the list. The default value is 18 seconds. It can be programmed for 3-255 seconds.

- **Announcement:** This determines the amount of time a direct ring-in call will remain unanswered before it is sent to the hunt group’s announcement station(s). The default value is 18 seconds. It can be programmed for 10-255 seconds.

- **Overflow:** This determines the amount of time a transferred outside call will circulate through the hunt group (unanswered) before being sent to the hunt group’s overflow station. The default value is 72 seconds. It can be programmed for 10-255 seconds.

Unanswered Hunt Group Calls

3.51 The path that an unanswered hunt group call follows is determined by the configuration of the hunt group, as outlined in the following paragraphs. Note that intercom calls (direct or transferred) will not transfer to the announcement or overflow stations, and transferred intercom calls will not recall.

- **Direct ring-in outside calls:**
 - **With a playback device announcement station:** When a call rings in to a hunt group, it circulates through the hunt group until it is answered or the Announcement timer expires. When this timer expires, the unanswered call is picked up by the designated playback device announcement station that answers the call and plays a message. Meanwhile, the call continues circulating through the hunt group (unless it has been sent to a voice computer station). If it is answered by an available hunt group station while the announcement station is connected to the call, the call will leave the announcement station. Each call will transfer to the announcement station only once. If it remains unanswered when the Overflow timer expires, the call will be sent to the overflow station. Or, if there is no overflow station, the call will be sent to the recall destination station when the Recall timer expires.
 - **With a non-playback announcement station:** When an unanswered direct ring-in call is sent to a non-playback announcement station (after the hunt group Announcement timer expires), the call remains at the announcement station until it is answered or the caller hangs up. After the announcement station user answers, the call is processed as a normal outside call (if desired, the call can be manually transferred back to the hunt group using the Call Transfer feature).
 - **Without an announcement station:** A direct ring-in call rings at or circulates through the hunt group until answered or the caller hangs up; it is not sent to the overflow station, nor does it recall any attendant.

- **Transferred outside calls** (unless transfers are programmed to go to the announcement station as described in paragraph 3.45 on page 4-17):
 - **With a playback device overflow station:** If the call is unanswered when the Overflow timer
expires, the call is picked up by a playback device overflow station that answers the call and plays a message. Meanwhile, the call continues circulating through the hunt group (unless it has been sent to a voice computer station). If the call is answered by an available hunt group station while the overflow station is connected to the call, the call will leave the overflow station. If the call remains unanswered after returning from the overflow station for the last time, the call returns to the hunt group until the Overflow timer expires, and then recalls the transferring station.

--- With a non-playback overflow station: When an unanswered transferred outside call is sent to a non-playback overflow station, the call remains at the overflow station until it is answered or until the Recall timer expires; it then recalls the transferring station. If the call still remains unanswered, it recalls the transferring station’s attendant.

--- Without an overflow station: An unanswered transferred call circulates until the hunt group Overflow timer expires and then returns to the transferring station. If the call still remains unanswered, it recalls the transferring station’s attendant.

NOTE: In all cases, if the transfer came from the announcement station or an automated attendant, it recalls the primary attendant.

- To avoid the Recall timers:
 - A hunt group can be assigned as its own overflow station. The call will circulate through the hunt group until it is answered or the caller hangs up.

3.52 If a station that receives a recalling hunt group call chooses to transfer the call back to the hunt group, the call retains its original queue position in the hunt group. That is, it will be answered ahead of any calls that were received by the hunt group while the call was recalling. It will not go back to the end of the queue.

Hunt Group Remove/Replace And Do-Not-Disturb

3.53 Hunt group stations can temporarily halt hunt group calls by entering the Hunt Group Remove feature code as described below. Also, the Do-Not-Disturb feature can be used to block all incoming hunt group calls to a station. Announcement stations and overflow stations cannot block hunt group calls using the Do-Not-Disturb or Hunt Group Remove features.

3.54 The Hunt Group Remove/Replace feature can also be controlled from the attendant’s station using the Remote Hunt Group Replace feature code. See page 4-111.

3.55 When the Hunt Group Remove feature is enabled, the user will not hear ringing or receive the camp on message display for calls to the hunt group unless it is in an all-ring hunt group. In linear and distributed hunt groups, the individual trunk key flashes only if all other hunt group members are unavailable — busy, in do-not-disturb, with calls forwarded, or with Hunt Group Remove enabled. (The station continues to receive calls placed to its extension number.) All-ring hunt group stations will receive ring flash but no display while in Do-Not-Disturb or Hunt Group Remove mode. Hunt group overflow and announcement stations cannot block hunt group calls.

3.56 To Remove or Replace the Station’s Hunt Group Calls:

1. **Keyset: While on or off hook, press SPCL.**
 - **Single-Line Set:** Lift the handset.

2. Enter the Hunt Group Remove feature code (322) to halt hunt group calls or enter the Hunt Group Replace feature code (323) to return the station to its hunt group(s). **Keyset** users hear a confirmation tone, single-line sets users hear dial tone. (Or use the Hunt Group Remove/Replace On/Off feature code [324] to toggle the hunt group mode on or off.)

3. **If off hook, hang up.**

Station Monitoring

3.57 This feature allows hunt group supervisors to monitor the outside calls of anyone in a specified hunt group. It can be useful in training or in evaluating the performance of hunt group members.

NOTE: As a courtesy, hunt group members should be notified in advance that their calls may be monitored. In addition, a programmable option can be enabled that sends a tone to the station being monitored whenever the hunt group supervisor joins an ongoing call. (Note that call monitoring may be illegal in some locations. It is up to the end user to ensure that use of this feature is in compliance with local laws.)

3.58 In database programming, each hunt group can have one **keyset** assigned as the hunt group supervisor. This can be any **keyset**, even if it is not a member of the hunt group. If the supervisor is a member of the hunt group, the Hunt Group Remove/Replace feature can be used at any time without affecting the station monitor ability. If desired, one **keyset** can be assigned as the supervisor for more than one hunt group.
3.59 To monitor a hunt group member’s call, the supervisor enters the Station Call Monitoring feature code and dials the desired extension number. The supervisor is then connected to the ongoing call and can hear both parties, but cannot be heard by either one. If using a display keyset, the top line of the supervisor’s display shows the hunt group member’s extension number (or user name) and trunk number (or trunk identification). The bottom line of the supervisor’s display shows the hunt group member’s call cost information (just as it is on the hunt group member’s display). If the monitored call is terminated, transferred, or placed on hold by the hunt group member, the monitor function is terminated.

3.60 In the associated hunt group, the supervisor may monitor any active CO-to-intercom call (both hunting and non-hunting), including incoming, outgoing, and DISA-to-intercom calls. Conference calls and calls that do not involve hunt group members cannot be monitored. Also, if privacy release is enabled system-wide and another keyset user joins an ongoing CO-to-intercom call that is being monitored (i.e., joins it by lifting the handset and pressing the busy individual trunk key), the call monitoring function is terminated.

3.61 If the supervisor attempts to monitor a station that is already being monitored or one that is not on an active CO-to-intercom call, the system sends reorder tones and allows the supervisor to dial another extension number. If the supervisor attempts to monitor a station that is not in the hunt group or an idle station in the hunt group, the system sends reorder tones and cancels the monitor feature.

3.62 To Monitor a Hunt Group Call (Designated Supervisor Only):

1. To use the speakerphone: While on hook, press SPCL and enter the Station Call Monitoring feature code (396). You hear a confirmation tone and the SPKR key lights.

2. To use the handset: Lift the handset and enter the station Call Monitoring feature code (396). You hear a confirmation tone.

3. To monitor another hunt group member’s call:

 EITHER, Press SPCL, enter the Station Call Monitoring feature code (396), and dial the extension number (or press the SD key).

 OR, Press the DSS/BLF key for another station without pressing SPCL or entering a feature code.

 To terminate the monitor feature: If off hook, hang up. If on hook, press the SPKR key.

 To place or receive a call: press the IC key or an individual trunk or call key (or the ANSWER or OUTGOING key).
E. VOICE MAIL/VOICE COMPUTER HUNT GROUPS

3.63 Any hunt group can be designated as a voice computer hunt group. These hunt groups can be assigned special dial rules that signal the voice mail unit to perform such tasks as dialing a voice mail access number or the called station’s mailbox number. (See page 4-16 for more information about hunt groups.)

3.64 The order in which the voice mail stations receive incoming calls (intercom, transferred, direct ring-in, and DISA calls) is determined by a list stored in the database. A station can appear in a single list more than once and it can appear in multiple lists, if desired. The station list is always checked in linear order.

3.65 If a call is not answered by the first station on the list before the No Answer Advance timer expires, the call is sent to the next station on the list. If the call remains unanswered when the Recall timer expires, it will recall the designated recall designation (or the primary attendant, if there is no recall destination specified in the database).

Recalls

3.66 A recall destination is assigned to voice computer hunt groups. The recall destination can be a station or another hunt group. If a call is transferred to a station by the voice computer, and the applicable Transfer timer expires, the call is sent to the designated recall destination. If a call is transferred to a hunt group by the voice computer, and the Overflow timer expires, the call is sent to the designated recall destination. (If there is no recall destination, it is sent to the primary attendant.)

DTMF Feedback Tones

3.67 If a station is designated for voice mail and is connected to a voice computer, the progress tones that are normally sent to the voice mail station can be replaced with DTMF “feedback” tones. These tones can be utilized by the voice computer to determine call status such as whether the call is ringing, has been answered, has been disconnected, or if the called station is in do-not-disturb, busy, or forwarded to an outside telephone number. If the voice mail unit cannot interpret the DTMF feedback tones, normal progress tones should be kept enabled.

3.68 If feedback tones are enabled, the “extended” set of feedback tones can also be enabled in system-wide programming. These extended tones include codes for indicating when a station is forwarded to another station and when the calling party hangs up.

Voice Mail/Computer Do-Not-Disturb Breakthrough

3.69 Calls through the voice computer (and DISA and automated attendants) can be allowed to ring at the station if it is in do-not-disturb. If disallowed, such calls will immediately transfer to the designated recall destination (or to the primary attendant, if no recall destination is specified).

3.70 Allowing voice mail/computers to transfer calls to stations in do-not-disturb permits the voice mail/computer to disconnect from the call and then make a page announcement to alert the called party, if the voice computer has that capability.

Voice Mail/Computer Dial Rules

3.71 The 256 System has the ability to support voice computers that can process codes which give detailed information about the status, origin, and destination of the call, and can dial feature codes. Refer to the manual provided with your voice computer to determine the dial rules most suited to your specific unit. The dial rules and codes are as follows.

3.72 Dial rule 1-Originating extension: Dials the intercom number of the individual who initiated the call. For example, if extension 200 called a voice computer hunt group that used dial rule 1, the system would send “200” to the voice mail unit. This is a general purpose dial rule; it can be used for things such as automatically dialing the caller’s mailbox, etc.

3.73 Dial rule 2—Controlling extension: This dial rule is meant for use with voice computer conference features not yet developed. It dials the intercom number of the station user that brought the voice computer into the conference. For example, if extension 200 is talking to extension 201 and extension 200 brings a voice computer hunt group that uses dial rule 2 into the call using the conference feature, the system would send “200” to the voice computer. The call could then be recorded in mailbox number 200 so that it can be replayed and/or transcribed later.

3.74 Dial rule 3—Destination extension: This dial rule has two purposes: (1) It dials the extension of the station that is forwarded to the voice computer hunt group. For example, if extension 201 calls extension 202 and extension 202 forwards the call to extension 200 who forwards the call to a voice computer hunt that uses dial rule 3, the system would send “200” to the voice mail unit whenever a call was forwarded through the chain. This dial rule is useful for installations in which only a few extensions in a building have mailboxes. Assuming that only an extension that had a voice mailbox would forward to a voice computer, the system should dial the extension that would most likely
have a voice mailbox. (2) It dials the intercom number of a station when a call is transferred to the voice mail unit. For example, if extension 100 transferred a call to a voice computer hunt group that used dial rule 3 and entered “200” in response to the system-generated prompt, the system would dial “200” when it transferred the call to the voice computer.

3.75 Dial rule 4 - Original Destination Extension: This dial rule dials the original destination of the call. For example: If extension 200 dials a voice computer hunt group that uses dial rule 4, the system would not dial anything for this dial rule because there was not a “destination.” However, if extension 201 dialed extension 200, which was forwarded to extension 202 which was forwarded to a voice computer hunt group that used dial rule 4, the system would dial “200.” Similarly, if extension 200 transferred a call to a voice computer hunt group that used dial rule 4 and entered “200” in response to the system-generated prompt, the system would dial “200” when it transferred the call to the voice computer.

3.76 Dial rule 5 - Reserved for future use

3.77 Dial rule 6 - Other IC/Controlling IC: This dial rule is meant for conferencing features not implemented at this time. It is the opposite of dial rule 2. Where dial rule 2 would dial the intercom number of the station that brought the voice computer hunt group into the conference, this dial rule will dial the other intercom number that is involved in conference. This dial rule is meant to be used only during two-party calls. It is useful for features such as a “wake-up message” in which an operator in a hotel would receive a call from someone wanting a wake-up call. The operator could then invoke the “wake-up” feature and enter a time for the other person while in a conference on a call.

3.78 Dial rule 7 - Hunt Group Number: This dial rule tells the voice computer which hunt group it serves (as an announcement or overflow station). For example, if a call overflows from hunt group 1 into a voice computer hunt group that uses dial rule 7, the system will send “01” to the voice computer. This dial rule is meant to be used for the voice computer performing announcement or overflow functions for one or more hunt groups.

3.79 Dial rule 8 - Associated Tenant Group Number: This dial rule tells the voice computer which tenant group the originating extension is in. For example, if extension 200 is in tenant group 1 and it calls a voice computer hunt group that uses dial rule 8, the system will send “1” to the voice computer.

3.80 Dial rule 9 - Associated Department Number: This dial rule tells the voice computer which department the originating extension is in. For example, if extension 200 is in department number 1 and it calls a voice computer hunt group that uses dial rule 9, the system will send “1” to the voice computer. This dial rule can be used in conjunction with dial rule 8.

3.81 Dial rule 10 - Associated Day/Night Flag: This dial rule will dial a “1” if the originating extension’s tenant group is in day mode. Otherwise, it will dial “0.” This dial rule is useful for determining when the system is in night mode and indicating that the attendant station is therefore unavailable.

3.82 Dial rule 11 - Associated Account Code: This dial rule will dial the account code, if any, that was previously assigned to a call.

3.83 Dial rule 12 - Call Type (IC/CO): This dial rule will identify the type of call. If the call is an intercom call, the system will dial a “1” for this dial rule. Otherwise, this dial rule will dial a “2.”

3.84 Dial rule 13 - Hunt Group Queue Position: This dial rule will identify the queue position the call was in (first, second, third...) while waiting for the hunt group. For example, if there was one other call ahead of this call when it overflowed to a voice computer hunt group that uses dial rule 13, the system would dial “2” for this dial rule. This dial rule is designed for future features such as hunt-group overflow processing in which the recording tells the caller, “There are three calls ahead of your call.” This is especially useful for processing hunt group calls since the call does not lose its position in the hunt group when it is sent to the overflow station.

3.85 Dial rule 14 - Hunt Group Overflow Count: This dial rule will dial the number of times that the call has been sent to the overflow station. If a call overflows to a voice computer hunt group with dial rule 14, the system will dial “1” the first time, “2” the second time, etc. This is useful for features such as hunt-group overflow processing in which the voice computer plays different messages or performs different types of processing depending upon the number of times a caller receives an overflow message.

3.86 Dial rule 15 - Recall Source: This dial rule dials the intercom number of the station that received a transfer recall. The basic operation is the same as dial rule 4, except that this rule is intended for entering the voice mail system through a recall and dial rule 4 is for entry through direct dialing. It is useful for automated attendant applications to make the call transfer appear supervised.
<table>
<thead>
<tr>
<th>Dial Rule</th>
<th>IC-To-Voice Computer Call</th>
<th>Co-To-Voice Computer Call</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orig. Ext.</td>
<td>Originating station’s intercom number</td>
<td>No code sent</td>
</tr>
<tr>
<td>Ctrl. Ext.</td>
<td>Originating station’s intercom number</td>
<td>No code sent</td>
</tr>
<tr>
<td>Dest. Ext.</td>
<td>Intercom number of last non-voice mail station to forward the call if a chain of stations is forwarded to voice mail or voice mail transfer mailbox number</td>
<td>Intercom number of last non-voice mail station to forward the call if a chain of stations is forwarded to voice mail or voice mail transfer mailbox number</td>
</tr>
<tr>
<td>Orig. Dest.</td>
<td>Intercom number of the first non-voice mail station to forward the call if a chain of stations is forwarded to voice mail</td>
<td>Intercom number of the first non-voice mail station to forward the call if a chain of stations is forwarded to voice mail</td>
</tr>
<tr>
<td>Other IC/ctrl. IC Ext.</td>
<td>Originating station’s intercom number</td>
<td>No code sent</td>
</tr>
<tr>
<td>Hunt Group Number</td>
<td>Receiving hunt groups or voice mail group number</td>
<td>Receiving hunt group or voice mail group number</td>
</tr>
<tr>
<td>Associated Tenant Group Number</td>
<td>Originating station’s tenant group number</td>
<td>No code sent</td>
</tr>
<tr>
<td>Associated Department Number</td>
<td>Originating station’s department number</td>
<td>No code sent</td>
</tr>
<tr>
<td>Associated Day/Night Flag</td>
<td>If system is in day mode = 1 If system is in night mode = 0</td>
<td>If system is in day mode = 1 If system is in night mode = 0</td>
</tr>
<tr>
<td>Account Code</td>
<td>No code sent</td>
<td>Account code, if entered</td>
</tr>
<tr>
<td>Call Type (IC/O)</td>
<td>Intercom call: code = 1 Outside call: code = 2</td>
<td></td>
</tr>
<tr>
<td>Hunt Group Queue Position</td>
<td>No code sent</td>
<td>Number of calls waiting ahead of this call for the hunt group</td>
</tr>
<tr>
<td>Hunt Group Overflow Count</td>
<td>No code sent</td>
<td>The number of times this call has been sent through the hunt group</td>
</tr>
<tr>
<td>Recall Source</td>
<td>Intercom number of the station that received a transferred call which recalls. This applies even if the receiving station is forwarded; it uses the intercom number that was dialed to make the transfer, not the final destination.</td>
<td>No code sent</td>
</tr>
</tbody>
</table>
4. TRUNK FEATURES

4.1 The 256 System can contain up to 184 trunks. This section explains the trunk functions and programmable features. Trunk capacities are explained in SPECIFICATIONS on page 2-2.

NOTE REGARDING TRUNK SECURITY
While this system is designed to be reasonably secure against CO trunk misuse by outside callers, there is no implied warranty that it is invulnerable to unauthorized intrusions and toll fraud. If the central office does not provide supervision, and disconnect the call when one party hangs up, it is possible for a caller to remain connected to a CO trunk circuit. If this happens, and the caller begins dialing, the call could be placed through the 256 System and would then be billed to the system’s owner. The system cannot check this type of call for toll restriction and may not register the call in SMDR. This problem could arise when a call is connected to a station, when a call is in an unsupervised conference, when a call is forwarded or transferred to the public network, or when DISA is used for placing outgoing calls.

To determine if disconnect supervision exists on a trunk, disable “standard” tones for trunks in the database. Then place a call to an outside party using the trunk to be tested and have the called party hang up while you remain off hook. If there is disconnect supervision, you will hear 256 dial tone within 30 seconds. If you hear telephone company dial tone, there is no supervision. If supervision does not exist, contact the telephone company to determine if it can be enabled. Centrex and loop start trunks frequently do not provide disconnect supervision. To make a loop start trunk more secure, a loop-to-ground start converter can be installed. Each trunk should be checked when it is first installed and periodically rechecked to reduce the probability that the trunk will be used for unauthorized calls.

4. A DUAL-TONE MULTI-FREQUENCY (DTMF) OR DIAL-PULSE SIGNALING

4.2 Trunks can be designated for DTMF or dial-pulse signaling through database programming (see PROGRAMMING, page 5–103).

4.3 A digital code is generated by the keysets and decoded by the system to be sent as either a DTMF or dial-pulse signal, depending on the trunk designation. Keysets and DTMF single-line sets can be used on either type of trunk.

4.4 A non-AIM/nondigital/non-DVK keyset user or DTMF single-line set user can switch from dial-pulse to DTMF signals, while using a dial-pulse trunk, by pressing the pound (#) or asterisk (*) keys. After the pound or asterisk key is pressed, all digits that follow during that call are sent out as DTMF tones. (This is useful when calling computerized services that require a DTMF telephone, such as automated banking.)

NOTE: Inter-Tel AIM keysets and digital keysets do not require this procedure; DTMF is enabled once the call has been established. Inter-Tel/DVK keysets send both digital code and DTMF tones; therefore, this procedure is also not required when using a DVK keyset.

B. OUTGOING-ACCESS, ALLOWED-ANSWER, AND RING-IN ASSIGNMENTS

4.5 Each trunk group has programmed lists of stations for outgoing-access, allowed-answer, and ring-in assignments for day and night modes.

- Outgoing-access assignment for a particular trunk group permits the station user to place calls using trunks in that trunk group.

- Allowed-answer assignment for a particular trunk group permits the station user to answer incoming calls on the trunks in that trunk group. Although the call can be answered, it does not ring or flash at the user’s station.

- Ring-in assignment for a particular trunk group permits the station user to receive direct ring-in calls on trunks in that trunk group. The station rings and, on keysets, the individual trunk or call key flashes. Allowed answer for the trunk group is automatically assigned to a station with ring in.

4.6 When keyset stations have outgoing-access or ring-in assignments, the associated individual trunk keys show the status of their trunks. Stations that do not appear on any of the lists cannot place or directly receive outside calls; they are limited to intercom calls, conferences, transferred calls, and retrieving calls on system hold. (A call on system hold can only be picked up at the station that placed it on hold or at a station with an individual trunk key for the trunk.)

4.7 A private trunk group (with one or more trunks) can be established by programming outgoing-access, ring-in, and allowed-answer assignments for the trunk group to only one station.
C. RING-IN/ANSWER PATTERNS

4.8 Trunk groups, DID numbers, and auto ring-in E&M trunks can be assigned to ring in to one of the following:

- A single station extension number
- A hunt group pilot number
- DISA
- Multiple stations in a programmed ring-in/answer pattern

4.3 Up to 40 ring-in/answer patterns can be set up and assigned to the trunk groups, DID numbers, and auto ring-in E&M trunks (when the groups are not designated for ring-in to a single station, a hunt group, or DISA). These patterns designate the stations that will receive direct ring-in, and/or have allowed-answer permission for the trunks.

D. RINGZONES

4.10 The system power supply’s ring generator can provide ring voltage to ring up to 20 AC-ringing single-line stations simultaneously without any noticeable change in the ring tone. To preserve the ring tone quality, single-line stations should be divided into ring zone groups.

4.11 Most central office ring signals follow a 2 second on/4 second off pattern that could be represented by this drawing:

```
  2  4  2  4
```

4.12 Ring zones 1, 2, and 3 use this pattern, but the “on” times are shifted so that only one zone is ringing at a time.

```
ZONE 1

ZONE 2

ZONE 3
```

4.13 The system is constantly cycling through this timing pattern. When a call rings in, the zone that will receive ringing first depends on where the system is in the cycle. For example, if a call rings when the system is three seconds into the cycle (as shown below), the stations in zone 3 would begin ringing one second later. Zone 1 would ring three seconds after the call was received, and zone 2 would ring after 5 seconds.

```
ZONE 1

ZONE 2

ZONE 3
```

CALL RECEIVED

4.14 There is an immediate-ring option that provides ringing as soon as the call is received, regardless of the cycling described above. When the system is in the default state, all single-line sets are set for immediate ringing.

4.15 If there are fewer than 20 AC-ringing single-line sets that would ring at once, they can all be placed in the immediate ring zone. If there are more than 20, they should be removed from the immediate zone and divided up among zones 1-3 so that no more than 20 sets ring at once. Be sure to check all ring-in patterns in day and night modes to ensure that ring zone assignments do not allow more than 20 AC-ringing single-line sets to ring at once.

E. SIGNAL DEVICES

4.16 The ROM Central Processing Unit (RCPU) card contains a relay that can be used to activate an external signaling device when a call rings in on one of the assigned trunks. The signal follows the 2 seconds on/4 seconds off pattern. Ring-in can be programmed for day and/or night modes by placing the relay in the desired ring-in/answer pattern(s). For more information, refer to page 2-11 in SPECIFICATIONS.

F. DAY AND NIGHT MODES

4.17 There are separate lists in the database for toll restriction, outgoing-access, allowed-answer, and ring-in assignments for day and night modes. When an attendant enters the Night Mode feature code, the associated tenant group uses the night lists. When the primary attendant enters the Night Mode feature code, all tenant groups are placed into night mode. When the primary attendant cancels night mode, all tenant groups are in day mode.

4.18 There is no attendant recall during night mode. A call will recall the station that transferred it or put it on hold and will ring there until the Recall and Abandoned Call timers expire; then the system will disconnect the call.

Night Switch Relay

4.19 The Central Processor (RCPU) card relay can be programmed as a night switch relay that is activated when the system is placed in night mode. It can be used for controlling lights, alarm systems, or other electrical devices. The night relay is programmed in the database (see page 5-73 in PROGRAMMING, and page 2-10 in SPECIFICATIONS for more information).
G. TRUNK RESTRICTION AND STATION TOLL RESTRICTION

4.20 Trunks and stations can be toll restricted using several methods. Trunks can be “subject to toll restriction” or “unrestricted.” They can also be identified to allow equal access dialing and/or to absorb digits. Stations can be toll restricted using a combination of eight station class of service (SCOS) restrictions and/or they can be restricted from accessing specific trunk groups. Each of the trunk and station restrictions is described separately in the following paragraphs.

Trunk Restriction

4.21 Trunk group access is programmed on a station-by-station basis. Individual stations can be allowed or denied access to each trunk group separately for day and night modes. In addition, each trunk group can also be designated as “subject to toll restriction” or “unrestricted” in database programming. (All trunks are subject to toll restriction when the system is in the default state.) When a station user selects a trunk that is designated as subject to toll restriction, the system checks the database for that station’s SCOS. When an unrestricted trunk is chosen, the station’s SCOS is not checked (except LCR-Only restriction) and dialing is not required to hold the trunk.

4.22 Trunk groups are often programmed as unrestricted to allow station users to have access to reduced-cost long distance carriers, or to use ringdown lines, dictaphones, voice mail systems, and other auxiliary equipment. When the installer is programming unrestricted trunks, one of four call cost factors can be selected to designate calls as free, local, ten-digit toll, or operator/international. The selected call cost is then used for all calls that are placed using that trunk.

Trunk Group Exemption From LCR Only

4.23 The trunk group may be designated as “exempt from Least-Cost Routing (LCR) only.” This allows users with SCOS 6 (LCR Only) to directly access specified trunk groups by pressing the appropriate trunk group keys (or the ANSWER key for auto trunks) or by entering the appropriate trunk group access feature codes. This feature is required if trunks are connected to auxiliary equipment, such as voice mail, dictation, or ring-down equipment. When such trunks are designated as exempt from LCR Only, stations with SCOS 6 and allowed access can use the special facilities.

4.24 Designating a trunk group as exempt from LCR Only also allows LCR-Only stations to use the call forward to the public network feature. To do this, station users can enter a trunk group access code when programming the call forward number.

4.25 The default assignment for all trunks is not exempt from LCR Only. It is a system-wide designation. That is, if a trunk group is subject to LCR Only, all stations with SCOS 6 are denied direct access to the trunks.

Absorbed Digits

4.26 Restricted trunk groups can be programmed to “absorb” or ignore the first digit(s) dialed so that only the remaining digits are checked for toll restriction and call cost purposes. There are two applications for this feature: PBX (E&M network) installations and installations in areas where part of the local office code is absorbed by the central office.

4.27 When using a dial-repeating E&M trunk, a 256 station user must dial an E&M trunk access code to reach the other telephone system, then that system’s trunk access code to place a call using its trunks. The 256 System must absorb the second code (the one that accesses the other system’s trunk) to allow proper toll restriction. Without absorbed digits, the 256 System cannot perform the toll restriction and call cost functions. However, with absorbed digits, the 256 System absorbs the other system’s trunk access codes, checks the remaining digits for toll restriction, and calculates call cost.

4.28 When a number is dialed that does not match one of the absorbed digit strings (up to 50 strings, with a maximum of 12 digits in each string), it is considered to be an intercom call in the other telephone system, toll restriction is passed, and the call is designated as a free call (000) in the SMDR report. When redialing or using call forward, the system automatically inserts a short pause after the E&M trunk access code (which is entered as part of the call forward number.) When speed dialing, the speed-dial number must include the other system’s trunk access code and a pause before the telephone number.

4.29 In some rural areas, specific digits (dialed as all or part of the local exchange) are absorbed by the central office, thus reducing the number of digits required to dial local calls. These digits may also be “repeatable.” That is, they are absorbed if dialed more than once. To determine if a central office absorbs digits and whether they are repeatable, contact the telephone company.
430 If the system is not programmed to recognize the absorbed digits, two problems may arise. One problem is that a telephone number of fewer than seven digits, that is dialed at a toll-restricted station, is not recognized as a valid telephone number and the call is dropped. The other problem is that toll restriction can be defeated by dialing the absorbed digits before dialing a toll number. However, when programmed to recognize a single string of absorbed digits (with up to 12 digits in the string), the system checks the remaining digits for toll restriction and processes numbers with fewer than seven digits as local calls (except 411 calls, which are considered seven-digit toll calls). If the first non-absorbed digit is “1” or “0”, SCOS 1, 2, and/or 8 are enforced immediately (see SCOS, beginning in paragraph 4.34). Absorbed digits appear in the SMDR record when dialed if they are not repeatable or suppressed.

4.31 The absorbed-digit designations are programmed on a trunk group-by-trunk group basis. No trunk groups are designated for absorbed digits when the system is in the default state. See page 5-113 in PROGRAMMING for more information.

Equal Access

4.32 With equal access, the customer must choose a primary long distance carrier. This is the carrier that will automatically be accessed when the user dials a long distance telephone number. Customers may also select a secondary carrier or use several secondary carriers. These secondary carriers are accessed by dialing the equal access prefix (10 or 101) and a three- or four digit code assigned to the desired carrier (XXX or XXXX) before dialing the telephone number. When using a secondary carrier, the telephone number is dialed as usual after the equal access code -including the toll field (1, 0, or 01) and the area code, if needed.

4.33 A restricted trunk group that does not have equal access designation prevents the system from providing accurate toll restriction and call cost information when “10XXX” or “101XXXX” is dialed on a trunk in that trunk group. When programmed for equal access, the system ignores the equal access code and checks the remaining digits for toll restriction. Equal access designation is programmed on a trunk group-by-trunk group basis. All trunk groups are designated for equal access when the system is in the default state. To limit access to specific secondary carriers, the stations can be restricted to using LCR Only.

Station Class of Service (SCOS)

4.34 SCOS is programmed on a station-by-station basis and each station can have different restrictions for day and night modes. A station can be completely unrestricted (SCOS 0) or can have any combination of the following restrictions.

<table>
<thead>
<tr>
<th>CAUTION REGARDING EMERGENCY NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>In areas where the emergency number is 1911, be sure that toll-restricted stations have SCOS 8 (Enable ALD) and that 911 is in the allowed long distance number list. Otherwise, toll-restricted users may not be able to find a station that is permitted to dial “1+” numbers. Note that 911 is allowed at every station regardless of toll restriction, but 1911 requires this special programming.</td>
</tr>
</tbody>
</table>

| 435 SCOS 1 - Operator restriction: Calls that begin with a “0” are restricted. This also restricts international calls. |
| NOTE: If this restriction is not set, and a user dials “0” as the first digit when placing a call, only SCOS 3 is checked; no other toll restriction is checked. |

| 436 SCOS 2 - Toll access restriction: This restricts calls that begin with “1” unless they are on the allowed long distance number list and the station has SCOS 8. |
| NOTE: If international calls are allowed (SCOS 1 and SCOS 3 are not set) and the user dials “01” as the first digits when placing a call, no other toll restriction is checked. |

| 437 SCOS 3 - International call restriction: Calls that begin with “01” are restricted. |
| NOTE: If international calls are allowed (SCOS 1 and SCOS 3 are not set) and the user dials “01” as the first digits when placing a call, no other toll restriction is checked. |

| 438 SCOS 4 - E164 call restriction: Calls are not permitted if they are over seven digits in length, unless they are in the allowed long distance number list and the station has SCOS 8. Users with this SCOS must dial a valid telephone number before the appropriate Interdigit timer expires; otherwise the connection will be dropped and the user will hear reorder tones. |

| 439 SCOS 5 - Area/office code restriction: This restriction is divided into eight user groups to allow different area/office code restriction tables for each of the user groups. This is useful for reducing restrictions for some of the station users while increasing restrictions for others. Each station is assigned to a user group in database programming. Within each user group, area codes can be designated as restricted, allowed, or extended. Restricting an area code prevents users from placing calls to that area code. Allowing an area code also allows all office codes within that area code. Allowing an area code also allows all office codes within that area code. Designating an area code as extended allows the programmer to determine which office codes (up to 800) are allowed or restricted within that area code. For each user group, 160 area codes can be marked as allowed or restricted in the database list, and up to four area codes may be marked as extended. |
4.40 SCOS 6 — LCR Only: Calls can only be placed using the Least-Cost Routing (LCR) feature when this restriction is assigned. The user will hear reorder tones when attempting to place a call using any other method. A restricted user can still access individual trunk groups if the trunk groups are designated as “exempt from LCR Only” (as described on page 4-26), or if the calls were transferred, were placed on hold, or are recalling or ringing. LCR-Only stations access only the facility groups assigned (see page 4-33 for more details). Trunk restriction determines which trunk groups in the facility group can be accessed by the station. Because stations with this SCOS can use only LCR, they cannot forward calls to outside telephone numbers (unless they are using a trunk group designated as exempt from LCR Only). For more information on LCR, refer to page 4-32.

4.41 SCOS 7 — Alternate carrier number restriction: Calls can not be placed to any of the numbers on the alternate carrier number list if the station is given this restriction. (For example, to restrict 411 at certain stations, enter the number in the alternate carrier list and give the stations SCOS 7.) There can be up to 20 alternate carrier numbers with up to 10 digits each. The numbers should not contain the toll field, but can contain equal access digits (e.g., do not enter 1+ or 0+ numbers, except 10XXX and 101XXXX numbers). An “X” in a number represents any digit 0-9.

NOTE: Allowed long distance numbers override alternate carrier number restrictions. Also, numbers are only restricted if they exactly match the number on the alternate carrier list. For this reason, alternate carrier numbers can have a plus (+) added to the end of the number to restrict users from bypassing toll restriction by dialing extra digits after dialing the alternate carrier number. For example, 976+ restricts all calls that begin with 976.

4.42 SCOS 8 — Allowed long distance number: Stations with this SCOS are allowed access to numbers in the allowed long distance number list. There can be up to 20 numbers of up to 10 digits each. Calls placed to these numbers are not subject to SCOS restrictions 2 and 4-7. Operator-assisted and international calls (SCOS 1 and 3) are not checked against this list. An “X” in the number represents any digit 0-9, for example, xXx-555-1212 allows users to dial directory information using any area code. A plus (+) in the number allows any number that begins with the designated sequence (for example, 800+ allows any 800 number to be dialed). The numbers should not include the toll field.

Class-of-Service Account Codes

4.43 SCOS can be programmed to be associated with account codes. This permits a user to place a call from any station using his class of service account code to enable his usual SCOS. When a class-of-service account code is entered, the system checks the associated station and applies its SCOS to the call being made (line access permission and LCR advance class-of-service are not applied). When the call is completed, the programmed SCOS for the station being used goes back into effect. The call appears in the SMDR report as being placed from the station being used, and the account code will appear unless an optional account code is entered later (during the call).

Speed-Dial Override of Toll Restriction

4.44 System speed-dial numbers can be programmed to bypass SCOS restrictions on a system-wide basis. If the option is not enabled, all system speed-dial numbers are subject to toll restriction.

North American Numbering Plan (NANP)

4.45 The growth of telecommunications services has created an increasing demand for more telephone numbers. To meet the demand, Bellcore has prepared a long-range North American Numbering Plan (NANP) to provide additional telephone numbers. The plan expands the capacity of the current numbering system by making area and office codes interchangeable. That is, numbering patterns formerly reserved for office codes can be used as new area codes, and office codes within existing area codes can have the same pattern as other area codes.

4.46 With interchangeable codes, switching systems lose the ability to distinguish between 7- and lo-digit numbers by examining the first three digits. To address this, three methods have been proposed:

- The Refix method requires a 1 before a lo-digit number, and does not allow 1 before 7-digit numbers.

- The Timing method requires the switch to wait approximately four seconds after seven digits have been dialed to see if additional digits are received.

- The Hybrid method requires timing only if a 0 or 1 is dialed before a 7-digit number that begins with three digits that could be an area or office code (use the NXX pattern described below).

4.47 The former dialing pattern required an area code to be in the “NXX” format, where N=2-9, Z=0 or 1, and X=0-9. The new numbering plan allows the area code format “NXX,” which is the current office code format. Therefore, with the new numbering plan, more area and office codes will overlap.
4.48 The following chart illustrates the difference between the new Numbering Plan Analysis (NPA) and each of the overlap flags. In the chart, \(N=2-9, Z=0 \) or 1, and \(X=0-9 \).

<table>
<thead>
<tr>
<th>OFFICE CODES AS AREA CODES</th>
<th>AREA CODES AS OFFICE CODES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NZX or NXX</td>
<td>NXX or NZX</td>
</tr>
</tbody>
</table>

4.49 In order to properly process the new NPA, four flags have been added to the system database. During database programming, the programmer can specify the following non-standard numbering plan information:

- **Office Codes Used as Area Codes**: An area code in another location uses an NXX pattern that matches an office code within the system site’s area code. (This flag defaults to no.)

- **Area Codes Used as Office Codes**: One or more office codes within the system site’s area code use an NZX pattern that is the same as an area code in another area. (This flag defaults to no unless you are converting a database that has the “Overlap Area/Office Code” flag enabled.)

- **Toll Digit Allowed On Toll Local Calls**: This option applies only if the area and office codes overlap. Callers in the site’s area code usually dial a 1 when placing a call within the local area code(s). (This flag defaults to no.)

- **Toll Digit Required On Toll Long Distance Calls**: This option applies only if the area and office codes overlap. Callers in the site’s area code must dial a 1 when placing a call outside of the local area code(s). (This flag defaults to yes.)

4.50 The programming prompts affected by the NANP changes are shown on the next page.

4.51 Area code lists in the database, for toll restriction and LCR, include all 800 possible area codes. All area codes are allowed in toll restriction and are included in LCR Route Croup 1 when the software is in the default state. (In upgrades, only the new area codes default to allowed in toll restriction, and they are **included only** in Route Croup 1. All other area codes remain as programmed.)

NOTE: Toll restriction SCOS 4 (Restrict Eight-Digit Calls) is affected by the area/office code database flags and toll digit flags. The area/office code flags must be set properly on the system in order for toll restriction to work correctly for the given site. The system must know whether the area and office codes overlap and whether toll digits will be dialed to properly detect end of dialing and apply toll restriction. For example, if you have the system set to look for a toll digit (1) on toll long distance calls on a system where area and office codes overlap, and the station user placing a call does not dial the 1 (dials 213-555-1234 instead of 1-213-555-1234), the system will allow the call and will consider end-of-dialing to be after the seventh digit, as if the user was dialing a local non-toll call. However, if the station user dials 1-213-555-1234, the call will be restricted as usual after eight digits are dialed.

Home And Local Area Codes

4.52 In many areas, the telephone company has created call-cost arrangements that refer to “home” and “local” area codes. The home area code is the area code within which the system resides. The local area codes are additional area codes that, when called, use the local or toll local call-cost rate instead of the long distance rate. Up to three local area codes can be programmed and then extended within toll restriction programming to provide proper call costing.

4.53 The local area codes can be programmed as “Extended” area codes to allow or restrict specific office codes within them and to label the office codes’ call cost as “local” or “seven-digit toll.” If the home or local codes are extended in User Croup 1, the system will use the call cost designations for that extended area code whenever a station (in any user group) places a call using that area code.
H. OPTIONAL WEEKLY TOLL LIMITS

NOTE: This feature is available only in the Extended package and is enabled only by Inter-Tel Services personnel. The system must have a modem that allows remote access.

4.54 When enabled, the Weekly Toll Limit feature keeps track of the accumulated call cost for specified types of toll calls. The feature can monitor 7- and 10-digit toll calls and/or operator-assisted-international calls that are placed by station and DISA users.

4.55 The database is programmed with a weekly dollar limit for each type of call being monitored. This value can range from $0-$65,000. Each time a monitored call is placed, the call cost is added to the total.

4.56 If the total cost of monitored calls reaches 80% of the weekly limit, the system sends an alarm message to alarm stations and the SMDR that states TOLL SECURITY LIMIT AT 80%.

4.57 When the weekly limit is reached, the system sends another alarm message that states TOLL SECURITY LIMIT EXCEEDED. The monitored types of calls (7/10-digit or operator/international) will not be allowed until one of the following occurs:

- The weekly limit is set to a higher value through database programming, as described on page S-97.
- The weekly accumulated total is reset to zero through programming, as described on page S-97.
- The weekly accumulated total automatically resets to zero at the end of the week (12:01 am Sunday).

4.58 If a station is forwarded to a toll number that is being disallowed due to the weekly limit being exceeded, calls will be handled as follows:

- An intercom caller hears busy tones.
- A direct ring-in outside call rings at the station until the Transfer Available or Transfer Busy timer expires before being sent to the primary attendant.
- Calls through DISA or an automated attendant ring at the station until the Transfer Available timer expires before being sent to the appropriate recall destination.
- Transferred calls remain at the transferring station.
- Calls from a voice computer are sent to the attendant.

4.59 Weekly toll limit information can be changed only after the Database Programming feature code (029) has been entered at an attendant station. The programming privilege will remain in effect until the end of the programming session. When the data has been changed, a system alarm shows TOLL SECURITY DATA CHANGED at alarm stations and in SMDR. For programming information, refer to page 5-97 in PROGRAMMING.

NOTE: If the “Remaining Days” value is 0, weekly toll limit database information cannot be updated.

4.60 The Weekly Toll Limit feature is enabled by Inter-Tel Services personnel. The database contains a prompt that indicates the remaining days that the weekly toll limits will be in effect. This value automatically decreases by one each day. When the “Remaining Days” value reaches 0, the Weekly Toll Limit feature is disabled and calls are no longer monitored. A system alarm indicates TOLL SECURITY FEATURE EXPIRED. Users trying to place monitored calls will see a display that says CALL FAILED - TOLL LIMIT EXCEEDED. To enable the feature again, Inter-Tel Services Personnel must reset the “Remaining Days” value. (See page 6-41.)

NOTE: If a system database restore is performed, the Remaining Days value of the Toll Security Weekly Limit feature is reset to 0. It is not restored to its previous value.
1. **Trunk Group Assignments and Automatic Answer/Select**

4.61 Each trunk is assigned to one of 47 possible trunk groups. Trunk groups are assigned to specific tenant groups to determine which attendants will place the trunk groups in night mode. A trunk group can also be designated for auto trunk selection (using the ANSWER key as described in paragraph 4.63) for a tenant group.

- Trunk group feature codes and trunk group keys are used to select a trunk in one of the programmed trunk groups — up to 47 groups. Each trunk must be assigned to a trunk group. For example, all local trunks could be in one group, while another group contains WATS trunks that are used for long distance calling. Unused trunks can be placed in a single trunk group that is labeled “unused.” Trunk group feature codes are necessary when forwarding calls to outside telephone numbers.

- Auto trunks are incoming or outgoing trunks (any or all trunks installed can be auto trunks) that are accessed by entering the Automatic Trunk Selection feature code (89) or by pressing the ANSWER key.

4.62 **Automatic Trunk Answer:** If a station is programmed with allowed-answer assignment only (no ring-in) for a trunk group, direct ring-in calls on that trunk group can be answered by entering the Automatic Trunk Answer feature code (350) or pressing the flashing individual trunk key.

4.63 **Automatic Trunk Select:** For calls that are ringing or holding at the station, the user may enter the Automatic Trunk Selection feature code (89) or press the ANSWER key. When more than one call is ringing or holding, the following priority list determines which call is answered first:

- Ringing outside calls (ring ins, recalls, callbacks, or transfers) are answered in the order they were received.

- Then calls on individual hold are answered (not calls on system hold, conference hold, or being transferred). Calls are picked up in the order they were placed on hold.

- If no calls are ringing or holding, an available outgoing auto trunk is selected (unless the station is restricted to using Least-Cost Routing Only or is restricted from the trunk group).
J. LEAST-COST ROUTING (LCR)

4.64 LCR is a money-saving feature that allows the system to be programmed to select the least expensive route for placing outgoing calls. It can be used for placing outgoing calls or transferring calls to outside telephone numbers, but cannot be used for forwarding calls to outside numbers. Stations can be programmed to use LCR only for placing outgoing calls.

NOTE: The Least-Cost Routing (LCR) feature cannot be used in the RF-rated system. If a user attempts to enter the LCR feature code or presses an LCR key, the system sends reorder tones. Programmable feature keys on keysets and single-lines are defaulted to LCR in a KF-rated system and should be changed.

4.65 When LCR is selected, the user dials the number (including the area code, if needed), and the system does the following:

- Checks the area code and/or office code: The database contains up to 19 lists of area and office codes called route groups. The system checks the route groups in numerical order (1-19) and selects the first group that contains the area and/or office code that was dialed. Special route groups are included in the software for handling calls that begin with 0, 01, and 011.

- Check the time of day: Each route group has three time blocks: day (8:00 AM - 4:59 PM), evening (5:00 PM - 10:59 PM), and night (11:00 PM - 7:59 AM and weekends).

- Selects a facility group: Each time block contains up to 24 programmed groups of up to 47 trunk groups each, called facility groups. The groups should be programmed so that the least-expensive group of trunks is checked and, if available, is selected first. If the least-expensive group is not available and the station has LCR camp-on permission, the station camps on until a trunk is available or the LCR Advance timer expires. If the timer expires, the user hears a progress tone and the system checks the next facility group.

NOTE: The system advances only as far as each station's assigned LCR advance limit allows.

- Adds or deletes digits according to the facility group chosen: Each facility group has a programmed set of dial rules that tell the system what to dial. (The system can have up to 32 dial rules — 28 of which are programmable. Each facility group can use 1 to 32 dial rules.) For example, if the selected facility group requires that the number contain “1,” but no area code, the dial rules include the “1” and drop the area code. The modified telephone number can contain up to 48 digits.

- Checks for toll restrictions: Once the number has all of the necessary digits added or deleted, the system checks the SCOS and trunk group restrictions for the station to determine whether the call is allowed. If allowed, the system continues to the next step. If not allowed, the system selects another facility group. If the station is restricted from all of the facility groups in the route group, the system sends reorder tones and the call is dropped without being dialed.

NOTE: If more than one trunk group is assigned to a facility group, only the highest numbered trunk group is checked for toll restriction. That trunk group's toll restriction programming is applied to all other trunk groups in the facility group. Therefore, to restrict calls, ensure that the highest numbered trunk group in the facility group has the desired toll restriction programming. Toll restriction is checked each time a new facility group is accessed, allowing individual facility groups within each route group to have different toll restrictions.

-ダイヤルして telephone number: If the number is allowed, the system seize an idle trunk in the selected trunk group, waits for the Dial Tone Wait timer to expire (unless DT detect is enabled), and then dials. The user hears a single progress tone and outside dial tone. If the system DTMF tones are not muted and the station is not programmed for “transparent LCR” the user also hears the dialing sequence while the call is being placed.

4.66 When LCR is used, the station user hears a single confirmation tone when a call key, the LCR key, the OUT key, or the OUTGOING key is pressed or when the feature code is entered. The user does not hear dial tone, but will hear the digits being sent on the trunk. The user is connected to the trunk once the system has completed dialing the call and the call appears under an available call key.

Operator-Assisted/International LCR

4.67 The Least-Cost Routing feature has special route groups to handle calls that begin with “0” (operator assisted calls), “01” (operator assisted international calls), and “011” (station-to-station international calls).

4.68 Each of these special route groups contains three time blocks (day, evening, and night/weekend) and each time block contains an ordered list of facility groups. Country codes, area codes, and office codes are not checked; all calls that begin with “0,” “01,” or “011” are automatically sent to the appropriate route group.
Transparent LCR

4.69 Transparent LCR mode is a station option that changes what the user hears so that an LCR call sounds like an outside call placed using direct trunk group access. With this mode, dial tone is heard when a call key or the LCR, OUT, or OUTGOING key is pressed or when the feature code is entered. Dial tone stops when the user begins dialing. No tones are heard by the user while the system is dialing the number out on the trunk. When the system is in the default state, this feature is enabled.

LCR-Only Forced Account Codes

4.70 Forced account codes for toll calls can be programmed for stations with LCR-Only toll restriction in day and night modes. When this account code type is enabled, the user only has to enter an account code if the system detects that a toll call has been dialed when LCR is used. See pages 4-63 and 4-66 in FEATURES, and page 5-54 in PROGRAMMING for more information.

LCR Advance Limit

4.71 In addition, stations are assigned day and night mode LCR advance limits that determine the number of facility groups that the call may advance through when LCR is used. (When facility groups are busy or unavailable, LCR is generally programmed to advance from the least expensive facility group to the more expensive facility groups.)

4.72 Before assigning an LCR advance limit, determinations should be made as to exactly how many facility groups a station user may be allowed to advance through, should the less expensive facility group trunks be busy. Consideration should be given as to how important it is that the call go out immediately, or whether it is more important that the caller wait for a less expensive trunk to become available.

4.73 An LCR advance limit is assigned to each station, even those not assigned LCR Only (SCOS 6). Each station is given an advance limit of 1 to 22, “unlimited,” or “no advance.” The 1-22 designations indicate the number of facility groups through which the station can advance. Stations with “no advance” will not advance past the first facility group in each route group, stations with “1” may advance once (to the next programmed facility group), and so on. Stations with the “unlimited” designation may advance through all programmed facility groups in each route group. The default designation for all stations is “unlimited.”

4.74 If a station is restricted from the trunks in a facility group or if the LCR-modified telephone number is toll restricted due to its station class of service, the system will immediately proceed to the next facility group and will count this as one advancement.

NOTE LCR advance limit assignment applies to all route groups and all time blocks.
K. **E&M TRUNKS**

NOTE: This feature is available only in the Extended plus T1 and E&M software packages.

4.75 **E&M** trunks, also called “tie” lines, are special trunks that tie two distant telephone systems together. They allow the users of either telephone system transparent access to the users and resources of the other telephone system, often for less than what it would cost to use normal long distance service.

Incoming E&M Calls

4.76 There are two modes of ring-in for **E&M trunks:** auto ring-in and dial-repeating.

- **Auto ring-in** E&M trunks, like standard trunks, may be programmed to ring in to individual stations, multiple stations, or hunt groups or as a DISA call. (If programmed to ring in at a single station, the E&M call will follow any programmed forward.)

- **Dial-repeating** E&M trunks perform a “handshake” with the other telephone system and allow the callers to dial an extension number or a trunk access code for placing an outgoing call. The handshake can be immediate-dial, delayed-start, or wink-start, depending on the E&M trunk installed (defaults to immediate-dial). The programmer can also determine whether the caller will hear dial tone (defaulted with dial tones enabled) and whether reorder tones will be presented as a burst of tones or continuous tones (defaults to burst of tone).

Outgoing E&M Calls

4.77 E&M trunk groups are programmed for day and night mode outgoing access like standard trunk groups.

4.78 E&M trunks can be assigned to LCR facility groups to route outgoing calls through the other telephone system. This is useful when a call that is placed from one telephone system would be a local call on the other system. The “long distance” call could be placed using LCR, routed through the E&M trunk group, and go out of the other telephone system as a local call. (The LCR facility group would have to have dial rules programmed to dial the other telephone system’s trunk access code as well as sending the dialed telephone number.)

4.79 When the system is in the default configuration, all E&M trunks are configured for **DTMF** signaling. If necessary, some or all of the trunks can be reprogrammed for dial-pulse signaling through database **pro-**
L. T1 SPANS

NOTE: This feature is available only in the Extended plus T1 and E&M software packages.

4.80 The term “T1” refers to a specific digital method of transmitting voice and data; it is the basic 24-channel time-division multiplex, pulse code modulation system used in the United States. Since each T1 span actually consists of 24 individual circuits (or channels) multiplexed together, it is often less expensive to purchase a single T1 trunk than it is to purchase multiple individual trunks.

4.81 Fractional T1 (FT1) that uses fewer than the standard 24 circuits, can be used on the 256 System. If FT1 is used, the unused circuits of the T1C must be unequipped. Refer to PROGRAMMING, page 5-172, for details.

4.82 Although most T1 interfaces will be with the public network, it is possible to use a T1 trunk to connect two telephone systems together (e.g., two 256 Systems in the same building or in two buildings and connected with a repeater). Refer to Figure 4-1 on the next page for examples of T1 applications. Also refer to PROGRAMMING, page 5-122, for special procedures required for each type of installation.

4.83 When purchasing a T1 span, there are several variables involved, depending on the T1 application required. (Refer to SPECIFICATIONS, page 2-17, for details.) The variables include the following:

- Card type: The type of framing scheme used by the T1 trunks connected to the card can be D4 Superframe (normally used for voice transmissions) or Extended Superframe (ESF is usually used for data transmissions).

- Zero code suppression scheme: The T1 trunk zero-suppression scheme (that limits the number of consecutive zeroes in transmissions) for the trunks on the T1 card can be AMI (Bit 7), Bipolar Eight Zero Substitution (B8ZS), or “None.”

- PCM encoding law: In pulse code modulation (PCM) systems, there are two primary methods of encoding analog signals (sampled audio waveforms) into digital signals. In North America and Japan, the “mu-law” (p-law) method is normally used. In other places like Europe, the “A-law” method is widely used. The programmer must select both the transmit and receive method of encoding used by the T1 Card. In the United States, this will almost always be mu-law to mu-law.

- Relay activation: If desired, you can enable one or both of the two relays on the T1 Card. If enabled, you can attach a signaling device (such as a light or alarm) and select whether the relay is activated for a “T1 line error” or to indicate “T1 line OK.”

- Channel service unit (CSU) or DSX-1 Interface: In some applications, an optional on-board CSU is installed on the T1 Card. In other applications, a DSX-1 Interface will be used. Figure 4-1 shows several possible applications.

- Line build-out (LBO): If the optional on-board CSU is installed, the LBO attenuation of the T1 trunk connected to the card must be designated in programming. This value is determined by the distance to the nearest public network T1 repeater.

- DSX-1 line length: If the optional on-board CSU is not installed, the length of the cabling between the T1 Card and the external CSU, or between the T1 Card and the other telephone system to which it is connected must be designated in programming.

- Reference clock programming: If the T1 Card is connected to the public network, the card is automatically designated as a slave clock (the public network always acts as the master clock and the first slave clock provides the 256 System reference clock; all other slave clocks act as backups). If the card is not connected to the public network, but is instead connected to another T1 Card or a card in another telephone system, it can be a master clock or a slave clock (in relation to the card on the other end). If the card is a master, the card’s on-board oscillator can be the source of the clock or it can rely on an external clock.
FIGURE 4-1. **T1 SPAN APPLICATIONS**

256-to-CO with external CSU

<table>
<thead>
<tr>
<th>T1C #1</th>
<th>655' max.</th>
<th>CSU</th>
<th>CO</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1C #2</td>
<td>655' max.</td>
<td>CSU</td>
<td>CO</td>
</tr>
</tbody>
</table>

In this application, the T1Cs are connected to the central office using an external CSU. A DSX-1 Interface is enabled and the length of the cabling between the 256 System and the CSU (655 feet maximum) is designated in programming. Both cards draw reference clock from the public network and are slave clocks. One card is designated as the system reference clock.

256-to-CO with onboard CSU

| T1C #1 w/CSU | 6000' max. | CO |
| T1C #2 w/CSU | 6000' max. | CO |

In this application, the T1Cs are connected directly to the central office and optional on-board CSUs are used. The line buildout is programmed to match the distance to the CO (or nearest repeater), up to 6000 feet. Both cards draw reference clock from the public network and are slave clocks. One card is designated as the system reference clock.

256-b-256 DSX-1 with repeater(s)

<table>
<thead>
<tr>
<th>Master 256 T1C</th>
<th>Slave 256 T1C</th>
</tr>
</thead>
<tbody>
<tr>
<td>655' max.</td>
<td>655' max.</td>
</tr>
</tbody>
</table>

Here, two 256 Systems are connected through a T1 repeater. Both T1Cs have the DSX-1 Interface enabled. The length of cabling to the repeater (up to 655 feet) is designated in programming for each card. One card is designated as the master clock (which does not receive reference clock from the public network) and the other is the slave clock (that receives reference from the master clock acting as the "public network"). Both T1Cs are programmed as reference clocks for their 256 Systems.

256-to-256 DSX-1 without repeater

<table>
<thead>
<tr>
<th>Master 256 T1C</th>
<th>Slave 256 T1C</th>
</tr>
</thead>
<tbody>
<tr>
<td>655' max.</td>
<td>655' max.</td>
</tr>
</tbody>
</table>

In this example, the two 256 Systems are connected directly. Both T1Cs have the DSX-1 Interface enabled and the length of cabling between the two systems (up to 655 feet) is designated in programming. One card is designated as the master clock (which does not receive reference clock from the public network) and the other is the slave clock (that receives reference from the master clock acting as the "public network"). Both T1Cs are programmed as reference clocks for their 256 Systems.

256-to-256 CSU with repeater(s)

<table>
<thead>
<tr>
<th>Master 256 T1C w/CSU</th>
<th>Slave 256 T1C w/CSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000' max.</td>
<td>6000' max.</td>
</tr>
</tbody>
</table>

In this application, two 256 Systems are connected through a T1 repeater. Both T1Cs have the on-board CSU enabled and the line buildout is programmed to match the distance to the T1 repeater (up to 6000 feet) for each T1C. One card is designated as the master clock (which does not receive reference clock from the public network) and the other is the slave clock (that receives reference from the master clock acting as the "public network"). One card is designated as the master clock and the other as the slave.

256-to-256 CSU without repeater

<table>
<thead>
<tr>
<th>Master 256 T1C w/CSU</th>
<th>Slave 256 T1C w/CSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>6000' max.</td>
<td>6000' max.</td>
</tr>
</tbody>
</table>

In this application, two 256 Systems are connected directly to each other. The T1Cs both have on-board CSUs enabled and the line buildout is programmed to match the dj1 between the 256 Systems (up to 6000 feet) for each T1C. One card is designated as the master clock (which does not receive reference clock from the public network) and the other is the slave clock (that receives reference from the master clock acting as the "public network"). One card is designated as the master clock and the other as the slave.

Sample T1 Network

<table>
<thead>
<tr>
<th>T1C #1</th>
<th>T1C #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 1</td>
<td>T1C #1</td>
</tr>
<tr>
<td></td>
<td>T1C #2</td>
</tr>
<tr>
<td></td>
<td>CO 2</td>
</tr>
</tbody>
</table>

In a T1 network that involves multiple CO and T1C connections, the CSU/DSX-1 variable is determined by each connection. In the example shown here, the two T1Cs connected to the CO receive reference clock from the public network and are slave clocks. The two T1Cs connected to each T1C receive reference clock from the public network. T1C #2 on 256 X1 is the master clock and T1C #1 on 256 #2 is a slave clock.
4.84 Direct inward dialing (DID) allows an outside party to dial into the system without attendant intervention. To gain direct access to the system, an outside party dials a number that was assigned by the telephone company to the DID trunks installed on the 256 System. The system then provides ring signal to the station, stations, or hunt group according to the programmed ring-in/answer pattern for that DID number.

415 There can be up to 400 DID numbers in the system and they can be divided among 11 DID trunkgroups (as many numbers as desired per trunk group until the system total of 400 is reached). Each DID trunk group is assigned the following parameters:

- **Tenant group definition:** A DID trunk group must be assigned to a specific tenant group.
- **Music-on-hold selection:** The DID trunks can use music channel 1 or 2, or they can use tick-tones or silence.
- **Start type:** The “start type” of the DID groups can be immediate, wink, or delay, depending on the type of DID trunks ordered from the telephone company.
- **DISA codes:** Individual DID trunk groups can be designated for DISA use; however, the security codes are the same for all DID trunks in the group.
- **Trunk list:** Each DID trunk must be assigned to a DID group.
- **Base number:** The base number is the 3- to 6-digit number that is not dialed into the system by the central office. For example, in the number 961-9000, if the base number was 9619, the central office would send only 000 into the system. The system then sends the call to the ring-in designation associated with 961-9000.

4.86 Each DID number is individually programmed with ring-in designations for day and night modes. The calls can ring in to a single station, a ring/answer pattern, a hunt group, or as DISA calls. If the number is not assigned one of these designations, it will always ring at the primary attendant’s station.

4.88 In unsupervised trunk-to-trunk calls (such as unsupervised conferences and forward to an outside number) if either outside party is using a loop start trunk, the Unsupervised CO timer is activated. When this timer expires, both parties receive a burst of dial tone. Either party can reset the timer by pressing any DTMF key (before the Single-Line Dial Initiation timer expires). If the timer is not reset, the call recalls the primary attendant who can determine whether the trunks are still in use or if the call should be disconnected. If the trunk connections are ground start or DID trunks, this timer is not needed as they supply reliable disconnection signals.

4.19 The Hookflash feature (feature code 330) can be enabled or disabled for loop and/or ground start trunks on a trunk group-by-trunk group basis.

0. **TRUNK MAINTENANCE**

4.90 Attendants can place individual trunks out of service by entering a feature code. This unequips the trunk, but does not block incoming calls on the trunk. To outside callers, the trunk will appear to be functioning and they will hear ringing. However, station users will not hear ringing or see a flashing trunk key and cannot access the trunk for receiving or placing calls until the attendant places the trunk back into service by entering another feature code. The advantage of using this feature instead of unequipping the trunk in the database, is that all programming for the trunk is preserved and the trunk returns to complete functionality as soon as it is returned to service and no additional programming is required. Instructions for placing a trunk out of service are located on page 4-113. This feature applies to all trunks, including DID trunks.

4.91 Each T1C is equipped with a “make busy” switch for removing all circuits on the card from service and placing them back in again, and do not require use of this feature. Pressing the switch will light its LED and begin the process of “busying out” each circuit not in use. The circuits that are in use are then busied out as soon as the users hangs up.

NOTE: If the trunk that is being placed out of service is part of a telco rotary hunt, the central office will detect that trunk as being available and will not bypass it for incoming calls.
P. DIRECT INWARD SYSTEM ACCESS (DISA)

4.92 DISA is a programmable feature that allows an outside party to dial into the system from an external DTMF telephone and then access the following system resources: extension numbers for placing calls to stations; trunks groups or auto trunks for placing outgoing calls; hunt group pilot numbers; and, if equipped, a modem extension number for remote system programming or report generation.

4.93 Toll restriction is not checked on DISA calls when an outgoing trunk is accessed. DISA users cannot access LCR, specific individual trunks (unless they are the only trunk in a trunk group), or paging.

4.94 Any of the trunk groups can be programmed to receive incoming DISA calls in day and/or night mode. When not in use for DISA, the trunk can be used by system users for placing outgoing calls (unless designated as an incoming-only trunk).

NOTE: Due to the natural characteristics of the trunk, the volume level of DTMF tones transmitted over the trunk may be substantially reduced before reaching the 256 System. This natural degradation in tone volume may adversely affect the reliability of the DISA feature. Other factors which can affect DISA performance are trunk noise and the quality and strength of the DTMF tones generated by the off-premises phone itself.

4.95 When a DISA user calls a station extension number, the call rings as a direct ring-in call, even if the called station is busy or in do-not-disturb. The DISA caller hears music (if enabled) until the appropriate Transfer timer expires; then if the call is not answered it recalls the called station’s attendant. If the called station is forwarded, the call follows the programmed forward.

4.96 When a DISA caller is using or accesses a loop start trunk, the Unsupervised CO timer is activated. When the timer expires, both parties hear a burst of dial tone. Either party may reset the timer by pressing any DTMF key. If the timer is not reset, the call recalls the attendant. If the attendant does not answer the recall before the Recall and Abandoned Call timers expire, the call is disconnected. (This is not applicable to ground start trunks.)

NOTE: There may be some reduction in voice volume when a DISA caller accesses an outside trunk.

4.97 When a hunt group pilot number receives a call through DISA, the call rings or circulates according to how the hunt group is programmed (i.e., linear, distributed, or all ring). The call is displayed as a direct ring-in call; however, the system actually processes the call as a transferred call. Refer to page 4-16 for more information on hunt group calls.

DISA Calls in SMDA Reports

4.98 DISA call information is included in the System Summary SMDA report. See page 4-115.

Blocked DISA Calls in SMDR Reports

4.99 Whenever an outgoing DISA call is denied, either by toll restriction or weekly toll limits, the SMDR report will show a call record for the DISA call and then another line with the abbreviation “BLK” (for “blocked”). See page 4-123 for details.

DISA Do-Not-Disturb Breakthrough

4.100 Under normal circumstances, direct ring-in calls are not blocked by do-not-disturb. However, the database contains an option that allows or disallows do-not-disturb breakthrough for DISA (and automated attendant and voice mail/computer) calls on a station-by-station basis. If do-not-disturb breakthrough is disallowed, DISA calls to a station in do-not-disturb are immediately sent to the station’s attendant. If the attendant does not answer the call, it is disconnected after the Abandoned Recall timer expires.

Security codes

4.101 DISA trunks can be assigned security codes that must be entered before the caller has access to the system and/or the CO trunks. In the Extended software package, codes can be 4-7 digits long (using any combination of digits 0-9, *, and #). All other software packages use 4-digit security codes. The installer can program separate codes for each DISA trunk to be used during day and/or night modes.

4.102 In the Extended software package, a DISA caller will have three opportunities to enter a valid security code. If the caller fails three times, the failure will generate a system alarm on alarm stations and in SMDR that says “DISA SECURITY LIMIT EXCEEDED” and the system will not answer that DISA trunk again for five minutes. (Any other DISA trunks will be unaffected.)

DISA Toll Restriction

4.103 In the Extended software packages, DISA trunks can be given day and/or night mode toll restrictions like those described on page 4-27 for individual stations (except LCR-Only). When a DISA caller dials an outgoing call, the call is checked against the DISA trunk’s toll restriction. If the call is disallowed, the DISA caller is sent to the primary attendant.

4.194 If the Weekly Toll Limit feature is enabled, calls through DISA will be subject to monitoring as described on page 4-30.

NOTE: While DISA is designed to be reasonably secure against misuse by outside callers, there is no
plied warranty that it is invulnerable to unauthorized intrusions. The installer and owner of the system should ensure that proper security measures have been taken to prevent outside callers from accessing and misusing outgoing trunks for unauthorized calls. Also, if the central office does not provide supervision and disconnect the call when one party hangs up, it is possible for a caller to remain connected to a CO trunk circuit. If this happens, and the caller begins dialing, the call could be placed through the 256 System and would then be billed to the system’s owner. The system cannot check this type of call for toll restriction and may not register the call in SMDR. This problem could arise when a call is connected to a station, when a call is forwarded or transferred to the public network, or when DISA is used for placing outgoing calls.

Using DISA

NOTE: DISA calls are not answered unless the necessary resources (a DTMF decoder and a voice channel) are available. If you hear a busy signal followed by music, the trunk you tried to access is busy. You have capped on and will be connected to the desired trunk as soon as it is available. If you call an extension number, you will hear music (if enabled) until the appropriate Transfer timer expires; then if your call is not answered it recalls the called station’s attendant.

4.105 TO USE DISA IF A SECURITY CODE IS NOT REQUIRED:

(1) From a DTMF telephone, dial the telephone number of the DISA trunk.

(2) When the call is answered by the system and you hear system intercom dial tone, do one of the following:

a. For placing an outside call: Dial a trunk access code. You hear outside dial tone and can place your call.

b. For remote system programming: Dial the extension number assigned to the desired modem (270-273). Refer to PROGRAMMING, page 5-9, for complete remote programming instructions.

c. For placing an intercom call: Dial an extension number or hunt group pilot number. (If calling the attendant, dial the extension number, not 0.) You hear music until the call is answered.

4.106 TO USE DISA IF A SECURITY CODE IS REQUIRED FOR INTERCOM, MODEM, AND TRUNK ACCESS:

(1) From a M’MF telephone, dial the number of the DISA trunk.

(2) When the call is answered by the system and you hear a single progress tone, enter the appropriate (day or night) DISA security code.

(3) When you hear dial tone, do one of the following:

a. For placing an outside call: Dial a trunk access code. You hear outside dial tone; place your call.

b. For remote system programming: Dial the extension number assigned to the desired modem (270-273). Refer to PROGRAMMING, page 5-9, for complete remote programming instructions.

c. For placing an intercom call: Dial an extension number or hunt group pilot number. (If calling the attendant, dial the extension number, not 0.) You hear music until the call is answered.

4.107 TO USE DISA IF A SECURITY CODE IS REQUIRED FOR TRUNK AND MODEM ACCESS ONLY:

(1) From a DTMF telephone, dial the telephone number of the DISA trunk.

(2) When the system answers the call and you hear dial tone, do one of the following:

a. For placing an outside call: Dial a trunk access code. When you hear a single progress tone, enter the appropriate (day or night) DISA security code. You hear outside dial tone when the system recognizes the security code and if a trunk is available.

b. For remote system programming, dial the extension number of the desired modem (270-273). When you hear a single progress tone, enter the appropriate (day or night) DISA security code. You hear modem tone when the system recognizes the security code. Refer to PROGRAMMING, page 5-9, for complete remote programming instructions.

c. For placing an intercom call: Dial an extension number or hunt group pilot number. (If calling the attendant, dial the extension number, not 0.) You hear music until the call is answered.

NOTE: If you enter an invalid security code, the call is dropped. If you enter an invalid feature code or extension number, or dial an invalid number, you hear reorder tones and then system dial tone. You may try again. If you dial a valid hunt group pilot number that has no members assigned to it, the call automatically rings at the primary attendant station until the appropriate Transfer and Abandoned Call timers expire (this occurs in both day and night modes). If the attendant does not answer before the Abandoned Call timer expires, the call is disconnected.
5. STATION INSTRUMENTS

5.1 To allow system flexibility and cost efficiency, a variety of station instruments can be used on the 256 System. They are:

IMX 256 Digital And Analog Station Instruments
- Standard Digital **Keysets** — standard and display
- Executive Digital **Keysets** — display only
- IMX **12/24-Line Keysets** — display and standard
- IMX **S-Line Keyset** -non-display only
- IMX **8/12/24-Line AIM Keysets** — display only
- Enhanced Single-Line Set (ESLS)
- Single-Line Instrument (SLI)
- Industry-standard, single-line, dual-tone multi-frequency (DTMF) set
- Digital DSS/BLF Units — single or in string of up to four Units (attached to a digital **keyset**)
- IMX DSS/BLF Units (on separate circuits from associated **keysets**)
- Attendant Computer Console

NOTE: With the proper software package, the Inter-Tel GX station instruments can also be installed on the system. Refer to Appendix A in the back of the manual for complete information.

GMX-256 Analog Station Instruments
- Inter-Tel/DVK **24-Line Keyset** -standard and display
- Inter-Tel/DVK **12-Line Keyset** -standard and display
- Inter-Tel/DVK **S-Line Keyset** — standard and display
- GMX **24-Line Keyset** — standard and display
- GMX **12-Line Keyset** — non-display only
- GX **24-Line Keyset**-standard and display
- Attendant Computer Console
- Inter-Tel/DVK **DSS/BLF Unit** — single or tandem
- GMX DSS/BLF Unit — single only
- GX DSS/BLF Unit — single or tandem
- GMX/GX Single-Line **Instrument (SLI)**
- Industry-standard single-line, dual-tone multi-frequency (DTMF) set

NOTE: For more information on the GX and GMX station instruments, refer to appendixes A and B in the back of this manual.

5.2 The Inter-Tel AIM **keysets**, digital **keysets**, and DVK **keysets** contain audio-integrated modules that allows the user to adjust volume levels independently for pages, calls, ring tones, etc.

53 **Keyset Cards** (KSCs and KSC-Ds) and Digital **Keyset cards** (DKSCs) are used to support **keyset** stations. Single-Line Cards (SLCs) are used to support single-line stations. Inward Dialing Cards (IDCs) can be installed to support AC-ringing off-premises single-line stations, on-premises single-line sets, DC-ringing single-line devices for special applications, or DID trunks.

5.4 The IMX S-line dual-circuit AIM **keysets** can be installed two to a circuit, if desired. To do this, single KSC-D circuits are designated as “dual” circuits in System **Configuration** programming. (Other **keyset** models cannot be installed two to a circuit.) The designated dual circuit actually becomes two circuits that can be programmed individually (X.XA and X.XB, where X is the circuit number).

5.5 System software will support any **configuration** of station instruments with the limitation that there must be a minimum of one **Keyset** Card. The actual configuration is defined by the type of cards and the number of circuits in use on the system. As many as 128 **keysets** can be installed (256 if S-line AIM **keysets** are installed two to a circuit), or **240** single-line sets, depending on station and trunk card installation.

A. **KEYSETS**

5.6 **Keyset** design features are described in the following paragraphs.

Handsfree Speakerphone

5.7 All **keyset** stations allow the **user** to dial while on hook. In addition, the **keyset** speaker may provide background music (if an external music source is installed) and is used to receive pages.

5.8 **IMX Keysets** and **Inter-Tel/DVK Keysets** have a built-in, integrated speakerphone that allows **handsfree** operation on outside calls and inside (intercom) calls.

5.9 **Digital Keysets** have a built-in speaker and microphone that allow the user to answer intercom calls **handsfree**, dial while on hook, monitor calls, and listen to background music. Speakerphone resources are provided by Digital Signal processors (DSPs) on the Digital **Keysets** Card (DKSC). A DKSC can have up to two DSPs. Each DSP supports up to 12 speakerphones simultaneously. Each time a digital **keyset** user presses the SPKR key while on hook, the speakerphone function is activated and the speakerphone resource is assigned to that phone for the length of the call. If more than 12 speakerphones are enabled on a DKSC with one DSP and a thirteenth digital **keyset** user requests the speake-
phone function, the user will hear reorder tones and the display will show NO SPKRPHN AVAIL. STAY OFF HOOK. If the user attempts to change to the speakerphone and hangs up during a call when speakerphones are unavailable, the user will be forced into a monitor-only mode. The user will be able to hear the other party but will not be allowed to transmit to them. In this mode, the user's MUTE key will be lit and the display shows NO SPKRPHN AVAIL. COME OFF HOOK. Pressing the lit MUTE key will result in a burst of reorder tone; you must lift the handset to speak.

5.10 A programming option can be enabled that disables the speakerphone (as described on page 4-55) or the user can disable the speakerphone using a feature code. This prevents the station from using the speakerphone on outgoing intercom calls and all outside calls. If the option is enabled, the speakerphone can still be used for receiving handsfree intercom calls, but the user must lift the handset to speak when placing intercom calls and when placing or receiving outside calls. The MUTE key is lit when the speaker is activated for outside calls or outgoing intercom calls. Call monitoring and on-hook dialing are not affected.

NOTE: On certain handsfree-to-handsfree intercom calls, voice volume levels may cause feedback to occur. If this happens, one station user should pickup the handset.

Liquid Crystal Display (LCD)

5.11 Several keysets types are available in standard or display models. The difference is that there is a liquid crystal display (LCD) on the display keyset. Standard keysets can be converted to display keysets by installing LCD Units (refer to REPLACEMENT PARTS for unit part numbers). Installation instructions are in the INSTALLATION section of the manual.

5.12 The LCD has two 16-character display lines. When the keyset is not in use, the LCD shows the date and the time of day (and, if enabled, the station extension number and user name). Other displays include: reminder messages, do-not-disturb messages, numbers dialed, call sources, elapsed time of calls, current call costs, error messages, station status, programming messages, etc. The displayed information is described throughout the instructions in this section of the manual.

5.13 Executive Digital Keysets have four additional display lines with keys on both sides (eight keys) that are used for selecting features from the menu display instead of pressing feature keys or entering feature codes. Pressing the key on either side of a display line selects the option shown on that line. The following menu options are available on the Executive Digital Keyset display:

- **ADMIN FEATURES**: (This appears only if the station is programmed as an attendant.) This option displays a menu of attendant features.
- **IC DIRECTORY**: This allows quick access to the intercom directory.
- **CO DIRECTORY**: This option provides quick access to the CO (system speed-dial) directory.
- **OTHER FEATURES**: This displays a list of features in alphabetical order.

5.14 Under the display are six “display-oriented” feature keys. PREVIOUS and NEXT are used for scrolling through screens. The BACKSPC, FORWARD, CLEAR, and CANCEL keys do not have a function on the IMX 256 System.

Keyset Identification Displayed

5.15 If this option is enabled in the database (refer to PROGRAMMING, page 5-68), the extension number and assigned user name appear on the top line of the keyset display, and the time and date appear on the bottom line when the keyset is idle. If the option is not enabled, the display shows date and time only, unless the user presses the SPCL key and enters the Display Date And Time feature code (300) to read the full display.

Date, Time, User Name, And Extension Number Display

5.16 When a display keyset is idle, the date and time (and, if enabled, user name and extension number) are displayed. While on an outside call, in do-not-disturb, or unconditionally forwarded, other displays are shown. In these circumstances, use the following procedure to re-display the date, time, name, and extension number for five seconds.

5.17 To **DISPLAY THE DATE, TIME, USER NAME, AND EXTENSION NUMBER**:

Press the SPCL key and enter the Display Date And Time feature code (300). The date, time, user name, and extension number are displayed for five seconds.

Circuit Number On Power-Up

5.18 To aid in installation and troubleshooting procedures, display keysets show their station identification for five seconds when power is turned on, when the system is reset, or when the keyset line cord is first plugged in (or removed and replaced). The extension number and assigned user name appear on the top line of the display, and the circuit number appears on the bottom line. After the five-second identification display, the keyset returns to the appropriate display, depending on its current status.
“Hot” Dial Pad Keys

5.19 There is a system-wide option that, if enabled, allows keyset users to dial trunk access codes and feature codes without lifting the handset or pressing the SPKR or SPCL key. This programmable feature is called “hot dial pad” to indicate that the dial pad keys are always activated.

Key Maps

5.20 There can be up to 20 different keyset key map groups. Refer to PROGRAMMING, pages 5-44 and 5-177, for more details. (There is also one map each for ESLs and SLs and 12 maps for DSS/BLF Units.)

5.21 Each keyset is assigned to a programmed key map group that determines the layout of the keys for all the stations assigned to that group, including the following:

- **Call key**: Up to 10 call keys can be assigned in each key map. These keys are used for outside call access. They are not associated with specific trunks. Instead, they are assigned to calls in the order that the calls are placed or received. For example, if a user has three call keys and places a call using a trunk group feature code, call key 1 will light to show the current call status. If another call rings in while the first call is still in progress, it will cause call key 2 to flash. If one more call rings in, or if the user places the first call on hold and places another call, call key 3 will be used (and call key 1 will flutter). If there are more calls in progress than there are call keys (e.g., if yet another call rings in to the keyset in the example), the newest call would camp on to the station until a call key became available. If LCR is programmed, pressing an idle call key will access the LCR feature for outgoing calls. NOTE: All key maps should have at least one call key if there is not an individual trunk key for every trunk.

- **Secondary call key**: See page 4-44 for explanation.

- **DSS/BLF key**: A DSS/BLF key will dial the associated extension number when pressed. If assigned to a key with a lamp, it will also show status of the associated station as described for DSS/BLF Units on page 4-50. DSS/BLF keys cannot be changed by the station user.

- **Feature key**: These are programmed with feature codes. The feature code appears in the same key location on all stations assigned to the key map and cannot be changed by the keyset user.

- **Forward key**: The forward key can be programmed with any of the Call Forwarding feature codes and the forwarding code used by the key can be changed by the keyset user.

- **Hunt Group key**: Like a DSS/BLF key, this key dials a hunt group pilot number and, if assigned to a key with a lamp, will show the status of that hunt group.

- **Individual Trunk key**: These keys are associated with one trunk each. They can be used for placing outgoing calls, picking up calls on system hold, and answering incoming calls on that trunk. If call privacy is disabled system-wide, a busy individual trunk key can be pressed to join a non-private call.

- **IC, SPKR, and SPCL keys**: All keysets must have an IC key, a SPKR key, and a SPCL key.

- **IC/CO Speed-Dial (SD) keys**: Each key map can have up to 10 IC/CO speed-dial keys. Each SD key can be programmed by the keyset user to dial one extension number and one outside number. If assigned to a key with a lamp, the lamp will show the status of the station associated with that key.

- **Station Programmable key**: Up to eight keys can be designated as station-programmable in the key map. Then the functions are assigned on a station-by-station basis in the Station Programmable Key Programming window (Page 5-35 of PROGRAMMING). They cannot be changed by the keyset user (unless designated as user-programmable).

Station programmable keys can have any of the following functions:

- Call key or Secondary call key (if all 10 available call keys have not been assigned in the key map)
- DSS/BLF key
- Feature key
- Forward key (can be programmed by the user to access any of the Call Forwarding feature codes)
- Hunt group key
- Individual trunk key
- **IC/CO Speed-dial (SD) key** (if all 10 available speed-dial keys have not been assigned in the keymap)
- **Intercom (IC) key** (if not already assigned in the keymap)
- **SPCL key** (if not already assigned in key map)
- **Trunk group key**
- **Undefined**
User programmable key (if all available user-programmable keys have not been assigned in the key map)

- **Trunk Group** key: These keys are associated with specific trunk group access codes and are used for placing outgoing calls on trunks in the selected trunk group. If assigned to a key with a lamp, the lamp will be lit if all trunks in the trunk group are in use.

- **Undefined key**: The key can be left undefined if it will not be needed.

- **User-Programmable key**: Up to nine user-programmable keys can be designated and given default values in the key map. They can then be reprogrammed to access any of the trunk group access codes or feature codes by the individual keyset users as desired.

Connecting A Headset

5.22 For convenience, a headset can be used at any keyset station. The SPKR key is used to connect and disconnect calls when the headset is attached. Refer to **SPECIFICATIONS**, page 2-22, when selecting a headset for use on the keyset.

5.23 TO CONNECT A HEADSET:

1. Disconnect the headset by unplugging the coiled handset cord from the base of the keyset. Leave the headset in the cradle.

2. Insert the headset plug into the vacant handset jack.

3. Press the SPCL key and enter the Headset Enable feature code (315) or the Headset Mode On/Off feature code (317).

5.24 TO DISCONNECT THE HEADSET:

1. Disconnect the headset by unplugging the headset cord from the base of the keyset.

2. Plug the coiled handset cord into the base of the keyset.

3. While on hook, press the SPCL key and enter the Headset Disable feature code (316) or the Headset Mode On/Off feature code (317).
Secondary Call Keys

5.25 This feature is very useful for call screening applications in which one person places and receives calls for someone else. The following terms will be used in describing this feature:

- **Call Key:** This refers to a standard call key that shows the status of calls intended for that station (up to 10 per station).
- **Secondary Call Key:** A special call key that shows the status of calls intended for a primary station (up to 16 per station).
- **Primary Station:** A station that has its primary call keys defined at up to 10 secondary stations.
- **Secondary Station:** A station that has secondary call keys defined on it.

NOTE: A station can be both a primary and a secondary station.

5.26 When a call rings in at the primary station, any secondary station with the corresponding secondary call key will also have a flashing call key. The secondary station(s) or the primary station can answer the call.

5.27 Each secondary station can have ring and flash signals or *only* flash signals on an individual secondary call key-by-secondary call key basis. If the secondary station is programmed for ring and flash, the display shows CALL RINGING IN ON GRP#XX for calls ringing in on a secondary call key; note that there is no distinction between primary or secondary calls on the display. In other words, the display will not indicate that the call is actually ringing for the primary station.

5.28 One or more of the primary station’s call keys can be associated with secondary call keys on secondary stations. For example, if the primary station has four call keys, the secondary station can have up to four associated secondary call keys for that primary station. If the secondary station has only three secondary call keys and a call rings in on the primary station’s fourth call key (that is not associated with a secondary call key), the secondary station will not have any indication of the ringing call.

5.29 The following example explains how secondary call keys are assigned:

- Station X is a primary station and has three call keys.
- Station Y is a secondary station and has been assigned a key map that contains four secondary call keys. (Key map programming is explained on page 5-44 in *Programming*) The keys were then associated with Station X using the window shown on page 5-37 in *Programming*.

- The keys are associated as follows:

<table>
<thead>
<tr>
<th>STATION X</th>
<th>STATION Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call key 1 Key A (Secondary call key 1)</td>
<td></td>
</tr>
<tr>
<td>Call key 2 Key B (Secondary call key 2)</td>
<td></td>
</tr>
<tr>
<td>Call key 3 Key C (Secondary call key 3)</td>
<td></td>
</tr>
<tr>
<td>No associated key Key D (Secondary call key 4)</td>
<td></td>
</tr>
</tbody>
</table>

The call keys are assigned to the secondary call keys in numerical order. That is, the first secondary call key that is associated with the primary station is assigned to Station X’s call key 1. The next secondary call key associated with Station X is associated with call key 2, and so on.

- If a secondary call key is deleted (programmed as another type of key) at Station Y, the remaining secondary call keys do not change physical position on the keyset. However, their association with Station X’s call keys are shifted relative to one another. For example, if Key A in the previous list is no longer a secondary call key, Key B becomes secondary call key 1 and the list appears as follows:

<table>
<thead>
<tr>
<th>STATION X</th>
<th>STATION Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call key 1 Key B (Secondary call key 1)</td>
<td></td>
</tr>
<tr>
<td>Call key 2 Key C (Secondary call key 2)</td>
<td></td>
</tr>
<tr>
<td>Call key 3 Key D (Secondary call key 3)</td>
<td></td>
</tr>
</tbody>
</table>

5.30 A secondary station can have call keys for more than one primary station. The primary station corresponding to each key is determined during programming. However, each time a secondary call key is associated with a primary station, the call keys are assigned in numerical order, as shown in the following example:

- Station X is a primary station with three call keys.
- Station Z is a primary station with three call keys.
- Station Y is a secondary station and has been assigned to a key map that has five secondary call keys.
The keys are associated as follows:

<table>
<thead>
<tr>
<th>STATION/CALL KEY</th>
<th>STATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station X/Call key 1</td>
<td>Key A (Secondary key 1)</td>
</tr>
<tr>
<td>Station X/Call key 2</td>
<td>Key B (Secondary key 2)</td>
</tr>
<tr>
<td>Station Z/Call key 1</td>
<td>Key C (Secondary key 3)</td>
</tr>
<tr>
<td>Station Z/Call key 2</td>
<td>Key D (Secondary key 4)</td>
</tr>
<tr>
<td>Station X/Call key 3</td>
<td>Key E (Secondary key 5)</td>
</tr>
</tbody>
</table>

Again, the call keys are assigned in numerical order for each primary station. When Key C (secondary call key 3) was associated with Station Z, it was assigned to station Z’s call key 1. Then Key D (secondary call key 4) was assigned to Station Z’s call key 2. The programmer then associated Key E (secondary call key 5) to Station X, which assigned it to Station X’s call key 3. (If it had been associated with Station Z, it would have been assigned to Station Z’s call key 3.)

The programmed list of associated stations for secondary call keys does not change when a secondary call key is deleted. In the example above, secondary call keys 1, 2, and 5 (Keys A, B, and E) are associated with Station X and secondary call keys 3 and 4 (Keys C and D) are associated with Station Z. If one call key is deleted, the remaining keys are renumbered, and any keys that change number assume the association assigned to that number. For example: If Key C is no longer a secondary call key, Key D becomes secondary call key 3 and Key E becomes secondary call key 4. (Secondary call key 5 is no longer associated with a key on Station Y.) Therefore, the list appears as shown below:

<table>
<thead>
<tr>
<th>STATION/CALL KEY</th>
<th>STATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station X/Call key 1</td>
<td>Key A (Secondary key 1)</td>
</tr>
<tr>
<td>Station X/Call key 2</td>
<td>Key B (Secondary key 2)</td>
</tr>
<tr>
<td>Station Z/Call key 1</td>
<td>Key D (Secondary key 3)</td>
</tr>
<tr>
<td>Station Z/Call key 2</td>
<td>Key E (Secondary key 4)</td>
</tr>
<tr>
<td>Station X/Call key 3</td>
<td>No secondary call key</td>
</tr>
</tbody>
</table>

5.31 If a secondary station user presses a secondary call key to place a call, that secondary station’s SCOS and trunk restrictions are checked, not the primary station’s, and the call will appear in the SMDR report as originating at the secondary station.

5.32 If a secondary station has call forward enabled, only calls made directly to that station will follow the forward. Calls on the secondary call keys will not be forwarded.

5.33 If the primary station has immediate call forward (all calls or if busy) enabled, calls will be forwarded and will not cause the secondary call keys to flash at the secondary stations. If call forward no answer is enabled, the secondary call keys will flash until the Call Forward No Answer timer expires and the forward is completed.

5.34 The ANSWER key will still answer ringing calls in the order that they were received by that station. Even if a call comes in on a secondary call key and another comes in on a primary call key, the call on the secondary call key will be answered first. (The ANSWER key cannot be used to answer flash-only calls.)

5.35 If Automatic Trunk Answer is enabled at a secondary station, calls on the secondary call keys cannot be answered by simply lifting the handset. The secondary station user must press the desired secondary call key, or the ANSWER key to access the call.

5.36 If the primary station or any secondary station puts a call on system hold, all associated primary and secondary call keys will flash to show that a call is on hold. If the call is placed on individual hold, the station that placed it on hold will have a flashing call key and all associated standard and secondary call keys will be lit (to indicate that the call key is in use). Only the station that placed the call on individual hold can access the call.

5.37 If a call on a secondary call key is placed on hold and the call recalls, the call will ring and the recall display (GRP#XX RECALL FROM <station that placed it on hold>) will appear at the primary station and any applicable secondary stations set for ring and flash. All associated standard and secondary call keys will flash to indicate ringing. If the call is not answered, it will recall the primary station’s attendant (the display then shows the primary station as the source of the recall).

5.38 If a call on a secondary call key is transferred, and the call recalls, it goes back to the station that transferred it. The recall will appear under a standard call key at that station.
5.39 If the primary station transfers a call that recalls, all associated secondary call keys will flash to indicate that the recall is ringing. Secondary stations programmed for ringing will also see the recall display.

5.40 When a primary station receives a queue callback, the corresponding secondary call key at the secondary station(s) will be lit (to indicate that the call key is in use). The secondary station(s) will not be able to answer the queue callback.

5.41 If a secondary station user requests a queue callback while using a secondary call key, the queue callback will appear under one of that station’s standard call keys and will not appear at the primary station or any of its other secondary stations.

5.42 Although calls on system hold cannot usually be reverse transferred, a call on a standard call key at the primary station or any secondary call key that has been placed on system hold can be picked up, using reverse transfer, at any station. If reverse transferred calls are not automatically connected, the call will be placed on individual hold at the reverse transferring keyset. (Single-line sets will automatically be connected to the call.)

5.43 When a direct ring-in trunk can be accessed (allowed-answer or ring-in assignment) by both a secondary call key and an individual trunk key on a secondary station, both keys will show the ring-in by flashing. (If a primary station has an individual trunk key, calls on that trunk will not appear under a call key and, therefore, cannot be answered at secondary stations.)

5.44 If a call is answered using an individual trunk key, the system assumes that the secondary station is answering the call for itself and places the call on the individual trunk key. All of the primary station’s call keys and any other secondary station’s secondary call keys for that trunk stop flashing and remain unlit.

5.45 If a call is answered using a secondary call key, that secondary call key flashes and all other associated call keys for that trunk stop flashing. The individual trunk key on the answering station is lit to indicate that the trunk is busy.

5.46 If privacy release is enabled, a secondary station user can join an ongoing call by lifting the handset and pressing the busy secondary call key. If privacy release is not enabled, the user will hear reorder tones if the lit secondary call key is pressed.

Default Keyset Feature Keys

5.47 When the system is in the default state, all keysets are in the same key map group and have the following feature keys. Not all keys indicated below appear on all keysets, as indicated below. Feature code descriptions start on page 4-5.

<table>
<thead>
<tr>
<th>KEY</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSWER</td>
<td>Automatic Trunk Selection (89)</td>
</tr>
<tr>
<td>CNF</td>
<td>Conference (5)</td>
</tr>
<tr>
<td>DATA</td>
<td>Data (340) — On digital, IMX 12/24-line, and DVK keysets only</td>
</tr>
<tr>
<td>DND</td>
<td>Do-Not-Disturb On/Off (372)</td>
</tr>
<tr>
<td>FWD</td>
<td>Call Forward All Calls (355) — This feature key may be reprogrammed with any of the call forward options (however, other feature codes may not be used). Pressing a lit FWD key has the same effect as the cancel any call forward feature code (359).</td>
</tr>
<tr>
<td>HOLD</td>
<td>Individual hold (336)</td>
</tr>
<tr>
<td>IC</td>
<td>Selects a voice channel or picks up a holding or camped-on intercom call</td>
</tr>
<tr>
<td>MSG</td>
<td>Message (365) — Also retrieves messages when the flashing MSG key is pressed.</td>
</tr>
<tr>
<td>MUSIC</td>
<td>Background Music On/Off (313) — On digital, IMX 12/24-line, and 24-line DVK keysets only</td>
</tr>
<tr>
<td>MUTE</td>
<td>Microphone Mute On/Off (314)</td>
</tr>
<tr>
<td>OUTGOING</td>
<td>Selects a trunk for placing an outgoing call using the Least-Cost Routing (LCR) feature (9).</td>
</tr>
<tr>
<td>PAGE</td>
<td>Page (7)</td>
</tr>
<tr>
<td>QUE</td>
<td>Busy Trunk/Station Callback (Queue) Request (6) and Cancel Queue (376).</td>
</tr>
<tr>
<td>REDIAL</td>
<td>Redial (380) — On digital, IMX 12/24-line, and DVK keysets only. When the system is in the default state, the mode of the redial feature code is last outside number dialed (320). Users may reprogram the mode to last outside number saved (321).</td>
</tr>
<tr>
<td>SPCL</td>
<td>Signals the system to expect a feature code.</td>
</tr>
<tr>
<td>SPKR</td>
<td>Speakerphone On/Off (312)</td>
</tr>
<tr>
<td>SYS SPD</td>
<td>System Speed Dial (381) — On digital, IMX 12/24-line, and 24-line DVK keysets only</td>
</tr>
<tr>
<td>XFR</td>
<td>Transfer CO Call (345) and reverse transfer (4)</td>
</tr>
</tbody>
</table>
Keyset Lit-Emitting Diode (LED) Indications

5.48 The keyset call keys, trunk keys, IC/CO speed-dial (SD) keys, hunt group keys, and some of the feature keys contain light-emitting diodes (LEDs). The LED flash rates, shown below, indicate the status of the stations, trunks, and features. The rates are shown in interruptions per minute (IPM).

<table>
<thead>
<tr>
<th>Feature</th>
<th>STEADY 0 IPM</th>
<th>SLOW 30 IPM</th>
<th>MEDIUM 120 IPM</th>
<th>FAST 240 IPM</th>
<th>FLUTTER 60/960 IPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA</td>
<td>Auto-dial modem is dialing; data port cannot be accessed</td>
<td>Data call is being monitored</td>
<td></td>
<td></td>
<td>Data call is in progress; continuous = data device is off hook</td>
</tr>
<tr>
<td>IC</td>
<td>Recalling intercom call is camped on</td>
<td>Intercom call is camped on</td>
<td></td>
<td></td>
<td>Intercom call is on hold</td>
</tr>
<tr>
<td>SPKR</td>
<td>Speakerphone is on or ready for use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNF</td>
<td>Conference is in progress</td>
<td>Conference is recalling station</td>
<td></td>
<td></td>
<td>Initiator left conference in progress; or conf. party is on conference wait hold</td>
</tr>
<tr>
<td>MUTE</td>
<td>Microphone is muted</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FWD</td>
<td>Calls are being forwarded</td>
<td>Message is waiting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DND</td>
<td>Your station is in do-not-disturb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Station is busy or unplugged</td>
<td>Station is in do-not-disturb</td>
<td>Station has a call ringing in</td>
<td></td>
<td>Continuous = station left off hook</td>
</tr>
<tr>
<td>HUNT GROUP</td>
<td>All stations in hunt groups are unavailable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CALL</td>
<td>Trunk is in use at your station</td>
<td>Trunk is recalling from hold or transfer</td>
<td>Trunk is ringing in or camped on (waiting); or busy trunk callback</td>
<td></td>
<td>Trunk is on hold</td>
</tr>
<tr>
<td>TRUNK</td>
<td>Trunk is in use at your station</td>
<td>Trunk is recalling from hold or transfer</td>
<td>Trunk is ringing in or camped on (waiting); or busy trunk callback</td>
<td></td>
<td>Trunk is on hold</td>
</tr>
</tbody>
</table>
Volume Controls

5.49 On some keysets, speaker volume and ring tone volume are controlled by two thumbwheels on the right-hand side of the keyset.

5.50 On Inter-Tel AIRM keysets, digital keysets, and DVK keysets, volume is controlled by pressing volume control feature keys (labeled UP and DOWN) on the keyset.

5.51 TO CHANGE VOLUMES ON AN AIM, DIGITAL, OR DVK KEYSET:

(1) Press the UP key to raise the volume or press the DOWN key to lower the volume, while performing one of the following. A confirmation tone will alert you when you have reached the highest or lowest possible volume. On display keysets, the display shows the level as it is raised or lowered.

a. To change handset intercom voice volume: Press the desired key while on an off-hook (handset) intercom call.

b. To change handsfree intercom voice volume: Press the desired key while on an on-hook (speakerphone) intercom call.

c. To change handset outside call voice volume: Press the desired key while on an off-hook (handset) outside call.

d. To change handsfree outside call voice volume: Press the desired key while on an on-hook (speakerphone) outside call.

e. To change background music volume: Press the desired key while listening to background music through the keyset speaker.

f. To change alerting tone (ring tone) volume: Press the desired key while the keyset is ringing. OR, while on hook, press both keys to hear the currently programmed volume, then press the desired key to adjust it up or down.

NOTE: The selected alert tone volume level is automatically saved.

g. To change handset progress tone volume: Press the desired key while listening to intercom dial tone through the handset.

h. To change speakerphone progress tone volume: Press the desired key while listening to intercom dial tone through the speakerphone.

(2) To save the setting: Press both the UP and DOWN keys at the same time. If this step is not performed, the keyset will return to the previous volume level when the call, tone, or music ends (except for the ringing alert tone volume, which is automatically saved at the most current volume level).

5.52 TO RETURN AN AIM, DIGITAL, OR DVK KEYSET TO DEFAULT VOLUME LEVELS:

While on or off hook, press the SPCL key and enter the Default Volume feature code (394).

Selectable Ring Tone

5.53 Keyset users can select the type of ringing alert tone to be heard at their respective keysets. This is useful in open office settings where phones are close together and it is difficult to tell which one is ringing. Eight distinctive ring tone settings are available (1-S) or ring tones can be disabled at the keyset (setting 0).

Disabling ring tones does not affect lamp status or displays. A ringing call will still cause ring flash on the trunk key and display keysets will show the appropriate display for an incoming call.

5.54 If ring tones are disabled as described below, they can be re-enabled by repeating the procedure and entering any ring tone selection 1-S.

5.55 TO CHANGE KEYSET RING TONE:

(1) While on hook, press SPCL and enter the Select King Tone feature code (328). (Displays SELECT RING TONE.)

(2) EITHER, Enter a number 1-8 to select the desired ring tone, or enter 0 to disable ring tones.

OR, Press the asterisk (*) key or the pound (#) key to scroll through tones 1-g. You cannot scroll to 0.

OR, Enter 9 to repeat the selected tone.

(3) Lift and replace the handset, or allow the Long Interdigit timer to expire. The last tone selected will now be in effect when the keyset rings.
B. SINGLE-LINE SETS

5.57 There are three types of single-line sets: Enhanced Single-Line Sets (ESLSs), Single-Line Instruments (SLIs), and industry-standard single-line DTMF sets. Any of these single-line instrument types can also be used as an off-premises extension (OPX).

Enhanced Single-Line Sets (ESLSs)

5.58 The ESLS has nine user-programmable feature keys for one-key dialing of feature codes and a FLASH key that sends a timed hookflash to signal the system before a code is entered. It also has a neon message waiting lamp that lights (like a keyset MSG key) when a message is received. The default values of the feature keys are defined in a keymap in database programming (refer to PROGRAMMING, page 5-44, for details). They are user-programmable feature or trunk group keys. They can be assigned any of the general feature codes or trunk access codes listed on pages 4-5 through 4-11. When the system is in the default state, the feature codes assigned to the keys are as follows:

<table>
<thead>
<tr>
<th>KEY</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>STN SPD</td>
<td>Station Speed Dial (382)</td>
</tr>
<tr>
<td>REDL</td>
<td>Redial (380)</td>
</tr>
<tr>
<td>LCR</td>
<td>Least-Cost Routing (9)</td>
</tr>
<tr>
<td>HOLD</td>
<td>Individual Hold (336)</td>
</tr>
</tbody>
</table>

Single-Line DTMF Sets

5.60 Single-line DTMF set users access the features by hookflashing (pressing and releasing the hookswitch quickly) and entering feature codes.

Off-Premises Stations

5.61 SLIs, ESLSs, or any AC-ringing DTMF single-line sets can be used as off-premises stations. They are placed at a remote location and are connected to the 256 System through a telephone company OPX circuit or a customer-provided circuit. The circuits are connected to an Inward Dialing Card (IDC). (Refer to INSTALLATION, page 3-30, for details.)

5.62 Off-premises station users access the features by hookflashing (pressing and releasing the hookswitch quickly) and entering feature codes.

5.63 IDCs do not support message waiting applications. If single-line sets with message waiting lamps are installed on IDCs, the lamps will not function.

Ring Zones

5.64 The system power supply can provide power to ring up to 20 AC-ringing single-line stations simultaneously without any noticeable change in the ring tone. To preserve the ring tone quality, single-line stations should be divided into ring zone groups.

5.65 If more than 20 AC-ringing single-line sets are in the same ring-in pattern, they should be divided among the three ring zones so that no more than 20 ring at a time. Refer to page 4-25 for more information.
C. DIRECT STATION SELECTION/BUSY LAMP FIELD (DSS/BLF) UNITS

5.66 There can be a maximum of 50 DSS/BLF-equipped keyset stations on the system.

- IMX and Inter-Tel/DVK DSS/BLF Units are programmed to be used with specific keysets, but are not physically attached to the keysets. Each unit requires separate cabling and a separate Keyset Card (KSC) circuit. For each DSS/BLF Unit installed, one fewer keyset can be installed.

- Digital DSS/BLF Units are connected to digital keysets using a PC Data Port Module (PCDPM) attached to the keyset. Up to four digital DSS/BLF Units can be connected in series to one PCDPM.

5.67 Each DSS/BLF Unit has 60 keys. The keys can be programmed a one of the following types:

- **DSS/BLF Keys:** DSS/BLF keys provide one-key access to extension numbers. Together, the lamps in the DSS/BLF keys create a busy lamp field that indicates the status of each station or hunt group assigned to the keys. The LED indicator in the key is solidly lit when the associated station is busy, flashes slowly when the station is in do-not-disturb, flashes fast when the station has a call ringing in, or flutters continuously if the station is causing a STATION OFF-HOOK system alarm. If assigned to a hunt group, the LED indicator is solidly lit when all stations in the hunt group are unavailable (busy, in do-not-disturb, or removed from the hunt group) and it flashes fast when a call is cycled on to a busy hunt group.

- **Feature Keys:** The keys on the DSS/BLF Unit can be programmed in the database to be feature keys. Feature keys provide one-key dialing of selected feature codes. The DSS/BLF Unit feature keys can be used just like keyset feature keys.

- **System Speed-Dial Keys:** The keys on a DSS/BLF Unit can be programmed as system speed-dial keys for dialing the system speed-dial numbers that are programmed through the attendant station or programming terminal. These keys function as follows:
 - Pressing the key while your station is idle will display the associated speeddial number on the keyset display.
 - Pressing the key while on an intercom call will cause reorder tones.
 - If an extension number is stored in the speed-dial location, pressing the key while listening to dial tone dial the extension number. (These keys will not show busy lamp status for the station. They are used only for speed dialing.)
 - If an outside number is stored in the speed-dial location, pressing the key while listening to outside dial tone will dial the number.

5.68 The key arrangements for the DSS/BLF Units are programmed in up to eight different arrangements using the key maps in the database.

D. ATTENDANT COMPUTER CONSOLES

5.69 The Attendant Computer Console is an IBM-compatible personal computer that is connected to an available Keyset Card (KSC) circuit. (It cannot be installed on KSC-D circuits programmed for “dual” operation.) It is primarily designed for use by attendants of larger 256 System installations where the use of DSS/BLF Units would be difficult because of the number of users. However, it also provides enhanced call processing features, such as electronic text messaging and directory dialing, that would be useful in 256 Systems of all sizes. (Refer to the manual provided with the Attendant Computer Console for more information.)
6. USER-PROGRAMMABLE FEATURE KEYS

6.1 Individual keyset keys can be designated as “user-programmable” in the key maps during database programming. All ELS and SLI feature keys except the FLASH key are user-programmable. The installer programs the default feature codes (see PROGRAMMING, page 5-44) and the station user can reprogram the feature codes as desired.

- **Keyset:** (Default feature codes are shown on page 4-46.) Up to nine user-programmable keyset keys can be programmed to access any of the general feature codes (except Single-Line Call Splitting-337, which is a single-line feature code). The FWD key can also be programmed with any of the four Call Forwarding feature codes.

- **Single-Line** Set: (Default values are shown on page 4-49.) ELS and SLI feature keys can be programmed to access any of the general feature codes.

6.2 TO DISPLAY THE CURRENT KEY ENTRIES (ON A DISPLAY KEYSET):

(1) While on hook, press the SPCL key and enter the Feature Key Display feature code (326). (Display keysets show DISPLAY FEATURE KEY PROGRAMMING.)

(2) Press the feature key(s) to be displayed. (Display keysets show the current feature assigned, as the keys are pressed.)

6.3 TO RETURN THE KEYS TO THE VALUES THAT ARE PROGRAMMED IN THE DATABASE:

Keyset: While on or off hook, press the SPCL key and enter the Feature Key Default feature code (325). If off hook, hang up.

Single-Line Set: Lift the handset, enter the Feature Key Default feature code (325), and hang up.

6.4 TO PROGRAM THE KEYS:

(1) **Keyset:** While on hook, press the SPCL key and enter the Feature Key Programming feature code (327). (Display keysets show NOW PROGRAMMING FEATURE KEY.)

Single-Line Set: Lift the handset and enter the Feature Key Programming feature code (327).

(2) Press the desired feature key. (Display keysets show the feature currently assigned to the key.)

(3) Enter the feature code to be stored under that key. **Keyset** users hear a single progress tone when the programming is complete; single-line sets return to intercom dial tone. (Display keysets show the newly programmed feature.) An invalid code causes repeating reorder tones and does not change the feature code assigned to the key. (Display keysets show ERROR! FEATURE CODE INVALID.)

NOTE: If you do not enter a feature code, the programming mode times out when the Long In-digit timer expires and you hear reorder tones; the feature code assigned to the key remains unchanged.

(4) **Keyset:** Wait 5 seconds for the display to return to date and time, or lift and replace the handset. To program other keys, repeat the procedure.

Single-Line Set: Hang up. Program other keys by repeating the procedure.
7. AUTOMATIC CALL ACCESS (KEYSETS ONLY)

7.1 This feature allows a keyset user to determine the way incoming calls are answered. Feature codes are entered by the users to select the type of call access. The four variations are as follows:

- The user hears intercom dial tone when the handset is lifted and must press a call or individual trunk key (or the ANSWER key) to access an outside call, or press the IC key to access an intercom call.
- The user can answer ringing intercom calls by simply lifting the handset, but outside calls must be answered by pressing a call or individual trunk key or the ANSWER key. (When the system is in the default state, all keysets have this type of call access.)
- The user can answer ringing outside calls by lifting the handset, but ringing intercom calls must be answered by pressing the IC key.
- The user can answer any ringing call by lifting the handset. If no call is ringing, the user hears intercom dial tone when the handset is lifted. (This option is the way single-line sets work.)

NOTE: In any of the above variations, keyset users may still receive handsfree intercom calls (if enabled).

7.2 The selected option determines how all types of ringing intercom or outside calls (direct calls, transferred calls, recalls, etc.) are answered. If more than one call is ringing at the station, the first call received is the first answered.

7.3 When programmed for automatic trunk access, a station user with allowed answer, but without ring in, for a trunk must always press an individual trunk key (or press SPCL and enter the Automatic Trunk Answer feature code 350) to answer a non-ringing call. Transferred ringing calls and recalls can be answered by lifting the handset.

7.4 Camped-on calls cannot be answered by simply lifting the handset or pressing the SPKR key. For example, a station is programmed to automatically answer ringing outside calls, but requires pressing the IC key to answer ringing intercom calls. If a private intercom call rings in and is immediately followed by an outside call ringing in, the display shows the intercom call message and the outside call camps on. The intercom call also camps on when the handset is lifted. The user can then choose between the camped on calls by pressing either the IC key or the call or individual trunk key (or ANSWER key).

7.5 The automatic call access options outlined below can be programmed at keyset stations only. Single-line sets are already designed to automatically answer ringing intercom and outside calls by lifting the handset.

7.6 TO PROGRAM OUTSIDE CALL ACCESS:

(1) While on hook, press the SPCL key.

(2) Select the option:

a. If you wish to automatically answer ringing outside calls by lifting the handset, enter the Automatic Trunk Access feature code (360). You hear a confirmation tone.

b. If you wish to access outside calls by pressing the call key, individual trunk key, or ANSWER key, enter the Cancel Automatic Trunk Access feature code (361). You hear a confirmation tone.

c. To change the current option to its opposite (toggle on or off), enter the Automatic Trunk Access On/Off feature code (374). You hear a confirmation tone.

7.7 TO PROGRAM INTERCOM CALL ACCESS:

(1) While on hook, press the SPCL key.

(2) Select the option:

a. If you wish to automatically answer ringing intercom calls by lifting the handset, enter the Automatic Intercom Access feature code (362). You hear a confirmation tone.

b. If you wish to access ringing intercom calls by pressing the IC key, enter the Cancel Automatic Intercom Access feature code (363). You hear a confirmation tone.

c. To change the current option to its opposite (toggle on or off), enter the Automatic Intercom Access On/Off feature code (364). You hear a confirmation tone.
8. MUSIC-ON-HOLD AND BACKGROUND MUSIC

8.1 The Music-On-Hold feature not only makes waiting on hold as pleasant as possible, but it assures the holding party that the call is still connected.

8.2 Keyset users can choose to listen to background music by entering the Background Music feature code (313) or pressing the MUSIC key. The primary attendant can enable background music for the optional external paging speakers by entering a feature code (see page 4-111).

8.3 The system can be equipped with one or two optional external music sources for the Music-On-Hold and Background Music features. An optional external music source can be a customer-provided radio, tape player, or other device connected to the ROM Central Processing Unit (RCPU) card in the equipment cabinet. When a music source is installed, Music-On-Hold is enabled by placing the MOH straps on the RCPU card in the ON position. It can be disabled by placing its straps in the OFF position. If music is not desired, the system can be programmed for tick-tones or silence on hold.

NOTE: In some circumstances, there may be broadcast restrictions associated with the music heard by callers on hold. Check with the music’s original distributor and/or the radio station for copyright and broadcast restrictions concerning Music-On-Hold.

8.4 Station users can select a music channel that determines which of the two music sources they wish to listen to when camped onto a system resource, when placed on hold by another station, and for keyset background music. The music channels are assigned on a station-by-station basis in the database. Station music channel programming can be changed by the user by entering a feature code. The music channel used by system Music-On-Hold and paging speaker background music is set in the database.

8.5 TO SELECT THE MUSIC CHANNEL:

Keyset: While on hook, press SPCL and enter the Background Music Channel Selection feature code (318). The music channel will change between channels one and two each time the code is entered.

Single-Line Set: Lift the handset, enter the Background Music Channel Selection feature code (318) and hang up. The music channel will change between channels one and two each time the code is entered.

8.6 The music channel heard by outside callers is determined on a trunk group-by-trunk group basis in the database.

8.7 Throughout the instructions in this section of the manual, the term “music” refers to the selected option: music, tick-tones, or silence, depending on what is enabled.

8.8 Background music is interrupted for pages. Music over keyset speakers is also interrupted for calls. keyset programming, and ringing.

8.9 TO TURN KEYSET BACKGROUND MUSIC ON OR OFF:

While on or off hook, press the MUSIC key (or press the SPCL key and enter the Background Music On/Off feature code — 313). If off hook, hang up.
9. **Signals and Tones**

9.1 There are several distinct signals and tones on the 256 System. The installer can choose to use these tones (pure system tones), or dial tones and busy tones similar to those of the telephone company (standard tones), by selecting an option in the database (see PROGRAMMING, page 5-69).

A. **Ring Signals**

9.2 The system signals and tones generated by the ringer or keyset speaker are as follows.

<table>
<thead>
<tr>
<th>Type of Call</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside call</td>
<td>Single long tone every 6 seconds</td>
</tr>
<tr>
<td>Intercom call or off-hook voice announce call</td>
<td>Two short tones and a pause (repeats for private calls)</td>
</tr>
<tr>
<td>Queue callback</td>
<td>A repeating signal of three short tones and a long pause</td>
</tr>
<tr>
<td>Recall from transfer or hold</td>
<td>A repeating signal of four short tones and a long pause</td>
</tr>
<tr>
<td>Reminder message</td>
<td>Eight short tones</td>
</tr>
</tbody>
</table>

B. **Call Processing Signals**

9.3 The following signals and tones are heard through the handset or keyset speaker.

<table>
<thead>
<tr>
<th>Signal</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercom dial tone</td>
<td>Handset lifted or SPKR or IC key pressed.</td>
</tr>
<tr>
<td>Double tones (called station receives the same signal)</td>
<td>Intercom call repeats for private call or call to non-handsfree station; one double tone for handsfree call.</td>
</tr>
<tr>
<td>Intercom busy signal</td>
<td>Called station or selected trunk is busy.</td>
</tr>
<tr>
<td>Slow repeating tones (until camp on)</td>
<td>Called station is in do-not-disturb.</td>
</tr>
<tr>
<td>A repeating signal of four fast tones and a pause</td>
<td>Number or feature code was not accepted, number did not pass toll restriction, or dialing timer expired.</td>
</tr>
<tr>
<td>Reorder tones — fast tones (may be four tones or continuous)</td>
<td>All resources are busy, station is camped on.</td>
</tr>
<tr>
<td>System busy signal — reorder tones followed by music</td>
<td>Feature procedure completed, or something needs to be entered.</td>
</tr>
<tr>
<td>Single progress tone</td>
<td>Another station has camped on to this station.</td>
</tr>
<tr>
<td>Message waiting tone</td>
<td>A message is waiting at this single-line station.</td>
</tr>
</tbody>
</table>
NOTE FOR SINGLE-LINE SET USERS: When the procedures tell you to hookflash, quickly press and release the hookswitch. If you press the hookswitch to hang up, hold it down until the SL Hookflash Maximum timer expires (default value is 0.7 seconds); otherwise, the system recognizes it as a hookflash. If using an SLI or ELS, use the FLASH key to perform a hookflash. If using an ELS, you do not need to hookflash when using one of the programmed feature keys.

10. INTERCOM CALLS

10.1 The intercom can be used to place station-to-station calls that can be answered handsfree. Or, it can be used to place private (non-handsfree) calls. A station user that reaches a busy station can camp on, leave a message, or use the Off-Hook Voice Announce feature (if enabled). Other features that apply to both outside and intercom calls, as described later in this section of the manual, include placing calls on hold, call waiting, call transfer, reverse transfer, and call forwarding.

NOTE: Integrated speakerphones, which allow handsfree operation on outside calls and intercom calls, are standard on keysets. ELSs and SLIs do not have speakerphones.

A. PROGRAMMING FOR PRIVATE INTERCOM CALLS

10.2 A station user can place private (non-handsfree) intercom calls by pressing the pound (#) key before dialing the extension number. Or, the station can be programmed to always send and/or receive private calls using “ring intercom always” or “handsfree disable.”

Ring Intercom Always

10.3 A station user can always place private calls by programming the station with the Ring Intercom Always feature code. While this feature is enabled, the called party hears repeating double tones and must lift the handset (or press the SPKR key or IC key) to answer.

10.4 TO PROGRAM THE STATION TO ALWAYS PLACE PRIVATE INTERCOM CALLS(RING INTERCOM ALWAYS):

Keyset: While on hook, press the SPCL key and enter the Ring Intercom Always feature code (367) or the Ring Intercom Always On/Off feature code (377).

Single-Line Set: Lift the handset. Enter a ring Intercom Always feature code (367 or 377) and hang up.

10.5 TO CANCEL RING INTERCOM ALWAYS:

Keyset: While on hook, press the SPCL key and enter the Cancel Ring Intercom Always feature code (368) or the Ring Intercom Always On/Off feature code (377).

Single-Line Set: Lift the handset. Enter a Cancel Ring Intercom Always feature code (368 or 377) and hang up.

Keyset Handsfree Enable/Disable

10.6 A keyset user can always receive private calls by disabling the keyset handsfree answering feature using the disable handsfree feature code, as described in the following paragraph. The keyset user hears repeating double tones when receiving an intercom call and must lift the handset (or press the SPKR and/or IC key) to answer while this feature is enabled.

10.7 TO PROGRAM THE STATION TO ALWAYS RECEIVE PRIVATE INTERCOM CALLS (KEYSETS ONLY):

While on hook, press the SPCL key and enter the Disable Handsfree feature code (310) or the Handsfree On/Off feature code (319).

10.8 TO RESTORE THE HANDSFREE ANSWERING FEATURE:

While on hook, press the SPCL key and enter the Enable Handsfree feature code (311) or the Handsfree On/Off feature code (319).

Private Intercom Override

10.9 If a keyset station is programmed with the Private Intercom Override flag, the user can place a handsfree call even if handsfree mode is disabled or ring intercom always is enabled. The caller simply presses * or # while listening to the repeating ring signal of a private call (see the complete procedures for placing an intercom call on the next page). This feature will not work for non-handsfree message replies, system forwards, or transferred calls.

B. STATION-TO-STATION CALLING

Receiving Intercom Calls

10.10 TO RECEIVE AN INTERCOM CALL ON A KEYSET:

If you hear a double tone and a call announcement (handsfree call), and the SPKR key is lit, respond handsfree or lift the handset. (Display keysets show INTERCOM CALL PROM [or user name] to identify the source of the call. The source identification remains on the display until the user picks up the handset or presses the SPKR or IC key.)
If you hear repeating double tones (private call), lift the handset, or press the SPKR or IC key to respond handsfree. (Display keysets show INTERCOM CALL FROM EX XXX [or user name] to identify the source of the call. The source identification remains on the display until the user answers the call.)

10.11 TO RECEIVE AN INTERCOM CALL ON A SINGLE-LINE SET:

When you hear repeating double tones, lift the handset.

10.12 TO RECEIVE A TRANSFERRED-TO-HOLD INTERCOM CALL AT ANY STATION:

When you hear a page announcing that a call is holding at your station:

Keyset: When the IC key is fluttering, lift the handset and press the IC key. Or, while on hook, press the IC key to speak handsfree. You are connected to the caller.

Single-Line Set: Lift the handset and press the HOLD key or enter the Individual Hold feature code (336). You are connected to the caller.

Placing Intercom Calls

NOTE: When placing an intercom call, begin dialing before the Dial Initiation timer expires. If the timer expires, the system drops the connection and sends repeating reorder tones. This prevents a voice channel from being tied up accidentally.

10.13 TO PLACE AN INTERCOM CALL:

(1) Keyset:

To use the handset: Lift the handset.

To use the speakerphone: While on hook, press the SPKR key or the IC key. The SPKR key lights.

Single-Line Set: Lift the handset. (If the MMF decoders are busy, you hear silence. Hang up and try again.)

(2) If you want to place a private (non-handsfree) call to a keyset, Press the pound (#) key.

(3) Dial an extension number. The number can be 0 for the attendant, a station extension number, or a hunt group pilot number. (Display keysets show the number dialed.) If you dial too slowly, the interdigit timer may expire and you will hear repeating reorder tones.

a. If calling a handsfree keyset station, speak after you hear a double tone.

b. If calling a single-line station, a hunt group, or a keyset with handsfree disabled, you hear repeating double tones until the call is answered. NOTE: If your station has the Private Intercom Override feature enabled, you can press * or # when you are calling a keyset station from another keyset and want the call to ring through handsfree.

c. If placing a private call, you hear repeating double tones until the call is answered.

d. If you dial an invalid number, you hear repeating reorder tones.

e. If the called station is busy, you have the following options:

1. Disconnect: Hang up and try later. If dialing handsfree (keysets only), press the SPKR key to disconnect.

2. Camp on: Do not hang up, your call camps on. When the called station is available, a Private call is placed. Refer to paragraph 10.14 for details.

3. Request a busy station callback (queue): This is similar to camping on except that you hang up and wait for the busy station to be available. For more information, refer to paragraph 10.17.

f. If you hear a repeating signal of four fast tones and a pause, the station is in do-not-disturb. You can use the Busy Station Callback feature or, if enabled on your keyset, use the Do-Not-Disturb Override feature by pressing SPCL and entering the Do-Not-Disturb Override feature code (373).

g. If the called station is busy, in do-not-disturb, or there is no answer, you can leave a message waiting indication with the station itself or with the station's message center. For details, refer to page 4-58.

h. If the called station is a busy digital, IMX 12/24-line, or DVM keyset and if all the necessary conditions for OHKA are enabled, you can announce the call using the Off-Hook Voice Announcement feature. For a complete explanation of this feature, refer to page 4-61.
C. INTERCOM CAMP ON AND BUSY STATION CALLBACK (QUEUE)

Camp On

10.14 When a station user calls a busy station or hunt group, the system sends a busy signal. The caller can wait off hook to camp on (after the Camp-On timer expires) and hear music while waiting until the called station is available. The system periodically sends call waiting signals to the busy station(s). Up to 255 stations can camp on to the same extension number.

10.15 If a station enables do-not-disturb while an intercom call is camped on, the caller is removed from the camped on state and receives do-not-disturb indications (see page 4-69). Intercom callers cannot camp on to a station that is in do-not-disturb.

10.16 **TO CAMP ON AN EXTENSION NUMBER:**

If you hear a busy signal when calling an extension number and wish to camp on, do not hang up. You hear music (if enabled) while camped on. When the station is available, a Private call is automatically placed and you hear repeating double tones until the call is answered.

Busy Station Callback (Queue)

10.17 When a called station is busy or in do-not-disturb, the caller can request a callback (queue) and hang up until the station is available. This can be done before or after the call camps on. Each station can have only one active queue request at a time.

10.18 Queue callbacks must be answered before the Queue Callback timer expires. If a callback is not answered, the queue is cancelled. If the station is busy when called back, the queue request is placed behind any other waiting queue requests.

10.19 **TO QUEUE A STATION:**

(1) **Keyset:** When you hear a busy signal or do-not-disturb signal (a repeating signal of four fast tones and a pause) when calling an extension number, Press the QUE key (or Press SPCL and enter the Queue Request feature code 6) and hang up.

Single-Line Set: When you hear a busy signal or do-not-disturb signal when calling an extension number, Press the ESLS QUE key, or Press the FLASH key (hookflash) and enter the Queue Request feature code (6). Then hang up.

(2) When the queued station is available, you hear a repeating signal of three tones and a long pause. (Display keysets show EX XXX [or user name] IS NOW AVAILABLE.) Lift the handset. A private call is automatically placed to the queued station.

10.20 **TO CANCEL A QUEUE REQUEST (BEFORE THE QUEUED STATION BECOMES AVAILABLE):**

Keyset: While on hook, Press the QUE key (or press the SPCL key and enter the Cancel Queue Request feature code 376).

Single-Line Set: Lift the handset, enter the Cancel Queue Request feature code (376), and hang up.
11. INTER-STATION MESSAGES

11.1 If a station is busy, there is no answer, or it is in do-not-disturb, intercom callers may leave a message waiting indication. The called station’s MSG key flashes (and display keysets show the message source). There are two message options:

- Have the called party return your call. (Display keysets show the source of the message.) When the called party responds to the message indication, a call is automatically placed to your station.

- Leave a message with the called party’s message center. (Display keysets show that a message was left with the keyset user’s assigned message center.) When the called party responds to the message indication, a call is automatically placed to his or her message center.

11.2 To signal that a message is waiting, a called keyset’s MSG key flashes and the display shows the message source. ESLSs are equipped with message waiting lamps that, if enabled in the database, light when the station receives a message. For single-line sets, a system programming option can be enabled that sends six short message waiting tones when the user lifts the handset or presses the hookswitch.

11.3 Any station or hunt group can be designated as the message center for a station. However, a station cannot be programmed as its own message center.

11.4 If the designated message center is a voice mail system, the voice mail system is called after the Message (At Message Center) timer expires. When the voice mail system answers the call, the called party’s “mailbox” is automatically dialed. The caller can then leave a message in the mailbox. The called party’s MSG key flashes and the display shows MESSAGE RECEIVED FROM [voice Mail].

11.5 Each station user can leave message waiting indications at more than one station, but only one per station. A station can receive up to 120 messages, and there can be a maximum of 120 waiting messages in the system.

11.6 When a station is forwarded or has system forwarding, and a caller leaves a message waiting indication after calling the forwarded station, the message indication appears at the original station instead of the station that received the forwarded call.

11.7 On display keysets, the messages can be viewed in the order they were received and answered as desired.

A. LEAVING MESSAGES

11.8 TO LEAVE A MESSAGE WAITING INDICATION:

1. When calling a station, if you hear a busy signal, do-not-disturb signal (repeating signal of four fast tones and a pause), or the call is not answered:

 Keyset: Press the MSG key or press SPCL and enter the Message feature code (365).

 Single-Line Set: Press the ESLS MSG key, or press the FLASH key (hookflash) and enter the Message feature code (365).

2. To have the called party call you: Hang up or press a trunk access key or the IC key to disconnect before the Message timer expires. The station will receive a message waiting indication. (Display keysets show MESSAGE RECEIVED FROM [your station].)

 To leave the message with the called party’s message center: Do not hang up. When the Message timer expires, a private call is automatically placed to the called party’s message center. (If the message center is a voice mail system, the called party’s mailbox is automatically dialed after the voice mail system answers the call.) Leave your message with the message center and hang up. The called station receives message waiting indications. (Display keysets show MESSAGE RECEIVED FROM [message center].) If the message center does not answer the call (that is placed after the timer expires), the station will still be directed to the message center when retrieving the message.

 NOTE: If the station you are calling does not have a designated message center or if the station happens to be your message center, you will hear dial tone immediately after pressing the MSG key. The station will receive a message waiting indication.

Silent Messages

11.9 Silent messages can be placed while on or off hook without making an intercom call to the station.

11.10 TO LEAVE A SILENT MESSAGE:

 Keyset: Press SPCL or lift the handset and enter the Silent Message feature code (378). Then dial the extension number of the desired station. Iff hook, hang up.

 Single-Line Set: Lift the handset and enter the Silent Message feature code (378). Then dial the extension number of the desired station and hang up.
Canceling A Message Waiting Indication That You Left

11.11 Occasionally, you may wish to cancel a message waiting indication that you left before the station user responds to the message. If the message was left with the station’s message center, you cannot cancel the message waiting indication; only the message center can cancel the message using the procedure outlined below.

11.12 TO CANCEL A MESSAGE YOU LEFT:

(1) At your station, press the SPCL key (FLASH key on single-line sets) and enter the Cancel Message feature code (366). (Display shows CANCEL MESSAGE ON EXT #).

(2) Enter the extension number of the station that has the message indication that you wish to cancel. You hear intercom dial tone if off hook, or confirmation tone if on hook. (If a message was not present at the called station, you hear reorder tones).

8. RESPONDING TO MESSAGES

Answering Messages

11.13 TO ANSWER MESSAGES AT A KEYSET:

(1) If your MSG key is flashing (display shows MESSAGE RECEIVED FROM EX XXX [or user name]), lift the handset and press the MSG key. Depending on how the message was left, an intercom call is placed to either the station that left the message or your message center.

NOTE: If, after pressing the flashing MSG key, the called station is unavailable (does not answer a private call, is busy, or is in do-notdisturb), your message key continues to flash (and the display indicates a waiting message) unless you immediately leave a message before hanging up or cancel the message after hanging up. The message waiting indications are cancelled automatically when you are actually connected with the called station.

(2) If the MSG key continues to flash, there is another message (display shows the next message). Either respond to it or cancel it.

11.14 TO ANSWER MESSAGES AT A SINGLE-LINE SET:

(1) ESLS: If your message lamp is lit and/or you hear message waiting tones (six tones) after lifting the handset or hookflashing when the station is idle, press the MSG key. Depending on how the message was left, an intercom call is placed to either the station that left the message or your message center.

Other Single-Line Sets: If you hear message waiting tones (six tones) after lifting the handset or hookflashing when the station is idle, enter the Message feature code (365). Depending on how the message was left, an intercom call is placed to either the station that left the message or your message center.

NOTE: If the called station does not answer, is busy, or is in do-notdisturb, you may hang up or leave a message at that station before hanging up. When the handset is lifted again you will hear message waiting tones, and/or the ESLS message waiting lamp will remain lit (unless you left a message while attempting to retrieve the message or canceled the message after hanging up). The message waiting indications are cancelled when you are actually connected with the called station.

(2) If you hear message waiting tones after hookflashing or when the handset is lifted again (or if the ESLS message waiting lamp remains lit), there is another message. Repeat from step 1.

Canceling A Waiting Message

11.15 TO CANCEL A MESSAGE WITHOUT ANSWERING AT A KEYSET:

(1) If the MSG key is flashing (display shows message), remain on hook and press the asterisk (*) key. The message is cancelled.

(2) If the MSG key continues to flash, there is another message (display shows the next message). Either respond to it or cancel it.

11.16 TO CANCEL A MESSAGE WITHOUT ANSWERING AT A SINGLE-LINE SET:

(1) If you receive message waiting tones and/or the ESLS message waiting lamp is lit, enter the Cancel Current Message feature code (379). The message is cancelled.

(2) If you hear message waiting tones after hookflashing or when the handset is lifted again (or if the ESLS message waiting lamp remains lit), there is another message. Either respond to it or cancel it.
Viewing Waiting Messages

11.17 To View Received Messages at a Display Keyset:

(1) If your MSG key is flashing, one or more messages are waiting. While on hook, press the MSG key repeatedly to view waiting messages.

(2) If desired, you can answer or cancel a message while it is displayed.

Alternate Message Source

11.18 The Alternate Message Source feature was developed to enable a voice mail system to leave messages through a station or hunt group that is designated as its alternate message source. When a message is left on the voice mail system for a station user that has an assigned mailbox, the voice mail unit automatically dials the Message feature code (365) and then dials the extension number of the called station. The called station receives the message waiting indications. If it is a display keyset, the display shows MESSAGE RECEIVED PROM [alternate message source] rather than from the voice mail circuit. An actual intercom call has not been placed; only the message waiting indications are affected. When the station user retrieves the message, an intercom call is placed to the alternate message source.

11.19 Two possible applications for this feature are:

Routing messages through a trunk card circuit: To achieve this function, an unused single-line circuit is programmed as the alternate message source for the voice mail circuits and is then programmed to automatically forward calls to a trunk card circuit that is connected to the voice mail unit. When a user responds to a message left by a voice mail port, the alternate message source station is accessed and the call is automatically forwarded to the trunk card circuit. This leaves the voice mail ports available to receive messages through intercom channels while the trunk card circuit is in use.

Routing messages through a hunt group: To make efficient use of multi-port voice mail units, the ports are placed in a voice mail hunt group and the voice mail hunt group’s pilot number is assigned as the alternate message source for each of the individual voice mail ports. When a user responds to a message left by one of the voice mail ports, the pilot number is automatically dialed and the call circulates through the hunt group until a voice mail port is available. Without the alternate message source hunt group, the call would return only to the port that left the message and would not circulate through the hunt group.
12. OFF-HOOK VOICE ANNOUNCE (OHVA)

12.1 The Off-Hook Voice Announce (OHVA) feature allows an intercom caller (either single-line or keyset) to establish voice contact with the called keyset user, even though the user already has a call in progress on the handset. The called keyset user can then talk freely on both connections, using the handset for the original call and the speakerphone for the OHVA intercom call. Note that the caller on the handset call will be able to hear the OHVA call.

12.2 A PC Data Port Module (PCDPM) must be installed on digital keysets to provide the secondary voice path needed for the OHVA feature. The IMX 12- and 24-line keysets and Inter-Tel/DVK keysets do not require any additional equipment.

12.3 The OHVA option must be enabled in the database. (When the system is in the default state, the system flag for this feature is enabled.) Each digital keyset, IMX 12/24-line keyset, and DVK keyset can be programmed for placing and/or receiving OHVA calls, and each eight-line keyset and single-line set can be programmed for placing OHVA calls, as desired. (Eight-line keysets and single-line sets cannot receive OHVA calls since they do not have secondary voice path circuitry.) For example, all attendants may be allowed to make, but not receive, OHVA calls, while all other stations are allowed to receive, but not place, OHVA calls. Any combination is available through database programming.

12.4 OHVA calls cannot be processed if the secondary voice path or the speakerphone of the called keyset is not available. This occurs when the keyset has a different OHVA call in progress, has an active data call in progress, is on an active handsfree intercom or outside call, has handsfree disabled, has a headset enabled, or is in do-not-disturb. Also, OHVA calls are not possible if the caller is placing a forced private intercom call.

12.5 TO PLACE AN OFF-HOOK VOICE ANNOUNCE CALL:

(1) When an intercom call is placed to a busy OHVA-enabled keyset, do not hang up. You hear busy signals until the Camp-On and OHVA Screening timers expire. (If you hear music after the Camp-On timer expires, conditions for an OHVA call were not met and you are camped-on. See page 4-57.)

(2) When the OHVA Screening timer expires (and if the keyset's secondary voice path is available), you are automatically connected to the called party's speakerphone.

12.6 TO PLACE AN OFF-HOOK VOICE ANNOUNCE CALL (KEYSETS WITH DSS/BLF UNITS ONLY):

NOTE: This method can only be used if the database has been programmed to allow keysets with attached DSS/BLF Units to bypass the camp-on and OHVA Screening timers. See page 5-54 in PROGRAMMING. This is a useful option for attendant stations.

(1) When an intercom call is placed (using the DSS/BLF key) to a busy OHVA-enabled keyset, do not hang up.

(2) Press the DSS/BLF key for that keyset again. If the keyset's secondary voice path is available, you are immediately connected and may speak.

12.7 TO RECEIVE AN OFF-HOOK VOICE ANNOUNCE CALL (OHVA-ENABLED KEYSETS ONLY):

(1) While on a call using the handset, you hear a camp-on tone (display shows CALL ANNOUNCE FROM EX XXX [or user name]). Do nothing. When the OHVA Screening timer expires, you hear a double tone (display shows INTERCOM CALL FROM EX XXX [or user name]). You are connected with the intercom caller via the speakerphone. Your original call remains connected on the handset.

NOTE: If you press the MUTE key while speaking to the caller on the speakerphone, the handset microphone will be muted and the caller on the handset will not hear the OHVA call. Press MUTE again to enable the handset.

(2) To terminate the OHVA call: Press the SPKR key or have the OHVA caller hang up. If you terminate the original call by hanging up the handset, you remain connected to the OHVA call in the handsfree intercom mode.

12.8 TO BLOCK AN OFF-HOOK VOICE ANNOUNCE CALL (OHVA-ENABLED KEYSETS ONLY):

(1) While on a call using the handset, you hear a camp-on tone (displays CALL ANNOUNCE FROM EX XXX [or user name]). To cause the intercom call to camp on, press the SPKR or DND key. The IC key flashes.

(2) If you wish to send do-not-disturb signals to the camped-on call, press the DND key two more times if the DND key was used in step 1, or press the DND key once if the SPKR key was used in step 1.
13. OUTSIDE CALLS

13.1 When a trunk is selected for receiving or placing an outside call, the voice channel is seized and cannot be used by any other station (unless privacy release is enabled, see page 4-74, or the Conferencing feature is used, see page 4-76). If the desired trunk is busy, the station user can camp on or request a callback (queue). Other features that apply to both outside and intercom calls are discussed later in this section of the manual. They include placing calls on hold, call waiting, call transfer, reverse transfer, conferencing, and call forwarding. Refer to page 4-24 for an explanation of outgoing-access, allowed-answer, and ring-in assignments. Refer to page 4-31 for an explanation of trunk groups, auto trunks, and the use of the automatic trunk answer and selection feature codes.

A. PLACING OUTSIDE CALLS

NOTE: When placing a call, begin dialing before the Dial Initiation timer expires. If the timer expires, the system drops the trunk connection and sends repeating reorder tones. This prevents a trunk from being tied up accidentally.

13.2 TO PLACE AN OUTSIDE CALL:

(1) Lift the handset. (Keyset users can dial on hook. Refer to page 4-64.)

(2) Select an outgoing trunk, using one of the methods below. The associated individual trunk or call key flashes slowly. (If on hook, the SPKR key is lit.)

NOTE: You must have outgoing access to a trunk to seize it.

Keyset: Select a line using one of the following methods:

a. Press an individual trunk key for direct access.

b. Enter the automatic trunk selection feature code (89) or press the ANSWER key. If no call is ringing or holding, the system selects the highest-numbered available auto trunk.

c. Enter a select trunk group feature code (801–847) or press a trunk group key. This selects a trunk in the chosen trunk group.

d. Refer to the Least-Cost Routing (LCR) procedure on the next page.

Single-Line Set: Select a line using one of the following methods:

a. Enter the automatic trunk selection feature code (89).

b. Enter a Select Trunk Group feature code (801–847) or press a trunk group key.

c. Refer to the Least-Cost Routing (LCR) procedure on the next page.

(3) You hear one of the following signals:

a. Outside dial tone: If you wish to use your class-of-service account code, press SPCL or FLASH (hook flash) and enter the Optional Account Code feature code (390) then enter your account code. Your usual SCOS is enabled for this call. To dial, manually dial, speed dial, or redial the desired telephone number. (Display keysets show the numbers dialed. When the Valid Call timer expires, the display shows the elapsed time and call cost.) If you hear repeating reorder tones, you dialed a restricted number. Also, if you dial too slowly and the Interdigit timers expire, the call may be dropped, and you will hear repeating reorder tones. If using a keyset that is on hook, you may lift the handset to speak privately. Go to the next step. On keysets, an individual trunk or call key flashes slowly.

b. Single progress tone: Enter a forced account code (refer to page 4-66). The display shows ACC#. You hear outside dial tone when the code is accepted. On keysets, an individual trunk or call key flashes slowly. If you entered your class-of-service account code, your usual SCOS is enabled for this call. Go to the next step.

c. Repeating reorder tones: You are restricted from the trunk group chosen; choose another trunk group. Or, you are restricted to using LCR only; try again using LCR (see next page). If your call has been blocked because the weekly toll limit has been exceeded, the display shows CALL FAILED – TOLL LIMIT EXCEEDED.

d. Intercom dial tone: You have accessed a dial-repeating E&M trunk. You can dial an extension number to reach a station on the other telephone system. Or, you can enter a valid trunk access code (determined by the other telephone system) and dial an outside telephone number, if allowed.
e. **Ring signal:** You have accessed an auto ring-in E&M trunk. When the station user answers, you can ask to be transferred to the desired extension number or to an outside telephone number.

f. **Busy signal:** The chosen trunk, trunk group, or E&M destination is busy. Camp on (see page 4-57), use the Busy Trunk Callback (Queue) feature (see page 4-57), or select another trunk or trunk group.

13.3 TO PLACE A CALL USING LEAST-COST ROUTING:

1. Lift the handset.

2. **Keyset:** Enter the Least-Cost Routing feature code (9), or press a call key, the OUTGOING key, or the LCR key. You hear a single progress tone followed by silence if LCR is not “transparent.” You hear dial tone if LCR is transparent.

 Single-Line Set: Press the SLI LCR key, the ESLS OUT key, or enter the Least-Cost Routing feature code (9). You hear a single progress tone followed by silence if LCR is not “transparent.” You hear dial tone if LCR is transparent.

 NOTE: If required, enter a forced account code. (Display keysets show ACC#.) You hear a progress tone when the code is accepted. **If your enter your class-of-service account code,** your usual SCOS will be enabled for this call.

3. Dial the telephone number. Use the MUTE key to backspace if you make a mistake. Include the area code, if needed. **If desired, press the** pound (#) or asterisk (*) key after dialing to immediately proceed; otherwise there is a slight delay. You hear one of the following signals.

 NOTE: When dialing 911 or 1911 emergency numbers, always press # or * after dialing so that the call is processed as quickly as possible.

 a. **Single progress tone (followed by dial tone and digits being dialed, if programmed and if LCR is not transparent):** Your call is being placed. The associated individual trunk or call key flashes slowly.

 b. **Busy signals, then music:** All of the trunks in the least-expensive facility group are busy. Do one of the following:

 1. **To wait for the next facility group:** Continue to wait off hook. If programmed, the next facility group is checked for an available trunk after the LCR Advance timer expires (you hear a progress tone and remain camped on if your station is programmed for LCR facility group camp-on). When the system accesses a trunk, you hear dial tone (and possibly digits being dialed). The associated individual trunk or call key flashes slowly on keysets.

 2. **To request a callback (queue):** If your station is enabled with LCR facility group camp-on, request a busy trunk callback (refer to paragraph 13.11). The system places your station in a queue for a trunk in the least-expensive facility group. When you hear a repeating signal of three tones and a long pause (and display shows GRP #XX [or group name] IS NOW AVAILABLE), lift the handset; keyset users must also press the fast flashing call key or individual trunk key (or the ANSWER key). You hear dial tone and digits being dialed. The associated individual trunk or call key flashes slowly.

 c. **Repeating reorder tones:** You are restricted from the number dialed or from using the route selected. If your call has been blocked because the weekly toll limit has been exceeded, the display shows **CALL FAILED - TOLL LIMIT EXCEEDED.**

Page 4-63
B. RECEIVING OUTSIDE CALLS

13.4 TO RECEIVE AN OUTSIDE CALL:

Keyset:

(1) When one of the following occurs, lift the handset:
 a. Repeating long tones and a call key or individual trunk key is flashing at the fast rate: A call is ringing in. (Display keysets show CALL RINGING IN ON GRP #XX [or group name].)
 b. Intercom call or page announcing a call and a call key or individual trunk key is flashing at the fast rate: A call has been transferred to your station. (Display keysets show GRP #XX [or group name] TRANSFER FROM EX XXX [or user name].)
 c. An individual trunk key is flashing at the fast rate, there is no ring signal, and you have allowed answer for the trunk. You may hear ringing on another keyset: Press the fast-flashing individual trunk key as described below or enter the Automatic Trunk Answer feature code (350). The ANSWER key cannot be used to answer these calls. (Skip step 2.)

(2) Press the fast-flashing individual trunk or call key or press the ANSWER key. The individual trunk or call key flashes slowly during the call.

Single-Line Set:

If you hear a page announcing a transfer and/or repeating long tones, a call is ringing in. Lift the handset; you are connected to the caller.

If you hear a call ringing in on another station and you have allowed answer, lift the handset and enter the Automatic Trunk Answer feature code (350). You are connected to the lowest-numbered trunk ringing in for which you have allowed answer.

13.5 TO RECEIVE A CALL THAT WAS TRANSFERRED TO HOLD:

When you hear a page announcing that an outside call is holding at your station (a call key or individual trunk key is fluttering):

Keyset: Lift the handset and press the fluttering call key or individual trunk key, or press the ANSWER key. You are connected to the caller.

Single-Line Set: Lift the handset and press the HOLD key or enter the Individual Hold feature code (336). You are connected to the caller.

C. KEYSET ON-HOOK DIALING AND MONITORING

13.6 A keyset user can dial numbers while on hook, monitor the call (listen to a recorded message, wait for the call to be answered, or wait on hold), and then speak handsfree when answered.

13.7 TO DIAL ON HOOK:

(1) While on hook, press an available individual trunk key or trunk group key, the OUTGOING key, or the ANSWER key. Or, enter a trunk access code (9, 89 or 8014347). The SPKR key lights, you hear outside dial tone (unless using LCR), and the associated call key or individual trunk key flashes slowly.

(2) Begin dialing the telephone number before the Trunk Pre-Select timer expires. Then press the pound (#) or asterisk (*) key to signal the system to begin sending the dialed digits, or wait for the Short Interdigit timer to expire. (Display keysets show number dialed, after the Valid Call timer expires, it shows elapsed time and call cost.)

(3) To use the speakerphone: Speak handsfree when the party answers.

To use the handset for privacy: Lift the handset and speak. The SPKR key goes off. You may later transfer back to the speakerphone by pressing the SPKR key and hanging up.

(4) To terminate the call: If on hook, disconnect by pressing the SPKR key. If off hook, hang up.

13.8 TO USE ON-HOOK MONITOR:

(1) While on a call, press the SPKR key and hang up. If you do not want to be heard, press the MUTE key or press SPCL and enter the Microphone Mute On/Off feature code (314). You can hear the other party (if the microphone is muted, you cannot be heard). The SPKR key is lit (and the MUTE key is lit if the microphone was muted).

(2) To return to the conversation: You may lift the handset or speak handsfree. (If the microphone was muted, press the lit MUTE, key to speak. The MUTE key goes off.)
D. TBUNKCAMPON AND BUSY TRUNK CALLBACK (QUEUE)

camp On

13.9 When a station user attempts to access a busy outgoing trunk or trunk group, the system sends a *busy* signal. The station user can wait off hook to camp on until the trunk is available.

13.10 TO CAMP ON TO AN OUTGOING TRUNK GROUP:

1. When you hear a busy signal after selecting an outgoing trunk, do not hang up. You camp on and hear music until a *trunk* in the trunk group is available.

2. When you hear a single progress tone and outside dial tone, dial the desired telephone number. The associated call key or individual trunk key flashes slowly.

Busy Trunk Callback (Queue)

13.11 If you attempt to access a busy outgoing trunk group and hear a busy signal or if you camp on, you can request a callback (queue) and hang up until the system signals your station that a trunk in the trunk group is available. Each station can place only one queue request at a time. If a second request is made, the first request is cancelled and replaced by the second request.

13.12 Queue callbacks must be answered before the Queue Callback timer expires. If a callback is not answered, the queue is cancelled. If the station is busy when a trunk in the queued trunk group becomes available, the queue request is placed at the end of the queue list.

13.13 TO QUEUE A BUSY OUTGOING TRUNK:

1. **Keyset:** When you hear a busy signal while selecting a trunk or if you are camped on, press the **QUE** key (or press the **SPCL** key and enter the Queue Request feature code 6) and hang up.

 Single-Line Set: When you hear a busy signal while selecting a trunk or if you are camped on, press the **ESLS QUE** key; or press the **FLASH** key (hookflash) and enter the Queue Request feature code (6). Hang up.

2. Your station rings (a repeating signal of three tones and a long pause) when the queued trunk is available. (Display **keysets** show **GRP #XX** [or group name] IS NOW AVAILABLE.)

3. **Keyset:** Lift the handset, press the fast-flashing call key, individual trunk key, or the **ANSWER** key, and dial the desired telephone number. The associated call key or individual trunk key flashes slowly. If LCR was used when the call was placed originally, the number is dialed automatically.

 Single-Line Set: Lift the handset and dial the desired number. If all DTMF decoders are busy when your station is called back, the system sends repeating reorder tones instead of dial tone and the queue is cancelled. If LCR was used when the call was placed originally, the number is dialed automatically.

13.14 TO CANCEL A QUEUE BEFORE THE CALLBACK:

Keyset: While on hook, press the **QUE** key (or press the **SPCL** key and enter the Cancel Queue Request feature code 376).

Single-Line Set: Lift the handset. Press the **ESLS QUE** key or enter the Cancel Queue Request feature code (376). Hang up.
E. ACCOUNT CODES

13.15 There are four types of account codes in the 256 System. All account codes are assigned the same character length (4-S characters) in database programming. The three types are as follows:

- **Standard account** codes automatically appear in the SMDR report (if programmed) to identify the station that answered or initiated the call. Up to 128 standard account codes can be defined for the system. Stations can then be assigned one of the 128 account codes during station programming.

- **Forced account codes are programmed** on a station-by-station basis. If required, a forced account code must be entered before the station user is given access to a selected outgoing trunk group (refer to page 4-62, step 3 for procedures). Up to 256 forced account codes can be assigned in the database programming. The account code entered by the station user must match any one of the programmed forced account codes before trunk access is granted. The forced account code appears in the SMDR account code field.

- **Forced account codes for toll calls only** can be programmed for stations with LCR-Only toll restriction in day and night modes. When this account code type is enabled, users only have to enter an account code if the system detects that a toll call has been dialed when LCR is used.

- **Optional account** codes are used to identify calls to and from customers for billing purposes. They can be entered at any time during a call. These user-defined codes are not preprogrammed, but must be the same length as the standard and forced account codes. If entered, optional account codes are printed in the SMDR/SMDA report for that call in place of standard or forced codes that may have been used.

- **Class-of-service account** codes: If the system-wide class-of-service account code option is enabled, individual stations can be assigned account codes that the users can enter at other stations to enable their usual SCOS. When a user is at a station other than his own, he can enter the class of service account code before placing an outgoing call. The system will then check the station circuit that is associated with that account code and apply the appropriate SCOS (it will not apply the trunk access permission or LCR advance class of service). The class-of-service account code can be entered when the system requests a forced account code (as described in paragraph 13.2 on page 4-62) or by using the Optional Account Code feature code (described below). The SCOS is enabled for one call only. When the call is completed, the station’s normal SCOS goes back into effect.

13.16 Forced account codes can be validated or non-validated.

- **Validated**: If the entered code matches one of the pre-programmed forced account codes in the database, the call is allowed. If the code does not match, the call is blocked.

- **Non-Validated**: The code is not checked against any lists and the call is allowed as soon as the code is entered.

13.17 TO ENTER AN OPTIONAL ACCOUNT CODE WHILE ON AN OUTSIDE CALL:

1. **Keyset**: Press the SPCL key and enter the Optional Account Code feature code (390). (Display keysets show ACCT#.) The outside party does not hear you enter the code.

 - **Single-Line Set**: Press FLASH and enter the Optional Account Code feature code (390). The outside party hears music until step 2 is completed.

 - Enter the account code using the keypad; **keyset** users may press an SD key to enter an account code number that has been stored in an outside speed-dial number location. (Display keysets show numbers.) You hear a single progress tone when the code is accepted. Single-line users are reconnected when the system accepts the account code. (If an account code is entered that has fewer than the programmed number of digits, single-line users will return to the call after the Short Interdigit timer expires. **Keyset** users will hear reorder tones. The code will not appear in the SMDR.)
14. PLACING CALLS ON HOLD

14.1 There are several ways to place intercom and outside calls on hold. While on hold, the caller hears music (if equipped). There are five hold applications in the 256 System:

- **Individual hold** places the call on hold at one station. It can then be picked up directly at that station or it can be picked up at another station using the Reverse Transfer feature.

- **System hold** places the call on hold so that it can then be picked up directly at any keyset station that has an individual trunk key for the associated trunk or at the station that placed it on hold using the individual trunk key or call key. (Single-line set users cannot place calls on system hold or pickup calls already on system hold.) Attempting to place a conference on system hold will place the caller(s) on individual hold. Intercom calls cannot be placed on system hold.

- **Consultation hold** allows a single-line set user to pause during a call, use other system features, and then return to the caller by pressing the **FLASH** (hookflashing). If a single-line set user attempts to hang up after placing a call on consultation hold, the call recalls the station.

- **Call splitting** allows a station user to place two or more calls on individual hold and then easily split between the calls.

- **Skate-to-hold**, if enabled in the database, allows keyset users to place calls on individual hold when another key is pressed during a call (instead of pressing the HOLD key). When the system is in the default state, pressing another key disconnects calls (skate-to-disconnect).

14.2 If an outside call remains on hold until the Hold timer expires, it recalls the station. If it is still unanswered when the Recall timer expires, it recalls the station’s attendant. If the attendant does not answer the recall before the Abandoned Call timer expires, the call is disconnected by the system. (If the station does not have an attendant, or the system is in night mode, the call recalls the station that placed it on hold until the Abandoned Call timer expires and the call is disconnected.) Intercom calls do not recall the attendant.

NOTE: Keyset users can avoid the Hold timer by muting the microphone during a call instead of placing the call on hold. If this is done, the caller will not hear music-on-hold and will not recall the station.

A. **INDIVIDUAL HOLD**

14.3 TO PLACE AN INTERCOM OR OUTSIDE CALL ON INDIVIDUAL HOLD:

1. While on the call:
 - **Keyset**: Press the HOLD key (or press the SPCL key and enter the Individual Hold feature code – 336). You hear intercom dial tone and the call key, individual trunk key, or **IC** key flutters. NOTE: If the system is programmed with the skate-to-hold option, pressing another key will place the call on hold.
 - **ESLS**: Press the HOLD key. You hear intercom dial tone.
 - **SLI**: Press the **FLASH** key (hookflashing). Press the HOLD key or enter the Individual Hold feature code (336). You hear intercom dial tone.
 - **Other Single-Line Sets**: Hookflash and enter the Individual Hold feature code (336). You hear intercom dial tone.

2. Hang up or place another call.

14.4 TO RETURN TO THE CALLER ON INDIVIDUAL HOLD:

Keyset: Lift the handset. Press the fluttering IC key for intercom calls, or press the fluttering call key or individual trunk key (or the **ANSWER** key) for outside calls.

Single-Line Set: Lift the handset and press the HOLD key or enter the Individual Hold feature code (336).

B. **SYSTEM HOLD**

NOTE: Intercom calls cannot be placed on system hold. If you attempt to do so, you will hear reorder tones.

14.5 TO PLACE AN OUTSIDE CALL ON SYSTEM HOLD:

1. While on a call, press the SPCL key and enter the System Hold feature code (335). You hear intercom dial tone and the associated call key or individual trunk key flutters.

2. Hang up or place another call.

14.6 TO ACCESS A CALL ON SYSTEM HOLD:

At any keyset that shows a fluttering individual trunk key for the call or at the station that placed the call on hold that shows a fluttering individual trunk or call key, lift the handset and press the fluttering key.
C. **CONSULTATION HOLD**

14.7 **TO USE CONS-ON HOW (SINGLE-LINE SETS ONLY):**

(1) While on a call, press the PLASH key (hookflash) to place the call on consultation hold. You hear two short tones followed by dial tone.

(2) You can call another station or enter a feature code. If you attempt to access an outgoing trunk, you will hear reorder tones.

NOTE: If you hang up while the call is on consultation hold, the call will immediately recall your station. If you hang up after dialing an extension number, the call will transfer to that station.

(3) Return to the caller on hold by pressing the FLASH key (hookflashing).

D. **CALL SPLITTING**

14.8 **KEYSET CALL SPLITTING:**

NOTE: The feature code named Keyset Call Splitting (338) is used only in the Call Transfer feature. To split between calls on individual hold, use the following procedure. Refer to the call transfer instructions on page 4-70.

(1) When two or more calls are on hold, access the first call on hold by pressing the fluttering call key, individual trunk key, or IC key.

(2) If the system is programmed to place calls on hold when another key is pressed, skip this step. Place the call back on hold by pressing the HOLD key (or pressing the SPCL key and entering the Individual Hold feature code - 336). You hear intercom dial tone and the key flutters again.

(3) **Access** the next call by pressing another fluttering call key, individual trunk key, or the IC key.

(4) Steps 2 and 3 can be repeated as desired.

14.9 **SINGLE-LINE SET CALL SPLITTING:**

(1) Place one or more calls on hold:

ESLS: Press the HOLD key for each call. While on the last call, go to the next step.

SLI and Other Single-Line Sets: Press the FLASH key (hookflash). Then press the HOLD key or enter the Individual Hold feature code (336) for each call. While on the last call, go to the next step.

(2) While on the last call, when you are ready to split between calls on hold, press the FLASH key (hookflash) and enter the Call Splitting feature code (337). That call is placed on hold and you are connected to the first call that was placed on hold in the first step.

(3) Press the FLASH key (hookflash) and enter the Call Splitting feature code (337) every time you wish to be connected to the next holding call. The current call returns to the end of the list. After pressing the FLASH key, wait at least 2 seconds before pressing it again.

(4) Hang up to disconnect the current call and cancel call splitting. You can then place or receive calls or return to any remaining calls on hold by lifting the handset and pressing the HOLD key (or entering the Individual Hold feature code - 336).

E. **HOLD RECALL**

14.10 **TO ANSWER A HOLD RECALL**

When you hear a repeating signal of four tones and a pause (display shows HOLD RECALL PROM XXX [or user name] or GP #XX [or group name]), lift the handset. Single-line sets are automatically connected; keyset users may need to press the flashing call or individual trunk key.

F. **MICROPHONE MUTE**

14.11 Whether handsfree or using the handset, you can temporarily turn off your microphone while on a call. The call is still connected; you can hear the other party, but they cannot hear you. Since the call is not placed on hold, no timer is activated. The MUTE key is lit when the microphone is muted; the light will go off when you press the MUTE key to re-enable the microphone.

14.12 **If you press the MUTE key** while speaking to an off-hook voice announce caller on the speakerphone, the handset microphone will be muted and the caller on the handset will not hear the OHVA call. When you press MUTE again, the handset microphone is re-enabled.

14.13 **MUTING THE KEYSET MICROROPHONE:**

(1) To temporarily turn off your microphone while on a call, press the MUTE key (or press SPCL and enter the Microphone Mute On/Off feature code [314]), The MUTE key is lit. If off hook, do not hang up (unless you press the SPKR key first).

(2) Press the lit MUTE key or enter the feature code to turn the microphone on. The MUTE key goes on.
15. CALL WAITING

15.1 While a station is in use, incoming intercom and outside calls camp on until the busy station is available. The busy party hears a single camp-on tone every 15 seconds (unless the Camp-On Tone timer is changed or camp on tones are disabled at the station). Three station programming flags allow camp-on tones to be enabled or disabled for incoming intercom and outside calls, E&M calls, and/or DID calls.

15.2 TO RESPOND TO A WAITING CALL USING A KEYSET:

If, while on a call, you hear a single camp-on tone and see the IC key or a call key or individual trunk key flashing fast, you have a call waiting. (Display keysets show CALL RINGING IN ON GRP #XX [or group name] or INTERCOM CALL FROM EX XXX [or user name] or EX XXX [or user name] TRANSFER FROM EX XXX [or user name] or XXX RECALL FROM XXX each time you hear the tone.) Do one of the following:

1. If you wish to end the current call, hang up. A waiting outside call rings as an incoming call; an intercom call rings as a private call. Answer as usual.

 If you wish to place the current call on hold, press the HOLD key (or press the SPCL key and enter the Individual Hold feature code 336). The call or individual trunk key or IC key flutters (unless an intercom call is camped on; the IC key flashes fast until the camped on call is picked up, then the IC key flutters). Access the waiting call by pressing the flashing call or individual trunk key or IC key.

 2. To return to the held call: Press the fluttering individual trunk key, call key, or IC key.

15.3 TO RESPOND TO A CALL WAITING USING A SINGLE-LINE SET.

When you hear a single camp-on tone every 15 seconds while you are on a call, another call is waiting. Do one of the following:

1. If you wish to end the current call, hang up. The call rings at your station. Lift the handset.

 If you wish to place the current call on hold do the following. You will be connected with the waiting caller.

 ESLS: Press the HOLD key. You are connected with the waiting caller.

 SLI and Other Single-Line Sets: Press the FLASH key (hookflash), then the HOLD key or enter the Individual Hold feature code (336). You are connected with the waiting caller.

2. To return to the first call on hold:

 If you wish to end the current call, hang up. Return to the holding call by lifting the handset and pressing the HOLD key or entering the Individual Hold feature code (336).

 If you wish to place the current call on hold and connect with the original call:

 ESLS: Press the HOLD key twice.

 SLI and Other Single-Line Sets: Press the FLASH key (hookflash). Then the HOLD key or enter the Individual Hold feature code (336) twice.

15.4 TO MOVE A CAMPED-ON INTERCOM CALL TO DO-NOT-DISTURB:

While on a call, you hear call waiting signals:

Keyset: Press the DND key or enter a Do-Not-Disturb feature code (370 or 372). The DND key lights. The intercom caller is no longer camped on and receives do-not-disturb indications.

Single-Line Set: Press the FLASH key (hookflash) and enter a Do-Not-Disturb feature code (370 or 372). The intercom caller is no longer camped on and receives do-not-disturb indications. Press the FLASH key (hookflash) again to return to the current call.
16. CALL TRANSFER

16.1 There are several feature codes for transferring intercom and outside calls to other stations or to outside telephone numbers. The call transfer options are as follows:

- **Transfer CO call:** You can transfer outside calls to another station or to an outside telephone number.
- **Transfer intercom call:** Intercom calls can be transferred to another station or to an outside telephone number.
- **Transfer to hold:** Either intercom or outside calls can be transferred to another station and placed on hold using this feature.

16.2 In addition, transfer-to-park locations can be set up by the installer. A transfer-to-park location is a station circuit with an extension number that is not equipped with a station instrument. Calls can be transferred to these locations and then reverse transferred by any station user. If all station circuits are equipped, you cannot assign a transfer-to-park location.

A. TRANSFER TO AN EXTENSION NUMBER

16.3 TO TRANSFER A CALL TO AN EXTENSION NUMBER:

(1) **Keystet:**

If on an outside call, press the XFR key (or press the SPCL key and enter the Transfer CO Call feature code — 345). You hear intercom dial tone.

If on an intercom call, press the SPCL key and enter the Transfer Intercom Call feature code (346). You hear intercom dial tone.

(2) Dial the desired extension number or press a SPD/BLF key. The number can be a station extension number, 0 for the attendant, a hunt group pilot number, the voice mail system access number, or a transfer-to-park location number.

a. **Transfer to a station that is forwarded to voice mail:** You hear repeating double tones and the display shows DEST FORWARDED TO VOICE MAIL. You can then hang up to complete the transfer, or return to the caller on transfer hold by doing one of the following:

For an outside or intercom call, press the XFR key twice (or press the SPCL key once and enter the Transfer Call feature code [345] twice).

b. **Transfer to voice mail:** You hear a single tone and the system waits for you to enter the mailbox number (display shows ENTER VOICE MAILBOX #). Enter the desired mailbox number.

If you do not enter a mailbox number before you hang up, the caller will be connected to the voice mail unit and must enter the mailbox number after listening to the introductory voice prompts.

If the system is checking for a valid mailbox number and you enter a valid mailbox number, the transfer is completed to voice mail (display shows CALL TRANSFERRED TO VOICE MAIL).

If the system is checking for a valid mailbox number and the number you entered is invalid, you hear reorder tones (display shows INVALID MAILBOX NUMBER ENTERED) and you must enter the correct number.

If the system is not checking for a valid mailbox number, hang up to complete the transfer.

c. **Transfer-to-park:** If transferring to a transfer-to-park location, hang up to complete the transfer, or transfer the call to hold as described in the second part of step 5. Then page the desired party and announce the call. The party must reverse transfer the call. Note that if the call is not answered, it will recall your station if transferred directly or will recall the called transfer-to-park location’s attendant if transferred to hold.

d. **Transfer** to a hunt group: If transferring the call to a hunt group, the transfer is automatically completed when you dial the pilot number. Hang up.

(3) If desired, wait for an answer and announce the call. One of the following occurs:

a. **If the call is accepted, go to the next step.**

b. **If the call is refused**, return to the caller:

Keystet: Do one of the following:

For an outside or intercom call, press the XFR key twice (or press the SPCL key once and enter the Transfer Call feature code [345] twice).

For an outside call, press the call key or individual trunk key.
Single-Line Set: press the FLASH key (hookflash) once to disconnect the call (or wait for the other party to hang up). Then press the PLASH key again (hookflash) to return to the caller on transfer hold.

c. If the station is busy or there is no answer:

To return to the caller: Refer to step b above.

To try another station: press the XFR key (or press the SPCL key and enter the Transfer CO feature code 345, or the Transfer Intercom feature code 346) and dial another extension number.

To complete the transfer: Skip to step 5. Then page the party to announce the transfer.

(4) (KEYSETS ONLY) If it becomes necessary to split between the called party and the caller waiting to be transferred, you may use the Keyset Call Splitting feature code as follows:

a. Press the SPCL key and enter the Keyset Call Splitting feature code (338). The station waiting to receive the transfer is placed on hold and you are connected to the party waiting to be transferred.

b. Press the SPCL key and enter 338 again to speak to the station user waiting to receive the transfer and place the party to be transferred on hold.

c. Hang up to complete the transfer.

(5) To disconnect and complete the transfer:

Hang up, press another call key, or press the IC key to complete the transfer. The call will ring at the station. (Receiving station's display shows XXX TRANSFER FROM XXX or GRP #XX TRANSFER FROM XXX.) If the station is busy, the call camps on and sends call waiting signals.

To transfer the call to hold (KEYSETS ONLY): Press the HOLD key (or press the SPCL key and enter the Individual Hold feature code 336) to place the call on hold at the called station. The call will not ring or send call waiting signals until the Hold timer expires.

To transfer the call to hold, then make a page (KEYSETS ONLY): Press the PAGE key. The call will automatically be transferred to hold at the called station and you will be connected to the paging network. Enter the desired paging zone code and make your announcement before the Paging timer expires.

B. TRANSFER TO HOLD

16.4 A call transferred to hold at a station does not ring or send a display message while holding. After the Hold timer expires, the station rings or sends call waiting signals. Also, calls transferred to hold do not recall the transferring party; they recall the receiving party's attendant if unanswered after the Hold and Recall timers expire. Besides the Procedure listed below, Keyset users have an alternative method for transferring calls to hold; refer to step 5 in the previous procedure.

16.5 TO TRANSFER A CALL TO HOLD:

(1) Keyset: While on a call, press the SPCL key and enter the Transfer To Hold feature code (347).

Single-Line Set: While on a call, press the PLASH key (hookflash) and enter the Transfer To Hold feature code (347).

(2) Dial the desired extension number.

(3) If desired, wait for an answer and announce the call.

(4) Hang up to complete the transfer.

16.6 TO PICK UP A CALL THAT WAS TRANSFERRED TO HOLD:

If a call was transferred to hold at your station:

Keyset: When your IC key or a call key or individual trunk key is fluttering, lift the handset and press the fluttering key (or the ANSWER key for an outside call). You are connected to the caller.

Single-Line Set: Lift the handset and press the HOLD key or enter the individual Hold feature code (336). You are connected to the call.

c. TRANSFER RECALLS

16.7 If an outside call is transferred to another station and is not answered before the Transfer-Available or Transfer-busy timer expires (and if it was not transferred to hold), the call recalls the transferring station and rings until the Recall timer expires. If still unanswered after the Recall timer expires, it recalls the transferring party’s attendant. If the attendant does not answer before the Abandoned Call timer expires, the call is disconnected by the system. If the transferring station has no attendant, the call recalls at the transferring station until the Recall and Abandoned Call timers expire and the call is disconnected by the system. Transferred intercom calls will not recall the transferring station or the attendant.

16.8 TO ANSWER A TRANSFER RECALL:

Keyset: If you hear a repeating signal of four tones and a pause (display shows GRP #XX [or
FEATURES
Issue 1, November 1994
INTER-TEL PRACTICES
IMX/GMX 256 INSTALLATION & MAINTENANCE

[Image 100x708 to 293x719]

While on an intercom call, press the SPCL key and enter the Transfer Intercom Call feature code (346).

Single-Line Set: While on a call, Press the FLASH (hookflash) or direct trunk feature code (345) or intercom feature code (346).

(2) Select an outgoing trunk group or E&M trunk group, and continue to the next step. If you hear a busy signal, select another trunk group or camp on and wait for a trunk or, return to the caller as follows:

Keyset: Press the fluttering call key or individual trunk key for an outside call; for an outside or intercom call, press the XFR key twice (or press the SPCL key once and enter the Transfer Call feature code [345] twice).

Single-Line Set: Press the FLASH key (hookflash) twice.

(3) If using an outgoing trunk: Dial the desired telephone number.

If using an E&M trunk Do one of the following:

a. If you hear ringing, wait for the other telephone system to answer. Depending on how the call is answered, ask to be transferred to the desired station or outside telephone number or dial the extension number or trunk access code.

b. If you hear dial tone and wish to transfer the call to an extension number on the other telephone system, dial the desired extension number.

c. If you hear dial tone and wish to transfer the call to an outside telephone number, dial the other telephone system’s trunk access code and the desired telephone number.

(4) One of the following occurs:

a. If you answered, announce the call. Hang up, press another call key or individual trunk key, or press the IC key to complete the transfer.

b. If the number is busy or there is no answer, return to the caller as described in step 2.

c. If you hear repeating reorder tones, you dialed a restricted telephone number. Return to the caller as described in step 2.
17. REVERSE TRANSFER AND GROUP CALL PICK-UP

17.1 Calls ringing or recalling at a station, a hunt group, or a transfer-to-park location can be picked up at any other station, using these features. Calls on hold can also be picked up from stations and from transfer-to-park locations.

A. REVERSE TRANSFER

17.2 If more than one call is ringing or holding at the station, a priority list determines which call is reverse transferred. Calls are selected in the following order, and if more than one call of the same type is at the station, the calls are picked up in the order they were received:

1. Outside calls
 a. direct ring-in calls
 b. transferred and camped-on calls
 c. recalls
 d. calls on individual hold

2. Intercom calls
 a. ringing calls (incoming, transferred, or recalling)
 b. holding calls

17.3 TO REVERSE TRANSFER A CALL FROM A STATION OR THE TRANSFER-TO-PARK LOCATION:

 (1) Lift the handset and enter the Reverse Transfer (Call Pick-Up) feature code (4). You hear a progress tone.

 (2) Dial the extension number of the station where the call is ringing or holding.

 (3) Keyset: If the system is not programmed for direct connection of reverse transferred calls, press the flashing call, individual trunk, or IC key for a ringing call, or press the fluttering call, individual trunk, or IC key for a call on hold. (For outside calls that are ringing or holding, the ANSWER key may be used instead.)

 Single-Line Set: You are automatically connected to the caller.

17.4 TO REVERSE TRANSFER A CALL USING THE XFR KEY (KEYSETS ONLY):

 (1) To pick up a call that is ringing or holding at another station, lift the handset and dial the extension number of the station where the call is ringing or holding.

 (2) Press the XFR key (or press the SPCL key and enter the Transfer CO Call feature code — 345).

 (3) If the system is not programmed to automatically connect reverse transferred calls, press the flashing or fluttering call, individual trunk, or IC key. (For outside calls that are ringing or holding, the ANSWER key may be used instead.)

B. GROUP CALL PICK-UP

17.5 A call ringing in to a hunt group or one of its stations can be picked up at any other station. Users can enter the Reverse Transfer feature code (4) and dial a hunt group’s pilot number to pick up a call that is ringing in to the hunt group’s pilot number or to any station within that hunt group.

17.6 The system follows the priority list shown below to determine which call is picked up. The system follows the hunt group list (always beginning with the first station on the list) to check each station in the hunt group and then the overflow station for one type of call at a time. If there is more than one call of the same type at the selected station, the call that was received by the station first is picked up. Camped-on calls, holding calls, and queue callbacks cannot be picked up.

 1. Ringing outside calls
 a. direct ring-in calls
 b. transferred calls
 c. recalls

 2. Ringing intercom calls (incoming, transferred, or recalling)

17.7 TO PICK UP A CALL THAT IS RINGING AT A HUNT GROUP:

NOTE: This feature cannot be performed using the XFR key.

 (1) Lift the handset and enter the Reverse Transfer feature code (4). You hear a single progress tone.

 (2) Dial the pilot number of the hunt group where the call is ringing.

 (3) Keyset: If the system is programmed for direct connection of reverse transferred calls, you are immediately connected. If not, press the flashing call or individual trunk key or IC key.

 Single-Line Set: You are automatically connected to the call.
18. CALL PRIVACY AND PRIVACY RELEASE

18.1 Call privacy restricts voice channel access to one station at a time. When a voice channel is selected, no other station user can gain access to the channel. However, access to and control of a channel can be passed to another station using the Conference or Transfer features.

18.2 In addition, the database contains an installer-programmable option that can be set to enable call privacy on all trunks or to allow keyset users to join an ongoing call by pressing the lit individual trunk key (see PROGRAMMING, page 5-54). Single-line set users cannot join calls, but keyset users can join a call that involves a single-line station. When the system is in the default state, calls on all trunks are private and any user attempting to access a busy trunk will hear busy tones.

18.3 When the Privacy Release feature is enabled, any keyset user may join an ongoing outside call by lifting the handset (or pressing the SPKR key) and pressing the lit individual trunk key (cannot use a call key or trunk group key). Exceptions to this are established conference calls, data calls, calls on individual hold, DISA calls, and calls forced private by the user. If desired, as many as seven stations can participate in one call. When a station user hangs up, only that user is disconnected; all other parties remain connected. (For an explanation of feature restrictions on multi-party calls, refer to the conferencing section on page 4-76.) To queue or camp on to a busy individual trunk (rather than join the conversation), a station user must remain on hook and press the busy individual trunk key.

18.4 Even when privacy release is enabled system-wide, an individual station user can restore call privacy during an outside call by entering the Private Call feature code or by placing the station in do-not-disturb. (Note that the station must be placed in do-not-disturb during the call to enable privacy; if do-not-disturb is enabled before the call, privacy is not enabled.) The call then cannot be joined by other people unless the Conferencing feature is used. If the call is transferred or placed on system hold, the Privacy Restore feature is canceled. Privacy is retained if the call is put on individual hold.

18.5 There is a programmable option that enables or disables a signal tone (barge confirmation tone) that is heard by the parties on the call whenever another user joins the call.

18.6 TO RESTORE PRIVACY ON A NON-PRIVATE TRUNK:

Keyset: While on an outside call, press the SPCL key and enter the Private CO Call feature code (369), or place the station in do-not-disturb by pressing the DND key or pressing SPCL and entering a Do-Not-Disturb feature code (370 or 372).

Single-Line: While on an outside call, press the FLASH key (hookflash) and enter the Private CO Call feature code (369), or place the station in do-not-disturb by pressing the FLASH key and entering a Do-Not-Disturb feature code (370 or 372).
19. BARGE (KEYSETS ONLY)

19.1 If the Barge feature is enabled system-wide, keyset stations can be programmed (on a station-by-station basis) to use the Barge feature. This permits the keyset user to join an ongoing call by entering the Barge feature code. Another option is available on a station-by-station basis that prevents other stations from barging into calls on the station.

19.2 Only keysets can use the Barge feature to join the conversation of any station (keyset or single-line set) to which the keyset user may make a call. The keyset user may never barge into a station that he or she could not otherwise call, such as a cross-tenant station when the system does not allow cross-tenant traffic.

19.3 A hunt group supervisor may barge on any call that it can monitor, this could conceivably be a station that he or she could not otherwise call.

19.4 Barge is not affected by do-not-disturb mode, the call privacy and private call features, or ring intercom always. If any of these are programmed on the receiving station, barge will override them.

19.5 A barge call will be received through the secondary voice path as an off-hook voice announce call if the station being called is an OHVA-enabled digital keyset, IMX 12/24-line keyset, or DVK keyset and the user is using the handset (using the speakerphone or a headset would block the secondary voice path). Although it uses the secondary voice path, barge can be used if OHVA is not enabled system-wide; the receiving keyset does not have to be programmed to receive OHVA.

19.6 A barge call will be received as a conference with the ongoing call if the secondary voice path is not available or the keyset user is on one of the following types of calls:

- An intercom call.
- A conference that does not exceed the maximum capacity of parties.
- An outside call using the speakerphone or headset.

19.7 A barge cannot be completed on data calls or calls on conference wait hold. Nor can a barge be completed if the conference resources or voice channels are not available.

19.8 When a keyset party joins a conference call, the parties in the ongoing call hear a single tone (barge confirmation tone). The call then continues as a conference.

19.9 TO JOIN (BARGE) AN ONGOING CALL FROM A KEYSET:

If the receiving station does not have an available secondary voice path: When placing an intercom call or while monitoring a call, if you hear busy signals press SPCL and enter the Barge feature code (397). The parties in the ongoing call hear a single tone and you are conferenced with all parties.

If the receiving station has an available secondary voice path: When you hear busy signals while placing an intercom call, press SPCL and enter the Barge feature code (397). You are connected to the keyset user through the secondary voice path (speakerphone) as if you were placing an off-hook voice announce call.
20. CONFERENCE CALLS

20.1 Station users can establish a three- to eight-party conference without operator assistance. A station user can initiate one conference at a time and the system can maintain up to 32 parties in conference calls of up to eight parties each. In addition to the initiating station, the conference can include any combination of up to seven intercom and/or outside calls. The initiating station is considered one of the conferencing parties.

20.2 If a conference is terminated using the Hold feature, the remaining callers hear music while they are waiting. The station user must return to the callers one at a time. If the Hold timer expires, the calls on hold recall the station that placed them on hold in the order they were placed. If still unanswered after the Recall timer expires, they recall the station’s attendant.

20.3 While a conference call is in progress, the inside parties cannot dial numbers, enter hookflashes, or use the Call Transfer features. Also, if any inside party exits the conference by pressing the CNP key, the remaining inside parties may not use the conference wait or hold features to exit or terminate the conference.

20.4 Unlike the call privacy release option (page 4-74) where station users can join an ongoing call by lifting the handset and pressing a busy individual trunk key, conferences are private and station users attempting to join an ongoing conference call by pressing a busy individual trunk key will hear busy tones, and may camp on to the trunk.

NOTE: During a conference, some reduction in voice volume may be noticed, depending on CO trunk quality.

A. PLACING A CONFERENCE CALL

20.5 TO PLACE A CONFERENCE CALL:

(1) While on a call:

Keyset: Press the CNF key. The party is on conference wait hold (hears music) and the CNF key flutters. The call key is unlit, or the individual trunk key is lit.

Single-Line Set: Press the ESLS CNF key, or press the FLASH key (hookflash) and enter the Conference feature code (5). The party is on conference wait hold (hears music).

NOTE: If you hear a busy signal followed by music, all conference resources are busy. Do one of the following:

To wait for the resources: Remain off hook until you hear intercom dial tone. Then place the second call.

To return to the call:

Keyset: Press the CNF key.

ESLS: Press the HOLD key.

SLI or Other Single-Line Set: Press the FLASH key (hookflash) and press HOLD or enter the Individual Hold feature code 336.

(2) Place intercom or outside calls to (or access existing calls with) the other parties to be included in the conference and place them on conference wait hold as described in the first step. Call keys are unlit and individual trunk keys are lit.

If connecting the final party, the conference is connected automatically when the CNF key is pressed or when the conference feature code is entered to connect the final party.

If the conference is to consist of fewer than the maximum number of parties:

Keyset: When all parties are on conference wait hold, press the CNF key again. All parties are connected. (Display keysets show the extension number or trunk identification of up to four of the parties connected in the conference.) The CNF key flashes slowly; call keys are unlit and individual trunk keys are lit.

Single-Line Set: When all parties are on conference wait hold, press the ESLS CNF key, or press the FLASH key (hookflash) and enter the Conference feature code (5). All parties are connected.
B. ADD PARTIES TO A CONFERENCE

20.6 TO ADD PARTIES TO AN EXISTING CONFERENCE (ANY INSIDE PARTY):

NOTE: Only one party in the conference can perform this procedure at a time. This procedure cannot be performed if the maximum number of conference participants has been reached.

Keyset:

1. During the conference, press the CNF key. The other parties remain connected. The CNF key flutters.

2. Place an intercom or outside call to (or access an existing call with) the other party to be included in the conference and press the CNF key.

If the maximum number of allowed parties are involved, all of them are connected in a conference.

If fewer than the maximum allowed number of parties are involved:

To connect all parties in a conference: Press the CNF key again.

To add another party: Repeat steps 1 and 2 again.

Single-Line Set:

1. During the conference, press the FLASH key (hookflash). The other parties remain connected.

2. Place an intercom or outside call to (or access an existing call with) the other party to be included in the conference. Press the ELSL CNF key, or press the FLASH key (hookflash) and enter the Conference feature code (5).

If the maximum number of allowed parties are involved, all of them are connected in a conference.

If fewer than the maximum allowed number of parties are involved:

To connect all parties in a conference: Press the ELSL CNF key, or press the FLASH key (hookflash) and enter the Conference feature code (5) again.

To add another party: Repeat steps 1 and 2 again.

C. EXITING A CONFERENCE

20.7 There are several options for leaving the conference:

- End the conference by hanging up. The other parties remain connected as long as one is a station (inside party). If there are no stations remaining, the conference is disconnected.

- Place all parties on individual hold (refer to paragraph 20.8). The conference is terminated. You must return to the callers one at a time. To re-establish the conference, repeat the procedures in paragraph 20.5.

NOTE: If a keyset user attempts to place a conference call on system hold, all parties will be placed on individual hold. If a single-line set user attempts to place the conference call on system hold, the user hears reorder tones and the call continues.

- Leave the conference and allow the outside parties to remain connected (refer to paragraph 20.9). You can return to the conference at any time.

NOTE: While this system is designed to be reasonably secure against CO trunk misuse by outside callers, there is no implied warranty that it is invulnerable to unauthorized intrusions. If the central office does not provide supervision and disconnect the call when one party hangs up, it is possible for a caller to remain connected to a CO trunk circuit. If this happens, and the caller begins dialing, the call could be placed through the 256 System and would then be billed to the system’s owner. The system cannot check this type of call for toll restriction and may not register the call in SMDR. This problem could arise when a call is connected to a station, when a call is in an unsupervised conference, when a call is forwarded or transferred to the public network, or when DISA is used for placing outgoing calls.

20.8 TO PLACE THE OTHER PARTIES ON HOLD:

1. During a conference call:

Keyset: Press the HOLD key (or press the SPCL key and enter the Individual Hold feature code — 336). The conference is terminated; the IC and/or call or individual trunk keys flutter and the CNF key goes off. The parties hear music while waiting.

ESLS: Press the HOLD key. The conference is terminated and the parties hear music while waiting.

SLI or Other Single-Line Set: Press the FLASH key (hookflash) and then press the HOLD key or enter the Individual Hold feature code — 336. The conference is terminated and the parties hear music while waiting.
(2) **Return** to the parties one at a time:

Keyset: **Access one** party by pressing the fluttering call or individual trunk key or **IC** key. Then you **can** place it on hold, disconnect it, or **re-establish** the conference (following the procedures in paragraph 20.5). Repeat this step to access the second party.

Single-Line Set: Access one party by pressing the ESLS HOLD key or by pressing the FLASH (hookflash) key and then pressing the HOLD key (or entering the Individual Hold feature code **336**). Then you can place it on hold, **disconnect** it, or reestablish the conference (following the procedures in paragraph 20.5). Repeat this step to access the second party.

20.9 **TO EXIT THE CONFERENCE AND LEAVE THE OTHER PARTIES CONNECTED (ANY INSIDE PARTY):**

Note: Only one party in the conference can perform this procedure at a time.

Keyset:

(1) **During the** conference, press the **CNF** key and hang up. The **CNF** key flutters. The call keys are unlit, but individual trunk keys remain lit to indicate the outside calls that remain in the conference. If a station remains connected in the conference, the IC key does not light to indicate that a station is involved.

(2) **To return to the conference:** Lift the handset and press the **CNF** key again.

Note: If all remaining parties are outside parties and the Conference Hold timer expires while you are out of the conference, one of the parties may reset the timer by pressing any **DTMF** key. **If the timer is not reset, the parties recall your station.** You hear recall tones (four tones and a pause) and the **CNF** key flashes at the medium rate (display shows **CONFERENCE HOLD RECALL**). Press the **CNF** key to return to the conference. If the recall is not answered before the recall and Abandoned Call timers expire, the conference will be disconnected; it will not recall the attendant.

Single-Line Set:

(1) During the conference, press the **FLASH** key (hookflash) and hang up.

(2) **To return to the conference:** Lift the handset and press the **ESLS CNF** key or enter the Conference feature code (5).

Note: If the Conference Hold timer expires while you are out of the conference, one of the outside parties may reset the timer by pressing any **DTMF** key. **If the timer is not reset, the parties recall your station.** You hear recall tones (four tones and a pause). Lift the handset to answer the recall. If the recall is not answered before the Recall and Abandoned Call timers expire, the conference will be disconnected; it will not recall the attendant.
21. SYSTEM FORWARDING

21.1 System forwarding provides the ability to program the system so that calls ringing at a station will follow a database-programmed “forwarding path” that routes the call based on the type of call and the status of the intended station. (“Manual” Call Forwarding can also be used at stations with system forwarding.) Several terms will be used to describe this feature, including:

- **Principal Station**: Original station being called.
- **Forwarding Point**: A destination (station, voice mail port, or hunt group) to which the call is directed when the principal station is unavailable. Each forwarding path can contain up to four forwarding points.
- **Forwarding Path**: The sequence of forwarding points to which the call will be sent. Forwarding paths are programmed in the database. Up to 200 unique paths can be programmed. Each station can have up to three forwarding paths.

21.2 Two system timers are used with this feature:

- **System Forwarding Initiate**: This timer determines how long a call will ring (unanswered) at the principal station before moving to the first forwarding point. The default value is 15 seconds and the range is 2-255 seconds.
- **System Forwarding Advance**: When the forwarding point is a station, this timer determines how long the call will ring (unanswered) before moving to the next forwarding point. The default value is 15 seconds and the range is 2-255 seconds. (If the forwarding point is a hunt group, the hunt group Overflow timer is used.)

21.3 For each forwarding path assigned to the station, the system checks the following three criteria to determine if and when a call should be forwarded:

- **Type of incoming call**: Up to seven different types of calls can be programmed to be sent to the forwarding path. They are:
 - Ringing outside calls
 - Transferred outside calls
 - Recalling outside calls
 - DISA/automated attendant calls
 - DID calls
 - E&M calls
 - Intercom calls
- **Station status**: The system recognizes four different types of station status.
 - **No Answer**: If the call is not answered at the principal station before the System Forwarding Initiate timer expires, the system advances the call to the forwarding path.
 - **Busy**: If the principal station is busy, the system immediately advances the call to the forwarding path. Both “No Answer” and “Busy” can be selected together to form a “Not Available” status.
 - **Do Not Disturb**: If the principal station is in do-not-disturb, the system immediately sends the call to the forwarding path.
 - **Immediate**: The system immediately sends the call to the forwarding path. The principal station user cannot answer an immediately forwarded call, but can reverse transfer it.

21.4 For example, during the day, the “principal” may want direct ring-in or transferred calls to ring at his station. If he does not answer them, the calls would follow the forwarding path to a forwarding point hunt group. If the hunt group does not answer his calls, the calls would continue on the forwarding path and go to his voice mailbox (another forwarding point).

21.5 If the principal station is a keyset, the “ring principal once” option can be set that will signal the principal station when a call begins to follow the forwarding path. The signal to the principal station consists of a display (xxxxxxx SENT TO FWD PATH) and a single burst of ring tone. The call cannot be answered at the principal station, but can be reverse transferred.

21.6 If a call rings in to multiple stations, and one or more of those stations has system forwarding, the call will not follow any of the forwarding paths.

21.7 If a principal station or a station forwarding point is a member of a hunt group, calls placed to the hunt group’s pilot number are unaffected by system forwarding. The hunt group calls will be received at the station as usual and will not enter the system forwarding path.
Handsfree Announce System Forward Option

21.8 When the call is transferred to the principal station by another station user, and the principal station's system forward is set for the "no answer" station status, a system-wide option determines what the caller hears. If the handsfree announce system forward option is enabled, the transferring station user will place a handsfree call to the principal station and can announce the transfer. The System Forwarding Initiate timer does not start until the transfer is completed. (An exception to this is if intercom calls are programmed to be sent to the forwarding path, in which case the handsfree announce option is overridden and the intercom call from the transferring station enters the forwarding path.) If the option is disabled, the intercom call from the transferring station automatically enters the forwarding path, the station user hears ringing and can announce the call only if it is answered. Regardless of the option setting, if the transfer is sent to a hunt group forwarding point, the transfer will be completed automatically and the transferring station user will hear intercom dial tone. If the transfer follows the system forward path to a voice mail station, the transfer is completed immediately and the principal station's mailbox number is automatically dialed.

Individual Station Forwarding Points

21.9 The ringing duration at each station forwarding point is determined by the System Forwarding Advance timer (defaults to 15 seconds). If the station forwarding point is busy, the call will camp-on until the Forwarding Advance timer expires and then it moves to the next forwarding point.

21.10 If the station forwarding point is in do-not-disturb, the forwarding path will bypass that station and immediately send the call to the next forwarding point.

21.11 A station forwarding point can place calls or transfer calls to the principal.

Hunt Group Forwarding Points

21.12 If a forwarding point is a hunt group, a call following the forwarding path will not be sent to the announcement station or overflow station; it will advance to the next forwarding point if not answered before the hunt group Overflow timer expires.

21.13 The ringing duration within hunt group forwarding points is determined by the No Answer Advance timer.

21.14 If all stations in a hunt group forwarding point have Do-Not-Disturb or Hunt Group Remove enabled, the call will camp on until the Overflow timer expires. The call will then be sent to the next forwarding point. The call will not be sent to the hunt group's overflow or announcement stations.

Call Forwarding And System Forwarding

21.15 A call follows only the forwarding path of the principal, even if a forwarding point has call forward enabled or has a forwarding path of its own. The call that originated at the principal station will follow only the principal station's forwarding path.

21.16 If the principal station has call forward enabled (using the FWD key or one of the Call Forwarding feature codes), the call forward overrides system forwarding.

21.17 If the principal station receives a manually forwarded call (not a system forward), that call will follow the principal station's system forwarding path.

21.18 If an infinite forward loop results from the combination of forwards and system forwarding paths, the station that was originally intended to receive the call will ring, even if the station is in do-not-disturb.
Unanswered Calls

21.19 If a call that is following a system forwarding path is not answered or all forwarding points are in do-not-disturb or busy, its final destination depends on the type of call as shown below.

<table>
<thead>
<tr>
<th>TYPE OF CALL</th>
<th>ALL FWD POINTS ARE BUSY OR DO NOT ANSWER</th>
<th>ALL FWD POINTS ARE IN DO-NOT-DISTURB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercom</td>
<td>Rings at the last forwarding point until it is answered or the caller hangs up.</td>
<td>Call never leaves the principal station. Caller hears do-not-disturb signals if immediate forwarding is enabled. If no answer or if busy is enabled, caller hears ringing.</td>
</tr>
<tr>
<td>Direct ring-in</td>
<td>Returns to the principal station and rings until it is answered or the caller hangs up.</td>
<td>Rings at the principal station until it is answered or the caller hangs up.</td>
</tr>
<tr>
<td>Transfer from a station</td>
<td>Recalls the transferring station when the System Forwarding Advance timer expires at the last forwarding point.</td>
<td>Recalls the transferring station when the System Forwarding Initiate timer expires.</td>
</tr>
<tr>
<td>Transfer via automated attendant</td>
<td>Recalls the automated attendant’s recall destination when the System Forwarding Advance timer expires at the last forwarding point.</td>
<td>Recalls the automated attendant’s recall destination when the System Forwarding Initiate timer expires.</td>
</tr>
</tbody>
</table>
22. CALL FORWARDING

22.1 With call forwarding, a station user can route incoming intercom and outside calls (including direct ring-in calls and DID calls) to another station, to a hunt group, or to an outside telephone number, if allowed by toll and trunk restrictions. The four forwarding options are:

- **Forward all calls:** All incoming calls are immediately forwarded.
- **Forward if no answer:** Incoming calls are forwarded if they are not answered before the Forward No Answer timer expires.
- **Forward if busy:** Incoming calls are immediately forwarded if the station is busy.
- **Forward if no answer or busy:** Incoming calls are forwarded immediately if the station is busy, or forwarded if calls are not answered before the Forward No Answer timer expires.

22.2 If forward all calls is enabled, display keysets show the call forwarding status and destination until the request is cancelled. If one of the conditional forwards is enabled (no answer, busy, or no answer/busy), display keysets show the forward status for five seconds and then return to normal. If the station receiving the forwarding keyset is a display keyset, it shows XXX FORWARD FROM [user name] for each forwarded call received.

22.3 Station users can chain forwards from station to station providing the forwards do not form a loop. The conditional forward features (if busy, if no answer, if busy/no answer) may form a loop that the system cannot detect until a call is placed to the forwarding station. For example, if two station users forward their calls to each other using the forward if busy feature, the system accepts the requests. However, if a call rings in while both stations are busy, the forwards create an illegal loop. In this case, the call camps on to the called station.

22.4 If more than one station has ring in for a trunk group, direct ring-in calls on that trunk group will forward to extension numbers, but not outside numbers or voice mail ports. The display of the keyset receiving the forwarded call will show it as a direct ring-in call, not as a forwarded call, and the call or individual trunk key flashes to show ring in. (The individual trunk key also flashes on the keyset that is being forwarded.)

22.5 Calls cannot be forwarded to restricted outside telephone numbers or stations in do-not-disturb. If the station that is programmed to receive your forwarded calls is later placed in do-not-disturb, intercom callers will see the receiving station’s do-not-disturb display, but the call will be forwarded.

22.6 If your station is in do-not-disturb and you have call forwarding programmed, the call is still forwarded. If you enabled call forward no answer, intercom callers will see the do-not-disturb display that you programmed before the call is forwarded.

22.7 Call forwarding overrides system call forwarding at the principal station.

22.8 Queue callbacks and recalls do not forward, except that a recall at an attendant’s station will forward to another station.

FWD Key

22.9 Keyset users may program their FWD key with any of the four options listed in paragraph 22.1. In the default configuration, the FWD key is programmed to forward all calls.

22.10 A keyset’s FWD key is lit when the station is programmed for call forwarding.

Forwarding To An Outside Number Or E&M Destination

22.11 When programming a station for call forward to an outside telephone number or E&M destination, a select trunk group feature code is programmed before the telephone number. If the station is called while the selected trunk group is busy, the call will not be forwarded. An intercom caller will hear busy signals. An outside call will ring at the forwarded station until the call is answered or the caller hangs up.

22.12 The forwarding station’s (not the intercom caller’s) trunk and toll restrictions are checked when the call is forwarded to an outside number.

NOTE: While this system is designed to be reasonably secure against CO trunk misuse by outside callers, there is no implied warranty that it is invulnerable to unauthorized intrusions. If the central office does not provide supervision and disconnect the call when one party hangs up, it is possible for a caller to remain connected to a CO trunk circuit. If this happens, and the caller begins dialing, the call could be placed through the 256 System and would then be billed to the system’s owner. The system cannot check this type of call for toll restriction and may not register the call in SMDR. This problem could arise when a call is connected to a station, when a call is in an unsupervised conference, when a call is forwarded or transferred to the public network, or when DISA is used for placing outgoing calls.

22.13 If using an E&M trunk that is connected to another telephone system, and forwarding to an outside
number through the other system, the E&M trunk access code is entered, followed by the other system’s trunk access code (which the 256 System has been programed to absorb as described on page 4-26), and the telephone number. Then, when a call is forwarded, the system automatically pauses after the E&M trunk access code, for the duration of the Pause Digit timer, before dialing the rest of the number.

22.14 When an outside call is forwarded to an outside number using a loop start trunk, the Unsupervised CO timer is activated. When the timer expires, both parties hear a burst of dial tone. Either party can reset the timer by pressing any DTMF key. If the timer is not reset, the call recalls the attendant. If the attendant does not answer the recall before the Abandoned Call timer expires, the call is disconnected.

NOTE: There may be some reduction in voice volume when an outside call is forwarded to an outside telephone number, depending on central office trunk quality.

22.15 If the Weekly Toll Limit feature is enabled and a station is forwarded to a toll number that is being disallowed due to the weekly limit being exceeded, calls will be handled as follows:

- An intercom caller will hear reorder tones and see a CALL FAILED - TOLL LIMIT EXCEEDED display.
- A direct ring-in outside call will ring at the station until it is answered or the caller hangs up.
- Calls through DISA or an automated attendant will ring at the station until the Transfer Available timer expires before being sent to the appropriate recall destination.
- Transferred calls will remain at the transferring station.
- Calls from a voice computer will be sent to the attendant.

Forwarding Calls To An Extension Or Outside Number, Or E&M Destination

22.16 In FORWARD CALLS:

1. Keyset:
 To use the FWD key: While on or off hook, press the FWD key to forward calls according to FWD key programming. If on hook, the SPKR key is lit. (Display keysets show PROGRAM FORWARD.)
 To use a call forward feature code: While on or off hook, press the SPCL key and enter one of the following feature codes. If on hook, the SPKR key is lit. (Display keysets show PROGRAM FORWARD.)
 a. Call Forward All Calls (355)
 b. Call Forward If No Answer (356)
 c. Call Forward If Busy (357)
 d. Call Forward If No Answer Or Busy (358)

 Single-Line Set: Lift the handset enter one of the feature codes listed above.

2. If forwarding to an intercom number, dial the extension number of the station to receive the calls, the voice mail access number, or 0 for the attendant. (Or, keysets can press the MSG key to forward calls to the assigned message center.) If you dialed an invalid extension number, your display shows FORWARD TO INVALID NUMBER and you hear reorder tones.

If forwarding to an outside telephone number, dial a trunk access code (801-847 or 89) and then the desired telephone number. If you entered an invalid trunk group feature code or dialed a restricted number, you hear repeating reorder tones. (Display keysets show FORWARD TO RESTRICTED TRUNK.)

If forwarding to an outside telephone number via an E&M trunk, dial the E&M trunk group feature code, then dial the other system’s trunk access code and the desired outside telephone number. The system automatically enters a pause and the display keysets show an “S” to indicate a short pause. If you entered an invalid E&M trunk group feature code or dialed a restricted number, you hear repeating reorder tones. (Display keysets show FORWARD TO RESTRICTED TRUNK.)

If forwarding to an extension on the other telephone system via an E&M trunk, dial the E&M trunk group feature code and then the desired extension number. If you entered an invalid E&M trunk group feature code or dialed a restricted number, you hear repeating reorder tones. (Display keysets show FORWARD TO RESTRICTED TRUNK.)

Keyset: If off hook, hang up. If on hook, press the SPKR key (SPKR key goes off). You hear a progress tone and the FWD key is lit (display shows FWD [condition] TO XXXXX). If you attempted to forward calls to a station that is unconditionally forwarded to your station, your display shows SYSTEM DETECTED FORWARD LOOP and you hear repeating reorder tones.

Single-Line Set: Hang up.
22.17 TO CANCEL ANY CALL FORWARD REQUEST:

Keyset: Press the lit FWD key (the key goes off). If **on hook,** press the lit **SPKR** key (the key goes off), or if **off hook,** hang up. You hear a progress tone. (Display **keysets** show CANCEL ANY CALL FORWARD.)

Single-Line Set: Lift the handset, enter the cancel any Call Forward feature code (359), and hang up.

Forwarding To The Message Center

22.18 **Keyset** users have a simple method for forwarding calls to their designated message center. The user presses the FWD key and then the MSG key. Calls forwarded through the **keyset** are then sent to the **keyset’s** designated message center.

22.19 **TO QUICKLY FORWARD CALLS TO YOUR MESSAGE CENTER (KEYSETS ONLY):**

While on or off hook, press the FWD key and then the MSG key. (Display **keysets** show FWD [condition] TO EX XXX [or user name]). If **on hook,** press the lit **SPKR** key (the key goes off). If **off hook,** hang up.

Forwarding To Voice Mail

22.20 If the station is forwarded to the voice mail unit or if the message center is a voice mail unit, the **keyset** user’s “mailbox” is automatically dialed when the voice mail unit answers the forwarded call. In fact, whenever any station (**keyset** or single-line) is forwarded to a designated voice mail **unit,** the station’s assigned “mailbox” is automatically dialed when the voice mail unit answers the forwarded call.

22.21 If a chain of forwarded stations ends in voice mail, the mailbox of the **first** station in the chain will be selected when the voice mail unit answer the call.

NOTE: If a trunk group is assigned direct ring in to multiple stations, and one of those stations is forwarded to a voice mail **unit,** incoming calls on that trunk group are not forwarded to the voice mail unit.
23. SPEED DIALING

23.1 Three 256 System features provide speed-dialing. They are as follows:

- **System Speed Dialing:** Up to 400, 32-digit system or tenant-specific speed-dial numbers can be stored in system memory.
- **Station Speed Dial:** Each station user can program individual speed-dial numbers. Single-line set users can store up to 10, 16-digit numbers. **Keyset users** can store 10 outside telephone numbers (up to 16 digits each) and 10 extension numbers (up to four digits each).
- **System Directory (Intercom and Outside):** The intercom directory enables display of speed-dial numbers. Single-line set users can “look up” intercom extension numbers and user names. The outside directory enables display of speed-dial numbers. The lengths of the hookflash and pause are determined by the programmable CO Hookflash and Pause Digit timers. The number of times a key is pressed determines which character is entered. For example, 5666 FWD 77776444844.

A. SYSTEM SPEED DIALING

23.2 Speed dialing allows station users to dial stored telephone numbers quickly. Up to 400, 32-digit System or tenant-specific speed-dial numbers can be stored in system memory. Through database programming or the designated speed-dial programming station, each individual number can be designated in the database as available to all stations (tenant group 0) or available only to stations within a certain tenant group. If desired, an identifying name can also be stored with each speed-dial number. (See also the System Directory feature on page 4-90.)

23.3 To keep system speed-dial numbers confidential, some or all of them can be programmed as non-display numbers (see **PROGRAMMING**, page 5-75). **Non-display numbers** can be used by any station user (as long as the number is assigned to the user’s tenant group), but can only be displayed on the programming station’s keyset. (Non-display numbers cannot be redialed or saved as station speed-dial numbers.) **Non-display numbers will appear** in the SMDR report when dialed.

23.4 System speed-dial numbers are subject to toll restriction unless a system-wide option has been enabled that allows any station to dial any system speed-dial number regardless of that station’s SCOS.

23.5 The system speed-dial numbers are stored using location codes (000-399). When dialed, the numbers appear on a display keyset unless they have been programmed as non-display numbers. Display keyset users can also view system speed-dial numbers and names without dialing (unless the numbers are designated for another tenant group or designated as non-display); however, with non-display numbers only the name is displayed.

23.6 The system speed-dial numbers and names are stored in battery-backed RAM and will not be erased in the event of a power failure.

Programming System Speed Dial Numbers

23.7 The system speed-dial numbers and names are programmed by the installer or at any attendant station. However, attendants can only program or view numbers that are accessible system wide or in their particular tenant group. In addition to the attendant stations, one display keyset can be designated as the system speed-dial programming station to program or view all system speed-dial numbers and all tenant-specific speed-dial numbers. When the system is in the default state, the primary attendant station is the designated system speed-dial programming station.

23.8 The system speeddial numbers can contain up to 32 digits each and can include hookflashes and/or short or long pauses for dialing a series of numbers. For example, the speed-dial number can contain an SCC local number, a pause, an access code, and the telephone number. For using E&M trunks, the other systems’ trunk access codes, followed by a pause, may be included in speed-dial numbers. The lengths of the hookflash and the pause are determined by the programmable CO Hookflash and Pause Digit timers.

23.9 To program system speed-dial numbers, use one of the following methods:

- Use the keypad to manually dial the number. If you make a mistake, press the MUTE key to backspace.
- Press the REDIAL key to enter the last number dialed or saved at the station (up to 32 digits).
- Press one of the SD keys on the keyset to enter the outside telephone number (up to 16 digits) programmed under that key.

23.10 To program speed-dial names, keypad keys are used to enter the desired letters, numbers, and punctuation. The number of times a key is pressed determines which character is entered. For example, 77776444844 would enter “SMITH.” When adjoining characters are located under the same key, press the FWD key once to advance to the next character. For example, 5666 FWD 6637777 would enter “JONES.” Refer to the chart on the next page to program speed-dial names. (Note that letters correspond to the letters printed on the keypad keys.)
23.11 TO PROGRAM OR CHANGE SYSTEM SPEED-DIAL NUMBERS AND NAMES (ATTENDANTS AND THE DESIGNATED SYSTEM SPEED-DIAL PROGRAMMING KEYSET ONLY):

NOTE: If you make a mistake, use the MUTE key to backspace. Or, lift and replace the handset (the name and number in memory remains unchanged); then start over.

1. While on hook, Press the SYS SPD key (or press SPCL and enter the program System Speed-Dial feature code 020). (Display keysets show PROGRAM SYSTEM SPEED DIAL.)

2. Enter the speed-dial location code (000-399). (The MSG key is lit and the display shows the name and number or, if one does not exist, NO OUTSIDE #.) If you do not continue to the next step, the display times out after the Long Interdigit timer expires and you must start over.

3. **If you wish to program a name or change the existing name, enter or change the name for the speeddial number using your keypad. Refer to the chart on this page. If necessary, use the MUTE key to back up and erase existing characters.**

 If the existing name is correct, or you do not wish to program a name, proceed to the next step.

4. Press the MSG key (it will go out and the cursor will move to the top line). Enter or change the number (up to 32 digits) to be stored using the keypad, one of the SD keys, or the REDIAL key. **If necessary,** use the MUTE key to back up and erase existing numbers. (Display keysets show the number as it is entered.) To include pauses or hookflashes in the number press the SPCL key once for a hookflash (F), twice for a short pause (S), and three times for a long pause (L). You may not exceed 32 digits.

5. Press any trunk access key (call, individual trunk, ANSWER, or OUTGOING) to save the number. You hear a single Progress tone when the number is accepted. (Display keysets show PROGRAM SYSTEM SPEED DIAL.)

6. **To enter or change additional numbers:** Repeat steps 2 through 5 for each number to be entered or changed.

To end the programming session: Lift and replace the handset or wait for the display to return to the date and time (when the Long Interdigit timer expires).

23.12 TO ERASE SYSTEM SPEED-DIAL NUMBERS AND/OR NUMBERS (ATTENDANTS AND THE DESIGNATED SYSTEM SPEED-DIAL PROGRAMMING KEYSET ONLY):

1. While on hook, press the SYS SPD key (or press SPCL and enter the program System Speed-Dial feature code 020). (Display keysets show PROGRAM SYSTEM SPEED DIAL.)

2. **Enter** the speed-dial location code (000-399). (The MSG key is lit and the display shows the name and number.)

3. You may erase the name only, the number only, or both:
 a. **If you wish to erase the name, press the MUTE key repeatedly until the name is erased.**
 b. **If you wish to erase the number, press the MSG key, then press the MUTE key repeatedly until the number is erased.**

4. Press any trunk access key (call, individual trunk, ANSWER, or OUTGOING). You hear a single progress tone when accepted. (Display keysets show PROGRAM SYSTEM SPEED DIAL.)

5. **To enter or change additional numbers:** Repeat steps 2 through 4 for each number to be erased.

To end the programming session: Lift and replace the handset or wait for the display to return to the date and time (when the Long Interdigit timer expires).
Viewing System Speed-Dial Numbers

23.13 To View System Speed-Dial Numbers and Names at Attendant Stations and the Designated Speed-Dial Programming Station:

NOTE: If you make a mistake, lift and replace the handset; then start over.

(1) Using the Keyset:

a. While on hook, press the SYS SPD key (or press SPCL and enter the System Speed-Dial feature code — 381). (Display keysets show PROGRAM SYSTEM SPEED DIAL.) You hear a confirmation tone.

b. Enter the desired location code (001-499). (The display shows the programmed name and number.)

Using a DSS/BLF Unit with Speed-Dial Keys:

While on hook, press the desired speed-dial key.

(2) Enter the desired location code (000-399). (Display keysets show the programmed name and number. Or, if it is a non-display number, the display shows the name and NON DISPLAY #.)

(3) Wait for the display to return to the date and time (when the Long Interdigit timer expires) or lift and replace the handset. Then repeat the procedure for each number to be viewed.

Dialing System Speed-Dial Numbers

23.15 To Dial System Speed-Dial Numbers:

(1) Lift the handset and select an outgoing trunk.

(2) Keyset:

a. Press the SYS SPD key (or press SPCL and enter the System Speed-Dial feature code — 381). You hear a confirmation tone.

b. Enter the location code (000-399). (The display shows the programmed name and number.)

(3) Wait for the display to return to the date and time (when the Long Interdigit timer expires) or lift and replace the handset. Then repeat the procedure for each number to be viewed.

Using a DSS/BLF Unit with Speed-Dial Keys:

While on hook, press the desired speed-dial key.

(2) Enter the desired location code (000-399). (Display keysets show the programmed name and number. Or, if it is a non-display number, the display shows the name and NON DISPLAY #.)

(3) Wait for the display to return to the date and time (when the Long Interdigit timer expires) or lift and replace the handset. Then repeat the procedure for each number to be viewed.

DSS/BLF Unit with Speed-Dial Keys: Press the desired speed-dial key. The number is automatically dialed. (Display keysets show the number dialed unless it is a non-display number.) If you hear reorder tones, your station is restricted from dialing the selected number.

Single-Line Set: Press the ESLS SYS SPD key, or press the FLASH key (hookflash) and enter the System Speed-Dial feature code (381). You hear a confirmation tone.

(3) Enter the location code (000-399) for the desired number. The number is automatically dialed. (Display keysets show the number dialed unless it is a non-display number.) If you hear reorder tones, your station is restricted from dialing the selected number.
B. STATION SPEED DIALING

23.16 For convenience, each station user can program individual speed-dial numbers. Single-line set users can store up to 10, 16-digit numbers using speed-dial location codes (0-9). Keyset users can store 10 outside telephone numbers (up to 16 digits each) and 10 extension numbers (up to four digits each; see paragraph 23.18 below), using IC/CO speed-dial (SD) keys or location codes 0-9. Together, the lamps in the keyset SD keys create a busy lamp field that indicates the status of the stations programmed under the keys (refer to the lamp status chart on page 447). Extension numbers can be either station extension numbers or hunt group pilot numbers.

Programming Station Speed-Dial Numbers

23.17 When entering the outside telephone numbers, use one of the following methods:

- Use the keypad to manually dial the number.

- On a keyset, press the REDIAL key to enter the last number (up to the first 16 digits) dialed or saved at the station.

- On a keyset, press the SYS SPD key and enter the system speed-dial location code (000-399) to store one of the system speed-dial numbers in a station speed-dial location. If the number is over 16 digits, only the first 16 digits are stored.) Non-display system speed-dial numbers cannot be stored in keyset station speed-dial locations.

23.18 A three-digit station extension number can be preceded with a pound (#) to always speed dial private intercom calls to the station. Or, a "4" may be entered before a three-digit extension station number or hunt group pilot number to quickly reverse transfer (pick up) calls from that station or hunt group. If either of these options is used, normal handsfree intercom calls cannot be placed using that station speed-dial location or SD key. Also, when an extension number is preceded by a "4", the SD key will not show the station's status. This option cannot be used if the system has four-digit extension numbers.

23.19 Station users can also program pauses and/or hookflashes into the stored outside telephone numbers. For example, the number can contain an SCC local number, a pause, and an access code. For using E&M trunks, speed-dial numbers may contain the other system's trunk access code if it is followed by a pause. When programming speed-dial numbers, each hookflash and each pause is considered one digit. The durations of the hookflash and the pause are determined by the programmable CO Hookflash and Pause Digit timers.

23.20 If desired, station speed-dial numbers can be used for dialing the voice mail unit password code. Store the code in an outside number location. Then, after the call to the voice mail unit is connected, dial the outside location that contains the password code.

23.21 The station speed-dial numbers are stored on the hard disk and will not be erased by unplugging the station instrument or by a power failure.

23.22 To program station speed-dial numbers using a keyset:

One extension number and one outside telephone number can be stored under each of the 10 SD keys/location codes.

NOTE: If you make a mistake, lift and replace the handset; then start over. The number in memory remains unchanged. Or, use the MUTE key to backspace.

1. Keysets with SD keys: While on hook, press the SD key to be programmed. (Display keysets show PROGRAM STATION SPEED DIAL. # and the key number.)

Keysets without SD keys: While on hook, press SPCL and enter the Station Speed-Dial Programming feature code (383). You hear a progress tone. Then dial the speed-dial location code (O-9). (Display keysets show PROGRAM STATION SPEED DIAL, # and the key number.)

2. Dial the extension number (up to four digits) or telephone number (up to 16 digits, including pauses and hookflashes) to be stored. Refer to paragraph 23.17. (Display keysets show the number.) To include pauses or hookflashes in an outside telephone number, press the SPCL key once for a hookflash (F), twice for a short pause (S), and three times for a long pause (L). You may not exceed 16 digits. Do not program hookflashes or pauses in extension numbers, or you will receive reorder tones when trying to dial them.

3. If you entered an extension number, press the IC key. You hear a single progress tone when the system has accepted the number. (Display keysets show both numbers stored under the SD key.)

If you entered an outside telephone number, press any call or individual trunk key. You hear a single progress tone when the system has accepted the number. (Display keysets show both numbers stored under the SD key.)

4. Wait five seconds for the display to return to the date and time. Repeat steps 1 through 3 for each additional number to be stored.
23.23 TO PROGRAM STATION SPEED-DIAL NUMBERS USING A SINGLE-LINE SET:

Up to 10 numbers can be stored using speed-dial location codes 0-9. If you make a mistake, hang up and start over.

(1) Lift the handset and enter the Station Speed-Dial Programming feature code (383) or press the ESLS PGM SPD key. You hear a confirmation tone.

(2) Dial the speed-dial location code (0-9). You hear a confirmation tone.

(3) Dial the telephone number (up to 16 digits, including pauses and hookflashes) to be stored and hang up. To include pauses or hookflashes in the number, press the FLASH (hookflash) key once for a hookflash (F), twice for a short pause (S), and three times for a long pause (L). Each pause or hookflash counts as one digit. Wait 2 seconds after pressing the FLASH key before pressing it again, the system only recognizes one FLASH every 2 seconds.

(4) Hang up.

(5) Repeat steps 1 through 4 for each number to be stored.

23.24 TO ERASE A STATION SPEED-DIAL NUMBER:

Repeat the programming procedures, but do not dial a number (skip step 2 in the keyset instructions, or step 3 in the single-line instructions).

23.25 TO VIEW THE STORED NUMBERS (ON A DISPLAY KEYSET):

(1) While on hook, press the desired SD key twice. (Display keysets show the currently stored numbers.)

(2) If desired, press other SD keys once to view their numbers. (If the date and time displays, the program has timed out; repeat the first step.)

Dialing Station Speed-Dial Numbers

23.26 TO DIAL A STATION SPEED-DIAL NUMBER:

(1) Lift the handset.

(2) If placing an outside call, select an outgoing trunk or use LCR. If placing an intercom call, skip this step.

(3) Keysets with SD keys: Press the SD key of the desired number. The number is dialed. (Display keysets show the number.)

Keysets without SD keys: Press the SPCL key, enter the Station Speed-Dial feature code (382). You hear a confirmation tone. Then enter the location code (0-9). The number is dialed.

ESLS: Press the STN SPD key. You hear a confirmation tone. Then dial the location code (0-9). The number is dialed.

Other Single-Line Sets: Ress the FLASH key (hookflash) and then press the SLI STN SPD key or enter the Station Speed-Dial feature code (382). You hear a confirmation tone. Then dial the location code (0-9). The number is dialed.
24. OPTIONAL SYSTEM DIRECTORY

INTERCOM AND OUTSIDE

(KEYSETS ONLY)

NOTE: This feature is available only in the *Extended* and *Extended plus T1 and E&M* software.

24.1 The intercom directory enables display keyset users to “look up” intercom extension numbers and user names. The outside directory enables display keyset users to “look up” system speed-dial numbers and associated names.

24.2 *Once* the desired extension number/name or system speed-dial number/name has been selected, the user may automatically dial the number, store the number in a station speed-dial location, select a different number/name, terminate the directory routine, or switch to the other directory. A directory search can be performed when a call is waiting on conference or transfer hold at the station, if necessary.

24.3 The intercom directory is automatically updated whenever user names and/or extension number information is reprogrammed (see *PROGRAMMING* pages 5-28 and 5-58). The outside directory is updated whenever a system speed-dial number or name is reprogrammed (see *PROGRAMMING* page 5-76).

24.4 To use the directory, the user enters a letter, a string of letters, or a valid extension number. If searching for a name, the full name need not be entered. The system will find the closest match and show the number and its associated name on the keyset display. Or, the user can press the asterisk (*) or pound (#) keys to scroll backward or forward alphabetically through the stored list of names. (It is not possible to scroll through the extensions by number.)

24.5 Keypad keys are used to enter the desired letters, numbers, and punctuation. The station user can switch between numeric and alphanumeric modes. (Numeric mode = MSG key unlit; alphanumeric mode = MSG key lit.) In alphanumeric mode, the number of times a key is pressed determines which character is entered. For example, 77776444844 would enter “SMITH.” When adjoining characters are located under the same key, press the FWD key once to advance to the next character. For example, 5666 FWD 66337777 would enter “JONES.” Refer to the following chart. The letters correspond to the letters printed on the keypad keys.

<table>
<thead>
<tr>
<th>KEY</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>H</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>N</td>
<td>O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>T</td>
<td>U</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The character values for key number 1 above are not the same as those used for custom programming do-not-disturb messages (see page 4-95). This is due to the loss of the pound (#) key and asterisk (*) key character values.

A. INTERCOM DIRECTORY

24.6 *PERFORM AN INTERCOM DIRECTORY SEARCH:*

(1) While on or off hook, press SPCL and enter the System Intercom Directory feature code (307). The MSG key lights (and the SPKR key lights if on hook) and the display shows INTERCOM NAME: on the top line, while the cursor is located on the bottom line.

(2) Enter up to seven alpha and/or numeric characters for the extension number or user name. If searching for a name, the whole name does not have to be entered. You may switch between modes by pressing the MSG key (lit = alphanumeric, unlit = numeric).

 a. *In numeric mode* (MSG key unlit): Press the keypad keys to enter a valid extension number. Press MUTE to backspace, if necessary.

 b. *In alphanumeric mode* (MSG key lit): Press the keypad keys to enter the desired characters. Refer to the chart above. Press FWD once to advance or twice to leave a space. Press MUTE to backspace.

(3) *If desired,* press the pound (#) key to scroll forward alphabetically through the directory or press the asterisk (*) key to scroll backward. If this method is used, skip step 4 and proceed to step 5.
(4) **Press the pound (#) or asterisk (*) key to begin the search.** The closest match will be displayed on your keyset. If you entered an invalid extension number, you will hear reorder tones. Repeat step 2.

(5) **If desired,** store the selected extension number in a station speed-dial location by pressing the desired SD key. You hear confirmation tone when the number is accepted.

(6) **To automatically dial the extension number:** Press the IC key. If an intercom call is camped on and the IC key is lit, pressing the IC key accesses the waiting call and terminates the directory feature.

To search for a different extension number or user name: Repeat steps 2 and 4.

To terminate the directory routine: If offhook, hang up. If on hook, press the SPKR key.

To switch to the outside directory: Press a non-flashing call or individual trunk key or the ANSWER or OUTGOING key. (Outside directory instructions are given below.) If a call is ringing in or holding on the selected trunk, pressing the flashing call key, flashing individual trunk key, or ANSWER key will answer the call and terminate the directory function.

B. OUTSIDE DIRECTORY

24.7 **to PERFORM AN OUTSIDE DIRECTORY SEARCH:**

(1) While on or off hook, press SPCL and enter the System Outside Directory feature code (308). The MSG key lights (and the SPKR key lights if on hook) and the display shows OUTSIDE NAME: on the top line, while the cursor is located on the bottom line.

(2) **To enter a name:** Enter alphanumeric characters (up to 16) for the speed-dial name. You do not have to enter the whole name. Press the keypad keys to enter the desired characters. Refer to the chart on page 4-90. Press the FWD key once to advance or twice to leave a space. Press the MUTE key to backspace.

To scroll through the directory: Press the pound (#) key to scroll forward alphabetically through the directory or press the asterisk (*) key to scroll backward. If this method is used, skip step 3 and proceed to step 4.

(3) Press either the pound (#) or asterisk (*) key to begin searching. The closest match will be displayed on your keyset. If you selected a non-display number, NON DISPLAY # will appear on the top line and the name (if assigned) will appear on the bottom line; the number is not displayed.

(4) If desired, store the selected system speed-dial number in a station speed-dial location by pressing the desired SD key. You hear a confirmation tone when the number is accepted.

NOTE: If the system speed-dial number is longer than 16 digits, only the first 16 digits will be stored in the station speed-dial location. Also, if the number is a non-display number, it cannot be stored.

(5) **To automatically dial the speed-dial number:** Press an individual trunk key, the OUTGOING or ANSWER key, or a trunk group key. If off hook, lift the handset when the call is answered. If a call is ringing in or holding on the selected trunk, pressing the flashing individual trunk key or the ANSWER key will answer the call and terminate the directory function.

To search for a different system speed-dial number: Repeat steps 2 and 3.

To terminate the directory routine: If offhook, hang up. If on hook, press the SPKR key.

To switch to the intercom directory: Press the IC key. (Intercom directory instructions are given on page 4-90.) If an intercom call is camped on and the IC key is flashing, pressing the IC key accesses the waiting call and terminates the directory feature.
25. HOUSE PHONE

25.1 This feature provides users with the ability to place a predesignated intercom or outside call simply by lifting the handset (or pressing the SPKR key if it is a keyset) on a designated house phone. There are several applications for this feature, such as:

- **Courtesy paging phone:** Visitors hear pages instructing them to pick up the house phone (such as the paging phones used in airport terminals). When they lift the handset, they are connected to a pre-programmed station user who can give them a message or connect them to a call.

- **Emergency phone:** The house phone can be programmed to automatically place a call to an emergency number (such as 911). This could save time in an emergency.

- **Service phone:** Customers can use the house phone(s) to place orders or receive special services from the lobby. For example, the house phone would automatically dial the extension number of a service representative (or hunt group number of the service department).

- **Intercom network:** House phones could be placed in specific locations throughout a building (such as examination rooms in a doctor’s office) and could be programmed to access a specific station or group of stations (such as a nurses’ station).

25.2 Any station may be designated as a house phone in database programming (see PROGRAMMING, page 5-38), however this feature is usually assigned to single-line sets. The primary attendant should not be a house phone, nor should any Attendant Computer Console station.

25.3 The number dialed by the house phone is determined by the station’s speed-dial programming. The number programmed through the database or in station speed-dial location 1 is automatically dialed during day mode, and the number in location 2 is dialed during night mode. This number can be either an extension number or an outside telephone number. If it is an outside number, it must be preceded with a select trunk group feature code (and a pause if necessary).

25.4 If the house phone is a keyset, speed-dial programming should be terminated by pressing a call key, or individual trunk, or trunk key as if an outside number was being stored, even when storing an extension number. Other station information (such as user name, extension number, SCOS, etc.) for the house phone is programmed as usual.

25.5 Once the house phone status has been programmed, the speed-dial number can only be changed while on hook (if it is a keyset) or through database programming because lifting the handset will cause the station to dial the designated number.

25.6 Incoming calls take precedence over outgoing calls. If using a single-line set or a keyset programmed for automatic trunk access (see page 4-52), any ringing call is automatically answered when the handset is lifted or the SPKR key is pressed.
26. REDIALING

26.1 The Redial feature stores the last telephone number dialed at the station (manually or speed-dialed numbers up to 48 digits). If the station user reaches a busy number or is disconnected, or if there is no answer, the number can be redialed easily.

26.2 Only one telephone number can be stored in the station’s redial memory at one time. With keysets, this number can be stored in one of two ways, depending on keyset programming.

- Last number dialed: The last number manually dialed or speed dialed is automatically stored. It changes every time the user dials a telephone number. The number is redialed using the procedure in paragraph 26.10. This is the default value of the Redial feature and the REDIAL key.

- Last number saved: The last number dialed is manually stored by the keyset user. Dialing other numbers does not change the number saved. It only changes when a new number is saved, using the procedure in paragraph 26.9. The number is redialed using the procedure in paragraph 26.10. This is programmed with the Last Number Saved feature code.

26.3 There are three feature codes that affect the Redial feature. The Redial feature code (380) performs the redial function (on keysets and ESLSs, this code is programmed under the REDIAL key; on SLIs the code is under the REDL key.) The Program Redial Mode feature codes (320 and 321) determine the mode of the redial feature code for keysets (Last Number Dialed Or Last Number Saved). The ESLS and SLI REDIAL, key mode cannot be changed; it is always last number dialed.

26.4 System speeddial numbers cannot be redialed at any station if they have been programmed as non-display numbers.

26.5 If using an E&M trunk, the Redial feature remembers the other system’s trunk access code and automatically inserts a pause after the code when it is redialed.

26.6 A system programming flag allows the programmer to specify whether all dialed digits or just the digits that make up the valid call are displayed and stored in redial memory. Suppressing the extra digits prevents entries, such as PIN numbers and other codes, from being displayed when they are dialed. (See page 5-69 in Programming.)

26.7 If the system is installed behind a PBX, the Redial feature remembers the PBX access code and automatically inserts a pause after the code when it is redialed.

26.8 TO PROGRAM THE KEYSET REDIAL MODE:

NOTE: When in the default state, the keyset redial mode is programmed for last number redial (320).

(1) While on hook, press the SPCL key.

(2) Enter the feature code to program Last Number Dialed (320) or Last Number Saved (321) redial mode. You hear confirmation tone.

26.9 TO SAVE A NUMBER ON A KEYSET PROGRAMMED FOR LAST NUMBER SAVED (321):

NOTE The saved number is replaced each time you repeat this procedure.

(1) When you wish to save an outside telephone number, hang up to disconnect the call.

(2) Remain on hook and press the REDIAL key (or press SPCL and enter the Redial feature code 380). You hear a confirmation tone.

(3) To redial the number: Use the procedure in the next paragraph.

26.10 TO REDIAL A NUMBER:

(1) Lift the handset and select an outgoing trunk.

(2) Keyset: Press the REDIAL key (or press SPCL and enter the Redial feature code 380). The number is dialed and displayed.

ESLS: Press the REDIAL key. The number is dialed.

SLI: Press the FLASH key and then the REDL key or enter the Redial feature code (380). The number is dialed.

Other Single-Line Set: Hookflash and enter the Redial feature code (380). The number is dialed.
27. PAGING

27.1 The Page feature allows announcements to be made through keyset internal speakers. Optional paging equipment (amplifiers and paging speakers) may also be installed on external paging ports or relays to provide paging for an external area, such as a warehouse or loading dock (see INSTALLATION, page 3-98).

27.3 External paging circuitry is available by converting up to nine unused single-line (SLC) or trunk circuits. Trunk and single-line circuits can be converted for external paging use in the Page Zones window (Page 5-70 in PROGRAMMING).

27.4 Pages are not heard if the keyset has been removed from paging (using the feature code as described in paragraph 28.2), is in do-not-disturb, is ringing, or is in use. Also, keyset background music and external speaker music are interrupted for pages.

27.5 TO MAKE A PAGE:

(1) Lift the handset.

(2) **Keyset:** Press the PAGE key (or enter the Page feature code 7).

Srie-Line Set: Enter the Page feature code (7).

(3) Enter the zone code (0-9) for the desired zone.

(4) After the single progress tone, make your page before the Paging timer expires. If you hear reorder tones, there are no stations or external zones in the selected page zone, the necessary system resources are busy, or the paging zone is being used by another station. Users cannot camp on to or queue the paging system.

(5) Hang up.

28. REMOVE FROM PAGING

28.1 A keyset user can prevent the keyset from receiving pages or allow it to receive pages again using these feature codes. If the keyset is assigned to more than one page zone, all zones are removed or replaced; the user cannot toggle individual zones.

28.2 TO HALT OR ENABLE ZONE PAGES:

(1) While on or off hook, press SPCL.

(2) Enter the page Remove feature code (332) to prevent the keyset from receiving pages or enter the Page Replace feature code (333) to allow the keyset to receive pages. You hear a confirmation tone. (Or use the Page Remove/Replace On/Off feature code [334] to toggle the pages on or off.)

(3) If off hook, hang up.
29. DO-NOT-DISTURB

29.1 Placing a station in do-not-disturb halts all pages, incoming intercom calls, camped-on calls, and transferred calls to that station. Queue callbacks, recalls, and direct ring-in calls are not blocked. Another user calling the station while it is in do-not-disturb hears a repeating signal of four fast tones and a pause (display keysets show the do-not-disturb message); the user cannot camp on, but can queue or leave a message at the station.

29.2 If desired, individual stations can be prevented from using do-not-disturb by disabling the do-not-disturb option in the database (see PROGRAMMING, page 5-28). Another option concerns do-not-disturb breakthrough. Normally, calls to a station through DISA, the automated attendant, or a voice computer are not blocked by placing the station in do-not-disturb. If desired, individual stations can be set to prevent these calls from breaking through do-not-disturb (see PROGRAMMING, page 5-28).

29.3 If a hunt group station is in do-not-disturb, calls to the user’s hunt group do not cause the keyset to ring, but the individual trunk key will flash if all other stations in the hunt group are busy, forwarded, have hunt group remove enabled, or are in do-not-disturb. Hunt group announcement stations and overflow stations cannot block hunt group calls by using do-not-disturb.

29.4 Keyset stations may be given do-not-disturb override permission. These stations, when reaching a station in do-not-disturb, can enter the Do-Not-Disturb Override feature code (373) and place an intercom call. Single-line stations cannot be enabled to use the Do-Not-Disturb Override feature.

29.5 When a station is placed in do-not-disturb, the user may select one of 20 system-stored messages that will appear on the top line of the display (unless do-not-disturb is enabled while the user is on a call or off hook, in which case message 1 is automatically selected). An attendant can reprogram messages 02-20 with messages, up to 16 characters each. When a station in do-not-disturb is called by a display keyset user, the caller sees the selected message.

29.6 Default do-not-disturb messages are programmed as follows:

<table>
<thead>
<tr>
<th>Keyset Message</th>
<th>Number of Times Key is Pressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 DO-NOT-DISTURB</td>
<td>12 OUT OF OFFICE</td>
</tr>
<tr>
<td>02 IN MEETING</td>
<td>13 WITH A CLIENT</td>
</tr>
<tr>
<td>03 IN MEETING</td>
<td>14 WITH A GUEST</td>
</tr>
<tr>
<td>04 ON VACATION' TIL</td>
<td>15 WITH A PATIENT</td>
</tr>
<tr>
<td>05 ON VACATION</td>
<td>16 UNAVAILABLE</td>
</tr>
<tr>
<td>06 CALL ME AT</td>
<td>17 IN CONFERENCE</td>
</tr>
<tr>
<td>07 CALL ME AFTER</td>
<td>18 AWAY FROM DESK</td>
</tr>
<tr>
<td>08 AWAY AT</td>
<td>19 GONE HOME</td>
</tr>
<tr>
<td>09 ON BREAK</td>
<td>20 OUT TO LUNCH</td>
</tr>
</tbody>
</table>

29.7 The second line of the message can be customized with a numeric/alphanumeric message of up to 16 characters. The customized message is entered as described in the following paragraphs.

29.9 When programming a customized do-not-disturb message, the station is automatically in numeric mode. The keypad keys are used to enter numbers 0-9, the pound (#) key is used for entering a hyphen (-), and the asterisk (*) key is used for entering a colon (:). For example, 1*00 would enter “1:00” in numeric mode.

29.9 Keyset users can enter alphanumeric mode by pressing the MSG key (the key lights). Keypad keys are used to enter the desired letters, numbers, and punctuation. The number of times a key is pressed determines which character is entered. For example, 3377744432999 would enter “FRIDAY.” When adjoining characters are located under the same key, press FWD key once to advance to the next character. For example, 6 FWD 666 FWD 6632999 would enter “MONDAY.” Refer to the chart below to program messages in alphanumeric mode. (Note that letters correspond to the letters printed on the keypad keys.)

<table>
<thead>
<tr>
<th>Key</th>
<th>NUMBER OF TIMES KEY IS Pressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>@ + & < 1</td>
</tr>
<tr>
<td>2</td>
<td>A B C > 2</td>
</tr>
<tr>
<td>3</td>
<td>D E F / 3</td>
</tr>
<tr>
<td>4</td>
<td>G H I " ^ 4</td>
</tr>
<tr>
<td>5</td>
<td>J K L [5</td>
</tr>
<tr>
<td>6</td>
<td>M N O) 6</td>
</tr>
<tr>
<td>7</td>
<td>P Q R S 7</td>
</tr>
<tr>
<td>8</td>
<td>T U V : 8</td>
</tr>
<tr>
<td>9</td>
<td>W X Y ? 9</td>
</tr>
<tr>
<td>0</td>
<td>* % = ? 0</td>
</tr>
<tr>
<td>+</td>
<td>$ () # ^ . ! % /</td>
</tr>
</tbody>
</table>

29.10 When using either mode, keyset users may use the SD keys (digits stored in the outside number location) and/or the REDIAL key to enter stored numbers or messages. Speed-dial numbers can be chained together when entering messages that require more than 16 key-strokes to create the desired message. When programming a message in speed-dial memory (outside number location), use the SPCL key in place of the FWD key to advance or insert spaces.
29.11 TO ENABLE DO-NOT-DISTURB MODE AT YOUR STATION:

(1) Keyset: While on hook, press the DND key (or press SPCL and enter a Do-Not-Disturb feature code — 370 or 372). The DND key lights. (Display keysets show SELECT DND MESSAGE.) Single-Line Set: Lift the handset and enter the Do-Not-Disturb feature code (370) or the Do-Not-Disturb On/Off feature code (372). You hear a progress tone.

(2) To select message 01 (DO-NOT-DISTURB):

Keyset: Press the SPKR key, lift and replace the handset, or allow the programming mode to time out.

Single-Line Set: Hang up, press the FLASH key, or allow the programming mode to time out.

To select any of the 20 pre-programmed messages: Enter the desired number (01-20). Display keysets users may scroll through the messages by pressing the pound (#) key to go forward or the asterisk (*) key to go backward (the display shows the selected message). If you enter an invalid message number, you will hear reorder tones and must try again.

(3) To terminate programming:

Keyset: Press the SPKR key, lift and replace the handset, or allow the programming mode to time out.

Single-Line Set: Hang up, press the FLASH key, or allow the programming mode to time out.

To customize the second line of the message: Use any combination of the following methods.

a. Remain in numeric mode: Press the keypad keys to enter the desired number. Use the pound key (#) for a hyphen (-) and the asterisk key (*) for a colon (:). Keyset users can press the FWD key once to leave a space, or press the MUTE key to backspace.

b. Change to alphanumeric mode (keysets only): Press the MSG key (the key lights), then enter the desired characters. Refer to the chart on the previous page. Keyset users can press the FWD key once to advance or twice to leave a space, or press the MUTE key to backspace.

c. Use speed-dial and/or redial numbers (keysets only): In either numeric or alphanumeric mode, press one of the SD keys, and/or press the REDIAL key to enter the stored characters. You may chain numbers together.

(4) Terminate programming:

Keyset: Press the SPKR key, lift and replace the handset, or allow the programming mode to time out. (Display keysets show selected message. Date and time appear on the second line if there is no customized message.)

Single-Line Set: Hang up, press the FLASH key, and allow programming mode to time out.

29.12 TO CANCEL DO-NOT-DISTURB:

Keyset: While on hook, press the lit DND key (or press SPCL and enter the Cancel Do-Not-Disturb feature code — 371 or Do-Not-Disturb On/Off feature code — 372). The DND key goes off and the display returns to date and time.

Single-Line Set: Lift the handset, enter the Cancel Do-Not-Disturb feature code (371) or the Do-Not-Disturb On/Off feature code (372), and hang up.

29.13 TO PLACE YOUR BUSY STATION IN DO-NOT-DISTURB WHILE A CALL IS CAMPED ON:

If, while on a call, you hear call waiting signals and you wish to let the caller know you do not want to be disturbed:

Keyset: Press the DND key (or press SPCL and enter a Do-Not-Disturb feature code — 370 or 372). The DND key lights. The intercom caller is no longer camped on and receives do-not-disturb indications.

Single-Line Set: (This procedure will interrupt your call in progress.) Press the FLASH key (hookflash) and enter the Do-Not-Disturb feature code (370) or the Do-Not-Disturb Mode On/Off feature code (372). The intercom caller is no longer camped on and receives do-not-disturb indications. Press the FLASH key (hookflash) again to return to the current call.

29.14 DO-NOT-DISTURB OVERRIDE (KEYSETS WITH THIS FEATURE ENABLED ONLY):

If your keyset is enabled for Do-Not-Disturb Override and you hear do-not-disturb tones when placing an intercom call, you may use the following procedure to break through do-not-disturb and complete the call.

Keyset: Press the DND key (or press SPCL and enter a Do-Not-Disturb feature code — 370 or 372). The key lights. The intercom caller is no longer camped on and receives do-not-disturb indications.

Single-Line Set: (This procedure will interrupt your call in progress.) Press the FLASH key (hookflash) and enter the Do-Not-Disturb OVERRIDE feature code (373). If the called station is idle, the call rings as a private intercom call. If the called station is busy, your call camps on.
30. HOOKFLASH

30.1 Single-line set users are required to hookflash to access some system resources. Or, a hookflash may be required for keyset and single-line users to access certain telephone company features, such as call waiting. The duration of the hookflash can be changed by reprogramming the CO Hookflash timer (default value is 600ms).

30.2 The Hookflash feature can be enabled or disabled on a trunk group-by-trunk group basis.

NOTE: The ESLS and SLI FLASH key does not generate a hookflash over trunks. You must use this procedure.

30.3 TO SEND A TIMED HOOKFLASH WHILE ON AN OUTSIDE TRUNK:

Keyset: Press the SPCL key and enter the Hookflash feature code (330).

Single-Line Set: Press the FLASH key (hookflash) and enter the Hookflash feature code (330).

31. CANCEL MISCELLANEOUS OPERATIONS

31.1 A station user can cancel Do-Not-Disturb, Handsfree Disable, Call Forward, Queue Request, Page Remove, Hunt Group Remove, and Background Music features all at once by entering a single feature code.

31.2 TO CANCEL MISCELLANEOUS OPERATIONS:

Keyset: While on or off hook, press the SPCL key and enter the Cancel Miscellaneous Operations feature code (395). You hear a confirmation tone. If off hook, hang up.

Single-Line Set: Lift the handset, enter the Cancel Miscellaneous Operations feature code (395). You hear dial tone. Hang up.
32. REMINDER MESSAGES (KEYSETS ONLY)

32.1 Reminder messages are set, like an alarm clock, to signal a keyset station at a specified time. The user can select the message and time up to 24 hours in advance. Twenty different reminder messages are available. These messages can be reprogrammed by the installer or any attendant. Up to 120 reminder messages can be requested per system.

32.2 At the programmed time, the reminder message signals the station with eight short tones. A display keyset shows the message until it is cancelled; a non-display keyset receives tones only. If the station is busy, the user still hears the tones and the message displays for 10 seconds during the call, then the display returns after the user hangs up. (Reminder displays interrupt, but do not affect programming.)

32.3 Messages can be changed by the installer or any attendant, if desired. They are limited to 16 characters. The default messages are:

<table>
<thead>
<tr>
<th>Message Code</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>MEETING</td>
</tr>
<tr>
<td>02</td>
<td>CALL ENGINEERING</td>
</tr>
<tr>
<td>03</td>
<td>SALES MEETING</td>
</tr>
<tr>
<td>04</td>
<td>CALL ACCOUNTING</td>
</tr>
<tr>
<td>05</td>
<td>CANCEL MEETING</td>
</tr>
<tr>
<td>06</td>
<td>CALL CUSTOMER</td>
</tr>
<tr>
<td>07</td>
<td>CALL HOME</td>
</tr>
<tr>
<td>08</td>
<td>CALL CORPORATE</td>
</tr>
<tr>
<td>09</td>
<td>CALL CENTER</td>
</tr>
<tr>
<td>10</td>
<td>CALL COMPANY</td>
</tr>
<tr>
<td>11</td>
<td>CALL ENGINEERING</td>
</tr>
<tr>
<td>12</td>
<td>CALL MARKETING</td>
</tr>
<tr>
<td>13</td>
<td>CALL ACCOUNTING</td>
</tr>
<tr>
<td>14</td>
<td>CANCEL DND</td>
</tr>
<tr>
<td>15</td>
<td>CANCEL CALL FWD</td>
</tr>
<tr>
<td>16</td>
<td>TAKE MEDICATION</td>
</tr>
<tr>
<td>17</td>
<td>MAKE RESERVATION</td>
</tr>
<tr>
<td>18</td>
<td>REVIEW SCHEDULE</td>
</tr>
<tr>
<td>19</td>
<td>LUNCH</td>
</tr>
<tr>
<td>20</td>
<td>REMINDER</td>
</tr>
</tbody>
</table>

32.4 TO REQUEST REMINDER MESSAGES:

NOTE: Lift and replace the handset to stop the process without selecting a message.

(1) While on hook, press the SPCL key.
(2) Enter the Reminder Message feature code (305). (Display keysets show PROGRAM REMINDER MESSAGE.)
(3) To select a specific message: Enter the two-digit message code (01–20). (Display keysets show selected message.)

To scroll through the messages: View the available messages by pressing the pound (#) key to scroll forward or pressing the asterisk (*) key to scroll backward. Each message displays for one second before another can be selected.

(4) While the desired message is displayed, enter the time that you wish to receive the message:

a. Enter the hour and minutes (e.g., 900 for 9:00).

b. Press the asterisk (*) key for AM or press the pound (#) key for PM. You hear a progress tone when it is accepted.

NOTE: If an invalid time is entered, you hear reorder tones and the message request is cancelled. (Display keysets show ERROR! INVALID TIME ENTERED.)

32.5 TO RECEIVE A REMINDER MESSAGE:

At the selected time, you hear eight short tones and the message displays.

(1) If your station is idle, go to the next step.

If you are on a call, the message will display for 10 seconds. After you hang up, the reminder message returns and must be cleared.

If you are programming your keyset, the programming function is interrupted. The message will display for 10 seconds. After programming is completed, the reminder message will return and must be cleared.

(2) To clear the message: Remain on hook and press the asterisk (*) key.

32.6 TO CANCEL ALL OF YOUR REMINDER MESSAGE REQUESTS:

While on hook, press the SPCL key and enter the Cancel Reminder Message feature code (306). You cannot view or cancel individual messages.
33. OPTIONAL STATION EXCHANGE FEATURE

33.1 This programmable station feature allows a station user to exchange the extension numbers of two station circuits. This swaps the database and user programmed features of the extension numbers between two station circuits without the need for database programming. The circuit number of the station locations are unchanged, but the extension numbers are changed, as illustrated below.

33.2 All database-programmed station features (such as, DSS/BLF Unit assignment, trunk access, station flags, toll restriction, usename, etc.) as well as all user programming (speed-dial numbers, call forwarding, do-not-disturb, reminder messages, etc.) will stay with the extension number during an exchange.

33.3 Any station that will be involved in a station exchange must have the Station Exchange station flag enabled and a programmed Station Exchange Password. If a station user attempts an exchange in which one or both extension numbers do not have the flag enabled, the exchange will not be allowed. If the user does not enter a valid password after entering the Station Exchange feature code, the exchange will not be allowed. Refer to pages 5-28 and 5-31 in PROGRAMMING.

NOTE: Programmers should use extension numbers and not station circuit numbers when programming stations. Because the Station Exchange feature can be used to change the extension numbers of station circuits, circuit numbers are not reliable references.

33.4 Exchanges can be made only between similar stations. That is, digital keysets of any size can exchange with other digital keysets of any size, analog keysets of any size can exchange with other analog keysets of any size, and single-line stations can exchange with other single-line stations. Examples of allowed and disallowed station exchanges include the following:

Allowed Exchanges:
- Standard Digital Keyset station with an Executive Digital Keyset station
- IMX 24-Line Keyset (or Inter-Tel/DVK 24-Line Keyset) station with an IMX 8-Line Keyset (or Inter-Tel/DVK 8-Line Keyset) station
- Two Single-Line stations

Disallowed Exchanges:
- Any Digital Keyset station with any Analog Keyset station
- Any Keyset station with any Single-Line station

33.5 DSS/BLF Units follow the same analog-to-analog and digital-to-digital exchange rule as keysets. If one station in the exchange is equipped with a DSS/BLF and the other is not the exchange is allowed and the DSS/BLF Unit will remain operational at its assigned station circuit. Any DSS/BLF Units involved in an exchange will retain their key map assignments, but will be associated with their keyset's new extension number. That is, the DSS/BLF key maps will not be exchanged when the keyset extension numbers change.
Examples of allowed and disallowed DSS/BLF Unit exchanges include the following:

Allowed Exchanges:
- A Digital **Keyset** with Digital DSS/BLF Unit with another Digital **Keyset** with or without a Digital DSS/BLF Unit
- An Analog **Keyset** with Analog DSS/BLF Unit with another Analog **Keyset** with or without an Analog DSS/BLF Unit

Disallowed Exchanges:
- A Digital **Keyset** with Digital DSS/BLF Unit with an Analog **Keyset** with or without an Analog DSS/BLF Unit

NOTE: If a database save/restore is performed on the system, stations that have been exchanged are not returned to their original programmed state. The exchange remains in effect.

33.7 Attendant Computer Console stations can be exchanged with other Console stations or with Analog **Keyset stations. They cannot exchange with Digital **Keyset** stations or Single-Line stations.**

NOTE: Exchanges between a console and **keyset** station will cause the **keyset** to lose station speed-dial locations 1-3. This is because those locations are automatically modified by the system for use by the console. Speeddial locations 1-3 will remain functional at the console station.

33.8 One of the station circuits used in the station exchange can be a “park” location (a circuit that is not equipped with a circuit card or phone). However, this is not required; two fully equipped stations can be exchanged as long as they meet the programming and station-type criteria discussed above.

NOTE: Park locations are included in the system port count even if they are not physically connected to a station circuit.

33.9 Neither station involved in the exchange can have a call in progress, ringing, or recalling when an exchange is attempted. There can be calls on hold or hunt group calls can be camped on, recalling, or ringing. If the exchange is denied, the user hears reorder tones.

33.10 Two possible applications for this feature include the following:

- **Multiple users of one station location:** When several people use the same phone, each person can have his or her own station programming. For example, if three workers on different shifts use the same office they can use their own extension numbers during their shifts. At the beginning of the shift, the worker would enter the Station Exchange feature code and password to swap the office’s default extension number with his own, which is kept in a park position. During his shift, he can program and use his phone as desired. At the end of the shift, he would exchange again to place his extension number back in the park position and return the default extension to the office. The next worker would then bring in his or her individual extension.

- **A user who changes offices periodically:** If a worker spends a portion of the day in one location and then moves to another location, he or she **can** use the Station Exchange feature to take his or her station programming to the new location. The user can either move the extension in and out of a park location, or simply exchange the two locations each time he or she changes.

33.11 TO EXCHANGE STATIONS:

(1) To bring a new extension number to your present location, press SPCL and enter the Station Exchange feature code (303). You hear a confirmation tone. The display shows **STN EXCHANGE WITH EXT.**

If the station you are using is not programmed for Station Exchange, you hear reorder tones and the station returns to idle state.

(2) Enter the extension number you wish to bring to the station you are using. You hear a confirmation tone. The display shows the number you dialed.

You will hear reorder tones and must start over if any of the following occur:

- You entered an invalid extension number
- The extension number that you entered is not programmed for Station Exchange
- You entered an extension number of mismatched station device type (digital vs. analog, or **keyset** vs. single-line)
- You entered an extension number of a station that is not idle

(3) Enter the Station Exchange Password for the extension number entered in step 2. When the password is accepted, you hear a confirmation tone.

The station you are using is reset to reflect the database and user programming of the extension number selected in step 2.

If you entered an invalid password, you hear reorder tones and must start over.
34. **OPTIONAL DATA DEVICE ATTACHMENTS (KEYSETS ONLY)**

34.1 A customer-provided, modem-equipped data device (such as a data terminal or a personal computer) may be attached to any IMX 12/24-line keyset or any Inter-Tel/DVK keyset that has an optional Data Port Module installed. A data device may also be attached to any digital keyset with a PC Data Port Module (PCDPM) and a Modem Data Port module (MDPM) installed. (See SPECIFICATIONS, page 2-23, and INSTALLATION, pages 3-66, 3-70, and 3-78, for more information.) IMX 8-line keysets cannot have data device attachments because this feature requires a secondary voice path which is only available on digital keysets, IMX 12/24-line keysets, and Inter-Tel/DVK keysets.

NOTE: Because incoming calls must be transferred to the data path by pressing the DATA key, the auto-answer feature on modems cannot be used to answer data calls to a keyset.

34.2 Data calls can be placed to an intercom or outside number using the keyset or a keyboard attached to the data device. If using a keyboard, the voice channel is automatically connected to the data device when it comes off hook. If using the keyset to place the call, the keyset user presses the DATA key to connect the trunk or intercom voice channel to the data device. By entering a feature code, data calls may be monitored through the handset without interfering with the data transmission (the microphone is muted).

34.3 Data calls are transmitted over the keyset's secondary voice path (the MDPM voice path on digital keysets). This leaves the primary voice path available for normal keyset operation. Receiving off-hook voice announce (OHVA) calls during a data call is not possible since the data call is using the secondary voice path.

34.4 The modem-equipped data device is connected to the keyset by plugging the data device's line cord (normally intended for connection to a standard trunk) into the modular jack on the keyset's optional Data Port Module or PCDPM.

34.5 **TO ACCESS A REMOTE DATA DEVICE USING A TRUNK:**

1. **To use the handset:** Lift the handset.

 To use the speakerphone: While on hook, press the SPKR key.

2. Select an outside trunk and dial the telephone number of the data device to be accessed. The call or individual trunk key flashes and the display shows the call cost and elapsed time of the call.

3. When you hear modem tone, press the DATA key. The call key is unlit or the individual trunk key is lit. If using the speakerphone, the SPKR key goes off, the DATA key flutters, and the display returns to date and time. If using the handset, the DATA key flashes slowly.

4. **If using the handset,** hang up. The call key remains unlit or the individual trunk key remains lit, the DATA key flutters, and the display returns to date and time.

5. Operate the data device according to the manufacturer's instructions.

6. **If you wish to return the data call to the primary voicepath,** press the DATA key. The call or individual trunk key is lit and the call cost and elapsed time are displayed.

34.6 **TO ACCESS A REMOTE DATA DEVICE USING THE INTERCOM:**

1. **To use the handset:** Lift the handset.

 To use the speakerphone: While on hook, press the SPKR key.

2. Dial the extension number of the data device to be accessed.

3. Notify the receiving party that you wish to connect the data device. When the called party activates the remote data device by pressing the DATA key, you hear modem tone. Or, if the extension number you dialed accesses an auto-answer modem connected to a single-line circuit, you will hear modem tone immediately.

NOTE: If the receiving party wishes to transfer the call to another party, the transfer must be completed before the caller completes the next step.

4. Press your DATA key. If using the speakerphone, the SPKR key goes off and the DATA key flutters. If using the handset, the DATA key flashes slowly.

5. **If using the handset,** hang up. The DATA key flutters.

6. Operate the data device according to the manufacturer's instructions.
34.7 **TO ACCESS A REMOTE DATA DEVICE WHILE ON A CALL:**

(1) When you hear modem tone, press the DATA key. (If on an outside call, the call key is unlit or the individual trunk key is solidly lit). If using the speakerphone, the SPKR key goes off and the DATA key flutters (and, if on an outside call, the display returns to date and time). If using the handset, the DATA key flashes slowly.

(2) **If using the handset,** hang up. (If on an outside call, the call key is unlit or the individual trunk key is solidly lit). The DATA key flutters (and, if on an outside call, the display returns to date and time).

(3) Operate the data device according to the manufacturer’s instructions.

34.8 **TO ACCESS A REMOTE DATA DEVICE USING AN ATTACHED MODEM-EQUIPPED DATA DEVICE:**

(1) Following the procedures of your data device’s communications software, instruct the device to dial an extension number, or a trunk access code and a telephone number, of the data device to be accessed. The call will be processed as though dialed from the keyset and will be automatically connected when answered. The DATA key is lit until dialing is completed, then it flutters. If the resources are busy, the data device will not camp on, but will receive continuous busy tones.

(2) Operate the data device according to the manufacturer’s instructions.

NOTE: You cannot access system features (other than intercom and trunk access) by entering feature codes through the data device keyboard.

34.9 **TO MONITOR A DATA CALL IN PROGRESS:**

(1) While a data transmission is active, lift the handset, press SPCL, and enter the Data Port Monitor feature code (341). The DATA key flashes slowly. (If connected to a trunk, the call key remains unlit or the individual trunk key remains lit and the display shows the call cost and elapsed time of the call.)

(2) You may listen to the data call without interfering with the data transmission (the handset microphone is muted). Hang up to discontinue monitoring the data transmission; the data call is still in progress and the DATA key flutters.

34.10 **TO TERMINATE DATA DEVICE CONNECTION:**

To have the data device disconnect the call:
Using the appropriate commands for the data device, instruct it to disconnect from the call.

To use the keyset before disconnecting the call: While on or off hook:

a. Press the lit DATA key. The DATA key goes off. If desired, speak to the party at the site of the remote data device. This can only be done if the modem at the site of the remote data device can be turned off without disconnecting the trunk.

b. **To disconnect:** If off hook, hang up. If on hook, press the SPKR key.
35. ATTENDANT FEATURES

35.1 This section describes the attendant-only features including the functions of the Direct Station Selection/Busy Lamp Field (DSS/BLF) Unit. (Attendant Computer Console instructions are located in the manual that is provided with the unit.)

35.2 All attendant stations must be equipped with keysets and should have displays in order to identify ring-in and recall sources. Also, for increased call-processing capabilities, attendant stations are generally equipped with optional DSS/BLF Units or Attendant Computer Consoles. DSS/BLF Units are described below, for Attendant Computer Console information, refer to the manual provided with the unit.

35.3 See page 4-50 for a complete description of DSS/BLF Units. For DSS/BLF Units with speed-dial keys, see page 4-87 for operating instructions.

NOTE: Keyset stations do not have to be assigned as attendant stations in order to use a DSS/BLF Unit. However, all keysets with DSS/BLF Units need to be identified in database programming (see PROGRAMMING, page 5-132).

A. USING THE DSS/BLF UNIT

35.4 PLACING AN INTERCOM CALL USING A DSS/BLF UNIT:

(1) Lift the handset or press the SPKR key.

(2) If you wish to place a private call to a keyset, press the pound (#) key.

(3) Press the desired DSS/BLF key.

If calling a keyset with handsfree answering enabled, you are immediately connected.

If placing a private call, calling a hunt group, calling a single-line set, or calling a keyset with the handsfree feature disabled, you hear repeating double tones until the call is answered.

(4) If the system is enabled for immediate DSS/BLF Unit off-hook voice announce, do not hang up when calling a busy keyset. Press the DSS/BLF key again. If the keyset's secondary voice path is available, you are immediately connected for an off-hook voice announce call and may speak. (For more information concerning the Off-Hook Voice Announce feature, refer to page 4-61.)

35.5 TRANSFERRING CALLS:

(1) If on an outside call, press the desired DSS/BLF key (or press the XFR key and dial a station or voice mail extension number, a hunt group pilot number, or a transfer-to-Park location number). The call is placed on transfer hold.

If on an intercom call, press the SPCL key and enter the Transfer Intercom Call feature code (346). Then press the desired DSS/BLF key (or dial a station or voice mail extension number, a hunt group pilot number, or a transfer-to-Park location number).

a. Transfer to a station that is forwarded to voice mail. If transferring to a station that is forwarded to voice mail, you hear repeating double tones and the display shows DEST FORWARDED TO VOICE MAIL. You can then hang up to complete the transfer, or return to the caller on transfer hold by doing one of the following:

For an outside or intercom call, press the XFR key twice (or press the SPCL key once and enter the Transfer Call feature code [345] twice).

For an outside call, press the call key or individual trunk key.

b. Transfer to voice mail: If transferring to the voice mail unit, you hear a single tone and the system waits for you to enter the mailbox number (display shows ENTER VOICE MAILBOX #). Enter the desired mailbox number.

If you do not enter a mailbox number before you hang up, the caller will be connected to the voice mail unit and must enter the mailbox number after listening to the introductory voice prompts.

If the system is checking for a valid mailbox number and you enter a valid mailbox number, the transfer is completed to voice mail (display shows CALL TRANSFERRED TO VOICE MAIL).

If the system is checking for a valid mailbox number and the number you entered is invalid, you hear reorder tones (display shows INVALID MAILBOX NUMBER ENTERED) and you must enter the correct number.

If the system is not checking for a valid mailbox number, hang up to complete the transfer.
c. **Transfer-to-park:** If transferring to a transfer-to-park location, hang up to complete the transfer, or transfer the call to hold as described in the second part of step 4. Then page the desired party and announce the call. The party must reverse transfer the call. Note that if the call is not answered, it will recall your station if transferred directly or will recall the called transfer-to-park location’s attendant if transferred to hold.

d. Transfer to a hunt group: If transferring the call to a hunt group, the transfer is automatically completed when you dial the pilot number. Hang up.

(2) If desired, wait for an answer and announce the call. One of the following occurs:

a. **If the call is accepted:** continue to step 3.

b. **If the call is refused, the station is busy or there is no answer:** Skip to step 4 or do one of the following.

To return to the caller: Do one of the following.

- For an outside or intercom call, press the XFR key twice (or press the SPCL key once and enter the Transfer Call feature code [345] twice).
- For an outside call, press the call key or individual trunk key.

To try another station: Press the XFR key (or press the SPCL key and enter the Transfer CO feature code [345], or the Transfer Intercom feature code [346]) and dial another extension number.

(3) If it becomes necessary to split between the called party and the caller waiting to be transferred, you may use the **Keyset Call Splitting** feature code as follows:

a. Press the SPCL key and enter the **Keyset** Call Splitting feature code (338). The station waiting to receive the transfer is placed on hold and you are connected to the party waiting to be transferred.

b. Press the SPCL key and enter 338 again to speak to the station user waiting to receive the transfer and place the party to be transferred on hold.

c. Hang up to complete the transfer.

(4) **To complete the transfer:** Hang up, press another call key, or press the IC key to complete the transfer. The call will ring at the station. (Receiving station’s display shows XXX TRANSFER PROM XXX or Grp #XX TRANSFER PROM XXX.) If the station is busy, the call camps on and sends call waiting signals.

To transfer the call to hold: Press the HOLD key (or press the SPCL key and enter the Individual Hold feature code [336]) to place the call on hold at the called station. The call will not ring or send call waiting signals until the Hold timer expires.

To complete the transfer and then make a page: Press the PAGE key. The call will automatically be transferred to hold at the called station and you will be connected to the paging network. Enter the desired paging zone code and make your announcement before the Paging timer expires.

35.6 TO REVERSE TRANSFER (PICK UP) A CALL RINGING OR HOLDING AT ANOTHER STATION:

(1) Lift the handset or press the SPKR key.

(2) EITHER, Press the DSS/BLF key of the station where the call is ringing or holding and then press the XFR key.

OR, Enter the Reverse Transfer feature code (4) and then press the DSS/BLF key of the station where the call is ringing.

(3) **If the system is not programmed to automatically connect reverse transfers,** press the call or individual trunk key or IC key. The key is fluttering if the call was on hold or flashing if the call was ringing.
B. ATTENDANT RECALL

35.7 When a call is placed on hold or is transferred from one station to another, certain system timers limit the amount of time the call may remain unattended. After that time, the call recalls the station that transferred it or placed it on hold. If the call remains unanswered at the station until the Recall timer expires, it recalls the station’s attendant If the attendant station is busy, the call camps on and the display shows the source of the recall. If the call is not answered before the Abandoned Call timer expires, the system disconnects the call.

35.8 If a station user transfers or forwards an outside call to an outside telephone number and a loop start trunk is involved (this does not apply to ground start trunks), the call is limited by the Unsupervised CO timer. When the timer expires, one of the outside parties can reset the timer by pressing any DTMF key. If the timer is not reset, the call recalls the primary attendant station and causes the CNF key to flash. (Display key-sets show UNSUPERVISED CO RECALL.) This serves two purposes:

- It allows the attendant to monitor the length of CO-to-CO calls. When a CO-to-CO call recalls, the attendant can disconnect the call or allow it to continue.

- If the callers hang up before the attendant receives the recall, the system may not have disconnected the trunks because a disconnect was not received from the central office. The attendant must disconnect the call.

35.9 A recall signals the attendant’s station with a display message, a recall ring signal (a repeating signal of four tones and a pause), and a call or individual trunk key flashing at the medium rate. If there is no attendant, or if the system is in night mode, the call recalls the station that transferred the call or placed it on hold until the Abandoned Call timer expires; then the call is disconnected.

35.10 If the attendant has calls forwarded, recalls from stations follow internal call forward requests. Recalls do not forward to outside telephone numbers, but recall the attendant’s station until they are answered or the Abandoned Call timer expires. Placing the attendant’s station in do-not-disturb does not block recalls or direct ring-in calls.

35.11 TO ANSWER A HOLD OR TRANSFER RECALL FROM AN OUTSIDE CALL:

When you see a hold or transfer recall display (HOLD RECALL FROM GRP #XX [or group name] RECALL FROM EX XXX [or user name]) and hear a recall ring signal (a repeating signal of four tones and a pause):

(1) Lift the handset or press the SPKR key.

(2) press the medium-flashing call key or individual trunk key or press the ANSWER key. If more than one trunk is recalling, pressing the ANSWER key accesses the outside call indicated on the display.

35.12 TO ANSWER A HOLD RECALL FROM AN INTERCOM CALL:

When you see a hold recall display (HOLD RECALL FROM XXX) and hear a recall ring signal (a repeating signal of four tones and a pause):

EITHER, Lift the handset or press the SPKR key, then press the IC key.

OR, For quick handsfree operation, simply press the IC key.

NOTE: If you are busy when the intercom call recalls, it will camp on. The IC key flashes at the medium rate, but you do not hear recall ring signals.

35.13 TO ANSWER AN UNSUPERVISED OUTSIDE CALL RECALL:

When you see the unsupervised recall display (UNSUPERVISED CO RECALL), hear a recall ring signal (a repeating signal of four tones and a pause), and see the CNF key flashing at the medium rate:

(1) Lift the handset and press the CNF key to connect with both trunks. (If you have automatic CO call access, you do not need to press the CNF key.) The CNF key flashes slowly and the display shows CONFERENCE WITH GRP #XX GRP #XX.

(2) Check to see if the trunk is still beii used.

(3) If the parties are still talking, press the CNF key again and hang up to return the parties to their conversation. The CNF key flutters. You can enter the conference at any time by pressing the fluttering CNF key. When the Conference-Hold timer expires, the conference recalls your station again.

If the parties have hung up, hang up to disconnect the call.
C. PLACING THE SYSTEM IN NIGHT MODE

35.14 Each attendant can place the associated tenant group in night mode to change the allowed-answer and ring-in assignments to the night lists. The primary attendant can place the entire system (all tenant groups) in day or night mode. There is no hold or transfer attendant recall during night mode. Hold and transfer recalls ring at the station that transferred them or placed them on hold. If a recall is not answered before the Abandoned Call timer expires, the call is disconnected. Unsupervised call recalls and unassigned DID trunks will continue to ring at the primary attendant’s station in night mode.

35.15 The night switch relay, if programmed, is activated when the system is placed in night mode and turned off when the system is placed in day mode. The night relay is programmed in the database (see page 5-73 in PROGRAMMING, and page 2-10 in SPECIFICATIONS for more information).

35.16 TO TURN NIGHT MODE ON OR OFF:

While on hook, press the SPCL key and enter the Night Ring On/Off feature code (010). You hear a single confirmation tone. If placing the system in night mode, the display shows SYSTEM IS NOW IN NIGHT RING until the night mode is canceled (this appears on all attendant’s displays if the primary attendant placed the system in night mode). If placing the system in day mode, your display shows SYSTEM IS NOW IN DAY RING for five seconds (if the primary attendant placed the system in day mode the night mode display is cleared at all other attendant stations).
D. Programming Specific Station Information

35.17 Due to employee movement, change of status, turnover, etc., certain specific station information, such as user name, tenant group, department number, and serving attendant may need to be changed. This can be done from any attendant station. When programming numbers, the attendant's station is automatically in numeric mode; when programming the user name, the station is automatically in alphanumeric mode. Press the MSG key to switch back and forth between alphanumeric and numeric mode.

35.18 In numeric mode, the keypad keys are used to enter numbers 0-9, the pound (#) key is used for entering a hyphen (-), and the asterisk (*) key is used for entering a colon (:). For example, 1*00 would enter “1:00” in numeric mode.

35.19 In alphanumeric mode, keypad keys are used to enter the desired letters, numbers, and punctuation. The number of times a key is pressed determines which character is entered. For example, 533266 would enter “JEAN.” When adjoining characters are located under the same key, press the FWD key to advance to the next character. For example, 66FWD6667776 would enter “NORM.” Refer to the chart below to program information in alphanumeric mode. (Note that letters correspond to the letters printed on the keypad keys.)

35.20 To program specific station information:

1. While on hook, press the SPCL key and enter the Program Station Data feature code (922). (Display keysets show PROGRAMMING EXT.)

2. Enter the extension number (do not use the DSS/BLF key) of the station that is to be reprogrammed and press SPCL. You will hear a confirmation tone and the display shows USERNAME: EX XXX (or the user name if it exists).

3. To enter a new user name: Use one of the following methods.
 a. Alphanumeric mode (MSG key lit): Press the keypad keys to enter the desired characters. (Refer to the chart.) You may press the FWD key once to advance or twice to leave a space. Press the MUTE key to backspace.
 b. Numeric mode (MSG key unlit): Press the keypad keys to enter the desired number. Use the pound key (#) for a hyphen (-) and the asterisk key (*) for a colon (:). Press the FWD key once to leave a space, or press the MUTE key to backspace.

4. To erase the current name: Repeatedly press the MUTE key until the lower portion of the display shows NONE.

5. To leave the information the same: Proceed to the next step.

6. Press the SPCL key to update the database and advance to the next prompt. You will hear a confirmation tone and the display shows TENANT GROUP X (and, if programmed, the tenant group name will display on the second line).

To enter a new tenant group number: Press the pound (#) key to scroll forward through the list or the asterisk (*) key to scroll backward.

To leave the information the same: Proceed to the next step.

(6) Press the SPCL key to update the database and advance to the next prompt. You will hear a confirmation tone and the display shows DEPARTMENT XX (and, if programmed, the department name will display on the second line).
To enter a new department number: Press the pound (#) key to scroll forward through the list or the asterisk (*) key to scroll backward.

To leave the information the same: Proceed to the next step.

Press the SPCL key to update the database and advance to the next prompt. You will hear a confirmation tone and the display shows **ATTENDNT: EX XXX** (or NONE).

NOTE: This display will not appear if the station being programmed is an attendant.

To enter a new serving attendant number:
Enter the number using the keypad (it is automatically in the numeric mode).

To erase the current attendant: Repeatedly press the MUTE key until the lower portion of the display shows NONE.

To leave the information the same: Proceed to the next step.

Press the SPCL key to update the database and advance to the next prompt. You will hear a confirmation tone and the display shows **PROGRAMMING EXT.:**

To program another station: Repeat the process with another extension number.

To terminate the programming sequence: Lift and replace the handset or allow the timer to expire. The display will return to date and time.
E. PROGRAMMING SYSTEM REMINDER MESSAGES

35.21 The stored system reminder messages can be changed from any attendant’s keyset. (See page 4-98 for information concerning their use.) When the system is in the default state, the 20 reminder messages listed below are programmed. Attendants can delete them or change them to any other value (up to 16 characters).

01 MEETING 11 CALL ENGINEERING
02 STAFF MEETING 12 CALL G
03 SALES MEETING 13 SALESAccounting
04 CANCEL MEETING 14 CANCEL FWD
05 APPOINTMENT 15 PLACE CALL
06 PLACE CALL 16 TAKE MEDICATION
07 CALL CLIENT 17 MAKE RESERVATION
08 CALL CUSTOMER 18 REVIEW SCHEDULE
09 CALL HOME 19 LUNCH
10 CALL CORPORATE 20 REMINDER

35.22 When programming, the attendant’s station is automatically in alphanumeric mode. Press the MSG key to switch back and forth between alphanumeric and numeric mode.

35.23 In numeric mode, the keypad keys are used to enter numbers 0-9, the Pound (#) key is used for entering a hyphen (-), and the asterisk (*) key is used for entering a colon (:). For example, 1*00 would enter “1:00” in numeric mode.

35.24 In alphanumeric mode, keypad keys are used to enter the desired letters, numbers, and punctuation. The number of times a key is pressed determines which character is entered. For example, 3377744432999 would enter “FRIDAY.” When adjoining characters are located under the same key, press the FWD key once to advance to the next character. For example, 6 FWD 666 FWD 6632999 would enter “MONDAY.” Refer to the following chart to Program information in alphanumeric mode. (Note that letters correspond to the letters printed on the keypad keys.)

35.25 TO PROGRAM A REMINDER MESSAGE:

NOTE: Lift and replace the handset to stop the Process without selecting a message.

(1) While on hook, Press the SPCL key and enter the Program System Reminder Messages feature code (023). Display shows PROGRAM REMINDER MESSAGE.

(2) To select a specific message: Enter the two-digit message code (01-20). Display shows selected message.

To scroll through the messages: press the pound (#) key to scroll forward or press the asterisk (*) key to scroll backward. Each message displays for one second before another can be selected.

(3) To enter a new message: Use one of the following methods.

a. Alphanumeric mode (MSG key lit): Press the keypad keys to enter the desired characters. Refer to the chart. You may press the FWD key once to advance or twice to leave a space. Press the MUTE key to backspace.

b. Numeric mode (MSG key unlit): Press the keypad keys to enter the desired number. Use the pound key (#) for hyphen (-) and the asterisk key (*) for colon (:). Press the FWD key once to leave a space, or press the MUTE key to backspace.

To erase the current message: Press the MUTE key repeatedly until the display shows NONE.

To leave the message the same: Lift and replace the handset. (You will exit the programming sequence and your display will return to date and time.)

(4) Press the SPCL key to update the database. You will hear a confirmation tone and the display shows PROGRAM REMINDER MESSAGE.

(5) To program another message: Repeat steps 2 through 4 for another message.

To terminate the programming sequence: Lift and replace the handset, allow the timer to expire, or press the SPKR key, IC key, or any trunk access key. (Display returns to date and time.)
DO-NOT-DISTURB MESSAGES

35.26 The stored system do-not-disturb messages can be changed from any attendant station. (See page 4-95 for information concerning their use.) When the system is in the default state, the 20 do-not-disturb messages listed below are programmed. Attendants can delete or change messages 02-20 to any other desired value (up to 16 characters). Message 01 (DND) cannot be changed.

01 DO-NOT-DISTURB 11 OUTOFOFFICE
02 IN MEETING UNTIL 12 OUT UNTIL
03 IN MEETING 13 WITH A CLIENT
04 ON VACATION 'TIL 14 WITH A GUEST
05 ON VACATION 15 WITH A PATIENT
06 CALL ME AT 16 UNAVAILABLE
07 CALL ME AFTER 17 IN CONFERENCE
08 AWAY AT 18 AWAY FROM DESK
09 ON BREAK 19 GONE HOME
10 OUT OF TOWN 'TIL 20 OUT TO LUNCH

35.27 When programming, the attendant’s keyset is automatically in alphanumeric mode. Press the MSG key to switch back and forth between modes.

35.28 In numeric mode, the keypad keys are used to enter numbers 0-9, the pound (#) key is used for entering a hyphen (-), and the asterisk (*) key is used for entering a colon (:). For example, 1*00 would enter “1:00” in numeric mode.

35.29 In alphanumeric mode, keypad keys are used to enter the desired letters, numbers, and punctuation. The number of times a key is pressed determines which character is entered. For example, 3377744432999 would enter “FRIDAY.” When adjoining characters are located under the same key, press the FWD key once to advance to the next character. For example, 6 FWD 666 FWD 6632999 would enter “MONDAY.” Refer to the following chart to program information in alphanumeric mode. (Note that letters correspond to the letters on the keys.)

<table>
<thead>
<tr>
<th>KEY</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>@</td>
<td>+</td>
<td>&</td>
<td><</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
<td>/</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>I</td>
<td>"</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>K</td>
<td>L</td>
<td>[</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>N</td>
<td>O</td>
<td>]</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>U</td>
<td>V</td>
<td>:</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>=</td>
<td>?</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>!</td>
<td>$</td>
<td>(</td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td>)</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

35.30 To program a do-not-disturb message:

NOTE. If you make a mistake while programming, lift and replace the handset to stop the process without selecting a message. Then, start over.

1. While on hook, press the SPCL key and enter the Program System Do-Not-Disturb Messages feature code (024). (Display keysets show PROGRAM DND MESSAGE.)

2. To select a specific message: Enter the two-digit message code (02-20). Display shows selected message.

To scroll through the messages: press the pound (#) key to scroll forward or press the asterisk (*) key to scroll backward. Each message displays for one second before another can be selected.

NOTE: DND message number 01 (DO-NOT-DISTURB) cannot be changed.

3. To enter a new message: Use one of the following methods.

 a. Alphanumeric mode (MSG key lit): Press the keypad keys to enter the desired characters. Refer to the chart. You may press the FWD key once to advance or twice to leave a space. Press the MUTE key to backspace.

 b. Numeric mode (MSG key dir): Press the keypad keys to enter the desired number. Use the pound key (#) for hyphen (-) and the asterisk key (*) for colon (:). Press the FWD key once to leave a space, or press the MUTE key to backspace.

 To erase the current message: Press the MUTE! key repeatedly until the display shows NONE.

 To leave the message the same: Lift and replace the handset. (You will exit the programming sequence and your display will return to date and time.)

 Press the SPCL key to update the database. You will hear a confirmation tone and the display shows PROGRAM DND MESSAGE.

3. To program another message: Repeat steps 2 through 4 for another message.

To terminate the programming sequence: Lift and replace the handset, allow the timer to expire, or press the SPKR key, IC key, or any trunk access key. (Display returns to date and time.)
G. SETTING TIME OF DAY AND DATE

35.31 Occasionally, the system time or date needs to be reset (for example, for daylight-saving time). Any attendant can change the date and time message that appears on all display keysets and in the SMDA and SMDR reports.

35.32 TO SET THE TIME OF DAY AND DATE:

NOTE: If you make a mistake, lift and replace the handset, then start over. If an invalid date or time is entered, the keyset displays ERROR! INVALID TIME/DTE ENTERED; you must start over.

(1) While on hook, press the SPCL key and enter the Set Time Of Day feature code (021). (Display keysets show SET TIME OF DAY.)

(2) Use the keypad keys to enter the time in hours and minutes. Then press the asterisk (*) key for AM or the pound (#) key for PM. For example, enter 900* for 9:00AM or 230# for 2:30PM. (Display keysets show SET DATE MM-DD-YYYY.)

(3) Use the keypad keys to enter the month, day, and year. For example, press 01011990 for 01-01-1990. You may backspace to correct entries by pressing the MUTE key. (When finished, display shows SET DAY OF WEEK SUN.)

(4) Select the day of week by scrolling through the selections. Press the pound (#) key to go forward or the asterisk (*) key to go backward. When the desired day is displayed, press the SPKR key or lift and replace the handset to terminate programming. Check the date and time of day on the display.

H. REMOTE HUNT GROUP REMOVE/REPLACE

35.33 An attendant can temporarily halt (or restore) hunt group calls for any or all stations that have dial-zero access to that attendant’s station. The attendant uses the Remote Hunt Group Remove/Replace feature codes as described below.

35.34 TO REMOVE OR REPLACE A STATION’S HUNT GROUP CALLS:

(1) While on hook, press the SPCL key.

(2) Enter one of the following feature codes:
 a. Remote Hunt Group Replace (032) to restore hunt group calls.
 b. Remote Hunt Group Remove (033) to halt hunt group calls.

(3) Dial the extension number or press the DSS/BLF key of the desired station.

I. REMOTE STATION FEATURE CANCEL

35.35 An attendant can cancel Call Forward and/or Do-Not-Disturb for any or all stations that have dial-zero access to that attendant’s station.

35.36 TO CANCEL FEATURES:

(1) While on hook, press the SPCL key.

(2) Enter one of the following feature codes:
 a. Cancel all station do-not-disturb requests (012)
 b. Cancel all station forward requests (013)
 c. Cancel all station DND/FWD requests (014)
 d. Cancel station do-not-disturb request (015)
 e. Cancel station forward request (016)
 f. Cancel station DND/FWD request (017)

(3) If clearing an individual station (using code 015, 016, or 017), dial the extension number or press the DSS/BLF key after entering the feature code.

J. GENERATING AN SMDA REPORT

35.37 A programming option can be enabled that allows the attendant to generate an SMDA report on demand. The content of the report is determined by the programmed SMDA format as described on page 4-115. Printing reports using this method does not clear the accumulated data.

35.38 TO GENERATE AN SMDA REPORT:

While on hook, press SPCL and enter the Attendant SMDA feature code (025). The report begins printing via the port designated in the database.

K. PAGING SPEAKER BACKGROUND MUSIC (PRIMARY ATTENDANT ONLY)

35.39 The primary attendant can turn background music on and/or off for the external paging speakers. Music is interrupted by pages. The music channel for the external paging speakers is set in database programming (refer to page 5-67 in PROGRAMMING).

35.40 TO TURN BACKGROUND MUSIC ON OR OFF:

While on hook, press the SPCL key and enter the Paging Speaker Background Music feature code (018). Enter the desired external port number (1-9) to toggle the music on or off, or enter 0 to turn off all ports.
I. SYSTEM ALARM REPORTING

35.41 The system’s alarm reporting feature detects equipment failures, determines the impact, and classifies the problem as a major or minor alarm. Minor alarms are indicated on the primary attendant’s station display and can be programmed to appear on all attendants’ keysets. Both major and minor alarms are printed in the error report printout. Major alarm messages appear on all display keysets. Attendants using Attendant Computer Consoles will receive an ALARM STATUS DISPLAY (refer to the manual supplied with the unit).

35.42 The first four minor alarms indicate problems that can be corrected without calling service personnel. All other minor alarms require attention from service personnel. Refer to page 6-8 in TROUBLESHOOTING for a listing of the possible alarms and their meanings.

35.43 TO RESPOND TO A MINOR SYSTEM ALARM FROM ANY ALARM DISPLAY STATION:

1. When a minor alarm indication appears (WARNING! SYSTEM ALARM #XX), write down the alarm number, alarm message, date, and time.

2. While on hook, clear the message displayed by pressing the SPCL key and entering the Clear System Alarm feature code (019).

3. If the alarm message is #OS or #10 or higher, contact service personnel.

4. If the alarm message is #01 -04, correct the problem:
 a. #01 STATION XXX OFF-HOOK: The indicated station remained off hook and inactive until the Inactivity Alarm timer expired. The SMDR also indicates which station is off hook. The station’s key on DSS/BLF Units and on other stations’ SD keypads flutters continuously. Have the station user replace the handset in the cradle. The alarm will automatically clear when the station user hangs up.

 NOTE: Calls being transmitted over the secondary voice path are not affected or interrupted by an off-hook alarm condition.

 b. #02, #03, or #04 PRINTER TIMEOUT: The indicated printer is not functioning properly. Check that the cable and the power cord are connected and that it has paper and ribbon.

 c. #30 TOLL SECURITY FEATURE EXPIRED: This alarm indicates that the Weekly Toll Limit feature is no longer in effect. It can be re-enabled only by Inter-Tel Services personnel.

 d. #31 TOLL SECURITY LIMIT EXCEEDED and #34 TOLL SECURITY LIMIT AT 80%: The weekly limit for one or both types of monitored calls is 80% or 100% depleted. The programmer can set the limit to a higher value or reset it to zero. (When either of these alarms is displayed, any further alarms will not overwrite the display.)

 e. #32 TOLL SECURITY DATA CHANGED: This indicates that the weekly toll limit information has been changed in the database.

 f. #33 DISA SECURITY LIMIT EXCEEDED: This indicates that a DISA caller has entered an invalid password three consecutive times. DISA will not answer that trunk for five minutes after the third invalid password has been entered.

35.44 A major alarm message, WARNING! MAJOR ALARM, appears on all display keysets in the event of a major system reset. If the major alarm appears on a group of keysets, the associated KSC board has failed. (Or dual-circuit 8-line AIM keysets have been installed on KSC-D circuits that are not programmed as “dual” circuits.) The warning might also appear on a single keyset if the keyset is defective. Major alarms require immediate attention from service personnel.
M. PLACING A TRUNK OUT OF SERVICE FOR MAINTENANCE

35.45 If requested to do so by service personnel, attendants can place individual trunks out of service by entering a feature code. This temporarily unequips the trunk in database programming, but does not affect incoming signals on the trunk. To outside callers, the trunk will appear to be functioning and callers will hear ringing. However, users cannot access the trunk for receiving or placing calls until the attendant places the trunk back into service by entering another feature code.

35.46 The advantage of using this feature instead of removing the trunk in the database, is that all programming for the trunk is preserved and the trunk returns to complete functionality as soon as it is returned to service and no additional programming is required.

NOTE: Each TIC is equipped with a “make busy” switch for removing all circuits on the card from service and placing them back in again. Pressing the switch will light its LED and begin the process of “busying out” each circuit not in use. The circuits that are in use are then busied out as soon as the users hangs up.

35.47 If the attendant has an individual trunk key for the trunk, the CO Trunk Maintenance feature code can be used to place the trunk out of and into service. If the attendant does not have an individual trunk key, the trunk can only be placed out of service while the attendant is connected to that trunk and a call key is used. The call key cannot be used to place the trunk back in service. All trunks that were placed out of service can be returned to service at once by entering the Remove All Trunks From Maintenance feature code.

35.48 TO PLACE A TRUNK OUT OF SERVICE FOR MAINTENANCE USING AN INDIVIDUAL TRUNK KEY (WHILE ON HOOK):

(1) While on hook, press SPCL and enter the CO Trunk Maintenance feature code (027). The display shows SPECIFY TRUNK FOR MAINTENANCE.

(2) Press the individual trunk key associated with the circuit you wish to remove from service. (If the programming mode times out before you press a key, the display shows TRUNK IMPROPERLY SPECIFIED and you must start over.)

35.49 TO PLACE TRUNKS IN SERVICE AGAIN USING AN INDIVIDUAL TRUNK KEY (WHILE ON HOOK):

(1) While on hook, press SPCL and enter the CO Trunk Maintenance feature code (027). The display shows SPECIFY TRUNK FOR MAINTENANCE.

(2) Press the associated individual trunk key for the trunk to be returned to service.

35.50 TO PLACE A TRUNK OUT OF SERVICE FOR MAINTENANCE USING A CALL KEY (WHILE ON A CALL):

(1) While on a call, press SPCL and enter the CO Trunk Maintenance feature code (027).

(2) Hang up. The trunk is placed out of service.

35.51 TO PLACE ALL TRUNKS IN SERVICE:

While on hook, press SPCL and enter the Remove All Trunks From Maintenance feature code (028).
36. RECORD KEEPING AND MAINTENANCE FEATURES

A. CALL COST ACCOUNTING

36.1 The Call Cost Accounting feature estimates the cost of outgoing and incoming calls, displays it on the keysets, and prints it in the SMDR reports. The cost is based on the type of call, telephone number dialed, the elapsed time of the call, the day of the week, and the time of day. A table in the database supplies the rates for all types of calls, including multiplicative factors for evening and weekend rate changes on outgoing calls. The equation for calculating call cost is:

\[\text{Daytime Rate} \times \text{Multiplicative Factor} \times \text{Connect Time} \]

36.2 The multiplicative factor adjusts the daytime per-minute call cost for evening and weekend rates of outgoing calls. For example, the evening call cost multiplier is 0.65 if calls are 35% less expensive after 5:00PM. The daytime rate \(D \), evening \(E \) multiplicative factor, and night/weekend \(N/W \) multiplicative factors are used on the following schedule:

<table>
<thead>
<tr>
<th>Time</th>
<th>SUN</th>
<th>MON</th>
<th>TUE</th>
<th>WED</th>
<th>THU</th>
<th>FRI</th>
<th>SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 AM TO 5 PM</td>
<td>N/W</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>N/W</td>
</tr>
<tr>
<td>5 PM TO 11 PM</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>N/W</td>
</tr>
<tr>
<td>11 PM TO 8 AM</td>
<td>N/W</td>
<td>N/W</td>
<td>N/W</td>
<td>N/W</td>
<td>N/W</td>
<td>N/W</td>
<td>N/W</td>
</tr>
</tbody>
</table>

NOTE: The 256 System’s Call Cost Accounting feature is intended to provide a cost estimate that is applied to the various classes of calls. Due to the wide variation in charges among network carriers, the system’s call cost calculation cannot be used as a prediction of actual charges. This feature can only be used as a management tool to estimate call cost.

36.3 If call cost is set to zero, call cost will not display during the call and the SMDR printout will show $0.00.

36.4 All outgoing calls using a trunk that is not subject to toll restriction are classified as one of the following call types for call cost calculation (call cost type is programmed in the database).

- Free
- Local
- Toll Local
- Toll Long Distance
- Operator/International

36.5 When a trunk that is subject to toll restriction is used, call cost type is determined according to the digits dialed, as follows:

- **Free:** Any call within a PBX (a trunk access code is not dialed) is a free call.
- **Local:** The following calls are classified as local calls:
 - Calls to \text{N11} or \text{1N11} (where N is 2-9), except 411 or 1411
 - Any call to area code 800
 - All 7-digit or 10-digit calls within a home area code to office codes that are allowed in User Group 1
 - Any call that does not begin with 1, and does not fall into any of the other call cost categories
- **Toll Local:** The following calls are classified as toll local calls:
 - Any calls to 411 or 1411
 - All 7-digit or 10-digit calls within a home area code to office codes that are restricted in User Group 1
 - Any call that begins with 1, that does not fall into any of the other call cost categories
- **Toll Long Distance:** Any call to an area code other than a home area code is classified as a toll long distance call.
- **Operator/International:** Any call starting with 0 or containing only 0 is classified as operator/international (0, 0+, 014, 011+).
B. STATION MESSAGE DETAIL ACCOUNTING (SMDA)

NOTE: This feature is available only in the Extended and Extended plus T1 and E&M software packages.

36.6 Station Message Detail Accounting (SMDA) is a system feature that provides management and accounting records for estimating the telephone company’s charges. This information can be used to analyze system traffic and employee productivity.

36.7 This data can be recorded on a customer-provided printer or alternate device, such as a magnetic tape or floppy disk. The device is connected to the peripheral connector panel on the back of the equipment cabinet and must be placed within 50 feet (15 meters) of the equipment cabinet. It can be the same device used for the SMDR report. If so, the SMDR information is buffered (up to 427 records) while the SMDA report prints. Refer to SPECIFICATIONS, page 2-31, for details.

36.8 Each of the 16 SMDA reports divides incoming and outgoing calls and can be automatically generated daily, weekly, or monthly. They can also be generated on demand through the attendant station using the attendant SMDA feature code or through database programming (refer to page 5-138 in PROGRAMMING). Reports can include the information outlined in the following sections.

Account Code Reports

36.9 Call information can be printed for up to 255 account codes. Each time a standard, forced, or optional account code is used, the system opens a “record” for that code. Every time a call is placed that uses that code, the call data is added to the record for that account code. If more than 255 codes are used, the last record (number 256) is used for the overflow record. That is, if 262 different codes are used, call data for the last six will be combined in record 256. For each account code, information includes the total number of calls handled, total and average duration of calls, and the total and average cost of calls.

Summary Reports

36.10 Call information can be selected for the system units listed below. Information includes the total number of calls handled, number of incoming and outgoing calls, total and average duration of incoming and outgoing calls, total and average cost of incoming and outgoing calls, and number of users.

- System: SMDA prints call information for the entire system, including:
 - Number of transfers and recalls
 - Average answer time
 - Number of unanswered calls
 - Average ring time (unanswered)
 - Number of equipped trunks
 - DISA calls

- Hunt groups: Total number of calls, total ringing call duration, and average ringing duration are shown for calls to each hunt group. The ringing duration is the amount of time the call spent circulating (unanswered) through the hunt group. If a call recalls and then is transferred back to the hunt group, it is not counted as an additional call, but it will add to the ringing duration figure. A call sent to the hunt group by any station other than a recall destination will add to the call count.

- Tenant pups: Call information is printed separately for each tenant group.

- Tenants and departments: Call information for each tenant group is divided into departments.

Detailed Reports

36.11 These reports can show call information for all users, listed by system, tenant group, or tenant/department. Separate reports are also available by tenant/department, individual stations, or trunks. The following call information can be requested:

- System, tenant, or tenant/department by call cost: Total and average cost of calls for users in the selected group of stations, including:
 - Station circuit numbers
 - Extension numbers
 - User names

- System, tenant, or tenant/department by call duration: Total and average duration of calls for the selected group of stations, including:
 - Station circuit numbers
 - Extension numbers
 - User names
- **System, tenant, or tenant/department by number of calls:** Total number of calls for the selected group of stations, including:
 - station circuit numbers
 - Extension numbers
 - User names
- **Tenant/department listed by station number:** Includes the following for all stations in each department of each tenant group.
 - Number of calls
 - Incoming and outgoing call duration
 - Incoming and outgoing call cost
 - Number of users
 - Station circuit numbers
 - Extension numbers
 - User names
- **Listed by selected station:** Includes the following for selected stations:
 - Number of calls
 - **Incoming** and outgoing call duration
 - Incoming and outgoing call cost
 - Number of users
- **Listed by selected trunk:** Includes the following for selected trunks:
 - Trunk circuit number
 - Number of incoming and outgoing calls
 - Average answer time
 - Number of unanswered calls
 - Average ring time for unanswered calls
 - Total cost and duration of incoming and outgoing calls
 - Average duration and cost of incoming and outgoing calls

36.12 When **programming** the output, the installer can choose to clear the SMDA information after each report or let it remain in the memory to be accumulated and included in all later reports. This gives the customer the option of having limited or comprehensive reports.

36.13 The SMDA output reports are printed in the format shown in the following figures. Figure 4-2 on the next page shows the account code report format, Figure 4-3 on page 4-118 shows the summary report format, and Figure 4-4 on page 4-120 shows the detailed report. All reports are 80 characters wide. The number of days included in each report is set during programming.
FIGURE 4-2. SMDA ACCOUNT CODE REPORT FORMAT

Detailed Account Code Report 00:00 Mon-01-Jan-1990
Data Collection Period Began 00:00 Mon-01-Jan-1990

Inter-Tel 256
Report by Account Code
Reports listed by Account Number

1. Account Code [number or overflow record]
 Total Number of Calls Handled X,XXX,XXX
 Number of Incoming Calls XXX,XXX
 Number of Outgoing Calls XXX,XXX

 Total Duration of Calls Handled H,HHH:MM:SS
 Duration of Incoming Calls HHH:MM:SS
 Ave. Duration of Incoming Calls H:MM:SS
 Duration of Outgoing Calls HHH:MM:SS
 Ave. Duration of Outgoing Calls H:MM:SS

 Total Cost of Calls Handled $X,xXx.xX
 Cost of Incoming Calls $XXX.XX
 Ave. Cost of Incoming Calls $XX.XX
 Cost of Outgoing Calls $XXX.XX
 Ave. Cost of Outgoing Calls $XX.XX

NOTE: When a maximum value has been reached (65,535 records per account code, 4,660 hours, and/or $167,772.15) the value starts over at 0.
FIGURE 4.3. SMDA SUMMARY REPORT FORMAT

Station Message Detail Accounting 00:00 Mon-Ol-Jan-1990
Data Collection Period Began 00:00 Mon-Ol-Jan-1990

Inter-Tel 256 System Summary Report

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Calls</td>
<td>X,XXX,XXX</td>
</tr>
<tr>
<td>Number of Incoming Calls</td>
<td>XXX,XXX</td>
</tr>
<tr>
<td>Number of Outgoing Calls</td>
<td>XXX,XXX</td>
</tr>
<tr>
<td>Number of Transfers/Recalls</td>
<td>XXX,XXX</td>
</tr>
<tr>
<td>Average Answer Time</td>
<td>H:MM:SS</td>
</tr>
<tr>
<td>Number of Unanswered Calls</td>
<td>XX,XXX</td>
</tr>
<tr>
<td>Average Ring Time -- Unanswered</td>
<td>H:MM:SS</td>
</tr>
<tr>
<td>Total Duration of Calls</td>
<td>E,HHH:MM:SS</td>
</tr>
<tr>
<td>Duration of Incoming Calls</td>
<td>HHH:MM:SS</td>
</tr>
<tr>
<td>Ave. Duration of Incoming Calls</td>
<td>H:MM:SS</td>
</tr>
<tr>
<td>Duration of Outgoing Calls</td>
<td>HHH:MM:SS</td>
</tr>
<tr>
<td>Ave. Duration of Outgoing Calls</td>
<td>H:MM:SS</td>
</tr>
<tr>
<td>Total Cost of Calls</td>
<td>$X,xxx.xx</td>
</tr>
<tr>
<td>Cost of Incoming Calls</td>
<td>$XXXX.xx</td>
</tr>
<tr>
<td>Ave. Cost of Incoming Calls</td>
<td>$XX.xx</td>
</tr>
<tr>
<td>Cost of Outgoing Calls</td>
<td>$XXXX.xx</td>
</tr>
<tr>
<td>Ave. Cost of Outgoing Calls</td>
<td>$XX.xx</td>
</tr>
<tr>
<td>Total Number of DISA Calls</td>
<td>X,XXX,XXX</td>
</tr>
<tr>
<td>Total Duration of DISA Calls</td>
<td>E,HHH:MM:SS</td>
</tr>
<tr>
<td>Ave. Duration of DISA Calls</td>
<td>E:MM:SS</td>
</tr>
<tr>
<td>Total Cost of DISA Calls</td>
<td>$X,xXX.xx</td>
</tr>
<tr>
<td>Ave. Cost of DISA Calls</td>
<td>$XX.xx</td>
</tr>
<tr>
<td>Number of Users</td>
<td>xxx</td>
</tr>
<tr>
<td>Number of Equipped CO Trunks</td>
<td>xx</td>
</tr>
</tbody>
</table>

Summary Report for Hunt Group

Hunt Group 01:

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Calls Handled</td>
<td>X,XXX,XXX</td>
</tr>
<tr>
<td>Total Duration of Ringing Calls</td>
<td>E,HHH:MM:SS</td>
</tr>
<tr>
<td>Ave. Duration of Ringing Calls</td>
<td>E:MM:SS</td>
</tr>
</tbody>
</table>

Hunt Group 02:
FIGURE 4-3. SMDA SUMMARY REPORT FORMAT (CONT’D)

Station Message Detail Accounting

Data Collection Period Began 00:00 Mon-01-Jan-1990

Inter-Tel 256

Summary Report for Tenant

Tenant 01: [tenant name]

<table>
<thead>
<tr>
<th>Total Number of Calls Handled</th>
<th>X,XXX,XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Incoming Calls</td>
<td>XXX,XXX</td>
</tr>
<tr>
<td>Number of Outgoing Calls</td>
<td>XXX,XXX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Duration of Calls Handled</th>
<th>H,HHH:MM:SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Incoming Calls</td>
<td>HHH:MM:SS</td>
</tr>
<tr>
<td>Ave. Duration of Incoming Calls</td>
<td>H:MM:SS</td>
</tr>
<tr>
<td>Duration of Outgoing Calls</td>
<td>HHH:MM:SS</td>
</tr>
<tr>
<td>Ave. Duration of Outgoing Calls</td>
<td>H:MM:SS</td>
</tr>
</tbody>
</table>

Total Cost of Calls Handled	$X,XXX.xx
Cost of Incoming Calls	$XXX.XX
Ave. Cost of Incoming Calls	$XX.XX
Cost of Outgoing Calls	$XXX.XX
Ave. Cost of Outgoing Calls	$XX.XX

Number of Users xxx

Inter-Tel 256

Summary Report for Tenant/Department

Tenant 01: [tenant name]

Department 01: [department name]

<table>
<thead>
<tr>
<th>Total Number of Calls Handled</th>
<th>X,XXX,XXX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Incoming Calls</td>
<td>XXX,XXX</td>
</tr>
<tr>
<td>Number of Outgoing Calls</td>
<td>XXX,XXX</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Duration of Calls Handled</th>
<th>H,HHH:MM:SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration of Incoming Calls</td>
<td>HHH:MM:SS</td>
</tr>
<tr>
<td>Ave. Duration of Incoming Calls</td>
<td>H:MM:SS</td>
</tr>
<tr>
<td>Duration of Outgoing Calls</td>
<td>HHH:MM:SS</td>
</tr>
<tr>
<td>Ave. Duration of Outgoing Calls</td>
<td>H:MM:SS</td>
</tr>
</tbody>
</table>

Total Cost of Calls Handled	$X,XXX.xx
Cost of Incoming Calls	$XXX.XX
Ave. Cost of Incoming Calls	$XX.XX
Cost of Outgoing Calls	$XXX.XX
Ave. Cost of Outgoing Calls	$XX.XX

Number of Users xxx

Department 02: [department name]...
FIGURE 4-4. SMDA DETAILED REPORT FORMAT

Station Message Detail Accounting 00:00 Mon-Ol-Jan-1990
Data Collection Period Began 00:00 Mon-Ol-Jan-1990

Detailed System Report
or, Detailed Report for Tenant
or, Detailed Report for Tenant/Department

Sorted by Total Cost
1. Station Circuit XX.Y EXXX [user name]
 Total Cost of Calls Handled $X,xXX.xx
 Cost of Incoming Calls $XXX.XX
 Ave. Cost of Incoming Calls $XX.XX
 Cost of Outgoing Calls $XXX.XX
 Ave. Cost of Outgoing Calls $XX.XX

or, Sorted by Total Duration
1. Station Circuit XX.Y EXXX [user name]
 Total Duration of Calls Handled H,HHH:MM:SS
 Duration of Incoming Calls HHH:MM:SS
 Ave. Duration of Incoming Calls H:MM:SS
 Duration of Outgoing Calls HHH:MM:SS
 Ave. Duration of Outgoing Calls H:MM:SS

or, Sorted by Number of Calls
1. Station Circuit XX.Y EXXX [user name]
 Total Number of Calls Handled X,XXX,XXX
 Number of Incoming Calls XXX,XXX
 Number of Outgoing Calls XXX,XXX
FIGURE 4-4. SMDA DETAILED REPORT FORMAT (CONT'D)

Station Message Detail Accounting 00:00 Mon-01-Jan-1990
Data Collection Period Began 00:00 Mon-01-Jan-1990
Inter-Tel 256
Detailed Report for Tenant/Department
Listed by Station Number

Tenant 01: [tenant name]
Department 01: [department name]
1. Station Circuit XX.Y EXXX [user name]
 Total Number of Calls Handled X,XXX,XXX
 Number of Incoming Calls XXX,XXX
 Number of Outgoing Calls XXX,XXX
 Total Duration of Calls Handled H,HHH:MM:SS
 Duration ofIncoming Calls HHH:MM:SS
 Ave. Duration of Incoming Calls H:MM:SS
 Duration of Outgoing Calls HHH:MM:SS
 Ave. Duration of Outgoing Calls H:MM:SS
 Total Cost of Calls Handled $X,xxx.xx
 Cost of Incoming Calls $XXX.XX
 Ave. Cost of Incoming Calls $XX.XX
 Cost of Outgoing Calls $XXX.XX
 Ave. Cost of Outgoing Calls $XX.XX

Detailed Report for Selected Stations
Stations Listed By Circuit Number

1. Station Circuit XX.Y EXXX [user name]
 Total Number of Calls Handled X,XXX,XXX
 Number of Incoming Calls XXX,XXX
 Number of Outgoing Calls XXX,XXX
 Total Duration of Calls Handled H,HHH:MM:SS
 Duration of Incoming Calls HHH:MM:SS
 Ave. Duration of Incoming Calls H:MM:SS
 Duration of Outgoing Calls HHH:MM:SS
 Ave. Duration of Outgoing Calls H:MM:SS
 Total Cost of Calls Handled $X,xxx.xx
 Cost of Incoming Calls $XXX.XX
 Ave. Cost of Incoming Calls $XX.XX
 Cost of Outgoing Calls $XXX.XX
 Ave. Cost of Outgoing Calls $XX.XX
FIGURE 4-4. SMEDA DETAILED REPORT FORMAT (CONT'D)

Station Message Detail Accounting 00:00 Mon-Ol-Jan-1990
Data Collection Period Began 00:00 Mon-Ol-Jan-1990
Detailed Report for Selected CO Trunks
CO Trunks Listed by Circuit Number

1. CO Circuit XX.Y
 Total Number of Calls X,XXX,XXX
 Number of Incoming Calls XXX,XXX
 Number of Outgoing Calls XXX,XXX
 Average Answer Time H:MM:SS
 Number of Unanswered Calls XX,XXX
 Average Ring Time -- Unanswered H:MM:SS
 Total Duration of Calls H,HHH:MM:SS
 Duration of Incoming Calls HHH:MM:SS
 Ave. Duration of Incoming Calls H:MM:SS
 Duration of Outgoing Calls HHH:MM:SS
 Ave. Duration of Outgoing Calls H:MM:SS
 Total Cost of Calls $X,XXX.XX
 Cost of Incoming Calls $XXX.XX
 Ave. Cost of Incoming Calls $XX.XX
 Cost of Outgoing Calls $XXX.XX
 Ave. Cost of Outgoing Calls $XX.XX
C. STATION MESSAGE DETAIL RECORDING (SMDR)

36.14 Station Message Detail Recording (SMDR) is a system feature that provides a detailed record of outgoing calls and can include incoming calls. An outgoing call lasting longer than the programmed Valid Call timer is recorded; however, if the call was transferred to a station or placed on hold, the Valid Call timer is not checked and the call is recorded. The Valid Call timer does not affect incoming calls, if the incoming call option is selected in the database, all incoming calls are recorded.

36.15 Station call data can be recorded on a customer-provided printer or an alternate device, such as a magnetic tape or floppy disk. This output device is connected to the peripheral connector panel on the back of the equipment cabinet and must be placed within 50 feet (15 meters) of the equipment cabinet. It can be the same device used for SMDA. If so, the SMDR information is buffered (up to 427 messages) while the SMDA report prints. Refer to SPECIFICATIONS, page 2-31, for details.

36.16 Selectable SMDR options can include any combination of the following:
- Incoming calls
- Outgoing non-toll local calls (including “free” calls on unrestricted trunks and internal E&M calls)
- Outgoing toll calls (7-digit, 10-digit, operator-assisted, or international calls)
- DISA calls
- Blocked DISA calls (Extended software package)
- DID calls
- Conference calls
- System ring-in messages that show how long calls ring before being answered

36.17 A programming flag is included in the SMDR report programming prompts that allows the programmer to specify whether all dialed digits or just the digits that make up the valid call appear in the SMDR report. If desired, the “extra” digits used for dial-up banking machine, voice mail, automated attendant, or other purposes can be suppressed so that only the telephone number digits are recorded in the report. (This flag is not affected by the system-wide flag that suppresses digits for the keyset displays and redial buffer, described on page 5-69.)

36.18 The programmer can determine whether absorbed digits and toll field digits appear in the SMDR printout. As an example, assume the following number was dialed: 89 (other system’s trunk access code) - 10288 (equal access) - 1 (toll field) - 602 (area code) - %1-9000 (seven-digit number). The absorbed digits (the other system’s trunk access code) can be suppressed so that only 102881-602-961-9000 appears. Or, all but the first digit in each toll field can be suppressed to print 89-11-602- %1-9000. The absorbed digits and the toll fields can all be suppressed to show 11-602-961-9000.

36.19 A programming flag is included in the SMDR report programming prompts that allows the programmer to specify whether all dialed digits or just the digits that make up the valid call appear in the SMDR report and are stored in the redial buffer. If desired, the “extra” digits (dialed after the end of dialing the telephone number) used for dialing banking machine, voice mail, automated attendants, or other purposes can be suppressed so that only the telephone number digits are recorded in the report and stored in redial memory.

36.20 The programmer can determine which equipped station(s) will be included in the report. However, if DISA calls, conference calls, and ring-in diagnostics options are enabled, all are recorded (even when they involve stations not selected in the database for recording).

36.21 To allow SMDR to give a more accurate representation of elapsed time, an option can be enabled that records the elapsed time of calls in seconds instead of minutes. For calls up to 999 seconds (about 16.67 minutes) long, the ELAPSED TIME field will show “S=XXX” (XXX represents the number of seconds). For calls lasting longer than 999 seconds, ELAPSED TIME will show “HH:MM” (hours and minutes rounded up to the nearest minute).

345.22 The SMDR output report is printed as shown in Figure 4-5 on the following page. A page heading (with the day of the week, date, month, year and column headings) is generated at midnight, when the clock cycles from 2359 to 0000 hours (international time).
FIGURE 4-5. SMDR REPORT FORMAT

<table>
<thead>
<tr>
<th>TYP</th>
<th>EXT#</th>
<th>USRNAME</th>
<th>TRUNK</th>
<th>DIALED DIGITS</th>
<th>START</th>
<th>ELPST</th>
<th>COST</th>
<th>ACCT CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYP</td>
<td>X x X X x x</td>
<td>AAAAAAAAA</td>
<td>XXX</td>
<td>...............</td>
<td>HH:MM</td>
<td>HH:MM</td>
<td>$XX.XX</td>
<td>XXXXXXXXX</td>
</tr>
</tbody>
</table>

TYP
- Call type abbreviations for:
 - **Incoming calls** (In)
 - Outgoing "free" calls (000)
 - Seven-digit outgoing toll calls (T7)
 - Ten-digit outgoing toll calls (T10)
 - Operator-assisted/international calls (TOI)
 - DISA calls (DSA) and Conference calls (CNF)
 - Blocked DISA calls (BLK)
 - Ring in (blank field)

EXT
The extension number (XXXX) of the last station to handle the call. For a CO-to-CO call, this field shows the second trunk involved (XXX.X). For a ring-in record, it shows the extension number of the station that answered, or it shows ***** if the call was unanswered. For a blocked DISA call, it shows the primary attendant's extension number if the call was answered by the attendant or the DISA caller hung up; if the call was reverse-transferred from the attendant, it shows the station that picked up the call.

USRNAME
User's name as programmed. This field is blank if no user name is programmed.

TRUNK
The circuit number of the trunk used during the call.

DIALED DIGITS
The first 28 digits of the telephone number dialed, including hyphens between the toll field, area code, office code, etc. An asterisk (*) at the end of the dialed digits field indicates that either there was a long enough break in loop current to disconnect the call (the IC-CO disconnect or CO-CO Disconnect timer expired), or the outside party hung up before the station user hung up. Some digits may be suppressed (see the previous page for an explanation). “RING” appears for a ring-in record. If a call is blocked by weekly toll limits, the record will show only those digits that determined that it was a blocked call type. For example, if 1-602-961-XXXX is a blocked number, only 1-602-961 will appear in the record.

START
Time the call was placed or answered is shown in **24-hour** time (00:00 - 23:59) rounded up to the nearest minute.

ELPST
Call length from the beginning of the call until disconnect. Elapsed time is rounded up to the nearest minute to show hours and minutes. If the option is enabled that shows call duration in seconds, calls up to 999 seconds (about 16.67 minutes) long appears as **S=XXX** (XXX represents the number of seconds) and calls lasting longer than 999 seconds appear as **HH:MM** (hours and minutes rounded up to the nearest minute). For ring-in records, **S=XXX** indicates the ring-in time in seconds.

COST
Approximate cost of the call (XXX.XX), based on the database information, rounded to the nearest cent.

ACCT CODE
A standard, forced, class-of-service, or optional account code (4-8 digits). A class-of-service or optional account code overrides installer-programmed standard or forced account codes. The field is blank if no account code was used.
D. SYSTEM ERROR REPORTING

36.23 The system has a self-diagnostics feature that checks for minor and major faults within the central and peripheral equipment. When a failure is detected, the software determines the impact of the problem and classifies it as a major or minor alarm. A major alarm requires immediate attention from service personnel; the system is not operable. A minor alarm can be as simple as a loose printer cable or power cord, or the printer running out of paper or ribbon.

36.24 A minor alarm sends a message to the system attendant(s) programmed to receive alarms and to the error message port (if programmed). Both minor and major alarms are recorded through the serial ports (if the ports are connected to output devices). A fault history report is available on demand to service personnel through database programming (however, minor alarms #01 - #04 do not appear in the history report).

36.25 Minor alarm messages print in the format shown below. The message indicates the time the error message was printed, the type and number of the alarm, and an explanation of the error.

++ + 00:00 MINOR ALARM #XX
[32-character message]
++ + 00:00 [Field Service Diagnostics message]
- - - 00:00 [Engineering Diagnostics message]

36.26 User-serviceable minor alarms are:

- #1 EXT XXX STATION OFF-HOOK: A station remained off hook and inactive until the Inactivity Alarm timer expired. Replace the handset in its cradle at the station indicated.

NOTE: This message will appear only if the database option that broadcasts station off-hook alarms is enabled.

- #02 SMDR PRINTER TIMEOUT, #03 ERROR PRINTER TIMEOUT, or #04 SMDAPRINTER TIMEOUT: The printer possibly has a loose cable or power cord, or it has run out of ribbon or paper.

- #30 TOLL SECURITY FEATURE EXPIRED: This alarm indicates that the Weekly Toll Limit feature is no longer in effect. It can be re-enabled only by Inter-Tel Services personnel.

- #31 TOLL SECURITY LIMIT EXCEEDED and #34 TOLL SECURITY LIMIT AT 80%: The weekly limit for one or both types of monitored calls is 80% or 100% depleted. The programmer can set the limit to a higher value or reset it to zero. (When either of these alarms is displayed, any further alarms will not overwrite the display.)

- #32 TOLL SECURITY DATA CHANGED: This indicates that the weekly toll limit information has been changed in the database.

- #33 DISA SECURITY LIMIT EXCEEDED: This indicates that a DISA caller has entered an invalid password three consecutive times. DISA will not answer that trunk for five minutes after the third invalid password has been entered.

36.27 All other minor alarms, which require attention from service personnel, field service diagnostics, and engineering diagnostics are explained in TROUBLESHOOTING, beginning on page 6-g.

36.28 A major alarm occurs when a problem has caused a malfunction. The message appears on all display keysets affected and, the designated serial port. A complete list of error messages is located in the TROUBLESHOOTING section.

E. POWER FAILURE CAPABILITIES

36.29 The Central Processor (RCPU) Card contains relay contacts that can be used for power failure transfer which allows one or more single-line sets to access predetermined trunksin the event of a processor board failure or a power failure. Additional equipment is required. Refer to SPECIFICATIONS, page 2-10, for more information.
CONTENTS

1. Introduction .. 5-3
 A. System Software Packages ... 5-3
 B. Plan The Programming Session ... 5-3
2. System Set-Up For Programming ... 5-3
 A. Initial Installation Of Stand-Alone/Remote Software ... 5-4
 B. Upgrading A 256 System Database For Stand-Alone Programming 5-7
 C. Beginning An Off-Site Stand-Alone Programming Session 5-7
 D. Installing A Printer Driver For Stand-Alone Reports .. 5-8
 E. Connecting The Remote Programming Session ... 5-9
3. Session Timer And Screen Saver ... 5-11
4. Microsoft Windows .. 5-11
5. How To Use The Programming Windows ... 5-12
 A. Text Box ... 5-12
 B. List Box ... 5-12
 C. Command Button ... 5-13
 D. Option Button .. 5-13
 E. Check Box .. 5-13
 F. Items That Cannot Be Selected — Gray Items ... 5-14
 G. Hourglass Symbol Cursor .. 5-14
 H. Update To Database — Exit Screen .. 5-14
6. Applications Menu ... 5-15
7. Default Values ... 5-24
 A. Configuration ... 5-24
 B. Attendant ... 5-24
 C. Stations ... 5-24
 D. Trunks ... 5-24
 E. Toll Restriction ... 5-24
 F. Miscellaneous .. 5-24
8. Station Programming — Individual Station Information (STN) 5-25
 A. Station To Be Reviewed ... 5-25
 B. User Name And Area To Be Reviewed .. 5-28
 C. Miscellaneous Flags Window ... 5-30
 D. Miscellaneous Information Window ... 5-32
 E. Outgoing Access — Day Or Night .. 5-34
 F. Programmable Key Programming Window .. 5-35
 G. Secondary Call Keys ... 5-37
 H. Special Purpose Station Window .. 5-38
 I. System Forwarding ... 5-41
 J. Toll Restriction Information Window .. 5-42
9. Station Programming — Batch Programming Options ... 5-44
 A. Key Assignments (KEY) ... 5-44
 B. Ring Zone Programming (ZONE) .. 5-51
 C. Station Features (SFEA) .. 5-52
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. System-Wide Features</td>
<td>5-54</td>
</tr>
<tr>
<td>A. Account Code Information (ACCT)</td>
<td>5-54</td>
</tr>
<tr>
<td>B. DND And Reminder Messages (MESG)</td>
<td>5-57</td>
</tr>
<tr>
<td>C. Extensions, Usernames, And Feature Codes (EXT)</td>
<td>5-58</td>
</tr>
<tr>
<td>D. Hunt Groups (HUNT)</td>
<td>5-61</td>
</tr>
<tr>
<td>E. Miscellaneous System-Wide Information (MISC)</td>
<td>5-67</td>
</tr>
<tr>
<td>F. Page Zones (PAGE)</td>
<td>5-70</td>
</tr>
<tr>
<td>G. Relay Programming (RLAY)</td>
<td>5-73</td>
</tr>
<tr>
<td>H. System Forwarding (SFWD)</td>
<td>5-74</td>
</tr>
<tr>
<td>I. System Speed Dial (SSPD)</td>
<td>5-75</td>
</tr>
<tr>
<td>J. Timers (TIMR)</td>
<td>5-77</td>
</tr>
<tr>
<td>K. Tenants And Departments (TNT)</td>
<td>5-85</td>
</tr>
<tr>
<td>11. Toll Restriction</td>
<td>5-88</td>
</tr>
<tr>
<td>A. Alternate Carriers And Allowed Long Distance (ALT)</td>
<td>5-88</td>
</tr>
<tr>
<td>B. Area/Office Codes Allowed/Restricted (AREA)</td>
<td>5-90</td>
</tr>
<tr>
<td>C. SCOS Information (SCOS)</td>
<td>5-95</td>
</tr>
<tr>
<td>D. Toll Security</td>
<td>5-97</td>
</tr>
<tr>
<td>12. Least-Cost Routing (LCR)</td>
<td>5-98</td>
</tr>
<tr>
<td>A. Dial Rules</td>
<td>5-99</td>
</tr>
<tr>
<td>B. Route Groups</td>
<td>5-100</td>
</tr>
<tr>
<td>C. Facility Groups</td>
<td>5-101</td>
</tr>
<tr>
<td>13. Trunk Programming</td>
<td>5-103</td>
</tr>
<tr>
<td>A. Individual Trunk (INDT)</td>
<td>5-103</td>
</tr>
<tr>
<td>B. Trunk Groups, DID Groups, And Ring-In/Answer Patterns (TRNK)</td>
<td>5-106</td>
</tr>
<tr>
<td>C. T1 Programming</td>
<td>5-122</td>
</tr>
<tr>
<td>14. Attendants</td>
<td>5-132</td>
</tr>
<tr>
<td>A. Attendant's Console (CONS)</td>
<td>5-132</td>
</tr>
<tr>
<td>B. Alias Programming (ALSS)</td>
<td>5-133</td>
</tr>
<tr>
<td>C. DSS/BLF Assignment (DSS)</td>
<td>5-135</td>
</tr>
<tr>
<td>15. Station Message Detail</td>
<td>5-137</td>
</tr>
<tr>
<td>A. Call Cost Factors (COST)</td>
<td>5-137</td>
</tr>
<tr>
<td>B. SMDA</td>
<td>5-138</td>
</tr>
<tr>
<td>C. SMDR</td>
<td>5-142</td>
</tr>
<tr>
<td>16. Service</td>
<td>5-145</td>
</tr>
<tr>
<td>A. Error Message Programming (ERR)</td>
<td>5-146</td>
</tr>
<tr>
<td>B. Hybrid Balance (HYBR)</td>
<td>5-147</td>
</tr>
<tr>
<td>C. Maintenance Programming (MAIN)</td>
<td>5-148</td>
</tr>
<tr>
<td>D. Passwords (PASS)</td>
<td>5-149</td>
</tr>
<tr>
<td>E. Report Programming (REP)</td>
<td>5-150</td>
</tr>
<tr>
<td>F. Customized Report Programming (CREP)</td>
<td>5-152</td>
</tr>
<tr>
<td>G. Save/Restore (SAVE)</td>
<td>5-167</td>
</tr>
<tr>
<td>H. Serial Port Configuration (PORT)</td>
<td>5-169</td>
</tr>
<tr>
<td>I. System Configuration (CONF)</td>
<td>5-170</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 This section of the 256 System manual explains how to program the system. The 256 System is fully functional when defaulted and only requires programming to meet the customer’s special needs. Programming functions are divided among several “windows” so that specific features can be programmed easily.

NOTE: Programmers must be properly certified on the 256 System to receive technical support.

A. SYSTEM SOFTWARE PACKAGES

1.2 Software is available in five “packages” that provide different combinations of features. The available software packages include the following:

- **MF-Rated Basic**: This package includes all basic features, including Least-Cost Routing (LCR), Hunt Groups, and Direct Inward Dialing (DID). It does not include Toll Security features, intercom/Outside Directory, Automated Attendant, Station Message Detail Accounting (SMDA), T1, or E&M.

- **MF-Rated Extended**: This package provides every feature in this manual except T1 and E&M.

- **MF-Rated Extended Plus T1 and E&M**: This package provides every feature described in this manual including T1 and E&M.

- **RF-Rated Extended Plus T1 and E&M**: This package has all of the features described in this manual except Least-Cost Routing (LCR). Also, users are limited to accessing only the trunk group’s highest numbered trunk when a trunk group key is pressed or a trunk group access code is entered. When programming a RF-rated system, LCR will still appear in the Applications Menu (shown on page 5-15), but if selected, an error message is presented to remind the programmer of its absence. The LCR feature code and description have not been removed from any screens but the system ignores any reference to LCR.

1.3 The IMX 256 has an additional software package that has all of the features described in this manual, plus it allows the GX station instruments to be installed on the system. (Refer to Appendix A in the back of the manual for complete information.)

1.4 To determine which software package is installed, press the ALT key and the SPACE BAR while viewing anyscreen. “About...” will appear in reverse video at the top of the screen. Then press RETURN. A window appears that shows the part number of the software. To exit from that window, press RETURN again.

B. PLANTBEPROGRAMMING SESSION

15 Determine the features that need to be programmed to meet the customer’s needs. Then refer to the specific programs and program planning sheets. For example, if the customer wants to use the Hunt Group feature, refer to the programming information on page 5-61 and the program planning sheet on page 5-202.

2. SYSTEM SET-UP FOR PROGRAMMING

2.1 There are three methods that can be used for programming the 256 System.

- On-site programming with an attached personal computer
- Programming using a stand-alone personal computer
- Remote programming using a modem connection

2.2 Each is described separately in the following pages. Only one programming session should be in operation at a time.

2.3 For on-site, remote, or stand-alone programming, the computer must be an IBM AI-compatible* personal computer (PC) with a minimum of: MS-DOS 3.3, 300- or 1200-baud modem, 5 megabytes memory available on the hard disk drive, 640k RAM (with minimum 512k available), and a 1.2-megabyte, 5¼-inch or 1.44-megabyte, 3.5-inch floppy disk drive (double sided/high density) and an EGA* graphics monitor. A mouse is optional.

*IBM and AT are registered trademarks and EGA is a trademark of International Business Machines Corporation.

2.4 The PC used for stand-alone or remote programming must have the appropriate Stand-Alone/Remote Programming software installed. If used for stand-alone programming, the PC must also have a default database loaded on the hard drive (the system database information is later transferred to the 256 System using Save/Restore via modem connection or direct on-site connection). The software version on the remote or stand-alone PC must match the version of the system database being programmed.

NOTE: The programming PC must have a configure file with the following command lines: “buffers=30” and “files=20”. Also, when installed, the new system software automatically includes the command “device=c:\dos\server.exe” in the configure file, which is required for proper MS-DOS 5.0/6.0/6.2 operation. If the software is installed on a system that still uses MS-DOS 3.3, you may need to configure it manually.
DOS 3.3, an error message (stating an invalid config.sys command has been detected) is displayed during the power-up sequence. The message can be ignored; the software is compatible with all four versions of DOS.

On-Site Programming

25 For on-site programming, the PC is connected directly to the 256 System. An RS-232-C cable is connected to one of the RS-232-C connectors on the 256 RCPU Card and COM 1 or COM 2 on the PC. The default baud rate for the system RS-232-C connectors is 9600 baud.

NOTE: Do not connect the programming terminal to an RS-232-C port that has been programmed for output (SMDR, SMMA, or error reports). In the default state, the RS-232-C ports are not programmed for output.

Stand-Alone Programming

2.6 A Personal computer (PC) can be used for programming the 256 System. To use a PC in this manner, the Stand-Alone/Remote Programming software must be loaded on drive C. The system database information is stored on double-sided/high density floppy disks and is later transferred to the 256 System using Save/Restore. This section includes the following instructions that apply to stand-alone programming:

- Initial installation of Stand-Alone/Remote software (see paragraph 2.10 on this page)
- Upgrade of a 256 System database for stand-alone programming (refer to page 5-7)
- Installing a printer driver for stand-alone report printing (refer to page 5-8)
- Beginning the stand-alone programming session (refer to page 5-7)

Remote Programming Using A Modem

2.7 For modem connection, the Central Processing Card contains two modems: a Bell 300/1200 baud modem, and a CCITT 300/1200 baud modem. Each modem has separate extension numbers for the different baud rates. The default extension numbers are as follows:

- Bell 300 baud = 270
- Bell 1200 baud = 271
- CCITT 300 baud = 272
- CCITT 1200 baud = 273

2.8 This section includes the following instructions that apply to remote programming:

- Initial installation of Stand-Alone/Remote software (see paragraph 2.10 on this page)
- Connecting the remote programming session (refer to page 5-9)

2.9 The desired modem can be accessed using one of the following methods:

- Have the system attendant, automated attendant, or a station user transfer remote programming calls to the desired modem extension.
- Set up a direct ring-in to the modem extension on one trunk for day and/or night modes.
- Set up a DID number that rings the modem extension in day and/or night modes.
- Use a DISA trunk and dial the modem extension number.

A. INITIAL INSTALLATION OF STAND-ALONE/REMOTE SOFTWARE

2.10 TO INSTALL THE STAND-ALONE/REMOTE SOFTWARE (INITIAL INSTALLATION):

1. Insert the Installation Disk (disk 1) in the floppy disk drive.
2. At the C:\> prompt, type "a:" and press the RETURN (or ENTER) key. (The monitor displays the A drive programming prompt "A:\> ".)
3. At the A:\> prompt, type "setup" and press RETURN. (The monitor displays information concerning the setup program.)
4. After reading the information, press RETURN. (The monitor displays the default directory name "C:\INT25630" or "C:\GMX25620".)
5. Press RETURN to accept the default directory name, or edit the name as desired and then press RETURN. (The monitor displays a list of PC types.)
6. Use the up or down arrow keys to highlight the type of PC being used and then press RETURN. (The monitor displays the determined hardware configuration for the programming PC.)
If the hardware configuration is correct as displayed, use the up or down arrow keys to highlight "No Change" and then press RETURN. (The monitor displays an extended memory option.)

If the hardware configuration is not correct, or if you wish to change the displayed configuration:

a. Use the up or down arrow keys to highlight the item you wish to change and then press RETURN. (The monitor displays a list of types of that item.)

b. Use the up or down arrow keys to highlight the appropriate type and then press RETURN. (The monitor again displays the hardware configuration.)

c. To change additional items, repeat steps 7a and 7b. Once the configuration is correct as displayed, use the up or down arrow keys to highlight "No Change" and then press RETURN. (The monitor displays an extended memory option.)

NOTE: If installing a mouse on the PC, ensure that the COM port assigned to the mouse is not being used by any other device.

Use the up or down arrow keys to highlight “N” (for no extended memory) and then press RETURN. (The monitor displays a printer/plotter installation option.)

If you do not wish to install a special printer/plotter driver, use the up or down arrow keys to highlight “C” (for continue setup) and then press RETURN. (The monitor displays an option to update the current database.)

If you wish to install a special printer/plotter driver:

a. Use the up or down arrow keys to highlight “I” (for install a printer or plotter) and then press RETURN. (The monitor displays a list of printers/plotters.)

b. Use the up or down arrow keys to highlight the printer/plotter type that most closely matches your printer/plotter and then press RETURN. (The monitor again displays a printer/plotter installation option.)

c. Use the arrow keys to highlight the port on which your printer/plotter is installed and then press RETURN. (The monitor displays an option to update the current database.)

d. To install additional printer/plotter drivers, repeat steps 9a through 9c. When all of the desired printer/plotter drivers are installed, use the arrow keys to highlight "C" (for continue setup) and then press RETURN. (The monitor displays an option to update the current database.)

Use the up or down arrow keys to highlight "N" (for do not update) and then press RETURN. (The monitor displays a copy default database option.)

If you do not wish to copy the new default system database onto the PC, type “N” (for do not copy default database) and press RETURN. (The files from the Installation Disk are copied onto the hard disk drive. When finished, the monitor displays "Insert the Applications Setup Disk [2] in the following drive:".)

If you wish to copy the new default system database onto the PC, type “C” (for copy default database) and press RETURN. The default system database will be copied from the Applications Default Database (disk 4) when it is inserted later in step 14b. (The files from the Installation Disk are copied onto the hard disk drive. When finished, the monitor displays "Insert the Applications Setup Disk [2] in the following drive:".)

NOTE: For stand-alone programming, the PC must have a system database installed (either an updated database or the new default database). For remote programming or direct on-site connection, the PC does not need to have a system database installed.

Remove the Installation Disk, then insert the Applications Setup Disk (disk 2) in the floppy disk drive and press RETURN. (The files from the Applications setup Disk are copied onto the hard disk drive. When finished, the monitor displays "Insert the Applications Software Disk [3] in the following drive:".)

NOTE: Do not change the displayed drive (A).

Remove the Applications setup Disk, then insert the Applications Software Disk (disk 3) in the floppy disk drive and press RETURN. (The files from the Applications Software Disk are copied onto the hard disk drive.)

If the copy default database option was not previously selected (back in step 11), remove the Applications Software Disk.

If the copy &fault database option was previously selected (back in step 11), the monitor displays
“Insert the Applications Default Database [4] in the following drive:”.

a. Remove the Applications Software Disk.

b. Insert the Applications Default Database (disk 4) in the floppy disk drive and press RETURN. (The files from the Applications Default Database disk are copied onto the hard disk drive.)

c. Remove the Applications Default Database disk.

(15) If the special printer/plotter driver installation option was not previously selected (in step 9), the monitor displays an AUTOEXEC.BAT file update option.

If the special printer/plotter driver installation option was previously selected (in step 9), the monitor displays “Insert the Printer Driver Disk [5] in the following drive:”.

a. Insert the Printer Driver Disk (disk 5) in the floppy disk drive and press RETURN. (The files from the Printer Driver Disk are copied onto the hard disk drive. When finished, the monitor displays an AUTOEXEC.BAT file update option.)

b. Remove the Printer Driver Disk.

(16) To allow the installation software to automatically update or create the AUTOEXEC.BAT file, use the up or down arrow keys to highlight "Y" (for yes) and then press RETURN. (The monitor displays “SETUP HAS NOW BEEN COMPLETED SUCCESSFULLY.”)

To manually update or create the AUTOEXEC.BAT file, read the information displayed on the monitor, use the up or down arrow keys to highlight “N” (for no), and then press RETURN. (The monitor displays “SETUP HAS NOW BEEN COMPLETED SUCCESSFULLY.”.) Edit or create the AUTOEXEC.BAT file to include:

a. C:INT25630 or C:GMX25620 (or other directory name if used) with the existing paths in the PATH environment variable.

b. SET DBDPATH = C:INT25630 or C:GMX25620 (or other directory name if used).

c. SET DBFPATH = C:INT25630 or C:GMX25620 (or other directory name if used).

(17) Reboot the programming PC. (The monitor displays the C drive programming prompt “C:>)."
B. UPGRADING A 256 SYSTEM DATABASE FOR STAND-ALONE PROGRAMMING

2.11 Previous versions of 256 System databases can be updated for stand-alone programming. (This procedure is not required if the new software is being loaded directly into the 256 System; it is only used for stand-alone programming.)

2.12 Previous versions of 256 System databases can be updated for stand-alone programming with the new version software. (This procedure is not required if the new software is being loaded directly into the 256 System; it is only used for stand-alone programming.)

2.13 TO UPDATE AN EXISTING DATABASE FOR STAND-ALONE PROGRAMMING:

(1) Insert the floppy disk containing the saved database into the stand-alone PC’s floppy disk drive.

(2) At the C:\> (or C:\INT256 or C:\GMX256>) prompt, type “md c:\temp (or some other directory name)” and press RETURN to create a temporary directory on the PC’s hard disk drive. (The monitor again displays “C:\>”)

(3) Type “copy a:*. * c:\temp (or other directory name if used)” and press RETURN to copy the database to the temporary directory. (The monitor displays the names of the files as they are copied and eventually “C:\>”)

(4) Remove the database disk and insert the Installation Disk (disk 1) into the floppy drive.

(5) Type “a:” and press RETURN. (The monitor displays the A drive programming prompt “A:\>”)

(6) At the A:\> prompt, type “update22 c:\temp db (or other directory name if used)” and press RETURN to update the existing database for use with the new system software. (The update takes several minutes and the monitor eventually displays “A:\>”)

(7) Remove the Installation Disk, insert a properly formatted floppy disk, and type “copy c:\temp (or other directory name if used)*. * a:” and press RETURN to save the new, updated database. (The monitor displays the names of the files as they are copied and eventually displays “A:\>”)

(8) Remove the floppy disk and label it “IMX256” (or “GMX256”) System Database along with the software part number and the current date. This new disk can now be used for stand-alone or system programming.

(9) If you no longer wish to keep the new database on the PC’s hard disk drive:

a. Type “del c:\temp*. *” and press RETURN to delete all of the files in the temporary directory. (The monitor displays “Are you sure Y/N?”)

b. Type “Y” (for yes) and press RETURN. (The monitor displays “A:\>”)

c. Type “rd c:\temp” and press RETURN to remove the temporary directory. (The monitor displays “A:\>”)

C. BEGINNING AN OFF-SITE STAND-ALONE PROGRAMMING SESSION

2.14 To begin the programming session, type INT256 or GMX256 and press RETURN. When the logo screen is displayed, press the F3 key. Or, press ALT-D to access the DB Programming pull-down menu and then select Programming Session by highlighting it (use the up or down arrow key, if necessary) and pressing RETURN. The 256 System Applications Menu appears. All programming can then be completed as described in the following pages.
D. INSTALLING A PRINTER DRIVER FOR STAND-ALONE REPORTS

2.15 To print customized reports or T1 error reports, the stand-alone PC must have the proper printer driver installed. Contact your PC and/or printer manufacturer for the printer driver information for your system. Then follow these steps for installing the driver on the PC:

1. Press ALT and SPACE BAR to access a pull-down menu that includes the options “Run...” and “About...”

2. Press R to select “Run...” The following window appears:

```
Run Program
0 Control Panel
0 Monitor

Ok Cancel
```

3. Press ALT-P to select Control Panel. The Control Panel window displays. The top edge of the window has three options: Installation, Setup, and Preferences.

4. Press ALT-I to select the Installation pull-down menu.

5. While viewing the Installation menu, press the RETURN (or ENTER) key to select Add New Printer. A window appears that asks you to identify the drive or directory that contains the printer driver software.

6. Insert Applications Software Disk 5, which contains the printer driver software, in the disk drive. (Or, if you have previously saved the printer drivers on your hard disk, enter the path name for their directory.) Enter the drive or directory name in the text box. Then select the OK command button.

7. When the list of printer drivers appears, select the option that most closely matches your printer type. Or, if you will be saving to a file, select Generic/Text Only. (Refer to the owner’s guide for your printer or contact the manufacturer if unsure.)

8. Select the Add Command button.

9. When the window asks for a destination directory name, press RETURN to accept the directory name shown. (It should be C:\AP or the applications software directory name you selected in step 5 on page 5-4).

10. When copying is completed, press ALT-S to access the Setup pull-down menu. (Or, if you will be assigning printer drivers to more than one port/file destination, repeat steps 5-9, as needed.)

11. While viewing the Setup menu, press RETURN to select Connections. The following window appears:

```
Printer

Connection

Printer Drivers
LPT1
LPT2
LPT3
COM1
COM2
EPT
None

File

Ok Cancel
```

12. Place the highlight bar on the printer driver to be programmed in the Printer list box.

13. Press TAB to move to the Connections list box. Then move the highlight bar to the file or port assignment for the selected printer driver.

14. If you have another printer driver to be programmed, press TAB again to return to the Printer list box and repeat steps 12 and 13.

15. When the printer driver programming is as desired, select the OK command button.

16. When the Control Panel window returns, press ALT-I to access the Installation pull-down menu. Then press X (or press the down arrow key to scroll to the Exit option and press RETURN). The Inter-Tel 256 logo screen returns.
E. CONNECTING THE REMOTE PROGRAMMING SESSION

2.16 The screen shown above can be accessed in one of the three following ways:

- Type INT256 or GMX256 at the C:\ prompt. Then press F5 when the Inter-Tel 256 logo screen appears.

- If the Inter-Tel 256 logo screen is displayed, press F5.

- If the Inter-Tel 256 logo screen is displayed, press ALT-D and then select “Connect Remote” from the pull-down menu.

2.17 You can then set the correct session information as described in the following paragraphs.

2.18 HARDWARE INFORMATION: This section is used for indicating the communications parameters used by your PC.

- COM 1 or COM 2: Indicate which COM port your PC is using for the RS-232-C connection. Press the TAB key until one of the COM options is highlighted, then use the left or right arrow key to move the dot to the correct circle. Or, press ALT-1 for COM 1 or ALT-2 for COM 2.

- BAUD RATE: Indicate the baud rate at which your PC will be operating. Press the TAB key to select the Baud Rate list box or press ALT-B. Then use the up or down arrow key to move the highlight bar to the desired baud rate.

 — If using a modem, select the rate that matches the baud rate of the modem extension that will be used.

 — If using a direct connection and the system is not set for "autobaud," select the rate that matches the RCPU RS-232-C port.

 — If using a direct connection and autobaud is enabled, select the highest rate your PC can use.

2.19 COMMUNICATIONS METHOD: Indicate whether this is a modem connection or a direct connection. Press TAB until one of the options is highlighted, then use the left or right arrow key to move the dot to the correct circle. Or, press ALT-M for modem connection or ALT-D for direct connection.

2.20 MODEM INFORMATION: If the communications method is “modem connection,” enter the following information:

- LOCATION: Press the TAB key until the cursor appears in the Location text box or press ALT-L. Then type the name of the 256 System site.

- PHONE: Press the TAB key until the cursor appears in the Phone text box or press ALT-P. Then type the desired telephone number (you can use a comma for a pause in the number, if necessary).
2.21 **SAVE:** When the information appears as desired, select the Save command button. Press TAB until Save is highlighted and then press the SPACE BAR. Or, press **ALT-S.** This replaces the default values with the new information so that you do not have to repeat this procedure each time you log in.

2.22 **CANCEL:** To exit this screen without connecting a programming session, press TAB until Cancel is highlighted and then press the SPACE BAR. Or, press **ALT-A.** The Inter-Tel 256 logo screen appears.

2.23 **CONNECT:** When the session information is **correct,** **begin** the programming session by selecting the Connect command button. Press TAB until Connect is highlighted and then press the SPACE BAR. Or, press **ALT-C.** The following window appears:

<table>
<thead>
<tr>
<th>Outgoing Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comm Port:</td>
</tr>
<tr>
<td>Baud Rate:</td>
</tr>
<tr>
<td>Connect Type:</td>
</tr>
<tr>
<td>Location:</td>
</tr>
<tr>
<td>Number:</td>
</tr>
<tr>
<td>Status:</td>
</tr>
</tbody>
</table>

2.24 The window shows the information as it was programmed in the window on the previous page, including the COM port, baud rate, modem/direct connection type, 256 System site location, and telephone number. The “Status” line indicates when the PC is **configuring** the modem, dialing, and waiting for a connection.

2.25 **Two** command buttons allow you the options of cancelling the connection or redialing the **number** if problems **arise.** If the software is unable to communicate with the modem, select the Cancel command button and check the connection between the modem and the PC. Also verify that the modem is connected to the proper port. To select Cancel, press TAB until it is highlighted and then press the SPACE BAR. Or, press **ALT-C.** To select Redial, press TAB until it is highlighted and then press the SPACE BAR. Or, press **ALT-R.**

2.26 When the **connection** is completed, the Inter-Tel **256** logo screen appears. To begin the **programming session,** press the F3 key. Or, press **&T-D** to access the DB **Programming** pull-down menu and then select **Programming Session** by highlighting it (use the up or down arrow key, if necessary) and pressing RETURN. The 256 System Applications Menu appears.

2.27 The 256 System will prompt you for a password. Enter the password, if one is required, or press RETURN, if a password is not required. A copy of the 256 System software begins loading onto the PC. This process takes 3-5 minutes at 1200 baud. When finished, the 256 main menu displays on the PC monitor screen. All programming can then be completed as described in the following pages.

NOTE: If used, Save/Restore will take longer to perform via modem than with a direct connection due to the slower (300 or 1200) baud rate. If the Restore function is used, the associated system reset will disconnect all calls including the modem connection.

2.28 If modem connection is lost during the programming session, allow a minute for the 256 modem to reset, then reestablish the call using the procedure given above. All changes that were saved by a system update before the connection was lost will be retained in the 256 System’s memory.
3. SESSION TIMER AND SCREEN SAVER

3.1 Two timers have been built into the system that go into effect when the programming terminal remains idle for lengthy periods. They are the session timeout and screen saver timers.

3.2 Whenever the programming session remains idle (no input) for more than five minutes, a screen saver feature will cause the monitor display to go blank. When this occurs, the programmer can press any key or move the mouse to restore the video display. The display itself will not change unless the session has also timed out, then the Inter-Tel 256 logo is displayed.

NOTE: If your PC has an independent screen saver feature (in addition to the 256 System screen saver), you may need to clear both screen savers to return to programming.

3.3 If the programming session remains idle for more than 20 minutes while a programming window is displayed, the system terminates the session.

4. MICROSOFT WINDOWS

NOTE: The following information is provided by Microsoft, regarding their licensing policies.

4.1 The 256 System Database programming operates in a graphics environment called Microsoft Windows, created by Microsoft Corporation. An extension of the MS-DOS operating system, Microsoft Windows gives a standard look and feel to the 256 System Database Programming and all other Windows applications.

4.2 The 256 System Database programming package contains all the software necessary to run 256 System Database Programming. You can also run 256 System Database Programming under Microsoft Windows version 2.1 or higher.

4.3 With Microsoft Windows, you can take advantage of these additional features of the Windows environment:

- Running multiple applications: You can run several applications under Windows at one time and easily switch between them, creating an integrated work environment.
- Data exchange between applications: You can transfer data between 256 System Database Programming and other standard DOS applications as well as other Windows applications.
- Windows control of the DOS environment: From the Windows environment you can easily access all windows and non-Windows applications, files, directories, and disks, and control all DOS-related tasks such as directory or file management and formatting disks.

4.4 The Microsoft Windows applications associated with 256 System programming cannot be used to run other Windows related functions. To run 256 System Database Programming with other applications under Microsoft Windows, you need to license and install Microsoft Windows version 2.1 or higher.
5. HOW TO USE THE PROGRAMMING WINDOWS

5.1 The database is divided up into “windows” that permit the programmer to view and change the system programming one section at a time. Each of the programming windows contains boxes and/or buttons for selecting and entering specific information. These include: Text Boxes, List Boxes, Command Buttons, Option Buttons, and Check Boxes. Samples of each are shown in the following paragraphs.

5.2 To move among items in a window, you may use the TAB or ALT key, as follows:

- **Using the TAB key**: Press the TAB key repeatedly until the desired area is highlighted by a gray box and a dark outline or filler. To move in reverse, press the SHIFT and TAB keys at the same time.

- **Using the ALT key**: Pressing a combination of the ALT key and the underlined character allows you to move directly to the desired area. (For example, in the following sample Text Box, you would use ALT-D because the “D” in Description is underlined).

5.3 When using a stand-alone PC, a mouse can be used for selecting items. To select an item, simply point the mouse cursor at the desired item and click the left button.

A. TEXTBOX

EXAMPLE:

![Image](https://via.placeholder.com/150)

Description: |

5.4 A text box is used when the requested information requires typing. The vertical line is the cursor that indicates where text will be inserted. As you type, the line moves to the right, pushing any existing text to the right. The line can be moved right or left using the arrow keys on the keyboard or by pointing the mouse cursor at the desired place and clicking the left button once.

5.5 To move the cursor to a text box, follow the instructions in paragraph 5.2. When the cursor appears in the box, you can begin typing.

5.6 The system recognizes both upper- and lower-case characters. When typing, you may use either case or a combination.

5.7 To correct mistakes made while entering information or to erase existing information, back up using the backspace or delete key and retype the entry.

5.8 To delete the entire contents of a text box, highlight the box. Then, press the backspace or delete key.

B. LISTBOX

EXAMPLE:

<table>
<thead>
<tr>
<th>Station Programming...</th>
<th>System-wide Features...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toll Restriction...</td>
<td>Trunk Programming...</td>
</tr>
<tr>
<td>Least-Cost Routing...</td>
<td>Attendants...</td>
</tr>
<tr>
<td>Station Message Detail...</td>
<td>Service...</td>
</tr>
</tbody>
</table>

5.9 The list box is used for several purposes, as follows:

- **Main Menu selections**: In the main menu list box shown above, selecting a listed item that is followed by an ellipsis (...) causes other selections to appear below it. For example, selecting Station Programming will expand the list to show additional items. However, Least-Cost Routing does not have an ellipsis and selecting it will lead directly to a programming window.

- **Typed information**: When programming items such as do-not-disturb and reminder messages, the list box shows the current values. Selecting one line of the list box causes a smaller window with a text box (like the one shown above paragraph 5.4) to appear. After the information is entered in the text box and you exit from the small window, the list box shows the new information.

- **Enable/Disable and Yes/No lists**: Items such as system features have only two states: enabled or disabled. When these appear in a list box, selecting the item changes the state of that item. For example, if the station feature “CO Reseize” is enabled and you wish to disable it, you would select the line containing “CO Reseize” to change the status to “DISABLED” by pressing the SPACE BAR (see page 5-30 for an illustration).

- **Include/Exclude lists**: Some programs require you to list the stations or trunks that are on “include” or “exclude” lists. To move an item from one list to the other, select the desired item. It is automatically moved to the other list.
5.10 There are several methods for selecting a line in a list box. They are as follows:

- **Arrow** keys: Use the up or down arrow key to move the highlight bar. Press the SPACE BAR to select an item while it is highlighted.

- **HOME, END, PAGE UP and PAGE DOWN** keys: You can use the HOME key to move directly to the top of the list, or the END key to move directly to the bottom. The PAGE UP and PAGE DOWN keys move up or down the list one screen at a time.

- **First letter or digit of desired item:** When a list is presented in alphabetical or numerical order, you can quickly move to the first item beginning with a specific letter or number by entering that character. For example, when in a list of stations by name, you can move to names that begin with “C” by pressing the C key.

- **Scroll bar:** Along the right edge of the list box is a band with an arrow at each end and a white box (as shown in the List Box sample on the previous page). This is a scroll bar and it is used, with the mouse cursor, to move through the list. Point the cursor at either of the arrows and click the left button to move one line at a time, or point the cursor at the white box and hold down the left button. Moving the mouse “drags” the box up or down and scrolls through the list. When the desired item is highlighted, press the SPACE BAR or click the left mouse button to select it.

5.11 Selecting a command button executes a single command. To select a command button, do one of the following:

- **TAB key:** Use the TAB key to advance to the command button and to **highlight** it. Then press the SPACE BAR to **select** it.

- **ALT key:** Press the ALT key plus the underlined character. (In the sample above, you would use ALT-X to execute the **Exit** command).

5.12 Frequently, a command button is highlighted by a dark border while you are programming in a window. If so, pressing the **RETURN** key will execute that command automatically. You do not need to TAB to the button first.

D. OPTION BUTTON

EXAMPLE:

```latex
\begin{array}{l}
\text{Serial 1} \\
\text{Serial 2}
\end{array}
```

5.13 Option buttons are used when there are two or more options for a feature and you must choose only one. The options are listed in a box and the buttons are located along the left. Selecting the desired button places a dot in it to show which option was chosen.

5.14 Option buttons can be selected using one of the following methods:

- **TAB key:** Use the TAB key to advance to the box surrounding the buttons, and then press the up or down arrow key to move the dot to the desired button.

- **ALT key:** Press the ALT key plus the underlined character (in the sample above, you would use ALT-1 or ALT-2).

E. CHECK BOX

EXAMPLE:

```latex
\begin{array}{l}
\text{Area and Office Codes} \\
\text{Overlap}
\end{array}
```

5.15 Check boxes are used when a single option is available that has only two states (on/off, enabled/disabled, or yes/no). When the box is selected, an X is placed inside it to indicate an affirmative state (on, enabled, or yes). Selecting a box that already contains an X, removes the X (off, disabled, or no).

5.16 Check boxes can be selected using one of the following methods:

- **TAB key:** Use the TAB key to advance to the check box to **highlight** it. Then press the SPACE BAR to **select** it.

- **ALT key:** Press the ALT key plus the underlined character. (In the sample above, you would use ALT-A).
F. **ITEMS THAT CANNOT BE SELECTED — GRAY ITEMS**

5.17 If an item in a window appears in a light gray color, it **cannot** be selected unless an associated item is highlighted. For example, in the System Configuration window, the command button for Configuration **cannot** be selected unless a line in the list box with “KSC Board,” “T1C,” or “IDC Board” is highlighted, because only these cards require special configuration programming. But, when the proper line is highlighted, the command button appears in black and selecting it displays the configuration window.

G. **HOURGLASS SYMBOL CURSOR**

5.18 Occasionally, the system will change the cursor to an “hourglass” shape. This indicates that the system is performing an internal operation and cannot respond to input. Wait for the cursor to return to normal before entering more information.

H. **UPDATE TO DATABASE -EXIT SCREEN**

5.19 The following screen appears when an Exit command button is selected. It offers the options of saying the changes that were made in the associated window and exiting to the Applications Menu (select Yes), exiting to the Applications Menu without **saving** the changes (select No), or returning to the programming window to continue making changes (select Cancel).
6. APPLICATIONS MENU

6.1 The first window that is shown when you start a programming session contains a list box with the Applications menu which introduces the eight major programming sections: Station Programming, System-wide Features, Toll Restriction, Least Cost Routing, Trunk Programming, Attendants, Station Message Detail, and Service. The window appears as shown above.

NOTE: The header in this window indicates that the active session is remote (direct connection or modem) as shown above. If the active session is a stand-alone, the word “Remote” does not appear in the header. Note that during a stand-alone session, data is written to a database in the PC and not directly to the 256 System. The stand-alone database must be transferred to the 256 System using the Save/Restore function. Direct and modem connections will write information directly to the 256 System database.

6.2 When programming a KF-rated system, LCR will still appear in the Applications Menu, but when selected, an error message is presented to remind the programmer that it is not available.

6.3 LIST BOX: Each item in the list box, except Least-Cost Routing, is followed by an ellipsis (…) to indicate that it contains submenus. These submenus appear when the main menu line is selected. Selecting a submenu line leads to a programming window.

6.4 COMMAND: Each of the options listed on the following pages can be accessed directly by entering a three- or four-letter command in the Command text box. Select the text box using the mouse, the TAB key, or ALT-C, type the desired command, and press RETURN. Then refer to the appropriate page in this section for instructions on using the selected window.

6.5 EXIT: When programming is completed, select the Exit command button. The following window appears. Select the OK command button to end the programming session, or select the Cancel command button to return to the Applications menu.
6.6 The **full** list of available menus, with the abbreviated access commands and a brief description of their purposes are as follows:

<table>
<thead>
<tr>
<th>MAIN MENU ITEM</th>
<th>SUBMENU</th>
<th>PROGRAMMING OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Station Information</td>
<td>(SIN)</td>
<td>Copy to Another Station</td>
</tr>
<tr>
<td></td>
<td>Continued on next page</td>
<td>Station Review Window:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Full Name And Username</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Secondary Stations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miscellaneous Flags Window:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allow Private Intercom Override</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auto Att/VM/DISA Do-Not-Disturb Breakthrough</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automatic Answer CO or IC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barge Initiate or Receive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camp-On Tones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CO Re seizure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dial Pulse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DID Camp-On Tones</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do-Not-Disturb Allowed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do-Not-Disturb Override</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DTMF Feedback Enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E&M Camp-On Tones</td>
</tr>
<tr>
<td></td>
<td>Handsfree</td>
<td>Headset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LCR Facility Group Camp-On</td>
</tr>
<tr>
<td></td>
<td>Message Lamp</td>
<td>Message Lamp</td>
</tr>
<tr>
<td></td>
<td>Music Channel One/Two</td>
<td>Off-Premises Extension</td>
</tr>
<tr>
<td></td>
<td>Off-Premises Extension</td>
<td>OHVA Receive/Transmit</td>
</tr>
<tr>
<td></td>
<td>Page Remove/Replace</td>
<td>Day/Night Outgoing Access</td>
</tr>
<tr>
<td></td>
<td>Redial Mode</td>
<td>Programmable Key Programming Window:</td>
</tr>
<tr>
<td></td>
<td>Ring Cadence</td>
<td>Key Map</td>
</tr>
<tr>
<td></td>
<td>Ring Intercom Always</td>
<td>Station Programmable Keys</td>
</tr>
<tr>
<td></td>
<td>Ring Type for Off-Premises Extension</td>
<td>Secondary Call Key Programming Window:</td>
</tr>
<tr>
<td></td>
<td>Transparent LCR</td>
<td>Secondary Call Key</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Information Window:</td>
<td>Tenant Group And Department</td>
</tr>
<tr>
<td></td>
<td>Attendant</td>
<td>Account Code Type/Index/Validate Account Code</td>
</tr>
<tr>
<td></td>
<td>Message Center</td>
<td>Class-Of-Service Account Code</td>
</tr>
<tr>
<td></td>
<td>Alternate Message Source (single-line station only)</td>
<td>Ring Zones (single-line station only)</td>
</tr>
<tr>
<td></td>
<td>Account Code Type/Index/Validate Account Code</td>
<td>Receive/Transmit Gain (OPX only)</td>
</tr>
<tr>
<td></td>
<td>Tenant Group And Department</td>
<td>Day/Night Outgoing Access</td>
</tr>
<tr>
<td></td>
<td>Class-Of-Service Account Code</td>
<td>Programmable Key Programming Window:</td>
</tr>
<tr>
<td></td>
<td>Ring Zones (single-line station only)</td>
<td>Secondary Call Key</td>
</tr>
<tr>
<td></td>
<td>Ring Zones (single-line station only)</td>
<td>Primary Station</td>
</tr>
<tr>
<td></td>
<td>Enable Ring Cadence</td>
<td>Secondary Call Keys</td>
</tr>
<tr>
<td></td>
<td>Special Purpose Station Window</td>
<td>Enable Ring Cadence</td>
</tr>
<tr>
<td></td>
<td>Attendant/Stations Served</td>
<td>Secondary Call Keys</td>
</tr>
<tr>
<td></td>
<td>Automated Attendant/Recall Dest. & Digit Translation</td>
<td>Primary Station</td>
</tr>
<tr>
<td></td>
<td>FAX Station/FAX Message Center</td>
<td>Enable Ring Cadence</td>
</tr>
<tr>
<td></td>
<td>House Phone/Day & Night Numbers</td>
<td>Special Purpose Station Window</td>
</tr>
<tr>
<td></td>
<td>Message Center/Stations Served</td>
<td>Attendant/Stations Served</td>
</tr>
<tr>
<td></td>
<td>Voice Mail Station</td>
<td>Secondary Call Keys</td>
</tr>
</tbody>
</table>

Page 5-16
<table>
<thead>
<tr>
<th>MAIN MENU ITEM</th>
<th>SUBMENU</th>
<th>PROGRAMMING OPTIONS</th>
</tr>
</thead>
</table>
| Station *programming... (Continued) | Individual Station Information (Continued) | System Forwarding Window:
Forwarding Paths
Forward Call Types
Station Conditions
System Conditions
Ring Principal Once
Toll Restriction Information Window:
Day/Night Station Class Of Service (SCOS)
Day/Night Mode Toll Restriction User Group
Day/Night Mode LCR Advance Limit
Key Assignments (KEY):
Keyset Key Assignments:
Keyset Map View Types
Keyset Map Groups
Station List
User Programmable Keys
Default Sets
DSS/BLF Unit Key Assignments:
DSS Map Descriptions
DSS Map Groups
DSS Station List
Digital DSS Map View
Single-Line Set Key Maps
Key Type Programming
Ring Zone Programming (ZONE):
Station Lists
Station Features (SFEA):
Allow Private Intercom Override
Auto Attendant/VM/Disa Do-Not-Disturb Breakthrough
Automatic Answer On CO Calls (keysets)
Automatic Answer On IC Calls (keysets)
Barge Receive Enabled
Barge Transmit Enabled (keysets)
Camp-On Tones Disabled
CO Reserve Enabled (keysets)
Dial Pulse Enabled (single-line stations)
DID Camp-On Tones Disabled
Do-Not-Disturb Allowed
Do-Not-Disturb Override Allowed (keysets)
DTMF Feedback Enabled (single-line stations)
E & M Camp-On Tones Disabled
Handset Enabled (keysets)
Headset Enabled (keysets)
LCR Facility Croup Camp-On Allowed
Message Lamp Enabled (single-line stations)
Music Channel One Enabled
Off-Hook Voice Announce Receive Enabled (keysets)
Off-Hook Voice Announce Transmit Enabled
Off-Premises Extension (single-line stations)
Page Remove Enabled (keysets)
Redial Mode — Last Number Dialed (keysets)
Ring Cadence Extended (single-line stations)
Ring Intercom Always Enabled
Ring Type For OPX — DC (single-line stations)
Transparent LCR Enabled
<table>
<thead>
<tr>
<th>MAIN MENU ITEM</th>
<th>SUBMENU</th>
<th>PROGRAMMING OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>system-Wide features</td>
<td>Account Code Information (ACCT)</td>
<td>Account Code Length</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard, Forced, LCR Toll, & None Station Lists</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Batch Station Lists (Forced, Standard, LCR Toll, Validated)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Class-Of-Service Account Codes</td>
</tr>
<tr>
<td></td>
<td>IND and Reminder Messages MESG)</td>
<td>Stations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hunt Groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trunk Groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feature Codes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Set Extensions/Clear Extensions (Batch Load)</td>
</tr>
<tr>
<td></td>
<td>Extensions, Usernames, and Feature Codes (EXT)</td>
<td>Hunt Groups (HUNT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Station Lists</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voice Mail Hunt Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Voice Computer Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Automated Attendant Hunt Group</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dial Rules</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recall Destination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hunt Group Extended Data Window:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hunt Group Name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supervisor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hunt Group Search Type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Timer Programming Window:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No Answer Advance Timer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Announcement Timer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overflow Timer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Default Timers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Announcement Station Data Window:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Announcement Stations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Announcement Types</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overflow Station Data Window:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overflow Device</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overflow Station</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overflow Type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overflow Count</td>
</tr>
<tr>
<td>MAIN MENU ITEM</td>
<td>SUBMENU</td>
<td>PROGRAMMING OPTIONS</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>System Wide Features... Continued</td>
<td>Miscellaneous System-Wide Information (MISC)</td>
<td>Primary Attendant Station Call Termination Digits System Flags: Allow Cross-Tenant IC Traffic Allow Cross-Tenant Voice Mail/Computer Traffic Account Code Class-Of-Service Audible Message Indication for SL Sets Auto Attendant Dial During Recording Auto Attendant Enable Ringback Tone Barge Barge Confirmation Tone Broadcast Alarms to All Attendants Broadcast Station Off-Hook Alarms Drop Incomplete Outgoing Call Extended DTMF Feedback Digits External Paging Music Channel Handsfree Announce System Forward Transfer Hot Dial Pad Keys Hunt Group Transferred Call Type Keyset Identification Display Music-On-Hold for IC Calls OHVA DSS Immediate Transmit OHVA System-Wide Privacy Release Reverse Transfer Immediate Connection Standard Tones (CO Trunks, Keysets, and Single-Lines) Station DTMF Digit Mute Station Monitoring Tone Suppress All Displayed Digits After End Of Dialing System “Skate” Type System Speed-Dial Override SCOS Validate Voice Mailbox Numbers</td>
</tr>
<tr>
<td>Page Zones (PAGE)</td>
<td>Page Zones Page Zones Relays And External Ports Keysets Convert Ports Relay Programming (RLAY)</td>
<td>Relay Programming (RLAY) System Forwarding (SFWD) Forwarding Paths Path Description Forwarding Point(s) System Speed Dial (SSPD) Name Tenant Number Number Of Displayed Speed-Dial Numbers Speed Dial Number Programming Station Number Of Digits in Bin Number System Timers (TIMR) Value Default Range</td>
</tr>
<tr>
<td>MAIN MENU ITEM</td>
<td>SUBMENU</td>
<td>PROGRAMMING OPTIONS</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>System Wide Features... (Continued)</td>
<td>Tenants and Departments (TNT)</td>
<td>Tenant Groups
Description
Departments
Trunk Group For Auto Feature
Stations
Trunk Groups
DID Groups</td>
</tr>
<tr>
<td>Toll Restriction...</td>
<td>Alternate Carriers/Allowed Long Distance (ALT)</td>
<td>Alternate Carrier Numbers
Allowed Long Distance Numbers</td>
</tr>
<tr>
<td></td>
<td>Area/Office Codes Allowed/Restricted (AREA)</td>
<td>Area And Office Codes Overlap
User Groups
Day/Night Station Lists
Area Codes (Allowed, Restricted, or Extended)
Office Codes (Allowed or Restricted)</td>
</tr>
<tr>
<td></td>
<td>SCOS Information (SCOS)</td>
<td>Station Class-Of-Service Programming
Day/Night Lists
Day/Night LCR Advances</td>
</tr>
<tr>
<td></td>
<td>Toll Security</td>
<td>7/10 Digit Enabled
Operator/International Enabled
Weekly Toll Limit
Clear Accumulated Total
Remaining Days</td>
</tr>
<tr>
<td>(least-Cost Routing (LCR))</td>
<td></td>
<td>Dial Rules
Route Groups:
Description
Area Code Table
Office Code Table
Day, Evening, & Night Time Blocks (Facility Groups)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Facility Groups:
Description
Dial Rules
Trunk Groups</td>
</tr>
<tr>
<td>MAIN MENU ITEM</td>
<td>SUBMENU</td>
<td>PROGRAMMING OPTIONS</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| Trunk Programming... | Individual Trunk (INDT) | Group Number
Receive Gain
Transmit Gain
Hybrid Balance
E&M Interface
Start Type
Current DT Detect
Relaxed Ring Detect
DTMF Signaling
Ignore Answer Supervision |
| (Continued on next page) | Trunk Groups, DID Groups, And Ring-In/Answer Patterns (TRNK) | Trunk Group Programming Window:
Trunk Group Description & Name
Tenant Group
E & M Trunk Group:
- Call Routing (Auto Ring-In/Dial Repeating)
- Reorder Tone (Continuous or Burst)
- Handshaking (Immediate, Delayed, Or Wink)
- Return Dial Tone
- DID Digit Translation
Enable Hookflash
One-Way Incoming Only
Music-On-Hold
Day/Night Outgoing Access Station List
Day/Night Ring-In (Single, Hunt, Multiple, or DISA — DISA can have toll restriction)
Trunk List
Toll Restriction:
- Subject To Toll Restrict
- Exempt From LCR Only
- Call Cost (Free, Local, 10-Digit, Operator)
- Equal Access
- Absorbed Digits
- Absorbed Digits Applications (PBX or Local)
- Absorbed Digits Repeatable
- Absorbed Strings
DID Group Programming Window:
Description
Tenant Group
Base Number
Trunk List
Music On Hold
Start Type (Immediate, Wink, Delay)
Add/Delete Entry
Day/Night Ring-In (Single, Hunt, Multiple, or DISA)
DISA Codes
Set Ring-in (Batch Load)
Ring-In/Answer Patterns Window:
Pattern Title
Ring-In Station List
Answer Station List
Relay Lists |
<table>
<thead>
<tr>
<th>MAIN MENU ITEM</th>
<th>SUBMENU</th>
<th>PROGRAMMING OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk Programming...</td>
<td>T1 Programming (T1)</td>
<td>Error Threshold Programming</td>
</tr>
<tr>
<td>(Continued)</td>
<td></td>
<td>Dialing Feedback Configuration:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DTMF Dialing Feedback Gain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dial Pulse Feedback Gain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dial Pulse Tone Selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backup Clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1 Card Programming Window:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PCM Encoding Law</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Relay Activation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Card Type (D4 or ESF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zero Code Suppression Scheme (AMI, B8ZS, or None)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Channel Service Unit (On-Board or DSX-1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Line Build-out (LBO) if On-Board CSU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSX-1 Line Length if DSX-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Test Tone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reference Clock Programming</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clock Programming Window:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1 From public Network</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Provides Reference Clock For System</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Master/Slave Loop Operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Source Of Reference Clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Error Diagnostics Window:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output Type (Table or Graph/Hour or Day)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Update</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current Errors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Port/File & Print Location</td>
</tr>
<tr>
<td>Attendants...</td>
<td>Attendant’s Console (CONS)</td>
<td>Designate/Format Destination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Create Database</td>
</tr>
<tr>
<td></td>
<td>Alias Programming (ALSS)</td>
<td>Add Alias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>List Current Aliases</td>
</tr>
<tr>
<td></td>
<td>DSS/BLF Assignment (DSS)</td>
<td>Description</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSS/BLF Associated Keyset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DSS/BLF Keymap</td>
</tr>
<tr>
<td>Station Message Detail...</td>
<td>Call Cost (COST)</td>
<td>Daytime Rates In Dollars Per Minute</td>
</tr>
<tr>
<td>Continued on next page</td>
<td></td>
<td>Evening/Night/Weekend Multiplicative Factors</td>
</tr>
<tr>
<td></td>
<td>SMDA (SMDA)</td>
<td>output Port</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reporting Interval (Attendant, Daily, Weekly, Monthly)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clear SMDA Data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Print Report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Review Format Window:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Account Code Reports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clear Account Code Data Following Report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summary Reports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Select Device Reports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detailed Reports</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clear Station/Trunk/Hunt Data Following Report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected Device Reports:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>stations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trunks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hunt Groups</td>
</tr>
</tbody>
</table>

Page 5-22
<table>
<thead>
<tr>
<th>MAIN MENU ITEM</th>
<th>SUBMENU</th>
<th>PROGRAMMING OPTIONS</th>
</tr>
</thead>
</table>
| Station Message Detail... (continued) | SMDR (SMDR) | SMDR Output Port
SMDR Output **Active**
SMDR Report Format station **List** |
| service... | **Error** Message Programming (ERR) | Error Output Port
Error Output Active
Report Contents |
| Hybrid Balance (HYBR) | | Circuits
Hybrid Balance
Test Line
Break Dial-Tone Digit |
| Maintenance Programming (MAIN) | | Devices
CO Trunks In Maintenance/Available |
| Passwords (PASS) | | Applications Restricted/Unrestricted
On-Line Monitor Restricted/Unrestricted |
| Report Programming (REP) | | Select Output Port
Station Report
Area/Office Code Report
Least Cost Routing Data Report |
| Customized Report Programming (CREP) | | Reports:
Area/Office Codes
Detailed Station
DID
General Station
Hunt Croup
KeyMaps
LCR
Phone List
Special Purpose Flags
System Speed Dial
Timers
Trunk Croup
Port/File |
| Save/Restore (SAVE) | | Format Disk
Save Database
Restore Database
Save CVH Database (not currently supported)
Copy **Error** File
File Destination/Source |
| Serial Port Configuration (PORT) | | Enable DSR Handshaking
Enable **CTS** Handshaking
Baud Rate
Reset Ports |
| System Configuration (CONF) | | Time & Date
Home Area Code/Local Area Codes
System Board Types
+30VDC Modules Required
Non-Blocking For Voice Channels
Configuration For KSC. **TIC, & DID**
Clock Adjustment (on-line only)
Move Board (stand-alone PC only) |
7. DEFAULT VALUES

7.1 The default values of the features are specified throughout this section of the manual. They are also specified on the program planning sheets that begin on page 5-174. A summary of the default system values is as follows:

A. CONFIGURATION

- On **IMX 256** Systems, card slots 1-4 are considered **KSCs** or **KSC-Ds**, slots 5-6 are **DKSCs**, slots 7-9 are unassigned, slots 9-12 are **SLCs**, and slots 13-16 are **LGCs**. On **GMX-256** Systems, card slots 1-6 are considered **KSCs** or **KSC-Ds**, slots 9-12 are **SLCs**, and slots 13-16 are **LGCs**.

B. ATTENDANT

- There is one attendant for all stations (circuit 1.1). This station serves as the primary attendant, system alarm station, and message center for all stations. It is also the system speed-dial programming station and it can be used to place the system in night mode. The circuit is equipped and configured for a **keyset**.
- Circuit 1.1 receives ring-in and can answer all trunks during day mode and night mode.

C. STATIONS

- Stations are not toll restricted.
- All stations have ring-in assignment and can answer all trunks when the system is in night mode. Users have outgoing access on all trunks.
- Intercom numbers are assigned in order beginning with circuit 1.1 (intercom number 100).
- All stations are in tenant group 1, department 1.
- All **keysets** are in paging zone 1. External paging ports are not enabled.
- Camp-on tones are heard at all stations.
- No headsets are equipped.
- No user names are assigned.
- There are no **DSS/BLF** stations, automated attendants, message centers (other than the primary attendant), or house phones.
- Off-hook voice announce is enabled. Barge is not enabled.
- **Keyset** LCD identification is enabled full time.
- All stations have do-not-disturb capability, but none have DND override enabled.

- All single-line sets are in the “immediate” ring zone.
- All stations have CO reseize disabled.

D. TRUNKS

- All trunks are programmed for **DTMF** signaling.
- System-wide call privacy is enabled.
- All trunks are subject to toll **restriction**. All trunks accept equal access dialing. None absorb digits.
- No trunks are associated with hunt groups.
- All trunks are assigned to trunk group 1, which is named “All Lines.”

E. TOLL RESTRICTION

- Area and office codes do not overlap. All area codes and office codes are unrestricted.
- The allowed long distance numbers are **800-XXX-XXXX** and 911. There are no alternate carrier numbers.

F. MISCELLANEOUS

- The system is in day mode.
- No system or station speed-dial numbers are programmed.
- None of the system speed-dial locations are identified as nondisplay numbers. All are assigned for use by all tenant groups.
- Speed-dial **DTMF** tones are not muted.
- Speed-dial numbers are subject to toll restriction.
- **Least-Cost Routing (LCR)** is programmed as “transparent” to the users.
- No hunt groups, hunt group supervisors, or announcement or overflow stations are assigned.
- No account codes are assigned. Account code default length is four digits. Class-of-service account codes are not enabled.
- The system is programmed to disconnect calls (not place them on hold) when a user presses another trunk key during a call.
- Cross-tenant intercom traffic is allowed.
- System alarms are sent to all attendants.
- Reverse transfers to **keyset** stations are connected immediately, the **user** does not need to press the flashing trunk or **IC** key.
- Passwords are not required to gain access to the database programs or the on-line monitor.
8. **STATION PROGRAMMING — INDIVIDUAL STATION INFORMATION (STN)**

8.1 When Station Programming is selected from the Applications Menu window, the menu expands to show the following options:

- Station Programming...
 - Individual Station Information
 - Key Assignments
 - Ring Zone Programming
 - Station Features

8.2 The Individual Station Information option and the windows it accesses are described in the following pages. The remaining options apply to batch programming and are described beginning on page 5-44.

A. **STATION TO BE REVIEWED**

8.3 The first window in the Individual Station programming area is shown above. It can be accessed by selecting Individual Station from the Station Programming menu or entering the STN command. There are two methods for selecting the station to be programmed as described in the following paragraphs.

8.4 **STATION TO BE REVIEWED**: Select the Station to be Reviewed text box and enter a circuit or extension number to program the station features for an individual station. (If programming an 8-line IMX AIM keyset that is installed on a dual circuit, add A or B to the end of the circuit number to designated which station is being programmed.) Then press RETURN to select the Review command button and display the window shown on page 5-28.

NOTE Programmers should use **extension numbers** and not station circuit numbers when programming stations. Because the Station Exchange feature can be used to change the extension programming of the station circuit numbers, circuit numbers are not reliable references to the extension numbers.

8.5 **F2 FOR LIST OF STATIONS**: To view a list of the stations, press the F2 key. The following window appears. To select a station, scroll through the list box until the desired station is highlighted.

<table>
<thead>
<tr>
<th>Ext</th>
<th>Ckt</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>01.01</td>
<td>![Up Arrow]</td>
</tr>
<tr>
<td>101</td>
<td>01.02</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>01.03</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>01.04</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>01.05</td>
<td></td>
</tr>
</tbody>
</table>

- **OK or CANCEL**: Select the OK command button or press RETURN. To exit from the window without selecting a station, select the Cancel command button.
• **SORT:** To sort the stations and list them numerically by extension **number** or circuit number, or to list them alphabetically by name, select the Sort **command** button. The window appears as shown here. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.

<table>
<thead>
<tr>
<th>Ordering</th>
<th>Ok</th>
<th>Cancel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 By Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 By Circuit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 By Name</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.6 **COPY:** To copy attributes **from** the station shown in the **Station To Be Reviewed** text box to other stations, enter the **source** station’s extension or circuit number in the text box and then select the Copy command button. The window shown at the bottom of this page appears.

• **SELECT COPIED ATTRIBUTES:** To determine which attributes will be copied, place an X in the box for each desired attribute. To place and X in a box, highlight it and then press SPACE BAR. To remove the X, highlight it and press SPACE BAR again.

• **STATIONS:** To determine which stations will receive the copied information, select the Stations command button. The window shown on the next page appears.

• **EXIT:** When all of the attributes have been selected (or if you wish to exit without copying information), select the Exit command button. A small window appears that asks if you wish to update the database. If you select the Yes command button, the information will be copied as specified. If you select the No command button, the Individual Station window (shown on the previous page) will return. If you select the Cancel command button, the Copy window (shown below) will return.

Copying From Station XXX

Select Copied Attributes

- Attendant
- **Message Center**
- Account Code Settings
- **Tenant** Group and Dept.
- Ring **Zone** (Single Line)
- **Miscellaneous** Features
- Station Class of Service
- **User** Group

- Least Cost **Routing**
- **Key Map Number**
- **Softkey** Programming
- System Forwarding
- **Page** Zones
- Outgoing Access

- Stations
- Exit
INTER-TEL PRACTICES

IMX/GMX 256 INSTALLATION & MAINTENANCE

PROGRAMMING
Issue 1, November 1994

Include or Exclude: To include a station, locate it on the Exclude list and select it by pressing the SPACE BAR; it will automatically move to the Include list. To remove a station, select it in the Include list to move it to the Exclude list.

All or None: To include all stations, select the All command button. To delete all stations, select the None command button.

OK or Cancel: When the station lists appear as desired, select the OK command button to exit and record your changes or select the Cancel command button to exit without saving changes.

Sort: To sort the stations and list them **numerically** by extension number or circuit number, or to list them alphabetically by name, select the Sort command button. The window appears as follows. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.

Station Sorting Method

<table>
<thead>
<tr>
<th>Ordering</th>
<th>0 By Extension</th>
<th>0 By Circuit</th>
<th>0 By Name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.7 **EXIT** *(Shown on page 5-25.)* When finished programming station information, select the Exit command button to return to the Applications menu.
B. Username and Area to Be Reviewed

8.8 The “subwindows” that are accessed through this window are used to enter specific information about the selected individual station. The program planning sheet in Figure 5-4, on page 5-174, may be helpful.

8.9 **Pull Name and Username:** The full name of the station user can be up to 20 characters, and the abbreviated user name, that will appear on display keysets in the “idle” display (if the option is enabled) and in several call processing displays, can have up to seven characters. To program the names, select the desired text box and type the entry.

8.10 **Station Exchange Password:** (This is not available unless the Station Exchange flag in Miscellaneous Flags is enabled.) Enter the desired password, up to four digits, to be used for this extension number (not circuit number) for the Station Exchange feature. See page 4-99 in FEATURES for more information on the Station Exchange feature.

8.11 **Area to be Reviewed:** This list box is used for gaining access to the following programming areas:

- **Misc. Flags:** The window that appears when this line is selected appears on page 5-30. It is used for programming several station-specific features such as Do-Not-Disturb Allowed, Off-Hook Voice Announce, etc. A complete list of the flags is given on page 5-30.
- **Misc. Information:** Selecting this line in the Area to be Reviewed list box, causes another programming window to appear (as shown on page 5-33). This window is used for programming the station’s attendant, message center, account code type and index, class-of-service account code, tenant group, and department. Also used for programming ring zones for single-line sets.
- **Outgoing Access Day/Night:** Select this line to determine the trunk group(s) to which the station will have access for placing outgoing calls during day and night modes. The window appears as shown on page 5-34.
- **Programmable Keys:** This option does not appear for single-line stations. Select this line to choose the key map that will be used by the station and, for keysets, to assign the values for the station programmable keys. The window appears as shown on page 5-35.
- **Secondary Call Key Assignments:** This option does not appear for single-line stations. If the station will have secondary call keys, select this line. The programming window appears on page 5-37.
- **SPECIAL PURPOSE STATION**: This option is selected to program the stations as an attendant, automated attendant, FAX station, house phone, message center, or voice mail station. The window for this option is shown on page 5-38.

- **SYSTEM FORWARDING**: Select this line to assign the system forwarding path(s) and forwarding conditions for the station. The window for this option appears on page 5-41.

- **TOLL RESTRICTION**: This line is selected to program the station’s toll restriction user group, LCR advance limit, and SCOS restrictions. A window appears as shown on page 5-43.

8.12 **SECONDARY STATIONS**: This list box appears gray for single-line stations. If the station being programmed is a primary station and one or more secondary stations have secondary call keys associated with its call keys, the secondary stations are listed in this box for reference.

8.13 **EXIT**: When finished programming through this window, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit, select the Yes button. Or select the No command button to exit without saving any changes. To return to this programming window, select the Cancel button.
c. MISCELLANEOUS FLAGS WINDOW

8.14 Determine the desired status for each of the following features. Refer to FEATURES for more information on each of these features. The program planning sheet for this window is located in Figure 5-4 on page 5-174.

8.15 LIST BOX: Each of the items in the list box has only two states (enabled/disabled, on/off, etc.). Scroll through the list to verify that they are programmed as desired. To change the status of a flag, select it.

- Allow Private Intercom Override: (Keyset only)
 This option, when enabled, allows the caller to press the pound (#) key to break through handsfree when calling a keyset station that is programmed to receive only private calls. In the default state, it is disabled.

- Automated Attendant/VM/DISA Do-Not-Disturb Breakthrough: This option determines whether calls received through the automated attendant, voice mail, or DISA will break through Do-Not-Disturb mode. If the option is enabled, the station receives DISA, voice mail, or automated attendant calls even when in Do-Not-Disturb. If disabled, the call is sent to the station’s attendant. In the default state, it is enabled.

- Automatic Answer CO or IC: (Keyset only)
 The Automatic Answer feature can be enabled so that ringing outside and/or intercom calls are answered by simply lifting the handset. If automatic answer is disabled, the user must press a key to answer the call. (This can also be programmed by the station user.) In the default state, automatic access for both IC and CO are enabled.

- Barge Initiate or Receive: (This prompt appears only if the system-wide flag for Barge is enabled. Barge Initiate appears for keysets only.) A keyset station can be given barge permission and/or any station can be programmed to receive or block barges. In the default state, barge is disabled.

- Camp-On Tones: The tone that signals a user when a call has camped on can be enabled or disabled. (This flag does not apply to DID or E&M calls. Those are programmed separately as described below.) In the default state, the tones are enabled.

- CO Reseize: (Keyset only) The ability to immediately reseize a trunk after disconnection from a call can be enabled. In the default state, it is disabled.

- Dial pulse: (Single-line station only) Single-line sets can be permitted to use pulse-dialing signals. This feature enables or disables that option. In the default state, this feature is set to no.

- DID Camp-On Tones: The tone that signals the user that a DID call has camped on can be enabled or disabled. In the default state it is enabled.

- Do-Not-Disturb Allowed: This option designates whether the station can be placed in do-not-disturb. In the default state, it is enabled.

- Do-Not-Disturb Override: (Keyset only) The station can be given do-not-disturb override privilege that allows the user to place an intercom call to a sta-
ion in do-not-disturb. In the default state, 'it is dis-
abled.

- **DTMF Feedback** The progress tones that are normally sent to a voice computer can be replaced with DTMF "feedback" tones. These tones determine if the called station is in do-not-disturb, busy, or forwarded to an outside telephone number. If the voice computer does not interpret the DTMF feedback tones, progress tones should be kept enabled. If feedback tones are enabled, the "extended" set of feedback tones can also be enabled in system-wide programming (see page 5-68). These extended tones include codes for indicating when a station is forwarded to another station and when the calling party hangs up. In the default state, feedback tones are set to disabled.

- **E&M Camp-On** Tones: The tone that signals the user that an E&M call has camped on can be enabled or disabled. In the default state it is enabled.

- **Handsfree** (Keyset only) The station can be programmed to receive intercom calls handsfree, or handsfree answering can be disabled. (This can also be programmed at the keyset.) In the default state, handsfree answering is enabled.

- **Headset** (Keyset only) If a headset will be used on the keyset, it can be enabled through programming or by the keyset user. In the default state, it is disabled.

- **LCR Facility Group Camp-On:** Determine whether the station will be allowed to camp-on to busy-facility groups when the Least-Cost Routing feature is used. In the default state, it is enabled.

- **Message Lamp:** (Single-line station only) Single-line sets can be equipped with a message waiting lamp. This feature enables or disables that option. In the default state, this option is set to no.

- **Music Channel One/Two:** This option selects the music-on-hold channel that will be used by this station. The chosen music channel is used for background music to the station, and for music-on-hold when the user is placed on hold by another station or camps on to a resource. This can also be programmed by the station user. In the default state, channel one is selected.

- **OHVA Receive/Transmit:** (OHVA Receive appears for keysets) Any station can be programmed to place off-hook voice announcements. Keysets can also be programmed to receive off-hook voice announce calls. In the default state, receive and transmit are enabled, but the system-wide flag must also be enabled to allow the feature to be used.

- **Off-Premises Extension:** (Single-line IDC circuits only) This option appears for single-line IDC circuits that have been designated as OPX stations in the System Configuration window. It defaults to yes to increase gain by +3dB to compensate for the normal loss in OPX cabling between the 256 System and the off-premises site. If the station will actually be used on premises (e.g., connected to a voice mail unit), this option should be set to no to prevent DTMF digit recognition errors.

- **Page Remove/Replace:** (Keyset only) If desired, the station can be removed from its page zone(s), or placed in again through Programming or by the keyset user. In the default state, the stations are in replace mode.

- **Redial Mode:** (Keyset only) Keyset users can use last number dialed or last number saved redial modes. This option can be programmed using this window, or at the keyset. In the default state, the stations are set for dialed mode.

- **Ring Cadence:** (Single-line station only) Ring cadence can be set for normal or extended. The extended setting lengthens the duration of the ring signal to meet the requirements of OPX and/or repeater applications. The default setting is normal.

- **Ring Intercom Always:** When this feature is enabled, all calls placed to keysets from this station are received as private calls. The feature can be enabled or disabled through Programming or by the keyset user. In the default state, this feature is disabled.

- **Ring Type for Off-Premises Extension:** (Single-line IDC circuits only) This option appears for single-line IDC circuits that have been designated as OPX stations in the System Configuration window. Determine whether the OPX uses AC or DC ringing, then select the appropriate option. (Refer to the card strapping information on page 3-95 in INSTALLATION.) The default setting is AC.

- **Station Exchange:** This option, if enabled, allows a station user to enter a feature code and a password (see page 5-28) to exchange the extension numbers and station programming of two station circuits. See page 4-99 in FEATURES for details. In the default state this is disabled.

- **Transparent LCR:** If this option is enabled, the user will hear dial tone while the LCR feature is selecting the line. If disabled, the user hears a progress tone, then digits being dialed. In the default state, this feature is enabled.

8.16 **OK:** When finished, select the OK command button to return to the Station Programming window.
D. MISCELLANEOUS INFORMATION WINDOW

8.17 **Determine the following information** for each station. Refer to FEATURES for more information on each of these features. The program planning sheet for this window is located in Figure 5-4 on page 5-174.

- **Attendant station:** Determine which station (if any) will serve as the attendant for each station.
- **Message center:** Determine which station or hunt group (if any) will be assigned as the message center for each station. The message center will receive messages after the Message timer expires.
- **Alternate Message Source:** *(Single-line station only)* Determine which station or hunt group (if any) will be assigned as the alternate message source for each single-line station. The alternate message source was developed primarily for voice mail use. It allows voice mail ports to leave message waiting indications at stations, but when the station user retrieves the message the call is sent to the alternate message source hunt group rather than the specific voice mail port.
- **Tenant group and department:** There can be up to eight tenant groups with up to ten departments each. Every station must be assigned to a tenant group and department.

Account Code Type

<table>
<thead>
<tr>
<th>Standard</th>
<th>Forced</th>
<th>Neither</th>
</tr>
</thead>
</table>

Account Code Index:

Class-of-Service Account Code:

Ring Zone

<table>
<thead>
<tr>
<th>Immediate</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
</table>

- **Account code type/index:** The station can be assigned a standard, forced, or LCR toll account code, or none. If it is a standard code, indicate which code by noting its code index (00–127). *(The actual code is assigned in the Account Code window on page 5-54.)*
- **Validate account code:** Forced account codes can be validated or non-validated. If they are validated and the entered code matches one of the pre-programmed forced account codes in the database, the call is allowed. If the code does not match, the call is blocked. If forced account codes are not validated, the code is not checked against any lists and the call is allowed as soon as the code is entered.
- **Class-of-service account code:** Assign the account code that this station user will enter (if using another station) to use his or her station's usual SCOS. It must match the programmed account code length (4–8 digits) and must be a unique account code that does not match any existing standard, forced, or class-of-service code.
- **Ring zones:** *(Single-line station only)* The system power supply's ring generator can provide ring voltage to ring up to 20 AC-ring single-line stations simultaneously without any noticeable change in the ring tone. To preserve the ring tone quality, single-line stations should be divided into ring zones 1-3. All single-line sets are in the “immediate” ring zone in the default state.
• Receive/Transmit gain: (OPX stations only) Receive and transmit gain can be adjusted on an OPX-by-OPX basis if voice transmit or voice receive volume problems occur. You can adjust the receive gain and/or the transmit gain for individual circuits. Receive and transmit are measured from the perspective of the central office. Receive and transmit are measured from the perspective of the central office. That is, receive gain adjusts the signal that is sent to the CO from the 256 System. The signal that is transmitted from the CO is affected by adjusting the transmit gain on the 256 System.

8.18 ATTENDANT: Select the Attendant text box and type the circuit or extension number of the station that will serve as this station’s attendant.

8.19 MESSAGE CENTER: To program a message center for the station, select the Message Center text box and type the desired station circuit or extension number, or hunt group number.

8.20 ALTERNATE MESSAGE SOURCE: To program an alternate message source for a single-line station, select the Alternate Message Source text box and enter the desired alternate message source’s extension number.

8.21 TENANT/DEPARTMENT: The station must be assigned to a tenant group and a department. Select the Tenant Group text box and type the desired tenant group number (1-8). Then select the Department text box and enter the desired department number (1-10).

8.22 ACCOUNT CODE TYPE: Highlight and select the desired account code type in the list box. If a standard code type was assigned, the account code index text box changes from gray to black.

8.23 ACCOUNT CODE INDEX: Standard account codes require an index. To enter one, select the Account Code Index text box and type the index number (000-127).

8.24 VALIDATE ACCOUNT CODE: To program the system to validate forced account codes, place an X in the Validate Account Code check box by pressing the SPACE BAR or simultaneously pressing the ALT and V keys. (Repeat this process the remove the X.)

8.25 CLASS OF SERVICE ACCOUNT CODE: To enter the class of service account code, select the text box and enter the desired code. It must match the programmed account code length (4-8 digits) and must be a unique account code that does not match any existing standard, forced, or class-of-service code.

8.26 RING ZONE: When programming a single-line set, a list box will appear in the lower right corner to allow you to program the ring zone, as shown below. Scroll the highlight bar to the desired ring zone to assign the single-line set to that zone.

Ring Zone

<table>
<thead>
<tr>
<th>Immediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

8.27 RECEIVE GAIN: When programming an OPX, the receive gain may need to be adjusted. To set the receive gain, enter the gain amount in the Receive Gain text box (non-T1 trunks can be -9dB to +3dB; T1 range is -15dB to +15dB).

8.28 TRANSMIT GAIN: When programming an OPX, the transmit gain may need to be adjusted. To set the transmit gain, enter the gain amount in the Transmit Gain text box (-3dB to +6dB for non-T1 trunks; -15dB to +15dB for T1 trunks).

8.29 OK: When finished with this window, select the OK command button to return to the Station Programming window.
E. OUTGOING ACCESS - DAY OR NIGHT

8.30 Outgoing-access assignments can be made on a station-by-station basis for day and night modes. The program planning sheet for this window is located in Figure 5-4 on page 5-174.

8.31 INCLUDE or EXCLUDE: To determine the trunk groups to which the station will have outgoing access, place the desired trunk groups in the Include list box. To include a trunk group, locate it on the Exclude list and select it by pressing the SPACE BAR, it will automatically move to the Include list. To remove a trunk group from the list, locate it on the Include list and select it by pressing the SPACE BAR; it will automatically move to the Exclude list.

8.32 ALL or NONE: To allow outgoing access to all trunk groups or none, select the All or None command button.

8.33 OR: When the outgoing access list appears as desired, select the OK command button to return to the Station Programming window.
F. PROGRAMMABLE KEY PROGRAMMING WINDOW

8.34 The database can contain up to 20 maps of default values for the database-programmable feature keys. Determine the preferred key map for each station, and the default values of the keyset station programmable keys. The program planning sheet for this window is located in Figure 5-5 on page 5-177.

8.35 KEY MAP: To program the key map that will be used by this station, select the Key Map list box, and scroll to the desired map number (01–20). The highlighted line indicates the selected map.

8.36 STATION PROGRAMMABLE KEYS: (Keysets only) Determine the function of each of the station programmable keys for this station. Then, scroll through the list, selecting (by pressing the SPACE BAR) and assigning each key (1-8) using the window shown on the next page.

8.37 OR: When finished with station programmable key programming, select the OK command button to return to the Station Programming window.
8.38 Each station programmable key can be assigned one of the following Key Types. When the Key Type is highlighted, the bottom half of the screen changes as follows:

- **Call Key**: A list box appears (as shown above) which allows you to indicate the call key (1-10) that will be assigned (according to the chosen key map).

- **DSS/BLF Key**: The following text box and message appear. Enter the circuit or extension number of the station that will appear under the selected DSS/BLF key or press F2 to select the station from a list.

 Extension: [Enter]
 Press F2 for a list of available extensions.

- **Feature Key**: A list box (similar to the one shown above) appears which permits you to select the feature that will be accessed by this key.

- **Forward Key**: If this key will be used for the Call Forwarding feature (FWD key), highlight this line. Nothing appears in the lower half of the window.

- **Hunt Group Key**: A text box and message appear, like the one shown above for DSS/BLF keys. Enter the pilot number of the desired hunt group or press F2 to select the hunt group from a list.

- **IC/CO Speed Dial Key**: A list box (similar to the one shown above) appears which allows you to indicate the IC/CO speed dial key (1-10) that will be assigned.

- **Individual Trunk Key**: A list box (similar to the one shown above) appears which permits you to select the individual trunk that will be accessed by this key.

- **Intercom (IC) Key**: If this key will be used as the IC key, highlight this line. Nothing appears in the lower half of the window.

- Secondary Call Key: To create a secondary call key, highlight this line. A list box appears (similar to the one shown above) which allows you to indicate the secondary call key that will be assigned. The station associated with the key is assigned as described on page 5-37.

- **SPCL Key**: If this key will be used as the SPCL key, highlight this line. Nothing appears in the lower half of the window.

- **Trunk Group Key**: A list box (similar to the one shown above) appears which permits you to select the trunk group (1-47) that will be accessed by this key.

- **Undefined Key**: Use this selection if the key will not be used. Nothing appears in the lower half of the window.

- **User Programmable Key**: A list box (similar to the one shown above) appears which allows you to indicate the user-programmable key (1-9) that will be assigned.

8.39 **OK or CANCEL**: When finished with station programmable key programming, select the OK command button to return to the Station Programmable Key window. Or select the Cancel command button to exit without changing the key assignments.
Warning: Stations may be assigned to secondary call keys even though no secondary call keys exist in the keymap or as station programmable keys.

Secondary Call Keys

Station: □ Enable Ring Cadence

8.40 Secondary call keys are first created in a key map in the Key Assignments window of Station Programming (page 5-44) and the secondary station is assigned to that key map. Or, if the key map for the secondary station contains station programmable keys, those keys can be designated as secondary call keys using the Programmable Key window on page 5-35. The window shown above is used to determine which primary station is associated with each secondary call key and whether the secondary station will ring when receiving a call on that secondary call key. A program planning sheet for this window is located in Figure 5-4 on page 5-174. For a full explanation of secondary call keys, refer to FEATURES, page 4-44.

8.41 SECONDARY CALL KEY: To select a secondary call key for programming, highlight the desired secondary call key number in the list box. You can then assign the associated primary station and/or enable ring cadence. To delete a secondary call key entry, highlight the entry to be deleted and press the SPACE BAR.

8.42 STATION: While the desired secondary call key is highlighted, press TAB to select the Station text box. Type the extension number of the primary station that will be associated with this key. (If this is the first secondary call key associated with that station, it corresponds to call key #1 at the primary station; if this is the second key associated with that same station, it corresponds to call key #2 at the primary station; and so on.) Press RETURN. The primary station’s extension number, circuit number, and description are shown next to the secondary call key number in the list box.

8.43 ENABLE RING CADENCE: To determine whether the secondary station will ring when receiving a call on the secondary key, highlight the desired secondary call key in the list box and then press TAB until the Enable Ring Cadence check box is highlighted. If the station should not ring, leave the box blank (or remove the X by pressing the SPACE BAR). To program the station to ring when receiving a call on the secondary key, place an X in the box by pressing the SPACE BAR or simultaneously pressing the ALT and E keys.

8.44 OK: When all secondary keys have been programmed for this station, select the OK command button to return to the Station Programming window.
H. SPECIAL PURPOSE STATION WINDOW

8.45 The window shown above is an example of one that would appear for a keyset station. If a single-line station was being programmed, the options would be: Automated Attendant, FAX Station, House Phone, Message Center, and Voice Mail Station. Stations can be programmed to serve the following functions. Refer to FEATURES for more details on these special purpose stations. The program planning sheet for this window is located in Figure 54 on page 5-174.

- **Attendant (keysets only):** A keyset station can be designated as an attendant and assigned a list of stations that it will serve.

- **Automated attendant:** If using Extended software, the station can be designated as an automated attendant. The recall destination and digit translation table for the automated attendant can also be programmed.

- **FAX station (single-line stations only):** A single-line station can be designated as a FAX station if the station circuit will be connected to a facsimile machine. The FAX message station can also be assigned.

- **House phone:** The station can be designated as a house phone that automatically dials a predetermined number when the handset is lifted. The assigned day number is dialed when the system is in day mode and the assigned night number is dialed when the system is in night mode. The day/night house phone numbers can also be programmed using the house phone station speed-dial locations.

- **Message center:** A station can be designated as a message center and assigned a list of stations that it will serve.

- **Voice Mail Station (single-line stations only):** A single-line station can be designated as a voice mail station if the circuit is connected to a voice mail unit.
8.46 **STATION TYPE**: Select the Station Type list box, then select the desired option to change the Yes/No status.

- **ATTENDANT**: When Attendant status is “Yes,” a Stations Served command button appears to the right of the list box as shown above. Select this command button to assign the stations (if any) that will be served by this attendant. The following window appears.

<table>
<thead>
<tr>
<th>Attendant — Stations Served</th>
</tr>
</thead>
<tbody>
<tr>
<td>Include</td>
</tr>
<tr>
<td>100 01.01 Smith, John</td>
</tr>
<tr>
<td>101 01.02 “Station Undefined”</td>
</tr>
<tr>
<td>102 01.03 “Station Undefined”</td>
</tr>
<tr>
<td>103 01.04 “Station Undefined”</td>
</tr>
<tr>
<td>104 01.05 “Station Undefined”</td>
</tr>
</tbody>
</table>

| 108 02.01 “Station Undefined”|
| 109 02.02 “Station Undefined”|
| 110 02.03 “Station Undefined”|
| 111 02.04 “Station Undefined”|
| 112 02.05 “Station Undefined”|

| **Exclude** |

- **INCLUDE** or **EXCLUDE**: To include a station, locate it on the Exclude list and select it by pressing the SPACE BAR, it will automatically move to the Include list. To remove a station, select it in the Include list to move it to the Exclude list.

NOTE: A station can only be served by one attendant. Including a station in an attendant’s list removes it from its previous attendant’s list.

- **ALL** or **NONE**: To include all stations, select the All command button. To exclude all stations, select the None command button.

- **OK** or **CANCEL**: When the station lists appear as desired, select the OK command button to exit and record your changes or select the Cancel command button.

| **SORT** |

8.46 **STATION TYPE**: Select the Station Type list box, then select the desired option to change the Yes/No status.

- **ATTENDANT**: When Attendant status is “Yes,” a Stations Served command button appears to the right of the list box as shown above. Select this command button to assign the stations (if any) that will be served by this attendant. The following window appears.

<table>
<thead>
<tr>
<th>Attendant — Stations Served</th>
</tr>
</thead>
<tbody>
<tr>
<td>Include</td>
</tr>
<tr>
<td>100 01.01 Smith, John</td>
</tr>
<tr>
<td>101 01.02 “Station Undefined”</td>
</tr>
<tr>
<td>102 01.03 “Station Undefined”</td>
</tr>
<tr>
<td>103 01.04 “Station Undefined”</td>
</tr>
<tr>
<td>104 01.05 “Station Undefined”</td>
</tr>
</tbody>
</table>

| 108 02.01 “Station Undefined”|
| 109 02.02 “Station Undefined”|
| 110 02.03 “Station Undefined”|
| 111 02.04 “Station Undefined”|
| 112 02.05 “Station Undefined”|

| **Exclude** |

- **INCLUDE** or **EXCLUDE**: To include a station, locate it on the Exclude list and select it by pressing the SPACE BAR, it will automatically move to the Include list. To remove a station, select it in the Include list to move it to the Exclude list.

NOTE: A station can only be served by one attendant. Including a station in an attendant’s list removes it from its previous attendant’s list.

- **ALL** or **NONE**: To include all stations, select the All command button. To exclude all stations, select the None command button.

- **OK** or **CANCEL**: When the station lists appear as desired, select the OK command button to exit and record your changes or select the Cancel command button.

- **SORT**: To sort the stations and list them alphabetically by name, select the Sort command button. The window appears as follows. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.

<table>
<thead>
<tr>
<th>Station Sorting Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordering</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0 By Extension</td>
</tr>
<tr>
<td>0 By Circuit</td>
</tr>
<tr>
<td>0 By Name</td>
</tr>
</tbody>
</table>

- **Automated Attendant**: *(Extended software only)*

When the Automated Attendant status is “Yes,” a text box labeled “Recall Destination” appears as shown below. Select this text box and enter the extension or circuit number of the station that will receive this automated attendant station’s recalls. Also, text boxes for the Digit Translation feature are given. Select the text box for the desired digit and type the extension number that will be dialed when a caller enters that digit.

<table>
<thead>
<tr>
<th>Recall Destination:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digit Translation</td>
</tr>
<tr>
<td>1:</td>
</tr>
<tr>
<td>2:</td>
</tr>
<tr>
<td>3:</td>
</tr>
<tr>
<td>4:</td>
</tr>
<tr>
<td>5:</td>
</tr>
</tbody>
</table>
• **FAX Station:** (Single-line station only) When the FAX Station status is changed to “Yes,” a text box appears, as shown below, that is used for designating the station that will receive a message indication whenever a FAX is received. Select the Message Center box and type the circuit or extension number of the desired FAX message station.

- **Message Center:** []

• **House Phone:** When the House Phone status is “Yes,” two text boxes appear as shown below. Select the “Day Number” box to enter the extension or outside number (up to 16 digits) that will be dialed when the house phone is used during the day. Select the “Night Number” text box to enter the number (up to 16 digits) that will be accessed when the system is placed in night mode. (These numbers can also be programmed at the house phone station by entering the day number in the outside number location of station speed-dial location 1 and the night number in the outside number location of station speed-dial location 2.) When entering an outside number, enter a trunk group access code (default is 801-847) or the LCR code (default is 9) before the telephone number. In numbers that are routed through a trunk group, you can enter a short pause by entering an S, a long pause by entering an L, or a hookflash by entering an F.

 - **Day Number:** []
 - **Night Number:** []

 NOTE: If a station is programmed as both a house phone and an automated attendant, the numbers programmed in speed-dial locations 1 and 2 will also appear as digit translations 1 and 2. The house phone programming overrides the automated attendant programming for the first two speed-dial locations.

• **Message Center:** When Message Center status is “Yes,” a Stations Served command button appears to the right of the list box as shown on page 5-38. Select this command button to assign the stations that will be served by this station. A station list window appears as shown for attendant programming. To assign the stations to the message center, use the methods as described for attendant stations on the preceding page.

• **Voice Mail Station:** (Single-line station only) If the single-line station circuit will be connected to a voice mail unit, change the status to “Yes.” No additional information is requested in this window.

 NOTE: When a voice mail unit is connected to an IDC circuit, the off-premises extension option described on page 5-31 must be set to “no” to prevent DTMF digit recognition errors.

8.47 OK: When finished with special purpose station programming, select the OK command button to return to the Station Programming window.
System Forwarding

<table>
<thead>
<tr>
<th>Forwarding Paths</th>
<th>1. Sample: Secretary/VMail 110 209</th>
</tr>
</thead>
</table>

Forwarding Path 1
- **Forward Call Types**
 - Ring-In
 - IC Calls
 - DISA/AA
 - DID
 - E&M

- **Station Conditions**
 - Busy
 - No Answer
 - DND
 - Immediate

- **System Conditions**
 - Day Mode
 - Night Mode

- **Ring Principal** Once

Forwarding Path 2
- **Forward Call Types**
 - Ring-In
 - IC Calls
 - DISA/AA
 - DID
 - E&M

- **Station Conditions**
 - Busy
 - No Answer
 - DND
 - Immediate

- **System Conditions**
 - Day Mode
 - Night Mode

- **Ring Principal** Once

Forwarding Path 3
- **Forward Call Types**
 - Ring-In
 - IC Calls
 - DISA/AA
 - DID
 - E&M

- **Station Conditions**
 - Busy
 - No Answer
 - DND
 - Immediate

- **System Conditions**
 - Day Mode
 - Night Mode

- **Ring Principal** Once

1. **SYSTEM FORWARDING**

8.48 The forwarding path assignment is made on a station-by-station basis. Refer to FEATURES, page 4-79 for more details on system forwarding. The programming planning sheet for this window is located in Figure 5-4 on page 5-174.

8.49 **FORWARDING PATHS**: To select the forwarding path to be Programmed for the station, move the highlight bar in the list box to the desired path number. You now have two programming options for that Forwarding Path number:

- To assign, delete, or change a forwarding path for this path number, highlight the path number in the list box and press the SPACE BAR. A list box will appear that shows "No Forwarding Path" and a list of forwarding path numbers. To delete the path, highlight the desired path and press the SPACE BAR to select it. To change the path, highlight the desired path and press the SPACE BAR.

- If a forwarding path has not been assigned to that number, the Forwarding Path column (1, 2, or 3) in the lower half of the window is grey; assign a path as described above to change the column to black. When the column is black, programming can be performed as described in the following paragraphs.

8.50 **FORWARD CALL TYPES**: Determine the types of calls that will follow the forwarding path by highlighting each desired call type and pressing the SPACE BAR to place an X in the check box. In the sample shown above, calls through DID, DISA, or an automated attendant will be sent to the forwarding path. In the default state, all but Recalls and IC calls are selected.

8.51 **STATION CONDITIONS**: Determine which station conditions will cause the calls to follow the forwarding path by highlighting the desired station condition(s) and pressing the SPACEBAR to place an X in the desired check box(es). In the sample shown above, calls will be sent to the forwarding path immediately. In the default state, all but Immediate are selected. Note that if any condition other than Immediate is selected, Immediate will appear grey and cannot be selected.

8.52 **SYSTEM CONDITIONS**: Indicate whether calls will follow the forwarding path in day and/or night mode by highlighting the desired system condition(s) and pressing the SPACE BAR to place an X in the desired check box(es). In the sample, calls are forwarded during both day and night modes. In the default state, both day and night mode are selected.

8.53 **RING PRINCIPAL ONCE**: If the principal station is a keyset and the user wishes to hear a single ring signal each time a call enters the forwarding path, select the Ring Principal Once check box to place an X in it. In the default state, this is not selected.

8.54 **OK**: When all forwarding paths are programmed, select the OK command button to exit to the System Forwarding window.
J. TOLL RESTRICTION INFORMATION WINDOW

8.55 Determine the following toll restriction information for each station. Refer to FEATURES, page 4-27, for a full explanation of toll restrictions. The program planning sheet for this window is located in Figure 54 on page 5-174.

- Station class of service (SCOS): Determine which SCOS designations the station will have during day and night modes.

- Day/night mode toll restriction user group: Determine which user group the station is assigned to in day and night modes.

- Day/night mode LCR advance limit: When a call is placed using LCR, the most economical facility groups are accessed first. The LCR advance limit (0-22 or unlimited) sets the number of facility group levels the station will access. Determine the number of advances the station will be allowed during day and night modes.

8.56 SCOS RESTRICTIONS: This list box contains all of the possible SCOS restrictions. Determine the SCOS restrictions that should be assigned to the station for day and night modes. To program the day and/or night mode SCOS, use a combination of the Toggle command buttons, the Night Follow Day check box, and the list box as described below:

- To change only the day mode SCOS: Highlight the desired line in the list box and press the SPACE BAR. OR, highlight the desired line in the list box and then select the Toggle Day Mode command but-
ton. The day mode will toggle between Yes and No each time the SPACE BAR is pressed or the command button is selected.

- **To change only** the night mode SCOS: Highlight the desired line in the list box and then select the Toggle Night Mode command button. The night mode will **toggle** between Yes and No each time the command button is selected.

- **To match the day and night mode SCOS settings and change them simultaneously:** Place an X in the Night Follow Day check box by highlighting it and pressing the SPACE BAR (pressing SPACE BAR again will remove the X). Then highlight the desired line in the SCOS Restrictions list box and press the SPACE BAR. If the day and night modes were not the same, only the day mode status will change. If day and night modes match, each time you press the SPACE bar the status of both will toggle between Yes and No. (The **Toggle** Night Mode command button will not function, and selecting the Toggle Day Mode command button will change both day and night modes, when this option is enabled.)

8.57 **USER GROUP DAY/NIGHT:** Determine the toll restriction user group for the station being programmed. Then select the User Group list box and highlight the desired user group number. The black line indicates the selected user group.

8.58 **LCR ADVANCE LIMIT DAY/NIGHT:** To program how many levels of facility groups the station will be permitted to access when LCR is used, select the LCR Advance Limit list box and scroll to the desired number (Unlimited, No Advance, or 1-30 Advances). The black line indicates the selected advance limit.

8.59 **OK:** When finished, select the OK command button to return to the Station Programming window.
9. **STATION PROGRAMMING — BATCH PROGRAMMING OPTIONS**

9.1 When Station Programming is selected from the Applications Menu window, the menu expands to show the following options:

- Individual Station Information
- Key Assignments
- Ring Zone Programming
- Station Features

9.2 The Individual Station Information option is described beginning on page S-25. The remaining options apply to batch programming of key assignments, ring zones, and station features. They are described in the following pages.

A. **KEY ASSIGNMENTS (KEY)**

9.3 The window shown below is a sample from the IMX System. The Key Assignments window can be reached by selecting Key Assignments from the Station Programming menu or entering the KEY command. The program planning sheets are in Figure 5-5 on page 5-177. The window is used for performing the following programming tasks for keysets, DSS/BLF Units, and single-line sets:

- Naming the key maps.
- Determining the layout of the keys for the station instrument(s) that will use each key map. Note that when a key is designated on one type of keyset or single-line set, it will appear on the corresponding key on all stations in that key map.
- Assigning the station that will use each map.
- Determining the default values for the user-programmable keys and, if desired, updates selected stations.

9.4 There can be up to 20 keyset map groups and 8 DSS/BLF map groups in the system.
9.5 Refer to the proper page for the type of station instrument you wish to program:

- **Keyset** programming begins on the next page.
- **DSS/BLF** programming begins on page 5-47.

NOTE: For more information on the GX and GMX station instruments, see appendixes A and B in the back of this manual.

To Program Keyset Key Assignments

9.6 The **keyset** programming procedures are described in the following paragraphs.

9.7 **KEYSET DESC**: To enter a **keyset** map group name (or change a previously programmed name), highlight the desired line in the **Keyset Map Groups** list box and then select the **Keyset Descr** command button. The following window appears. Type the name in the text box and select the **OK** command button to accept the change. Select the **Cancel** command button to exit without saving any changes.

9.8 **KEYSET MAP GROUPS** and **KEYSET MAP VIEW TYPE**: To assign the common keys for the instruments in the map group perform the following steps. The default values of the **keysets** are represented in the illustrations at the end of **SPECIFICATIONS** and in the program planning sheets that begin on page 5-177.

1. Select the **Keyset Map View Type** box and scroll the highlight bar to the desired **keyset** type.
2. Select the **Keyset Map Group** box and choose the map group by highlighting it and pressing the SPACE BAR. A map of the selected **keyset** type appears.
3. Locate the key(s) to be programmed. The keys are grouped together according to location on the **keyset**.

To move from group to group, use the TAB key.

To move within the group, use the arrow keys.

9.9 **STATION LIST**: To assign the stations to a key map, highlight the desired map in the **Keyset Map Groups** list box and then select the **Station List** command button. A window with Include and Exclude station list boxes appears (as shown below) to allow you to select the stations that will use the **keyset** map that you have programmed.

- **INCLUDE** or **EXCLUDE**: To include a station in the **keyset** map group, locate that station on the Exclude list and select it by pressing the SPACE BAR; it will automatically move to the Include list. To remove a station from the **keyset** map group, you must exit and select another **keyset** map group and include the station there. This procedure ensures that a **keyset** is always assigned to a map group.

- **ALL**: To include all stations in the **keyset** map group, select the All command button. (The None button cannot be used in this window.)

- **OK** or **CANCEL**: When the station lists appear as desired, select the OK command button to accept the change. To exit from the window without saving changes, select the Cancel command button.
• **SORT:** To sort the stations and list them numerically by extension number or circuit number, or to list them alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.

```
<table>
<thead>
<tr>
<th>Ordering</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 By Extension</td>
<td>Ok</td>
</tr>
<tr>
<td>0 By Circuit</td>
<td>Cancel</td>
</tr>
<tr>
<td>0 By Name</td>
<td></td>
</tr>
</tbody>
</table>
```

9.10 **USERPRG KEYS:** (Command button shown in the window on page 544.) Select this command button to assign the default value of the user-programmable keys in each keyset map; the following window appears. When the desired key is selected, the procedure for assigning the key value is the same as described for keyset map keys on page 549, except that the options include only: Feature key, Trunk Group key, or Undefined key. The new values will be assigned to the keys when the user enters the Feature Key Default feature code (325) or the programmer selects the Default Set command button shown on page 544 and described in the next paragraph.

```
User Programmable Key Default Program

User Programmable Default Keys
User Programmable Key 1
User Programmable Key 2
User Programmable Key 3
User Programmable Key 4
User Programmable Key 5
User Programmable Key 6
User Programmable Key 7
User Programmable Key 8
User Programmable Key 9
```

9.11 **DEFAULT SETS:** (Command button shown in the window on page 544.) When user-programmable key values have been changed, you can allow the users to update their own stations by entering the Feature Key Default feature code (325), or you can use the Default Sets command button to update stations in selected key maps. When the Default Sets command button is selected, the following window appears. Select the desired map groups as described below. The stations in the selected maps will be updated with the new default values when you exit from the Key Assignments window and perform the database update.

```
Map Group Pick List
Map Group Update List

<table>
<thead>
<tr>
<th>SLU/TSLS Devices</th>
<th>Keyset Map Group 01</th>
<th>Keyset Map Group 02</th>
<th>Keyset Map Group 03</th>
<th>Keyset Map Group 04</th>
<th>Keyset Map Group 05</th>
<th>Keyset Map Group 06</th>
<th>Keyset Map Group 07</th>
</tr>
</thead>
</table>

Ok All None
```

- **MAP GROUPS PICK LIST and MAP GROUP UPDATE LIST:** Select the map groups to be updated in the pick list. They automatically move to the update list. The pick list includes all 20 keyset maps and the single-line map.
- **ALL or NONE:** To include all key map groups in the update list, select the All command button. To exclude all key map groups, select the None command button.
- **OK:** When all of the desired map groups are in the update list, select the OK command button. This list will remain as programmed until an update to the database is performed. The Key Assignments window returns.
To Program DSS/BLF Unit Key Assignments

- DSS Map Groups
 - 01 Default DSS Map 1
 - 02 Default DSS Map 2
 - 04
 - 05

- Digital DSS Map View
 - DSS 1&2 List
 - DSS 3&4 List
 - DSS Descr

9.12 The DSS/BLF programming portion of the Key Assignments window (from page 5-44) is shown above. The programming procedures are as follows.

9.13 DSS MAP GROUPS: While the DSS mapgroup is highlighted, all other programming pertains to that map group. When a map is selected from the DSS Map Groups list, an illustration of the DSS key layout appears. Select the key for which you wish to assign a new value, and refer to the Key Programming window on page 5-49.

9.14 DIGITAL DSS MAP VIEW Placing an X in this box changes the DSS Map display to the Digital DSS layout (6 rows, 10 columns) instead of the Analog DSS layout (10 rows, 6 columns). To place an X in the check box, highlight it and press the SPACE BAR (pressing SPACE BAR again will remove the X).

9.15 DSS DESCRIPT: Select the DSS Descr button to enter a name for the DSS map group. The following window appears. Type the name in the text box and select the OK button. To exit without saving any changes, select the Cancel button.

9.16 DSS LISTS: When the DSS 1&2 List or DSS 3&4 List command button is selected, the following list boxes appear which allow you to select the DSS stations that will use the map. The list box contains only those circuits that have been designated as DSS/BLF stations in Attendant Programming (see page 5-132).
To Program Single-Line Set Key Assignments

9.17 The single-line set programming portion of the Key Assignments window (from page 5-44) is shown below.

9.18 SINGLE-LINE MAP PROGRAMMING:
Select the SLI or ESLS key map from the Single-Line Programming list box. A map of the station type you have selected appears. When you select the key you wish to program from the map, the key programming window shown on the next page appears. The new values will be assigned to the keys when the user enters the Feature Key Default feature code (325) or the programmer selects the Default Set command button shown on page 5-44 and described in the paragraph 9.11.
Key Programming Screen

9.19 **KEY TYPE**. Key options are described below. Different options are available for **keysets**, single-line sets, and **DSS/BLF Units**.

- **Keysets**: The available options for **keyset** keys are as follows. All **keysets must** have a SPCL key, an IC key, and a SPKR key.
 - Call key for call access
 - **DSS/BLF** key for one-key dialing of an extension or pilot number and, if the key has a lamp, provides a busy lamp field status of the station or hunt group
 - Feature key for one-key dialing of feature codes (cannot be programmed by the user and is the same for all stations in the key map)
 - Forward key that can be programmed by the user to access any of the Call Forward feature codes
 - Hunt Group key for one-key dialing of a hunt group pilot number and, if the key has a lamp, shows the status of the hunt group
 - **IC/CO Speed-Dial (SD)** key for one-key dialing of one **extension number** and one outside number and, if the key has a lamp, shows the status of the extension programmed in the intercom portion of the key
 - Individual Trunk key for direct access to a single trunk
 - Intercom (IC) key for intercom channel access
 - Secondary Call key that is associated with a primary station (see page 5-37)
 - SPCL key for signaling the system before a feature code is entered
 - Station **Programmable** key for feature code dialing (individually programmed in the database for each **keyset**, but **cannot** be changed by user)
 - Trunk Group key for one-key dialing of a trunk group access code and, if the key has a lamp, it will light if all trunks in the group are busy
 - Undefined key for unused key
 - User Programmable key for feature code access (individually programmed for each **keyset and can be** changed by user)

- **Single-Line** Sets: The available options for single-line sets are as follows. All keys are programmed the same for all single-line sets in the map **and can be** changed by the users.
 - Feature key for feature code **access**
 - Trunk Group key for one-key dialing of a trunk group access code
 - Undefined key for unused key

Key Type

<table>
<thead>
<tr>
<th>Key Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Key</td>
</tr>
<tr>
<td>DSS/BLF Key</td>
</tr>
<tr>
<td>Feature Key</td>
</tr>
<tr>
<td>Forward Key</td>
</tr>
<tr>
<td>Hunt Group Key</td>
</tr>
<tr>
<td>IC/CO Speed-Dial Key</td>
</tr>
</tbody>
</table>

Pick List

- [] Ok
- [] Cancel

Page 5-49
DSS: For DSS/BLF keys, the choices are:

- **DSS/BLF** key for one-key dialing of an extension or pilot number and provides a busy lamp field status of the station.
- Feature key for one-key dialing of feature codes (cannot be programmed by the user and is the same for all DSS/BLF Units in the key map).
- System Speed Dial key for one-key dialing of system speed-dial numbers.
- Hunt Croup key for one-key dialing of a hunt group pilot number and shows the status of the hunt group.
- Undefined key

9.20 To determine the key assignment:

- If Call key is selected, the next available call key number (1-10) is assigned to that key.

- If DSS/BLF key is selected, the following text box and message appear. Enter the circuit or extension number of the station that will appear under the selected DSS/BLF key or press F2 to select the station from a list.

 Extension: []
 Press F2 for a list of available extensions.

- If a Feature, Individual Trunk, or Trunk Croup key is selected, a list box appears (as shown on the previous page) that gives the options for that key. Select the feature, trunk, or trunk group as desired.

- If a Hunt Croup key is selected, the following text box and message appear. Enter the pilot number of the desired hunt group or press F2 to select the desired hunt group from a list.

 Extension: []
 Press F2 for a list of available extensions.

- **Forward**, IC, or SPCL key is selected, the function is assigned to the key.

- If IC/CO Speed-Dial key is selected, the list box shows the available keys. Select the desired IC/CO speed-dial key number (0-9) to assign to that key.

- If Secondary Call key is selected, the next available secondary call key (1-16) is assigned to that key.

- If Station Programmable key is selected, the list box shows the available keys. Select the desired station programmable key number (1-9) to assign to that key.

- If System Speed Dial key is selected, the list box shows the available keys. Select the desired system speed dial location number (000-499) to assign to that key.

- If User Programmable key is selected, the list box shows the available keys. Select the desired user programmable key number (1-9) to assign to that key.

- If the key will not be used, highlight the Undefined key line in the list box.

NOTE: Be careful not to assign the same key in two different locations, such as the SPKR, IC, or feature key, unless the users have a specific application that requires it.

9.21 **OK or CANCEL:** When the key has been programmed as desired, select the OK command button. Or, to leave the key unchanged, select the Cancel command button.

9.22 **EXIT:** (Shown in the window on page 5-44.) When finished with all key map programming, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu window, select the Yes button. Or select the No command button to exit without saving any changes. To return to the window on page 5-44, select the Cancel button.
9.23 The power supply's ring generator can provide power to ring up to 20 AC-ringer equipped single-line stations simultaneously without any noticeable change in the ring tone. If there are more than 20 AC-ringer equipped single-line sets that would ring at the same time, they should be removed from the immediate zone and divided up among zones 1-3 so that no more than 20 sets ring at once. This window can be reached by selecting Ring Zone programming in the Station Programming menu or entering the ZONE command. The program planning sheet is in Figure 5-6 on page 5-188. For more information regarding the ring zones, refer to page 4-25 in FEATURES.

9.24 RING ZONES: Select the ring zone you wish to program. A list box appears as shown below that contains only single-line stations.

- INCLUDE or EXCLUDE: To include a station in the ring zone group, locate that station on the Exclude list and select it by pressing the SPACE BAR, it will automatically move to the Include list. To remove a station from the ring zone group, you must exit and select another ring zone group and include the station there. This procedure ensures that a station is always assigned to a ring zone group.

- ALL: To include all stations in the ring zone group, select the All command button. (The None command button cannot be used in this window.)

- OK or CANCEL: When the station lists appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button.

- SORT: To sort the stations and list them numerically by extension or circuit number, or to list them alphabetically by name, select the Sort command button. The window appears as shown on the next page. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box shows the stations in the selected order. To exit without changing the order, select the Cancel command button.

9.25 EXIT: When finished programming, select the Exit command button shown in the window on the previous page. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu window, select Yes. Or, select No to exit without saving any changes. To return to the Ring Zones programming window, select the Cancel button.
C. STATION FEATURES (SFEA)

9.26 The window shown above is used to assign a station feature to a group of stations. It is accessed by selecting Station Features from the Station Programming menu or entering the SFEA command. Station features included in this program are the same as most of those in the Miscellaneous Flags window of Individual Station programming as described on page 5-30. Determine which station will use each of the following features. Note that some are keyset only or single-line set only features. The program planning sheet is in Figure 5-7 on page 5-189.

- Allow Private Intercom Override
- Auto Attendant/VM/DISA Do-Not-Disturb Breakthrough
 - Auto Attendant/DISA Do-Not-Disturb Breakthrough
 - Automatic Answer On CO Calls (keysets only)
 - Automatic Answer On IC Calls (keysets only)
 - Barge Receive Enabled
 - Barge Transmit Enabled (keysets only)
 - Camp-on Tones Disabled
 - CO Reseize Enabled (keysets only)
 - Dial Pulse Enabled (single-line stations only)
 - DID Camp-on Tones Enabled
 - Do-Not-Disturb Allowed
 - Do-Not-Disturb Override Allowed (keysets only)
 - MMF Feedback Enabled
 - E&M Camp-on Tones Enabled
 - Handsfree Enabled (keysets only)
 - Headset Enabled
 - LCR Facility Group Camp-on Allowed
 - Message Lamp Enabled (single-line stations only)
 - Music Channel One Enabled
 - Off-Hook Voice Announce Receive Enabled (keysets only)
 - Off-Hook Voice Announce Transmit Enabled
 - Page Remove Enabled (keysets only)
 - Redial Mode: Last Number Dialed (keysets only)
 - Ring Intercom Always Enabled
 - Station Exchange Enabled
 - Transparent LCR Enabled

9.27 STATION FEATURES: Highlight and select the station feature you wish to assign to a group of stations. A station list box appears as shown on the next page.
• INCLUDE or EXCLUDE: To add to the list of stations with that feature, locate the desired station on the Exclude list and select it by pressing the SPACE BAR, the station will automatically move to the Include list. To remove a station from the list, select the station in the Include list to move it to the Exclude list.

• ALL or NONE: To include all stations in the list of stations with that feature, select the All command button. To exclude all stations, select the None command button.

• OK or CANCEL: When the station lists appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button. The station features window (see previous page) reappears after either of these command buttons is selected.

• SORT: To sort the stations and list them numerically by extension number or circuit number, or to list them alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.

9.28 EXIT: When finished programming, select the Exit command button (shown on the preceding page). A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu window, select Yes. Or, select No to exit without saving any changes. To return to the Station Features programming window, select the Cancel button.
10. SYSTEM-WIDE FEATURES

10.1 When System-wide Features is selected from the Applications Menu window, the menu expands to show the following options:

- System-Wide Features...
- Account Code Information
- DND and Reminder Messages
- Extensions, Usernames, and Feature Codes
- Hunt Groups
- Miscellaneous System-Wide Information
- Page Zones
- Relay Programming
- System Forwarding
- System Speed Dial
- System Timers
- Tenants and Departments

10.2 Each of these programs is explained in detail on the following pages.

A. ACCOUNT CODE INFORMATION (ACCT)

10.3 There can be up to 128 standard account codes (numbered 000-127) and up to 256 forced account codes (numbered 000-255). Up to 256 stations can have class-of-service account codes. Account code length can be 4 to 8 digits; all codes have the same length. The program planning sheet is in Figure 5-8 on page 5-190.

10.4 To program account codes, select Account Code Information from the System-Wide Features menu or enter the ACCT command. The programming window appears as shown above.

10.5 PROGRAM LENGTH: To change the length of all account codes, select the Program Length command button. The following window appears. Enter the desired account code length (4-8) and select the OK command button. Note the warning that states that changing the account code length will erase all existing account codes.
10.6 STANDARD and FORCED LIST BOXES:
The Standard and Forced list boxes are used for assigning the account codes. When the desired account code is selected, the following window appears. Enter the account code in the text box and select the OK command button.

```
ACCOUNT CODE XX

Account Code:   

Ok
```

10.7 If you attempt to add an account code that has already been assigned, the following error message appears. The system has selected a unique number. If you wish to use that number, select the Yes command button. If you wish to enter a different number, select the No command button to return to the Account Code window shown above.

```
*** Error! ***

Every account code must be unique. "XXXX" is unique! Would you like to use this number?

Yes  No
```

10.8 If the account code is not the programmed length, an error message will display that reminds you to program the correct number of digits in the account code. If this message appears, press the RETURN key and then re-enter the correct account code.

10.9 STATION LISTS: To determine which stations will use forced, standard or neither type of account codes, select the desired command button as follows:

- FORCED COMMAND BUTTON: To assign forced account codes to multiple stations, select the Forced command button. A list of stations appears as shown below. Select the desired stations as described in paragraph 10.10.

- STANDARD COMMAND BUTTON: To assign a standard account code to multiple stations, highlight the desired account code in the Standard list box. Then select the Standard command button. The stations that are selected for the station list will be assigned only to the highlighted account code. To program other account codes, repeat this procedure.

- LCR TOLL COMMAND BUTTON: To assign LCR toll account codes to multiple stations, select the LCR Toll command button. A list of stations appears as shown on this page. Select the desired stations as described in paragraph 10.10.

- VALIDATED COMMAND BUTTON: To program the system to validate the account codes of multiple stations, select the Validated command button. A list of stations appears as shown on this page. Select the desired stations as described in paragraph 10.10.

- NONE COMMAND BUTTON: To determine the stations that will not have account codes, select the None command button and use the list of stations as described in paragraph 10.10.

NOTE: Each station can be assigned one of account code type (forced, standard, or LCR toll account code) in addition to being enabled for class-of-service account codes. If you select a station for standard, forced, or LCR toll account code that had a previously programmed account code, the previous account code is replaced by the new code (the previous code is deleted if the station is selected for "None").

10.10 Assign stations to the account code batch lists using the list box as follows.

```
Batch Account Code

Include

Station undefined
Station undefined
Station undefined

Exclude

Station undefined
Station undefined
Station undefined
Station undefined
```

- INCLUDE or EXCLUDE: To include a station in the selected list, locate that station on the Exclude list and select it by pressing the SPACE BAR, it will automatically move to the Include list. To remove a station from the list, select the station in the Include list to move it to the Exclude list.

Page 5-55
ALL or NONE: To include all stations in the list, select the All command button. To exclude all stations, select the None command button.

OK or CANCEL: When the station lists appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button.

SORT: To sort the stations and list them numerically by extension number or circuit number, or to list them alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.

CLASS-OF-SERVICE ACCOUNT CODE: The list box contains a list of all stations. To assign a class-of-service account code to a station, locate that station in the list and press theSPACEBAR. The following window appears. Enter the account code (000-255) in the text box and select the Ok command button. (If the account code is entered incorrectly, the error messages described on the previous page may appear.)

CLASS-OF-SERVICE ACCOUNT CODE for Sta XX

&count Code:

OK

OK: When class-of-service account codes have been assigned as desired, select the Ok command button to return to the Account Code Information Programming window.

EXIT: When finished programming, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu window, select Yes. Or, select No to exit without saving any changes. To return to the Account Code Information programming window, select the Cancel button.
B. DND AND REMINDER MESSAGES (MESS)

10.13 You can reprogram any or all of the 20 reminder messages and/or do-not-disturb messages 02-20 with a new message of up to 16 characters. (Do-not-disturb 01 message cannot be changed). The program planning sheet is in Figure 5-9 on page 5-195. The default messages are as follows:

REMINDER MESSAGES:
- 01 Meeting
- 02 Staff Meeting
- 03 Sales Meeting
- 04 Cancel Meeting
- 05 Appointment
- 06 Place Call
- 07 Call Client
- 08 Call Customer
- 09 Call Home
- 10 Call Corporate
- 11 Call Engineering
- 12 Call Marketing
- 13 Call Accounting
- 14 Cancel DND
- 15 Cancel Call FWD
- 16 Take Medication
- 17 Make Reservations
- 18 Review Schedule
- 19 Lunch
- 20 Reminder

DO-NOT-DISTURB MESSAGES:
- 01 Do-Not-Disturb
- 02 In Meeting Until
- 03 In Meeting
- 04 On Vacation 'Til
- 05 On Vacation
- 06 Call Me At
- 07 Call Me After
- 08 Away At
- 09 On Break
- 10 Out Of Town 'Til
- 11 Out Of Office
- 12 Out Until
- 13 With a Client
- 14 With a Guest
- 15 With a Patient
- 16 Unavailable
- 17 In Conference
- 18 Away From Desk
- 19 Gone Home
- 20 Out To Lunch

10.14 When you select DND and Reminder Messages from the System-wide Features menu or enter the MESS command, the programming window appears as shown above.

10.15 REMINDER MESSAGES or DND MESSAGES: Scroll through the desired list box until the message to be re-programmed is highlighted. When the message is selected, a smaller window appears in the middle of the screen as shown below. Type any 16-character message in the text box and select the OK command button. Or select the Cancel command button to leave the message unchanged.

![Message XX](image)

10.16 EXIT: When finished programming, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu window, select Yes. Or, select No to exit without saving any changes. To return to the DND and Reminder Messages programming window, select the Cancel button.
C. EXTENSIONS, USERNAMES, AND FEATURE CODES (EXT)

10.17 To reprogram station extension numbers, hunt group pilot numbers, trunk group access codes, or feature codes, select Extensions, Usernames, and Feature Codes from the System-wide Features menu or enter the EXT command. The programming window appears as shown above.

10.18 Make a list of feature codes, extension numbers, hunt group pilot numbers, and trunk group access codes, as well as names and descriptions for the users, hunt groups, modems, and trunks. The program planning sheet in Figure 5-10 on page 5-197 lists the default values of all the extensions, hunt group numbers, trunk group access codes, feature codes, and modems.

10.19 To “unequip” a station or trunk group, remove the extension number/access code using the Extensions, Usernames, and Feature Codes window. Without an access code, the trunk group or station cannot be accessed by the station users by entering a feature code. However, the trunk group can still be assigned to an individual trunk group key.

10.20 EXTENSION PROGRAMMING TYPE:
This list box allows you to choose one of the following programming areas. When you select the desired option, the bottom list box shows the available stations, hunt groups, trunk groups, or feature codes. Highlighting one of the items in the lower list box, causes the current value of that item to appear below the list box. (For example, if the first station is highlighted, the circuit number, description, and extension number appear.) When the item is selected, the following window appears.

- Stations: Enter the extension number, user’s full name (description), and abbreviated user name. If you wish to see a list of available extension numbers, press F2. When finished, select the OK command button. Note that “dual” keysets circuits will not have a default extension number assigned to the “B” station. (For example, 1.1A would be extension 100, but 1.1B would not have a default extension number.) Dual keysets circuits are programmed in the System Configuration window shown on page 5-170. If an Attendant Computer Console will be used on the system, enter the user name with the last name first, followed by a comma and the first name (e.g., Smith, John). This will allow the Attendant Computer Console directory to sort the names alphabetically by last name.
Hunt Groups: Enter the pilot number (extension), the hunt group name (description), and abbreviated user name. If you wish to see a list of available numbers, press F2. When finished, select the OK command button.

Trunk Groups: Enter the access code (extension), the description of the trunk group, and an abbreviated trunk name (user name). If you wish to see a list of available codes, press F2. When finished, select the OK command button.

Features: Enter the feature code (extension). If you wish to see a list of available codes, press F2. When finished, select the OK command button.

Modems: Enter the desired extension number, description, and user name. If you wish to see a list of available extension numbers, press F2. When finished, select the OK command button.

10.21 The feature codes and extension numbers are preset to carefully selected default values. Changing the codes or numbers can cause existing assignments to be erased. For example, if 300, 305, and 306 are assigned as feature codes and you attempt to assign 30 as another feature code, 30 would not be accepted, because 3 and 0 make up part of existing codes. Instead, a warning will appear, as shown below. You can then choose to make the change and erase the conflicting codes (override), or cancel the change and select another code.

WARNING The requested extension conflicts with the following extensions:

<table>
<thead>
<tr>
<th>Extension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 FE</td>
<td>Date and Time Display</td>
</tr>
<tr>
<td>305 FE</td>
<td>Reminder Message</td>
</tr>
<tr>
<td>306 FE</td>
<td>Cancel Reminder</td>
</tr>
<tr>
<td>307 FE</td>
<td>System Directory - In</td>
</tr>
<tr>
<td>308 FE</td>
<td>System Directory - Out</td>
</tr>
</tbody>
</table>

10.22 The abbreviation FE in the example above indicates that the number is a feature code. Additional abbreviations that may appear include ST for stations, HG for hunt groups, MD for modems, and TG for trunk groups.

10.23 SET EXTENSIONS: To batch load extension numbers, hunt group pilot numbers, or trunk group numbers, highlight the desired line in the Extension Programming Type list box and then select the Set Ext command button. The following window appears.

BEGINNING EXTENSION: Begin programming by entering the Beginning Extension number in the text box at the bottom of the window. This will be the extension number assigned to the first station, hunt group, or trunk group in the Extension list. (If you wish to select from a list of available extension numbers, press F2. When the list box appears, scroll to the desired number and select the OK command button. Or, select the Cancel command button to return to the Set Extensions window.)

EXTENSION LIST/PICK LIST: The Pick List box contains a list of stations, hunt groups, or trunk groups that do not have assigned numbers. Scroll through the Pick List box to find the entries for which you wish to assign numbers. Locate and select the entries (by pressing the SPACE BAR) in the desired order to move them to the Extension List box. The first entry will be assigned the Beginning Extension number shown in the text box. All others will be assigned numbers in consecutive order as they appear in the Extension list box. For example, if the beginning extension is 100, and three stations are selected, the first station will be extension 100, the second will be 101, and the third will be 102.

CLEAR LIST: To clear the Extension List, select the Clear List command button.

OK/CANCEL: To leave the window without saving any changes, select the Cancel command button. When all programming appears as desired, select the OK command button.
10.24 **CLEAR EXTENSION**: To erase several extension numbers, hunt group pilot numbers, or trunk group numbers, highlight the desired line in the Extension Programming **Type** list box and then select the Clear Ext command button. The following window appears.

- **EXTENSION LIST/PICK LIST**: The Pick List box contains a list of stations, hunt groups, or trunk groups that have assigned numbers. Scroll through the Pick List box to find the entries for which you wish to erase numbers. Scroll to the entries and select them (by pressing the SPACE BAR) to move them to the Extension List box.

- **ALL or NONE**: To include all entries in the Extension List box, select the All command button. To clear the Extension List, select the None command button.

- **SORT**: To sort the entries and list them numerically by extension number or circuit number, or to list them alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list returns, the list box will show the entries in the selected order. To exit without changing the sorting method, select the Cancel command button.

- **OK/CANCEL**: To leave the window without saving any changes, select the Cancel command button. When all programming appears as desired, select the OK command button.

10.25 **EXIT**: When finished programming, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu window, select Yes. Or, select No to exit without saving any changes. To return to the Extensions, Usernames, and Feature Codes programming window, select the Cancel button.
D. HUNT GROUPS (HUNT)

10.26 Several items must be determined before programming hunt groups, as follows. Refer to Figure 5-11, page 5-202, for a program planning sheet that lists hunt groups. Refer to page 4-16 in FEATURES for more details.

- **Stations:** Prepare a list of up to 20 hunt groups and the stations to be included in them (each hunt group can have as many stations as desired, providing the system-wide total does not exceed 480 stations assigned to hunt groups). If desired, a station can appear more than once in a hunt group list. A station can also be in more than one hunt group.

- **Hunt group descriptions and names:** Descriptions can contain up to 20 characters and hunt group names can contain up to seven characters.

- **Ring order:** Determine whether the calls are sent to the stations in all-ring, linear, or distributed order. AR-ring order means that the call rings at all stations in the hunt group simultaneously. Linear order means that the call is sent to the first station on the list and moves down the list until it reaches an available station. With distributed order, the call is sent to the station that appears on the list after the last station to receive a call (even if the call was not answered).

- **Voice mail hunt group:** Indicate if the hunt group contains all single-line circuits that have been designated as voice mail ports.

- **Voice computer group/Automated attendant hunt group:** Indicate if the hunt group contains only single-line circuits connected to a voice mail computer. Voice computer groups can also be programmed as automated attendant hunt groups.

- **Voice Computer Hunt Group:** The single-line station circuits in this group are connected to voice mail computers.

- **Voice Computer Automated Attendant Hunt Group:** The single-line circuits in this group are connected to a voice computer that uses them as automated attendants.

- **Overflow and announcement stations:** A hunt group can have an overflow station and/or up to three announcement stations. If a call rings in directly to the hunt group and is not answered before the hunt group Announcement timer expires, the call automatically transfers to the announcement station(s). If a call is transferred to the hunt group and is not answered before the hunt group Overflow timer expires, the call automatically transfers to the overflow station. Do not include these stations in the hunt group distribution list.

- **Overflow and announcement stations can be user-operated stations, or they can be playback devices that answer calls and automatically return the calls to the hunt group.**

- **If an overflow station is a playback device, you can determine the number of times calls will be permitted to return to the overflow station (overflow count). The overflow count can be 1-127, unlimited (-1), or 0 (to bypass the overflow station).**

- **Hunt group supervisor:** Each group can have one display keyset assigned as a hunt group supervisor. The assigned supervisor has the option of using the Station Monitor feature code to monitor an active outside call of any station in the hunt group.

10.27 Select Hunt Groups in the System-Wide Features menu or enter the HUNT command to program up to 20 hunt groups. The window appears as shown on the next page.
10.28 HUNT GROUPS: Begin programming by highlighting the desired hunt group number in the Hunt Groups list box. If you select the highlighted line, a smaller window appears as shown on the next page to allow you enter extended data. If you do not select it, but leave it highlighted, the other boxes in this window can be used to program other aspects of that hunt group as described below.

10.29 HUNT GROUP STATION LIST/PICK LIST: These list boxes are used for placing stations in the hunt group list or removing stations from the list. The stations should be programmed in the order in which calls will circulate through the hunt group. To place a station in the list, scroll to the desired position in the Hunt Group Station List (the location of the highlight bar indicates where the station will be included in the list). Then scroll through the Pick List box to locate the station to be added and select it. It moves to the Hunt Group Station List box above the station that is highlighted in the station list box. Continue locating and selecting stations in the desired order until the list is complete. To remove a station from the list, highlight and select it in the Station List.

1030 CLEAR: If you wish to clear the Hunt Group Station List, select the Clear command button.

1031 VOICE MAIL HUNT GROUP/VOICE COMPUTER GROW: To designate the hunt group as a voice mail hunt group or voice computer hunt group, highlight the desired check box and press SPACE BAR to place an X in the box. The following warning appears. If you do not want to change the hunt group, select the Cancel command button. To make the hunt group a voice mail or computer hunt group, select the OK command button. You can also assign dial rules and a recall destination as described on the next page.
10.32 If you later remove the voice mail designation from the hunt group, the following window appears:

![Voice Mail Hunt Group](Image)

1033 AUTOMATED ATTENDANT HUNT GROUP: If the hunt group is flagged as a voice computer group, the Automated Attendant Hunt Group check box is available. Check this box if the stations in the voice computer hunt group will serve as automated attendants.

10.34 DIAL RULES: When you select this command button, the following window appears. Enter any combination of specific digits and/or preset dial rules, as described below. Separate the numbers with commas (for example: 1,3,12). The Reference list box contains a list of all available dial rules. (For complete definitions of the dial rules, refer to page 4-21 in FEATURES.) When finished, select the OK command button. Or, select the Cancel command button to exit without changing the dial rules.

- **Specific** digits: If the system must dial specific digits, such as a control or command code, enter those digits surrounded by quotes (for example: "*1").

- **Preset dial rules**: Enter one or more of the preset dial rule numbers, shown in the chart below, without using quotes (for example: 1,2,3).

![Hunt Group XX Dial Rules](Image)

Dial Rules

<table>
<thead>
<tr>
<th>Reference</th>
<th>Ok</th>
<th>Cancel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Originating Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Controlling Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Destination Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Original Destination Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Other IC/Controlling IC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Hunt Group Number</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) Associated Tenant Group Number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIAL RULE</th>
<th>IC-TO-VOICE COMPUTER CALL</th>
<th>CO-TO-VOICE COMPUTER CALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Originating station’s intercom number</td>
<td>No code sent</td>
</tr>
<tr>
<td>2</td>
<td>Originating station’s intercom number</td>
<td>No code sent</td>
</tr>
<tr>
<td>3</td>
<td>Intercom number of last non-voice mail station to forward the call if a chain of stations is forwarded to voice mail or voice mail transfer mailbox number</td>
<td>Intercom number of last non-voice mail station to forward the call if a chain of stations is forwarded to voice mail or voice mail transfer mailbox number</td>
</tr>
<tr>
<td>4</td>
<td>Intercom number of the first non-voice mail station in a chain of stations that is forwarded to voice mail</td>
<td>Intercom number of the first non-voice mail station in a chain of stations that is forwarded to voice mail</td>
</tr>
<tr>
<td>5</td>
<td>Originating station’s intercom number</td>
<td>No code sent</td>
</tr>
<tr>
<td>6</td>
<td>Receiving hunt groups or voice mail group number</td>
<td>Receiving hunt group or voice mail group number</td>
</tr>
<tr>
<td>7</td>
<td>Originating station’s tenant group number</td>
<td>No code sent</td>
</tr>
<tr>
<td>8</td>
<td>Originating station’s department number</td>
<td>No code sent</td>
</tr>
<tr>
<td>9</td>
<td>If system is in day mode = 1; If in night mode = 0</td>
<td>If system is in day mode = 1; If in night mode = 0</td>
</tr>
<tr>
<td>10</td>
<td>No code sent</td>
<td>Account code, if entered</td>
</tr>
<tr>
<td>11</td>
<td>Intercom call: code = 1</td>
<td>Outside call: code = 2</td>
</tr>
<tr>
<td>12</td>
<td>No code sent</td>
<td>Number of calls waiting ahead of this call</td>
</tr>
<tr>
<td>13</td>
<td>No code sent</td>
<td>The number of times this call has been sent through the hunt group</td>
</tr>
<tr>
<td>14</td>
<td>Intercom number of the station that received a recal-ling transferred (even if the station is forwarded)</td>
<td>No code sent</td>
</tr>
</tbody>
</table>
10.35 **RECALL DESTINATION:** When you select this command button, the following window appears. Enter the extension or circuit number of the station that will serve as the recall destination for this voice computer hunt group. When finished, select the OK command button. Or, select the Cancel command button to **exit** without changing the recall destination.

<table>
<thead>
<tr>
<th>Recall Destination:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ok</td>
<td>Cancel</td>
</tr>
</tbody>
</table>

Hunt Group Extended Data Window

10.40 When you select a hunt group **from** the Hunt Croup list box shown on the previous page, the following window appears. **Hunt Name:** Select the Hunt Name text box and enter the name for the hunt group (up to seven characters) that will appear on **keyset** displays for calls associated with the hunt group.

10.41 **DESCRIPTION:** To enter a descriptive name for the hunt group (such as Field Service, or Order Processing), select the Description text box and type the desired name with up to 20 characters.

10.43 **SUPERVISOR:** A station can be assigned as the hunt group supervisor for monitoring purposes. To assign a supervisor to the hunt group, select the Supervisor text box and type the supervisor station’s circuit or extension number.

10.45 **OK:** When finished, select the OK command button to return to the Hunt Croups programming window. If you have changed the search type to or **from** “all ring” and there is currently a call ringing or camped on at the hunt group, a warning window will appear. If you select the OK button, those calls will be disconnected. If you select Cancel, the Extended Data screen reappears to allow you to change the type back or try again.
Timer Programming Window

10.46 Timers: When you select the Timer command button shown on page 5-62, the window above is displayed. To change the timer values, select the desired text boxes and type the new value. The timer functions are as follows:

- **No Answer Advance Timer:** This is the length of time a call can remain unanswered at a hunt group station before moving to the next station in the hunt group.

- **Announcement Timer:** This determines how long a direct ring-in call will remain unanswered before being automatically transferred to the hunt group’s announcement station(s).

- **Overflow Timer:** This determines how long a transferred CO call will circulate through the hunt group (unanswered) before being automatically transferred to the hunt group’s overflow station.

10.47 Default: To set all three timers to default values, select the Default command button.

10.48 OK: When the timers have been programmed as desired, select the OK command button.

Announcement Station Data Window

10.49 Announcement Stations: When you select the Announcement command button shown on page 5-62, the window below is displayed. To assign up to three announcement stations for the hunt group, select the text box(es) and enter the desired intercom number or pilot number. (If a hunt group is assigned as the announcement station, there can be only one announcement station. If individual stations circuits are assigned, there can be up to three announcement stations.) Announcement stations receive calls in numerical order. Therefore, enter the extension numbers in the order you wish to have the announcement stations accessed.

10.50 Announcement Types: To determine whether the announcement stations are user stations (stations or a hunt group) or playback devices, select the desired option button.

10.51 OR: When programming is complete, select the OK command button to return to the Hunt Group programming window.
Overflow Station Data Window

10.52 OVERFLOW DEVICE: Select the appropriate option button to determine whether the overflow station will be a station or a hunt group.

10.53 OVERFLOW STATION: Select the Overflow Station text box and enter the circuit or extension number of the desired overflow station or the pilot number of the desired hunt group.

10.54 OVERFLOW TYPE: If a station will be used as the overflow device, determine whether it will be equipped with a station instrument or a playback device by selecting the appropriate option button.

10.55 OVERFLOW COUNT: If a playback device is used, determine if the call will be sent to the overflow station or immediately recall the primary attendant or the transferring station. If it will circulate, determine how many times the call will be sent to the overflow station or if the count will be “unlimited.” Do one of the following:

- Select the Overflow Count text box and enter the count number (1-127).
- If the count is unlimited, select the Unlimited (-1) command button.
- If calls are to recall to the primary attendant or the transferring station immediately when the Overflow timer expires (rather than being sent to an overflow station), select the Immediate (0) button.

10.56 OK: When programming is complete, select the OK command button to return to the Hunt Group programming window.
E. MISCELLANEOUS SYSTEM-WIDE INFORMATION (MISC)

10.57 Select Miscellaneous System-wide Information from the System-Wide Features menu or enter the MISC command to display the window shown above. (If desired, use the program planning sheet in Figure 5-12 on page 5-203.)

10.58 PRIMARY ATTENDANT STATION: Select the Primary Attendant Station text box and enter the circuit or extension number of the primary attendant for the system.

10.59 CALL TERMINATION DIGITS: (This can be programmed only if Extended DTMF Feedback Digits are enabled) Enter the desired call termination digits. This is the code used by a voice computer to indicate that the caller has hung up. You can use any combination of up to eight # and * digits. Default is #*#*#*#

10.60 SYSTEM FLAGS: To program a feature system-wide, scroll to the desired feature and select it. The status will change each time the SPACE BAR is pressed. The system flags include the following:

- **Account Code Class-Of-Service:** If this option is enabled, account codes can be programmed to be associated with station class of service (SCOS). This permits a user to place an outgoing call at any station using the SCOS that is programmed for the user's own station. When the user enters an account code, the system checks the SCOS programming for the station that is associated with that account code. When the call is completed, the station’s normal SCOS goes back into effect. In the default state, this is disabled.

 - **Allow Cross-Tenant Traffic:** Determine whether stations that are in different tenant groups will be allowed to place intercom calls, forward intercom calls, or transfer intercom or outside calls to another. If disallowed, intercom calls placed to a hunt group are routed only to the hunt group stations that are in the same tenant group as the caller. Outside calls that are transferred to the hunt group are routed to all stations in the group. Recalls are not blocked, even if the attendant is not in the hunt group’s tenant group. In the default state, this is set to yes (allowed).

 - **Allow Cross-Tenant Voice Mail/Computer Traffic:** Determine whether voice mail units and voice mail computers will be allowed to place intercom calls, forward intercom calls, or transfer intercom or outside calls to stations that are in different tenant groups. If disallowed, intercom calls placed to a hunt group are routed only to the hunt group stations that are in the same tenant group as the voice mail/computer. Outside calls that are transferred to the hunt group are routed to all stations in the group. Recalls are not blocked, even if the attendant is not in the hunt group’s tenant group. In the default state, this is set to yes (allowed).
• Audible Message Indication For SL Sets: If enabled, single-line sets will receive message waiting indications (six tones before dial tone) when a message is waiting. In the default state, this is enabled.

• Auto Attendant — Dial During Recording: To allow callers to dial extension numbers while the automated attendant message is playing, enable this option by setting it to “yes.” In the default state, this is set to disabled.

• Auto Attendant — Enable Ringback Tone: If ringback tones are enabled, callers will hear ringing instead of music on hold when being transferred to a station through the automated attendant (or an E&M circuit or DISA). In the default state, this is set to disabled.

• Barge: This system option can be enabled so that stations may be given barge permission and/or receive or block barges. In the default state, barge is disabled.

• Barge Confirmation Tone: If enabled, users will hear a tone when another user enters a call through the Barge or Privacy Release feature. In the default state, this is enabled.

• Broadcast Alarms To All Attendants: Determine whether system alarms display on all attendant stations (set to “yes”). If not, they will display only at the primary attendant’s station (set to “no”). In the default state, this is set to yes.

• Broadcast Station Off-Hook Alarms: Determine whether station off-hook alarms display on any attendant stations. If not, they will only be sent to the designated serial port. In the default state, this is set to no.

• Drop Incomplete Outgoing Calls: Occasionally, a station user will seize a trunk at the exact time a call is coming in on that trunk and the user will be connected to the incoming call instead of dial tone. (This is called “glare.”) If the Drop Incomplete Outgoing Calls option is enabled (set to yes), the resulting call on that trunk will be dropped, just as it would be if the station user did not dial a valid telephone number. If the option is disabled (set to no), the call will remain connected regardless of the number of digits dialed, if any. In the default state, this is set to yes.

• DSS Feature Key Lamp Status: If the system does not have any DSS keys programmed as feature keys, this flag can be set to “disabled” to prevent the system from processing the information that would be required to support the keys and speed up system performance. In the default state, this flag is set to enabled.

• Extended DTMF Feedback Digits: If DTMF feedback tones are enabled in station programming (see page 5—31), the “extended” set of feedback tones can also be enabled. These extended tones include codes for indicating when a station is forwarded to another station and when the calling party hangs up. In the default state, extended feedback digits are set to no (disabled).

• External Paging Music Channel: This option selects the music-on-hold channel (one or two) that will be used by external paging speakers for background music. In the default state, this is set to channel one.

• Handsfree Announce System Forward Transfer: When a station user transfers a call to the principal station of a forwarding path, this option determines what the caller will hear. If enabled (yes), the caller will place a handsfree call to the principal station and can announce the transfer (the call does not enter the forwarding path). If the option is disabled, the transferring station user will hear ringing and can announce the call only if it is answered by the principal station or one of the forwarding points. This defaults to no.

• Hot Dial Pad Keys: If this option is enabled, keysets users can dial trunk access codes and feature codes without lifting the handset or pressing the SPKR or SPCL key. This programmable feature is called “hot dial pad” to indicate that the dial pad keys are always activated. In the default state, this is set to yes (enabled).

• Hunt Group Transferred Call Type: When the database is in the default state, all unanswered direct ring-in outside calls to the hunt group go first to the announcement station and then to the overflow station. Unanswered calls that were transferred to the hunt group, by default, go only to the overflow station. However, if this system option is set for “Ann/Overflow,” the system will send unanswered hunt group calls first to the announcement station and then to the overflow station. This defaults to overflow.

• Keyset Identification Display: Determine whether the keyset identification display (user name and extension number) should appear on display keysets always (enabled) or only on keysets power up (disabled). This defaults to enabled.
Music-On-Hold For IC Calls: This option determines whether a user hears music on hold when placed on hold by another station or camps on to a resource. In the default state, this is enabled.

OIIVA DSS Immediate Transmit: Determine if DSS-equipped keysets will have immediate off-hook voice announce capability enabled. In the default state, this is disabled.

OHVA System-Wide: Determine whether the Off-Hook Voice Announce (OHVA) feature will be enabled system-wide. In the default state, this is enabled.

Privacy Release: Determine whether users will be allowed to join ongoing CO calls (privacy release is enabled) or if CO calls will be limited to one station unless the Conference feature is used (Privacy Release is disabled). In the default state, Privacy Release is disabled.

Reverse Transfer Immediate Connection: Determine whether reverse-transferred calls are connected to keysets automatically (set to “yes”). If not, the user must press the flashing trunk key or the IC key to be connected (set to “no”). In the default state, this is set to yes.

Standard Tones For CO Trunks, Keysets, And Single-Line Sets: The busy tones and dial tones can be pure system tones (as described in FEATURES, page 4-54) or they can be changed to more closely match the telephone company’s standard tones. In the default state, this is set to no for trunks (allowing 256 System tones) and yes for keysets and single-line sets (allowing standard telephone company type tones).

Station DTMF Digit Mute: Determine whether DTMF tones will be heard (not muted) when numbers are speed dialed (using redial, station speed dial, system speed dial, etc.), or if they will be muted. In the default state, this is set to no (not muted).

Station Monitoring Tone: If enabled, hunt group members will hear a tone whenever the hunt group supervisor uses the Station Monitoring feature to listen to a call. In the default state, this is enabled.

Suppress All Displayed Digits After End-Of-Dialing: When this option is enabled, any digits dialed after the valid number has been dialed will not be displayed. This prevents digits, such as PIN numbers and other codes, from being displayed when they are dialed. If the digits are not displayed, they will also not be included if the number is redialed using the Redial feature. In the default state, this option is disabled. (This flag is not affected by the SMDR digit suppression flag described on page 5-142.)

System “Skate” Type: Determine whether the system will place a call on hold when the user presses another trunk key or the IC key while on a call (skate-to-hold) or will drop the call when another trunk key or the IC key is pressed (skate-to-disconnect). Skate-to-hold does not affect the procedure for resuming a trunk. In the default state, this is set to skate-to-disconnect.

System Speed-Dial Override SCOS: If this option is enabled, the system speed-dial numbers can be dialed at any station regardless of toll restrictions. If disabled, all system speed-dial numbers are subject to toll restriction. In the default state, this is disabled.

Validate Voice Mailbox Numbers: This feature affects calls transferred to a voice mail unit. If all mailbox numbers match extension numbers, the option should be enabled to allow the system to check that the mailbox number entered by the transferring party is valid. If there are mailbox numbers that do not match an extension number, there is no need to validate and this option should be disabled. In the default state, this is set to no (disabled).

10.61 EXIT: When finished programming, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu window, select Yes. Or, select No to exit without saving any changes. To return to the System Flags programming window, select the Cancel button.
F. PAGE ZONES (PAGE)

10.62 To prepare for page zone programming, make a list of the keysets and/or the external paging network(s) that are included in up to 10 paging zones. Keysets and the external paging network(s) can be in more than one page zone. (Refer to the program planning sheet in Figure 5-13, page 5-204, when making the list.) In the default state, all keysets are assigned to page zone 1.

10.63 To define the page zones, select from the System-wide Features menu or enter the PAGE command to display the window shown above. Programming is described below.

10.64 PAGE ZONES: Begin programming by highlighting the desired page zone in the Page Zones list box. When the highlight bar is on a specific page zone, all other programming applies to that zone. When the page zone is selected, the following window appears. Enter a description of the page zone in the text box and select the OK command button (or select the Cancel command button to leave the description unchanged).

10.65 RELAYS and EXTERNAL PORTS: To program relays or external ports for the selected page zone, select the desired option button. The list boxes at the bottom of the window will show the ports/relays that have been assigned to the page zone, and the ports/relays that are available. To move a port/relay from the available list to the assigned list, select the desired port/relay in the available box. It will move automatically. To move a port/relay out of the assigned list, selecting it will move it back to the available list. To erase the Assigned list, select the Clear command button.

NOTE: External ports must be converted in the window shown on page 5-72 before they will appear in the Available list. External page relays must first be equipped in the Relay Programming window (on page 5-73) before they will appear in the Available list.
10.66 **KEYSETS:** To assign the **keysets** that will be in the page zone, select the **Keysets** command button. A station list window appears as shown below.

- **INCLUDE** or **EXCLUDE:** To include a station in that page zone, locate the station on the Exclude list and select it by pressing the SPACE BAR; it will automatically move to the Include list. To remove a station from the list, select the station in the Include list to move it to the Exclude list.

- **ALL** or **NONE:** To include all stations in the page zone, select the All command button. To exclude all stations, select the None command button.

- **SORT:** To sort the stations and list them numerically by extension number or circuit number, or to list them alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.

- **OK** or **CANCEL:** When the station lists appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button. The Page Zones window (see previous page) reappears after either of these command buttons is selected.
10.67 **CONVERT PORTS:** To convert CO trunk or SLI circuits to external paging ports, select the Convert Ports command button (shown in window on page 5-70). The window shown above appears.

EXTERNAL PAGE PORTS/AVAILABLE DEVICES: To convert an available device to an external paging port, locate the desired device on the Available Devices list and select it. It will automatically appear on the External Page Ports list. There can be up to nine external page ports.

DELETE: To delete an external paging port and convert it back to its original use (trunk or single-line circuit), select the desired port in the External Page Ports list box and then select the Delete command button. It will move back to the available devices list for the appropriate type of device.

- **OK:** When programming is complete, select the OK command button to return to the Page Zones programming window (shown on page 5-70).

EXIT: When all page zone programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu window, select Yes. Or, select No to exit without saving any changes. To return to the Page Zones programming window, select the Cancel button.
G. RELAY PROGRAMMING (RLAY)

10.69 One of the Central Processing (RCPU) Card relays can be designated for external paging, night switch (which is activated when the system or associated tenant group is placed in night mode), power-fail, or signal device relay. Relay 1 is preprogrammed as the power-fail signal device and cannot be changed. The program planning sheet is in Figure 5-14 on page 5-204.

10.70 To program RCPU Card external relay function, select Relay Programming from the System-Wide Features menu or enter the RLAY command. The window shown above appears.

10.71 RELAY and AVAILABLE RELAY TYPES:
To program the relay type of the RCPU Card relay, place the highlight bar on relay number 02 in the Relays list box and select it. The highlight bar will automatically move to the Relay Types list box. Scroll to and select the desired type of relay. The selected relay type will automatically appear next to relay number 02 in the Relays list box.

NOTE: Once a relay type has been programmed, it cannot be made into an “Unknown Relay Type.” If the relay is assigned a function, but no further programming is done, it is considered “unused” by the system.

10.72 TENANT GROUP: If Night Switch Relay is selected, a tenant group must be assigned to the relay. The following window appears which permits you to make the necessary assignment. Enter the desired tenant group number and select the OK command button to continue programming. If you wish to change the tenant group designation for an existing relay, highlight that relay in the Relays list box and then select the Tenant Group command button to gain access to this window.

10.73 EXIT: When all relay programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu window, select Yes. Or, select No to exit without saving any changes. To return to the Relay programming window, select the Cancel button.
H. SYSTEM FORWARDING (SFWD)

10.74 When System Forwarding is selected from the System-Wide Features menu (or the SFWD command is entered), the programming window shown above appears. It is used for assigning forwarding points to the system forwarding paths. Stations can then be programmed to use the forwarding paths in the window shown on page 5-41. A program planning sheet for this window is located in Figure 5-15 on page 5-205.

10.75 FORWARDING PATHS: Up to 200 unique forwarding paths can be programmed. To program a forwarding path, highlight the desired path number in the list box and press the SPACE BAR. The following window appears.

10.76 Each forwarding path can have a distinctive description (of up to 20 characters) and four forwarding points. The forwarding points can be stations, voice mail ports, or hunt groups.

- PATH DESCRIPTION: Select this text box to enter the name of this forwarding path.

- FORWARDING POINT(S): Up to four forwarding points can be programmed. To enter a forwarding point, select the appropriate text box and enter an extension number or hunt group pilot number (or hunt group number HXX). Or, press the F2 key while in one of these three entry boxes to display a list of stations and hunt groups. Select the desired station or hunt group by highlighting it and pressing the SPACE BAR.

- OK or CANCEL: When finished programming the forwarding paths, select the OK command button or press RETURN. To exit to the System Forwarding window without selecting a station, select the Cancel command button.

10.77 EXIT: When finished programming station information, select the Exit. A window appears that asks “Perform Update to Database?” To update the database and exit, select the Yes button. Or, select the No command button to exit without saving any changes. To return to the System Forwarding programming window, select the Cancel button.
System Speed Dial

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Number</th>
<th>Tenant</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>001</td>
<td>002</td>
<td>003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Actions

- **Exit**

Number of Displayed Speed Dial Numbers:

Speed Dial Number Programming Station:

Number of Digits in Bin Number:

1. SYSTEM SPEED DIAL (SSPD)

10.78 To program system speed-dial parameters, determine the following information. (If desired, use the program planning sheet in Figure 5-16 on page 5-206.) There can be up to 400 speed-dial numbers (000–399).

- **Display Speed-Dial numbers:** Determine how many of the system speed-dial number locations (000 to 399) may be viewed on display keysets. Display numbers are assigned consecutively beginning at 000; all remaining numbers will be non-display. For example, if you enter 100, only speeddial numbers 000-099 will be display numbers; all others are non-display numbers. Non-display numbers do not appear on display keysets when dialed and cannot be redialed. Nondisplay numbers will appear in the SMDR when dialed.

- **System speed-dial programming station:** Determine the circuit or extension number of the keyset station that will be allowed to program all system speed-dial numbers, including all tenant-specific numbers. (Attendants will only be able to program numbers for their associated tenant groups and the system-wide numbers.)

- **Speed-dial numbers:** List up to 400 system speed-dial numbers. Numbers can include up to 32 digits and can include timed pauses or hookflashes. Timed pauses and/or hookflashes are used when entering a series of numbers, such as access codes, security codes, and telephone numbers for specialized common carrier (SCC) dialing. To include a pause in the number, enter the letter S for a short pause or L for a long pause. To include a hookflash, enter F. The pause length represented by the S is determined by the Pause timer and a long pause is double the timer length. Each pause or hookflash is considered one of the 32 digits.

- **Tenant group number:** Determine which system speeddial numbers may be used by the entire system and those that may be used only by the members of a specific tenant group. If desired, a single tenant group number may be entered for each individual system speed-dial number. Tenant-specific numbers cannot be viewed or dialed by station users who are not in the designated tenant group. If tenant group number 0 is assigned, the system speed-dial number is available to all system users.

10.79 The System Speed Dial programming window is selected from the System-Wide Features menu or the SSPD command is entered. The window appears as shown above.
10.80 SYSTEM SPEED-DIAL NUMBERS: To program a number, select the desired number in the list box shown on the previous page. The following window appears.

- **NAME:** If desired, select the Name text box and type the desired name up to 16 characters.

- **TENANT:** If the number is to be used exclusively by one tenant group, select the Tenant text box and type the tenant group’s number (1-5). Enter “0” if it is to be used by all tenant groups.

- **NUMBER:** Select the Number text box to enter a number of up to 32 digits as described on the previous page.

- **OK or CANCEL:** When the name, tenant number, and speed-dial number are correct, select the OK command button. To exit without saving the changes, select the Cancel button. The System Speed Dial window returns.

10.81 NUMBER OF DISPLAYED SPEED-DIAL NUMBERS: To designate how many display speed-dial numbers will be used, select the Number of Displayed Speed Dial Numbers text box and enter the desired number (up to 400). The display numbers will be assigned consecutively beginning with number 000.

10.82 SPEED DIAL NUMBER PROGRAMMING STATION: Select the Speed Dial Number Programming Station text box and enter the circuit or extension number of the desired programming station.

10.83 NUMBER OF DIGITS IN BIN NUMBER: The access code (bin number) that users will enter when using speed dialing can be 1-3 digits long. To set the length, select the Number of Digits in Bin Number text box and enter the desired number. If single digit numbers are selected, 10 system speed-dial codes will be available (0-9). If two-digit numbers are selected, there can be up to 100 system speed-dial codes (00-99). Three-digit numbers use all 400 codes 000-399.

NOTE: All 400 speed-dial locations can have assigned numbers (and can be used via the System Directory Outside feature), but only those with codes can be dialed using the Speed-Dial feature. For example, with one-digit speeddial codes, numbers 000-009 can be speed dialed using O-9, but 010 and higher can only be used through the Outside System Directory feature.

10.84 EXIT: When all system speed dial programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu window, select Yes. Or, select No to exit without saving any changes. To return to the System Speed Dial programming window, select the Cancel button.
TIMERS (TIMR)

10.85 There are programmable timers that control various system functions. In the System Timers programming window, the programmer can change any or all of them. The timers and their default values, programmable ranges, and purposes are described on the following pages. The default values have been carefully selected to ensure proper system operation under most circumstances. Occasionally, one or more of the timers may need to be adjusted. (The program planning sheet is located in Figure 5-17 on page 5-207.)

10.86 To reach this window, select System Timers from the System-Wide Features menu or enter the TIMR command.

10.87 SYSTEM TIMER LIST: To change the value of a system timer, scroll through the list box until it is highlighted. When the timer is selected, a window appears that is similar to the one shown below.

- VALUE: Select the Value text box and enter the new value for the timer.

- DEFAULT: To return the selected timer to its default value, select the Default command button. The default value is shown in parentheses () inside the command button.

- PURPOSE: To view a window that defines the timer and explains its purpose, select the Purpose command button. When you have finished viewing the information in the Purpose window, select the OK command button to return to the timer programming window.

- OK or CANCEL: To save the change and return to the System Timers list box, select the OK command button. To exit without saving any changes, select the Cancel command button.

10.88 EXIT: When all timer programming is finished, select the Exit command button. A window appears that asks "Perform Update to Database?" To update the database and exit to the Applications Menu window, select Yes. Or, select No to exit without saving any changes. To return to the Timers programming window, select the Cancel button.
<table>
<thead>
<tr>
<th>TIMER</th>
<th>DEFAULT VALUE</th>
<th>RANGE</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Call</td>
<td>10</td>
<td>1-255 minutes</td>
<td>After a call has recalled to the last possible station, it will recall until this timer expires. If it remains unanswered, the system will disconnect the call.</td>
</tr>
<tr>
<td>Camp-On</td>
<td>3</td>
<td>0-255 seconds</td>
<td>Length of time a caller hears busy tone before camp ing on.</td>
</tr>
<tr>
<td>Camp-On Tone</td>
<td>15</td>
<td>5-255 seconds</td>
<td>Length of time between camp-on tones.</td>
</tr>
<tr>
<td>CO Hookflash</td>
<td>60</td>
<td>2-250 hundredths ((2/100 = 250/100))</td>
<td>Adjusts the duration of the timed hookflash that is sent over the CO trunk by the system when the Hookflash feature code is used. (Does not affect SLI or ESLS FLASH key.)</td>
</tr>
<tr>
<td>CO Re-Seize</td>
<td>3</td>
<td>1-15 seconds</td>
<td>When a user reseizes a trunk, this timer determines the length of time the system will hold the trunk open to allow the central office to drop and reconnect the trunk.</td>
</tr>
<tr>
<td>CO-CO Disconnect</td>
<td>35</td>
<td>2-250 hundredths ((2/100 = 250/100))</td>
<td>A call is disconnected by the system if it detects loss of loop current (lasting longer than this timer) during CO-to-CO calls.</td>
</tr>
<tr>
<td>Conference-Hold</td>
<td>5</td>
<td>1-255 minutes</td>
<td>Limits time a conference call with two or more outside parties remains on hold (in an unsupervised conference) before recalling the station.</td>
</tr>
<tr>
<td>Data Wait</td>
<td>30</td>
<td>1-255 seconds</td>
<td>Length of time the system will wait for the data device to go off hook after the user presses the DATA key when transferring a call to the data port.</td>
</tr>
<tr>
<td>Dial Tone Wait</td>
<td>2</td>
<td>1-50 seconds</td>
<td>When processing an LCR call, the system waits for this length of time before dialing to allow the central office time to send dial tone.</td>
</tr>
<tr>
<td>Dial-Initiation - Keyset</td>
<td>15</td>
<td>5-30 seconds</td>
<td>Limits time keyset can remain off hook without dialing before the system sends reorder tones.</td>
</tr>
<tr>
<td>Dial-Initiation - SL Set</td>
<td>10</td>
<td>5-30 seconds</td>
<td>Limits time single-line set user can remain off hook without receiving reorder tones.</td>
</tr>
<tr>
<td>Dialing Disconnect</td>
<td>200</td>
<td>2-250 hundredths ((2/100 = 250/100))</td>
<td>The connection is dropped if the system detects loss of loop current (lasting longer than this timer) during dialing.</td>
</tr>
<tr>
<td>Dialing Wait After Connect - Ground Start</td>
<td>1500</td>
<td>0-5000 five-hundredths ((0/500 = 5000/500))</td>
<td>The length of time the system waits for CO dial tone before dialing or checking the trunk for a disconnect. This timer is not used if the IYI Detect option is enabled (see page 5-104).</td>
</tr>
<tr>
<td>Dialing Wait After Connect - Loop Start</td>
<td>1500</td>
<td>0-5000 five-hundredths ((0/500 = 5000/500))</td>
<td>The length of time the system waits for CO dial tone before dialing or checking the trunk for a disconnect.</td>
</tr>
<tr>
<td>TIMER</td>
<td>DEFAULT VALUE</td>
<td>RANGE</td>
<td>PURPOSE</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Dialing Wait After Hookflash</td>
<td>30</td>
<td>1-250. tenths</td>
<td>Delays dialing after a hookflash to allow the system and central office hardware to recover.</td>
</tr>
<tr>
<td>Disconnect Flash Duration</td>
<td>15</td>
<td>1-250 tenths</td>
<td>When a single-line station is involved in a call that is dropped by the other party, and the single-line station remains off hook, the system turns off tip and ring battery for the duration of this timer. (The flash is sent after the Single-Line Set Wait For Disconnect timer expires.) If there is peripheral equipment on the single-line circuit (such as a voice mail unit, page amplifier, or other phone system) then this loss of battery will signal a call disconnect and will usually cause the equipment to disconnect. This timer applies to both IDC and SLC single-line circuits.</td>
</tr>
<tr>
<td>Disconnect Wait After Dialing</td>
<td>20</td>
<td>2-30 seconds</td>
<td>Length of time the system waits after dialing an outside telephone number before checking the trunk for disconnect.</td>
</tr>
<tr>
<td>DTMF Digit Duration/Pause</td>
<td>6</td>
<td>5-60 hundredths</td>
<td>Adjusts the duration and pause between digits of DTMF tones sent by the system. Both the tone and the pause will use the assigned duration (for example, a 6/100 second tone has a 6/100 second pause between digits).</td>
</tr>
<tr>
<td>E&M Answer Recognition</td>
<td>2250</td>
<td>100-10000 five-hundredths</td>
<td>Determines the minimum amount of time the receiving PBX must be off-hook, when a station user places an outgoing call on an E&M trunk, before the 256 System recognizes that the call has been answered (unless the Answer Recognition timer is disabled).</td>
</tr>
<tr>
<td>E&M Dial Delay</td>
<td>35</td>
<td>1-100 five-hundredths</td>
<td>This is the maximum amount of time the EMC will wait before transmitting digits following a handshake. This timer goes in effect after the handshake on a Wink-Start or Dial-Delay circuit or after seizure on an Immediate-Dial circuit.</td>
</tr>
<tr>
<td>E&M Dial-Delay Hold</td>
<td>70</td>
<td>1-500 five hundredths</td>
<td>This is the minimum length for a Dial-Delay handshake. Used only for Dial-Delay circuits.</td>
</tr>
<tr>
<td>E&M Dialing Wait After Hookflash</td>
<td>1500</td>
<td>100-10000 five-hundredths</td>
<td>Determines how long the EMC will wait when transmitting a hookflash before dialing additional digits or checking for disconnection.</td>
</tr>
<tr>
<td>E&M Disconnect Flash Duration</td>
<td>1000</td>
<td>100-10000 five-hundredths</td>
<td>This is the minimum amount of time the EMC will keep a circuit on hook to cause a disconnection from the remote circuit.</td>
</tr>
<tr>
<td>E&M Disconnect Recognition</td>
<td>750</td>
<td>100-5000 five-hundredths</td>
<td>This is the amount of time a circuit must be on hook before the EMC recognizes a disconnection.</td>
</tr>
<tr>
<td>E&M Disconnect Wait After Dialing</td>
<td>1500</td>
<td>100-10000 five-hundredths</td>
<td>This is how long the EMC will wait after dialing a digit before checking for disconnection from the remote circuit.</td>
</tr>
<tr>
<td>TIMER</td>
<td>DEFAULT VALUE</td>
<td>RANGE</td>
<td>PURPOSE</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>E&M DTMF Interdigit Pause</td>
<td>20</td>
<td>1-100 five-hundredths $(1/500 - 100/500)$</td>
<td>This is the minimum amount of time the EMC will pause between DTMF digits when dialing.</td>
</tr>
<tr>
<td>E&M DTMF Tone Duration</td>
<td>30</td>
<td>1-100 five-hundredths $(1/500 - 100/500)$</td>
<td>This is the minimum length of DTMF tones sent by the EMC.</td>
</tr>
<tr>
<td>E&M False Signal Debounce</td>
<td>25</td>
<td>1-100 five-hundredths $(1/500 - 100/500)$</td>
<td>Determines the minimum length of a valid handshake signal that is received from a remote circuit. Used only on Wink-Start and Dial-Delay circuits.</td>
</tr>
<tr>
<td>E&M Handshake Timeout</td>
<td>2500</td>
<td>100-10000 five-hundredths $(100/500 - 10000/500)$</td>
<td>Determines the maximum length of a valid handshake signal. Used only on Wink-Start and Dial-Delay circuits.</td>
</tr>
<tr>
<td>E&M Hookflash Duration</td>
<td>300</td>
<td>100-5000 five-hundredths $(100/500 - 5000/500)$</td>
<td>Determines the length of hookflashes sent to the remote circuits.</td>
</tr>
<tr>
<td>E&M Hookflash Recognition</td>
<td>150</td>
<td>100-5000 five-hundredths $(100/500 - 5000/500)$</td>
<td>Determines the minimum length of recognizable hookflashes from the remote circuit.</td>
</tr>
<tr>
<td>E&M Inter-Pulse Pause</td>
<td>20</td>
<td>1-100 five-hundredths $(1/500 - 100/500)$</td>
<td>This is the length of time the EMC will pause between pulse-dial signals when dialing.</td>
</tr>
<tr>
<td>E&M Off-Hook Debounce</td>
<td>5</td>
<td>1-50 five-hundredths $(1/500 - 50/500)$</td>
<td>This is the minimum amount of time the remote circuit must be off hook before the EMC will recognize another on-hook/off-hook transition.</td>
</tr>
<tr>
<td>E&M On-Hook Debounce</td>
<td>5</td>
<td>1-50 five-hundredths $(1/500 - 50/500)$</td>
<td>This is the minimum amount of time the remote circuit must be on hook before the EMC will recognize another off-hook/on-hook transition.</td>
</tr>
<tr>
<td>E&M Post-Signal Delay</td>
<td>15</td>
<td>1-250 five-hundredths $(1/500 - 500/500)$</td>
<td>This is the minimum allowed time between the end of a handshake and the beginning of digit validation. Used only for Wink-Start and Dial-Delay circuits.</td>
</tr>
<tr>
<td>E&M Post Seizure Debounce</td>
<td>32</td>
<td>1-100 five-hundredths $(1/500 - 100/500)$</td>
<td>This is the minimum allowed time between the recognition of a seizure and the beginning of digit validation. Used only for Immediate-Dial circuits.</td>
</tr>
<tr>
<td>E&M Pulse Hold</td>
<td>30</td>
<td>1-100 five-hundredths $(1/500 - 100/500)$</td>
<td>This is the maximum length of a pulse-dial signal that is dialed by the EMC.</td>
</tr>
<tr>
<td>E&M Pulse-Dial Interdigit Pause</td>
<td>350</td>
<td>100-5000 five-hundredths $(100/500 - 5000/500)$</td>
<td>This is the minimum length of time the EMC will pause between pulse-dial signals when dialing.</td>
</tr>
<tr>
<td>E&M Pulse-Dial Interdigit Pause Recognition</td>
<td>150</td>
<td>1-500 five-hundredths $(1/500 - 500/500)$</td>
<td>This is the minimum pause allowed between pulsedial signals sent from the remote circuit.</td>
</tr>
<tr>
<td>TIMER</td>
<td>DEFAULT VALUE</td>
<td>RANGE</td>
<td>PURPOSE</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>E&M Ready Timeout</td>
<td>2000</td>
<td>100-10000 five-hundredths (100/500 - 10000/500)</td>
<td>On a Wink-Start circuit: This is the maximum time the EMC will wait for a “Digit Register Ready” command before initiating the Wink-Start handshake.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>On a Dial-Delay circuit: This is the maximum time the EMC will wait for a “Digit Register Ready” command before the Dial-Delay signal is terminated.</td>
</tr>
<tr>
<td>E&M Receive Handshake Delay</td>
<td>10</td>
<td>1-250 five-hundredths (1/500 - 250/500)</td>
<td>This is the minimum time required, after seizure, before an incoming handshake signal can be recognized. Used only for Wink-Start and Dial-Delay circuits. If a Wink or Dial Delay signal is detected within this time, the outgoing call is blocked.</td>
</tr>
<tr>
<td>E&M Seizure Debounce</td>
<td>1</td>
<td>1-10 five-hundredths (1/500 - 10/500)</td>
<td>Determines the minimum amount of time the remote circuit must remain off hook before the EMC validates the incoming call.</td>
</tr>
<tr>
<td>E&M Short Circuit Debounce</td>
<td>500</td>
<td>100-10000 five-hundredths (100/500 - 10000/500)</td>
<td>Determines the minimum length of a recognizable short circuit on an active circuit.</td>
</tr>
<tr>
<td>E&M Short Circuit Timeout</td>
<td>2500</td>
<td>100-10000 five-hundredths (100/500 - 10000/500)</td>
<td>This is the maximum amount of time the EMC will allow a short circuit to exist on an active Type-I circuit.</td>
</tr>
<tr>
<td>E&M Short Pause Digit</td>
<td>1500</td>
<td>100-10000 five-hundredths (100/500 - 10000/500)</td>
<td>Determines the length of a short speed-dial pause sent over E&M trunks.</td>
</tr>
<tr>
<td>E&M Transmit Handshake Delay</td>
<td>50</td>
<td>1-250 five-hundredths (1/500 - 250/500)</td>
<td>This is the minimum delay time between the recognition of a seizure and the beginning of a handshake signal. Used only for Wink-Start and Dial-Delay circuits.</td>
</tr>
<tr>
<td>E&M Wait for Dial Tone</td>
<td>500</td>
<td>100-10000 five-hundredths (100/500 - 10000/500)</td>
<td>This is how long the EMC will wait for dial tone before dialing digits on an outgoing call.</td>
</tr>
<tr>
<td>E&M Wink Hold</td>
<td>107</td>
<td>1-250 five-hundredths (1/500 - 250/500)</td>
<td>Determines the length of a Wink-Start handshake.</td>
</tr>
<tr>
<td>E&M Wink Timeout</td>
<td>175</td>
<td>1-250 five-hundredths (1/500 - 250/500)</td>
<td>Determines the maximum allowed length of wink signals that are received from the remote circuit.</td>
</tr>
<tr>
<td>Forward-No-Answer</td>
<td>15</td>
<td>3-255 seconds</td>
<td>Length of time a call waits at an unavailable station before being forwarded. (Applies to manual call forwarding only, not system forwarding.)</td>
</tr>
<tr>
<td>Hold</td>
<td>60</td>
<td>10-255 seconds</td>
<td>Limits time a call remains on hold before recalling the station.</td>
</tr>
<tr>
<td>IC-CO Disconnect</td>
<td>60</td>
<td>2-250 hundredths (2/100 - 250/100)</td>
<td>A call is disconnected by the system if it detects loss of loop current (lasting longer than this timer) during station-to-CO calls.</td>
</tr>
<tr>
<td>Timer</td>
<td>Default Value</td>
<td>Range</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Inactivity Alarm</td>
<td>60</td>
<td>10-255 seconds</td>
<td>Limits the time a station can remain off hook and inactive (after first receiving reorder tones) before registering a system alarm.</td>
</tr>
<tr>
<td>Inter-Ring Silence</td>
<td>60</td>
<td>1-250 tenths (1/10 - 250/10)</td>
<td>Indicates the duration of the silence between rings on an incoming CO call to determine if the trunk has stopped ringing prior to being seized. In most areas, CO ring pattern is 2 seconds on/4 seconds off. Check with the local telephone company for the ring pattern in your area.</td>
</tr>
<tr>
<td>Interdigit (Long)</td>
<td>15</td>
<td>2-255 seconds</td>
<td>Determines end of dialing. Short timer is used after a valid number has been dialed. Long timer is used until digits form a valid number.</td>
</tr>
<tr>
<td>Interdigit (Short)</td>
<td>4</td>
<td>2-30 seconds</td>
<td>Length of time a station remains camped on to a busy facility group before it is moved to the next group.</td>
</tr>
<tr>
<td>LCR Advance</td>
<td>8</td>
<td>1-255 seconds</td>
<td>The length of time the system will ignore subsequent loop reversals after a reversal occurs on a loop start trunk.</td>
</tr>
<tr>
<td>Loop Reversal Debounce</td>
<td>25</td>
<td>1-255 five-hundredths (1/500 - 255/500)</td>
<td>The length of time a caller waits after pressing the MSG key before being connected to the called party’s message center.</td>
</tr>
<tr>
<td>Message Wait</td>
<td>5</td>
<td>1-255 seconds</td>
<td>After the Camp-On timer expires, length of time before an OHVA call can be completed.</td>
</tr>
<tr>
<td>Off-Hook Voice Announce</td>
<td>5</td>
<td>0-255 seconds</td>
<td>The length of time the system waits after disconnect before checking for loop current. Used only after the CO trunk has been disconnected in response to the IC-CO Disconnect timer.</td>
</tr>
<tr>
<td>Off-Line After Disconnect</td>
<td>10</td>
<td>10-250 tenths (10/10 - 250/10)</td>
<td>Limits duration of page.</td>
</tr>
<tr>
<td>Page</td>
<td>15</td>
<td>0-255 seconds</td>
<td>Length of “short” timed pauses used in system and station speed-dial telephone numbers and in LCR dial rules. “Long” pauses are double this length of time.</td>
</tr>
<tr>
<td>Pause Digit Length</td>
<td>3</td>
<td>1-5 seconds</td>
<td>Time allowed for a station to respond to a queue callback before the queue is cancelled.</td>
</tr>
<tr>
<td>Queue Callback</td>
<td>15</td>
<td>10-255 seconds</td>
<td>Length of time a hold or transfer recall rings at a station before recalling that station’s attendant. If the station receiving the recall has no attendant, the call remains at the station until the Abandoned Call timer expires.</td>
</tr>
<tr>
<td>Recall</td>
<td>60</td>
<td>10-255 seconds</td>
<td>This is the minimum amount of time the system can detect energy on a trunk before it will recognize that energy as ringing. Note that if this timer is set too low, trunk noise could cause false ring-in detection. This timer is used only on trunks that are programmed to utilize non-standard ringing (such as AT&T Dimension PBX OPX ring signal) with the “relaxed ring detection” option in individual trunk programming.</td>
</tr>
<tr>
<td>Relaxed Ring Detection</td>
<td>62</td>
<td>1-9500 five-hundredths (1/500 - 9500/500)</td>
<td></td>
</tr>
</tbody>
</table>

Page 5-82
<table>
<thead>
<tr>
<th>TIMER</th>
<th>DEFAULT VALUE</th>
<th>RANGE</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Line Hookflash Maximum</td>
<td>7</td>
<td>2-20 tenths (2/10 - 20/10)</td>
<td>The maximum amount of time a single-line set user can press the hookswitch before the system disconnects calls.</td>
</tr>
<tr>
<td>Single-Line Hookflash Minimum</td>
<td>2</td>
<td>1-10 tenths (1/10 - 10/10)</td>
<td>The minimum length of time a single-line set user must press the hookswitch for the system to recognize a hookflash.</td>
</tr>
<tr>
<td>Single-Line Wait For Disconnect</td>
<td>2</td>
<td>1-60 seconds</td>
<td>When a single-line station is involved in a call that is disconnected by the other party, and the single-line station remains off hook, this timer specifies the length of time between the disconnection and when the disconnect flash (which is set by the Disconnect Flash Duration timer) is transmitted to the single-line circuit. During this time, the station receives no audible signal.</td>
</tr>
<tr>
<td>System Forwarding Advance</td>
<td>15</td>
<td>2-255 seconds</td>
<td>Determines how long a call will ring (unanswered) at each forwarding point in a system forwarding path.</td>
</tr>
<tr>
<td>System Forwarding Initiate</td>
<td>15</td>
<td>2-255 seconds</td>
<td>Determines how long a call will ring (unanswered) at the principal station before advancing to the first forwarding point in a system forwarding path.</td>
</tr>
<tr>
<td>T1 Busy-Out Switch Time Out</td>
<td>60</td>
<td>10-10000 seconds</td>
<td>This is the maximum amount of time the T1 card will remain “busied out” after the busy-out button has been pushed. If the card is not removed or the button is not pressed again, the T1 card will no longer be busy when this timer expires.</td>
</tr>
<tr>
<td>Transfer — Available</td>
<td>20</td>
<td>10-255 seconds</td>
<td>Limits time a transferred call rings unanswered before it recalls the transferring station.</td>
</tr>
<tr>
<td>Transfer — Busy</td>
<td>24</td>
<td>10-255 seconds</td>
<td>Limits time a transferred call waits at a busy station before recalling the transferring station.</td>
</tr>
<tr>
<td>Trunk Key Debounce</td>
<td>3</td>
<td>1-777 seconds</td>
<td>The length of time the system will ignore subsequent attempts to press a trunk key once it has been pressed. This prevents a keyset user from accidentally disconnecting a call by re-accessing the trunk key if the key is pressed twice while answering a call.</td>
</tr>
<tr>
<td>Trunk Preselect</td>
<td>5</td>
<td>2-255 seconds</td>
<td>To pre-select a trunk, the keyset user presses a trunk key while on hook. This limits the time the keyset can hold a trunk before dialing.</td>
</tr>
</tbody>
</table>

NOTE: The database contains a station option that can be set to prevent users from reseizing a CO trunk. If selected, the station user cannot reseize a trunk until it is disconnected by replacing the handset, pressing the SPKR key, or pressing another trunk key.
<table>
<thead>
<tr>
<th>TIMER</th>
<th>DEFAULT VALUE</th>
<th>RANGE</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trunk Ring Detection</td>
<td>5</td>
<td>1-250 tenths (1/10 - 250/10)</td>
<td>This is a low-level timer that specifies the duration that continuous ring voltage must be detected on a CO trunk for the system to recognize a new incoming call. If this timer is too low, then false rings could be detected. If the timer is too high, then new incoming calls may not be detected at all. Common ring durations sent by central offices are 1-second and 2-second.</td>
</tr>
<tr>
<td>Unsupervised-CO</td>
<td>5</td>
<td>1-255 minutes</td>
<td>Limits duration of CO-to-CO DISA calls or outside calls transferred or forwarded to outside telephone numbers before recalling the primary attendant.</td>
</tr>
<tr>
<td>Valid-Call</td>
<td>15</td>
<td>0-60 seconds</td>
<td>Minimum duration of an outgoing call before it is recorded in SMDR or SMDA. Calls placed on hold or transferred are not subject to this timer.</td>
</tr>
<tr>
<td>Voice Mail Dialing Delay</td>
<td>5</td>
<td>1-250 tenths (1/10 - 250/10)</td>
<td>When a call is answered by the voice mail unit, this indicates the amount of time the system waits before sending digits to the voice mail unit after it answers the call.</td>
</tr>
</tbody>
</table>
K. TENANTS AND DEPARTMENTS (TNT)

10.89 There can be up to eight tenant groups, with 10 departments per tenant group. In the default state, all stations are placed in tenant group 1 and department 1.

10.90 To prepare to use this program, make a list of the stations to be assigned to each of the tenant groups. (All stations must be assigned to a tenant group and a department.) If desired, give each tenant group and department a name of up to 20 characters. The program planning sheet for this program is Figure 5-18 on page S-210.

10.91 The window shown above can be reached by selecting Tenants and Departments from the System-Wide Features menu or entering the TNT command.

10.92 TENANT GROUPS: To program a tenant group and/or its departments, select it in the list box. The window shown on the next page appears.

10.93 EXIT: When all tenant and department programming is finished, select the Exit command button. A window appears that asks "Perform Update to Database?" To update the database and exit to the Applications Menu window, select Yes. Or, select No to exit without saving any changes. To return to the Tenants and Departments programming window, select the Cancel button.
Tenant X

Description:

Include

- 01 01.01 "Station Undefined"
- 02 02.01 "Station Undefined"
- 03 03.01 "Station Undefined"
- 04 04.01 "Station Undefined"

Exclude

- 01 01.01 "Station Undefined"
- 02 02.01 "Station Undefined"
- 03 03.01 "Station Undefined"
- 04 04.01 "Station Undefined"

Stations

- 01 01.01 "Station Undefined"
- 02 02.01 "Station Undefined"
- 03 03.01 "Station Undefined"
- 04 04.01 "Station Undefined"

Trunk Group for AUTO Feature

- ALL LINES
- 02
- 03
- 04

10.94 DESCRIPTION:

To give the tenant group an identifying name, select the Description text box and type a name of up to 20 characters.

10.95 DEPARTMENT:

To program the individual departments, move to the Department list box. When the desired department is selected, the following window appears.

10.96 TRUNK GROUP FOR AUTO FEATURE:

To select the trunk group that will be used by this tenant group as the auto trunk group, move the highlight bar to the desired trunk group or the line that reads "NONE”.

10.97 STATIONS:

To designate the stations that are in this tenant group, select the Stations command button. The following window appears.

STATIONS:

To designate the stations that are in the department, select the Stations command button. A Station List window will appear that contains a list of stations in the tenant group, as described in paragraph 10.97.

OK:

When finished programming the department, select the OK command button to return to the department description window.

INCLUDE or EXCLUDE: To include a station, locate that station on the Exclude list and select it by pressing the SPACE BAR, it will automatically move to the Include list. To remove a station from the list, exit and select another tenant group, then place the desired station in a new tenant group and department. This procedure must be followed to en...
sure that a station is always part of a tenant group and department.

- **ALL**: To include all stations in the list, select the All command button. *(The None command button cannot be used in this window.)*

- **OK or CANCEL**: When the station lists appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button.

- **SORT**: To sort the stations and list them numerically by extension number or circuit number, or to list them alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.

<table>
<thead>
<tr>
<th>Include</th>
<th>Exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **INCLUDE or EXCLUDE**: To include a trunk group, locate it on the Exclude list and select it by pressing the SPACE BAR; it will automatically move to the Include list. To remove a trunk group from the list, select another tenant group then place the trunk group in that tenant group’s list. This procedure must be followed to ensure that a trunk group is always assigned to a tenant group.

- **ALL**: To include all trunk groups in the list, highlight a line in the Include list box and select the All command button.

- **OK**: When the trunk group lists appear as desired, select the OK command button.

10.98 TRUNK GROUPS: To determine which trunk groups that the attendant for this tenant group can place in night ring mode, select the Trunk Groups command button. The following window appears. Each trunk group can be assigned to only one tenant group.

10.99 DID GROUPS: To determine which DID groups that the attendant for this tenant group can place in night ring mode, select the DID Groups command button. A window appears, like the one described above for trunk groups; follow the same procedures. Each DID group can be assigned to only one tenant group. Placing a DID group in a tenant group removes it from the group to which it was previously assigned.

10.100 **OK**: When tenant group programming is complete, select the OK command button in the Tenant Group X window (shown on the previous page). You will return to the Tenant Groups window shown on page s-85.
11. TOLLRESTRICTION

11.1 When Toll Restriction is selected from the Applications Menu window, the menu expands to show the following options:

- Toll Restriction...
- Alternate Carriers and Allowed Long Distance Area/Office Codes
- Allowed/Restricted SCOS Information
- Toll Security

11.2 Each of the options and the windows they access are described in detail in the following pages.

A. ALTERNATE CARRIERS AND ALLOWED LONG DISTANCE (ALT)

11.3 Alternate Carrier Numbers: Alternate carrier numbers are the telephone numbers that you wish to restrict some stations from dialing. Stations that have been assigned SCOS 7 (Restrict Alternate Carrier List) cannot use these numbers. List up to 20 alternate carrier numbers with up to 10 digits each. You may use X in the number to indicate any digit 0-9. For example, 976XXXX restricts SCOS 7 users from dialing 7-digit numbers that begin with 976. The numbers should not contain the toll field, but can contain equal access digits (e.g., do not enter 1+ or 0+ numbers, except 10XXX and 101XXXX numbers). (Refer to Figure 5-19, page 5-211, for a program planning sheet.)

NOTE: Allowed long distance numbers override alternate carrier number restrictions. Also, numbers are only restricted if they exactly match the number on the alternate carrier list. For this reason, alternate carrier numbers can have a plus (+) added to the end of the number to restrict users from bypassing toll restriction by dialing extra digits after dialing the alternate carrier number. For example, 976+ restricts all calls that begin with 976, no matter how many digits are dialed.

11.4 Allowed Long Distance Numbers: Allowed long distance numbers are the toll-call numbers that stations with SCOS 8 (Allowed Long Distance Access) are permitted to dial. List up to 20 long distance numbers. The numbers can contain up to 10 digits each. You may use X in the number to indicate any digit 0-9. For example, XXX5551212 allows SCOS 8 users to dial directory information using any area code. You can also use a “+” at the end of the number to indicate that any digits can be dialed. For example, 800+ allows any number beginning with 800. In the default state, the allowed long distance numbers are 911 and 800XXXXXXX. (Refer to Figure 5-19, page 5-211, for a program planning sheet.)

NOTE: Even if 0+ numbers are included in the allowed long distance number list, they cannot be dialed by a station with SCOS 1.

CAUTION REGARDING EMERGENCY NUMBERS

In areas where the emergency number is 1911, be sure that toll-restricted stations have SCOS 8 (Enable ALD) and that 911 is in the allowed long distance number list. Otherwise, toll-restricted users may not be able to find a station that is permitted to dial “1+” numbers. Note that 911 is allowed at every station regardless of toll restriction, but 1911 requires this special programming.

11.5 Select Alternate Carriers and Allowed Long Distance from the Toll Restriction menu or enter the ALT command to access the window shown on the next page.
11.6 ALTERNATE CARRIER and ALLOWED LONG DISTANCE

To enter an alternate carrier number or allowed long distance number in the appropriate list, highlight the desired position on the list and select it. The following window appears.

- **NUMBER**: Select the text box and type the number.
- **OK**: When finished, select the OK command button and the number will appear in the selected list box.

11.7 EXIT

When Programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. To return to the Alternate Carrier and Allowed Long Distance window without updating the database, select the Cancel button.
B. AREA/OFFICE CODES
 ALLOWED/RESTRICTED (AREA)

11.8 The window shown on the next page is used for programming the numbering plan flags for the system and for programming area/office code user groups.

Numbering Plan Flags

11.9 The growth of telecommunications services has created an increasing demand for more telephone numbers. To meet the demand, Bellcore has prepared a long-range North American Numbering Plan (NANP) to provide additional telephone numbers. The plan expands the capacity of the current numbering system by making area and office codes interchangeable. That is, numbering patterns formerly reserved for office codes can be used as new area codes, and office codes within existing area codes can have the same pattern as other area codes.

11.10 With interchangeable area and office codes, switching systems lose the ability to distinguish between 7- and 10-digit numbers by examining the first three digits. To address this, the database contains the following flags:

- **Office Codes Used as Area Codes**: An area code in another location uses an NXX pattern that matches an office code within the system site’s area code. (This flag defaults to no.)

- **Area Codes Used as Office Codes**: One or more office codes within the system site’s area code use an NZX pattern that is the same as an area code in another area. (This flag defaults to no unless you are converting a database that has the “Overlap Area/OFFICE Code flag enabled.”)

- **Toll Digit Allowed On Toll Local Calls**: This option applies only if the area and office codes overlap. Callers in the site’s area code usually dial a 1 when placing a call within the local area code(s). (This flag defaults to no.)

- **Toll Digit Required On Toll Long Distance Calls**: This option applies only if the area and office codes overlap. Callers in the site’s area code must dial a 1 when placing a call outside of the local area code(s). (This flag defaults to yes.)

<table>
<thead>
<tr>
<th>ABE4 CODES CAN BE:</th>
<th>OFFICE CODES CAN BE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office Codes as Area Codes</td>
<td>NZX or NXX</td>
</tr>
<tr>
<td>Area Codes as Office Codes</td>
<td>NZX</td>
</tr>
</tbody>
</table>

User Groups

11.11 Set up area and office code tables for up to eight user groups to allow different area/office code restrictions to be used. This is useful for reducing restrictions for some users while increasing restrictions for others. Each station is assigned to a user group. Within each user group, area codes can be restricted, allowed, or extended. Restricting an area code prevents users from placing calls to that area code and all of its office codes. Allowing an area code also allows all office codes within that area code. Designating an area code as extended allows the programmer to determine which office codes within that area code are allowed or restricted. There can be up to four extended area codes per user group. List the area codes that are allowed, restricted, or extended. Also, list the office codes within the extended area code(s) that are allowed and restricted. (Refer to Figure 5-20, page 5-212, for a Program planning sheet.)

NOTE: Area/office code programming also affects call cost designation for the SMDR feature. When a seven-digit number is dialed from a station without area/office code restriction, the system still checks the office code against the area/office code tables for the station’s user group. If the office code is allowed, the call is recorded as a local call (LOC). If it is restricted, the call is recorded as a seven-digit toll call (T7).
11.12 The window shown above is used for programming the various aspects of area and office code restriction used for SCOS 5 (Area/Office Code Restriction). To reach it, select Area/Office Codes Allowed/Restricted from the Toll Restriction menu or enter the AREA command.

11.13 FLAGS: If any of the numbering plan flags apply to the system location (see explanation on previous page), select the flag to place a check mark in the check box. To remove a check mark, select the check box again. Depending on the combination of flags that are selected, some flags may be dimmed and cannot be selected.

11.14 USER GROUPS: The list box shows the user groups and their descriptions (if programmed). To program a description for a user group, highlight the desired line and then select it by pressing the SPACE BAR. The following window appears.

- NAME: A name, up to 20 characters, can be assigned to each user group. Select the Name text box and type the desired name.
- OK or CANCEL: When the name appears as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button.

11.15 DAY/NIGHT STATION LISTS: To program the list of stations that are included in a specific user group in day or night mode, select the Day or Night Station List command button. The following window appears.

- INCLUDE or EXCLUDE: To include a station, locate that station on the Exclude list and select it by pressing the SPACE BAR; it will automatically move to the Include list. To remove a station from the list, exit and select another user group; then place...
the desired station in a new user group. This procedure must be followed to ensure that a station is always part of a user group.

- **ALL**: To include all stations in the list, select the All command button. (The None command button cannot be used in this window.)

- **OK or CANCEL**: When the station lists appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button.

- **SORT**: To sort the stations and list them numerically by extension number or circuit number, or to list them alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.
11.16 AREA CODES: To program the area codes for a specific user group, highlight the desired line in the User Groups list box then select the Area Codes command button. An area code programming window will appear as shown above.

- ALLOWED and RESTRICTED AREA CODES:
 To allow users in the user group to access area codes, the codes must be placed in the Allowed list. To place an area code in the Allowed Area Codes list box, locate that area code on the Restricted Area Codes list and select it by pressing the SPACE BAR, it will automatically move to the Allowed list. To remove an area code from the list, select the code in the Allowed list to move it to the Restricted list.

- ALL, or NONE: To include all area codes in the allowed list, select the All command button. To exclude all codes from the list, select the None command button.

- EXTEND: There can be up to four extended area codes per user group, each with individual lists of allowed and restricted office codes. To create an extended area code, move the desired code to the Allowed list box and highlight it. Then select the Extend command button. The area code moves to the Extended Area Codes list box. Office codes can then be programmed as allowed or restricted, for that area code as described on the next page. To remove an extended area code from the list, highlight the code in the Extended Area Codes list box and select it by pressing the SPACE BAR; it automatically moves to the Allowed Area Codes list box.

- OK: When all area code programming has been completed, select the OK command button to return to the User Group programming window.
11.17 **OFFICE CODES:** To program the office codes for the extended area codes in a specific User Group, highlight the desired line in the User Group list box then select the Office Codes command button. An office code programming window will appear as shown above.

- **EXTENDED AREA CODES:** Begin programming by selecting the extended area code to be programmed. Locate the desired area code in the Extended Area Codes list box then press the SPACE BAR. The Office Codes list boxes will show the current programming for that extended area code.

- **ALLOWED/RESTRICTED OFFICE CODES:**
 To allow users in the user group to access office codes, the codes must be placed in the Allowed Office Codes list. To place an office code in the Allowed Office Codes list box, locate it on the Restricted Office Codes list and select it by pressing the SPACE BAR, it will automatically move to the Allowed list. To remove an office code from the list, select the code in the Allowed list to move it to the Restricted list.

- **ALL or NONE:** To include all office codes in the allowed list, select the All command button. To exclude all codes from the list, select the None command button.

- **OR:** When all office code programming has been completed, select the OK command button to return to the User Group programming window.

11.18 **EXIT** When programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. To return to the Area/Office Code Allowed/Restricted window without updating the database, select the Cancel button.
C. SCOS INFORMATION (SCOS)

11.19 To prepare for programming this information, list all unrestricted stations and those that are affected by each of the following restrictions. (Refer to Figure 5-21, page 5-213, for a program planning sheet. Refer to FEATURES page 4-27 for further explanation of SCOS.)

- **Restrict operator access (0+):** Calls that begin with 0, including international calls, are not permitted. If this restriction is not set, all calls beginning with 0 are permitted, unless the station also has SCOS 3.

- **Restrict toll access (1+):** Calls that begin with 1 are not permitted unless the number is on the allowed long distance list and the station has allowed long distance number access.

- **Restrict international access (01+):** Calls that begin with 01 are restricted. If this restriction is not set, all calls beginning with 01 are permitted regardless of other restrictions.

- **Restrict eight-digit call access:** Calls are not permitted if they are over seven digits in length, unless the number is in the allowed long distance number list and the station has allowed long distance number access.

- Use **area/office code tables** (table driven toll): Calls can only be placed to the allowed area and office codes, as determined by the station’s assigned user group.

- Use **LCR Only**: Calls can only be placed using the Least-Cost Routing (LCR) feature.

- **Restrict alternate carrier**: Calls cannot be placed to any of the numbers on the alternate carrier number list if this option is selected. Allowed long distance numbers override alternate carrier number restrictions.

- **Enable allowed long distance list**: Calls can be placed to any of the numbers on the allowed long distance number list.

11.20 LCR advances determine the number of facility groups a station will be allowed to advance to when the facility groups are busy. If there is not an advance limit, the station is limited to the first facility group in the selected route group. If one advance is allowed, the station can move to the next facility group when the first one is busy. If two advances are allowed, it can advance to the third group, and so on. The station can be given unlimited advances to allow access to all facility groups.

11.21 When SCOS Information is selected from the Toll Restriction menu or the SCOS command is entered, the window appears as shown below.

SCOS Information

<table>
<thead>
<tr>
<th>Actions</th>
<th>Setup</th>
<th>Exit</th>
</tr>
</thead>
</table>

Station Class of Service Programming

1. Remove ALL Restrictions
2. Restrict Operator Access
3. Restrict Toll Access
4. Restrict Eight Digit Calls
5. Use Area/Office Tables
6. Use LCR Only
7. Restrict Alternate Carriers
8. Enable Allowed Long Distance List

LCR Advances

<table>
<thead>
<tr>
<th>Day Mode</th>
<th>Night Mode</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Unlimited</th>
<th>Unlimited</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Advances</td>
<td>No Advances</td>
</tr>
<tr>
<td>01 Advance</td>
<td>01 Advance</td>
</tr>
<tr>
<td>02 Advances</td>
<td>02 Advances</td>
</tr>
<tr>
<td>03 Advances</td>
<td>03 Advances</td>
</tr>
<tr>
<td>04 Advances</td>
<td>04 Advances</td>
</tr>
<tr>
<td>05 Advances</td>
<td>05 Advances</td>
</tr>
</tbody>
</table>

Page 5-95
II.22 Station Class of Service Programming Day/Night Lists, and LCR Advances:

To program the list of stations that have a specific SCOS designation, highlight the desired SCOS in the Station Class of Service Programming list box and then select the Day List or Night List command button. A window appears as shown below. To program LCR Advance, highlight and select the desired LCR advance number in either the Day Mode or Night Mode LCR Advances list box. The following window appears.

- **Include** or **Exclude**: To include a station, locate that station on the Exclude list and select it by pressing the SPACE BAR; it will automatically move to the Include list. To remove a station from an SCOS list, select the station in the Include list to move it to the Exclude list. To remove a station from the LCR Advances list, select another advance list and include it there. This ensures that a station always appears on an LCR Advance list.

NOTE: When a station that was previously programmed with “unrestricted” station class of service (00) is removed from that class of service using the list box, it is automatically given all station toll restriction classes of service (01-08).

- **ALL** or **NONE**: To include all stations in either list, select the All command button. To exclude all stations from the SCOS list, select the None command button. Stations **cannot** be deleted from the LCR Advances list.

- **OK** or **CANCEL**: When finished, select the OK command button. To exit from the window without saving changes, select Cancel.

- **SORT**: To sort the stations and list them numerically by extension number or circuit number, or to list them alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. The list box will show the stations in the selected order. To exit without changing the sorting method, select the **Cancel** button.

II.23 EXIT: When programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the SCOS Information window without updating the database.
D. TOLL SECURITY

11.24 When Toll Security is selected from the Toll Restriction menu, or the TOLL command is entered, the window appears as shown below. It is used for programming the toll security weekly toll limit information. Refer to page 4-30 in FEATURES for a detailed explanation.

11.25 This program determines whether 7- and lo-digit calls and/or operator-assisted and international calls will be monitored by the Weekly Toll Limit feature. If calls are monitored, it also determines the weekly dollar limit for the call type(s).

11.26 Data in this programming area can be changed only after the Database Programming feature code (029) has been entered at an attendant station. The programming privilege will remain in effect until you end the programming session or allow the session to time out.

NOTE: If a system database restore is performed, the Remaining Days value of the Toll Security Weekly Limit feature is reset to 0. It is not restored to its previous value.

11.27 **7/10 DIGIT ENABLED:** If this box is checked (by selecting it and pressing SPACE BAR), all 7-digit and IO-digit calls will be monitored by the Weekly Toll Limit feature. The weekly limit information below can be programmed when there is a check in the 7/10 Digit Enabled box.

11.28 **OPERATOR/INTERNATIONAL ENABLED:** If this box is checked (by selecting it and pressing SPACE BAR), all operator-assisted and international calls will be monitored by the Weekly Toll Limit feature. The weekly limit information below can be programmed when there is a check in the Operator/International Enabled box.

11.29 **WEEKLY TOLL LIMIT:** Enter the desired weekly dollar limit (045,000) for the type of calls being monitored (7/10 digit or operator/international).

11.30 **CLEAR ACCUMULATED WEEKLY TOTAL:** When this box is checked, the weekly limit above it is reset to 0 when you update the database. (The check is removed automatically after the update.)

11.31 **REMAINING DAYS:** This appears for reference only. It indicates the number of days that the Weekly Toll Limit feature will remain enabled. This number can be increased only by Inter-Tel Services personnel (see page 6-41). In the default state, it is set to 0.

11.32 **EXIT:** When programming is finished, select the Exit command button. A window appears that asks "Perform Update to Database?" To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the Toll Security window without updating the database.
12. LEAST-COST ROUTING (LCR)

12.1 Programming LCR requires some preparation. Refer to page 4-32 in FEATURES for a description of the feature. Then, follow the planning steps listed below. For a program planning sheet, refer to Figure 5-23, page 5-217.

- **Facility groups:** Determine the types of trunk groups available and assign them to up to 24 facility groups. For example, place all local trunk groups in one facility group, in-state WATS in another, out-of-state WATS in a third group, etc. Each facility group can contain up to 47 trunk groups.

 NOTE: F&M trunks can be placed in LCR facility groups to allow the system to route outgoing calls through the E&M destination site’s trunks. The E&M trunks are put into the facility groups and the dial rules are programmed to dial the other system’s trunk access code and then echo the digits dialed. This is useful when calls that are toll calls from the 256 System site can be placed as local calls through the other site’s trunks.

- **Area codes and office codes to be accessed by LCR:** Customers may wish to use LCR for all outgoing calls, all long distance calls, or calls to specific cities. List the area codes to which the customer wishes to place calls using LCR. Also list office codes within the area codes for more specific LCR use.

- **Route groups:** Croup the area codes and office codes that have common access in up to 19 route groups. For example, non-toll local area and office codes can be in one group, while toll codes are in another. A route group for “800+” calls could also be programmed. (Route group 1 is used for 911 and 411 calls and is normally used for non-toll, local calls and calls to the telephone company operator.) To provide route groups for calls that begin with 0, 01, and 011, there are three permanently programmed route groups (these cannot be deleted or changed):
 - Route Croup 17 is for operator-assisted (0+) calls.
 - Route Croup 18 is for operator-assisted international (01+) calls.
 - Route Croup 19 is for station-to-station international (011+) calls.

 NOTE: Because area and office codes do not need to be checked when these route groups are used, only facility groups and time blocks are programmed for them.

- **Rank the facility groups within the route groups:** Each route group is divided into day, evening, and night/weekend time blocks. Rank the facility groups, from most- to least-economical, for each time block. For example, directdial trunks may be the least-economical route during the day, but at night they may be the most-economical route. A facility group can appear in more than one route group.

 - **Dial rules needed:** If the trunk groups in the facility groups require special digits (for example, SCC access codes), up to 28 dial rules can be programmed. In addition, there are three permanently programmed rules in the database; they are as follows:
 - **Dial Rule 1 -Echo toll field:** When LCR is selected, the station user dials the number as if a direct dial trunk was being used, including the area code and “1” if necessary. If LCR selects a trunk that requires a “1,” its facility group must have this dial rule programmed to tell the system to echo (send) the “1”.

 NOTE: It may be desirable to program dial rule number five to add a “1,” even though dial rule number one can be used to echo the toll field. This allows users to dial without knowing whether the “1” is required. If “1” is needed, the dial rules tell the system to add it. Users only have to remember to dial the area code when necessary. If dial rule number five is programmed as described, do not include dial rule number one.

 - **Dial Rule 2 -Echo area code:** The system includes the area code in the number if this dial rule is programmed for the facility group. If this dial rule is not programmed, the system drops the area code from the dialed number.

 - **Dial Rule 3 -Echo local address or country code and national number:** All facility groups must have this dial rule. It tells the system to send the seven-digit telephone number that the user has dialed.

 - **Dial Rule 4 -Echo ExtensionNumber:** This dial rule includes the extension number of the station placing the call in the dialed number. This is especially useful in areas where the 911 operator needs to know the extension number when an emergency call is placed from a business location.

- **Assign the dial rules to the facility groups:** List the dial rules for the facility groups in the order they are to be used. For example, to add the “1” (rule 5), echo the area code (rule 2), and echo the telephone number dialed (rule 3), enter 5, 2, 3. (For international calls, only rules 1 and 3 are needed.)
12.2 The window shown above can be reached by selecting Least-Cost Routing from the Applications menu or entering the LCR command.

12.3 **ROUTE GROUPS:** The Route Groups list box shows each group number (01-19) and its description. Each route group must be programmed with area codes, office codes, and facility groups in time blocks, except the special 0+ route groups which only need facility groups and dial rules. To program information for a route group, select the desired line in the Route Groups list box. A programming window appears (as shown on the next page).

NOTE: Calls placed to 911 and 411 are automatically routed through Route Group 1. This route group is normally used for local calls.

12.4 **FACILITY GROUPS:** The Facility Groups list box shows each of the group numbers (01-24) and its description. Facility groups must be programmed with lists of trunk groups (or a single trunk group) and dial rules. Each group can contain up to 47 trunk groups. A trunk group can appear in more than one facility group, but not all trunk groups need to be assigned. Any combination of up to 32 of the system dial rules can be assigned to each facility group (up to 48 digits can be dialed). To program trunk group and dial rule lists for a facility group, select the desired line in the Facility Groups list box. A Facility Group programming window appears (as shown on page 5-101).

12.5 **DIAL RULES:** Rules 1-4 are preset; rules 5-32 are programmable. To program a dial rule, select the desired line in the Dial Rules list box. A smaller window appears as shown in the next column.

12.6 EXIT: When programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit, select Yes. Or, select No to exit without saving any changes. To return to the Least Cost Routing window without updating the database, select the Cancel button.

A. DIAL RULES

12.7 **DIAL RULE:** Enter or edit the dial rule. The rules can contain up to 16 digits including O-9, #, *, and pauses and/or hookflashes. To program pauses, enter S for a short pause and L for a long pause. The length of the pause is determined by the Pause timer. To program a hookflash, enter an F.

12.8 **OK:** When finished, select the OK command button. The dial rule is then shown in the Dial Rules list box.
B. ROUTE GROUPS

12.9 DESCRIPTION: To give the route group a name of up to 20 characters, select the Description text box and type the name.

12.10 CONFIGURATION: To assign area and office codes to tables, or to assign facility groups to time blocks, select the desired line in the Configuration list box and refer to the procedures below.

12.11 AREA CODE TABLE and OFFICE CODE TABLE: (These options do not appear for 0+ route groups 17-19.) To construct the list of area or office codes that will be accessed by this route group, highlight and select either Area Code Table or Office Code Table in the Configuration list box. The list boxes for the selected item will appear at the bottom of the window as shown above.

- INCLUDE or EXCLUDE: To assign an area or office code to the route group, locate the code in the Excluded list and select it by pressing the SPACE BAR, it will automatically move to the Included list. To remove a code, select it in the Included list to move it to the Excluded list.

- ALL or NONE: To place all codes in one list, select the All command button. To exclude all stations, select the None command button.

12.12 TIME BLOCKS: To program the list of facility groups that will be used during a time block, highlight and select the Day Time Block, Evening Time Block, or Night Time Block in the Configuration list box. The list boxes for the selected item will appear at the bottom of the window as shown above.

- FACILITY GROUP and ORDERED LIST: Select groups in the Facility Group list box one at a time, in the desired order. For example, if you want it to access group 3 first, then 2, then 5, scroll to 3 and select it to move it to the Ordered List box. Then scroll to 5 and select it. Then scroll to 2 and select it. The list will appear in the Ordered List box.

- CLEAR: To erase the ordered list, to make changes or assign groups in a new order, select the Clear command button.

12.13 OK: When programming is completed for the route group, select the OK command button to return to the Least Cost Routing programming window.
C. FACILITY GROUPS

12.14 The Facility Group programming window, shown above, appears when an item in the Facility Group list box (shown on page 5-99) is selected.

12.15 DESCRIPTION: To assign a descriptive name with up to 20 characters, select the Description text box and type the name.

12.16 CONFIGURATION: The Configuration list box allows you to select Dial Rules or Trunk Groups for programming. Refer to the procedures below.

12.17 DIAL RULES: To program the ordered list of dial rules needed by the facility group, highlight and select Dial Rules in the Configuration list box. The list boxes for programming the rules appear as shown above.

- DIAL RULES and ORDERED LIST: Select dial rules in the Dial Rules list box one at a time, in the desired order. For example if you want to use dial rule 3 first, then 2, then 5, scroll to 3 and move it to the Ordered List box. Then scroll to 5 and select it. Then scroll to 2 and select it. The list will appear in the Ordered List box. To remove a dial rule from the ordered list, highlight and then select it by pressing the SPACE BAR.

- CLEAR: To erase the ordered list and start over, select the Clear command button.

12.18 TRUNK GROUPS: To construct the list of trunk groups (or designate one trunk group) that will be accessed by this facility group, highlight and select Trunk Groups in the Configuration list box. The list boxes appear at the bottom of the window.

- TRUNK GROUPS/FACILITY GROUP: To assign a trunk group to the facility group, locate the trunk group number in the Trunk Groups list box and select it by pressing the SPACE BAR; the group will automatically move to the Facility Group list box. To remove a trunk group from the facility group, select the trunk group in the Facility Group list box.
• **ALL or NONE:** To place all trunk groups in the facility group, select the All command button. To remove all trunk groups from the facility group, select the None command button.

NOTE: If more than one trunk group is placed in a facility group, the trunk groups will be accessed in numerical order by the station users. If you wish to have them accessed in a different order, place each trunk group in a separate facility group, place those facility groups in the same route groups, and ensure that stations have sufficient LCR advances to reach the trunk groups. For toll restriction purposes, only the highest numbered trunk group in the facility group is checked (the last trunk group in the list). Make sure that the highest numbered trunk group has the desired toll restriction programming for the entire facility group.

12.19 OR: When programming is completed for the facility group, select the OK command button.
13. TRUNK PROGRAMMING

13.1 When Trunk Programming is selected from the Applications Menu window, the menu expands to show
the following options:

- Trunk Programming...
- Individual Trunk
- Trunk Groups, DID Groups, &
- Ring-in/Answer Patterns
- T1 Programming

13.2 Each of the options and the windows they access are described in detail in the following pages. Program
planning sheets for trunk programming are in Figure 5-24, beginning on page S-223.

A. INDIVIDUAL TRUNK (INDT)

13.3 When you select Individual Trunk from the Trunk Programming menu or enter the IND T command,
the window shown on the next page appears.

13.4 For each trunk, determine the following information:

- Identify the trunk group to which it will belong. Each trunk must be assigned to a trunk group. They
can be moved from group to group, but cannot be removed from groups entirely. If any trunks will be un-
used, they should be assigned to a trunk group labeled UNUSED that does not have a ring-in assign-
ment associated with it.

- Receive and transmit gain can be adjusted on a trunk-by-trunk basis if voice transmit or voice
receive volume problems occur. You can adjust the receive gain and/or the transmit gain for individual
circuits. Receive and transmit are measured from the perspective of the central office. That is, receive
gain adjusts the signal that is sent to the CO from the 256 System. The signal that is transmitted from the
CO is affected by adjusting the transmit gain on the 256 System.

- Hybrid balance can be set to ideal, loaded, or unloaded on a trunk-by-trunk basis. (T1 circuits and
4-wire E&M circuits cannot be hybrid balanced.)

 Ideal: The ideal balance network simulates a 600-ohm transmission trunk to match trunks,
which are supplied by other equipment located within the same building, using private, copper
wire termination (e.g., an OPX supplied by another PBX that does not use the public network,
or a T1 channel bank interface).

 Unloaded: The unloaded balance network simulates an 800-ohm transmission trunk which matches most CO trunks.

 Loaded: The loaded balance network simulates a 1650-ohm transmission trunk which more closely
matches the qualities of a central office trunk that has a loading coil included in its circuitry be-
cause the central office is very far from the installation (usually over 18,000 feet).

- Trunks can be loop or ground start (unless they are on a Loop Start Card).

- A ground start trunk can be programmed to begin the call as soon as dial tone current is detected or to wait
for the Dialing Wait timer to expire.

- Trunks can be set for DTMF or dial pulse signals. (Dial pulse is not recommended for LSC trunks. The pulse circuitry on the LGC is more sophisticated and would provide better performance.)

- Each circuit on the EMC has two jumper straps, one for selecting the signaling type (1, 2, 4, or 5) and one
for selecting the audio type (2-wire or 4-wire). The signaling and audio type for each circuit must also be
programmed in the database.
13.5 TRUNKS: To begin programming an individual **trunk**, scroll through the list box until the desired trunk is highlighted. Then continue programming the necessary trunk features as described below.

13.6 GROUP NUMBER: To program the trunk group number to which this trunk is assigned, select the Group # text box, and type the desired number (1-47).

13.7 RECEIVE GAIN: To set the receive gain, enter the gain amount in the Receive Gain text box (non-T1 trunks can be -9dB to +3dB; T1 range is -15dB to +15dB).

13.8 TRANSMIT GAIN: To set the transmit gain, enter the gain amount in the Transmit Gain text box (non-T1 trunks can be -3dB to +6dB; T1 range is -15dB to +15dB).

NOTE: Transmit and receive gain should not be changed unless the system is experiencing volume problems. Before changing the values contact the telephone company to ensure that their trunks are in proper order. FCC regulations specifies 6dB gain for CO-to-CO connections. Increasing the gain above zero may place the system in violation of the FCC regulations. These adjustments were intended for use with connections other than to telephone company trunks, such as a customer-provided OPX or ringdown circuits. Raising the gain too much could cause feedback during conference calls.

13.9 HYBRID BALANCE: (Not available for T1 trunks or 4-wire E&M trunks) Balance can be set to ideal, unloaded, or loaded by selecting the desired option button in the Hybrid Balance box.

13.10 E&M INTERFACE: When programming an E&M trunk, designate the signalling type (1, 2, 4, or 5) and the audio type (2-wire or 4-wire) by selecting the appropriate option buttons. This programming must match the jumper settings on the EMC.

13.11 START TYPE: Determine whether the trunk is a ground start trunk or a loop start trunk by selecting the Start Type box and then selecting the desired option button. The selected option button will have a black dot in the center. This option is not available for EMC, T1C, or LSC circuits.

13.12 CURRENT DT DETECT: (Ground Start Trunks Only) To program the trunk to begin processing an outgoing call as soon as dial tone current is detected (bypassing the Dialing Wait timer), select the Current DT Detect check box (by pressing the SPACE BAR) to place an X in it. Selecting it again will remove the X.
13.13 **RELAXED RING DETECT:** If the trunk does not supply standard ringing (such as an AT&T Dimension PBX OPX), select the Relaxed Ring Detect check box (by pressing the SPACE BAR) to place an X in it. This option is not available for LSC, EMC, or T1C circuits.

13.14 **DTMF SIGNALING:** If the trunk uses DTMF signaling, select the DTMF Signaling check box (by pressing the SPACE BAR) to place an X in it. If the trunk uses dial pulse signaling, and the check box contains an X, remove it by selecting the check box.

13.15 **IGNORE ANSWER SUPERVISION:** This option applies to E&M circuits only. The answer supervision signal is transmitted by the far end telephone system to signify that the call has been answered. If this option is enabled, any signals that are shorter than the E&M Answer Recognition timer are ignored. This is used in situations where false signals are being picked up during transmission of calls. To enable the option, select the Ignore Answer Supervision check box (by pressing the SPACE BAR) to place an X in it. To re-enable the timer, remove the X by selecting the check box again.
B. TRUNK GROUPS, DID GROUPS, AND RING-IN/ANSWER PATTERNS (TRNK)

13.16 When you select Trunk Groups, DID Groups, and Ring-In/Answer Patterns from the Trunk Programming menu, or enter the TRNK command, the window appears as shown on page 5-108.

13.17 Trunk Groups: To prepare to program trunk groups, determine the following information:

- Trunk group description (up to 20 characters) and display identification (up to seven characters).
- The tenant group number of the attendant (other than the primary attendant) that can place the trunk group in night mode.
- The Hookflash feature can be enabled or disabled for each trunk group. If disabled, users cannot use the CO Hookflash feature code (330) while using the trunks in the trunk group.
- E&M trunks can be placed in trunk groups. E&M trunk groups may be designated as immediate start, wink start, or delay start in database programming. The call routing can be programmed to automatically ring in (auto ring in) to the system’s attendant or to allow callers to dial extensions as desired (dial repeating). If callers are allowed to dial extension numbers, the trunk group programming must indicate whether the 256 System will send dial tone. Reorder tones on E&M trunk groups can be programmed to be sent as continuous tones or a short burst of reorder tone; a short burst allows the user to try again, continuous tones prevent the user from further dialing.
- E&M trunks can be placed in trunk groups. E&M trunk groups can be exempt from LCR only restriction. If the trunk group is to be used for DISA and a security code is desired, determine the four-digit security codes (day and night) and determine if the security codes will be needed for intercom access. If using Extended software, also determine the toll restrictions, for each DISA trunk group, that will be applied when an outgoing call is placed.

NOTE: While DISA is designed to be reasonably secure against misuse by outside callers, there is no implied warranty that it is invulnerable to unauthorized intrusions. The installer and owner of the system should ensure that proper security measures have been taken to prevent outside callers from accessing and misusing outgoing lines for unauthorized calls.

- Determine if the trunk group is subject to toll restriction. If the trunk group is not subject to toll restriction, the station class of service (SCOS) is not checked (except LCR-Only restriction) when a trunk in the group is used.
- The trunk group can be exempt from, subject to, the LCR only restriction. If exempt from LCR only, stations with SCOS 6 (LCR Only) using the proper access code can directly access the trunks. If subject to LCR only, stations with SCOS 6 can access the trunk only if it is part of an LCR facility group.
- For unrestricted trunk groups, determine the call cost rate to be used for calls placed on the trunks. Call cost can be: free, local rate, ten-digit rate, or operator-assisted/international rate.

- Trunk groups that are subject to toll restriction can be designated as equal access trunks to allow 10XXX and 101XXX codes to be used when accessing long distance carriers.
- Trunk groups can be programmed to absorb digits for PBX installations and installations in areas where the first digit(s) of the office code are absorbed. If absorbed digits are used, determine if they are repeatable (that is, they are absorbed if the absorbed digit string is dialed repeatedly).
13.18 **DID Groups:** There can be up to 11 direct inward dialing (DID) groups, including the DID group for unused trunks. For each DID group, determine the following information:

- DID group description (up to 20 characters) and display identification (up to seven characters) for each DID number.
- List the trunks that will be in the DID group by circuit number.
- For each DID group, note the base number and the dialed number range that will be received from the central office. For example, if the customer has purchased a block of 100 DID numbers starting with 961-1000, the base number is “961” the start digits are “1000” and the number of entries is “100.”
- Start type for the DID group can be immediate, wink, or delay depending on the type of DID trunks ordered from the telephone company.
- If the DID group is to be used for DISA and a security code is desired, determine the four-digit (seven-digit in Extended software) security codes for day and night modes. Also determine if the security codes will be needed for intercom access. If using Extended software, also determine the toll restrictions that will be applied when an outgoing call is placed.

NOTE: While DISA is designed to be reasonably secure against misuse by outside callers, there is no implied warranty that it is invulnerable to unauthorized intrusions. The installer and owner of the system should ensure that proper security measures have been taken to prevent outside callers from accessing and misusing outgoing lines for unauthorized calls.

- Ring-in type (the destination of the DID number) is determined separately for day and night modes. Ring in can be the same for both modes, or any combination of the following can be used:
 - Single: If the DID number will ring at a single station, determine the circuit or extension number of the station.
 - Multiple: If the DID number will ring in to more than one station, list those stations by circuit or extension number in a ring-in/answer pattern that is assigned to the DID number.
 - Hunt Group: If the DID number will ring in to a hunt group, determine the hunt group’s number.
 - DISA: The DID number can be used for DISA.

NOTE: If a DID number is not given a ring-in destination, it will ring at the primary attendant’s station in both day and night modes.

13.19 **Ring-In/Answer Patterns:** Up to 40 ring-in/answer patterns can be set up and assigned to the trunk groups and DID numbers. These patterns designate the stations and relays that will receive direct ring-in, or stations that have allowed-answer permission, for the trunk group. Each pattern can be given a name of up to 20 characters.
13.20 **TRUNK GROUPS**: Up to 47 trunk groups, with up to 184 trunks each, can be programmed. To program the characteristics of an individual trunk group, scroll through the Trunk Groups list box until the desired group is highlighted. When a trunk group is selected, a Trunk Group programming window appears, as shown on the next page.

13.21 **DID GROUPS**: There can be a total of 400 DID entries per system divided among the direct inward dialing (DID) groups. There is no limit to the number of entries per group as long as the system-wide maximum of 400 is not exceeded. To program a specific DID group, scroll through the DID Groups list box until the desired group is highlighted. When selected, a DID programming window appears as shown on page 5-115. (DID group programming is also used for E&M-type T1 services that require DID digit translation, as described on page 5-110.)

13.22 **RING-IN/ANSWER PATTERNS**: Up to 40 ring-in/answer patterns can be set up and assigned to the trunk groups and DID numbers. These patterns designate the stations and relays that will receive direct ring-in, or have allowed-answer permission for the trunk group. Each pattern can be given a name of up to 20 characters. To program a pattern, scroll through the Ring/Answer Pattern list box until the desired pattern is highlighted. When the pattern is selected, a window appears as shown on page 5-120.

13.23 **EXIT**: When trunk group programming is finished, select the Exit command button to return to the Applications Menu.
Trunk Group Programming Window

13.24 DESCRIPTION: If desired, program a description for the trunk group (that will appear in the Trunk Group list) by selecting the Description text box and entering a description of up to 20 characters.

13.25 TRUNK NAME: If desired, select the Trunk Name text box and enter a name of up to seven characters (e.g., WATS 1, LOCAL 3, etc.). If no entry is made, GRP #XX appears on keyset displays.

13.26 TENANT GROUP: To assign the trunk group to a specific tenant group, select the Tenant Group text box and type the desired number (1-8).

13.27 ENABLE HOOKFLASH: The Hookflash feature, in which the user enters a feature code (330) to generate a timed hookflash, can be enabled or disabled on a trunk group basis. To allow the Hookflash feature to be used, place an X in the Enable Hookflash check box by highlighting it and pressing the SPACE BAR. If the box already contains an X, and you wish to disable the feature, highlight the check box and press SPACE BAR.

13.28 E&M TRUNK GROUP: If the trunk group is made up of E&M trunks, place an X in the E&M Trunk Group check box by selecting it. The following sections of the window change from gray to black to allow you to continue programming the E&M trunk group.

NOTE: Whenever you change the status of this check box, a warning appears that tells you that changing the trunk group type will exclude all trunks from this group. If you wish to continue, select the Yes command button. To cancel the change, select No.

- CALL ROUTING: Determine whether incoming calls on these trunks will be sent directly to a predetermined destination, such as the attendant (Auto Ring-In), or if callers will be allowed to dial numbers to reach extensions (Dial Repeating). Place a dot in the desired option button by selecting it. (Defaults to Dial Repeating.)

- REORDER TONE: Determine whether the reorder tone heard by users will be a short burst of tones or continuous reorder tones (a short burst of tone will allow the caller to try again, a continuous burst requires the caller to hang up). Place a dot in the desired option button by selecting it. (Defaults to Burst.)

- HANDSHAKING: For dial-repeating trunks, indicate the type of "handshaking" the E&M trunk utilize (immediate-start, delayed-dial, or wink-start). Place a dot in the desired option button by selecting it. (Defaults to Immediate-Dial.)

- RETURN DIAL TONE: To enable the 256 System to send dial tone when accessed, enable this option.
Dial-repeating trunk groups should have this option enabled.) If disabled, the 256 System automatically performs the handshake and then waits to receive digits. To enable the 256 System to send dial tone, place an X in the Return Dial Tone check box by selecting it. (In the default state, this option is enabled.)

- **DID DIGIT TRANSLATION:** There are trunks available that function like a DID trunk for incoming calls and an E&M trunk for outgoing calls. For an outgoing call, the trunk directly accesses the central office or long distance provider and allows the usual E&M calls to be placed. For incoming DID-type calls, the trunk receives the incoming call and then waits for 2-4 additional digits to be dialed. These digits must correspond to the digits in a DID table so that the 256 System will know where to send the call. (The DID digit translation tables are programmed in the DID Group window shown on page 5-115.) To enable DID digit translation for the trunk group, locate the desired DID group by scrolling through the DID Translation list box. The position of the highlight bar indicates the selected group. If digit translation is not needed, highlight "No DID Translation."

13.29 **ONE-WAY INCOMING ONLY:** If the trunk group contains incoming-only lines, place an X in the One-Way Incoming Only check box by selecting it. To remove the X, select it again. When you place the X in the check box, the system checks whether any stations have outgoing access for that trunk group. If there are stations with outgoing access, a window appears that asks if you wish to delete the outgoing-access assignments for those stations. Select the Yes command button to remove the outgoing-access assignments, or select the No command button to cancel the One-Way Incoming Only designation.

13.30 **MUSIC-ON-HOLD:** To select the music-on-hold source that will be heard by outside callers when these trunks are used, move to the Music-On-Hold box and select a music channel (1 or 2), silence, or tick-tones by selecting the desired option button.

13.31 **DAY/NIGHT OUTGOING ACCESS:** To program the stations that will have outgoing access for the trunk group, select the Day Out Access or Night Out Access command button. The following window appears.
13.32 **RING-IN:** *(This is not available for Dial Repeating E&M trunks)* To program ring-in type for the trunk group, select the Ring-In command button (shown on page 5-109). The window shown above appears. Ring-in assignments can be programmed for day and night modes of operation. Each mode has four option buttons from which to choose. The selected button is indicated by a black dot as shown above.

- **SINGLE:** Select the Single option button if the trunk group will ring in to only one station. A Station text box appears, as shown above. Select the text box and type the circuit or extension number of the station that will receive the ring in. Or, leave it blank (or erase the existing entry) to assign no ring-in destination.

- **MULTIPLE:** If the trunk group will ring in to several stations, select the Multiple option button. A Ring/Answer Pattern list box appears as shown above. Select and scroll through the Ring/Answer Pattern list box until the desired line is highlighted. The highlighted line indicates the selected pattern. Pattern programming is explained on page 5-61.

- **HUNT/UCD:** Select the Hunt/UCD option button if the trunk group will ring in to a hunt group pilot number. A Hunt Group/UCD list box will appear as shown above. Scroll through the list box until the desired hunt group is highlighted. The highlighted line indicates the hunt group that will receive ring in for the trunk group. Hunt group programming is explained on page 5-61.

DISA Security Codes

Night: []

- Required for IC calls

Night Toll Restrictions

<table>
<thead>
<tr>
<th>(0) Remove All Restrictions</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Operator Access</td>
<td>Yes</td>
</tr>
<tr>
<td>(2) Toll Access</td>
<td>Yes</td>
</tr>
<tr>
<td>(3) International Access</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Trunk Group XX Extension: XXX

<table>
<thead>
<tr>
<th>Day Ring-in Type</th>
<th>Night Ring-in Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single 0 Hunt/UCD</td>
<td>Single 0 Hunt/UCD</td>
</tr>
<tr>
<td>Multiple 0 DISA</td>
<td>Multiple 0 DISA</td>
</tr>
</tbody>
</table>

Ring/Answer Pattern

<table>
<thead>
<tr>
<th>01. Night Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
</tr>
<tr>
<td>03</td>
</tr>
<tr>
<td>04</td>
</tr>
</tbody>
</table>

Hunt Group/UCD

| 01. |-| 02. |-| 03. |-| 04. |-|
• **DISA:** To assign the trunk group for DISA ring in, select the DISA option button. A check box, text box, and list box appear as shown on the preceding page. Program the following:

 Security **Code:** A day and/or night mode security code can be assigned by selecting the text box (Day or Night) and typing the desired code. In the **Extended** software package, codes can be 4-7 digits long (using any combination of digits 0-9, *, and #). All other software packages use 4-digit security codes.

 Security Code Required For IC Calls: If the security code will be required before the caller can place an intercom call through DISA, select the Required for IC Calls check box (by pressing the SPACE BAR) to place an X in it. (To remove the X, select the box and press SPACE BAR again.)

 DISA Toll Restriction: (Available in **Extended** software packages only.) To determine the toll restrictions that will apply to outgoing calls made through DISA, use the Toll Restriction list box. To change a toll restriction's status (Yes or No), highlight the desired toll restriction and press SPACE BAR. Changing the Remove All Restrictions line to “Yes,” automatically changes all others to “No.” When it is set to “Yes,” changing any other restriction to “Yes” will automatically change Remove All restrictions to “No.”
13.33 TOLL RESTRICTION: To program the toll restriction parameters for the trunk group (i.e., equal access, absorbed digits, etc.), select the Toll Restriction command button (shown on page 5-109) and refer to the window shown above.

- SUBJECT TO TOLL RESTRICT: If the trunk group is not subject to toll restriction, station class of service (SCOS) is not checked when a trunk in the trunk group is used for placing a call. To enable toll restriction, select the Subject to Toll Restrict check box (by pressing the SPACE BAR) to place an X in it. (Selecting the check box again will remove the X.)

- ASSIGNED CALL COST: For trunk groups that are not subject to toll restriction, determine the call cost rate to be used for calls placed on the trunks. Program the appropriate call cost for the trunk group by selecting one of the following option buttons:
 - FREE: The call cost will be 000.
 - LOCAL: Local toll-call cost calculations will be used for trunks in this trunk group.
 - 10-DIGIT TOLL: The 10-digit call cost calculations will be used.
 - OPERATOR/INTERNATIONAL: Operator-assisted/international call rates will be used for call cost.

- EXEMPT FROM LCR ONLY: To disable LCR Only restriction, select the Exempt from LCR Only check box (by pressing the SPACE BAR) to place an X in it. (Selecting the check box again will remove the X.)

- EQUAL ACCESS: If the trunk group is subject to toll restriction, determine whether the trunk group will be used for equal access (10XXX and 101XXXX). To enable equal access and provide accurate toll restriction when users dial equal access codes, select the Equal Access check box (by pressing the SPACE BAR) to place an X in it. (Selecting the check box again will remove the X.)

- ABSORBED DIGITS: Trunk groups that are subject to toll restriction can be programmed to absorb digits for PBX network installations and installations in areas where the first digit(s) of the office code are absorbed. To program the trunk group to absorb digits, select the Absorbed Digits check box (by pressing the SPACE BAR) to place an X in it. (Selecting the check box again will remove the X.) Refer to FEATURES, page 4-26, for more information about absorbed digits.

- ABSORBED DIGITS APPLICATIONS: If the trunk group is programmed to absorb digits, select the appropriate option button (PBX Line or Local Central Office) to indicate whether it is due to PBX network installation or local office code absorption.
• ABSORBED DIGITS **REPEATABLE:** If the local central office absorbs digits, determine if they are “repeatable” (that is, the digit string is absorbed when it is dialed more than once), or if the digit string is processed as part of the telephone number when dialed a second time. If the digits are repeatable, select the Absorbed Digits Repeatable check box (by pressing the SPACE BAR) to place an X in it. (Selecting the check box again will remove the X).

• ABSORBED STRINGS: If digits are absorbed because of the local central office, only one digit string is programmed. For PBX installations, up to 20 absorbed digit strings can be programmed. To program a digit string, scroll through the Absorbed Strings list box until the desired line is highlighted. When the line is selected, a text box appears below the list box. Type the digit string, up to eight digits. An “X” may be used in the number to represent any digit 0-9. For example, 8X allows 80-89. **If Local Central Office** is chosen in the Absorbed Digit Applications box, only one digit string prompt will appear.

• **OK:** When toll restriction Programming is completed for the trunk group, select the OK command button to return to the Trunk Group programming window.

13.34 TRUNK LIST: To program the trunks that will be included in the trunk group, select the Trunk List command button (shown on page 5-109). The following window appears. (Note that a trunk can be assigned to only one trunk group.)

- **INCLUDE:** To include a trunk, locate it on the Exclude list and select it by pressing the SPACE BAR; it will automatically move to the Include list. To remove a trunk, locate it on the Include list and select it. It is automatically moved to the “unused trunk” (or “unused E&M”) trunk group, from which it can later be moved to another group. This is to ensure that each trunk is always part of a trunk group.

- **ALL:** To include all trunks in the list, select the All command button.

- **OK:** When the trunk lists appear as desired, select the OK command button to return to the Trunk Group XX window on page 5-109.

13.35 **EXIT:** (Shown on page 5-109.) When programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Trunk Groups, DID Groups, and Ring-In Answer Patterns window, select Yes. Or, select No to exit without saving any changes. To return to the Trunk Group XX window without updating the database, select the Cancel button.
DID Group Programming Window

13.36 The window shown above appears when an item is selected from the DID Groups list box shown on page 5-108. (DID group programming is also used for E&M trunks that require DID digit translation, as described on page 5-110.)

13.37 DESCRIPTION: If desired, program a description for the DID group (that will appear in the DID Group list box) by selecting the Description text box and entering a description with up to 20 characters.

13.38 TENANT GROUP: To assign the DID group to a specific tenant group, select the Tenant Group text box and type the desired number (1-g).

13.39 MUSIC ON HOLD: Select the desired music channel (one or two), silence, or tic-tones that DID trunk callers will hear when placed on hold.

13.40 START TYPE: Select the appropriate option button (immediate, wink, or delay) for the trunks ordered from the telephone company.

13.41 DISA CODES: The following can be programmed for DISA:

- Day/Night Codes: If desired, a separate security code can be assigned for day and night modes of operation by selecting the text box (Day or Night) and typing the code. In the Extended software package, codes can be 4-7 digits long (using any combination of digits 0-9, *, and #). All other software packages use 4-digit security codes.

- Codes For IC Calls: If the security codes will be required before the caller can place an intercom call through DISA, select the IC Calls check box to place an X in it. (If the codes are not required for IC and an X is in the box, select the box to remove the X.)

NOTE: While DISA is designed to be reasonably secure against misuse by outside callers, there is no implied warranty that it is invulnerable to unauthorized intrusions. The installer and owner of the system should ensure that proper security measures have been taken to prevent outside callers from accessing and misusing outgoing lines for unauthorized calls.
13.42 **DAY/NIGHT SCOS** (DISA Class of Service): (This feature is available only in the Extended package.) DISA trunks can be given day and/or night mode toll restrictions like those described on page 4-27 for individual stations (except LCR-Only). When a DISA caller dials an outgoing call, the call is checked against the DISA trunk's toll restriction. If the call is disallowed, the DISA caller is sent to the primary attendant. When the Day SCOS or Night SCOS command button is selected, the following window appears.

DID SCOS Programming

<table>
<thead>
<tr>
<th>Include</th>
<th>Exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day Toll Restriction</td>
<td>Day Toll Restriction</td>
</tr>
<tr>
<td>(1) Operator Access</td>
<td>(4) Eight Digit Access</td>
</tr>
<tr>
<td>(2) Toll Access</td>
<td>(5) Area/Office Code</td>
</tr>
<tr>
<td>(3) International Access</td>
<td></td>
</tr>
<tr>
<td>(7) Alternate Carriers</td>
<td></td>
</tr>
<tr>
<td>(8) Allowed Long Distance</td>
<td></td>
</tr>
<tr>
<td>Include</td>
<td>Exclude</td>
</tr>
<tr>
<td>All</td>
<td>None</td>
</tr>
</tbody>
</table>

13.43 **TRUNK LIST**: DID circuits are created in the System Configuration window on page 5-170. To program the circuits that will be included in the DID group, select the Trunk List command button. The following window appears.

Base DID Number

Base Number: 9611

- **INCLUDE**: To include a trunk, locate it on the Exclude list and select it by pressing the SPACE BAR, it will automatically move to the Include list. To remove a trunk from the list, it must be included in another group. This is because each trunk must always be assigned to a group.

- **ALL**: To include all trunks in the list, highlight a line in the Include list box and select the All command button.

- **OK**: When the trunk lists appear as desired, select the **OK command button** to return to the DID Group programming window.

13.44 **BASE NUMBER**: The base number is the part of the DID number that will not be dialed into the system by the central office. For example, if the numbers range from 961-1000 to 961-1100 and the central office will send four digits, then the base number will consist of the office code (961) of the DID numbers purchased. If the central office will send three digits, then the base number will be the office code plus the first address digit (9611). To program the base number of the DID group, select the Base Number Command button. The following window appears.

- **BASE NUMBER**: Select the Base Number text box and enter the digits that make up the base of the DID group.

- **OK** or **CANCEL**: When the base number appears as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button. NOTE: If you select OK after changing a previously programmed base number to a base number with a different amount of digits, a window will appear warning you that all previous DID numbers will be erased. If the new base number is the same length as the previous base number, the entries in the list box will be updated with the new base number.
13.45 **ADD ENTRIES:** To add a number (or block of numbers) to the DID group, select the Add Entries command button. The following window appears.

<table>
<thead>
<tr>
<th>Add DID Entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Digits:</td>
</tr>
<tr>
<td>Number of Entries:</td>
</tr>
<tr>
<td>Ok</td>
</tr>
</tbody>
</table>

- **START DIGITS:** Enter the first address digit(s) that appear after the base number of the DID numbers in the Start Digits text box. (In the example, the numbers will begin with 9611000.)

- **NUMBEROFENTRIES:** Indicate the number of sequential numbers to be added to the DID group. (In the example shown in the window above, the numbers will begin with 9611000 and continue through 9611002—ten DID numbers.) Each DID group can contain as many DID entries as desired until the system total of 400 is reached. If you attempt to exceed the limit, a warning window appears that tells you how many additional entries are allowed. If the window appears, press RETURN to clear it and then change the number of entries to the allowed number or fewer before selecting the OK command button.

- **OK or CANCEL:** When the new entries appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button.

13.46 **DELETE ENTRY:** To delete an entry in the DID group number list, highlight the DID number to be deleted (in the Numbers list box shown on page 5-115) and select the Delete Entries command button. When the following window appears, select the Yes command button to delete the entry, or No to cancel without deleting it.

<table>
<thead>
<tr>
<th>Delete Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete this DID entry?</td>
</tr>
<tr>
<td>Yes</td>
</tr>
</tbody>
</table>

13.47 **SET RING-IN:** This command button is used for batch loading DID ring-in assignments. (Instructions for assigning ring-in to individual DID numbers is on the next page.) To determine ring-in assignments for a group of DID numbers, do the following:

1. **In** the Numbers list box (shown on the preceding page), place the highlight bar over the first DID number for which you wish to assign ring in. Using the example on the previous page, assume that there are ten DID numbers (961-1020 to 961-1029), and you want to use the batch loading option to assign the ring-in assignments for the last eight (961-1022 to 961-1029). The highlight bar would be placed on 961-1022.

2. Select the Set Ring-In command button. The following window appears.

<table>
<thead>
<tr>
<th>Include</th>
</tr>
</thead>
<tbody>
<tr>
<td>Include</td>
</tr>
<tr>
<td>Exclude</td>
</tr>
<tr>
<td>1008 02.01 Station Undefined</td>
</tr>
<tr>
<td>1009 02.02 Station Undefined</td>
</tr>
<tr>
<td>1010 02.03 Station Undefined</td>
</tr>
<tr>
<td>1011 02.04 Station Undefined</td>
</tr>
<tr>
<td>1012 02.05 Station Undefined</td>
</tr>
<tr>
<td>Ok</td>
</tr>
<tr>
<td>Cancel</td>
</tr>
<tr>
<td>Sort</td>
</tr>
<tr>
<td>All</td>
</tr>
<tr>
<td>None</td>
</tr>
</tbody>
</table>

3. Use the following commands to place the ring-in assignments into the Include list box in the desired order. In the example, you need eight ring-in assignments. First locate the ring-in extension for %1-1022 and select it to place it in the Include list box. Then locate the extension for 961-1023 and place it in the Include list box. Continue until there are eight extensions in the list box that correspond to the DID numbers.

- **INCLUDE or EXCLUDE:** To include a station, locate the desired station on the Exclude list and select it by pressing the SPACE BAR, it will automatically move to the Include list. To remove a station from the list, select the station in the Include list to move it to the Exclude list.

- **ALL or NONE:** To include all stations in the list, select the All command button. To exclude all stations from the list, select the None command.

- **SORT:** To sort the stations and list them numerically by extension number or circuit number, or
alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.

(4) When the list of extensions appears as desired, select the OK command button. (Or, to exit from the window without saving changes, select the Cancel command button.) The ring-in assignments will appear in the Numbers list box (shown on the previous page).

<table>
<thead>
<tr>
<th>Station Sorting Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordering</td>
</tr>
<tr>
<td>By Extension</td>
</tr>
<tr>
<td>By Circuit</td>
</tr>
<tr>
<td>By Name</td>
</tr>
</tbody>
</table>
13.48 **DID NUMBERS:** The list box shown on page 5-115 lists the DID numbers, their ring-in types, and name. When an item in the list is selected, the window shown above appears.

- **USERNAME:** Enter a name of up to 7 characters. If the Expanded DID Names feature is enabled for the Attendant Computer Consoles, the DID usernames must all be unique.

- **RING-IN TYPE:** Ring-in assignments can be programmed for day and night modes of operation. Each mode has four option buttons from which to choose. The selected button is indicated by a black dot as shown above.

 - **SINGLE:** Select the Single button if the DID number will ring in to only one station. A Station text box appears, as shown above. Select the text box and type the circuit or extension number that will receive the ring in.

 - **MULTIPLE:** If the DID number will ring in to several stations, select the Multiple button. A Ring/Answer Pattern list box appears as shown above. Select and scroll through the ping-In/Answer Pattern list box until the desired line is highlighted. The highlighted line indicates the selected pattern. Pattern programming is explained on page 5-120.

 - **HUNT/UCD:** Select the Hunt/UCD button if the DID number will ring in to a hunt group pilot number. A Hunt Group/UCD list box will appear as shown above. Select and scroll through the list box until the desired hunt group is highlighted. The highlighted line indicates the hunt group that will receive ring in for the DID number. Hunt group programming is explained on page 5-61.

 - **DISA:** To assign the DID number for DISA ring in, select the DISA button. (Security codes can be assigned to the DID group in the window on page 5-115.)

13.49 **EXIT:** (Shown on page 5-115.) **When programming is finished,** select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Trunk Groups, DID Groups, and Ring-In Answer Patterns window, select Yes. Or, select No to exit without saving any
changes. To return to the DID Group X window without updating the database, select the Cancel button.

Ring-In/Answer Patterns Window

13.50 The following window appears when an item is selected from the Ring-In/Answer list box shown on page 5-108.

Ring-In/Answer Pattern #XX

<table>
<thead>
<tr>
<th>pattern Title:</th>
<th></th>
</tr>
</thead>
</table>

Ring-In List Answer List Relay List

The Answer pattern will always contain every station in the Ring-in pattern.

Exit

13.51 **PATTERN TITLE**: To assign a name of up to 20 characters for the ring-in/answer pattern, select the Pattern Title text box and enter the desired name.

13.52 **RING-IN LIST**: To assign the stations that will receive ring-in and can answer calls when the selected pattern is used, select the Ring-In List command button. The following window appears. Including a station in the ring-in list, automatically includes it in the answer list.

13.53 **ANSWER LIST**: To assign the stations that will be allowed to answer (but will not receive ringing for incoming calls when the selected pattern is used, select the Answer List command button. A window appears as follows. Note that this list will always include the stations in the ring-in list. If a station that also has ring-in is removed from the answer list, it is automatically removed from the ring-in list as well.

- **INCLUDE or EXCLUDE**: To include a station, locate the desired station on the Exclude list and select it by pressing the SPACE BAR, it will automatically move to the Include list. To remove a station from the list, select it in the Include list to move it to the Exclude list.
- **ALL or NONE**: To include all stations in the list, select the All command button. To exclude all stations, select the None command button.
- **OK or CANCEL**: When the station lists appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button.
- **SORT**: To sort the stations and list them numerically by extension number or circuit number, or alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.
13.54 **RELAY LIST:** If the RCPU Card relay has been programmed as signal device relay, assign it to the selected ring-in/answer pattern by selecting the Relay List command button. The following window appears.

- **INCLUDE or EXCLUDE:** To include a relay, locate the desired relay on the Exclude list and select it by pressing the SPACE BAR, it will automatically move to the Include list. To remove a relay from the list, select it in the Include list to move it to the **Exclude** list.

- **ALL or NONE:** To include all relays in the list, highlight a line in the Include list box and select the All command button. To delete all relays from the list, select the None command button while the line is highlighted.

- **OK or CANCEL:** When the relay lists appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button.

13.55 **EXIT:** (Shown on page 5-108.) When programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Trunk Croups, DID Croups, and Ring-In Answer Patterns window, select Yes. Or, select No to exit without saving any changes. To return to the Ring-In/Answer Pattern window without updating the database, select the Cancel button.
C. T1 PROGRAMMING

13.56 The T1 Programming window allows you to program information that applies to all T1 trunks as well as to specific T1 Cards. The information that is programmed common to all T1 Cards includes:

- **Error thresholds**: The programmer can set numerical thresholds (number per hour and number per day) for T1 Card errors. If a threshold is exceeded, an error is printed on the SMDR report. (These are set to default values that, in most cases, will not need to be changed.) Possible T1 errors include the following:
 - **BPV (Bipolar Violations)**: This is a non-zero signal element that has the same polarity as the previously received non-zero element.
 - **Controlled Slips**: The 256 System replicated or deleted one 192-bit digital signal (DS1) frame due to a lack of frequency synchronization.
 - **CRC-6 (Cyclic Redundancy Check)**: The calculation carried out on a set of transmitted bits by the transmitter does not match the calculation performed by the 256 System.
 - **ES (Errored Seconds)**: These are seconds in which at least one error occurred.
 - **OOF/COFA (Out of Frame/Change of Frame Adjustment)**: OOF is a state in which the frame alignment that is received is not consistent with that which is transmitted. COFA occurs when the 256 System realigns its receiver to the proper frame alignment signal.
 - **SES (Severely Errored Seconds)**: This is a second during which transmission performance is degraded below an acceptable level.
 - **TODV (Transmit Ones Density Violations)**: If there are too few ones in a transmission (low density of pulses representing ones), the excessively long string of zeros causes a pulse density error. This condition is monitored only when the on-board CSU is enabled.
 - **UAS (Unavailable Seconds)**: This is the time interval during which the T1 span is unavailable for service. This time begins with 10 or more consecutive Severely Errored Seconds and ends with 10 or more Non-Severely Errored Seconds.
 - **Dialing feedback configuration**: When a number is dialed over a T1 circuit, the user hears the feedback from the signals (either DTMF or dial-pulse). By adjusting the DTMF gain control or the dial-pulse gain control, you can determine how loud the signals appear to the user. If the circuit is designated for dial-pulse signaling, you can also select the type of dial-pulse tone the user hears (23 different tones are available).
 - **Reference clock back-up priorities**: One T1 Card in the system must be programmed as the system reference clock. If more than one T1 Card is installed in the system, the programmer may designate one or more of the cards as a “back up” to the system reference clock. Then, if the T1 Card acting as the system reference clock fails or is taken out of service, the next T1 Card on the back-up priority list takes over. If no backups are assigned or all T1 cards fail, the RCPU Card clock acts as the backup.

13.57 The information that is programmed specific to each T1 Card installed in the system includes the following. This information is determined by the equipment being used. Refer to the chart on the next page for programming requirements and refer to INSTALLATION for special cabling requirements.

- **Card type**: The type of framing scheme used by the T1 trunks connected to the card can be D4 Superframe or Extended Superframe (ESF).
- **Zero code suppression scheme**: The T1 trunk zero-suppression scheme for the trunks on the T1 card can be AMI (Bit 7), Bipolar Eight Zero Substitution (B8ZS), or “none.”
- **PCM encoding law**: In pulse code modulation (PCM) systems, there are two primary methods of encoding analog signals (sampled audio waveforms) into digital signals. In North America and Japan, the “mu-law” (p-law) method is normally used. In other places, such as Europe, the “A-law” method is widely used. The programmer must select both the transmit and receive method of encoding used by the T1C. In the United States, this will almost always be mu-law to mu-law.
- **Relay activation**: If desired, you can enable one or both of the two relays on the T1 Card. If enabled, you can attach a signaling device (such as a light or alarm) and select whether the relay is in “set” mode for a “T1 line error” (red alarm) or to indicate “T1 line OK.”
- **Channel service unit (CSU) or DSX-1 Interface**: Designate whether the optional on-board CSU is installed on the T1 Card or if a DSX-1 Interface will be used. Also verify that the DSX/CSU jumper on the T1 Card is set in the proper position (to match database programming.) Then program one of the following:
Line build-out (LBO): If the optional on-board CSU is installed, designate the LBO attenuation of the T1 trunk connected to the card. This value is determined by the distance to the nearest public network T1 repeater.

DSX-1 line length: If the optional on-board CSU is not installed, designate the length of the cabling between the T1 Card and the external CSU, or between the T1 Card and the other telephone system.

NOTE: The programming prompts for LBO attenuation and DSX-1 line length assume that proper T1 cable is being used. When transmitting over shorter distances (e.g., when the nearest public network T1 repeater is less than 2000 feet from the MDF), it may be possible to use standard two-pair voice frequency cable instead; however, you may have to compensate by selecting longer LBO distances or DSX-1 line lengths. Also, no matter which type of cable is used, the transmit and receive pairs must be shielded from each other (or run in separate cables or binder groups).

Reference clock programming: First determine whether the T1 Card is connected to the public network. If it is, the card is automatically designated as a slave clock (the public network always acts as the master clock and the first slave clock provides the system reference clock, all other slave clocks act as backups). If the card is not connected to the public network, but is connected to another T1 Card or a card in another telephone system, determine whether the card is a master clock or a slave clock (in relation to the card on the other end).

Error diagnostics: If desired, you can generate a report that shows the current T1 error counts (by hour and by day) for the selected card. The error counts can be displayed in a graph or a table.

13.58 There are T1 services available that function like a DID trunk for incoming calls and an E&M trunk for outgoing calls. For an outgoing call, the trunk directly accesses another PBX and allows the usual E&M calls to be placed. For incoming DID-type calls, the T1 trunk receives the incoming call and then waits for 2-4 additional digits to be dialed. These digits must correspond to the digits in a DID table so that the 256 System will know where to send the call. (The DID digit translation tables are programmed in the DID Group window shown on page 5-115.)
NOTE: For all installations, the card type and code are programmed to match the T1 span being installed. The PCM encoding law is determined by the location in which the T1 span is installed, in the United States it will usually be “p-law to p-law.” For the line build-out or line length option, select the number closest to the actual installation distance. If a T1C is a Master, the source of the reference clock will always be “on-board oscillator.” (“External clock” is reserved for future use.) Refer to page 2-17 in SPECIFICATIONS for more information.

<table>
<thead>
<tr>
<th>256-to-CO with external CSU</th>
<th>CSU or DSX-1</th>
<th>FROM PUBLIC NETWORK?</th>
<th>256 SYS. REF. CLOCK?</th>
<th>MASTER or SLAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1C #1</td>
<td>DSX-1</td>
<td>Yes</td>
<td>Yes</td>
<td>Slave</td>
</tr>
<tr>
<td>T1C #2</td>
<td>DSX-1</td>
<td>Yes</td>
<td>No</td>
<td>Slave</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>256-to-CO with onboard CSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1C #1</td>
</tr>
<tr>
<td>655' max. CSU</td>
</tr>
<tr>
<td>T1C #2</td>
</tr>
<tr>
<td>655' max. CSU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>256 to 256 DSX-1 with repeater(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master 256 System</td>
</tr>
<tr>
<td>Slave 256 System</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>256-to-256 DSX-1 without repeater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master 256 System</td>
</tr>
<tr>
<td>Slave 256 System</td>
</tr>
</tbody>
</table>
FIGURE 5-1. T1 APPLICATIONS AND PROGRAMMING (Continued)

<table>
<thead>
<tr>
<th>256-to-256 CSU with repeater(s)</th>
<th>CSU or DSX-1</th>
<th>FROM PUBLIC NETWORK?</th>
<th>256SYS. REF. CLOCK?</th>
<th>MASTER or SLAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master 256 System</td>
<td>CSU</td>
<td>No</td>
<td>Yes</td>
<td>Master</td>
</tr>
<tr>
<td>Slave 256 System</td>
<td>CSU</td>
<td>Yes</td>
<td>Yes</td>
<td>Slave</td>
</tr>
</tbody>
</table>

256-to-256 CSU without repeater

| **Master 256 System** | CSU | No | Yes | Master |
| **Slave 256 System** | CSU | Yes | Yes | Slave |

Sample T1 Network

<table>
<thead>
<tr>
<th>256 #1</th>
<th>T1C #1</th>
<th>CO 1</th>
<th>256 #2</th>
<th>T1C #2</th>
<th>CO 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>256 System #1 — T1C #1</td>
<td>Depends on installation</td>
<td>Yes</td>
<td>Yes</td>
<td>Slave</td>
<td></td>
</tr>
<tr>
<td>256 System #1 — T1C #2</td>
<td>Depends on installation</td>
<td>No</td>
<td>No</td>
<td>Master</td>
<td></td>
</tr>
<tr>
<td>256 System #2 — T1C #1</td>
<td>Depends on installation</td>
<td>No</td>
<td>No</td>
<td>Slave</td>
<td></td>
</tr>
<tr>
<td>256 System #2 — T1C #2</td>
<td>Depends on installation</td>
<td>Yes</td>
<td>Yes</td>
<td>Slave</td>
<td></td>
</tr>
</tbody>
</table>
To reach this window, select T1 Programming from the Trunk Programming menu or enter the T1 command. The program planning sheet for this window is in Figure 5-26 on page 5-227.

13.60 **THRESHOLD PROGRAMMING:** T1 specifications include several error thresholds. These can be adjusted for hourly and daily thresholds. To change a value, select the desired threshold. The following window appears:

- **NUMBER PER HOUR:** In this text box, enter the appropriate number of errors allowed per hour.
- **NUMBER PER DAY:** In this text box, enter the number of allowed errors per day.

13.61 **DIALING FEEDBACK CONFIGURATION:** This value determines the volumes of the DTMF tones, pulse-dial signals, and dial tone that are heard by the user (as feedback) when dialing. To set a value, select the appropriate text box and enter the desired value.

- **DTMF FEEDBACK GAIN:** This is the volume of the DTMF dial tones the user hears through the handset or speaker when dialing (using a DTMF T1 trunk). The allowed range is -15dB to 15dB. Default is -4dB.
- **DIAL PULSE FEEDBACK GAIN:** This is the volume of the pulse-dial signals that the user hears when dialing (when using a pulsedial T1 trunk). The allowed range is -15dB to 15dB. Default is -4dB.
- **DIAL PULSE TONE SELECTION:** This is the tone that will be used for the simulated pulse dial tone. Select a channel number (1-23). Default is tone number 7.
13.62 BACKUP: This command button allows you to program backups for the system reference clock. When selected, the window shown above appears.

- **INCLUDE or EXCLUDE**: The include list can contain all T1 Cards with designated “slave” clocks, the “master” T1 Card, and the RCPU Card. The cards appear in the list according to backup priority, from highest priority (at the top of the list) to lowest priority. “Master” T1 Cards share the same priority and always appear just above the RCPU Card (which is at the bottom of the list). To change the priority of a “slave” T1C, locate that card on the Include list and press SPACE BAR, it moves to the Exclude list. Then scroll to the desired new location for the card in the Include list and move the highlight to the Exclude list. Select the card again to move it back to the Include list in the new location. To completely remove a card from the list, select it in the Include list to automatically move it to the Exclude list.

- **OK or CANCEL**: When Backup programming is completed, select the OK command button. To exit without saving any changes, select the Cancel command button.
T1 Interface — Slot X

Card Type
- D4 Superframe
- Extended SuperFrame (ESF)

Zero Code Suppression scheme
- AMI (Bit 7)
- B8ZS
- None

PCM Encoding Law
- Receive: mu-Law to mu-Law
- Transmit: mu-Law to mu-Law

Channel Service Unit (CSU)
- Enable On-Board CSU
- Enable DSX-1 Interface

DSX-1 Line Length
- O-133 Feet
- 133-266 Feet
- 266-399 Feet
- 399-533 Feet
- 533-655 Feet

Relay Activation
- 01 Relay Not Enabled
- 02 Relay Not Enabled

Test Prog

T1 CARD PROGRAMMING The list box on page 5-126 shows all T1 Cards that are configured in the system. To program a T1 Card, highlight and select it. The window shown above appears:

- CARD TYPE Select the type of framing scheme, D4 Superframe or Extended Superframe (ESF), used by the T1 trunk connected to each card.

- CODE SUPPRESSION SCHEME Select the type zero suppression scheme — AMI (Bit 7), Bipolar Eight Zero Substitution (B8ZS), or None — used by the T1 trunk connected to each card.

- CHANNEL SERVICE UNIT (CSU): Designate whether the optional on-board CSU is installed on the T1 Card or the DSX-1 interface is used. Depending on which is selected, also program one of the following.

- LINE BUILD-OUT (LBO): If the optional on-board CSU is installed, designate the LBO attenuation of the T1 trunk connected to the card. This value is determined by the distance to the nearest public network T1 repeater and the type of cable used. The LBO options are:
 - 0dB (3000+ feet)
 - 7.5dB (1600-3000 feet)
 - 15dB (1-1600 feet)

NOTE: The programming prompts for LBO attenuation and DSX-1 line length assume that proper T1 cable (with the above characteristics) is being used. When transmitting over shorter distances (e.g., when the nearest public network T1 repeater is less than 2000 feet from the MDF), it may be possible to use standard two-pair voice frequency cable instead, however, the programmer may have to compensate by selecting longer LBO distances or DSX-1 line lengths. Also, no matter which type of cable is used, the transmit and receive pairs must be shielded from each other (or run in separate cables or binder groups).
• **TEST PROG**: This option is not available in stand-alone sessions. This option is used for sending a test tone over a selected T1 circuit. When the Test Prog command button is selected, the following window appears. Scroll the highlight bar to the desired circuit in the list box and then select the Enable Tone command button. To stop the tone, select the Disable Tone command button. When finished, select the OK command button to return to the T1 Interface window.

<table>
<thead>
<tr>
<th>T1 Circuits</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XX.XX Loop Start</td>
<td></td>
</tr>
<tr>
<td>Enable Tone</td>
<td></td>
</tr>
<tr>
<td>Disabled Tone</td>
<td></td>
</tr>
</tbody>
</table>

• **RELAY ACTIVATION**: (Shown in T1 Interface window on page 5-128.) If desired, you can enable either or both of the two T1C relays. Select the desired relay in the list box to access the following window. Then choose the proper activation status for the relay by placing a dot in the desired option button and selecting the OK command button. Or, to leave the relay unchanged, select the Cancel command button.

 - **T1 Line Error**: If this is enabled, the relay is in "set" mode when a T1 red alarm occurs. It is in "reset" mode when there is no alarm.

 - **T1 Line OR**: If this is enabled, the relay is in "set" mode when there is no alarm. It is in "reset" mode if a red alarm occurs.

 NOTE: Ensure that the signalling device is installed on the relay and that the relay is programmed to achieve the desired "set" and "reset" operations. Refer to INSTALLATION, page 3-33, for T1C alarm relay jack pinout.

• **OK or CANCEL**: When the T1 interface programming is completed, select the OK command button. Or, to leave the slot unchanged, select the Cancel command button.

• **PCM ENCODING LAW**: (Shown in T1 Interface window on page 5-128.) Select both the transmit and receive method of encoding used by the T1 Card. In North America and Japan, the "mu-law" (n-law) method is normally used. In other places such as Europe, the "A-law" method is widely used. In the United States, this will almost always be mu-law to mu-law. To change the receive or transmit encoding law, highlight and select Receive or Transmit in the list box. The following window appears. Place the dot in the desired option button and then select the OK command button. Or, to leave the encoding law unchanged, select the Cancel command button.

• **OK or CANCEL**: (Shown in T1 Interface window on page 5-128.) When T1 Card programming is completed, select the OK command button. To exit without saving any changes, select the Cancel command button.

EXIT: (Shown in the T1 Programming window on page 5-126.) When T1 programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the T1 Programming window without updating the database.
REFERENCE CLOCK PROGRAMMING:
(Shown in T1 Interface window on page 5-128.) Select the Clock command button to access the window shown above.

- **T1 FROM PUBLIC NETWORK:** First determine whether the T1 Card is connected to the public network. If it is, place an X in the T1 From Public Network Check box. The card is automatically designated as a slave clock (the public network always acts as the master clock).

- **PROVIDES REFERENCE CLOCK FOR 256:** The first T1 Card programmed in the system is automatically assigned as the 256 System reference clock. The system can have only one reference clock. If you attempt to assign the reference clock to another T1 Card by placing an X in this box, a window will appear that asks if you wish to remove the previously programmed reference clock. Select Yes to reassign the reference clock to the new T1 Card, or select No to leave the assignment unchanged.

- **MASTER/SLAVE LOOP OPERATION:** If the card is connected to another T1 Card, determine whether the card is a master clock or a slave clock (in relation to the card on the other end). Place a dot in the appropriate option button in the Master/Slave Loop Operation box.

- **SOURCE OF REFERENCE CLOCK:** If the T1 Card is designated as the reference clock for the 256 System and as a Master clock, this box will change from gray to black. DO NOT change the source clock; On-Board Oscillator should be selected. The External Clock option is reserved for future use. It is not currently supported. NOTE: If the Source of Reference Clock option is set incorrectly (External Clock is selected), the system will use the backup clock instead of the clock on this T1 Card and the Reference Clock LED will not be lit. (The LED lights to indicate that the T1C clock is providing the reference clock.)

- **OK or CANCEL:** When the clock programming is completed, select the OK command button. Or, to leave the clock unchanged, select the Cancel command button.
Error Diagnostics - Slot X

- **Output Type**
 - **Tabular Errors per Hour/Day**
 - **Graphical Errors per Hour**
 - **Graphical Errors per Day**

 Current Errors

<table>
<thead>
<tr>
<th>Error Type</th>
<th>Current Hour</th>
<th>Current Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPV (Bipolar Violations)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Controlled Slips</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CRC-6 (Cyclic Redundancy Check)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ES (Errored Seconds)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OOF/COFA (Out-of-Frame)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SES (Severely Errored Seconds)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TODV (Transmit One's Density Violations)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>UAS (Unavailable Seconds)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Error Diagnostics**: (Shown in **T1 Interface window** on page 5-128.) You can view selected reports that show the current **T1** error counts (by hour and day) for the selected card in a graph or table. If using a stand-alone PC, the reports can be sent to files on the PC or to a printer port. To print the reports, the necessary printer driver must be installed on the PC. For information on installing a driver, refer to page 5-8.

- **Update**: To ensure that the error statistics are as current as possible, select the Update command button.

- **Current Errors**: This list box shows how many errors have occurred in the current day and the current hour. To select the error type that will be shown in the graph or table, move the highlight bar to the desired error type in the list box. When you press the SPACE BAR, the table or graph is displayed on the screen (and, if enabled, can be sent to the printer).

- **Port/Path**: **Available in stand-alone programming sessions only.** Select the Port/Path command button to designate the destination printer port or PC file for the report. The following window appears. Place a dot in the desired port or file option button by selecting it. If **FILE** is selected, enter the destination file path name in the text box. When the destination is programmed, select the OK command button. To exit without changing the destination, select the Cancel command button.

- **Output Type**: Determine whether the output will be printed in a table or as a graph. If you want a graph, determine whether it will represent errors by the hour or by the day. Select the desired option to place a dot in the option button.

- **Port/Path**: When finished viewing the graph or table, select the Ok command button to return to the **T1 Interface window**.

Page 5-131
14. ATTENDANTS

14.1 When the Attendants option is selected from the Applications Menu window, the menu expands to show the following choices:

Attendants...
 Attendant’s Console
 Alias Programming
 DSS/BLF Assignment

14.2 Each of the options and the windows they access are described in detail in the following pages. Program planning sheets for attendant programming are in Figure 5-27, beginning on page 5-228.

A. ATTENDANT’S CONSOLE (CONS)

14.3 The window shown below allows you to save the Attendant Computer Console database on a floppy disk that can then be loaded into the console PC. This procedure is not necessary if the console is equipped with a modem for database downloads.

NOTE: The floppy disk must be formatted in the console PC to ensure that the console PC will be able to read the data. If the programming PC and the console PC do not have compatible disk drives, the data must be copied onto the properly formatted disk using a third PC before it can be used in the console PC. The following instructions assume that the console PC and programming PC have compatible drives.

14.4 TO CREATE A DATABASE DISK:

(1) On the Attendant Computer Console press the CTRL, SHIFT, and X keys at the same time to display the C:OPTERM prompt.

(2) Insert the floppy disk into the console PC disk drive. Type FORMAT A: and press RETURN.

(3) When disk formatting is complete, remove the floppy disk from the drive.

(4) Insert the floppy disk in the programming PC disk drive.

(5) Select the Attendant’s Console window (shown below).

(6) Set the database destination by selecting the Drive A:\ option button or selecting the Path option button. If Path is selected, a text box appears that allows you to type the destination path name. When you enter the path name, be sure it ends with a backslash (\).

(7) Select the “Create Database” command button. The database is automatically loaded onto the disk and the window shows “Percent complete” to indicate progress.

(8) When the database has been loaded onto the disk, select the Exit command button and remove the disk from the floppy drive.

(9) Insert the disk in drive A:\ of the console PC.

(10) At the C:OPTERM prompt, type NEWDB and press RETURN. The PC automatically copies the data and restarts the Console.

(11) When the “Station is Idle” prompt appears, the console is ready for use. Remove the floppy disk from the drive.
8. ALIAS PROGRAMMING (ALSS)

14.5 The system intercom directory is stored in the 256 System database and transferred to the Attendant Computer Console during database download. Aliases can be assigned to extension numbers that have more than one user or purpose so that they appear in the console directory more than once. For example, if two users share a station, one name can be programmed as the user description for that station and the other name can be programmed as an alias. If these two users also have a special function, such as “customer service” that name can also be programmed as an alias for that station. There can be a total of up to 100 aliases programmed in the system.

NOTE: Aliases will not appear in the IC directory that is accessed by keysets. These aliases can only be viewed on Attendant Computer Console stations.

14.6 ENTER THE STATION TO ALIAS: Select the “Enter the station to alias” text box and enter the desired extension number. (Or press F2 to display a list of stations then select the desired station.)

14.7 ALIAS: For each alias to be programmed for this station, select the Alias command button. The following window appears.

- DESCRIPTION: Select the Description text box and enter an alias of up to 20 characters.
- OK or CANCEL: Select the OK command button to exit to the Alias Programming window. The station appears in the Current Aliases list box. Or, select the Cancel command button to exit without programming an alias.
14.8 CURRENT ALIASES: To change or delete an existing alias, locate it in the Current Aliases list box and highlight it. Press the SPACE BAR. The following window appears.

- **ALIASES**: Move the highlight bar in the Aliases list box to the alias you wish to change or delete. To change the alias, press the SPACE BAR. The following window appears.

 ![Deleting Aliases for...](image)

 Description: Select the Description text box and edit or enter the alias (up to 20 characters).

 OK or CANCEL: Select the OK command button to exit to the Deleting Aliases window. The alias appears in the Aliases list box. Or, select the Cancel command button to exit without changing the alias.

- **DELETE**: To delete the highlighted alias, select the Delete command button. The alias is removed from the list.

- **OK**: When all changes or deletions have been made, select the OK command button to return to the Alias Programming window.
C. **DSS/BLF ASSIGNMENT (DSS)**

14.9 The window shown above can be accessed by selecting **DSS/BLF Assignment** from the Attendants menu or by entering the DSS command. To prepare to program the attendant stations, determine which circuits will be connected to **DSS/BLF** Units, the stations they will be associated with, and the stations that they will access. A program planning sheet is in Figure 5-27 on page 5-228.

14.10 There can be a maximum of 50 **DSS/BLF**-equipped keyset stations on the system.

- Analog **IMX** and DVK **DSS/BLF** Units are programmed to be used with specific **keysets**, but are not physically attached to the **keysets**. Each unit requires separate cabling and a separate **Keyset Card (KSC)** circuit. For each **DSS/BLF Unit** installed, one fewer **keyset** can be installed.

- Digital **DSS/BLF Units** are connected to digital **keysets** using a **PC Data Port Module (PCDPM)** attached to the **keyset**. Up to four Digital **DSS/BLF** Units can be connected in series to one PCDPM.

14.11 **STATION PICK LIST:** To assign a station circuit for **DSS/BLF** use, scroll through the Station Pick list until the desired station is highlighted, and select it. The following window appears which warns you that any previous programming for the station (attendant, message center, etc.) will be erased. If you select OK, the window shown on the next page appears. If you select Cancel, the window shown above returns.

```
WARNING: Any references to the keyset selected by other devices due to certain designations (e.g. attendant) will be eliminated.
```

14.12 **DSS/BLF:** To change the key map and associated **keyset** for an existing **DSS/BLF** station, select the desired station in the **DSS/BLF stations list box**. A window appears as shown on the next page.

14.13 **DELETE DSS:** To delete an existing **DSS/BLF** station, highlight the desired **DSS/BLF** station in the **DSS/BLF list box** and select the **Delete DSS/BLF command button**.

14.14 **EXIT:** When **DSS/BLF** programming is finished, select the **Exit command button**. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the **DSS/BLF Assignment window** without updating the database.
14.15 **DESCRIPTION:** To assign a description of up to 20 characters (such as Primary Att DSS1), select the Description text box and enter the desired name.

14.16 DSS/BLF ASSOCIATED KEYSET: To assign or change the keyset that will be used in conjunction with this DSS/BLF, scroll to the desired station in the DSS/BLF Associated Keyset list box. The highlight bar indicates the selected station.

14.17 DSS/BLF KEYMAP: To assign or change the key map that will be used in conjunction with this DSS/BLF BLF, scroll to the desired map in the DSS/BLF Keymap list box. The highlight bar indicates the selected map. Key maps are constructed in the Key Assignments window described on page 5-44.

14.18 OK: When programming is complete for this DSS/BLF station, select the OK command button to return to the DSS/BLF Assignment window.
15. **STATION MESSAGE DETAIL**

15.1 When **Station Message Detail** is selected from the Applications Menu window, the menu expands to show the following options:

Station Message Detail...
- Call Cost
- SMDA
- SMDR

15.2 Each of the options and the windows they access are described in detail in the following pages. Refer to Figure 5-29 on page **5-230** for a program planning sheet.

A. CALL COST FACTORS (COST)

15.3 Determine the daytime rates (in dollars per minute) for the following types of calls. Use several telephone bills from months with typical usage to calculate the average cost per minute of each type of call. Record the charges in dollars and cents from 00.00 to 99.99. You may need to adjust the calculations later to more accurately estimate actual call costs. (This program is to be used as an estimate only; refer to page 4-114 in FEATURES for details.)

- Local calls (defaults to **.05**)
- Seven-digit toll calls (defaults to **.20**)
- Ten-digit toll calls (defaults to **.50**)
- Operator-assisted and international calls (defaults to **1.00**)
- Incoming calls (defaults to **0**)

15.4 Then, determine the discount rates for night/weekend and evening calls. Record these as decimal factors. For example: if the evening discount rate is **35%**, the rate is **65%** of the regular rate. So it would have a factor of 0.65 times the day rate. The allowed range is between 0.00 and 1.99. The defaults are **.65** for evening and **.40** for night/weekend.

15.5 To access this window, select Call Cost from the Station Message Detail menu or enter the COST command. The window appears as shown below.

15.6 DAYTIME RATES IN DOLLARS PER MINUTE

Select the individual text boxes and enter the per-minute cost in dollars and cents for each of the call cost types. The range is 0.00 to 99.99.

15.7 MULTIPLICATIVE FACTORS

Select each of the text boxes and enter the number that, when multiplied by the daytime rates, produces the evening and night rates for calls. The range is 0.00 to 1.99.

15.8 EXIT

When call cost programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the Call Cost window without updating the database.

<table>
<thead>
<tr>
<th>Actions</th>
<th>Setup</th>
<th>Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daytime Rates in Dollars per Minute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local call:</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Z-Digit Toll Call:</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>IO-Digit Toll Call:</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Operator/International Call:</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Incoming Call:</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Multiplicative Factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evening:</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Night and Weekend:</td>
<td>0.40</td>
<td></td>
</tr>
</tbody>
</table>
B. S M D A

15.9 The window shown above is available in Extended software only and can be accessed by selecting SMDA from the Station Message Detail menu or by entering the SMDA command.

15.10 Determine the following information for the station Message Detail Accounting (SMDA) reports:

- Output Port: Select the desired output port for the SMDA reports (serial port one or two).

- Reporting Interval: Determine how often the reports will print (daily, weekly, or monthly). If monthly, select a day of the month for the report to be printed. (Note that if you select the 31st, reports will not print in months that do not have 31 days; for end-of-the-month printing, 12:01 AM on the first may be a better choice.) Select the time of day that the reports are to be printed. If weekly, select the day of the week the report is to be printed. If desired, select “attendant only” to have SMDA reports generated only through the attendant’s station (using the Attendant SMDA Report feature code \(025\)).

- Format: The following types of reports are available. Refer to page 4-115 in FEATURES for samples of the reports.

 Account Code Reports
 Summary Reports
 System Wide
 Tenant
 Tenant/Department

Detailed Reports
 All Users in Tenant/Dept. Groups
 Top System Users
 Top Users by Tenant
 Top Users by Tenant/Dept. Group
 Rank by Total Cost
 Rank by Total Duration
 Rank by Total Number of Calls

Select Device Reports
 Reports can be generated for selected trunks or stations that show total number, duration, and cost of calls

15.11 OUTPUT PORT: Select the desired output port for the SMDA reports by selecting the appropriate option button (serial port one or two).
15.12 REPORTING INTERVAL: Determine how often the reports will print by selecting the appropriate option button. Depending on the interval chosen, items to the right of the box will change from black to gray.

15.13 DAY OF MONTH: If Monthly was selected in the Reporting Interval box, you must select a day of the month for the report to be printed. Note that if you select the 31st, the report will not print in months that do not have 31 days; for end-of-the-month printing, **12:01 on the first day may be a better choice**.

15.14 TIME OF DAY: If Daily, Weekly, or Monthly was selected in the Reporting Interval box, select the Time of Day text box and enter the time, in international 24-hour time (i.e., **9PM is 21:00**), that the reports are to be printed.

15.15 DAY OF WEEK: If Weekly was chosen in the Reporting Interval box, select the day of the week the report is to be printed by moving the highlight bar to the desired day.

15.16 CLEAR SMDA DATA: If you wish to have the SMDA data cleared from memory, select the Clear SMDA Data command button.

15.17 PRINT REPORT: To print a report immediately, select the Print Report command button. An SMDA report is sent to the output port.

15.18 REVIEW FORMAT: To determine the information that is included in the SMDA report, select the Review Format command button. The window on the following page appears.

15.19 EXIT: When SMDA programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the SMDA window without updating the database.
15.20 ACCOUNT CODE REPORTS: To activate SMDA reports that are sorted by account code, select the Account Code Reports check box to place an X in the box. To remove the X and disable the reports, select the box again.

15.21 CLEAR ACCOUNT CODE DATA FOLLOWING REPORT: (This prompt is gray unless Account Code Reports have been enabled.) If you wish to have the memory cleared each time an account code report is printed, select the Clear Account Code Data Following Report check box to place an X in the box. To allow data to accumulate from report to report, remove the X by selecting it again.

15.22 DETAILED REPORTS: If you wish to activate any of the detailed reports, select the appropriate check boxes to place Xs in those boxes. If you select any of the Top Users options, you must also select ranking option(s) for them and indicate in the Top 'N' Users Per Report text box, how many users you wish to track.

15.23 CLEAR STATION/TRUNK/HUNT DATA FOLLOWING REPORT: If you wish to have all station, trunk, and hunt group data cleared after each report, select the Clear Station/Trunk Data Following Report check box to place an X in the box. To allow data to accumulate from report to report, remove the X by selecting it again.

15.24 SUMMARY REPORTS: Select the desired summary reports by marking the appropriate check box(es). System-wide reports give call information for the entire system. The tenant report prints information separately for each tenant group. And, the tenant/department report provides call information for departments within each tenant group.

15.25 SELECT DEVICE REPORTS: To select the stations, hunt groups, and/or trunks that will be represented in the Selected Device report(s), select the appropriate command button. The resulting windows appear on the next page.

15.26 OK: When all SMDA formatting is complete, select the OK command button to return to the SMDA programming window.
Selected Device Reports Windows

15.27 STATIONS or HUNT GROUPS To assign the stations or hunt groups that will be included in the Selected Stations report, select the Stations or Hunt Groups command button (shown on the preceding page). The following window appears.

<table>
<thead>
<tr>
<th>Station List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Include</td>
</tr>
<tr>
<td>1003 01.01 Smith John</td>
</tr>
<tr>
<td>1001 01.02 station undefined</td>
</tr>
<tr>
<td>1002 01.03 station Undefined</td>
</tr>
<tr>
<td>1003 01.04 station Undefined</td>
</tr>
<tr>
<td>1004 01.05 station Undefined</td>
</tr>
<tr>
<td>Exclude</td>
</tr>
<tr>
<td>1008 02.01 station Undefined</td>
</tr>
<tr>
<td>1009 02.02 station Undefined</td>
</tr>
<tr>
<td>1010 02.03 station Undefined</td>
</tr>
<tr>
<td>1011 02.04 station Undefined</td>
</tr>
<tr>
<td>1012 02.05 station Undefined</td>
</tr>
</tbody>
</table>

- **INCLUDE or EXCLUDE**: To include a station or hunt group, locate the desired station on the Exclude list and select it by pressing the SPACE BAR, it will automatically move to the Include list. To remove a station from the list, select the station in the Include list to move it to the Exclude list.

- **ALL or NONE**: To include all stations or hunt groups in the list, select the All command button. To exclude all stations, select the None command button.

- **OK or CANCEL**: When the lists appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button. The SMDA programming window returns.

- **SORT**: To sort the stations or hunt groups and list them numerically by extension number or circuit number, or alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list returns, the list box will show the stations or hunt groups in the selected order. To exit without changing the sorting method, select the Cancel command button.

<table>
<thead>
<tr>
<th>Station Sorting Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordering</td>
</tr>
<tr>
<td>By Extension</td>
</tr>
<tr>
<td>By Circuit</td>
</tr>
<tr>
<td>By Name</td>
</tr>
<tr>
<td>Ok</td>
</tr>
<tr>
<td>Cancel</td>
</tr>
</tbody>
</table>

15.28 TRUNKS: To program the trunks that will be included in the Selected Trunk report, select the Trunks command button (shown on the previous page). The following window appears.

- **INCLUDE or EXCLUDE**: To include a trunk, locate it on the Exclude list and select it by pressing the SPACE BAR; it will automatically move to the Include list. To remove a trunk from the list, select the it in the Include list to move it to the Exclude list.

- **ALL or NONE**: To include all trunks in the list, select the All command button. To exclude all lines, select the NONE command button.

- **OK**: When the trunk lists appear as desired, select the OK command button to return to the SMDA programming window.
NOTE: If absorbed digits are repeatable on a local line, the absorbed digits will not appear in the SMDR report even when repeated.

- **Suppress All But The First Toll Digit:** When this option is selected, only the first digit of the toll field(s) will appear in the number dialed field (i.e., if “10XXX-1...” was dialed, only “11” would appear).

- **Suppress All Digits After End Of Dialing:** This flag allows you to specify whether all dialed digits or just the digits that make up the valid call appear in the SMDR report. If desired, the “extra” digits (dialed after the end of dialing the telephone number) used for dialing banking machine, voice mail, automated attendants, or other purposes can be suppressed so that only the toll telephone number digits are recorded in the report. (This flag is not affected by the system-wide flag that suppresses digits for the keyset displays and redial buffer, described on page 5-69.)

- **Display Elapsed Time in Seconds:** To allow SMDR to give a more accurate representation of elapsed time, an option can be enabled that records the elapsed time of calls in seconds instead of minutes. For calls up to 999 seconds (about 16.67 minutes) long, the ELAPSED TIME field will show “S=XXX” (XXX represents the number of seconds). For calls lasting longer than 999 seconds, ELAPSED TIME will show “HH:MM” (hours and minutes rounded up to the nearest minute).

15.30 The SMDR programming window appears as shown on the next page when you select SMDR from the Station Message Detail menu or enter the SMDR command.
15.31 **SMDR OUTPUT PORT**: Select the desired output port for the SMDR by selecting the appropriate option button (serial port one or two).

15.32 **SMDR OUTPUT ACTIVE**: To activate the SMDR feature, place an X in the SMDR Output Active check box by selecting it (by pressing the SPACE BAR). To disable the reports, remove the X by selecting the check box again.

15.33 **CHECK BOXES**: The check boxes on the right side of the window determine the content of the output. To choose the desired options, select the appropriate check boxes to place an X in them. To remove an option, select the check box again to remove the X from the check box.

1534 **STATION LIST**: To assign the stations that will be included in the SMDR output, select the Stations command button. The following window appears.

- **INCLUDE or EXCLUDE**: To include a station, locate the desired station on the Exclude list and select it by pressing the SPACE BAR; it will automatically move to the Include list. To remove a station from the list, select the station in the Include list to move it to the Exclude list.
• ALL or NONE: To include all stations, select the All command button. To exclude all stations, select the None command button.

• OK or CANCEL: When the station lists appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button.

• SORT: To sort the stations and list them numerically by extension number or circuit number, or alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.

Station Sorting Method

<table>
<thead>
<tr>
<th>Ordering</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>By Extension</td>
<td>Ok</td>
</tr>
<tr>
<td>By Circuit</td>
<td></td>
</tr>
<tr>
<td>By Name</td>
<td>Cancel</td>
</tr>
</tbody>
</table>

15.35 EXIT: When SMDR programming is finished, select the Exit command button (shown on the preceding page). A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the SMDR window without updating the database.
16. SERVICE

16.1 When Service is selected from the Applications Menu window, the menu expands to show the following options:

- Error Message Programming
- Hybrid Balance
- Maintenance Programming
- Passwords
- Report Programming
- Report Programming (Customized)
- Save/Restore
- Serial Port Configuration
- System Configuration

16.2 Each of the options and the windows they access are described in detail in the following pages.

16.3 In addition to using these service applications, service personnel can use error messages that are logged by the system for troubleshooting purposes. These messages can be viewed on the 256 screen and/or can be copied to a floppy disk. There are three types of error logs: reset records, system error messages, and system freeze records. These files can be used by Customer Service personnel during troubleshooting. To copy the error file to disk, follow the procedures given on page 5-167.

16.4 To view error messages on the PC screen, exit to the Inter-Tel 256 logo screen. Then press ALT-S to access the Setup pull-down menu. From that menu, select M to display the error messages. When you are finished viewing the messages, press ALT-S and then M again to return to the logo screen.
A. ERROR MESSAGE PROGRAMMING (ERR)

16.5 Error messages are printed to give service personnel and engineers information about system status. (Refer to FEATURES, page 4-125, and TROUBLESHOOTING, page 6-8, for more information about system alarm reporting.) The following types of error messages can be enabled. A program planning sheet is in Figure 5-32 on page 5-233.

- **Report All Alarms [+++]**: An error message is recorded for all minor and major system alarms. This option does not include the field service or engineering diagnostics messages.

- **Report All Field Service Diagnostics [***]**: An error message is recorded for all field service diagnostics. Refer to TROUBLESHOOTING, page 6-10, for a listing of field service diagnostics.

- **Report All Engineering Diagnostics [---]**: An error message is recorded when the software detects an inconsistent or illogical condition in the dynamic database, when the operating system detects an error in the non-operating system software on the same circuit card, and if the operating system detects an inconsistency or error condition in its own data structures. These error messages are for engineering use only.

- **Log All SEND Messages to History Queue**: These messages provide additional troubleshooting information (cphist.bin files) that can be used by engineering personnel.

16.6 To reach the window shown above, select Error Message Programming from the Service menu or enter the ERR command.

16.7 **ERROR OUTPUT PORT**: Select the desired output port for the error reports by selecting the appropriate option button (Serial 1 or Serial 2).

16.8 **ERROR OUTPUT ACTIVE**: To activate the error reporting feature, place an X in the Error Message Output Active check box by selecting it (by pressing the SPACE BAR). To disable the reports, remove the X by selecting the box again. If SMDR is active when activating error message output, error messages appear within the SMDR report and call information is buffered while the message prints.

16.9 **REPORT/LOG ALL**: The remaining check boxes determine the types of error messages to be included in the error report.

NOTE: Do not enable error reports for engineering diagnostics or log SEND messages unless requested to do so by authorized service personnel.

16.10 **EXIT**: When error message programming is finished, select the Exit command button. A window appears that asks "Perform Update to Database?" To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the Error Message Programming window without updating the database.
B. HYBRID BALANCE (HYBR)

16.11 The 256 System allows the installer to match the impedance of the trunks installed in the system to the system hardware using one of three options: unloaded, loaded, or ideal. Hybrid balance can be set on a trunk-by-trunk basis (T1 circuits and 4-wire E&M circuits cannot be hybrid balanced). To access this program, select Hybrid Balance from the Service menu or enter the HYBR command.

16.12 CIRCUIT& To begin programming the hybrid balance for a specific trunk, scroll through the Trunks list box until the desired trunk is highlighted. All other activity will apply to that trunk.

16.13 HYBRID BALANCE: To set the hybrid balance at the desired level, select the appropriate option button.

- IDEAL: The ideal balance network simulates a 600-ohm transmission trunk to match trunks that are supplied by other equipment that is located within the same building using private, copper wire termination. For example, an OPX supplied by another PBX that does not use the public network, or a T1 channel bank interface.

- UNLOADED: The unloaded balance network simulates an 800 ohm transmission trunk which matches most CO trunks. NOTE: The present standard for trunks from the central office is 900 ohms. However, AT&T studies indicate that an even better match can be obtained with 800 ohms for unloaded trunks and 1650 ohms for loaded trunks.

- LOADED: The loaded balance network simulates a 1650 ohm transmission trunk which more closely matches the qualities of a CO trunk that has a loading coil included in its circuitry because the central office is very far from the installation.

16.14 TEST LINE: To have internal diagnostics test the selected trunk, select the Test Line command button. The system will automatically set the hybrid balance based on the test results. To ensure consistent results, this test should be run at least three times on each trunk.

NOTE: If you attempt to test an incoming-only trunk, you will see a warning that states, “This circuit is incoming only, so the system cannot automatically place a call. Make sure circuit XX.XX is on an active call before proceeding.” This is because ground signal is not returned on Tip and the system cannot power up the trunk for testing. Establish a call on the trunk identified in the message (circuit XX.XX) before continuing the test.

16.15 BREAK DIAL-TONE DIGIT: This is the digit that is dialed by the system during the trunk test to break dial tone (defaults to 5). Select any digit that is not recognized as a special code by the central office (or PBX, if the 256 System is installed behind one).

16.16 EXIT: When hybrid balance programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the Hybrid Balance window without updating the database.
C. MAINTENANCE PROGRAMMING (MAIN)

16.17 This Program allows you to temporarily remove a trunk from service for maintenance or repairs, and place it in service again later. While in maintenance, the trunk cannot be accessed by users and the system will not send ring signals to stations for that trunk. However, to outside callers and the central office, the trunk appears to be working and callers will hear ringing.

NOTE: Each T1C is equipped with a “make busy” switch for removing all circuits on the card from service and placing them back in again. They do not require use of this window. Pressing the switch will light the T1 Card LED and begin the process of “busying out” each circuit not in use. The circuits that are in use are then busied out as soon as the users hang up.

16.18 The window shown above can be accessed by selecting the Maintenance Programming option from the Service menu or entering the MAIN command.

16.19 DEVICES: Currently, only CO Trunks appear in the Devices list box. In future software updates, other system devices may be included.

16.20 CO TRUNKS — MAINTENANCE/AVAILABLE: To remove a trunk from service, highlight it in the Available list box. When selected, it moves to the Maintenance list box. To return a trunk to the Available list box, select it in the Maintenance list box. A message is automatically Printed in the SMDR to show trunk status when a trunk is taken out of or returned to service.

NOTE: Placing a trunk in maintenance prevents all outgoing access and answering permission for the system users, however it does not make the trunk appear to be busy to outside callers. Any incoming calls will receive ringing instead of busy signal. If there is an ongoing call when the trunk is placed into maintenance, the system will wait for the call to be completed before disabling the trunk.

16.21 ALL or NONE: To remove all trunks from service, select the All command button. To move all trunks to the Available list box, select the None command button.

16.22 EXIT: When maintenance Programming is complete, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the Maintenance Programming window without updating the database.
D. PASSWORDS (PASS)

16.23 To set passwords, select Passwords from the service menu or enter the PASS command. The database and the On-Line Monitor feature each can have two passwords assigned to them: Restricted and Unrestricted.

- **Applications Restricted:** When the Applications Restricted password is entered, the user can make changes in all programming areas except error message programming, hybrid balance, maintenance programming, passwords, save/restore, serial port configuration, and system configuration.

- **Applications Unrestricted:** A user who enters the Applications Unrestricted password can make programming changes in any area.

- **Monitor Restricted:** When the Monitor Restricted password is entered, the user cannot perform a reset, post messages, send commands, reset cards, copy or initialize memory, modify data, or view the Applications database records.

- **Monitor Unrestricted:** When the Monitor Unrestricted password is used, the user can make changes in any area.

NOTE: Both Monitor passwords allow access to Applications windows.

16.24 **PASSWORDS:** Choose the password to be programmed by selecting the desired line in the Password list box. The following window will appear.

- **PASSWORD:** Enter the password of up to 8 characters. The characters will not appear on the screen when typed. The system is not case sensitive; you may use upper or lower case characters. To remove and existing password, simply move the cursor to the text box and, without pressing any additional keys, press RETURN.

- **OR:** If the password is as desired, select the OK command button. The window heading will change to “Password Verification” and you must retype the password exactly as before. If the entered passwords match, you will return to the Password window, if not, you must reenter the new password and verify it again.

- **CANCEL:** If you make a mistake while entering the password or wish to leave it unchanged, select the Cancel command button.

16.25 **EXIT:** When password programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” Toupdate the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the Passwords window without updating the database.
E. REPORT PROGRAMMING (REP)

16.26 Reports can be generated that show station configuration, area/office code programming, or least-cost routing data programming.

16.27 To access the window shown above, select Report programming from the service menu or enter the REP command.

16.28 SELECT OUTPUT PORT: Select the desired output port for the report by selecting the appropriate option button (serial port one or two).

16.29 SELECT REPORT: Choose the report that you would like to have printed by selecting the corresponding option button. A black dot indicates the selected report.

- STATION REPORT: To obtain a report that lists all stations, as shown on the next page, select the Station Report option button.

- AREA/OFFICE CODE REPORT: Select this option for a report that lists all the allowed, restricted, and extended area codes and the allowed and restricted office codes for each of the toll restriction user groups. The report format is shown on the next page.

- LEAST COST ROUTING DATA REPORT: This option activates a report that shows Least Cost Routing information including route groups, facility groups, and dial rules. The report format is shown on the next page.

16.30 EXECUTE: Select the Execute command button to generate the selected report. The reports are presented in the formats shown on the following page.

16.31 EXIT: When report programming is finished, select the Exit command button to return to the Applications Programming window.
STATION REPORT:

<table>
<thead>
<tr>
<th>STA</th>
<th>EXT</th>
<th>USERNAME</th>
<th>KEY</th>
<th>ATT</th>
<th>TNT/DPT</th>
<th>REL STA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>E100</td>
<td>SANDY KEY</td>
<td></td>
<td>"</td>
<td>1 1</td>
<td>1.1</td>
</tr>
<tr>
<td>13</td>
<td>E102</td>
<td></td>
<td>o</td>
<td>1.1</td>
<td>1 2</td>
<td>1.1</td>
</tr>
<tr>
<td>1.4</td>
<td>E103</td>
<td>TOM KEY</td>
<td></td>
<td>1.1</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E180</td>
<td>MIKE SL</td>
<td></td>
<td>1.1</td>
<td>2 1</td>
<td></td>
</tr>
<tr>
<td>11.2</td>
<td>E181</td>
<td>SL</td>
<td></td>
<td>1.1</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>11.3</td>
<td>E182</td>
<td>PAT SL</td>
<td></td>
<td>1.1</td>
<td>1 2</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The plus (+) after the KEY abbreviation indicates that a headset is enabled on that station. The asterisk (*) in the ATT column indicates that the station is an attendant.

AREA/OFFICE CODE REPORT:

AREA/OFFICE CODE TABLE REPORT SUN-JAN-01-1992 HH:MM

User Group X

List Of Allowed Area Codes ()
List Of Restricted Area Codes ()
List Of Extended Area Codes ()

Office Code Table For Area Code XXX

List Of Allowed Office Codes ()
List Of Restricted Office Codes ()

LCR REPORT:

LCR REPORT SUN-01-JAN-1989 12:00

Route Group X

List Of Included Area Codes ()
List Of Excluded Area Codes ()
List Of Included Office Codes ()
List Of Excluded Office Codes ()

Facility Groups In Time Blocks
Day List ()
Evening List ()
Night List ()

Facility Group X

List Of Trunk Groups ()
Dialing Rules (numbers dialed and/or toll, area, or local indicators in order)
F. CUSTOMIZED REPORT PROGRAMMING (CREP)

1632 Customized reports are created by selecting the programming area to be reported and then selecting the information that will be included. When stations are listed in a report, they can be sorted by name, extension number, or circuit number. Reports can also be titled. The report types and their options include the following. Sample reports (with all options enabled) begin on page 5-156.

- **Area/Office Code Report:** You select the user groups that are listed in the report which can include any combination of the following items.
 - Allowed Area Codes
 - Allowed Office Codes
 - Day User Group Stations
 - Extended Area Codes
 - Night User Group Stations
 - Restricted Area Codes
 - Restricted Office Codes

- **Detailed Station Report:** You select the stations that are listed in the report which can include any combination of the following items.
 - Miscellaneous Flags
 - Miscellaneous Information
 - Outgoing Access — Day
 - Outgoing Access — Night
 - Programmable Keys
 - Secondary Call Key Assignments
 - Special Purpose Station
 - System Forwarding
 - Toll Restriction

- **DID Report:** You select the DID groups that are listed in the report which can include any combination of the following items.
 - DID Entries
 - DISA Codes
 - Trunk List

- **General Station Report:** You select the stations that are listed in the report which can include any combination of the following items.
 - Attendant
 - Equipment
 - Special Purpose Stations
 - Tenant/Department
 - Toll Restriction
 - Hunt Group Report:** You select the hunt groups that are listed in the report which can include any combination of the following items.
 - Announcement Stations
 - Hunt Group Stations
 - Overflow Information
 - Timers
 - **Key Map Report:** You select the keyset, single-line, and DSS map groups and the map diagrams that are listed in the report which can include any combination of the following items.
 - Key Assignments
 - Station List
 - **Least Cost Routing Data Report:** You select the route groups and facility groups that are listed in the report which can include any combination of the following items.
 - Facility Group Dial Rules
 - Facility Groups in Time Blocks
 - Local Area Code
 - Route Group Excluded Area Codes
 - Route Group Excluded Office Codes
 - Route Group Included Area Codes
 - Route Group Included Office Codes
 - Trunk Groups Accessed by Facility Groups
 - **Phone List:** You select the stations, hunt groups, and page zones that are listed in the report which can include any combination of the following.
 - Hunt Groups
 - Page Zones
 - **Special Purpose Flags Report:** The report lists all special purpose stations.
 - **System Speed Dial Report:** The report lists the system speed-dial numbers.
 - **Timer Report:** The report lists all system timers.
 - **Trunk Group Report:** You select the trunk groups that are listed in the report which can include any combination of the following items.
 - Day Outgoing Access
 - Night Outgoing Access
 - Ring-In
 - Toll Restriction
 - Trunk List

1633 Reports can be sent to files on the PC or to a printer port. To print the reports, the necessary printer drivers must be installed on the PC. For information on installing a printer driver, refer to page 5-g.
16.34 To reach this window, select Report Programming (Customized) from the Service menu or enter the CREP command.

16.35 REPORTS: Scroll through the list box until the desired report number is highlighted. The window shown on the following page appears for programming the report parameters.

16.36 PORT/FILE: Select the Port/Pile command button to designate the destination printer port or PC file for the report. The following window appears. Place a dot in the desired port or file option button by selecting it. If FILE is selected, a text box appears; select that text box and enter the destination file pathname (e.g., C:REPORT). When the destination is programmed, select the OK command button. To exit without changing the destination, select the Cancel command button.

16.37 EXECUTE: Select the Execute command button to generate the selected report. A Windows screen appears which reminds you that a printer driver is necessary; press RETURN to clear the window. The reports are presented in the formats shown on the following page. While the report is being printed, a window appears that contains a Cancel button. Press SPACE BAR if you wish to select the Cancel button.

16.38 EXIT: When report programming is finished, select the Exit command button to return to the Applications Programming window.
- **REPORT TYPES**: Begin programming by selecting the report type. Scroll through the list box until the desired report type is highlighted. All other programming will apply to that report type. Below the list box, one or more command buttons will appear (in the example above, the User Groups command button is shown for Area/Office Code Report programming). Select the command buttons to access list box windows (like the one shown below) that allow you to determine what elements are included in the report (user groups, stations, hunt groups, etc.).

- **INCLUDE or EXCLUDE**: To include an item, locate the desired item on the Exclude list and select it by pressing the SPACE BAR; it will automatically move to the Include list. To remove it from the list, select the item in the Include list to move it to the Exclude list.

- **ALL or NONE**: To include all items, select the All command button. To exclude all items, select the None command button.

- **OK or CANCEL**: When the lists appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button.

- **SORT**: *(This option is available only when selecting stations or hunt groups)* To sort the list numerically by extension number or circuit number, or alphabetically by name, select the Sort command button. The following window appears. Choose the desired sorting method by selecting the corresponding option button. Then select the OK command button. When the list of stations returns, the list box will show the stations in the selected order. To exit without changing the sorting method, select the Cancel command button.
Station Sorting Method

- **OPTIONS:** Select the Options command button to access a list box window (as shown below) that shows the available options for each report type. (A complete list of report options begins on page 5-152.)

Area/Office Code Report

- **INCLUDE or EXCLUDE:** To include an option, locate the desired option on the Exclude list and select it by pressing the SPACE BAR; it will automatically move to the Include list. To remove an option from the list, select the option in the Include list to move it to the Exclude list.

- **ALL or NONE:** To include all options, select the All command button. To exclude all options, select the None command button.

- **OK or CANCEL:** When the option lists appear as desired, select the OK command button. To exit from the window without saving changes, select the Cancel command button.

Sort Type

- **DESCRIPTION:** If you wish to name the report, select the description command button. A text box window appears as shown below. Enter the desired report name in the text box and then select the OK command button. Or, select the Cancel command button to leave the name unchanged. The description will appear in the Reports list box shown in the window on the previous page.

EXIT: When the report is programmed as desired, select the Exit command button to return to the window shown on the previous page.
FIGURE 5-2. CUSTOMIZED PROGRAMMING REPORT SAMPLES

AREA/OFFICE CODE REPORTS:

PROGRAMMING REPORTS - AREA/OFFICE CODE REPORT

User Group 1

Allowed Area Codes
- 2xx = 200-219
- 3xx = 300-319
- 4xx = 400-419
- 5xx = 500-519
- 6xx = 600-619
- 7xx = 700-719
- 8xx = 800-819
- 9xx = 900-919

Restricted Area Codes

Extended Area Codes

Day User Group Stations

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>01.01</td>
<td>'Station Undefined</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>01.02</td>
<td>'Station Undefined</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>01.03</td>
<td>'Station Undefined</td>
<td></td>
</tr>
</tbody>
</table>

Night User Group Stations

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>01.01</td>
<td>'Station Undefined</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>01.02</td>
<td>'Station Undefined</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>01.03</td>
<td>'Station Undefined</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-2. CUSTOMIZED PROGRAMMING REPORT SAMPLES (Continued)

DETAILED STATION REPORTS:

PROGRAMMING REPORTS - DETAILED STATION REPORT Page 1

Extension: 100
Description: 'Station Undefined
Circuit: 01.01
Name :

Miscellaneous Information
Message Center:

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CRT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1()/1()</td>
</tr>
</tbody>
</table>

Account Code Type: Neither
Class-of-Service Code:

Miscellaneous Flags
- Auto Att/DISA
- DND Breakthru: Enabled
- Automatic Answer CO: Enabled
- Automatic Answer IC: Enabled
- Barge Initiate: Disabled
- Barge Receive: Disabled

OHVA Transmit: Enabled
Page: Replace
Redial Mode: Dialed
Ring Intercom Always: Disabled
Transparent LCR: Disabled

Toll Restriction
Day User Group 1()
Night User Group 1()
Day LCR Advance Limit: Unlimited
Night LCR Advance Limit: Unlimited

SCOS Restrictions Day Yes No Night Yes No
(1) Operator Access X X
(2) Toll Access X X
(3) International Access X X
(4) Eight Digit Access X X
(5) Area/Office Codes X X
(6) LCR Only X X
(7) Alternate Carriers X X
(8) Allowed Long Distance X X

Outgoing Access - Day

<table>
<thead>
<tr>
<th>TG DESCRIPTION</th>
<th>CODE TG</th>
<th>NAME</th>
<th>TG DESCRIPTION</th>
<th>CODE TG</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 All Lines</td>
<td>801</td>
<td></td>
<td>2</td>
<td>802</td>
<td></td>
</tr>
</tbody>
</table>

Page 5-157
FIGURE 5-2. CUSTOMIZED PROGRAMMING REPORT SAMPLES (Continued)

DID REPORTS:

PROGRAMMING REPORTS — DID REPORT Page 1

DID Group 1 ()

Tenant Group: 1 ()
Base Number:
Music-On-Hold: Silence
Start Type: Wink *

DISA Codes
Day:
Night: IC Calls: No

Trunk List

<table>
<thead>
<tr>
<th>CKT#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>

DID Entries

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>DAY</th>
<th>RING-IN</th>
<th>NIGHT</th>
<th>RING-IN</th>
<th>NAME</th>
</tr>
</thead>
</table>

GENERAL STATION REPORTS:

PROGRAMMING REPORTS — GENERAL STATION REPORT Page 1

EXT# CKT# DESCRIPTION USRNAME EQP ATT T/DT ATXHMV DAY SCOS NGT SCOS

| 100 01.01 'Station Undefined KEY * 11 T M |
| 101 01.02 'Station Undefined KEY 01.01 1 1 |
| 102 01.03 'Station Undefined KEY 01.01 1 1 |

EQP — Equipment Type
ATT — Station's Attendant
T/DT — Tenant/Department
A — Automated Attendant
T — Attendant
X — Fax Phone
H — House Phone
M — Message Center
V — Voice Mail Station
1 — Operator Access
2 — Toll Access
3 — International Access
4 — Eight Digit Access
5 — Area/Office Code
6 — LCR Only
7 — Alternate Carriers
8 — Allowed Long Distance

Page 5-158
FIGURE 5-2. CUSTOMIZED PROGRAMMING REPORT SAMPLES (Continued)

HUNT GROUP REPORTS:

PROGRAMMING REPORTS - HUNT GROUP REPORT Page 1

Pilot Number: 200
Hunt Group: 1
Description:
Name:
Search Type: Linear Search
Voice Rail Hunt Group: No

Supervisor

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
</table>

Hunt Group Stations

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
</table>

Hunt Group Announcement Stations

Announcement Type: Station

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
</table>

OverFlow Station

OverFlow Type: Station

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
</table>

Timers

| No Answer Advance Timer: 18 |
| Announcement Timer: 18 |
| Overflow Timer: 72 |
FIGURE 5-2. CUSTOMIZED PROGRAMMING REPORT SAMPLES (Continued)

KEY MAP REPORTS:

PROGRAMMING REPORTS – KEY MAP REPORT Page 1

Map Group 1 (Typical Map)

1 Call Key 01
2 Call Key 02
3 Call Key 03
4 Call Key 04
5 Station Programmable Key 01

49 User Programmable Key 07 – Data
50 Do-Not-Disturb Mode On/Off
51 IC Key
52 Message

Station List

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>01.01</td>
<td>'Station Undefined</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>01.02</td>
<td>'Station Undefined</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>01.03</td>
<td>'Station Undefined</td>
<td></td>
</tr>
</tbody>
</table>

DSS Map Group 1 (Default DSS Map 1)

1 DSS/BLF Key = 1000 01.01 'Station Undefined
2 DSS/BLF Key = 1001 01.02 'Station Undefined
3 DSS/BLF Key = 1002 01.03 'Station Undefined
4 DSS/BLF Key = 1003 01.04 'Station Undefined
5 DSS/BLF Key = 1004 01.05 'Station Undefined

116 DSS/BLF Key = 1115 15.04 'Station Undefined
117 DSS/BLF Key = 1116 15.05 'Station Undefined
118 DSS/BLF Key = 1117 15.06 'Station Undefined
119 DSS/BLF Key = 1118 15.07 'Station Undefined
120 DSS/BLF Key = 1119 15.08 'Station Undefined

Station List

<table>
<thead>
<tr>
<th>CKT#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>

ESLS/SLI (This will appear in IMX Systems only)

1 Station Speed Dial
2 Redial
3 Least-Cost Routing
4 Hold -- Individual
5 System Speed Dial
6 Station Speed Dial Programming
7 Queue Request
8 Conference
9 Message
LEAST COST ROUTING DATA REPORTS:

PROGRAMMING REPORTS = LEAST COST ROUTING DATA REPORT

Local Area Code: 602

Route Group 1 (Everything)

Route Group Included Area Codes
- 2xx = 200-219
- 3xx = 300-319
- 4xx = 400-419
- 5xx = 500-519
- 6xx = 600-619
- 7xx = 700-719
- 8xx = 800-819
- 9xx = 900-919

Route Group Excluded Area Codes

Route Group Included Office Codes
- 2xx = 200-299
- 3xx = 300-399
- 4xx = 400-499
- 5xx = 500-599
- 6xx = 600-699
- 7xx = 700-799
- 8xx = 800-899
- 9xx = 900-999

Route Group Excluded Office Codes

Facility Groups in Time Blocks

<table>
<thead>
<tr>
<th>FG DAY DESCRIPTION</th>
<th>FG EVENING DESCRIPTION</th>
<th>FG NIGHT DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 All Lines</td>
<td>1 All Lines</td>
<td>1 All Lines</td>
</tr>
</tbody>
</table>

Facility Group 1 (All Lines)

Trunk Groups Accessed by Facility Group

<table>
<thead>
<tr>
<th>TG DESCRIPTION</th>
<th>CODE TG NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 All Lines</td>
<td>801</td>
</tr>
</tbody>
</table>

Facility Group Dial Rules

<table>
<thead>
<tr>
<th>DR DIGITS</th>
<th>DR DIGITS</th>
<th>DR DIGITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Echo Toll Field</td>
<td>2 Echo Area Code</td>
<td>3 Echo Loc Address</td>
</tr>
</tbody>
</table>
FIGURE 5-2. CUSTOMIZED PROGRAMMING REPORT SAMPLES (Continued)

PHONE LIST:

<table>
<thead>
<tr>
<th>EXT#</th>
<th>DESCRIPTION</th>
<th>EXT#</th>
<th>DESCRIPTION</th>
<th>EXT#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>'Station undefined</td>
<td>102</td>
<td>'Station Undefined</td>
<td>104</td>
<td>'Station Undefined</td>
</tr>
<tr>
<td>101</td>
<td>'Station Undefined</td>
<td>103</td>
<td>'Station Undefined</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PLT#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZONE DESCRIPTION</th>
<th>ZONE DESCRIPTION</th>
<th>ZONE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>All Page</td>
<td>3</td>
</tr>
</tbody>
</table>
FIGURE 5-2. CUSTOMIZED PROGRAMMING REPORT SAMPLES (Continued)

SPECIAL PURPOSE FLAGS REPORTS:

PROGRAMMING REPORTS - SPECIAL PURPOSE FLAGS REPORT Page 1

Auto Att/DIS A DND Breakthrough

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>01.01</td>
<td>'Station undefined'</td>
<td></td>
</tr>
</tbody>
</table>

Automatic Answer On CO Calls

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>01.01</td>
<td>'Station undefined'</td>
<td></td>
</tr>
</tbody>
</table>

Automatic Answer On IC Calls

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>01.01</td>
<td>'Station Undefined'</td>
<td></td>
</tr>
</tbody>
</table>

.....

Redial Mode - Last Number Dialed

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>01.01</td>
<td>'Station Undefined'</td>
<td></td>
</tr>
</tbody>
</table>

Ring Intercom Always Enabled

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transparent LCR Enabled

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 5-163
FIGURE 5-2. CUSTOMIZED PROGRAMMING REPORT SAMPLES (Continued)

SYSTEM SPEED DIAL NUMBERS:

PROGRAMMING REPORTS - SYSTEM SPEED DIAL REPORT Page 1

Displayed Speed Dial Numbers: 400

Programming Station:

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CXT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>01.01</td>
<td>'Station Undefined</td>
<td></td>
</tr>
</tbody>
</table>

Number of Digits in Bin Number: 3

<table>
<thead>
<tr>
<th>#</th>
<th>NAME</th>
<th>NUMBER</th>
<th>TNNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>399</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
FIGURE 5-2. CUSTOMIZED PROGRAMMING REPORT SAMPLES
(Continued)

TIMER REPORTS:

PROGRAMMING REPORTS - TIMER REPORT

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>VALUE</th>
<th>UNITS</th>
<th>RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Call Timer</td>
<td>10</td>
<td>Min.</td>
<td>1- 255</td>
</tr>
<tr>
<td>Camp-On Timer</td>
<td>3</td>
<td>Sec.</td>
<td>0- 255</td>
</tr>
<tr>
<td>Camp-On Tone Timer</td>
<td>15</td>
<td>Sec.</td>
<td>5- 255</td>
</tr>
<tr>
<td>CO Hookflash</td>
<td>60</td>
<td>100th</td>
<td>2- 250</td>
</tr>
<tr>
<td>CO Re-Seize Timer</td>
<td>3</td>
<td>Sec.</td>
<td>1- 15</td>
</tr>
<tr>
<td>CO-CO Timer</td>
<td>35</td>
<td>100th</td>
<td>2- 250</td>
</tr>
<tr>
<td>Conference-Hold Timer</td>
<td>5</td>
<td>Min.</td>
<td>1- 255</td>
</tr>
<tr>
<td>Data Wait Timer</td>
<td>30</td>
<td>Sec.</td>
<td>1- 255</td>
</tr>
<tr>
<td>Dial Tone Wait Timer</td>
<td>2</td>
<td>Sec.</td>
<td>1- 50</td>
</tr>
<tr>
<td>Dial-Initiation Timer--Keyset</td>
<td>15</td>
<td>Sec.</td>
<td>5- 30</td>
</tr>
<tr>
<td>System Forwarding Initiate</td>
<td>15</td>
<td>Sec.</td>
<td>2- 255</td>
</tr>
<tr>
<td>T1 Busy-Out Switch Time Out</td>
<td>60</td>
<td>Sec.</td>
<td>10-10000</td>
</tr>
<tr>
<td>Transfer-Available Timer</td>
<td>20</td>
<td>Sec.</td>
<td>10- 255</td>
</tr>
<tr>
<td>Transfer-Busy Timer</td>
<td>24</td>
<td>Sec.</td>
<td>10- 255</td>
</tr>
<tr>
<td>Trunk Key Debounce Timer</td>
<td>3</td>
<td>Sec.</td>
<td>1- 777</td>
</tr>
<tr>
<td>Trunk Preselect Timer</td>
<td>5</td>
<td>Sec.</td>
<td>2- 255</td>
</tr>
<tr>
<td>Trunk Ring Detection</td>
<td>5</td>
<td>10th</td>
<td>1- 777</td>
</tr>
<tr>
<td>Unsupervised-CO Timer</td>
<td>5</td>
<td>Min.</td>
<td>1- 255</td>
</tr>
<tr>
<td>Valid-Call Timer</td>
<td>15</td>
<td>Sec.</td>
<td>0- 60</td>
</tr>
<tr>
<td>Voice Mail Dialing Delay</td>
<td>5</td>
<td>10th</td>
<td>1- 250</td>
</tr>
</tbody>
</table>

...
TRUNK GROUP REPORTS:

PROGRAMMING REPORTS = TRUNK GROUP REPORT Page 1

Trunk Group 1 (All Lines)

Trunk Group Name:	Yes
Enable Bookflash:	Yes
One-Way Incoming Only:	No
Tenant Group:	1()
Music-On-Hold:	Music #1

Day OutGoing Access

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>01.01</td>
<td>'Station Undefined</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>01.02</td>
<td>'Station Undefined</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>01.03</td>
<td>'Station Undefined</td>
<td></td>
</tr>
</tbody>
</table>

Night OutGoing Access

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>01.01</td>
<td>'Station Undefined</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>01.02</td>
<td>'Station Undefined</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>01.03</td>
<td>'Station undefined</td>
<td></td>
</tr>
</tbody>
</table>

Trunk List

<table>
<thead>
<tr>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.01</td>
<td>G/L</td>
<td>26.01</td>
<td>G/L</td>
<td>22.01</td>
<td>G/L</td>
</tr>
<tr>
<td>24.02</td>
<td>G/L</td>
<td>26.02</td>
<td>G/L</td>
<td>22.02</td>
<td>G/L</td>
</tr>
<tr>
<td>24.03</td>
<td>G/L</td>
<td>26.03</td>
<td>G/L</td>
<td>22.03</td>
<td>G/L</td>
</tr>
</tbody>
</table>

Toll Restrictions

Subject to Toll Restrict:	Yes
Equal Access:	Yes
Absorbed Digits:	No
Exempt from LCR Only:	No

Day Ring-in Type: Single

<table>
<thead>
<tr>
<th>EXT#</th>
<th>CKT#</th>
<th>DESCRIPTION</th>
<th>USRNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>01.01</td>
<td>'Station Undefined</td>
<td></td>
</tr>
</tbody>
</table>

Night Ring-in Type: Multiple

Ring-in/Answer Pattern: Night Ring
G. SAVE/RESTORE (SAVE)

16.39 This program allows you to save and/or load the database, copy error logs to the disks, and reset the system.

16.40 To access the window shown above, select Save/Restore from the Service menu or enter the SAVE command.

16.41 DESTINATION/SOURCE: Select the destination drive to which you wish to send the database or error list, or the source of the database to be restored by selecting the desired option button. The options Path A:\, Path B:\, or Path can be used to designate a drive and/or directory path. When “Path” is selected, the Set Path command button can be selected to produce a window that explains destination path parameters and gives a text box for entering the destination. If you attempt to set a path that does not exist, you will see a warning window that asks if you wish to have the path created (if valid) or cancel the operation.

16.42 FORMAT DISK: To format a disk for use in the save or error file list operation, your PC must use either a 5¼-inch, 1.2MB or 3.5-inch, 1.44MB disk. Insert a blank disk into the selected PC floppy disk drive, then select the Format command button to start the formatting process. The following window appears. The heads and tracks formatted are indicated as the operation progresses. The Cancel button is available throughout the process. However, the OK button appears only when the process is complete.

16.43 RESET: This button is selected to force a system reset during a programming session. The following window appears. Select the OK command button to perform the reset or the Cancel button to return to the Save/Restore window. The reset will drop all calls in progress, including one being used for a remote programming session.
16.44 **FUNCTION TO PERFORM:** Select the option button associated with the desired operation.

- **SAVE DATABASE:** Information is sent from the system to the designated destination. Select the Perform Operation command button. If you are using a floppy disk, a window appears that tells you to insert the disk in the appropriate drive. Insert the disk then select the OK command button to begin the transfer, or select the cancel button to stop. The percent complete will be indicated below the Perform Operation button while the save is in progress. When the save operation is completed, remove the floppy disk from the drive.

- **RESTORE DATABASE:** Information is transferred from the designated source to the system when the Perform Operation command button is selected. A window appears if you are using floppy disks that tells you to insert the disk that contains previously programmed database information into the appropriate drive. Insert the disk, then select the OK command button to begin the transfer, or select the Cancel button to stop. When the data has been read, another window appears to tell you that the system will reset to complete the restore operation. If you are using an on-site or modem connection, remove the disk (if one is being used), then select the Yes button to perform the restore or No to cancel the restore. A reset takes several minutes. During the reset, the 256 System clock will be reset to match the clock on the programming PC.

NOTE: When the Database Restore feature is used during a remote programming session, all calls are disconnected except the modem connection. Before restoring the database, ensure that the circuit card used for the modem connection will not be reconfigured during the restoration (changed to a different type of card).

- **SAVE CVH DATABASE:** This option is available in remote programming sessions only. The CVH (convert history) database can be used by trained service personnel during system troubleshooting. When available, it will be used, like Database Save, to copy CVH database information to the PC.

- **COPY ERROR FILE:** There are three types of error files:
 - **ERRORLOG.TXT:** This file contains up to 60k of reset history. When the allotted memory is depleted, the oldest reset records are deleted as newer messages are written to the file.
 - **CPERRXX.BIN:** These files contain system error messages. The XX in the file name represents the file number. There can be up to 19 CPERR files, numbered 00-18.
 - **CPHIStXX.BIN:** These files contain system freeze records. The XX in the file name represents the file number. There can be up to nine CPERR files, numbered 00-09.

To copy error files onto the PC hard disk or floppy disk, perform the following steps:

To copy error files onto the PC hard disk or floppy disk, perform the following steps:

1. Select the GET CP ERRORS command button to download the error files from the remote source to your PC. You will be prompted to enter a file name.

2. In the Function to Perform area shown on the previous page, select the Copy Error File option.

3. Check that the destination path is set as desired.

4. Select the Perform Operation command button. A screen appears that contains a list of files. It includes the file you created in step 1 and other files that have been logged due to past system resets or call processing history freezes (each includes a date and time of the reset). Customer Service personnel may request that these files be copied to a designated destination and sent to them for troubleshooting purposes. If floppy disks are being used, the screen prompts you to insert a disk. Insert a blank, formatted disk into the appropriate drive. Then select the OK command button to begin the transfer, or the Cancel button to stop. The percent complete will be indicated while the transfer of the error logs to the floppy disk is in progress. When the transfer is completed, remove the disk from the drive (if one is being used). Multiple error files can be saved on one disk.

NOTE: The files will remain in the /syshist directory until you delete them. If your PC is low on disk space, you may wish to copy the files to floppy disk for storage and delete them from your hard drive.

16.45 **EXIT:** When finished, select the Exit command button to return to the Applications Programming window.
H. SERIAL PORT CONFIGURATION (PORT)

16.46 This window is used to configure the two system serial ports to match the configuration of external devices to which they will be attached (such as printers, PC, etc.).

16.47 This window is used to set the baud rate and/or handshaking capabilities of the serial ports. It is accessed by selecting Serial Port Configuration from the Service menu or entering the POKf command.

16.48 SERIAL PORT: Begin programming by selecting the desired serial port in the list box. When the Port is highlighted, all other programming applies to that port.

16.49 ENABLE DSR HANDSHAKING: If the device that is connected to the selected port supports handshaking on the DSR pin of the RS-232-C connector, select the Enable DSR Handshaking check box to place an X in it. To remove the X and disable the handshaking, select the check box again. Refer to SPECIFICATIONS, page 2-31, for more information.

16.50 ENABLE CTS HANDSHAKING If the device that is connected to the selected port supports handshaking on the CTS pin of the RS-232-C connector, select the Enable CTS Handshaking check box to place an X in it. To remove the X and disable the handshaking, select the check box again. Refer to SPECIFICATIONS, page 2-31, for more information.

16.51 BAUD RATE: To set the baud rate of the serial port (110–19200), scroll the highlight bar to the desired setting in the Baud Rate list box. (The 19200 baud rate is for outgoing data only. The maximum programming baud rate is 9600.)

NOTE: If you change the baud rate of the serial port that is connected to the PC, a display tells you that the baud rate of your PC is being changed to match the baud rate you just selected. This also changes the default baud rate shown in the window on page 5-9.

16.52 RESET PORTS: On occasion, the serial port and the device that is attached to it will “lock up” while each is waiting for a “ready” command from the other. To reset the ports and clear this condition, select the Reset Ports command button.

16.53 EXIT: When serial port programming is finished, select the Exit command button. A window appears that asks “Perform Update to Database?” To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the Serial Port Configuration window without updating the database.
1. **SYSTEM CONFIGURATION (CONF)**

16.54 This window is used to set the system time, date, and local area code of the system location. It is also used to set up the circuit card configuration of the equipment cabinet **cardfile** and dedicate voice **channels** to specific cards. To access it, select System Configuration from the Service menu or enter the CONF command.

16.55 **TIME and DATE:** To set the system time or date that will appear on all **keyset** displays and in the SMDR/SMDA reports, select the Time text box and type the hour (in 24-hour format), a colon, and the minutes, then select the Date text box and enter two digits for the month, a slash, two digits for the date, another slash, and two digits for the year (XX/XX/XX).

16.56 **SYSTEM CONFIGURATION** and **BOARD TYPE:** Because the **cardfile** has universal slots — any type of card (except the RCPU) can be installed in any slot — this program is needed to “tell” the database which type of card is in each slot. To configure a card slot for a particular type of card, first locate the desired card position in the System Configuration list box and highlight it. Then, press the SPACE BAR to select it. The highlight bar will move to the Board Type list box automatically. Locate and select the desired card **type.** The card type description will appear in the System Configuration box. **NOTE:** You cannot change the board type of a KSC slot if any of the circuits have associated DSS/BLF circuits. First, you must remove the DSS/BLF association from those circuits.

1657 **+30VDC MODULES:** This number indicates the number of +30VDC modules that must be installed to support the configuration as programmed. The number is automatically calculated and changes as you assign cards to their **cardfile** slots.
16.58 MOVE BOARD: This option is available only in stand-alone programming sessions. If you wish to move a board from its assigned location in the cardfile to an available slot, select the Move Board command button. The following window appears. The list box shows all available slots. Move the highlight bar to the desired slot and then select the OK command button. Or, to leave the slot assignment unchanged, select the Cancel command button.

16.59 HOME AREA CODES: In many areas, the telephone company has created call-cost arrangements that refer to “home” and “local” area codes. The home area code is the area code within which the system resides. The local area codes are additional area codes that, when called, use the local or toll local call-cost rate instead of the long distance rate. Up to three local area codes can be programmed and then extended within toll restriction programming to provide proper call costing. The Home Area Codes window, below, appears when the Home Area Codes command button is selected. Program the area codes as follows:

- **HOME/LOCAL AREA CODE:** To program the area code(s) for the system location, select the desired text box(es) and enter the code(s).

16.60 CONFIGURATION: Keyset Interface and DID Trunk Interface cards require additional programming to configure them.

- **KSC (IMX Only):** IMX dual-circuit version Keyset Interface cards (KSC-Ds) can have “single” circuits that support one keyset or “dual” circuits that can support two 8-line IMX AIM keysets. (Older versions of the keyset interface card -standard KSCs -do not support dual circuits. If you attempt to configure a KSC, you will receive an error message.) Highlight the desired Keyset Interface card in the System Configuration list box, then select the Configuration command button. A window appears as shown below. The list box shows the configuration of each of the eight circuits on the card. Selecting a circuit changes the configuration between Single and Dual. Assign the proper configuration to each circuit, then select the OK command button to return to the System Configuration window. Dual circuits have “A” and “B” stations, represented by the circuit number and a letter (for example, 1.1A and 1.1B). The “A” station will automatically be assigned the default extension number (for example, 1.1A would be extension 100). The “B” station does not have a default extension number or any individual station programming defaults such as page zone, outgoing access, toll restriction, etc.

- **DID:** DID Trunk Interface cards can contain DID (direct inward dialing) or OPX (off-premises extension) lines. Highlight the DID Trunk Interface card in the System Configuration list box, then select the Configuration command button. A window appears as shown below. The list box shows the configuration of each of the eight circuits on the card. Selecting a circuit changes the configuration between DID and OPX. Assign the proper configuration to each
circuit, then select the OK command button to return to the System Configuration window.

NOTE: OPXs are single-line stations that must be programmed in Station programming to determine the OPX station status, ring cadence, and ring type. Also, the straps on the DID card must be set correctly (refer to SPECIFICATIONS, page 2-15).

- **T1C**: To view the programmed circuit types, scroll through the T1 Cards list box. The option buttons change to indicate the current programming for a circuit as you highlight the circuit in the list box. To program the circuit type of a T1 Card circuit, highlight the desired circuit in the T1 Cards list box. Then move to the Circuit Types options and select the desired option button. Repeat this process for each circuit, then select the OK command button. Or, To exit without saving any changes, select the Cancel command button.

16.61 **NON-BLOCKING FOR VOICE CHANNELS**: Each voice bus (PCM highway) has 32 available time slots (voice channels) that are allocated for outside calls, intercom calls, and pages on a first-come, first-served basis. The software automatically distributes all equipped cards among the voice buses to make the best possible use of the available timeslots. If there is a large number of cards installed, two or more cards may be assigned to the same PCM highway.

16.62 This option, which should be used only if necessary, allows you to dedicate voice channels to a single card and therefore prevent having voice channels blocked when the system traffic is heavy. (Non-blocking designations decrease the number of boards that can be assigned to a voice bus.) To dedicate channels to a card, highlight that card in the System Configuration list box, then select the check box for Non-blocking for voice channels to place an X in it. To remove the X and release the voice channels, select the check box again. LGCs and LSCs require eight channels each for non-blocking. KSCs and SLCs require up to 16 channels. For voice channel distribution information refer to pages 2-6 through 2-7 in SPECIFICATIONS. To generate voice channel allocation data for traffic analysis, perform the following steps:

1. Exit to the Inter-Tel logo screen and press ALT-F7 to access the On-Line Monitor. (If necessary, enter the Monitor Unrestricted password.)

2. Press ALT-R to access the Resources menu, then press B to select the Board-to-Voice Bus Mapping option. The report is displayed, similar to the one shown below.

16.63 If any board in a voice bus is designated as "non-blocking," that voice bus will be marked “N” in the Blocking category. The example below is a Board-to-voice Bus Mapping report for a system with 27 boards. The actual values depend on the size and configuration of the system.

NOTE: Designating one or more cards as non-blocking may increase the chances that the remaining cards will experience blocking. If too many cards are designated as non-blocking (i.e., all available system voice channels are used up), the system generates an error message (whenever the system is powered up or voice channels are rebalanced) to indicate that non-blocking status is not guaranteed.

16.64 **EXIT**: When finished, select the Exit command button. A window asks “Perform Update to Database?” To update the database and exit to the Applications Menu, select Yes. Or, select No to exit without saving any changes. Select Cancel to return to the System Configuration window without updating the database.
FIGURE 5-3. SAMPLE BOARD-TO-VOICE BUS MAPPING REPORT

<table>
<thead>
<tr>
<th>Board Number</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice-Bus Number</td>
<td>05</td>
<td>06</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
</tr>
<tr>
<td>Time Slots Used</td>
<td>16</td>
<td>13</td>
<td>08</td>
</tr>
<tr>
<td>Blocking?</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Board Number</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice-Bus Number</td>
<td>06</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>01</td>
<td>02</td>
<td>03</td>
<td>04</td>
<td>05</td>
<td>06</td>
<td>07</td>
</tr>
<tr>
<td>Time Slots Used</td>
<td>08</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Blocking?</td>
<td>Y</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voice-Bus Number</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Slots Allocated</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>48</td>
<td>45</td>
<td>16</td>
<td>00</td>
</tr>
<tr>
<td>Blocking?</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>
TO USE: Make a copy of this 3-page programming sheet for each station in the system.

<table>
<thead>
<tr>
<th>Circuit number</th>
<th>Extension number</th>
<th>Full name</th>
<th>User name</th>
<th>Station Exchange Password</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Miscellaneous Flags

- **Allow Private Intercom Override**: Enabled or Disabled
- **Auto Att/VM/DISA DND Breakthrough**: Enabled or Disabled
- **Auto Answer CO (keyset only)**: Enabled or Disabled
- **Auto Answer IC (keyset only)**: Enabled or Disabled
- **Barge Initiate (keyset only)**: Enabled or Disabled
- **Barge Receive**: Enabled or Disabled
- **Camp-On Tones**: Enabled or Disabled
- **CO Reseize (keyset only)**: Enabled or Disabled
- **Dial Pulse (single-line only)**: Yes or No
- **DID Camp-On Tones**: Enabled or Disabled
- **Do-Not-Disturb Allowed**: Enabled or Disabled
- **DND Override (keyset only)**: Enabled or Disabled
- **DTMF Feedback Tone (single-line only)**: Enabled or Disabled
- **E&M Camp-On Tones**: Enabled or Disabled
- **Handsfree (keyset only)**: Enabled or Disabled
- **Headset (keyset only)**: Enabled or Disabled
- **LCR Facility Croup Camp On**: Enabled or Disabled
- **Message Lamp (single-line only)**: Yes or No
- **Music Channel**: One or Two
- **Off Premises Extension (single-line only)**: Yes or No
- **OHVA Receive (keyset only)**: Enabled or Disabled
- **OHVA Transmit**: Enabled or Disabled
- **Page Remove/Replace (keyset only)**: Remove or Replace
- **Redial Mode (keyset only)**: Dialed or Saved
- **Ring Cadence (single-line only)**: Normal or Extended
- **Ring Intercom Always**: Enabled or Disabled
- **Ring Type for OPX (single-line only)**: AC or DC
- **Transparent LCR**: Enabled or Disabled
FIGURE 5-4. **INDIVIDUAL STATION PROGRAMMING** (Continued)

Miscellaneous Station **Information**

<table>
<thead>
<tr>
<th>Attendant</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt. Msg. source</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Message Center</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Acct Code Type: S/F/L/None</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td></td>
</tr>
<tr>
<td>Validate?</td>
<td>Yes or No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tenant/Dept. #</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring zone</td>
<td></td>
</tr>
</tbody>
</table>

Outgoing Access

<table>
<thead>
<tr>
<th>Day Trunk Groups:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Night Trunk Groups:</td>
<td></td>
</tr>
</tbody>
</table>

Programmable Keys

<table>
<thead>
<tr>
<th>Key Map Number:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Station</th>
<th>Programmable Keys:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Secondary Call Key Assignments

If this is a principal station:

<table>
<thead>
<tr>
<th>List of secondary stations:</th>
<th></th>
</tr>
</thead>
</table>

If this is a secondary station:

<table>
<thead>
<tr>
<th>SEC. KEY</th>
<th>ASSOCIATED STN</th>
<th>RING PRIN. FIRST?</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>03</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>04</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>05</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>06</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>07</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>08</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>09</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Yes or No</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Yes or No</td>
</tr>
</tbody>
</table>

Special Purpose Stations

Fill in appropriate information if the station serves as any of the following special purpose stations:

Attendant:

<table>
<thead>
<tr>
<th>List of stations served:</th>
<th></th>
</tr>
</thead>
</table>

Message Center:

<table>
<thead>
<tr>
<th>List of stations served:</th>
<th></th>
</tr>
</thead>
</table>
Special Purpose Stations (continued)

Fill in appropriate information if the station serves as any of the following special purpose stations:

Automated Attendant

Recall Destination:

Digit Translation:

1: 6:
2: 7:
3: 8:
4: 9:
5: 0:

House Phone

Day Number:
Night Number:

FAX Station (single-line only)

Message Center:

Voice Mail Station (single-line only): Yes or No

System Forwarding

Forwarding Path 1:

Call Type(s):
- Ring-in
- Recall
- IC Calls
- DID
- DISA/AA
- E&M
- Transfer

Condition(s):
- Busy
- No Ans.
- DND
- Immediate

System Mode(s):
- Day
- Night

Ring Principal:
- Yes or No

Forwarding Path 2:

Call Type(s):
- Ring-in
- Recall
- IC Calls
- DID
- DISA/AA
- E&M
- Transfer

Condition(s):
- Busy
- No Ans.
- DND
- Immediate

System Mode(s):
- Day
- Night

Ring Principal:
- Yes or No

Forwarding Path 3:

Call Type(s):
- Ring-in
- Recall
- IC Calls
- DID
- DISI/AA
- E&M
- Transfer

Condition(s):
- Busy
- No Ans.
- DND
- Immediate

System Mode(s):
- Day
- Night

Ring Principal:
- Yes or No

Toll Restriction

<table>
<thead>
<tr>
<th>SCOS</th>
<th>DAYMODE</th>
<th>NIGHTMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Unrestricted</td>
<td>Yes or No</td>
<td>Yes or No</td>
</tr>
<tr>
<td>1 Operator Access</td>
<td>Yes or No</td>
<td>Yes or No</td>
</tr>
<tr>
<td>2 Toll Access</td>
<td>Yes or No</td>
<td>Yes or No</td>
</tr>
<tr>
<td>3 International</td>
<td>Yes or No</td>
<td>Yes or No</td>
</tr>
<tr>
<td>4 Eight Digit</td>
<td>Yes or No</td>
<td>Yes or No</td>
</tr>
<tr>
<td>5 Area/Office Code</td>
<td>Yes or No</td>
<td>Yes or No</td>
</tr>
<tr>
<td>6 LCR Only</td>
<td>Yes or No</td>
<td>Yes or No</td>
</tr>
<tr>
<td>7 Alternate Carrier</td>
<td>Yes or No</td>
<td>Yes or No</td>
</tr>
<tr>
<td>8 Enable ALD</td>
<td>Yes or No</td>
<td>Yes or No</td>
</tr>
<tr>
<td>User Group Number</td>
<td>Yes or No</td>
<td>Yes or No</td>
</tr>
<tr>
<td>LCR Advance Limit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-5: KEY ASSIGNMENTS (KEY)

TO USE: These pages give sample key maps for each station instrument type. Defaults, if any, are shown. Copy the diagrams, identify the key map, and change the names of the appropriate keys to reflect their assignments in each key-map.

KEYSET KEY MAP NUMBER: __________ **DESCRIPTION:** __________________________

STATIONS: __________________________

EXECUTIVE DIGITAL KEYSET

![Key Map Diagram]

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLD</td>
<td>HOLD</td>
</tr>
<tr>
<td>TRANSFER</td>
<td>TRANSFER</td>
</tr>
<tr>
<td>SYS SPD</td>
<td>SYS SPD</td>
</tr>
<tr>
<td>REDIAL</td>
<td>REDIAL</td>
</tr>
<tr>
<td>SPKR</td>
<td>SPKR</td>
</tr>
<tr>
<td>MSG</td>
<td>MSG</td>
</tr>
<tr>
<td>MUTE</td>
<td>MUTE</td>
</tr>
<tr>
<td>PWD</td>
<td>PWD</td>
</tr>
<tr>
<td>VOL</td>
<td>VOL</td>
</tr>
<tr>
<td>SPCL</td>
<td>SPCL</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ABC</td>
<td>ABC</td>
</tr>
<tr>
<td>DEF</td>
<td>DEF</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>GHI</td>
<td>GHI</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>JKL</td>
<td>JKL</td>
</tr>
<tr>
<td>MNO</td>
<td>MNO</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>PRS</td>
<td>PRS</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>TUV</td>
<td>TUV</td>
</tr>
<tr>
<td>WXY</td>
<td>WXY</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>OPER</td>
<td>OPER</td>
</tr>
<tr>
<td>#</td>
<td>#</td>
</tr>
</tbody>
</table>
FIGURE 5-5. KEY ASSIGNMENTS (Continued)

<table>
<thead>
<tr>
<th>KEYSET KEY</th>
<th>MAP NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STATIONS:

<table>
<thead>
<tr>
<th>STANDARD DIGITAL KEYSET</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALL 1</td>
</tr>
<tr>
<td>CALL 2</td>
</tr>
<tr>
<td>CALL 3</td>
</tr>
<tr>
<td>CALL 4</td>
</tr>
<tr>
<td>IC</td>
</tr>
<tr>
<td>DND</td>
</tr>
</tbody>
</table>

ANSWER | I | I | OUTGOING |

HOLD	TRANSFER
SYS SPD	REDIAL
SPKR	MSG
MUTE	FWD
V	VOLUME A
SPCL	

1 | ABC | DEF |
2 | |
GHI | JKL | MNO |
4 | 5 | 6 |
PRS | TUV | WXY |
7 | 8 | 9 |
* | OPER | # |
FIGURE 5-5. KEY ASSIGNMENTS (Continued)

<table>
<thead>
<tr>
<th>KEYSET</th>
<th>KEY MAP NUMBER</th>
<th>DESCRIPTION</th>
<th>STATIONS</th>
</tr>
</thead>
</table>

IMX 12-LINE AND 24-LINE KEYSETS

- **Call 1**
- **Call 2**
- **Call 3**
- **Call 4**
- **SD1**
- **SD6**
- **SD2**
- **SD7**
- **SD3**
- **SD8**
- **SD4**
- **SD9**
- **SD5**
- **SD0**
- **Redial**
- **Sys Spd**
- **Answer**
- **Outgoing**

- **Speaker**
- **Conf**
- **Hold**
- **1**
- **ABC**
- **Def**
- **2**
- **3**
- **Mute**
- **Fwd**
- **Xfr**
- **Ghi**
- **4**
- **Jkl**
- **Mno**
- **5**
- **6**
- **Data**
- **Dnd**
- **Page**
- **Prs**
- **7**
- **Tuv**
- **Wxy**
- **8**
- **9**
- **IC**
- **Msg**
- **Que**
- *****
- **Oper**
- **0**
- **#**

- **Down**
- **Up**
- **Spcl**
FIGURE 5-5. KEY ASSIGNMENTS (Continued)

KEYSET KEY MAP NUMBER DESCRIPTION: ________________________________

STATIONS: ___

IMX & LINE KEYSETS

CALL 1 CALL 2 CALL 3 CALL 4

SPKR IC FWD MSG
MUTE CNF DND PAGE

ANSWER OUTGOING

HOLD
XFR
QUE
SPCL
1 2 3
ABC DEF
4 5 6
GHI JKL MNO
7 8 9
PRS TUV WXY
* 0 #
FIGURE 5-5. KEY ASSIGNMENTS (Continued)

KEYSET KEY MAP NUMBER: ___________ DESCRIPTION: _______________________________

STATIONS: ______________________________

INTER-TEL/DVK 24-LINE KEYSET

CALL 1 CALL 2 CALL 3 CALL 4

SD1 SD2 SD3 SD4 SD5 REDIAL

SD6 SD7 SD8 SD9 SD0 SYS SPD

SPKR CNF

MUTE PWD FWD

DATA DND

IC MSG

VOLDN VOLUP

1 2 3

4 5 6

7 8 9

* 0 #

HOLD

XFR

PAGE

QUE

MUSIC

ANSWER

OUTGOING

SPCL
FIGURE 5-5. KEY ASSIGNMENTS (Continued)

<table>
<thead>
<tr>
<th>KEYSET</th>
<th>KEY MAP NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATIONS:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INTER-TEL/DVK 12-LINE & 8-LINE KEYSETS

<table>
<thead>
<tr>
<th>Call 1</th>
<th>Call 2</th>
<th>Call 3</th>
<th>Call 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **KEYSETS**
 - 12-LINE KEYSETS
 - 8-LINE KEYSETS

- **HOLD**
- **XFR**
- **PAGE**
- **QUE**
- **REDIAL**
- **SPCL**
- **VOL UP**
- **VOL DN**

- **Keypads**
 - **1**
 - **ABC**
 - **DEF**
 - **4**
 - **GHI**
 - **JKL**
 - **MNO**
 - **7**
 - **PRS**
 - **TUV**
 - **WXYZ**

- **Special Keys**
 - *****
 - **OPER**
 - **#**

Page 5-182
FIGURE 5-5. KEY ASSIGNMENTS (Continued)

DSS/BLF KEY MAP NUMBER: __________ DESCRIPTION: ___________________________

STATIONS: ___

DIGITAL DSS/BLF UNIT

[Diagram of a digital DSS/BLF unit with key assignments]
FIGURE 5-5. KEY ASSIGNMENTS (Continued)

DSS/BLF KEY MAP NUMBER: _________ DESCRIPTION: ____________________

STATIONS:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-5. KEY ASSIGNMENTS (Continued)

DSS/BLF KEY MAP NUMBER ____________ DESCRIPTION: ____________________________

STATIONS: __________________________

INTER-TEL/DVK DSS/BLF UNIT
FIGURE 5-5. KEY ASSIGNMENTS (Continued)

SINGLE-LINE KEY MAP NUMBER: __________ DESCRIPTION: ____________________________

STATIONS: __

ENHANCED SINGLE-LINE SET (ESLS)

PGM SPD QUE CNF MSG

HOLD FLASH

OUT

REDIAL

STN SPD

SYS SPD

OPER # 0 1

0 1 2 3 4 5 6 7 8 9

abc def ghi jkl

prs tuv wxy
FIGURE 5-5. KEY ASSIGNMENTS (Continued)

SINGLE-LINE KEY MAP NUMBER ___________ DESCRIPTION: ______________________

STATIONS: __

SINGLE-LINE INSTRUMENT (SLI)

```
1 ABC 2 DEF 3 STN
GH 4 JKL c 5 l MNO 6 RED
PRS 7 TUV 8 WXY 9 LCR
* OPER 0 # HOLD
FLASH
```
FIGURE 5-6. RING ZONE PROGRAMMING (ZONE)

<table>
<thead>
<tr>
<th>RING ZONE</th>
<th>STATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate</td>
<td></td>
</tr>
<tr>
<td>Zone 1</td>
<td></td>
</tr>
<tr>
<td>Zone 2</td>
<td></td>
</tr>
<tr>
<td>Zone 3</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-7. STATION FEATURES (SFEA)

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>STATIONS WITH FEATURE ENABLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow private intercom override</td>
<td></td>
</tr>
<tr>
<td>Auto attendant/VM/DISA DND breakthru allowed</td>
<td></td>
</tr>
<tr>
<td>Automatic answer on CO calls (keysets only)</td>
<td></td>
</tr>
<tr>
<td>Automatic answer on IC calls (keysets only)</td>
<td></td>
</tr>
<tr>
<td>Barge receive</td>
<td></td>
</tr>
<tr>
<td>Barge transmit (keysets only)</td>
<td></td>
</tr>
<tr>
<td>Camp-on tones disabled</td>
<td></td>
</tr>
<tr>
<td>CO reseize (keysets only)</td>
<td></td>
</tr>
<tr>
<td>Dial pulse (single-line only)</td>
<td></td>
</tr>
<tr>
<td>DID camp-on tones disabled</td>
<td></td>
</tr>
<tr>
<td>Do-not-disturb allowed</td>
<td></td>
</tr>
<tr>
<td>Do-not-disturb override allowed (keysets only)</td>
<td></td>
</tr>
<tr>
<td>DTMF feedback enabled</td>
<td></td>
</tr>
<tr>
<td>E&M camp-on tones disabled</td>
<td></td>
</tr>
<tr>
<td>Handsfree (keysets only)</td>
<td></td>
</tr>
<tr>
<td>LCR facility group camp-on allowed</td>
<td></td>
</tr>
<tr>
<td>Message lamp (single-line only)</td>
<td></td>
</tr>
<tr>
<td>Music channel one</td>
<td></td>
</tr>
<tr>
<td>OHVA receive enabled (keysets only)</td>
<td></td>
</tr>
<tr>
<td>OHVA transmit enabled</td>
<td></td>
</tr>
<tr>
<td>Page remove (keysets only)</td>
<td></td>
</tr>
<tr>
<td>Redial mode - Last number dialed (keysets only)</td>
<td></td>
</tr>
<tr>
<td>Ring intercom always enabled</td>
<td></td>
</tr>
<tr>
<td>Station exchange enabled</td>
<td></td>
</tr>
<tr>
<td>Transparent LCR</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-8. ACCOUNT CODES (ACCT)

Length of all account codes is: (4-8) digits.

Standard Account Codes:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>026</td>
<td>052</td>
<td>078</td>
<td>104</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001</td>
<td>027</td>
<td>053</td>
<td>079</td>
<td>105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>002</td>
<td>028</td>
<td>054</td>
<td>080</td>
<td>106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>003</td>
<td>029</td>
<td>055</td>
<td>081</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td>004</td>
<td>030</td>
<td>056</td>
<td>082</td>
<td>108</td>
<td></td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>031</td>
<td>057</td>
<td>083</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>006</td>
<td>032</td>
<td>058</td>
<td>084</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>007</td>
<td>033</td>
<td>059</td>
<td>085</td>
<td>111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>008</td>
<td>034</td>
<td>060</td>
<td>086</td>
<td>112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>035</td>
<td>061</td>
<td>087</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>010</td>
<td>036</td>
<td>062</td>
<td>088</td>
<td>114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>011</td>
<td>037</td>
<td>063</td>
<td>089</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>012</td>
<td>038</td>
<td>064</td>
<td>090</td>
<td>116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>013</td>
<td>039</td>
<td>065</td>
<td>091</td>
<td>117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>014</td>
<td>040</td>
<td>066</td>
<td>092</td>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>015</td>
<td>041</td>
<td>067</td>
<td>093</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>016</td>
<td>042</td>
<td>068</td>
<td>094</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>017</td>
<td>043</td>
<td>069</td>
<td>095</td>
<td>121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>018</td>
<td>044</td>
<td>070</td>
<td>096</td>
<td>122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>019</td>
<td>045</td>
<td>071</td>
<td>097</td>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>020</td>
<td>046</td>
<td>072</td>
<td>098</td>
<td>124</td>
<td></td>
<td></td>
</tr>
<tr>
<td>021</td>
<td>047</td>
<td>073</td>
<td>099</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>048</td>
<td>074</td>
<td>100</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>023</td>
<td>049</td>
<td>075</td>
<td>101</td>
<td>127</td>
<td></td>
<td></td>
</tr>
<tr>
<td>024</td>
<td>050</td>
<td>076</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>025</td>
<td>051</td>
<td>077</td>
<td>103</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stations With Standard Account Codes:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Forced Account Codes:

<table>
<thead>
<tr>
<th>Forced Account Codes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>001 037 073 109 145</td>
</tr>
<tr>
<td>002 038 074 110 146</td>
</tr>
<tr>
<td>003 039 075 111 147</td>
</tr>
<tr>
<td>004 040 076 112 148</td>
</tr>
<tr>
<td>005 041 077 113 149</td>
</tr>
<tr>
<td>006 042 078 114 150</td>
</tr>
<tr>
<td>007 043 079 115 151</td>
</tr>
<tr>
<td>008 044 080 116 152</td>
</tr>
<tr>
<td>009 045 081 117 153</td>
</tr>
<tr>
<td>010 046 082 118 154</td>
</tr>
<tr>
<td>011 047 083 119 155</td>
</tr>
<tr>
<td>012 048 084 120 156</td>
</tr>
<tr>
<td>013 049 085 121 157</td>
</tr>
<tr>
<td>014 050 086 122 158</td>
</tr>
<tr>
<td>015 051 087 123 159</td>
</tr>
<tr>
<td>016 052 088 124 160</td>
</tr>
<tr>
<td>017 053 089 125 161</td>
</tr>
<tr>
<td>018 054 090 126 162</td>
</tr>
<tr>
<td>019 055 091 127 163</td>
</tr>
<tr>
<td>020 056 092 128 164</td>
</tr>
<tr>
<td>021 057 093 129 165</td>
</tr>
<tr>
<td>022 058 094 130 166</td>
</tr>
<tr>
<td>023 059 095 131 167</td>
</tr>
<tr>
<td>024 060 096 132 168</td>
</tr>
<tr>
<td>025 061 097 133 169</td>
</tr>
<tr>
<td>026 062 098 134 170</td>
</tr>
<tr>
<td>027 063 099 135 171</td>
</tr>
<tr>
<td>028 064 100 136 172</td>
</tr>
<tr>
<td>029 065 101 137 173</td>
</tr>
<tr>
<td>030 066 102 138 174</td>
</tr>
<tr>
<td>031 067 103 139 175</td>
</tr>
<tr>
<td>032 068 104 140 176</td>
</tr>
<tr>
<td>033 069 105 141 177</td>
</tr>
<tr>
<td>034 070 106 142 178</td>
</tr>
<tr>
<td>035 071 107 143 179</td>
</tr>
</tbody>
</table>
FIGURE 5-8. ACCOUNT CODES (Continued)

Forced Account Codes (continued):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>1%</td>
<td>212</td>
<td>228</td>
<td>244</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>197</td>
<td>213</td>
<td>229</td>
<td>245</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>198</td>
<td>214</td>
<td>230</td>
<td>246</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>199</td>
<td>215</td>
<td>231</td>
<td>247</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>200</td>
<td>216</td>
<td>232</td>
<td>248</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>201</td>
<td>217</td>
<td>-</td>
<td>233</td>
<td>249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>202</td>
<td>218</td>
<td>234</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>203</td>
<td>219</td>
<td>235</td>
<td>251</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>204</td>
<td>220</td>
<td>236</td>
<td>252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>205</td>
<td>221</td>
<td>237</td>
<td>253</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>206</td>
<td>222</td>
<td>238</td>
<td>254</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>207</td>
<td>223</td>
<td>239</td>
<td>255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>208</td>
<td>224</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>209</td>
<td>225</td>
<td>241</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>210</td>
<td>226</td>
<td>242</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>211</td>
<td>227</td>
<td>243</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stations With Forced Account Codes:

<table>
<thead>
<tr>
<th>Station</th>
<th>Code</th>
<th>Account Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stations With Local Toll Account Codes:

<table>
<thead>
<tr>
<th>Station</th>
<th>Code</th>
<th>Account Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stations With Validated Account Codes:

<table>
<thead>
<tr>
<th>Station</th>
<th>Code</th>
<th>Account Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 5-192
FIGURE 5-8. ACCOUNT CODES (Continued)

Class-Of-Service Account Codes: (Enter the station extension and/or circuit number next to the account code)

<table>
<thead>
<tr>
<th>Account Code</th>
<th>Station Extension</th>
<th>Circuit Number</th>
<th>Account Code</th>
<th>Station Extension</th>
<th>Circuit Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>035</td>
<td>070</td>
<td>001</td>
<td>036</td>
<td>071</td>
</tr>
<tr>
<td>002</td>
<td>037</td>
<td>072</td>
<td>003</td>
<td>038</td>
<td>073</td>
</tr>
<tr>
<td>004</td>
<td>039</td>
<td>074</td>
<td>005</td>
<td>040</td>
<td>075</td>
</tr>
<tr>
<td>006</td>
<td>041</td>
<td>076</td>
<td>007</td>
<td>042</td>
<td>077</td>
</tr>
<tr>
<td>008</td>
<td>043</td>
<td>078</td>
<td>009</td>
<td>044</td>
<td>079</td>
</tr>
<tr>
<td>010</td>
<td>045</td>
<td>080</td>
<td>011</td>
<td>046</td>
<td>081</td>
</tr>
<tr>
<td>012</td>
<td>047</td>
<td>082</td>
<td>013</td>
<td>048</td>
<td>083</td>
</tr>
<tr>
<td>014</td>
<td>049</td>
<td>084</td>
<td>015</td>
<td>050</td>
<td>085</td>
</tr>
<tr>
<td>016</td>
<td>051</td>
<td>086</td>
<td>017</td>
<td>052</td>
<td>087</td>
</tr>
<tr>
<td>018</td>
<td>053</td>
<td>088</td>
<td>019</td>
<td>054</td>
<td>089</td>
</tr>
<tr>
<td>020</td>
<td>055</td>
<td>090</td>
<td>021</td>
<td>056</td>
<td>091</td>
</tr>
<tr>
<td>022</td>
<td>057</td>
<td>092</td>
<td>023</td>
<td>058</td>
<td>093</td>
</tr>
<tr>
<td>024</td>
<td>059</td>
<td>094</td>
<td>025</td>
<td>060</td>
<td>095</td>
</tr>
<tr>
<td>026</td>
<td>061</td>
<td>096</td>
<td>027</td>
<td>062</td>
<td>097</td>
</tr>
<tr>
<td>028</td>
<td>063</td>
<td>098</td>
<td>029</td>
<td>064</td>
<td>099</td>
</tr>
<tr>
<td>030</td>
<td>065</td>
<td>100</td>
<td>031</td>
<td>066</td>
<td>101</td>
</tr>
<tr>
<td>032</td>
<td>067</td>
<td>102</td>
<td>033</td>
<td>068</td>
<td>103</td>
</tr>
<tr>
<td>034</td>
<td>069</td>
<td>104</td>
<td>035</td>
<td>070</td>
<td>105</td>
</tr>
</tbody>
</table>

Page 5-193
FIGURE 5-8. ACCOUNT CODES (Continued)

Class-Of-Service Account Codes (continued):

140	169	198	227																
141	170	199	228																
142	171	200	229																
143	172	201	230																
144	173	202	231																
145	174	203	232																
146	175	204	233																
147	176	205	234																
148	177	206	235																
149	178	207	236																
150	179	208	237																
151	180	209	238																
152	181	210	239																
153	182	211	240																
154	183	212	241																
155	184	213	242																
156	185	214	243																
157	186	215	244																
158	187	216	245																
159	188	217	246																
160	189	218	247																
161	190	219	248																
162	191	220	249																
163	192	221	250																
164	193	222	251																
165	194	223	252																
166	195	224	253																
167	196	225	254																
168	197	226	255																
FIGURE 5-9. DO-NOT-DISTURB AND REMINDER MESSAGES (MESG)

Do-Not-Disturb Messages:

<table>
<thead>
<tr>
<th>MESSAGE 1</th>
<th>(DO-NOT-DISTURB)</th>
<th>(THIS MESSAGE CANNOT BE CHANGED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MESSAGE 2</td>
<td>(IN MEETING UNTIL)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 3</td>
<td>(IN MEETING)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 4</td>
<td>(ON VACATION 'TIL)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 5</td>
<td>(ON VACATION)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 6</td>
<td>(CALL ME AT)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 7</td>
<td>(CALL ME AFTER)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 8</td>
<td>(AWAY AT)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 9</td>
<td>(ONBREAK)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 10</td>
<td>(OUT OF TOWN 'TIL)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 11</td>
<td>(OUTOFOFFICE)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 12</td>
<td>(OUTUNTIL)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 13</td>
<td>(WITH A CLIENT)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 14</td>
<td>(WITH A GUEST)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 15</td>
<td>(WITH A PATIENT)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 16</td>
<td>(UNAVAILABLE)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 17</td>
<td>(IN CONFERENCE)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 18</td>
<td>(AWAY FROM DESK)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 19</td>
<td>(GONEHOME)</td>
<td></td>
</tr>
<tr>
<td>MESSAGE 20</td>
<td>(OUT TO LUNCH)</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-9. DO-NOT-DISTURB AND REMINDER MESSAGES (Continued)

Reminder Messages:

| MESSAGE 1 (MEETING): |
| MESSAGE 2 (STAFF MEETING): |
| MESSAGE 3 (SALES MEETING): |
| MESSAGE 4 (CANCEL MEETING): |
| MESSAGE 5 (APPOINTMENT): |
| MESSAGE 6 (PLACECALL): |
| MESSAGE 7 (CALL CLIENT): |
| MESSAGE 8 (CALL CUSTOMER): |
| MESSAGE 9 (CALLHOME): |
| MESSAGE 10 (CALL CORPORATE): |
| MESSAGE 11 (CALLENGINEERING): |
| MESSAGE 12 (CALL MARKETING): |
| MESSAGE 13 (CALL ACCOUNTING): |
| MESSAGE 14 (CANCELND): |
| MESSAGE 15 (CANCELCALLFWD): |
| MESSAGE 16 (TAKE MEDICATION): |
| MESSAGE 17 (MAKE RESERVATION): |
| MESSAGE 18 (REVIEW SCHEDULE): |
| MESSAGE 19 (LUNCH): |
| MESSAGE 20 (REMINDER): |
FIGURE 5-10. EXTENSIONS, USERNAMES, AND FEATURE CODES (EXT)

Extensions: (Copy this page and fill in the blanks as needed) Indicate dual KSC stations as A or B circuits.

<table>
<thead>
<tr>
<th>CIRCUIT #</th>
<th>DESCRIPTION</th>
<th>USERNAME</th>
<th>EXTENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-10. EXTENSIONS, USERNAMES, AND FEATURE CODES (Continued)

Hunt Groups:

<table>
<thead>
<tr>
<th>GROUP #</th>
<th>DESCRIPTION</th>
<th>USERNAME</th>
<th>EXTENSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-10. EXTENSIONS, USERNAMES, AND FEATURE CODES (Continued)

Trunk Groups: (Copy *this page and fill in the blanks as needed.*)

<table>
<thead>
<tr>
<th>GRP #</th>
<th>DESCRIPTION</th>
<th>USERNAME</th>
<th>DEFAULT EXT</th>
<th>NEW EXT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-10. EXTENSIONS, USERNAMES, AND FEATURE CODES (Continued)

Feature Codes:

<table>
<thead>
<tr>
<th>NEW CODE</th>
<th>FEATURE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM/Digital/DVK Keyset</td>
<td>Default Volume (394)</td>
</tr>
<tr>
<td>Attendant - Cancel All DND Requests (012)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Cancel All Station DND/FWD Requests (014)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Cancel All Station FWD Requests (013)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Cancel Station DND Request (015)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Cancel Station DND/FWD Request (017)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Cancel Station FWD Request (016)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Clear System Alarm (019)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Night Ring On/Off (010)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Paging Speaker Music On/Off (018)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Program Station Data (022)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Program System DND Messages (024)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Program System Reminder Messages (023)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Program System Speed Dial (020)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Remove All Trunks From Maintenance (026)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Set Time of Day (021)</td>
<td></td>
</tr>
<tr>
<td>Attendant - SMRO (025)</td>
<td></td>
</tr>
<tr>
<td>Attendant - Trunk Maintenance (027)</td>
<td></td>
</tr>
<tr>
<td>Automatic Intercom Access (362)</td>
<td></td>
</tr>
<tr>
<td>Automatic Intercom Access - Cancel (363)</td>
<td></td>
</tr>
<tr>
<td>Automatic Intercom Access On/Off (364)</td>
<td></td>
</tr>
<tr>
<td>Automatic Trunk Access (360)</td>
<td></td>
</tr>
<tr>
<td>Automatic Trunk Access - Cancel (361)</td>
<td></td>
</tr>
<tr>
<td>Automatic Trunk Access On/Off (374)</td>
<td></td>
</tr>
<tr>
<td>Automatic Trunk Answer (350)</td>
<td></td>
</tr>
</tbody>
</table>

NEW CODE | FEATURE NAME |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Trunk Selection (89)</td>
<td></td>
</tr>
<tr>
<td>Background Music Channel Selection (318)</td>
<td></td>
</tr>
<tr>
<td>Background Music On/Off (313)</td>
<td></td>
</tr>
<tr>
<td>Barge (397)</td>
<td></td>
</tr>
<tr>
<td>Call Forward - All Calls (355)</td>
<td></td>
</tr>
<tr>
<td>Call Forward - cancel Any (359)</td>
<td></td>
</tr>
<tr>
<td>Call Forward - If Busy (357)</td>
<td></td>
</tr>
<tr>
<td>Call Forward - If No Answer (356)</td>
<td></td>
</tr>
<tr>
<td>Call Forward - If No Answer or Busy (358)</td>
<td></td>
</tr>
<tr>
<td>Call Splitting - Keyset (338)</td>
<td></td>
</tr>
<tr>
<td>Call Splitting - Single-Line (337)</td>
<td></td>
</tr>
<tr>
<td>Cancel Current Message (379)</td>
<td></td>
</tr>
<tr>
<td>Cancel Misc. Operations (395)</td>
<td></td>
</tr>
<tr>
<td>Conference (5)</td>
<td></td>
</tr>
<tr>
<td>Data (340)</td>
<td></td>
</tr>
<tr>
<td>Data Port Monitor (341)</td>
<td></td>
</tr>
<tr>
<td>Date and Time Display (300)</td>
<td></td>
</tr>
<tr>
<td>Do-Not-Disturb (370)</td>
<td></td>
</tr>
<tr>
<td>Do-Not-Disturb - Cancel (371)</td>
<td></td>
</tr>
<tr>
<td>Do-Not-Disturb Mode On/Off (372)</td>
<td></td>
</tr>
<tr>
<td>Do-Not-Disturb Override (373)</td>
<td></td>
</tr>
<tr>
<td>Feature Key - Default (325)</td>
<td></td>
</tr>
<tr>
<td>Feature Key - Display (326)</td>
<td></td>
</tr>
<tr>
<td>Feature Key - Programming (327)</td>
<td></td>
</tr>
<tr>
<td>Handsfree - Disable (310)</td>
<td></td>
</tr>
<tr>
<td>Handsfree - Enable (311)</td>
<td></td>
</tr>
<tr>
<td>Handsfree On/Off (319)</td>
<td></td>
</tr>
<tr>
<td>Headset - Disable (316)</td>
<td></td>
</tr>
<tr>
<td>Headset - Enable (315)</td>
<td></td>
</tr>
<tr>
<td>Headset Mode On/Off (317)</td>
<td></td>
</tr>
<tr>
<td>Hold - Individual (336)</td>
<td></td>
</tr>
<tr>
<td>Hold - System (335)</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-10. EXTENSIONS, USERNAMES, AND FEATURE CODES (Continued)

<table>
<thead>
<tr>
<th>Feature Codes (continued):</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW CODE</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Page (7)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEW CODE</th>
<th>FEATURE NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Modems:</td>
</tr>
<tr>
<td></td>
<td>Bell 202 — 300 baud (270)</td>
</tr>
<tr>
<td></td>
<td>Bell 202 — 1200 baud (271)</td>
</tr>
<tr>
<td></td>
<td>CCITT — 300 baud (272)</td>
</tr>
<tr>
<td></td>
<td>CCITT — 1200 baud (273)</td>
</tr>
</tbody>
</table>
TO USE: *(Make sufficient copies of this page and fill in information for each hunt group.)*

<table>
<thead>
<tr>
<th>Hunt Group Number:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilot Number:</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td></td>
</tr>
<tr>
<td>Username:</td>
<td></td>
</tr>
<tr>
<td>Search Type:</td>
<td>Linear or Distributed</td>
</tr>
<tr>
<td>Announcement Station/Type:</td>
<td></td>
</tr>
<tr>
<td>Overflow Station/Type/Count:</td>
<td></td>
</tr>
<tr>
<td>Hunt Group Supervisor:</td>
<td></td>
</tr>
<tr>
<td>Recall Destination:</td>
<td></td>
</tr>
<tr>
<td>Voice Mail?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Voice Computer?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Automated Attendant?</td>
<td>Yes or No</td>
</tr>
</tbody>
</table>

Timers:

<table>
<thead>
<tr>
<th>TIMER</th>
<th>DEFAULT</th>
<th>RANGE</th>
<th>NEW VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Answer Advance</td>
<td>18 seconds</td>
<td>1-255</td>
<td></td>
</tr>
<tr>
<td>Announcement</td>
<td>18 seconds</td>
<td>1-255</td>
<td></td>
</tr>
<tr>
<td>Overflow</td>
<td>72 seconds</td>
<td>1-255</td>
<td></td>
</tr>
<tr>
<td>Recall</td>
<td>180 seconds</td>
<td>1-65535</td>
<td></td>
</tr>
</tbody>
</table>

Stations:
FIGURE 5-12. MISC. SYSTEM-WIDE INFORMATION (MISC)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Attendant Station:</td>
<td></td>
</tr>
<tr>
<td>Call Termination Digits:</td>
<td></td>
</tr>
<tr>
<td>System Flags:</td>
<td></td>
</tr>
<tr>
<td>Account code class of service</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Allow cross-tenant traffic</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Allow cross-tenant voice mail/computer traffic</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Audible message indication for SL sets</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Auto attendant — dial during recording</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Automated attendant — ringback tone</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Barge</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Barge confirmation tone</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Broadcast alarms to all attendants</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Broadcast station off-hook alarms</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Drop incomplete outgoing calls</td>
<td>Yes or No</td>
</tr>
<tr>
<td>DSS feature key lamp status</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Extended DTMF feedback digits</td>
<td>Yes or No</td>
</tr>
<tr>
<td>External paging music channel</td>
<td>One or Two</td>
</tr>
<tr>
<td>Handsfree announce system forward transfer</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Hot dial pad keys</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Hunt group transferred call type</td>
<td>Overflow or Ann/Overflow</td>
</tr>
<tr>
<td>Keyset</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Identification display</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Music-on-hold for IC calls</td>
<td>Yes or No</td>
</tr>
<tr>
<td>OHVA DSS immediate transmit</td>
<td>Yes or No</td>
</tr>
<tr>
<td>OHVA system-wide</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Privacy release</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Reverse transfer immediate connection</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Standard tones for CO trunks</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Standard tones for keysets</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Standard tones for single-lines</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Station DTMF digit mute</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Station monitoring tone</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Suppress all displayed digits after end-of-dialing</td>
<td>Yes or No</td>
</tr>
<tr>
<td>System “skate” type</td>
<td>Hold or Disconnect</td>
</tr>
<tr>
<td>System speed dial override SCOS</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Validate voice mailbox numbers</td>
<td>Yes or No</td>
</tr>
</tbody>
</table>
FIGURE 5-13. PAGE ZONES (PAGE)

<table>
<thead>
<tr>
<th>ZONE</th>
<th>DESCRIPTION</th>
<th>RELAYS</th>
<th>EXTERNAL PORTS</th>
<th>KEYSETS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 5-14. RELAYS (RLAY)

<table>
<thead>
<tr>
<th>RCPU CARD RELAY</th>
<th>RELAYTYPE</th>
<th>TENANT GROUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Power Failure</td>
<td>N/A</td>
</tr>
<tr>
<td>02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-15. SYSTEM FORWARDING PATHS (SFWD)

TO USE: (Make sufficient copies of this page and fill in information for each system forwarding path.)

<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>POINT #1</th>
<th>POINT #2</th>
<th>POINT #3</th>
<th>POINT #4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-16. SYSTEM SPEED DIAL (SSPD)

TO USE. *(Make sufficient copies of this page and fill in information for each system speed-dial number.)*

Display numbers: 000- _____ (up to 399) Programming station: _______ Digits in bin #: _______

<table>
<thead>
<tr>
<th>NO.</th>
<th>DESCRIPTION</th>
<th>NUMBER</th>
<th>TENANT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-17. SYSTEM TIMER (TIMR)

<table>
<thead>
<tr>
<th>TIMER</th>
<th>DEFAULT</th>
<th>RANGE</th>
<th>NEW VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abandoned Call</td>
<td>10</td>
<td>1-255 minutes</td>
<td></td>
</tr>
<tr>
<td>Camp-On</td>
<td>3</td>
<td>0-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Camp-On Tone</td>
<td>15</td>
<td>5-255 seconds</td>
<td></td>
</tr>
<tr>
<td>CO Hookflash</td>
<td>60</td>
<td>2-250 hundredths</td>
<td></td>
</tr>
<tr>
<td>CO Re-Seize</td>
<td>3</td>
<td>1-15 seconds</td>
<td></td>
</tr>
<tr>
<td>CO-CO Disconnect</td>
<td>35</td>
<td>2-250 hundredths</td>
<td></td>
</tr>
<tr>
<td>Conference-Hold</td>
<td>5</td>
<td>1-255 minutes</td>
<td></td>
</tr>
<tr>
<td>Data Wait</td>
<td>30</td>
<td>1-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Dial Tone Wait</td>
<td>2</td>
<td>1-50 seconds</td>
<td></td>
</tr>
<tr>
<td>Dial-Initiation — Keyset</td>
<td>15</td>
<td>5-30 seconds</td>
<td></td>
</tr>
<tr>
<td>Dial-Initiation — SL Set</td>
<td>10</td>
<td>5-30 seconds</td>
<td></td>
</tr>
<tr>
<td>Dialing Disconnect</td>
<td>200</td>
<td>2-230 hundredths</td>
<td></td>
</tr>
<tr>
<td>Dialing Wait After Connect — Ground Start</td>
<td>1500</td>
<td>0-5000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>Dialing Wait After Connect — Loop Start</td>
<td>1500</td>
<td>0-5000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>Dialing Wait After Hookflash</td>
<td>30</td>
<td>1-250 tenths</td>
<td></td>
</tr>
<tr>
<td>Disconnect Flash Duration</td>
<td>15</td>
<td>1-250 tenths</td>
<td></td>
</tr>
<tr>
<td>Disconnect Wait After Dialing</td>
<td>20</td>
<td>2-30 seconds</td>
<td></td>
</tr>
<tr>
<td>DTMF Digit Duration/Pause</td>
<td>6</td>
<td>5-60 hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Answer Recognition</td>
<td>2250</td>
<td>100-10000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Dial Delay</td>
<td>35</td>
<td>1-100 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Dial Delay Hold</td>
<td>70</td>
<td>1-250 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Dialing Wait After Hookflash</td>
<td>1500</td>
<td>100-10000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Disconnect Flash Duration</td>
<td>10000</td>
<td>100-100000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Disconnect Recognition</td>
<td>750</td>
<td>100-5000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Disconnect Wait After Dialing</td>
<td>1500</td>
<td>100-10000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M DTMF Interdigit Pause</td>
<td>20</td>
<td>1-100 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M DTMF Tone Duration</td>
<td>30</td>
<td>1-100 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M False Signal Debounce</td>
<td>25</td>
<td>1-100 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Handshake Timeout</td>
<td>2500</td>
<td>100-10000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Hookflash Duration</td>
<td>300</td>
<td>100-5000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Hookflash Recognition</td>
<td>150</td>
<td>100-5000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Inter-Pulse Pause</td>
<td>20</td>
<td>1-100 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Off-Hook Debounce</td>
<td>5</td>
<td>1-50 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M On-Hook Debounce</td>
<td>5</td>
<td>1-50 five-hundredths</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-17. SYSTEM TIMER (Continued)

<table>
<thead>
<tr>
<th>TIMER</th>
<th>DEFAULT</th>
<th>RANGE</th>
<th>NEWVALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E&M Post Signal Delay</td>
<td>15</td>
<td>1-250 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Post Seizure Delay</td>
<td>32</td>
<td>1-100 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Pulse Hold</td>
<td>30</td>
<td>1-100 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Pulse-Dial Interdigit</td>
<td>350</td>
<td>100-5000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Pulse-Dial Interdigit</td>
<td>150</td>
<td>1-500 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Ready Timeout</td>
<td>2000</td>
<td>100-10000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Receive Handshake Delay</td>
<td>10</td>
<td>1-250 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Seizure Debounce</td>
<td>1</td>
<td>1-10 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Short Circuit Debounce</td>
<td>500</td>
<td>100-10000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Short Circuit Timeout</td>
<td>2500</td>
<td>100-10000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>R&M Short Pause Digit</td>
<td>1500</td>
<td>100-10000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Transmit Handshake Delay</td>
<td>50</td>
<td>1-250 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Wait for Dial Tone</td>
<td>500</td>
<td>100-10000 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Wink Hold</td>
<td>107</td>
<td>1-250 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>E&M Wink Timeout</td>
<td>175</td>
<td>1-250 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>Forward-No-Answer</td>
<td>15</td>
<td>3-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Hold</td>
<td>60</td>
<td>10-255 seconds</td>
<td></td>
</tr>
<tr>
<td>IC-CO Disconnect</td>
<td>60</td>
<td>2-250 hundredths</td>
<td></td>
</tr>
<tr>
<td>Inactivity Alarm</td>
<td>60</td>
<td>10-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Inter-Ring Silence</td>
<td>60</td>
<td>1-250 tenths</td>
<td></td>
</tr>
<tr>
<td>Interdigit (Long)</td>
<td>15</td>
<td>2-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Interdigit (Short)</td>
<td>4</td>
<td>2-30 seconds</td>
<td></td>
</tr>
<tr>
<td>LCR Advance</td>
<td>8</td>
<td>1-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Loop Reversal Debounce</td>
<td>25</td>
<td>1-255 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>Message Wait</td>
<td>5</td>
<td>1-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Off-Hook Voice Announce Screening</td>
<td>5</td>
<td>0-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Off-Line After Disconnect</td>
<td>10</td>
<td>10-250 tenths</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>15</td>
<td>0-255 seconds</td>
<td></td>
</tr>
<tr>
<td>(Pause Digit Length)</td>
<td>3</td>
<td>1-5 seconds</td>
<td></td>
</tr>
<tr>
<td>Queue Callback</td>
<td>15</td>
<td>10-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Recall</td>
<td>60</td>
<td>10-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Relaxed Ring Detection</td>
<td>62</td>
<td>1-9500 five-hundredths</td>
<td></td>
</tr>
<tr>
<td>Single-Line Hookflash Maximum</td>
<td>7</td>
<td>2-20 tenths</td>
<td></td>
</tr>
<tr>
<td>Single-Line Hookflash Minimum</td>
<td>2</td>
<td>1-10 tenths</td>
<td></td>
</tr>
<tr>
<td>Single-Line Set Wait For Disconnect</td>
<td>2</td>
<td>1-60 seconds</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-17. SYSTEM TIMER (Continued)

<table>
<thead>
<tr>
<th>TIMER</th>
<th>DEFAULT</th>
<th>RANGE</th>
<th>NEW VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Forwarding Advance</td>
<td>15</td>
<td>2-255 seconds</td>
<td></td>
</tr>
<tr>
<td>System Forwarding Initiate</td>
<td>15</td>
<td>2-255 seconds</td>
<td></td>
</tr>
<tr>
<td>T1 Busy Switch Timeout</td>
<td>60</td>
<td>10-10000 seconds</td>
<td></td>
</tr>
<tr>
<td>Transfer — Available</td>
<td>20</td>
<td>10-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Transfer — Busy</td>
<td>24</td>
<td>10-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Trunk Key Debounce</td>
<td>3</td>
<td>1-777 seconds</td>
<td></td>
</tr>
<tr>
<td>Trunk Preselect</td>
<td>5</td>
<td>2-255 seconds</td>
<td></td>
</tr>
<tr>
<td>Trunk Ring Detection</td>
<td>5</td>
<td>1-250 tenths</td>
<td></td>
</tr>
<tr>
<td>Unsupervised-CO</td>
<td>5</td>
<td>1-255 minutes</td>
<td></td>
</tr>
<tr>
<td>Valid-Call</td>
<td>15</td>
<td>0-60 seconds</td>
<td></td>
</tr>
<tr>
<td>Voice Mail Dialing Delay</td>
<td>5</td>
<td>1-250 tenths</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-18. TENANT GROUPS (TNT)

TO USE: Make a copy and fill in for each tenant group.

<table>
<thead>
<tr>
<th>Tenant Group Number</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name (Up To 20 Characters):</td>
<td></td>
</tr>
<tr>
<td>Trunk Group For Auto Feature:</td>
<td></td>
</tr>
<tr>
<td>Trunk Groups:</td>
<td></td>
</tr>
<tr>
<td>DID Groups:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department 1 - Name (Up To 20 Characters):</th>
<th>List Of Stations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department 2 - Name (Up To 20 Characters):</td>
<td>List Of stations:</td>
</tr>
<tr>
<td>Department 3 - Name (Up To 20 Characters):</td>
<td>List Of stations:</td>
</tr>
<tr>
<td>Department 4 - Name (Up To 20 Characters):</td>
<td>List Of stations:</td>
</tr>
<tr>
<td>Department 5 - Name (Up To 20 Characters):</td>
<td>List Of stations:</td>
</tr>
<tr>
<td>Department 6 - Name (Up To 20 Characters):</td>
<td>List Of stations:</td>
</tr>
<tr>
<td>Department 7 - Name (Up To 20 Characters):</td>
<td>List Of stations:</td>
</tr>
<tr>
<td>Department 8 - Name (Up To 20 Characters):</td>
<td>List Of stations:</td>
</tr>
<tr>
<td>Department 9 - Name (Up To 20 Characters):</td>
<td>List Of stations:</td>
</tr>
<tr>
<td>Department 10 - Name (Up To 20 Characters):</td>
<td>List Of stations:</td>
</tr>
</tbody>
</table>
FIGURE 5-19. CARRIERS AND ALLOWED LONG DISTANCE (ALT)

Alternate Carriers: Enter numbers up to 10 digits each. The numbers should not contain the toll field, but can contain equal access digits (e.g., do not enter 1+ or 0+ numbers, except 10XXX and 101XXX numbers).

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Allowed Long Distance: Enter numbers up to 10 digits each, do not include toll field.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-20. AREA/OFFICE CODE RESTRICTION USER GROUPS (AREA)

TO USE: Make a copy for each user group and fill in the information.

Office Codes Used as Area Codes? Yes or No
Area Codes Used as Office Codes? Yes or No
Toll Digit Allowed On Toll Local Calls? Yes or No
Toll Digit Required On Toll Long Distance Calls? Yes or No

<table>
<thead>
<tr>
<th>User Group Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day List of Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Night List of Stations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allowed Area Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restricted Area Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extended Area Codes</th>
<th>Allowed Office Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td></td>
</tr>
<tr>
<td>2:</td>
<td></td>
</tr>
<tr>
<td>3:</td>
<td></td>
</tr>
<tr>
<td>4:</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-21. STATION CLASS OF SERVICE & CR ADVANCES (SCOS)

<table>
<thead>
<tr>
<th>STATION CLASS OF SERVICE</th>
<th>DAY MODE</th>
<th>NIGHT MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Unrestricted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Restrict Operator Access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Restrict Toll Access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Restrict International Calls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Restrict Eight-Digit Calls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Use Area/Office Code Tables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Use LCR Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Restrict Alternate Carriers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Enable Allowed Long Distance List</td>
<td></td>
<td></td>
</tr>
<tr>
<td># of LCR ADVANCES</td>
<td>DAY MODE</td>
<td>NIGHT MODE</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Unlimited Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Advance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Advances</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-21. STATION CLASS OF **SERVICE/LCR ADVANCES** (Continued)

<table>
<thead>
<tr>
<th># of LCR ADVANCES</th>
<th>DAY MODE</th>
<th>NIGHT MODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Advances</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 Advances</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-22. TOLL SECURITY (TOLL)

<table>
<thead>
<tr>
<th>Monitor 7-Digit and 10-Digit Toll Calls?</th>
<th>Yea or No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly Toll Limit:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitor Operator/International Calls?</th>
<th>Yea or No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly Toll Limit:</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-23. LEAST-COST ROUTING (LCR)

Route Groups:

<table>
<thead>
<tr>
<th>DESCR.</th>
<th>AREA CODES*</th>
<th>OFFICE CODES*</th>
<th>FACILITY GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

* Circle I for Included codes or circle E for Excluded codes.
FIGURE 5-23. LEAST-COST ROUTING (Continued)

Route Groups (continued):

<table>
<thead>
<tr>
<th>DESCR.</th>
<th>AREA CODES*</th>
<th>OFFICE CODES*</th>
<th>FACILITY GROWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>I</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

* Circle I for Included codes or circle E for Excluded codes.
FIGURE 5-23. LEAST-COST ROUTING (Continued)

Route Groups (continued):

<table>
<thead>
<tr>
<th>DESCR.</th>
<th>AREA CODES*</th>
<th>OFFICE CODES"</th>
<th>FACILITY GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>1</td>
<td>I</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>I</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>I</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>I</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Circle I for Included codes or circle E for Excluded codes.

0+ Route Groups:

<table>
<thead>
<tr>
<th>FACILITY GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
</tbody>
</table>
Facility Groups:

<table>
<thead>
<tr>
<th>GROUP</th>
<th>DESCRIPTION</th>
<th>TRUNK GROUPS</th>
<th>ORDERED LIST OF DIAL RULES</th>
<th>NUMBERS DIALED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Facility Groups (continued):

<table>
<thead>
<tr>
<th>GROUP</th>
<th>DESCRIPTION</th>
<th>TRUNK GROUPS</th>
<th>ORDERED LIST OF DIAL RULES</th>
<th>NUMBERS DIALED</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-23. LEAST-COST ROUTING (Continued)

Dial Rules:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Echo toll field</td>
</tr>
<tr>
<td>2</td>
<td>Echo area code</td>
</tr>
<tr>
<td>3</td>
<td>Echo local address (last seven digits)</td>
</tr>
<tr>
<td>4</td>
<td>Echo extension number</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-24. INDIVIDUAL TRUNK (INDT)

Individual Trunk:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-25. TRUNK GROUPS, DID GROUPS & RING-IN/ANSWER PATTERNS (TRNK)

Trunk Groups: Duplicate and fill out this form for each trunk group.

<table>
<thead>
<tr>
<th>Description & Usename</th>
<th>Tenant Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>E&M Trunk Group?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Enable Hookflash?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>One-Way Incoming Only?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Music-On-Hold</td>
<td>Music #1 or Music #2 or Silence or Tick Tones</td>
</tr>
<tr>
<td>Day Ring-In</td>
<td>Single or Multiple or Hunt/UCD or DISA</td>
</tr>
<tr>
<td></td>
<td>Station, Ring/Answer Pattern, Hunt Group, or DISA Code/IC Requ./Toll Restrict:</td>
</tr>
<tr>
<td>Stations with Day Outgoing Access</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single or Multiple or Hunt/UCD or DISA</td>
</tr>
<tr>
<td></td>
<td>Station; Ring/Answer Pattern; Hunt Group; or DISA Code, IC Requ., & SCOS:</td>
</tr>
<tr>
<td>Stations with Night Outgoing Access</td>
<td></td>
</tr>
<tr>
<td>Trunks in Trunk Group</td>
<td></td>
</tr>
<tr>
<td>Subject To Toll Restrict?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Exempt From LCR Only?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Equal Access?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Assigned call cost</td>
<td>Free Local 10-Digit Operator/International</td>
</tr>
</tbody>
</table>

Absorbed Digits & Digit Strings

<table>
<thead>
<tr>
<th>Absorbed Digits & Digit Strings</th>
<th>PBX or Local</th>
<th>Repeatable? Yes or No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:</td>
<td>2:</td>
<td>3:</td>
</tr>
<tr>
<td>31:</td>
<td>32:</td>
<td>33:</td>
</tr>
</tbody>
</table>

E&M Call Routing:

<table>
<thead>
<tr>
<th>E&M Call Routing:</th>
<th>Auto Ring-In or Dial Repeating</th>
</tr>
</thead>
<tbody>
<tr>
<td>E&M Reorder Tone:</td>
<td>Continuous or Burst</td>
</tr>
<tr>
<td>E&M Handshaking:</td>
<td>Immediate-Dial or Delayed-Dial or Wink-Start</td>
</tr>
<tr>
<td>Return Dial Tone?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>E&M DID Digit Trans.:</td>
<td></td>
</tr>
</tbody>
</table>

Page 5-224
FIGURE 5-25. TRUNK GROUPS, DID GROUPS & RING-IN/ANSWER PATTERNS (Continued)

DID GROUPS:
Duplicate and fill out this form for each DID group.

<table>
<thead>
<tr>
<th>DID Group Number</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Tenant Group</td>
<td></td>
</tr>
<tr>
<td>Music-On-Hold</td>
<td>Music #1 or Music #2 or Silence or Tick Tones</td>
</tr>
<tr>
<td>Start Type</td>
<td>Immediate or Wink or Delay</td>
</tr>
<tr>
<td>Base Number</td>
<td></td>
</tr>
<tr>
<td>Starting Digits</td>
<td></td>
</tr>
<tr>
<td>Number of Entries</td>
<td></td>
</tr>
<tr>
<td>DISA Codes</td>
<td>Day: Night: Required for IC Calls? Yes or No</td>
</tr>
</tbody>
</table>

Trunks in DID Group

Complete the following information for each DID number in the DID group:

<table>
<thead>
<tr>
<th>DID NUMBERS AND NAMES</th>
<th>RING-IN: Enter Single (Ext #), Multiple (Ring-in Pattern), Hunt/UCD (Pilot #), or DISA(Toll Restrictions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DAY RING-IN TYPE: No.</td>
</tr>
</tbody>
</table>

Page 5-225
Ring/Answer Patterns: Duplicate and fill out this form for each Ring/Answer Pattern.

<table>
<thead>
<tr>
<th>Pattern Number</th>
<th>Pattern Title</th>
<th>Stations with Ring-In</th>
<th>Stations with Answer Permission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-26. T1 PROGRAMMING (T1)

For ALL T1 Cards:

Thresholds:

<table>
<thead>
<tr>
<th>Threshold Description</th>
<th>Number/Hour</th>
<th>Number/Day</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPV (Bipolar Violations)</td>
<td>53,360</td>
<td>133,400</td>
<td></td>
</tr>
<tr>
<td>Controlled Slips</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>CRC-6 (Cyclic Redundancy Check)</td>
<td>53,184</td>
<td>132,960</td>
<td></td>
</tr>
<tr>
<td>ES (Errored Seconds)</td>
<td>259</td>
<td>648</td>
<td></td>
</tr>
<tr>
<td>OOF/COFA (Out-of-frame)</td>
<td>7</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>SES (Severely Errored Seconds)</td>
<td>40</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>TODV (Transmit One's Density Violations)</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>UAS (Unavailable Seconds)</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Dialing Feedback Configuration:

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Default Value</th>
<th>New Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTMF Dialing Gain</td>
<td>-4 dB</td>
<td></td>
</tr>
<tr>
<td>Pulse Feedback Gain</td>
<td>-4 dB</td>
<td></td>
</tr>
<tr>
<td>Pulse Tone Channel Number</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Clock Backup: (List T1 Cards in order of system clock backups. The RCPU Card is always last.)

For EACH T1 Card: (Make copies of this chart for each T1 Card.)

<table>
<thead>
<tr>
<th>Card Slot Number:</th>
<th>Card Type: D4 Superframe or ESF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zero-Code Suppression: AMI (Bit 7) or B8ZS or None</td>
</tr>
<tr>
<td></td>
<td>PCM Encoding Law: Mu-to-Mu or Mu-to-A or A-to-A or A-to-Mu</td>
</tr>
<tr>
<td></td>
<td>Relay(s) Activated: One or Two</td>
</tr>
<tr>
<td></td>
<td>CSU: On-Board or DSX-1</td>
</tr>
<tr>
<td></td>
<td>LBO Attenuation:</td>
</tr>
<tr>
<td></td>
<td>Line Length (mi feet): O-133 or 133-266 or 266-399 or 399-533 or 533-655</td>
</tr>
<tr>
<td></td>
<td>Clock— Loop Operation: Master or Slave</td>
</tr>
<tr>
<td></td>
<td>T1 From Public Network: Yes or No</td>
</tr>
<tr>
<td></td>
<td>Provides System Ref. Clock: Yes or No</td>
</tr>
</tbody>
</table>
FIGURE 5-27. ATTENDANTS — ALIAS PROGRAMMING (ALSS)

Aliases:

<table>
<thead>
<tr>
<th>STATION</th>
<th>ALIASES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-28. ATTENDANTS — DSS/BLF UNITS (DSU)

DSS/BLF Units:

<table>
<thead>
<tr>
<th>CIRCUIT</th>
<th>DESCRIPTION</th>
<th>KEY MAP</th>
<th>ASSOCIATED KEYSET</th>
</tr>
</thead>
</table>

FIGURE 5-29. CALL COST (COST)

<table>
<thead>
<tr>
<th>CALL COST TYPE</th>
<th>DEFAULT RATE</th>
<th>NEW RATE IN $ PER MINUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local call</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>7-Digit Toll</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>10-Digit Toll</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Operator/International</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Incoming Call</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MULTIPLICATIVE FACTOR</th>
<th>DEFAULT RATE</th>
<th>NEW RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evening</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>Night/Weekend</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>output port:</td>
<td>Serial 1 or Serial 2</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>Reporting interval:</td>
<td>Select one and fill in information.</td>
<td></td>
</tr>
<tr>
<td>Attendant Only:</td>
<td>Yes or No</td>
<td></td>
</tr>
<tr>
<td>Daily:</td>
<td>Time of day:</td>
<td></td>
</tr>
<tr>
<td>Weekly:</td>
<td>Day of week: Time of day:</td>
<td></td>
</tr>
<tr>
<td>Monthly:</td>
<td>Day of month: Time of day:</td>
<td></td>
</tr>
<tr>
<td>Format</td>
<td>Clear account code data following report? Yes or No</td>
<td></td>
</tr>
<tr>
<td>Account Code report</td>
<td>System-wide or Tenant or Tenant/Department</td>
<td></td>
</tr>
<tr>
<td>Summary reports</td>
<td>Select all that apply:</td>
<td></td>
</tr>
<tr>
<td>Detailed reports</td>
<td>All users in tenant/dept. groups Yes or No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Top system users Yes or No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Top users by tenant Yes or No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Top users by tenant/dept. Yes or No</td>
<td></td>
</tr>
<tr>
<td>Rank by total cost Yes or No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank by total duration Yes or No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rank by total number of calls Yes or No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of “top” users per report:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stations included:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hunt Group included:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trunks included:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear station/hunt/trunk data following report? Yes or No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-31. SMDR (SMDR)

<table>
<thead>
<tr>
<th>Output port</th>
<th>Serial 1 or Serial 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is Output Active?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Calls to be recorded in reports:</td>
<td>Select all that apply:</td>
</tr>
<tr>
<td>All Incoming calls</td>
<td>Yes or No</td>
</tr>
<tr>
<td>All Local calls</td>
<td>Yes or No</td>
</tr>
<tr>
<td>All Toll Calls</td>
<td>Yes or No</td>
</tr>
<tr>
<td>All DISA Calls</td>
<td>Yes or No</td>
</tr>
<tr>
<td>All Conference Calls</td>
<td>Yes or No</td>
</tr>
<tr>
<td>All DID Calls</td>
<td>Yes or No</td>
</tr>
<tr>
<td>All Ring-In Diagnostics</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Suppress all absorbed digits?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Suppress all but the first toll digit?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Suppress all digits after end of dialing?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Display elapsed time in seconds?</td>
<td>Yes or No</td>
</tr>
<tr>
<td>List of stations to be included:</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-32. ERROR REPORTS (ERR)

<table>
<thead>
<tr>
<th>Output port:</th>
<th>Serial 1 or Serial2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is output active?</td>
<td>Y or N</td>
</tr>
<tr>
<td>Report all alarms [+++]?</td>
<td>Y or N</td>
</tr>
<tr>
<td>Report all field service diagnostics [***]?</td>
<td>Y or N</td>
</tr>
<tr>
<td>Report all engineering diagnostics [---]?</td>
<td>Y or N</td>
</tr>
<tr>
<td>Log all SEND messages to history queue?</td>
<td>Y or N</td>
</tr>
</tbody>
</table>

FIGURE 5-33. PASSWORDS (PASS)

<table>
<thead>
<tr>
<th>Applications Restricted Password:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications Unrestricted Password:</td>
</tr>
<tr>
<td>Monitor Restricted Password:</td>
</tr>
<tr>
<td>Monitor Unrestricted Password:</td>
</tr>
</tbody>
</table>
FIGURE 5-34. SERIAL PORT CONFIGURATION (PORT)

Serial Port 1:

<table>
<thead>
<tr>
<th>Enable DSR Handshaking:</th>
<th>Yes or No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable CTS Handshaking:</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Baud Rate (circle one):</td>
<td>110 300 600 1200 2400 4800 9600 19200</td>
</tr>
</tbody>
</table>

Serial Port 2:

<table>
<thead>
<tr>
<th>Enable DSR Handshaking:</th>
<th>Yes or No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable CTS Handshaking:</td>
<td>Yes or No</td>
</tr>
<tr>
<td>Baud Rate (circle one):</td>
<td>110 300 600 1200 2400 4800 9600 19200</td>
</tr>
</tbody>
</table>
FIGURE 5-35. SYSTEM CONFIGURATION (CONF)

Home Area Code: ____________ Time Adjustment: ________________

Local Area Codes: 2 ____, 3 ____, 4 ____

<table>
<thead>
<tr>
<th>SLOT</th>
<th>BOARD TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5-35. SYSTEM CONFIGURATION (Continued)

KSC, IDC, and T1C Circuits: Fill in the following charts for KSC, DID, and T1C circuit Programming.

KSC Circuits: Indicate whether the circuits in each board are single or dual.

<table>
<thead>
<tr>
<th>KSC SLOT</th>
<th>CIRCUIT 1</th>
<th>CIRCUIT 2</th>
<th>CIRCUIT 3</th>
<th>CIRCUIT 4</th>
<th>CIRCUIT 5</th>
<th>CIRCUIT 6</th>
<th>CIRCUIT 7</th>
<th>CIRCUIT 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IDC Circuits: Indicate whether the circuits in each board are DID or OPX.

<table>
<thead>
<tr>
<th>IDC SLOT</th>
<th>CIRCUIT 1</th>
<th>CIRCUIT 2</th>
<th>CIRCUIT 3</th>
<th>CIRCUIT 4</th>
<th>CIRCUIT 5</th>
<th>CIRCUIT 6</th>
<th>CIRCUIT 7</th>
<th>CIRCUIT 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Page 5-236
FIGURE 5-35. SYSTEM CONFIGURATION (Continued)

TIC Circuits: Indicate whether the circuits in each board are loop start, ground start, DID, E&M, or OPX.

<table>
<thead>
<tr>
<th>TIC CIRCUIT</th>
<th>TIC SLOT NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
1. INTRODUCTION

1.1 This section of the manual describes the troubleshooting procedures to follow in the event of a system or station instrument malfunction. System repair is limited to replacing parts (keysets, circuit cards, cables, power supply modules, etc.).

2. TROUBLESHOOTING CHECKLIST

2.1 To save time, perform the troubleshooting procedures in the following order:

(1) Check for proper light-emitting diode (LED) indications on the circuit cards (refer to Figure 6-l on the following pages).

(2) Check the alarm message and field service diagnostic output (see pages 6-8 to 6-11).

(3) Isolate the problem and refer to the appropriate troubleshooting chart (refer to page 6-12).

NOTE: For additional troubleshooting procedures and important diagnostic information, refer to the new 256/832 Troubleshooting/Diagnostics Manual, which will be published at a later date. In the interim, certified technicians may contact Technical Service for any necessary troubleshooting assistance.

3. LIGHT-EMITTING DIODE (LED) INDICATIONS

3.1 LEDs on the front edge of the circuit cards indicate specific functions. Figure 6-l on the following pages lists the various LEDs and describes their purposes.

3.2 If the CPU ACTIVE LED on the RCPU Card is flashing (or if referred to this page to isolate a problem), follow these procedures to check the system voltages:
(1) Turn OFF the AC power.

CAUTION
Always turn OFF the AC POWER before removing or inserting the RCPU Card.

(2) Remove the RCPU Card and check to make sure that all of the components on the card are properly seated and that no pins are bent.

(3) Wait 10 seconds and re-insert the card.

(4) Turn ON the AC power.

(5) If the CPU ACTIVE LED is still flashing (or if the problem still persists), measure the following system voltages using the test points located on the front edge of the RCPU Card. A digital voltmeter of \(\pm 0.5\% \) accuracy is required. Insert the “common” voltmeter probe into the ground point (TP10) and insert the other probe into each of the voltage test points. (Refer to Figure 3-29 on page 3-46 in INSTALLATION for voltage test point locations.)

<table>
<thead>
<tr>
<th>TEST POINTS</th>
<th>VOLTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP 1 to TP 10</td>
<td>-5 (\pm 0.4) VDC</td>
</tr>
<tr>
<td>TP 2 to TP 10</td>
<td>+5.1 (\pm 0.5) VDC</td>
</tr>
<tr>
<td>TP 3 to TP 10</td>
<td>+12.5 (\pm 0.5) VDC</td>
</tr>
<tr>
<td>TP 4 to TP 10</td>
<td>-12 (\pm 1.1) VDC</td>
</tr>
<tr>
<td>TP 5 to TP 10</td>
<td>+30.5 (\pm 0.9) VDC</td>
</tr>
<tr>
<td>TP 6 to TP 10</td>
<td>-49 (\pm 0.7) VDC</td>
</tr>
<tr>
<td>TP 7 to TP 10</td>
<td>8.9 (\pm 0.3) VAC</td>
</tr>
</tbody>
</table>

NOTE: The AC ring voltage (VRING) measured on the RCPU Card is \(\frac{1}{2} \) the actual power supply ring voltage of 90VAC.

(6) Referring to Figure 3-23 on page 3-36, measure the following voltages on the back of the Telecorn Motherboard. Use ground as a reference.

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWR ALARM (+4.7VDC)</td>
<td>(\pm 0.5) VDC</td>
</tr>
<tr>
<td>CPC (+5.2VDC to +5.8VDC)</td>
<td>(\pm 0.15) VDC</td>
</tr>
<tr>
<td>CPCN (-0.1VDC to -0.7VDC)</td>
<td>(\pm 0.15) VDC</td>
</tr>
<tr>
<td>PWR GOOD (+4.7VDC)</td>
<td>(\pm 0.15) VDC</td>
</tr>
</tbody>
</table>

NOTE: As long as the CPCP measurement is at least 0.1V higher than the actual +5V measurement and the CPCN measurement is at least 0.1V lower than the actual ground measurement, the voltages are within tolerance.

(7) Perform one of the following steps:

a. If the system voltages are incorrect, or if they are correct and the CPU ACTIVE LED is still flashing, contact Technical Service for assistance.

CAUTION
DO NOT attempt to adjust the power supply voltages without first contacting Technical Service. Damage caused by unauthorized voltage adjustment is not covered by the warranty.

b. If the system voltages are correct and the CPU ACTIVE LED is not flashing, yet the problem still persists, replace the RCPU Card.

NOTE: Before replacing the RCPU Card, use the save/restore program to save the customer’s database (see page 5-167 in PROGRAMMING). It can then be restored (loaded) into a new RCPU Card if necessary. Make sure the database back-up battery on the new RCPU Card has a charge of at least 2.5VDC (see page 3-45 in INSTALLATION).
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>LED</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCPU Card</td>
<td>CPU Active</td>
<td>Lit green to show that the main processor is operating properly. If unlit, system needs repair.</td>
</tr>
<tr>
<td></td>
<td>Power Alarm</td>
<td>Lit red when the system power supply temperature is abnormally high. Unlit when the temperature is normal.</td>
</tr>
<tr>
<td></td>
<td>Major Alarm</td>
<td>Lit red when a major alarm has occurred. The light goes out when the problem is corrected.</td>
</tr>
<tr>
<td></td>
<td>Database Error</td>
<td>Lit red when a database error has caused the system to return to default values. When the system is first installed, the LED will remain lit until the database is initialized.</td>
</tr>
<tr>
<td></td>
<td>Minor Alarm</td>
<td>Lit yellow when a minor alarm has occurred. The light goes out when the alarm message is cleared as described in FEATURES on page 4-112.</td>
</tr>
<tr>
<td></td>
<td>External Clock</td>
<td>The system is receiving clock signals from an external source (e.g., from the public network via a T1 Card).</td>
</tr>
<tr>
<td></td>
<td>Battery Off</td>
<td>Lit when the battery back-up strap on the RCPU Card is placed in the OFF position (over the lower two pins). Will not light if the strap is not attached to any pins.</td>
</tr>
<tr>
<td>Keyset Card</td>
<td>Card Active</td>
<td>Lit green to show that the card is communicating properly with the rest of the system. If flashing, record the flash rate (1-7) and return the card for repair. If unlit, check for improper connection; if still unlit, return the card for repair.</td>
</tr>
<tr>
<td></td>
<td>Individual Circuits (l-8)</td>
<td>Unlit when the associated station instrument is inactive. Lit green when the instrument is connected to a voice channel (e.g., on an active call). If lit red, a data error has occurred, check the alarm message and field service diagnostic output.</td>
</tr>
<tr>
<td>Digital Keyset Card (IMX systems only)</td>
<td>Card Active</td>
<td>Lit green to show that the card is communicating properly with the rest of the system. If flashing, record the flash rate (1-7) and return the card for repair. If unlit, check for improper connection; if still unlit, return the card for repair.</td>
</tr>
<tr>
<td></td>
<td>Individual Circuits (l-16)</td>
<td>Unlit when the associated station instrument is inactive. Lit green when the instrument is connected to a voice channel (e.g., on an active call).</td>
</tr>
<tr>
<td>Single-Line Card</td>
<td>Card Active</td>
<td>Lit green to show that the card is communicating properly with the rest of the system. If flashing, record the flash rate (1-7) and return the card for repair. If unlit, check for improper connection; if still unlit, return the card for repair.</td>
</tr>
<tr>
<td></td>
<td>Individual Circuits (l-16)</td>
<td>Unlit when the associated station instrument is inactive. Lit green when the instrument is off hook. If lit red, return the card for repair.</td>
</tr>
</tbody>
</table>
FIGURE 6-1. LIGHTEMITTING DIODE (LED) INDICATIONS (CONT’D)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>LED</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inward Dialing Card</td>
<td>Card Active</td>
<td>Lit green to show that the card is communicating properly with the rest of the system. If flashing, record the flash rate (1-7) and return the card for repair. If unlit, check for improper connection; if still unlit, return the card for repair.</td>
</tr>
<tr>
<td>Individual Circuits (1-8)</td>
<td>Unlit when the associated station instrument or trunk is inactive. Lit green when the instrument is off hook or the trunk is in use. If lit red, return the card for repair.</td>
<td></td>
</tr>
<tr>
<td>Loop/Ground Start Card and Loop Start Card</td>
<td>Card Active</td>
<td>Lit green to show that the card is communicating properly with the rest of the system. If flashing, record the flash rate (1-7) and return the card for repair. If unlit, check for improper connection; if still unlit, return the card for repair.</td>
</tr>
<tr>
<td>Individual Circuits (1-8)</td>
<td>Unlit when the associated trunk is inactive. Lit green when the trunk is in use. Flashes when numbers are being dialed. Flutters when a call is ringing in. If lit red, there is a problem with the trunk.</td>
<td></td>
</tr>
<tr>
<td>E&M Card</td>
<td>Card Active</td>
<td>Lit green to show that the card is communicating properly with the rest of the system. If flashing, record the flash rate (1-7) and return the card for repair. If unlit, check for improper connection; if still unlit, return the card for repair.</td>
</tr>
<tr>
<td>Individual Circuits (1-4)</td>
<td>Unlit when the associated trunk is inactive. Lit green when the trunk is in use. Flashes when numbers are being dialed. Flutters when a call is ringing in. If lit red, there is a problem with the trunk.</td>
<td></td>
</tr>
</tbody>
</table>
| **T1 Card** | **Primary Processor Active** | Lit green to show that the primary processor on the card is active and is communicating properly with the rest of the system. If flashing, record the flash rate (1-7) and return the card for repair. If unlit, check for improper connection; if still unlit, return the card for repair.
NOTE: The card is not completely on-line until the Secondary Processor Active LED is also lit (see page 6-7.) |
| Reference Clock | | Lit green to show that the card is providing the system with the clock timing necessary to control all communication components in the system (i.e., the entire system is synchronized to the card). Unlit when another card is providing the system reference clock.
NOTE: When this LED is lit on one of the T1 Cards in the system, the External Clock Active LED on the RCPU Card should also be lit. |
| Individual Circuits (1-24) | Unlit when the associated T1 circuit is inactive. Lit green when the T1 circuit is in use. Flashes when numbers are being dialed. Flutters when a call is ringing in. (The order of the circuit LEDs is shown in the diagram on the following page.) |
FIGURE 6-1. LIGHT-EMITTING DIODE (LED) INDICATIONS (CONT'D)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>LED</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 Card (continued)</td>
<td>Individual Circuits (1-10)</td>
<td>When the Red Alarm LED is flashing (see next page), one or more of the first ten Individual Circuit LEDs will also flash to indicate the following error condition(s):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NOTE: Error conditions (1) and (2) below occur only when the T1 Card is not equipped with the optional on-board CSU Module. Error conditions (3) and (4) occur only when the T1 Card is equipped with the on-board CSU module.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1) Alarm 0, Receiver Loss of Signal from Network: The card is not properly receiving the T1 signal from outside the system. Check for improper connection. If the problem persists, contact the T1 provider.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) Alarm 1, Transmitter Loss of Signal from T1 Card to Network: The card is not properly transmitting the T1 signal to outside the system. Check for improper connection. If the problem persists, replace the card and return it for repair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3) Alarm 2, Receiver Loss of Signal from CSU: The card is not properly receiving the T1 signal from outside the system. Check for improper connection. If the problem persists, contact the T1 provider.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4) Alarm 3, Transmitter Loss of Signal from CSU to Network: The card is not properly transmitting the T1 signal to outside the system. Check for improper connection. If the problem persists, replace the card and return it for repair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5) Alarm 4, Receiving Yellow Alarm: The card is receiving a yellow alarm error condition from outside the system. Check for improper connection or wiring. If the problem persists, contact the T1 provider.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6) Alarm 5, Receiving Blue Alarm: The card is receiving a blue alarm error condition (also called Alarm Indication Signal [AIS]) from outside the system. Check for improper connection or wiring. If the problem persists, contact the T1 provider.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7) Alarm 6, T1 Signal Out-of-Frame: There is a problem with the master/slave synchronization or the framing scheme. Check database programming, and check for improper connection or wiring. If the problem persists, contact the T1 provider, or replace the card and return it for repair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8) Alarm 7, Severely Errored Seconds: Indicates that one or more severe errors have been detected for at least one second. Check for improper connection or wiring. If the problem persists, contact the T1 provider, or replace the card and return it for repair.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(9) Alarm 8, Transmitting Blue Alarm: If error conditions (1) or (3) above are detected (loss of receive signal), the card sends out a blue alarm signal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10) Alarm 9, Remote Loopback State: Currently reserved for engineering diagnostic purposes only.</td>
</tr>
</tbody>
</table>

CIRCUIT LEDS

<table>
<thead>
<tr>
<th>Circuit</th>
<th>LED</th>
<th>Circuit</th>
<th>LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0 0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0 0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0 0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0 0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0 0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>0 0</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0 0</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Page 6-5
FIGURE 6-1. LIGHT-EMITTING DIODE (LED) INDICATIONS (CONT’D)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>LED</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>**T1 Card (cont-</td>
<td>Red Alarm</td>
<td>Flashes when the T1 Card has detected some type of red alarm error condition for at least two to three seconds (e.g., loss of the T1 signal), either internally or from outside the system. All calls on the card are dropped, all attendant stations display SYSTEM ALARM #29, and one or more of the first ten Individual Circuit LEDs on the card flash to indicate the exact error condition(s) (see previous page). Check the alarm message and field service diagnostic output and attempt to correct the problem. When the card receives a clean signal for 10 to 20 seconds, the Red Alarm LED is unlit and normal call processing resumes. NOTE: If, while the Red Alarm LED is flashing, the T1 Card detects a receive signal, it transmits a yellow alarm to outside the system. If the card detects a loss of receive signal, it transmits a blue alarm to outside the system.</td>
</tr>
<tr>
<td>inued)</td>
<td></td>
<td>Yellow Alarm Flashes when the T1 Card has detected (is receiving) a yellow alarm error condition (e.g., a red alarm error condition from outside the system or a loss of frame synchronization). If the yellow alarm condition occurs for less than two to three seconds, normal call processing continues and no calls are dropped. However, if the yellow alarm condition lasts more than two or three seconds, the card goes into a red alarm condition (see above). NOTE: If this LED is the only one on the card that is flashing, it may indicate a database programming inconsistency (e.g., the card is jumpered for CSU mode, while the database is programmed for DSX mode). Check the alarm message and field service diagnostic output for a programming conflict and correct the problem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blue Alarm Flashes when the T1 Card has detected (is receiving) a blue alarm error condition (i.e., a stream of continuous ones from outside the system). This “keep alive” signal, also called Alarm Indication Signal (AIS), is sent from the remote site when it is in a yellow or red alarm condition. If the blue alarm condition occurs for less than two to three seconds, normal call processing continues and no calls are dropped. However, if the blue alarm condition lasts more than two or three seconds, the card goes into a red alarm condition (see above).</td>
</tr>
</tbody>
</table>
FIGURE 6-1. LIGHT-EMITTING DIODE (LED) INDICATIONS (CONT’D)

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>LED</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 Card (continued)</td>
<td>Secondary Processor Active</td>
<td>Lit green to show that the secondary processor on the card is active and that the entire card is now on-line. If unlit after the card has been powered up over 30 seconds, check for improper connection; if still unlit, return the card for repair. NOTE: After the Primary Processor Active LED is lit (see page 6-4), the Secondary Processor on the card performs a self test that takes approximately 30 seconds. After successful completion of the self test, the Secondary Processor Active LED is then lit.</td>
</tr>
<tr>
<td></td>
<td>Secondary Processor Halted</td>
<td>Lit red to show that the card has detected an unrecoverable error and has halted the secondary processor. Although the card’s Primary Processor may still be active, the card will not function properly; return the card for repair.</td>
</tr>
</tbody>
</table>
4. ALARM MESSAGES AND FIELD SERVICE DIAGNOSTICS

4.1 Alarm messages can be programmed to appear on keyset displays, in the SMDR printout, or as a separate error printout. When listed in a printout, alarm messages are preceded by +++ and the time of day when the alarm occurred.

4.2 Minor alarm messages can be programmed to appear on all attendant stations’ displays or on the primary attendant’s display only. Refer to PROGRAMMING, page 5-67, for designating which attendant(s) will receive minor alarm messages. Major alarm messages will appear on all display keysets, regardless of programming.

4.3 Possible alarm messages and the associated troubleshooting procedures are outlined in the following sections.

A. MINOR ALARMS THAT ARE USER CORRECTABLE

(1) #01 EXT XXX - Station Off-Hook: The indicated station is off hook and the Inactivity Alarm timer, has expired. (The station’s display shows STATION OFF HOOK, and the station’s associated key on DSS/BLF Units and other keyset speed-dial keys flutters continuously.) Locate the station and place the handset back in its cradle—the alarm clears automatically.

(2) #02 SMDR Print Timeout, #03 Error Print Timeout, and #04 SMDA Print Timeout: The indicated printer is not working properly (the cable may be loose, or the printer may be out of paper or ribbon).

B. MINOR ALARMS REQUIRING ATTENTION FROM SERVICE PERSONNEL

NOTE: Before replacing the RCPU Card, use the save/restore program to save the customer’s database (see page 5-167 in PROGRAMMING). It can then be restored (loaded) into a new RCPU Card if necessary. Make sure the database back-up battery on the new RCPU Card has a charge of at least 2.5VDC (see page 3-45 in INSTALLATION).

(1) #10 EXT XXX - Excessive Data Errors: Check the operation of the indicated keyset. The error may be caused by a defective keyset (perform keyset self-test), defective wiring (check wiring), defective station cable, or a defective Keyset Card.

(2) #11 Write Protect Circuit Fail: The circuitry that prevents the software from accidentally writing to the database is no longer functioning. Replace the RCPU Card and return it for repair.

(3) #16 Background Detected Timer Fail: The interval timer is inoperative. Contact Technical Service and report the circumstances under which the alarm message occurred.

(4) #17 Watchdog Timeout in Minor Init: The watchdog function has timed out during an attempted initialization. Contact Technical Service and report the circumstances under which the alarm message occurred.

(5) #19 Real Time Clock Needs Init: This message usually appears when the AC power is first turned on. Check that the battery strap (BBU) on the RCPU Card is in the ON position (over the top two pins). If the battery strap is correct, reset the system by pressing the reset button on the front of the RCPU Card. Then set the system time through the programming terminal or an attendant’s keyset. If the message still appears, replace the RCPU Card and return it for repair.

(6) #21 EXT XXX - Excessive Hardware Failures: Replace or repair the indicated station’s cabling and/or replace the station card or station instrument.

(7) #26 Power Supply Overheating: The power supply is generating abnormally high heat. Check the fans in the power supply chassis or replace any defective modules.

(8) #29 Ti Lime In Trouble Off-Lime: A Ti Card has encountered a red alarm error condition and all calls on the card have been dropped. Check the alarm message and field service diagnostic output and attempt to correct the problem.

(9) #30 Toll Security Feature Expired: The Weekly Toll Limit feature is no longer in effect. It can be reenabled only by Inter-Tel Services personnel.

(10) #31 Toll Security Limit Exceeded: The weekly limit for one or both types of monitored calls is 100% depleted. The programmer can set the limit to a higher value or reset it to zero. (When this alarm is displayed, any further alarms will not overwrite the display.)

(11) #32 Toll Security Data Changed: The weekly toll limit information has been changed in the database.

(12) #33 DISA Security Liit Exceeded: A DISA caller has entered an invalid password three con-
secutive times. The incoming **DISA trunk** is disconnected and will not answer again for five minutes.

(13) **#34 Toll Security Limit** At 80%: The weekly limit for one or both types of monitored calls is 80% depleted. The programmer can set the limit to a higher value or reset it to zero. (When this alarm is displayed, any further alarms will not overwrite the display.)

C. **MAJOR ALARMS THAT REQUIRE IMMEDIATE ATTENTION**

4.4 If a major alarm is detected by the system, the red **MAJOR ALARM LED** on the RCPU Card will light. When a major alarm occurs, do the following:

(1) Attempt to reset the system by using the reset switch on the RCPU Card or by using the programming PC (refer to PROGRAMMING, page S-167). If the system does not recover from the alarm, continue to the next step.

(2) **Turn OFF** the AC POWER for at least ten seconds and then turn it ON again.

(3) If the system still does not recover from the alarm, check the system voltages as outlined on page 6-2. Using the troubleshooting charts beginning on page 6-12, try to isolate the defective part(s). If it is determined that the RCPU Card (or any other part) is faulty, return it for repair and include any indicated error messages in the problem description.

NOTE: When returning a faulty card, indicate all applicable error messages on the material return authorization (MRA) tag.
D. FIELD SERVICE DIAGNOSTICS

4.5 Field service diagnostics can be programmed to appear in the SMDR printout or as a separate error printout. When listed in a printout, field service diagnostics are preceded by *** and the time of day when the error message occurred. Possible field service diagnostics and the associated troubleshooting procedures are as follows:

1. **HDLC Errors:** ?? XX: This indicates a hardware problem in error handling. Contact Technical Service and report the error message and the circumstances under which it occurred.

2. **Card: Type Number -Inserted, Passed Unit:** This indicates successful detection and initialization of the card. No action is necessary.

3. **Card: Type Number — Removed:** This indicates removal of the card. No action is necessary.

4. **STNA X Y (K/D1):** The system has detected or received an error from a DSS/BLF Device (keyset, DSS/BLF Unit, or Attendant Computer Console). The possible accompanying error messages are:

 a. **RTT Detected Transmission Error:** The system has detected a transmission error from a keyset, DSS/BLF Unit, or Attendant Computer Console. This message may occur when the line cord is removed from a keyset, DSS/BLF Unit, or Attendant Computer Console and when the 25-pair cable is removed from a Keyset Card. In these cases, no action is required. However, if the error message occurs repeatedly for a DKSC/KSC circuit or a group of DKSC/KSC circuits for which the line cord(s) or the station cable is not being removed, all station cabling and wiring should be checked. If the problem persists, replace the station instrument and/or the Keyset Card and return for repair.

 b. ?? XX: The system has detected an invalid data byte from a keyset, DSS/BLF Unit, or Attendant Computer Console. This message may occur when the line cord is removed from a keyset, DSS/BLF Unit, or Attendant Computer Console and when the 25-pair cable is removed from a Keyset Card. In these cases, no action is required. However, if the error occurs repeatedly for a DKSC/KSC circuit or a group of DKSC/KSC circuits for which the line cord or the station cable is not being removed, all station cabling and wiring should be checked. If the problem persists, replace the station instrument and/or the Keyset Card and return for repair.

 c. **RTT Detected No-Response Error:** The system has detected a lack of response from a keyset, DSS/BLF Unit, or Attendant Computer Console. This message generally indicates a hardware problem. Check all station cabling and wiring. If the problem persists, replace the station instrument and/or the Keyset Card and return for repair.

 d. **Reconfigure Request:** The system has detected a temporary transmission problem from a keyset, DSS/BLF Unit, or Attendant Computer Console. If this error message occurs only intermittently, no action is necessary. However, if the error occurs repeatedly for a DKSC/KSC circuit or a group of DKSC/KSC circuits, check all station cabling and wiring. If the problem persists, replace the station instrument and/or the Keyset Card and return for repair.

 e. **Spurious Interrupt:** The indicated device has undergone a reset. The reset may have been caused by electrostatic shock or electromagnetic interference in the vicinity of the station instrument. If this error message occurs only intermittently, no action is necessary. However, if the error occurs repeatedly for a DKSC/KSC circuit or a group of DKSC/KSC circuits, check all station cabling and wiring. If the problem persists, replace the station instrument and/or the Keyset Card and return for repair.

 f. **RTT Detected OMSCI Hardware Error:** The system has detected a faulty DKSC/KSC Circuit. Replace the faulty Keyset Card and return it for repair.

 g. **Inconsistency Error:** The system has detected inconsistent communication with a keyset, DSS/BLF Unit, or Attendant Computer Console. If this error message occurs only intermittently, no action is necessary. However, if the error occurs repeatedly for a DKSC/KSC circuit or a group of DKSC/KSC circuits, check all station cabling and wiring. If the problem persists, replace the station instrument and/or the Keyset Card and return for repair.

 h. **Peripheral Detected Xmit Error:** A keyset, DSS/BLF Unit, or Attendant Computer Console has detected a transmission error from the system. If this error message occurs only
intermittently, no action is necessary. However, if the error occurs repeatedly for a DKS/KSC circuit or a group of DKS/KSC circuits, check all station cabling and wiring. If the problem persists, replace the station instrument and/or the Keyset Card and return for repair.

i. **Peripheral Output Queue Overflow:** This indicates that the station user is pushing the keys on the station instrument at an unreasonably fast rate. If this error message occurs only intermittently, no action is necessary. However, if the error occurs repeatedly, the station user should be instructed to avoid pushing the station instrument keys so rapidly.

j. **Lamp Software Error:** This message indicates a problem with the software. Freeze the CP history queue and notify Technical Service of the error message. Reset the identified station instrument to attempt to clear the problem.

k. **Error Message Lost:** This indicates that DKS/KSC error messages might have been lost. No action is necessary.

l. **State Error:** This message indicates that the peripheral processor’s RAM code has been corrupted. The indicated card should be reset (unplugged, then re-inserted). Notify Technical Service of this error message along with any prior error messages.

m. The following errors indicate a problem with a keyset, DSS/BLF Unit, or Attendant Computer Console. When these errors occur, replace the faulty device and return it for repair.

 - Peripheral Watchdog Timeout
 - Peripheral Trap Error
 - Peripheral Timer Error
 - Peripheral SWI Error
 - Peripheral TDBR Error

n. **VX** — This message may appear when a DKS/KSC device is connected to a Keyset Card and when the system is powered up. The message indicates the station version number sent to the system. If the message reads “VO”, no action is necessary. If the message reads anything other than ‘VO’, the DKS/KSC device is not functioning properly and must be replaced.

5. The following messages indicate minor software errors. Although they detect inconsistent operation, they generally do not warrant a system reset. If any of these messages should occur, note the circumstances under which they occurred and contact Technical Service.

 - Invalid Input Keyset: XX State: XXX Input: XX
 - Invalid Input Keyset: XX State: XXX Timer No.: XX
 - Invalid Input Line: XX State: XXX Input: XX
 - Invalid Input Line: XX State: XXX Timer No.: XX
 - Cancel Timer Not Found = XXX Device = SXXX
 - Invalid Error Message: Task

6. **Single User Abort:** Device Type = TTTTT Device Number = SXX: This message indicates that a minor software reset has occurred concerning the indicated device. Note the circumstances under which the message occurred and contact Technical Service.

7. **Last CP/CO History Freeze and Last CP/CO History Un-Freeze:** By themselves, these messages do not indicate any errors. They are printed to indicate when the last freeze and unfreeze of the CP and CO history queues took place. They should be reported along with the accompanying error messages.

8. **XX Requests For A DTMF Receiver Failed In The Last Sii Hours Due To All DTMF Receivers Being Used:** If this message occurs frequently, additional DTMF decoders should be installed on the RCPU Card. (See page 2-11 for additional information.)

9. **Any other error messages:** Note the circumstances under which the message(s) occurred and contact Technical Service.

NOTE: When returning a faulty card or station instrument, indicate all applicable error messages on the material return authorization (MRA) tag.
5. TROUBLESHOOTING CHARTS

NOTE: For additional troubleshooting procedures and important diagnostic information, refer to the new 256/832 Troubleshooting/Diagnostics Manual, which will be published at a later date. In the interim, certified technicians may contact Technical Service for any necessary troubleshooting assistance.

5.1 The simplified troubleshooting charts located on the following pages list symptoms, possible causes, and corrective actions for problems. Look up the problem in the appropriate chart and perform the corrective actions in the order given. The troubleshooting procedures for correcting equipment failures have been divided into six categories:

A. System
B. CO Trunks
C. Features
D. Keysets
E. Single-Line Sets
F. DSS/BLF Units

NOTE: Throughout the troubleshooting section of the manual, there are numerous references to replacing the defective part and returning it for repair. However, before returning any part, proper troubleshooting procedures should be used to verify that the part is actually defective. For example, if a Keyset Card (DKSC, KSC, or KSC-D) appears to be defective, swap it with a "known good" card presently installed in the system. If the problem follows the suspect card, it can be considered defective. For more information on returning defective equipment, refer to page 6-41.

A. SYSTEM

5.2 If the problem involves one of the following system features, refer to Figure 6-2 on pages 6-14 through 6-17.

- Repeated occurrence of all calls in progress dropping.
- All keysets are inoperative.
- DISA is inoperative.
- Unable to interface with a computer call-up device.
- No music-on-hold/background music.
- RFI/EMI present over conversations.
- Faulty DID numbers displayed at attendant stations.

B. CO TRUNKS

5.3 If the problem involves one of the following CO trunk symptoms, refer to Figure 6-3 on pages 6-18 through 6-23.

- CO trunk inoperative throughout the system.
- Cannot obtain CO dial tone.
- Low volume on all CO trunks.
- Cannot break CO dial tone.
- Cannot place an outgoing call.
- Other station conversations can be heard on the CO trunk.
- Calls are dropped during conversation or when answered.
- CO trunk cannot be reseized.
- Noise on CO trunk at all stations.
- CO trunk remains seized after the call is ended.
- Ground start trunks not functioning properly.

C. FEATURES

5.4 For problems involving the following features, refer to Figure 6-4 on pages 6-24 to 6-29.

- Feature does not appear to work properly.
- Cannot transfer CO or intercom calls to other stations.
- Cannot transfer calls to outside numbers.
- Cannot transfer incoming CO calls or place them on hold.
- Cannot initiate a conference.
- Redial feature is inoperative.
- Cannot initiate an internal page.
- Cannot initiate an external page.
- House phone is inoperative.
- Cannot initiate a call forward.
- Calls do not follow requested forward.
- Station is not receiving hunt group calls.
- Station is not receiving pages.
- Call privacy release inoperative.
- Station cannot be placed in do-not-disturb.
- Automated attendant inoperative.
- SMDA reports not generated automatically and/or cannot be generated using the attendant feature code.
D. KEYSETS

5.5 If problems involve keysets or their optional equipment, refer to Figure 6-5 on pages 6-30 through 6-35.

- Keyset is inoperative.
- A group of eight keysets is inoperative.
- LCD is inoperative.
- Headset is inoperative.
- Keyset squeals when placing and/or receiving calls.
- Cannot break CO dial tone.
- Data device not operating properly.
- Data noise when the keyset is off hook.
- Cannot obtain intercom dial tone.
- Cannot break intercom dial tone.
- Cannot place an intercom call.
- Cannot place a call using the speakerphone on a digital keyset.
- LRA not operating properly.
- Cannot receive off-hook voice announce calls.
- Cannot place off-hook voice announce calls.
- Erratic keyset operation.

E. SINGLELINE SETS

5.6 The following problems are discussed in Figure 6-6 on pages 6-36 through 6-38.

- Single-line set is inoperative.
- A group of eight or 16 single-line sets is inoperative.
- Single-line set will not ring.
- Ring trip is not provided to a group of eight or 16 single-line sets.
- AC ringer-equipped single-line sets will not ring.
- Cannot obtain intercom dial tone.
- Cannot place an intercom call.
- Cannot break CO dial tone.
- Cannot place off-hook voice announce calls.
- Single-line sets not receiving message waiting indications and/or message lamps not functioning properly.

F. DSS/BLF UNITS

5.7 For DSS/BLF Unit problems, refer to Figure 6-7 on pages 6-39 and 6-40.

- DSS/BLF Unit is inoperative.
- Incorrect LED indications.
- Calls are transferred to the wrong station.
- Cannot place immediate off-hook voice announce calls.
FIGURE 6-2. SYSTEM TROUBLESHOOTING CHART

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeated occurrence of all calls in progress dropping</td>
<td>AC line is not isolated and dedicated</td>
<td>Have isolated, dedicated line installed. Refer to page 3-3 in INSTALLATION for details.</td>
</tr>
<tr>
<td></td>
<td>Defective power supply module(s)</td>
<td>Refer to INSTALLATION, page 3-42, to perform the power supply electrical test. Replace the power supply module(s) if faulty.</td>
</tr>
<tr>
<td></td>
<td>Equipment cabinet located near a strong magnetic field or other potential source of interference (copy machines, power transformer, etc.)</td>
<td>Relocate the equipment cabinet a minimum of 20 feet from any equipment that is a potential source of interference.</td>
</tr>
<tr>
<td>IC-CO/COCO Disconnect timer(s) need(s) adjustment</td>
<td>See dialed digits field in SMDR, page 4-124 in FEATURES. Set timer(s) to a higher value. Refer to PROGRAMMING, page 5-77.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inter-Ring Silence timer value is set too short</td>
<td>Ensure timer value is set longer than the central office ringing is “off.” See PROGRAMMING, page 5-77.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>

NOTE: The central office must provide a minimum of 20mA loop current.

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>All keysets in the system are inoperative; no LED indication when a trunk or call key is pressed; $+30.5 \pm 0.9\text{VDC}$ measurement (as described on page 3-61) is not present (+30VDC LED on the RCPU Card is off)</td>
<td>Open or loose connection in the cable between the power supply and the Telecom Motherboard, or a defective cable</td>
<td>Turn off the AC power. Check to see that the Telecom Motherboard power cable is properly connected. Repair or replace the power supply, the cable, and/or the Telecom Motherboard if the connection is faulty.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use a voltmeter to check the $+30\text{VDC}$ voltage at the power supply terminals. If the voltage is not $+30.5 \pm 0.9\text{VDC}$, replace the 30V Module, the power supply chassis, and/or the cable.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remove all DKSC/KSCs from the equipment cabinet. Replace the DKSC/KSCs one at a time and check the system voltages on the RCPU Card (refer to pages 6-1 and 6-2), until the defective card is isolated. Replace the faulty card.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check the system voltages on the RCPU Card (refer to pages 6-1 and 6-2). Replace the Telecom Motherboard if necessary.</td>
</tr>
</tbody>
</table>
FIGURE 6-2. SYSTEM TROUBLESHOOTING CHART (CONT’D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISA inoperative</td>
<td>User error</td>
<td>Refer to FEATURES, page 4-39, for correct procedures.</td>
</tr>
<tr>
<td>Telephone not compatible</td>
<td>User error</td>
<td>User must dial in from a DTMF telephone.</td>
</tr>
<tr>
<td>Programming error</td>
<td>Programming error</td>
<td>Ensure that the trunk group is identified correctly as a day or night DISA trunk group. Refer to PROGRAMMING, page 5-111.</td>
</tr>
<tr>
<td>Defective trunk card</td>
<td>Replace the associated card.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Due to the natural characteristics of the CO trunk, the volume level of DTMF tones transmitted over the trunk may be substantially reduced before reaching the 256 System. This natural degradation in tone volume may adversely affect the reliability of the DISA feature. Other factors which can affect DISA performance are CO trunk noise and the quality and strength of the DTMF tones generated by the off-premises phone itself.

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unable to interface with computer call-up device (banking machine, answering machine, auto dialer, etc.)</td>
<td>Equipment being called is defective</td>
<td>Ensure that the called equipment is functioning correctly.</td>
</tr>
<tr>
<td>DTMF digit duration/pause specifications of called equipment is incompatible with 256 System</td>
<td>DTMF digit duration/pause specifications of called equipment is incompatible with 256 System</td>
<td>Check with the equipment manufacturer for DTMF digit duration/pause specifications. Adjust DTMF Digit Duration/Pause timer. (Refer to page 5-77 in PROGRAMMING.) Default value is 6/100 second.</td>
</tr>
<tr>
<td>CO trunk is designated for dial-pulse signaling</td>
<td>CO trunk must be designated as DTMF. Refer to page 5-103 in PROGRAMMING.</td>
<td></td>
</tr>
<tr>
<td>Defective trunk card</td>
<td>Replace the associated trunk card.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 6-2. SYSTEM TROUBLESHOOTING CHART (CONT’D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No music-on-hold/back-ground music (external music source connected)</td>
<td>External music source turned off or inoperative</td>
<td>Check the external music source for proper operation. Optimal input level is 0.775VRMS (0dB). Refer to INSTALLATION, page 3.99.</td>
</tr>
<tr>
<td>RCPU Card MOH jumper strap(s) not in proper position (no MOH, but back-ground music is operative)</td>
<td>RCPU Card MOH jumper strap(s) not in proper position</td>
<td>Move the music-on-hold jumper strap(s) on the RCPU Card to the ON position.</td>
</tr>
<tr>
<td>Defective cable between music source and RCPU Card</td>
<td>Defective cable between music source and RCPU Card</td>
<td>Repair or replace the cable. Check to see that the proper connector was used. Refer to SPECIFICATIONS, page 2.10.</td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Defective RCPU Card</td>
<td>Replace the RCPU Card.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFI/EMI present over conversations</td>
<td>AC power source or grounding incorrect</td>
<td>Verify that the AC circuit is isolated and dedicated (see page 3.3 in INSTALLATION) and check for proper grounding (see page 3.41 in INSTALLATION).</td>
</tr>
<tr>
<td>Grounding point is source of RFI/EMI</td>
<td>Grounding point is source of RFI/EMI</td>
<td>While the system is running on AC power, temporarily remove the grounding wire to determine if it is the source of the RFI/EMI, See page 3.41 in INSTALLATION for proper grounding requirements.</td>
</tr>
<tr>
<td>AC power source is causing RFI/EMI</td>
<td>AC power source is causing RFI/EMI</td>
<td>If an external battery back-up power source is installed, switch system operation to battery back-up power by unplugging the power source’s AC power cord (with grounding wire connected to equipment cabinet). If RFI/EMI stops, the AC power source is the cause. Install an RFI/EMI filter or equivalent on the AC outlet.</td>
</tr>
</tbody>
</table>

NOTE: For further RFI/EMI troubleshooting assistance while on site, certified technicians should contact Technical Service with the following information:

1. Modulation — AM, FM, or other
2. Frequency of the interfering station (in Hz)
3. Broadcast power
4. Distance between equipment cabinet and broadcast antenna
5. Who hears RFI:
 - Outside call — inside party only?
 - Outside call — outside party only?
 - Outside call — both parties?
 - Intercom call — one or both parties?
6. Type of instrument(s) on which RFI is heard — Standard Digital Keyset, Executive Digital Keyset, IMX 24-line keyset, IMX 24-line AIM keyset, IMX 12-line keyset, IMX 12-line AIM keyset, IMX 8-line keyset, IMX 8-line AIM keyset, Inter-Tel/DVK 24-line keyset, Inter-Tel/DVK 12-line keyset, Inter-Tel/DVK 8-line keyset, GMX 24-line keyset, GMX 12-line keyset, GX 24-line keyset, ESLS, SLI, or single-line DTMF set
FIGURE 6-2. SYSTEM TROUBLESHOOTING CHART (CONT’D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faulty DID numbers displayed at attendant stations</td>
<td>User error (after dialing the correct 3- or 4-digit “base” number, the user entered incorrect or incomplete “start” digits)</td>
<td>Only valid DID “start” digits can be properly processed by the system.</td>
</tr>
<tr>
<td>Programming error</td>
<td>Ensure that all valid DID numbers have been programmed to ring in to the appropriate locations. (See page 5-107 in PROGRAMMING.)</td>
<td></td>
</tr>
<tr>
<td>Defective DID trunk from central office (the system is receiving incomplete or mutilated DID “start” digits)</td>
<td>At the IDC block, remove the bridging clips for the trunk. On the system side of the block, use a test set to verify the DID trunk connection and the system’s ability to accept and process valid digits. Also, move the trunk to a known good IDC circuit. If the problem follows the trunk, contact the telephone company.</td>
<td></td>
</tr>
<tr>
<td>Defective IDC Card</td>
<td>Replace the associated IDC Card.</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 6-3. CO TRUNK TROUBLESHOOTING CHART

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO trunk inoperative throughout the system</td>
<td>Defective CO trunk from central office</td>
<td>At the associated CO block, remove the bridging clips for the trunk. On the telco side of the block, use a test set to verify the CO trunk connection. Also, move the CO trunk to a known good CO circuit. If the problem follows the trunk, contact the telephone company.</td>
</tr>
<tr>
<td>Trunk is dedicated to a secondary carrier requiring an access code</td>
<td>Verify the type of CO trunk. Instruct users to dial access code if required.</td>
<td></td>
</tr>
<tr>
<td>Defective cabling or miswired amphenol connector on the trunk card</td>
<td>Using a test set, ensure presence and correct location of the CO trunk at the associated CO block.</td>
<td></td>
</tr>
<tr>
<td>Programming error</td>
<td>Ensure that the trunk is assigned to the correct trunk group and stations have been given access to it. See page 5-109 in PROGRAMMING.</td>
<td></td>
</tr>
<tr>
<td>Trunk has been taken out of service by the attendant</td>
<td>Place the trunk back in service. Refer to FEATURES, page 4-113, or page 5-148 in PROGRAMMING.</td>
<td></td>
</tr>
<tr>
<td>Defective trunk card</td>
<td>Replace the associated trunk card.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 6-3 (cont.)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot obtain CO dial tone</td>
<td>If reorder tone is heard, programming error</td>
<td>Ensure that keyset has outgoing access. Refer to page 5-34 in PROGRAMMING.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check to see if the keyset is programmed for LCR only. Refer to page 5-42 PROGRAMMING. If so, check LCR programming, page 5-98 in PROGRAMMING.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensure trunk is assigned to the correct trunk group. Refer to page 5-109 in PROGRAMMING.</td>
</tr>
<tr>
<td></td>
<td>If progress tone is heard, user error</td>
<td>System is programmed to expect a forced account code. Refer to PROGRAMMING, page 5-53.</td>
</tr>
<tr>
<td>Defective trunk card</td>
<td>Replace the associated trunk card.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 6-3. CO TRUNK TROUBLESHOOTING CHART (CONT'D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low volume on all CO trunks; cannot break CO dial one</td>
<td>Defective trunk card</td>
<td>Measure -12VDC at the RCPU Card test points. (See page 3-61.) If it is not within tolerance, remove all trunk cards and check voltage again. If the voltage returns to normal, replace the cards one at a time until the defective card is isolated and replaced.</td>
</tr>
<tr>
<td></td>
<td>Defective trunk card</td>
<td>Measure -12VDC at the RCPU Card test points. (See page 3-61.) If it is not within tolerance, remove all trunk cards and check voltage again. If the voltage returns to normal, replace the cards one at a time until the defective card is isolated and replaced.</td>
</tr>
<tr>
<td></td>
<td>Defective CO trunk from central office</td>
<td>At the CO block, remove the bridging clips for the trunk. On the telco side of the block, use a test set to verify the CO trunk connection. Also, move the CO trunk to a known good CO circuit. If the problem follows the trunk, contact the telephone company.</td>
</tr>
<tr>
<td></td>
<td>Open or loose connection in the cable between the power supply and cardfile</td>
<td>If, with all trunk cards removed, the -12VDC is still not within tolerance, turn off the system and check the cable and connector with an ohmmeter. Replace or repair the faulty cable.</td>
</tr>
<tr>
<td></td>
<td>Defective power supply module(s)</td>
<td>With all trunk cards removed, measure -12VDC at the power supply connector(s). If not within tolerance, replace the power supply module(s).</td>
</tr>
<tr>
<td></td>
<td>Hybrid balance mismatch</td>
<td>Select the balance network — ideal, loaded, or unloaded — that best matches the trunk’s impedance. See PROGRAMMING, page 5-147.</td>
</tr>
</tbody>
</table>

NOTE: See also keyset problems on page 6-32.

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot break CO dial tone</td>
<td>CO circuit is programmed for wrong signaling type</td>
<td>Ensure that CO trunk and CO circuit use same type signaling (DTMF or dial pulse). See PROGRAMMING, page 5-103.</td>
</tr>
<tr>
<td></td>
<td>Defective CO trunk from central office</td>
<td>At the CO block, remove the bridging clips for the trunk. On the telco side of the block, use a test set to verify the CO trunk connection. Also, move the CO trunk to a known good CO circuit. If the problem follows the trunk, contact the telephone company.</td>
</tr>
<tr>
<td></td>
<td>Timer error</td>
<td>If trunk is DTMF, the DTMF Digit Duration/Pause timer setting may not be compatible with the trunk. See PROGRAMMING, page 5-77.</td>
</tr>
<tr>
<td></td>
<td>Defective trunk card</td>
<td>Replace the associated trunk card.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>

NOTE: See also keyset problems on page 6-32.
<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot place an outgoing call; CO dial tone is present; intercom works</td>
<td>Programming error</td>
<td>Check station class of service (SCOS). See PROGRAMMING, page 5-42. Check that equal access and absorbed digit programming for the trunk group are correct. See PROGRAMMING, page 5-113. If using LCR, check LCR programming on page 5-98 in PROGRAMMING.</td>
</tr>
<tr>
<td>Defective CO trunk from central office</td>
<td></td>
<td>At the CO block, remove the bridging clips for the trunk. On the telco side of the block, use a test set to verify the CO trunk connection. Also, move the CO trunk to a known good CO circuit. If the problem follows the trunk, contact the telephone company.</td>
</tr>
<tr>
<td>Defective station instrument</td>
<td></td>
<td>Replace the station instrument and/or perform the keyset self-test as outlined in INSTALLATION, pages 3–64, 3–73, or 3–85.</td>
</tr>
<tr>
<td>Defective trunk card</td>
<td></td>
<td>Replace the associated trunk card.</td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td></td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other station conversations can be heard on the CO trunk (crosstalk)</td>
<td>Defective CO trunk(s)</td>
<td>Isolate the trunk(s) with crosstalk by removing the bridging clips from the CO block. On the telco side of the block, attach a test set to each trunk and check for crosstalk. If present, contact the telephone company.</td>
</tr>
<tr>
<td></td>
<td>Defective cabling or miswired amphenol connector on the trunk card</td>
<td>Using a test set, ensure presence and correct location of the CO trunk at the associated CO block.</td>
</tr>
<tr>
<td></td>
<td>Defective station card</td>
<td>Replace the associated station card.</td>
</tr>
<tr>
<td></td>
<td>Defective trunk card</td>
<td>Replace the associated trunk card.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>PROBABLE CAUSE</td>
<td>CORRECTIVE ACTION</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Outside calls dropped during conversation or upon answering CO trunk</td>
<td>User error (trunk key being pressed after initial connection is made)</td>
<td>Instruct users not to press the trunk key while on a call. Or, if necessary, set the CO Reiseize timer to a higher value. Default value is 3 seconds. See page 5-77 in PROGRAMMING. Or, program the station to disallow CO reseize. See PROGRAMMING, page 5-30.</td>
</tr>
<tr>
<td>Defective CO trunk from central office</td>
<td>At the CO block, remove the bridging clips for the trunk. On the telco side of the block, use a test set to verify the CO trunk connection. Also, move the CO trunk to a known good CO circuit. If the problem follows the trunk, contact the telephone company.</td>
<td></td>
</tr>
<tr>
<td>Insufficient loop current supplied by central office</td>
<td>Central office must supply 20mA minimum loop current.</td>
<td></td>
</tr>
<tr>
<td>JCTO Disconnect timer value is set too short</td>
<td>Ensure timer value is long enough to ignore normal interruptions in CO loop current. Default value is 0.6 seconds. See page 5-77 in PROGRAMMING.</td>
<td></td>
</tr>
<tr>
<td>Inter-Ring Silence timer value is set too short</td>
<td>Ensure timer value is set longer than the central office ring signal is “off.” Refer to PROGRAMMING, page 5-77.</td>
<td></td>
</tr>
<tr>
<td>Defective station instrument</td>
<td>Replace the station instrument and/or perform the keyset self-test as outlined in INSTALLATION, pages 3-64, 3-73, or 3-85.</td>
<td></td>
</tr>
<tr>
<td>Defective trunk or station card</td>
<td>Replace the associated card.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO trunk cannot be reseized</td>
<td>CO Reiseize feature is disabled</td>
<td>Check station programming as described on page 5-30 in PROGRAMMING. If the CO reseize option has been disabled, the user cannot reseize a trunk until it has been disconnected by hanging up or pressing another trunk key.</td>
</tr>
<tr>
<td></td>
<td>CO Reiseize timer is set too high</td>
<td>Set the timer to a lower timer value. Default value is 3 seconds. See page 5-77 in PROGRAMMING.</td>
</tr>
</tbody>
</table>
FIGURE 6-3. CO TRUNK TROUBLESHOOTING CHART (CONT’D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise on CO trunk at all stations</td>
<td>Defective CO trunk</td>
<td>At the CO block, remove the bridging clips for the trunk. Use a test set to verify the CO trunk connection. Also, move the CO trunk to a known good CO circuit. If the problem follows the trunk, contact the telephone company.</td>
</tr>
<tr>
<td></td>
<td>Defective trunk card</td>
<td>Replace the associated trunk card.</td>
</tr>
<tr>
<td></td>
<td>Defective power supply module(s)</td>
<td>Refer to INSTALLATION, page 3-42, to perform the power supply electrical test. Replace the power supply module(s) if faulty.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
<tr>
<td>CO trunk remains seized after a call has been ended</td>
<td>Characteristic of some ESS central offices</td>
<td>Central office must provide disconnect signal. Or, install a trunk release module available from most supply houses.</td>
</tr>
<tr>
<td></td>
<td>[IC-CO or CO-CO Disconnect timer value set too long]</td>
<td>Central office disconnect signal was not detected by IC-CO or CO-CO Disconnect timer. Default value of the IC-CO timer is 0.6 seconds; the CO-CO timer is 0.35 seconds. See page 5-77 in PROGRAMMING.</td>
</tr>
<tr>
<td></td>
<td>Defective CO trunk</td>
<td>At the CO block, remove the bridging clips for the trunk. On the telco side of the block, use a test set to verify the CO trunk connection. Also, move the CO trunk to a known good CO circuit. If the problem follows the trunk, contact the telephone company.</td>
</tr>
<tr>
<td></td>
<td>Defective station instrument</td>
<td>Replace the station instrument and/or perform the keyset self-test as outlined in INSTALLATION, pages 3-64, 3-73, or 3-85.</td>
</tr>
<tr>
<td></td>
<td>Defective trunk card</td>
<td>Replace the associated trunk card.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
<tr>
<td>SYMPTOM</td>
<td>PROBABLE CAUSE</td>
<td>CORRECTIVE ACTION</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Ground start trunks not functioning properly</td>
<td>System not properly grounded</td>
<td>Verify that the system AC circuit is isolated and dedicated (see page 3-3 in INSTALLATION) and check for proper grounding (see page 3-41 in INSTALLATION).</td>
</tr>
<tr>
<td></td>
<td>LGC jumper straps not set correctly</td>
<td>For each ground start circuit, both corresponding LGC jumper straps must be set in the GS position. If the strap settings are mixed, or if one or both of the straps is missing, the circuit will not function properly. Also, when setting the straps, note the unique ordering of the LGC circuits as shown in INSTALLATION on page 3-55.</td>
</tr>
<tr>
<td></td>
<td>Tip and ring are reversed</td>
<td>At the CO block, check to make sure that tip and ring are not reversed. See INSTALLATION, page 3-13. Unlike loop start trunks, ground start trunks are polarity sensitive.</td>
</tr>
<tr>
<td></td>
<td>Programming error</td>
<td>Ensure that the trunks are identified correctly as ground start trunks. Refer to PROGRAMMING, page 5-103.</td>
</tr>
<tr>
<td>60Hz AC power is getting onto the trunks</td>
<td>Use a voltmeter to check the AC voltage between tip and earth ground while the trunks are connected to an LGC. If more than 5V (RMS) are measured, there is AC power contamination (e.g., due to faulty wiring insulation). Locate and remove the source of AC power contamination.</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 6-4. FEATURE TROUBLESHOOTING CHART

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature does not work properly</td>
<td>User error</td>
<td>Refer to FEATURES for procedures. Also, ensure that the feature is available on the software package installed.</td>
</tr>
<tr>
<td>Programming error</td>
<td>Check feature code programming. Refer to PROGRAMMING, page 5-58. Also, check user-programmable feature key programming. Refer to FEATURES, page 4-51, and PROGRAMMING, page 5-44.</td>
<td></td>
</tr>
<tr>
<td>Defective station instrument</td>
<td>Replace the station instrument and/or perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85.</td>
<td></td>
</tr>
<tr>
<td>Defective station card</td>
<td>Replace the associated station card.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot transfer CO or intercom calls to other stations</td>
<td>User error (e.g., wrong feature code)</td>
<td>Refer to FEATURES, page 4-70, for procedures.</td>
</tr>
<tr>
<td>Called station is in do-not-disturb</td>
<td>A station in do-notdisturb cannot receive transferred calls.</td>
<td></td>
</tr>
<tr>
<td>Call transferred to an illegal intercom number</td>
<td>Use only valid intercom numbers.</td>
<td></td>
</tr>
<tr>
<td>Called station is in a different tenant group and cross-tenant traffic is denied</td>
<td>To allow such transfers (if desired), place the two stations in the same tenant group or allow cross-tenant traffic. See PROGRAMMING, page 5-67.</td>
<td></td>
</tr>
<tr>
<td>Defective station instrument</td>
<td>Replace the station instrument and/or perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot transfer calls to outside numbers</td>
<td>User error (e.g., wrong feature code)</td>
<td>Refer to FEATURES, page 4-70, for procedures.</td>
</tr>
<tr>
<td>Programming error</td>
<td>Check trunk access and toll restriction.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 6-4. FEATURE TROUBLESHOOTING CHART (CONT’D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot transfer incoming CO calls or place them on hold</td>
<td>User error</td>
<td>Refer to FEATURES, page 4-70, for procedures.</td>
</tr>
<tr>
<td>Inter-Ring Silence timer is set too short</td>
<td>Ensure timer value is set longer than the central office ring signal is “off.” Refer to PROGRAMMING, page 5-77.</td>
<td></td>
</tr>
<tr>
<td>User error (trunk key being pressed after initial connection is made)</td>
<td>Ensure timer value is set longer than the central office ring signal is “off.” Refer to PROGRAMMING, page 5-77.</td>
<td></td>
</tr>
<tr>
<td>Cannot initiate conference</td>
<td>User error</td>
<td>Refer to FEATURES, page 4-76, for correct procedures.</td>
</tr>
<tr>
<td>System capacity exceeded</td>
<td>Refer to the maximum system capacities on page 1-8 in OVERVIEW.</td>
<td></td>
</tr>
<tr>
<td>Defective station instrument</td>
<td>Replace the station instrument and/or perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85.</td>
<td></td>
</tr>
<tr>
<td>Defective station card</td>
<td>Replace the associated station card.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
<tr>
<td>Last Number Redial feature inoperative</td>
<td>User error</td>
<td>Refer to FEATURES, page 4-93, for procedures. Keyset may be programmed for last number saved.</td>
</tr>
<tr>
<td>System speed-dial number identified as non-display</td>
<td>A system speed-dial number identified as non-display cannot be redialed.</td>
<td></td>
</tr>
<tr>
<td>Defective station instrument</td>
<td>Replace the station instrument and/or perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 6-4. FEATURE TROUBLESHOOTING CHART (CONT’D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot initiate an internal page</td>
<td>User error</td>
<td>Refer to FEATURES, page 4-94, for correct procedures.</td>
</tr>
<tr>
<td>All stations in the paging zone are busy, or a voice channel is not available</td>
<td>Reorder tone is heard. Wait several seconds and then attempt to place the page again. Paging requires a voice channel.</td>
<td></td>
</tr>
<tr>
<td>All stations in the paging zone are in do-not-disturb</td>
<td>Reorder tone is heard if all stations in the zone are in do-not-disturb and if external paging for the zone is disabled.</td>
<td></td>
</tr>
<tr>
<td>No stations are programmed to receive pages</td>
<td>Reorder tone is heard. Check paging assignment. Refer to page 5-70 in PROGRAMMING.</td>
<td></td>
</tr>
<tr>
<td>Defective station instrument</td>
<td>Replace the station instrument and/or perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot initiate an external page</td>
<td>User error</td>
<td>Refer to FEATURES, page 4-94, for correct procedures.</td>
</tr>
<tr>
<td>Another external zone page is being made or a voice channel is not available</td>
<td>Reorder tone is heard. Wait several seconds and then attempt to place the page again. Only one external zone page can be made at a time. Paging requires a voice channel.</td>
<td></td>
</tr>
<tr>
<td>Defective station instrument</td>
<td>Replace the station instrument and/or perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>House phone is not working properly or is inoperative</td>
<td>User error</td>
<td>Incoming calls take precedence over outgoing calls. Refer to FEATURES, page 4-92.</td>
</tr>
<tr>
<td>Programming error (database)</td>
<td>Ensure that the station is designated as a house phone. Refer to page 5-38 in PROGRAMMING. Also, make sure the station has been assigned the proper SCOS and trunk access. See page 5-95 in PROGRAMMING.</td>
<td></td>
</tr>
<tr>
<td>Programming error (database or speed-dial)</td>
<td>Ensure that the correct numbers are in appropriate day number and night number (speed-dial) locations. Refer to page 4-88 in FEATURES.</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 6-4. FEATURE TROUBLESHOOTING CHART (CONT'D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot initiate a call forward</td>
<td>User error</td>
<td>Refer to FEATURES, page 4-82, for correct procedures.</td>
</tr>
<tr>
<td>User attempting illegal forward</td>
<td>Stations are not allowed to set call forward if it forms an unconditional loop, the receiving station is in do-not-disturb, or an invalid intercom number is dialed. SCOS and outgoing access are checked when a call is forwarded to an outside telephone number. Also, LCR cannot be used to forward to an outside number.</td>
<td></td>
</tr>
<tr>
<td>Defective station instrument</td>
<td>Replace the station instrument and/or perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calls will not forward</td>
<td>User error</td>
<td>Refer to FEATURES, page 4-82, for procedures.</td>
</tr>
<tr>
<td>Illegal forward</td>
<td>Conditional forwards i.e., if busy, if unanswered) may form an undetected loop. If a call forward request forms a conditional loop, the call returns to the first station.</td>
<td></td>
</tr>
<tr>
<td>Defective station card</td>
<td>Replace the associated station card.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station not receiving hunt group calls</td>
<td>User error</td>
<td>Hunt group calls may have been halted using the Hunt Group Remove feature code (see page 4-19 in FEATURES). Or, the station may be in do-not-disturb.</td>
</tr>
<tr>
<td>Programming error</td>
<td>Check hunt group programming. Refer to page 5-61 in PROGRAMMING.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station is not receiving pages</td>
<td>User error</td>
<td>Pages may have been halted using the Page Remove feature code (see page 4-94 in FEATURES). Or, the station may be in do-not-disturb.</td>
</tr>
<tr>
<td>Programming error</td>
<td>Check page zone programming for the station. See PROGRAMMING, page 5-70.</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 6-4. FEATURE TROUBLESHOOTING CHART (CONT’D)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Probable Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Privacy Release inoperative</td>
<td>User error</td>
<td>Keyset user must lift the handset or press the SPKR key before pressing the busy trunk key.</td>
</tr>
<tr>
<td>Call is forced private</td>
<td>Refer to page 4-74 in FEATURES for information on Call Privacy and Privacy Release.</td>
<td></td>
</tr>
<tr>
<td>Programming error</td>
<td>Verify that system-wide CO Privacy Release option is enabled. See PROGRAMMING, page 5-67.</td>
<td></td>
</tr>
<tr>
<td>Station cannot be placed in do-not-disturb</td>
<td>User error</td>
<td>Refer to page 4-95 in FEATURES for correct procedures.</td>
</tr>
<tr>
<td></td>
<td>Programming error</td>
<td>Station is programmed to disallow do-not-disturb. See PROGRAMMING, page 5-30.</td>
</tr>
<tr>
<td></td>
<td>Defective keyset</td>
<td>Perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85, and replace the keyset if faulty.</td>
</tr>
<tr>
<td>Automated attendant inoperative</td>
<td>User error</td>
<td>The caller must be using a DTMF phone to enter digits. Refer to FEATURES, page 4-12.</td>
</tr>
<tr>
<td>DTMF tones not being interpreted correctly (see NOTE below)</td>
<td>If numbers appear to be misdialed frequently, due to trunk noise or other problems, use the Digit Translation feature as described on page 5-39 in PROGRAMMING and page 4-14 in FEATURES.</td>
<td></td>
</tr>
<tr>
<td>DTMF decoder unavailable</td>
<td>If a DTMF decoder is not available, the caller is transferred to the automated attendant’s attendant.</td>
<td></td>
</tr>
<tr>
<td>Programming error</td>
<td>Automated attendant station(s) must be designated in the database. Refer to PROGRAMMING, page 5-38.</td>
<td></td>
</tr>
<tr>
<td>Defective playback device</td>
<td>Replace the playback device.</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Due to the natural characteristics of the CO trunk, the volume level of DTMF tones transmitted over the trunk may be substantially reduced before reaching the 256 System. This natural degradation in tone volume may adversely affect the reliability of the automated attendant feature. Other factors which can affect automated attendant performance are CO trunk noise, the quality of the playback device, and the quality and strength of the DTMF tones generated by the off-premises phone itself.
FIGURE 6-4. FEATURE TROUBLESHOOTING CHART (CONT’D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMDA reports not generated automatically and/or they cannot be generated using the Attendant SMDA feature code</td>
<td>Programming error</td>
<td>SMDA report generation must be enabled. Also, the reports can be set to be generated daily, weekly, monthly, or by the attendant only. See PROGRAMMING, page 5-138. Ensure that the correct output port (SERIAL 1 or SERIAL 2) for the printer is selected. See PROGRAMMING, page 5-138.</td>
</tr>
<tr>
<td>User error</td>
<td></td>
<td>For correct procedures on using the attendant feature code for SMDA report generation, refer to page 4-111 in FEATURES.</td>
</tr>
</tbody>
</table>
FIGURE 6-5. **KEYSET TROUBLESHOOTING CHART**

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyset inoperative; LED indication present while any key with an LED is held down; reorder tone is heard when key is pressed</td>
<td>Programming error (circuit identified as DSS/BLF; no reorder tone is heard)</td>
<td>Identify the circuit for keyset use, not DSS/BLF. Refer to page 5-132 in PROGRAMMING.</td>
</tr>
<tr>
<td>Programming or installation error (if using an 8-line AIM keyset installed two to a circuit)</td>
<td>If using 8-line ATM keysets, the KSC-D circuits must be programmed for dual use. Refer to page 5-171 in PROGRAMMING. The individual 8-line AIM keysets must also be programmed for station features (see page 5-25 in PROGRAMMING) and their internal switches must be set correctly (see page 3-73 in INSTALLATION).</td>
<td></td>
</tr>
<tr>
<td>System lockout caused by excessive data errors (displays SYSTEM LOCKOUT)</td>
<td>Remove and replace the line cord to reset the keyset.</td>
<td></td>
</tr>
<tr>
<td>Defective cabling or connections</td>
<td>Ensure that all cables are correctly connected to the modular jack as shown in Figure 3-2 on page 3-8 in INSTALLATION. Check for loose or open connections in the station cabling and the line cord.</td>
<td></td>
</tr>
<tr>
<td>Defective keyset</td>
<td>Perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85, and replace the keyset if faulty.</td>
<td></td>
</tr>
<tr>
<td>Defective DKSC/KSC</td>
<td>Replace the associated DKSC/KSC.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyset inoperative; no LED indication when any key is pressed; no audio is present</td>
<td>Defective fuse or open thermistor on the associated DKSC/KSC</td>
<td>If the DKSC/KSC is equipped with a fuse, remove the fuse and check it with an ohmmeter; replace if faulty.</td>
</tr>
<tr>
<td>Defective keyset</td>
<td>Perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85, and replace the keyset if faulty.</td>
<td></td>
</tr>
<tr>
<td>Defective cabling or connections</td>
<td>Ensure that 30VDC is present at the modular jack and polarity is correct. Check for loose or open connections in the station cabling and the line cord. Refer to Figure 3-2 on page 3-8 in INSTALLATION.</td>
<td></td>
</tr>
<tr>
<td>Defective DKSC/KSC</td>
<td>Replace the associated DKSC/KSC.</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 6-5. KEYSET TROUBLESHOOTING CHART (CONT'D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A group of 8 or 16 keysets inoperative; no LED indication when a trunk key is used down; all affected keysets are located on one DKSC/KSC</td>
<td>Defective fuse or open thermistor on the associated DKSC/KSC</td>
<td>If the DKSC/KSC is equipped with a fuse, remove the fuse and check it with an ohmmeter; replace if faulty.</td>
</tr>
<tr>
<td>Programming or installation error (if using 8-line AIM keysets installed two to a circuit)</td>
<td>If using 8-line ATM keysets, the KSC-D circuits must be programmed for dual use. Refer to page 5-171 in PROGRAMMING. The individual 8-line AIM keysets must also be programmed for station features (see page 5-25 in PROGRAMMING) and their internal switches must be set correctly (see page 3-73 in INSTALLATION).</td>
<td></td>
</tr>
<tr>
<td>Defective DKSC/KSC</td>
<td>Replace the associated DKSC/KSC.</td>
<td></td>
</tr>
<tr>
<td>Defective station amphenol connector or cable attached to the associated DKSC/KSC</td>
<td>Remove the cable from the card. Using an ohmmeter, verify the pinout of the cable. (Refer to the information on pages 3-21 to 3-25 and 3-28 in INSTALLATION.) Ensure that 30VDC is present at the modular jack and polarity is correct. Check for loose or open connections in the station cabling and the line cord.</td>
<td></td>
</tr>
<tr>
<td>Defective receptacle on the Telecom Motherboard</td>
<td>Replace the Telecom Motherboard.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCD inoperative; otherwise, keyset functions normally</td>
<td>Defective LCD Unit or LCD ribbon cable</td>
<td>Replace the LCD Unit or ribbon cable. Refer to page 3-71 in INSTALLATION.</td>
</tr>
<tr>
<td>Improper installation</td>
<td>Refer to INSTALLATION, page 3-71.</td>
<td></td>
</tr>
<tr>
<td>Defective ribbon cable connector</td>
<td>Replace the keyset.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optional headset inoperative</td>
<td>User error</td>
<td>Ensure the Enable Headset feature code (315) was entered. Check feature code programming to see if code was changed. Refer to page 5-58 in PROGRAMMING.</td>
</tr>
<tr>
<td>Incorrect or defective headset</td>
<td>Ensure the headset contains a dynamic microphone, or a carbon microphone and an external AC power source. Replace headset if necessary.</td>
<td></td>
</tr>
<tr>
<td>Defective keyset</td>
<td>Try another keyset.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-4 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 6-5. KEYSET TROUBLESHOOTING CHART (CONT’D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyset squeals on outside calls or when receiving a handsfree intercom call from a single-line station (feedback)</td>
<td>Speaker volume is too loud</td>
<td>Reduce feedback by lowering speaker volume using keyset volume controls.</td>
</tr>
<tr>
<td></td>
<td>Poor acoustics</td>
<td>Poor acoustics can cause poor quality on handsfree calls. Try placing a private call.</td>
</tr>
</tbody>
</table>

NOTE: A two- to four-wire converter is used during communication between keysets and single-line stations. Reflection is a normal characteristic of these converters. Feedback on intercom calls is eliminated when the single-line station user places a private intercom call by pressing the pound (#) key before dialing the intercom number or by entering the Ring Intercom Always feature code 367 (provided the keyset user does not press the SPKR key to respond).

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot break CO dial tone</td>
<td>Defective keyset</td>
<td>Perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85, and replace the keyset if faulty.</td>
</tr>
<tr>
<td></td>
<td>Defective trunk card</td>
<td>Replace defective trunk card.</td>
</tr>
<tr>
<td></td>
<td>Defective DKSC/KSC</td>
<td>Replace the associated DKSC/KSC.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>

NOTE: See also CO trunk problems on page 6-19.

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data device (connected to 12-line or 24-line keyset) not operating properly</td>
<td>User error</td>
<td>Refer to manufacturer’s operating instructions.</td>
</tr>
<tr>
<td></td>
<td>Secondary voice path busy</td>
<td>The keyset will not transmit data calls when the secondary voice path or speakerphone are in use. Refer to page 4-101 in FEATURES.</td>
</tr>
<tr>
<td></td>
<td>Problem with data device</td>
<td>Disconnect data device and check operation according to the manufacturer’s instructions.</td>
</tr>
<tr>
<td></td>
<td>Data Port Module not installed properly or defective</td>
<td>Check Data Port Module installation and jumper strap settings. Refer to INSTALLATION, page 3-78. Replace if defective.</td>
</tr>
<tr>
<td></td>
<td>PCDPM, MDPM, and/or transformer not installed properly or defective</td>
<td>Check installation. Refer to INSTALLATION, pages 3-66 to 3-70. Replace if defective.</td>
</tr>
<tr>
<td></td>
<td>Defective keyset</td>
<td>Try another keyset.</td>
</tr>
<tr>
<td></td>
<td>Defective DKSC/KSC</td>
<td>Replace the associated DKSC/KSC.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>
FIGURE 6-5. KEYSET TROUBLESHOOTING CHART (CONT'D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data noise in any off-hook condition</td>
<td>Defective cabling or connections (e.g., line cord, amphenol connector, bridging clip, etc.)</td>
<td>Check for loose or open connections, or crossed wires.</td>
</tr>
<tr>
<td>Wrong type of line cord for 8-line AIM keysets installed two to a circuit</td>
<td>Replace the flat line cord with a twisted-pair line cord as described in SPECIFICATIONS on page 2–23.</td>
<td>Replace the associated DKSC/KSC.</td>
</tr>
<tr>
<td>Cannot obtain intercom dial tone; no tone heard; CO trunk works</td>
<td>Defective keyset</td>
<td>Perform the keyset self-test as described in INSTALLATION, pages 3–64, 3–73, or 3–85, and replace the keyset if faulty.</td>
</tr>
<tr>
<td>Cannot break intercom dial tone</td>
<td>Defective keyset</td>
<td>Perform the keyset self-test as described in INSTALLATION, pages 3–64, 3–73, or 3–85, and replace the keyset if faulty.</td>
</tr>
<tr>
<td>Cannot place intercom call; intercom dial tone is present, but reorder tone is heard when call is attempted</td>
<td>User error (or station is in a different tenant group and cross-tenant traffic is denied)</td>
<td>Invalid intercom number or improper dialing procedure. See FEATURES, page 4–55, for procedures. (Or, ensure the stations are in the same tenant group or allow cross-tenant traffic.)</td>
</tr>
<tr>
<td></td>
<td>Defective keyset</td>
<td>Perform the keyset self-test as described in INSTALLATION, pages 3–64, 3–73, or 3–85, and replace the keyset if faulty.</td>
</tr>
<tr>
<td></td>
<td>Defective DKSC/KSC</td>
<td>Replace the associated DKSC/KSC.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>

Page 6-33
FIGURE 6-5. KEYSET TROUBLESHOOTING CHART (CONT’D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot place call using the speakerphone on a digital keyset (reorder tone is heard)</td>
<td>DSP resources not available (display shows NO SPKRPHN AVAIL STAY OFF HOOK)</td>
<td>Try again later. See FEATURES, page 4-40, for more information.</td>
</tr>
<tr>
<td></td>
<td>Defective DSP or DKSC</td>
<td>Replace the associated DSP or DKSC.</td>
</tr>
<tr>
<td>LRA device connected to keyset not operating properly</td>
<td>Problem with LRA device</td>
<td>Disconnect LRA device and check operation according to the manufacturer’s instructions.</td>
</tr>
<tr>
<td></td>
<td>Data Port Module not installed properly or defective</td>
<td>Check Data Port Module installation and jumper strap settings. Refer to INSTALLATION, page 3-78. Replace if defective.</td>
</tr>
<tr>
<td></td>
<td>Defective keyset</td>
<td>Try another keyset.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
<tr>
<td>Cannot receive off-hook voice announce calls</td>
<td>Programming error</td>
<td>Ensure that the system option for off-hook voice announce is enabled (PROGRAMMING, page 5-67), that the called keyset is programmed to receive OHVA calls, and that the calling keyset is programmed to transmit OHVA calls (PROGRAMMING, page 5-30).</td>
</tr>
<tr>
<td></td>
<td>User error</td>
<td>The called station is a single-line set. 8-line keyset, 8-line AIM keyset, GMX 12-line keyset, GX 24-line keyset (these station instruments cannot receive OHVA calls) or a keyset that is programmed not to receive OHVA calls. Or, the called keyset user may have blocked the OHVA call. See FEATURES, page 4-61, for details.</td>
</tr>
<tr>
<td></td>
<td>Secondary voice path busy</td>
<td>The keyset will not receive off-hook voice announce calls when the secondary voice path or speakerphone are in use. Refer to FEATURES, page 4-61.</td>
</tr>
<tr>
<td></td>
<td>Defective keyset</td>
<td>Perform the keyset self-test as described in INST-ON, pages 3-64, 3-73, or 3-85, and replace the keyset if faulty.</td>
</tr>
<tr>
<td>PCDPM not installed properly or defective</td>
<td>Check installation. Refer to INSTALLATION, page 3-66. Replace if defective.</td>
<td>Replace the associated DKSC/KSC.</td>
</tr>
<tr>
<td></td>
<td>Defective DKSC/KSC</td>
<td>Replace the associated DKSC/KSC.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>
FIGURE 6-5. KEYSET TROUBLESHOOTING CHART (CONT'D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot place off-hook voice announce calls</td>
<td>Programming error</td>
<td>Ensure that the system option for off-hook voice announce is enabled (PROGRAMMING, page 5-67), that the called keyset is programmed to receive OHVA calls, and that the calling keyset is programmed to transmit OHVA calls (PROGRAMMING, page 5-30).</td>
</tr>
<tr>
<td>User error</td>
<td>The called station is a single-line set, 8-line keyset, 8-line AIM keyset, GMX 12-line keyset, GX 24-line keyset (these station instruments cannot receive OHVA calls) or a keyset that is programmed not to receive OHVA calls. Or, the called keyset user may have blocked the OHVA call. Refer to page 4-61 in FEATURES for more information.</td>
<td></td>
</tr>
<tr>
<td>Secondary voice path busy</td>
<td>The called keyset cannot receive off-hook voice announce calls when its secondary voice path or speakerphone are in use. Refer to FEATURES, page 4-61.</td>
<td></td>
</tr>
<tr>
<td>Defective keyset</td>
<td>Perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85, and replace the keyset if faulty.</td>
<td></td>
</tr>
<tr>
<td>Defective DKSC/KSC</td>
<td>Replace the associated DKSC/KSC.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erratic keyset operation (lamp status incorrect)</td>
<td>Station cable exposed to interference</td>
<td>Ensure proper station cable runs. Refer to INSTALLATION, page 3-6.</td>
</tr>
<tr>
<td></td>
<td>Station loop limits exceeded</td>
<td>Perform the station loop resistance test as outlined on page 3-29 in INSTALLATION.</td>
</tr>
<tr>
<td></td>
<td>Defective cabling or connections</td>
<td>Ensure that 30VDC is present at the modular jack and polarity is correct. Check for loose or open connections in the station cabling and the line cord. Refer to Figure 3-2 on page 3-8 in INSTALLATION.</td>
</tr>
<tr>
<td></td>
<td>Defective keyset</td>
<td>Perform the keyset self-test as described in INSTALLATION, pages 3-64, 3-73, or 3-85, and replace the keyset if faulty.</td>
</tr>
<tr>
<td></td>
<td>Programming error</td>
<td>Ensure that the proper key map has been assigned to the keyset. See PROGRAMMING, page 5-44.</td>
</tr>
<tr>
<td></td>
<td>Defective DKSC/KSC</td>
<td>Replace the associated DKSC/KSC.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>
FIGURE 6-6. SINGLELINE SET TROUBLESHOOTING CHART

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-line set completely inoperative</td>
<td>Defective set</td>
<td>Replace the single-line set.</td>
</tr>
<tr>
<td></td>
<td>Defective cabling</td>
<td>Check amphenol connector and station cabling. Refer to INSTALLATION, pages 3-21 and 3-26 to 3-28.</td>
</tr>
<tr>
<td></td>
<td>Defective SLC, IDC, or T1C</td>
<td>Replace the associated SLC, IDC, or T1C.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
<tr>
<td>Single-line set inoperative; talk battery present</td>
<td>Defective set</td>
<td>Replace the single-line set.</td>
</tr>
<tr>
<td></td>
<td>Defective SLC or DC</td>
<td>Replace the associated SLC or IDC.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
<tr>
<td>Single-line set inoperative; calls ring in; talk battery is present</td>
<td>Defective set</td>
<td>Replace the single-line set.</td>
</tr>
<tr>
<td></td>
<td>Defective SLC or IDC</td>
<td>Replace the associated SLC or DC.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
<tr>
<td>A group of 8, 16, or 24 single-line sets inoperative; all are on the same SLC, IDC, or T1C</td>
<td>Loose amphenol connector</td>
<td>Ensure connector is securely attached to the SLC, IDC, or T1C.</td>
</tr>
<tr>
<td></td>
<td>Defective SLC, IDC, or T1C</td>
<td>Replace the associated SLC, IDC, or T1C.</td>
</tr>
<tr>
<td>Single-line set will not ring for CO or intercom calls; talk battery is present; calls can be placed</td>
<td>IDC or single-line set ringer jumper straps not set for correct ringing</td>
<td>Set the associated jumper strap for the correct ringer (AC or DC). Refer to INSTALLATION, pages 3-51 and 3-95.</td>
</tr>
<tr>
<td></td>
<td>Defective set</td>
<td>Replace the set.</td>
</tr>
<tr>
<td></td>
<td>Defective SLC or IDC</td>
<td>Replace the associated SLC or IDC.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>
FIGURE 6-6. SINGLELINE SET TROUBLESHOOTING CHART (CONT'D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring trip is not provided to a group of eight or 16 single-line sets; outgoing calls are not affected</td>
<td>-48VDC absent from SLC or IDC</td>
<td>Defective connection or incorrect installation of -48VDC on the SLC or IDC. Using a voltmeter, measure the -48VDC at the SLC/IDC block. Refer to installation, pages 3-21 to 3-28.</td>
</tr>
<tr>
<td>Defective cabling</td>
<td></td>
<td>Using a voltmeter, measure the -48VDC input at the amphenol connector. Refer to Figure 3-19 on page 3-28 in INSTALLATION.</td>
</tr>
<tr>
<td>Defective SLC or IDC</td>
<td>Replace the associated SLC or IDC.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A group of AC ringer-equipped single-line sets will not ring for CO or intercom calls; talk battery is Present; calls can be placed; all stations are on the same SLC or IDC</td>
<td>Defective power supply module(s)</td>
<td>Refer to INSTALLATION, page 3-42, to perform the power supply electrical test. Replace the power supply module(s) if faulty.</td>
</tr>
<tr>
<td>Defective SLC or IDC</td>
<td>Replace the associated SLC or IDC.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No AC ringer-equipped single-line set will ring for CO or intercom calls; talk battery present; calls can be placed</td>
<td>Defective power supply module(s)</td>
<td>Refer to INSTALLATION, page 3-42, to perform the power supply electrical test. Replace the power supply module(s) if faulty.</td>
</tr>
<tr>
<td>Defective SLC or IDC</td>
<td>Replace the associated SLC or IDC.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot obtain intercom dial tone; no sound is heard</td>
<td>Either a DTMF decoder, voice channel, or tone generator is not available</td>
<td>Single-line station user will hear busy tones when any of the necessary resources are not available. User may camp on.</td>
</tr>
<tr>
<td>Defective set</td>
<td>Replace the single-line set.</td>
<td></td>
</tr>
<tr>
<td>Defective SLC or IDC</td>
<td>Replace the associated SLC or IDC.</td>
<td></td>
</tr>
<tr>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 6-6. SINGLELINE SET TROUBLESHOOTING CHART (CONT’D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot place intercom call; dial tone present, but reorder tone heard</td>
<td>User error</td>
<td>Try the call again. User may have dialed an invalid number.</td>
</tr>
<tr>
<td></td>
<td>Defective set</td>
<td>Replace the single-line set.</td>
</tr>
<tr>
<td></td>
<td>Called station is in a different tenant group and cross-tenant traffic is denied</td>
<td>To allow such calls (if desired), place the two stations in the same tenant group or allow cross-tenant traffic. See PROGRAMMING, page 5-67.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>

NOTE: See also CO trunk problems on page 6-19.

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot break CO dial tone</td>
<td>Defective set</td>
<td>Replace the single-line set.</td>
</tr>
<tr>
<td></td>
<td>Defective SLC or IDC</td>
<td>Replace the associated SLC or IDC.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot place off-hook voice announce calls</td>
<td>Programming error</td>
<td>Ensure that the system option for off-hook voice announce is enabled (PROGRAMMING, page 5-67) and that the station is programmed to transmit (page 5-30).</td>
</tr>
<tr>
<td></td>
<td>User error</td>
<td>Called station is a single-line set or a keyset that is not equipped with a secondary voice path.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-line sets not receiving message waiting indications and/or message lamps not functioning properly</td>
<td>Programming error</td>
<td>Message waiting indication option must be enabled in the database. Refer to page 5-30 in PROGRAMMING.</td>
</tr>
<tr>
<td></td>
<td>Single-line set installed on an IDC</td>
<td>In order for single-line set message waiting lamps to function, the set must be installed on premises on an SLC (IDCs do not support message waiting applications), and the associated power supply chassis must have a functioning -48V Module.</td>
</tr>
<tr>
<td></td>
<td>Defective or missing power supply module, or defective SLC</td>
<td>While leaving a message, check for -108VDC across tip and ring. Replace the defective power supply module or SLC.</td>
</tr>
</tbody>
</table>
FIGURE 6-7. DSS/BLF UNIT TROUBLESHOOTING CHART

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSS/BLF Unit inoperative; no LED indication present while key is pressed</td>
<td>Defective fuse on the associated DKSC/KSC</td>
<td>If the DKSC/KSC is equipped with a fuse, remove the fuse and check it with an ohmmeter; replace if faulty.</td>
</tr>
<tr>
<td></td>
<td>Defective cabling</td>
<td>Ensure 30VDC present at the DSS/BLF modular jack and polarity is correct. Check for loose or open connections. Refer to Figure 3-2 on page 3-8 in INSTALLATION.</td>
</tr>
<tr>
<td></td>
<td>PCDPM and/or transformer not installed properly or defective</td>
<td>Check installation. Refer to INSTALLATION, page 3-66. Replace if defective.</td>
</tr>
<tr>
<td></td>
<td>Defective DSS/BLF Unit</td>
<td>Replace the DSS/BLF Unit.</td>
</tr>
<tr>
<td></td>
<td>Defective DKSC/KSC</td>
<td>Replace the associated DKSC/KSC.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSS/BLF Unit inoperative; LED indication present while key is pressed</td>
<td>Programming error</td>
<td>Circuit is identified for keyset use. Refer to page 5-132 in PROGRAMMING. Circuit must be equipped for DSS/BLF Unit use. Also, check DSS/BLF key assignments in PROGRAMMING, page 5-44.</td>
</tr>
<tr>
<td></td>
<td>Defective DSS/BLF Unit</td>
<td>Replace the DSS/BLF Unit.</td>
</tr>
<tr>
<td></td>
<td>Defective DKSC/KSC</td>
<td>Replace the associated DKSC/KSC.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSS/BLF Unit LED indications incorrect</td>
<td>Cable exposed to interference</td>
<td>Refer to INSTALLATION, page 3-6, for correct cabling procedures.</td>
</tr>
<tr>
<td></td>
<td>Programming error</td>
<td>Check DSS/BLF key assignments in PROGRAMMING, page 5-44.</td>
</tr>
<tr>
<td></td>
<td>Defective DSS/BLF Unit</td>
<td>Replace the DSS/BLF Unit.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-1 and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calls are transferred to the wrong station</td>
<td>User error</td>
<td>Refer to FEATURES, page 4-103, for procedures.</td>
</tr>
<tr>
<td></td>
<td>Programming error</td>
<td>Check DSS/BLF key assignments. Refer to PROGRAMMING, page 5-44.</td>
</tr>
</tbody>
</table>
FIGURE 6-7. DSS/BLF UNIT TROUBLESHOOTING CHART (CONT’D)

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>PROBABLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannot place immediate off-hook voice announce calls (using the DSS/BLF key)</td>
<td>Programming error</td>
<td>Ensure that the system option for off-book voice announce is enabled, that the immediate off-hook voice announce option is enabled, that the DSS/BLF station is programmed to transmit, and that the called keyset is programmed to receive. Refer to pages 5-67 and 5-30 in PROGRAMMING.</td>
</tr>
<tr>
<td></td>
<td>User error</td>
<td>The called station is a single-line set. 8-line keyset, 8-line AIM keyset, GMX 12-line keyset, GX 24-line keyset (these sets cannot receive OHVA calls), or a keyset that is programmed not to receive OHVA calls. Or, the called keyset user may have blocked the OHVA call. Refer to page 4-61 in FEATURES for more information.</td>
</tr>
<tr>
<td></td>
<td>Defective keyset</td>
<td>Perform the keyset self-test as described in INSTALLATION, pages 3–64, 3–73, or 3-85, and replace the keyset if faulty.</td>
</tr>
<tr>
<td></td>
<td>Defective DSS/BLF Unit</td>
<td>Perform the DSS/BLF Unit self-test as described in INSTALLATION, page 3–90, 3–92, or 3-93, and replace the DSS/BLF Unit if faulty.</td>
</tr>
<tr>
<td></td>
<td>Defective DKSC/KSC</td>
<td>Replace the associated DKSC/KSC.</td>
</tr>
<tr>
<td></td>
<td>Defective RCPU Card</td>
<td>Refer to pages 6-l and 6-2 to test the system voltages. Replace the card if faulty.</td>
</tr>
</tbody>
</table>
6. CUSTOMER SUPPORT

A. TECHNICAL SUPPORT

6.1 If problems persist when installing or servicing Inter-Tel equipment: While on site and with the proper troubleshooting tools available, certified technicians may contact Inter-Tel’s Customer Support Department for assistance. They can be reached from 7:00 AM to 5:00 PM Mountain Standard Time at 602-961-9000 or 1-800-669-5858.

B. EMERGENCY ASSISTANCE

6.2 After office hours and on weekends, call 602-961-0277 and leave your message with the voice mail service. A Customer Support Product Specialist will return your call as soon as possible, usually within an hour. Please remember that this is an emergency number for critical system problems only. Sales questions, equipment orders, etc., can only be handled during normal business hours.

c. INTER-TEL SERVICES

6.3 When the system is installed with one of the Extended software packages, the customer has the option of having the Weekly Toll Limit feature enabled, as explained below. To do so, the dealer must contact Inter-Tel Services. There is an additional charge for the Weekly Toll Limit feature. Contact Inter-Tel Services at 800-669-5858 for details.

6.4 The Extended software database contains a prompt that indicates the remaining days that the weekly toll limits will be in effect. This value automatically decreases by one each day. When the “Remaining Days” value reaches 0, the Weekly Toll Limit feature is disabled and calls are no longer monitored. A system alarm indicates TOLL SECURITY FEATURE EXPIRED. To enable the feature again, Inter-Tel Services personnel must reset the “Remaining Days” value. A system modem is needed for remote access.

7. DEFECTIVE UNIT RETURN POLICY

FOR COMPLETE INFORMATION ON RETURNING EQUIPMENT, REFER TO THE CURRENT Inter-Tel Material Return Policy (document part number 835.1065). This document includes specific information on the following subjects: warranty, procedures to follow when returning equipment, equipment damaged in shipment, insurance, repair policy, and advance replacement policy.

7.1 TO RETURN A DEFECTIVE UNIT FOR REPAIR:

(1) Obtain an MRA number from Inter-Tel’s Order Processing Department. Write the MRA number and ATTN: MRA on the outside of each carton being returned. INTER-TEL DOES NOT ACCEPT EQUIPMENT IF THE MRA NUMBER IS NOT ON THE CARTON.

(2) On the repair tag, identify the unit by the equipment name, part number, and serial number. (Repair tags are available from Inter-Tel.)

(3) Describe the defect in detail and, if applicable, the circuit number related to the defect. Include applicable alarm messages and/or field service diagnostics, if possible. Document the estimated length of time the part had been in service prior to the failure. ALL EQUIPMENT RETURNED FOR REPAIR MUST BE TAGGED WITH COMPLETE DETAILED INFORMATION REGARDING THE DEFECT OR IDENTIFICATION OF THE PROBLEM.

(4) Attach the upper portion of the repair tag to the defective equipment. Retain the bottom portion for your files.

(5) Properly package the equipment for shipping (i.e., return in original package or equivalent). WARRANTY MAY BE VOIDED IF EQUIPMENT IS IMPROPERLY PACKAGED.
REPLACEMENT PARTS

CONTENTS

1. Introduction ... 7-1
2. Ordering Procedure .. 7-1
3. Replacement Parts List ... 7-1
4. Recommended Spare Parts .. 7-1

1. INTRODUCTION

1.1 This section provides the information necessary to order and stock replacement parts for the 256 System.

2. ORDERING PROCEDURE

2.1 When ordering equipment for the 256 System, provide the following information to the order processing clerk:
- Company name
- Purchase order number
- Required date of shipment
- Part number(s) of equipment ordered
- Quantity required

3. REPLACEMENT PARTS LIST

3.1 Figure 7-1 lists authorized parts available for replacement on the 256 System.

NOTE: For information on the GX and GMX station instruments, refer to appendixes A and B in the back of this manual.

4. RECOMMENDED SPARE PARTS

4.1 It is mandatory that spare parts be kept on hand to ensure the best possible customer service.

4.2 Figure 7-2 on page 7-5 lists the quantities of spare parts recommended to adequately maintain and service ten 256 Systems.

FIGURE 7-1. REPLACEMENT PARTS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMX 256 Digital Station Instruments</td>
<td></td>
</tr>
<tr>
<td>Standard Digital Keyset (or Terminal) — nondisplay</td>
<td>550.4300</td>
</tr>
<tr>
<td>Standard Digital Keyset (or Terminal) — display</td>
<td>550.4000</td>
</tr>
<tr>
<td>Executive Digital Keyset (or Terminal) — display</td>
<td>550.4100</td>
</tr>
<tr>
<td>Digital DSS/BLF Unit</td>
<td>550.4200</td>
</tr>
<tr>
<td>IMX 256 Charcoal Station Instruments — Equipped with Dynamic Microphones</td>
<td></td>
</tr>
<tr>
<td>24-Line Standard Keyset</td>
<td>660.5000</td>
</tr>
<tr>
<td>24-Line Display Keyset</td>
<td>660.5200</td>
</tr>
<tr>
<td>24-Line AIM Keyset (display only)</td>
<td>660.6100</td>
</tr>
<tr>
<td>12-Line Standard Keyset</td>
<td>660.5780</td>
</tr>
<tr>
<td>12-Line Display Keyset</td>
<td>660.5600</td>
</tr>
<tr>
<td>12-Line AIM Keyset (display only)</td>
<td>660.6300</td>
</tr>
<tr>
<td>8-Line Keyset (non-display only)</td>
<td>660.5900</td>
</tr>
<tr>
<td>8-Line AIM Keyset (display only)</td>
<td>660.6400</td>
</tr>
<tr>
<td>Enhanced Single-Line Set (ESLS)</td>
<td>660.5300</td>
</tr>
</tbody>
</table>

Page 7-1
FIGURE 7-1. REPLACEMENT PARTS (CONT’D)

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMX 256 Charcoal Station Instruments — Equipped with Electret Microphones</td>
<td></td>
</tr>
<tr>
<td>24-Line Standard Keyset</td>
<td>660.7700</td>
</tr>
<tr>
<td>24-Line Display Keyset</td>
<td>660.7600</td>
</tr>
<tr>
<td>24-Line AIM Keyset (display only)</td>
<td>660.7000</td>
</tr>
<tr>
<td>12-Line Standard Keyset</td>
<td>660.7900</td>
</tr>
<tr>
<td>12-Line Display Keyset</td>
<td>660.7800</td>
</tr>
<tr>
<td>12-Line AIM Keyset (display only)</td>
<td>660.7200</td>
</tr>
<tr>
<td>8-Line Keyset (non-display only)</td>
<td>660.7500</td>
</tr>
<tr>
<td>8-Line AIM Keyset (display only)</td>
<td>660.7400</td>
</tr>
<tr>
<td>Enhanced Single-Line Set (ESLS)</td>
<td>660.6900</td>
</tr>
<tr>
<td>Other IMX 256 Charcoal Station Instruments</td>
<td></td>
</tr>
<tr>
<td>DSS/BLF Unit</td>
<td>660.5100</td>
</tr>
<tr>
<td>IMX 256 Grey Station Instruments — Equipped with Dynamic Microphones</td>
<td></td>
</tr>
<tr>
<td>24-Line Standard Keyset</td>
<td>661.5000</td>
</tr>
<tr>
<td>24-Line Display Keyset</td>
<td>661.5200</td>
</tr>
<tr>
<td>24-Line AIM Keyset (display only)</td>
<td>661.6100</td>
</tr>
<tr>
<td>12-Line Standard Keyset</td>
<td>661.5700</td>
</tr>
<tr>
<td>12-Line Display Keyset</td>
<td>661.5600</td>
</tr>
<tr>
<td>12-Line AIM Keyset (display only)</td>
<td>661.6300</td>
</tr>
<tr>
<td>8-Line Keyset (non-display only)</td>
<td>661.5900</td>
</tr>
<tr>
<td>8-Line AIM Keyset (display only)</td>
<td>661.6400</td>
</tr>
<tr>
<td>Enhanced Single-Line Set (ESLS)</td>
<td>661.5300</td>
</tr>
<tr>
<td>IMX 256 Grey Station Instruments — Equipped with Electret Microphones</td>
<td></td>
</tr>
<tr>
<td>24-Line Standard Keyset</td>
<td>661.7700</td>
</tr>
<tr>
<td>24-Line Display Keyset</td>
<td>661.7600</td>
</tr>
<tr>
<td>24-Line ATM Keyset (display only)</td>
<td>661.7000</td>
</tr>
<tr>
<td>12-Line Standard Keyset</td>
<td>661.7900</td>
</tr>
<tr>
<td>12-Line Display Keyset</td>
<td>661.7800</td>
</tr>
<tr>
<td>12-Line AIM Keyset (display only)</td>
<td>661.7200</td>
</tr>
<tr>
<td>8-Line Keyset (non-display only)</td>
<td>661.7500</td>
</tr>
<tr>
<td>8-Line AIM Keyset (display only)</td>
<td>661.7400</td>
</tr>
<tr>
<td>Enhanced Single-Line Set (ESLS)</td>
<td>661.6900</td>
</tr>
<tr>
<td>Other IMX 256 Grey Station Instruments</td>
<td></td>
</tr>
<tr>
<td>DSS/BLF Unit</td>
<td>661.5100</td>
</tr>
<tr>
<td>GMX-416/832 Station Instruments</td>
<td></td>
</tr>
<tr>
<td>Inter-Tel/DVK 24-Line Standard Keyset</td>
<td>662.3800</td>
</tr>
<tr>
<td>Inter-Tel/DVK 24-Line Display Keyset</td>
<td>662.3400</td>
</tr>
<tr>
<td>Inter-Tel/DVK 12-Line Standard Keyset</td>
<td>662.4000</td>
</tr>
<tr>
<td>Inter-Tel/DVK 12-Line Display Keyset</td>
<td>662.3900</td>
</tr>
<tr>
<td>Inter-Tel/DVK 8-Line Standard Keyset</td>
<td>662.3500</td>
</tr>
<tr>
<td>Inter-Tel/DVK 8-Line Display Keyset</td>
<td>662.3600</td>
</tr>
<tr>
<td>Inter-Tel/DVK DSS/BLF Unit</td>
<td>662.3700</td>
</tr>
</tbody>
</table>
FIGURE 7-1. REPLACEMENT PARTS (CONT'D)

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment Cabinet and Power Supply Parts</td>
<td></td>
</tr>
<tr>
<td>Equipment Cabinet</td>
<td>440.1201</td>
</tr>
<tr>
<td>Telecom Motherboard</td>
<td>440.1002</td>
</tr>
<tr>
<td>Telecom Motherboard Power Cable</td>
<td>813.1147</td>
</tr>
<tr>
<td>Power Supply Chassis (for Version A & B modules only)</td>
<td>440.0110</td>
</tr>
<tr>
<td>Quad Module - Version A</td>
<td>440.0102</td>
</tr>
<tr>
<td>+30V Master Module - Version A</td>
<td>440.0104</td>
</tr>
<tr>
<td>+30V Slave Module - Version A</td>
<td>448.0106</td>
</tr>
<tr>
<td>-48V Module - Version A</td>
<td>440.0103</td>
</tr>
<tr>
<td>90VAC Ring Generator - Version A</td>
<td>440.0105</td>
</tr>
<tr>
<td>Quad Module - Version B</td>
<td>440.0122</td>
</tr>
<tr>
<td>+30V Master Module - Version B</td>
<td>440.0118</td>
</tr>
<tr>
<td>+30V Slave Module - Version B</td>
<td>440.0120</td>
</tr>
<tr>
<td>-48V Module - Version B</td>
<td>448.0119</td>
</tr>
<tr>
<td>90VAC Ring Generator - Version B</td>
<td>440.0121</td>
</tr>
<tr>
<td>Power Supply Chassis (for Version C modules only)</td>
<td>440.0116</td>
</tr>
<tr>
<td>Quad Module - Version C</td>
<td>448.0112</td>
</tr>
<tr>
<td>+30V Module - Version C (can be used as either a master or a slave)</td>
<td>448.0114</td>
</tr>
<tr>
<td>-48V Module - Version C</td>
<td>440.0113</td>
</tr>
<tr>
<td>90VAC Ring Generator - Version C</td>
<td>440.0115</td>
</tr>
<tr>
<td>Surge/Spike Protector</td>
<td>900.0500</td>
</tr>
<tr>
<td>Extractor Tool (for removing version B and C modules from the power supply chassis)</td>
<td>440.0123</td>
</tr>
<tr>
<td>Circuit Cards</td>
<td></td>
</tr>
<tr>
<td>RCPU Card</td>
<td>440.4013</td>
</tr>
<tr>
<td>Digital Keyset Card</td>
<td>440.2002</td>
</tr>
<tr>
<td>Keyset Card</td>
<td>440.2000</td>
</tr>
<tr>
<td>Keyset Card-D</td>
<td>440.2001</td>
</tr>
<tr>
<td>Single-Line Card (with message waiting)</td>
<td>440.2100</td>
</tr>
<tr>
<td>Inward Dialing Card</td>
<td>440.2300</td>
</tr>
<tr>
<td>Loop/Ground Start Card</td>
<td>440.2200</td>
</tr>
<tr>
<td>Loop Start Card</td>
<td>440.2210</td>
</tr>
<tr>
<td>T1 Card</td>
<td>440.3000</td>
</tr>
<tr>
<td>E&M Card</td>
<td>440.2400</td>
</tr>
<tr>
<td>IMX 256 Software</td>
<td></td>
</tr>
<tr>
<td>MF-Rated, Basic</td>
<td>827.6223</td>
</tr>
<tr>
<td>MF-Rated, Extended</td>
<td>827.6224</td>
</tr>
<tr>
<td>MF-Rated, Extended plus T1 and E&M</td>
<td>827.6226</td>
</tr>
<tr>
<td>KP-Rated, Extended plus T1 and E&M</td>
<td>827.6226</td>
</tr>
<tr>
<td>MF-Rated, Extended plus T1, E&M, and GX</td>
<td>827.6227</td>
</tr>
<tr>
<td>GMX-256 Software</td>
<td></td>
</tr>
<tr>
<td>MF-Rated, Basic</td>
<td>827.8160</td>
</tr>
<tr>
<td>MF-Rated, Extended</td>
<td>827.8161</td>
</tr>
<tr>
<td>MF-Rated, Extended plus T1 and E&M</td>
<td>827.8162</td>
</tr>
<tr>
<td>KP-Rated, Extended plus T1 and E&M</td>
<td>827.8163</td>
</tr>
</tbody>
</table>
FIGURE 7-1. REPLACEMENT PARTS (CONT’D)

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miscellaneous Equipment</td>
<td></td>
</tr>
<tr>
<td>On-Board CSU (for T1 Cards)</td>
<td>440.3004</td>
</tr>
<tr>
<td>Digital Signal Processor (DSP) Chip</td>
<td>834.2328</td>
</tr>
<tr>
<td>Digital Keyset PC Data Port Module (PCDPM)</td>
<td>550.3014</td>
</tr>
<tr>
<td>Digital Keyset Modern Data Port Module (MDPM)</td>
<td>550.3015</td>
</tr>
<tr>
<td>PCDPM-To-Keyset Interface Cable</td>
<td>813.1567</td>
</tr>
<tr>
<td>PCDPM-To-MDPM Interface Cable</td>
<td>813.1566</td>
</tr>
<tr>
<td>PCDPM-To-RS232C Interface Cable</td>
<td>813.1565</td>
</tr>
<tr>
<td>PCDPM-To-DSS Interface Cable</td>
<td>813.1595</td>
</tr>
<tr>
<td>DSS-To-DSS Interface Cable</td>
<td>813.1519</td>
</tr>
<tr>
<td>Digital Keyset LCD Kit (for nondisplay Standard Keysets)</td>
<td>828.1211</td>
</tr>
<tr>
<td>AC Transformer — 24VAC, 450mA (for PCDPMs, MDPMs, and DSS/BLF Units)</td>
<td>806.1045</td>
</tr>
<tr>
<td>DTMF Expansion Kit</td>
<td>828.1217</td>
</tr>
<tr>
<td>IMX 24/12-Line Keyset Data Port Module Kit</td>
<td>828.1094</td>
</tr>
<tr>
<td>IMX 24/12-Line Keyset LCD Kit</td>
<td>828.1072</td>
</tr>
<tr>
<td>IMX 24/12/8-Line Keyset Blank Keycap Kit (100)</td>
<td>812.1041</td>
</tr>
<tr>
<td>IMX DSS/BLF Unit Blank Keycap Kit (100)</td>
<td>812.1050</td>
</tr>
<tr>
<td>Inter-Tel/DVK Keyset Data Port Module Kit</td>
<td>828.1094</td>
</tr>
<tr>
<td>Inter-Tel/DVK 24-Line Keyset LCD Kit (Large)</td>
<td>828.1166</td>
</tr>
<tr>
<td>Inter-Tel/INK 12/8-Line Keyset LCD Kit (Small)</td>
<td>828.1165</td>
</tr>
<tr>
<td>Digital Attendant</td>
<td>828.1235</td>
</tr>
<tr>
<td>Multi-Port Voice Mail Unit (contact order processing for a list of models available)</td>
<td></td>
</tr>
<tr>
<td>Inside Track (customized call mgmt. & accounting) Package</td>
<td>828.1275</td>
</tr>
</tbody>
</table>

IMX/GMX Combination Manuals

<table>
<thead>
<tr>
<th>INSTALLATION & FIELD MAINTENANCE MANUALS</th>
<th>ATTENDANT COMPUTER CONSOLE MANUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation & Field Maintenance Manual</td>
<td>440.8074</td>
</tr>
<tr>
<td>Attendant Computer Console Manual</td>
<td>440.8076</td>
</tr>
</tbody>
</table>

IMX 256 User Documentation

<table>
<thead>
<tr>
<th>USER DOCUMENTATION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner’s Guide</td>
<td>440.8044</td>
</tr>
<tr>
<td>Keyset User Guide</td>
<td>440.8052</td>
</tr>
<tr>
<td>Single-Line Set User Guide</td>
<td>440.8053</td>
</tr>
<tr>
<td>Keyset Quick Reference Guide</td>
<td>440.8048</td>
</tr>
<tr>
<td>ELSL Quick Reference Guide</td>
<td>440.8049</td>
</tr>
<tr>
<td>SLI Quick Reference Guide</td>
<td>440.8050</td>
</tr>
<tr>
<td>DSS/BLF Quick Reference Guide</td>
<td>440.8051</td>
</tr>
<tr>
<td>Attendant Computer Console Owner’s Guide</td>
<td>440.8055</td>
</tr>
<tr>
<td>Attendant Computer Console Quick Reference Guide</td>
<td>440.8056</td>
</tr>
</tbody>
</table>

GMX-256 User Documentation

<table>
<thead>
<tr>
<th>USER DOCUMENTATION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner’s Guide</td>
<td>440.8033</td>
</tr>
<tr>
<td>Keyset User Guide</td>
<td>440.8034</td>
</tr>
<tr>
<td>Keyset Quick Reference Guide</td>
<td>440.8036</td>
</tr>
<tr>
<td>SLI Quick Reference Guide</td>
<td>440.8038</td>
</tr>
<tr>
<td>DSS/BLF Unit Quick Reference Guide</td>
<td>440.8039</td>
</tr>
<tr>
<td>Attendant Computer Console Owner’s Guide</td>
<td>440.8041</td>
</tr>
<tr>
<td>Attendant Computer Console Quick Reference Guide</td>
<td>440.8042</td>
</tr>
</tbody>
</table>
FIGURE 7-2. RECOMMENDED SPARE PARTS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>QUANTITY</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCPU Card</td>
<td>2</td>
<td>440.4013</td>
</tr>
<tr>
<td>Digital Keyset Card</td>
<td>2</td>
<td>440.2002</td>
</tr>
<tr>
<td>Keyset Card</td>
<td>1-2*</td>
<td>440.2000</td>
</tr>
<tr>
<td>Keyset Card-D</td>
<td>1-2*</td>
<td>440.2001</td>
</tr>
<tr>
<td>Single-Line Card</td>
<td>2</td>
<td>440.2100</td>
</tr>
<tr>
<td>Inward Dialing Card</td>
<td>2</td>
<td>440.2300</td>
</tr>
<tr>
<td>Loop/Ground Start Card</td>
<td>1-2*</td>
<td>440.2200</td>
</tr>
<tr>
<td>Loop Start Card</td>
<td>1-2*</td>
<td>440.2210</td>
</tr>
<tr>
<td>T1 Card</td>
<td>2</td>
<td>440.3000</td>
</tr>
<tr>
<td>E&M Card</td>
<td>1</td>
<td>440.2408</td>
</tr>
<tr>
<td>Quad Module - Version A</td>
<td>1-2*</td>
<td>440.0102</td>
</tr>
<tr>
<td>+30V Master Module - Version A</td>
<td>1-2*</td>
<td>440.0104</td>
</tr>
<tr>
<td>+30V Slave Module - Version A</td>
<td>1*</td>
<td>440.0106</td>
</tr>
<tr>
<td>-48V Module - Version A</td>
<td>1*</td>
<td>440.0103</td>
</tr>
<tr>
<td>90VAC King Generator - Version A</td>
<td>1*</td>
<td>440.0105</td>
</tr>
<tr>
<td>Quad Module - Version B</td>
<td>1-2*</td>
<td>440.0112</td>
</tr>
<tr>
<td>+30V Master Module - Version B</td>
<td>1-2*</td>
<td>440.0118</td>
</tr>
<tr>
<td>+30V Slave Module - Version B</td>
<td>1*</td>
<td>440.0120</td>
</tr>
<tr>
<td>-48V Module - Version B</td>
<td>1*</td>
<td>440.0119</td>
</tr>
<tr>
<td>90VAC King Generator - Version B</td>
<td>1*</td>
<td>440.0121</td>
</tr>
<tr>
<td>Quad Module - Version C</td>
<td>1-2*</td>
<td>440.0112</td>
</tr>
<tr>
<td>+30V Module - Version C (used as master or slave)</td>
<td>1-2*</td>
<td>440.0114</td>
</tr>
<tr>
<td>-48V Module - Version C</td>
<td>1*</td>
<td>440.0113</td>
</tr>
<tr>
<td>90VAC King Generator - Version C</td>
<td>1*</td>
<td>440.0115</td>
</tr>
<tr>
<td>Surge/Spike Protector</td>
<td>1</td>
<td>828.1169</td>
</tr>
<tr>
<td>Digital Signal Processor (DSP) Chip</td>
<td>5</td>
<td>834.2328</td>
</tr>
<tr>
<td>Standard Digital Keyset (or Terminal)</td>
<td>5-10**</td>
<td>550.4100</td>
</tr>
<tr>
<td>Executive Digital Keyset (or Terminal)</td>
<td>5-10**</td>
<td>550.4100</td>
</tr>
<tr>
<td>Digital DSS/BLF Unit</td>
<td>2**</td>
<td>550.4200</td>
</tr>
<tr>
<td>Digital Keyset PC Data Port Module</td>
<td>2</td>
<td>550.3014</td>
</tr>
<tr>
<td>Digital Keyset Modern Data Port Module</td>
<td>2</td>
<td>550.3015</td>
</tr>
<tr>
<td>Digital Keyset LCD Kit (for non-display Standard Keysets)</td>
<td>5</td>
<td>828.1211</td>
</tr>
<tr>
<td>AC Transformer (for PCDPMs, MDPMs, & DSS/BLF Units)</td>
<td>3</td>
<td>806.1045</td>
</tr>
<tr>
<td>IMX 24-Line Standard Keyset</td>
<td>1-10**</td>
<td>see pp. 7-1 & 7-2</td>
</tr>
<tr>
<td>IMX 24-Line AIM Keyset</td>
<td>1-10**</td>
<td></td>
</tr>
<tr>
<td>IMX 12-Line Standard Keyset</td>
<td>1-10**</td>
<td></td>
</tr>
<tr>
<td>IMX 12-Line AIM Keyset</td>
<td>1-10**</td>
<td></td>
</tr>
<tr>
<td>IMX 8-Line Keyset</td>
<td>1-10**</td>
<td></td>
</tr>
<tr>
<td>IMX 8-Line AIM Keyset</td>
<td>1-10**</td>
<td></td>
</tr>
<tr>
<td>IMX 24/12-Line Keyset LCD Kit</td>
<td>5</td>
<td>828.1072</td>
</tr>
<tr>
<td>IMX DSS/BLF Unit</td>
<td>1**</td>
<td></td>
</tr>
<tr>
<td>Enhanced Single-Line Set (ESLS)</td>
<td>1-4**</td>
<td></td>
</tr>
<tr>
<td>Inter-Tel/DVK 24-Line Standard Keyset</td>
<td>1-10*</td>
<td>6623880</td>
</tr>
<tr>
<td>Inter-Tel/DVK 12-Line Standard Keyset</td>
<td>1-10*</td>
<td>662.4000</td>
</tr>
<tr>
<td>Inter-Tel/DVK 8-Line Standard Keyset</td>
<td>1-10*</td>
<td>662.3500</td>
</tr>
<tr>
<td>Inter-Tel/DVK 8-Line Dual-Circuit Standard Keyset</td>
<td>1-10*</td>
<td>662.4500</td>
</tr>
<tr>
<td>Inter-Tel/DVK DSS/BLF Unit</td>
<td>1*</td>
<td>6623700</td>
</tr>
<tr>
<td>Inter-Tel/DVK Keyset LCD Kit (Large)</td>
<td>5</td>
<td>828.1166</td>
</tr>
<tr>
<td>Inter-Tel/DVK Keyset LCD Kit (Small)</td>
<td>5</td>
<td>828.1165</td>
</tr>
</tbody>
</table>

* Quantities should be based on the types and versions of equipment that the majority of customers are using.

** Quantities should be based on the types and colors of station instruments that the majority of customers are using.
APPENDIX A — GX STATION INSTRUMENTS

CONTENTS

1. Overview .. A - 1
2. Specifications ... A - 1
 A. Keysets .. A - 1
 B. Direct Station Selection/Busy Lamp Field (DSS/BLF) Units A - 2
 C. Single-Line Instruments (SLIs) A - 2
3. Installation ... A-4
 A. Keyset Installation ... A-4
 B. DSS/BLF Unit Installation A-8
 C. SLI Installation .. A-8
4. Features ... A-10
5. Programming .. A-10

1. OVERVIEW

Except for the differences noted in this appendix, the Inter-Tel GX station instruments install and operate the same as those previously outlined in this manual.

1.1 The Inter-Tel GX station instruments may be used on any GMX-256 System.

1.2 To use the GX station instruments on the IMX 256 System, there is a special software package called Extended plus TI, E&M, and GX (part no. 827.8163).

1.3 GX station instruments include:
 • 24-Line Standard Keysets — part no. 690.3700
 • 24-Line Display Keysets — part no. 690.3800
 • Direct Station Selection/Busy Lamp Field (DSS/BLF) Units (may be single or tandem units) - part no. 6903100
 • Single-Line Instruments (SLIs) - part no. 690.3300

2. SPECIFICATIONS

A. KEYSETS

2.1 For a drawing of the GX 24-line keyset, refer to Figure A-1 on page A-3. The keyset dimensions are:
 Height 3.5 in. (8.9 cm.)
 Width 8.8 in. (22.3 cm.)
 Length 9.0 in. (22.9 cm.)
 Weight 2.8 lb. (1.3 kg.)

2.2 Since GX keysets do not have secondary voice path circuitry, they cannot be equipped with Data Port Modules and they cannot receive off-hook voice announce (OHVA) calls. GX keysets can place OHVA calls (see page A-10 for more information).

Optional Liquid Crystal Display (LCD) Unit

2.3 If desired, standard GX keysets can be converted to display keysets by installing an LCD Unit (part no. 828.1052). The messages shown on the display help the user to process calls more efficiently and professionally.

Optional Loud Ringing Adapter (LRA)

2.4 GX keysets can have optional LRAs installed (part no. 828.1051); contact Inter-Tel Customer Support for details. The LRA provides dry contacts used in controlling an external signaling device. The dry contacts follow the ring cycle of the piezoelectric ringer of the keyset. The LRA is not affected by the ring pitch DIP switches on the bottom of the keyset or the ringer volume control. The LRA contact ratings are as follows:

LRA CONTACT RATINGS

<table>
<thead>
<tr>
<th>Current</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>500mA (DC)</td>
<td>maximum</td>
</tr>
<tr>
<td>100mA (AC)</td>
<td>maximum</td>
</tr>
<tr>
<td>30VDC maximum</td>
<td></td>
</tr>
<tr>
<td>110VAC maximum</td>
<td></td>
</tr>
</tbody>
</table>
NOTE: Do not connect an external signaling device directly to the keyset without using an LRA.

Optional Speakerphone Module or External Desk Speaker

2.5 GX keysets have a built-in speaker and microphone that allow the user to answer intercom calls "handsfree," dial while on hook, monitor calls, and listen to background music. For handsfree conversation on outside calls, GX keysets can be equipped with optional Speakerphone Modules (part no. 828.1077) or external 8-ohm desk speakers.

2.6 If the Speakerphone Module is installed, complete information and installation instructions are included with the kit.

2.7 If an external desk speaker is installed, the speaker is connected to the keyset by a mod-to-mod line cord and is turned on and off using the SPKR key. A strap on the bottom of the keyset must also be set to enable the handsfree microphone for outside calls.

Changing Ring Pitch

2.8 The pitch of the ring signals can be changed by the user to create distinctive ringing. If stations are placed close together, changing the pitch makes each station’s ring easier to recognize. The pitch is changed by setting DIP switches on the bottom of the keyset (refer to page A-4).

B. DIRECT STATION SELECTION/BUSY LAMP FIELD (DSS/BLF) UNITS

2.9 GX DSS/BLF Units can be single units or tandem units (two units connected together to form one large unit). Single units provide one-key access to 60 extension numbers; tandem units provide access to 120 extension numbers.

2.10 GX DSS/BLF Unit dimensions are:

- Height 3.5 in. (8.9 cm.)
- Width 8.8 in. (22.3 cm.)
- Length 9.0 in. (22.9 cm.)
- Weight 2.0 lb. (0.9 kg.)

C. SINGLELINE INSTRUMENTS (SLIs)

2.11 GX Single-Line Instruments (SLIs) are identical in design and function to the SLIs described in the main part of the manual.
FIGURE A-1. GX 24-LINE KEYSET

NOTE: The keys are shown as they appear in the default key map configuration.
3. INSTALLATION

3.1 The installation instructions in this appendix contain information that differs from or is not covered in the rest of the manual. For complete installation information, use this appendix in conjunction with the INSTALLATION section of the manual.

3.2 When performing the loop resistance test (see page 3-29), use the following loop limit values for GX station instruments:

GX 24-Line Keysets (standard or display)	80 ohms/1550 ft. (472 m.)
GX 24-Line Keysets with Speakerphone Modules	65 ohms/1260 ft. (384 m.)
GX DSS/BLF Units (single or tandem)	80 ohms/1550 ft. (472 m.)
GX SLIs (AC or DC)	800 ohms/15560 ft. (4742 m.)

3.3 Be sure to install the PAL Chip on the RCPU Card (see page 3-44). This component determines the particular software package that will be used by the system. Also, to fully enable the GX version software, perform the programming procedure described in paragraph 5.1 on page A-10.

A. KEYSET INSTALLATION

3.4 Before performing the installation instructions outlined in this section, refer to the information beginning on page 3-71.

Keyset Set-Up

3.5 The GX keyset has speakerphone control straps, ring pitch selection DIP switches, and a microphone gain adjustment thumbwheel — all located on the bottom of the keyset. To ensure that these items are set for proper operation, follow these steps:

1. With the baseplate removed, check that the straps on the keyset bottom are connected as shown in Figure A-2 on the next page. The keyset will not operate properly if the straps are not positioned as shown.

2. If desired, change the pitch of the keyset's ring signal by setting the DIP switches on the keyset bottom. (Volume level may change with pitch.) The possible settings are shown in the following chart (0 = open, CL = closed).

<table>
<thead>
<tr>
<th>SWITCH POSITION</th>
<th>RING PITCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ring Pitch</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>CL</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>CL</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>CL</td>
<td>0</td>
</tr>
<tr>
<td>Low</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>Off</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

NOTE: Combine two settings (close two or more switches) for additional pitch settings, if desired. It is easiest to select the ring pitch after the keyset is installed and while the keyset is ringing.

3. Test the keyset internal speaker and handsfree microphone by receiving a handsfree intercom call. If problems such as feedback, hollow sound, or weak transmission develop, use the following methods to correct them.

a. If feedback occurs:

1. Lower the keyset speaker volume by turning the thumbwheel control on the right side of the keyset.

2. Locate the microphone gain adjustment thumbwheel next to the DIP switches on the bottom of the keyset. Begin making adjustments with the arrow on the side of the thumbwheel pointing away from the keyset or slightly toward the top of the keyset. With the handset side of the keyset facing you, decrease the microphone gain by turning the thumbwheel counterclockwise.

b. If the other party hears hollow sound: Decrease the microphone gain by turning the thumbwheel (described above) counterclockwise.

c. If the other party cannot hear the conversation: Increase the microphone gain slightly by turning the thumbwheel (described above) clockwise.

4. Replace the baseplate.

Page A-4
FIGURE A-2. GX KEYSET BOTTOM

NOTE: There are two possible types of strap arrangements. Depending on the pin configuration of the keyset, use one of the strap settings shown above.
Liquid Crystal Display (LCD) Installation

3.6 To convert a standard GX keyset to a display keyset, install an LCD Kit (Part no. 828.1052) as follows:

1. Unpack the LCD Kit. There should be a clear plastic display window, an LCD unit, a ribbon cable, and two small Phillips-head screws.

2. Remove the keyset baseplate by pressing on the top edge of the baseplate to release the tab and by pulling the plate off.

3. Remove the line cord and handset cord from the keyset. Then loosen the four screws on the bottom of the keyset (enough so that the keyset can be opened).

4. Carefully open the keyset to expose the back of the keyboard that has the LCD connector. (Refer to Figure 3-43 on page 3-72.)

5. Remove the cover from the display opening in the top housing of the keyset by releasing the tabs from the inside of the housing and pushing out the cover.

6. From the front of the keyset, insert one end of the clear plastic window in the display opening, with the painted side of the brown edging facing the inside of the keyset. Then slightly bend the window, insert the other end into the opening, and ease the window into place.

7. Remove the covering from the LCD and install as follows:
 a. Insert one end of the ribbon cable into the black connector on the LCD unit. Ensure that the metal strips on the ribbon cable make contact with the metal tabs in the black connector.
 b. With the LCD facing up, insert the other end of the ribbon cable into the black connector on the back of the keyboard.
 c. Position the LCD on the plastic window so that the screw holes in the LCD unit and in the keyset housing are aligned. Install the screws to hold the LCD in place.

8. Reassemble the keyset.

9. If there is a potentiometer located underneath the extension numberplate on the face of the keyset, the LCD contrast can be adjusted. Turn the potentiometer to lighten or darken the display.

Keyset Self-Test

3.7 To perform the GX keyset self-test, follow these instructions:

1. While pressing the asterisk (*) and pound (#) keys, unplug and replace the keyset line cord.

2. Release the keys. The keyset rings momentarily. (Display keysets show KTS SELF TEST HOOK-SWITCH.)

3. Lift and replace the handset to test the hook-switch. The LED-equipped keys light and the keyset rings momentarily. (Display keysets show KTS SELF TEST LED MATRIX.) If any of the LEDs do not light, return the keyset for repair.

4. Lift and replace the handset. The keyset rings momentarily and all of the LEDs go out. (Display keysets show KTS SELF TEST KEY MATRIX.)

5. Press keys in the following order. A progress tone is heard and the keyset rings momentarily if the key is functioning properly. If the signals are not heard, the key was either pressed out of order or is faulty. Return the keyset for repair if any key is faulty.
 b. Feature keys in this order: HOLD, XFR, CNF, LCR, AUTO, DATA (POOL), REDL, SYS SPD, QUE, PAGE, SPKR, IC, MUTE, FWD, DND, MSG, BGND MUSIC, and SPCL.
 c. Keypad keys in the following order: 1-9, *, 0, and #.
 d. Speed dial keys in this order: 1, 6, 2, 7, 3, 8, 4, 9, 5, and 0.

6. After all the keys have been tested, it takes about ten seconds for the keyset to return to normal operation. (Display keysets show KTS SELF TEST COMPLETED! for about five seconds. Then the keyset's identification displays for about five seconds.)

7. Replace the keyset if faulty.
External Desk Speaker Installation

3.8 To attach an external 8-ohm desk speaker to a GX keyset for handsfree operation on outside calls, perform these steps:

1. Remove the baseplate and disconnect the keyset line cord.

2. Remove the modular shorting plug from the SPKR jack on the base of the keyset.

3. Connect the modular plug on the end of the external speaker cord to the SPKR jack on the base of the keyset.

4. Move the speakerphone enable strap to the pins labeled P as shown in the diagram at the right.

 NOTE: There are two possible types of strap arrangements. Depending on the pin configuration of the keyset, use one of the strap settings shown above.

5. Replace the baseplate and reconnect the keyset line cord.

6. Test the speaker as described in step 3 of paragraph 3.5 on page A-4.
B. **DSS/BLF UNIT INSTALLATION**

3.10 Before performing the installation instructions outlined in this section, refer to the information beginning on page 3-92.

Tandem DSS/BLF Units

To connect two GX DSS/BLF Units together to create one tandem unit, perform these steps:

1. With the baseplate removed, locate the four DIP switches on the bottom of each unit (see Figure A-3 on the next page).
 - **NOTE:** Most DSS/BLF Units have a cutout in the bottom cover so that the DIP switches can be reached without having to take the unit apart. With other units, the four screws on the bottom must be removed and the bottom cover must be opened.
 - If the unit will be using the key map for Part 1 (see paragraph 5.4 on page A-10), set DIP switch 2 to the **DSS1** (open) position. If the unit will be using the key map for Part 2, set DIP switch 2 to the **DSS2** (closed) position.
 - **NOTE:** Tandem units should have one unit set for **DSS1** and one unit set for **DSS2**. If tandem units have the same DIP switch settings, there will be erroneous indications on the DSS/BLF Units and keyset, and there may be errors throughout the system.

2. If the unit will be using the key map for Part 1 (see paragraph 5.4 on page A-10), set DIP switch 2 to the **DSS1** (open) position. **If the unit will be using the key map for Part 2,** set DIP switch 2 to the **DSS2** (closed) position.
 - **NOTE:** Tandem units should have one unit set for **DSS1** and one unit set for **DSS2**. If tandem units have the same DIP switch settings, there will be erroneous indications on the DSS/BLF Units and keyset, and there may be errors throughout the system.

3. Reassemble the DSS/BLF Units.

4. Insert one end of the two-foot cord into the DSS jack on the base of DSS/BLF Unit 1.

5. Insert the other end of the two-foot cord into the KSU jack on the base of DSS/BLF Unit 2. (The DSS jack on DSS/BLF Unit 2 will not be used.)

6. Insert one end of the seven-foot line cord into the KSU jack on the base of DSS/BLF Unit 1.

7. Insert the other end of the seven-foot line cord into the wall-mounted modular jack assembly.

DSS/BLF Unit Self-Test

3.11 To perform the GX DSS/BLF Unit self-test, follow these instructions:

1. With the baseplate removed, locate the four DIP switches on the bottom of the unit (see Figure A-3 on the next page).
 - **NOTE:** Most DSS/BLF Units have a cutout in the bottom cover so that the DIP switches can be reached without having to take the unit apart. With other units, the four screws on the bottom must be removed and the bottom cover must be opened.

2. Set DIP switch 1 to the TEST (closed) position. (If the bottom cover was previously opened, reassemble the unit without replacing the screws.)

3. Plug one end of the line cord into the modular jack assembly and plug the other end into the KSU jack on the bottom of the DSS/BLF Unit. The system automatically tests the unit's processor.
 - **NOTE:** If the test fails, you will not be able to continue to the next step; the unit will ignore all input. Remove and replace the line cord. If the test fails again, replace the DSS/BLF Unit.

4. Test the keys by pressing them one at a time, starting with the key in the upper-left corner and continuing from the top to the bottom of each column. As each key is pressed, the LED lights and remains lit. If an LED does not light, either the key was pressed out of order, the key is faulty, or the LED is faulty; the DSS/BLF Unit must be replaced.

5. Return DIP switch 1 to the RUN (open) position.
 - **NOTE:** DIP switches 3 and 4 are not used.

6. Reassemble the DSS/BLF Unit.

7. To test the second unit (if used), unplug the first unit and repeat this test procedure for the second unit.

C. **SLI INSTALLATION**

3.12 The GX SLI installs and operates the same as the SLI described in the main part of the manual. Refer to the information beginning on page 3-95.
FIGURE A-3. GX DSS/BLF UNIT BOTTOM

NOTE: On most DSS/BLF Units, the DIP switches can be reached through the cutout in the bottom cover (as shown above). With other units, the four screws on the bottom must be removed and the bottom cover must be opened to access the switches.
4. FEATURES

4.1 GX keysets and SLIs have feature keys that allow one-key dialing of feature codes. Information is programmed in the database to determine the arrangement of the feature keys and their default values. If desired, some of the keyset feature keys can be designated as user-programmable keys. All SLI feature keys are user-programmable.

4.2 Although their function is the same, some of the feature keys on the GX keysets have labels that are different than those described on page 4-46. For example, the LCR key on GX keysets is the same as the OUTGOING key on the other keysets. Likewise, the AUTO key on GX keysets is the same as the ANSWER key on the other keysets.

4.3 The POOL key on GX keysets actually defaults to “data” when the system is in the default configuration. However, since GX keysets cannot have Data Port Modules installed, the key is non-functional. If desired, the key can be reprogrammed in the database or by the user to access another feature code.

4.4 If the off-hook voice announce (OHVA) feature is enabled system-wide, each GX keyset can be allowed or disallowed from placing OHVA calls. However, since GX keysets do not have secondary voice path circuitry, they cannot receive off-hook voice announce (OHVA) calls.

4.5 Each SLI can be programmed for placing OHVA calls, as desired. (SLIs cannot receive OHVA calls since they do not have secondary voice path circuitry.)

5. PROGRAMMING

5.1 To fully enable the GX version software on an IMX 256 System, access the Key Assignments window (see page 5-44) and then press the CTRL, SHIFT, and G keys all at the same time. The words “GX 24-Line Keyset” should appear in the Keyset Map View Type box. Then exit and perform the update.

5.2 The database contains up to 20 keys maps of default values for the database-programmable feature keys. Each GX keyset can be assigned to one of the key maps using either the Station Programmable Key Programming window (see page 5-35) or the Key Assignments window (see page 544).

5.3 To help determine the layout of the keys on GX keysets, a program planning sheet is provided in Figure A-4 on the following page. (Also refer to the program planning sheets beginning on page 5-177.)

5.4 The key maps and key values for GX DSS/BLF Units are assigned using the procedures similar to those outlined in the manual (refer to pages 5-47 and 5-180). For single units, select only the “1st Half” command button to program Part 1 of the key map. For tandem units, also select the “2nd Half” command button to program Part 2 of the key map.

5.5 The key maps and key values for GX SLIs are assigned using the same procedures as those outlined for the SLI described in the main part of the manual (refer to pages 5-48 and 5-181).
FIGURE A-4. KEY ASSIGNMENTS (KEY)

TO USE: This page shows the key numbering scheme and the default values of the keys on the GX 24-line keyset. Copy the diagram, identify the key maps, and change the names of the appropriate keys to reflect their assignments in each keymap.

KEYSET KEY MAP NUMBER: __________ **DESCRIPTION:** __________________________

STATIONS: __________________________

GMX 24-LINE KEYSET

```
CALL 1  CALL 2  CALL 3  CALL 4

HOLD  XFR  CNF  LCR  AUTO  REDL  SYS  SPD

QUE  PAGE  1  ABC  2  DEF  3  SD1  SD6

SPKR  IC  GHI  JKL  MNO  SD2  SD7

MUTE  FWD  PRS  TUV  WXY  SD3  SD8

DND  MSG  *  OPER  0  #  SD4  SD9

BGND  MUSIC  SPCL

SD5  SD0
```
1. OVERVIEW

Except for the differences noted in this appendix, the Inter-Tel GMX station instruments install and operate the same as those previously outlined in this manual.

1.1 The Inter-Tel GMX station instruments may be used on any GMK-256 System. They cannot be installed on IMX 256 Systems.

1.2 GMX station instruments include:

- 24-Line Standard Keysets - part no. 662.3000
- 24-Line Display Keysets - part no. 662.3100
- 12-Line Keysets (nondisplay only) - part no. 662.3200
- Direct Station Selection/Busy Lamp Field (DSS/BLF) Units (single only) - part no. 662.3300
- Single-Line Instruments (SLIs) - part no. 662.4100

2. SPECIFICATIONS

A. KEYSETS

2.1 For drawings of the GMX 24-line and 12-line keysets, refer to Figures B-1 and B-2 on pages B-3 and B-4. The keyset dimensions are:

<table>
<thead>
<tr>
<th>GMX 24-LINE KTS</th>
<th>GMX 12-LINE KTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height 3.5 in. (8.9 cm.)</td>
<td>Height 3.5 in. (8.9 cm.)</td>
</tr>
<tr>
<td>Width 8.8 in. (22.3 cm.)</td>
<td>Width 7.5 in. (19.1 cm.)</td>
</tr>
<tr>
<td>Length 9.0 in. (22.9 cm.)</td>
<td>Length 9.0 in. (22.9 cm.)</td>
</tr>
<tr>
<td>Weight 2.8 lb. (1.3 kg.)</td>
<td>Weight 25 lb. (1.1 kg.)</td>
</tr>
</tbody>
</table>

2.2 Since GMX 12-line keysets do not have secondary voice path circuitry, they cannot be equipped with Data Port Modules and they cannot receive off-hook voice announce (OHVA) calls. GMX 12-line keysets can place OHVA calls (see page B-10 for more information).

Optional Liquid Crystal Display (LCD) Unit

2.3 If desired, standard GMX 24-line keysets can be converted to display keysets by installing an LCD Unit (part no. 828.1052). The messages shown on the display help the user to process calls more efficiently and professionally. (GMX 12-line keysets cannot be equipped with LCDs.)

Optional Data Port Module

2.4 GMX 24-line keysets may be equipped with optional Data Port Modules (part number 828.1094). The module board contains a four-conductor, RJ11 modular jack that can be used to connect either a data device (such as a personal computer equipped with a modem) or a loud ringing adapter (LRA) and an external signaling device (such as a loud bell, horn, flashing light, etc.) to the keyset. GMX 12-line keysets cannot be equipped with Data Port Modules.
B. DIRECT STATION SELECTION/BUSY LAMP FIELD (DSS/BLF) UNITS

2.5 GMX DSS/BLF Units are single units only; they cannot be connected together to form tandem units. Each unit provides one-key access to 60 extension numbers.

2.6 GMX DSS/BLF Unit dimensions are:

- Height 3.5 in. (8.9 cm.)
- Width 8.8 in. (22.3 cm.)
- Length 9.0 in. (22.9 cm.)
- Weight 2.0 lb. (0.9 kg.)

C. SINGLE-LINE INSTRUMENTS (SLIs)

2.7 GMX Single-Line Instruments (SLIs) are identical in design and function to the SLIs described in the main part of the manual.
NOTE: The keys are shown as they appear in the default key map configuration.
FIGURE B-2. GMX 12-LINE KEYSET

NOTE: The keys are shown as they appear in the default key map configuration.
3. INSTALLATION

3.1 The installation instructions in this appendix contain information that differs from or is not covered in the rest of the manual. For complete installation information, use this appendix in conjunction with the INSTALLATION section of the manual.

3.2 When performing the loop resistance test (see page 3-29), use the following loop limit values for GMX station instruments:

GMX 24-Line Keysets (standard or display)	65 ohms/1260 ft. (384 m.)
GMX 24-Line Keysets with Data Port Modules	50 ohms/970 ft. (295 m.)
GMX 12-Line Keysets	65 ohms/1260 ft. (384 m.)
GMX DSS/BLF units	65 ohms/1260 ft. (384 m.)

A. KEYSET INSTALLATION

3.3 Before performing the installation instructions outlined in this section, refer to the information beginning on page 3-71.

Liquid Crystal Display (LCD) Installation

3.4 To convert a standard GMX keyset to a display keyset, install an LCD Kit (part no. 828.1052) as follows:

1. Unpack the LCD Kit. There should be a clear plastic display window, an LCD unit, a ribbon cable, and two small Phillips-head screws.
2. Remove the keyset baseplate by pressing on the top edge of the baseplate to release the tab and by pulling the plate off.
3. Remove the line cord and handset cord from the keyset. Then loosen the four screws on the bottom of the keyset (enough so that the keyset can be opened).
4. Carefully open the keyset to expose the back of the keyboard that has the LCD connector. (Refer to Figure 343 on page 3-72.)
5. Remove the cover from the display opening in the top housing of the keyset by releasing the tabs from the inside of the housing and pushing out the cover.
6. From the front of the keyset, insert one end of the clear plastic window in the display opening, with the painted side of the dark edging facing the inside of the keyset. Then slightly bend the window, insert the other end into the opening, and ease the window into place.
7. Remove the covering from the LCD and install as follows:
 a. Insert one end of the ribbon cable into the black connector on the LCD unit. Ensure that the metal strips on the ribbon cable make contact with the metal tabs in the black connector.
 b. With the LCD facing up, insert the other end of the ribbon cable into the black connector on the back of the keyboard.
 c. Position the LCD on the plastic window so that the screw holes in the LCD unit and in the keyset housing are aligned. Install the screws to hold the LCD in place.
8. Reassemble the keyset.
9. If there is a potentiometer located underneath the extension number-plate on the face of the keyset, the LCD contrast can be adjusted. Turn the potentiometer to lighten or darken the display.

Keyset Self-Test

3.5 To perform the GMX keyset self-test, follow these instructions:

1. While pressing the asterisk (*) and pound (#) keys, unplug and replace the keyset line cord.
2. Release the keys. The keyset rings momentarily. (Display keysets show ICT'S SELF TEST HOOK-SWITCH.)
3. Lift and replace the handset to test the hook-switch. The LED-equipped keys light and the keyset rings momentarily. (Display keysets show K1'S SELF TEST LED MATRIX) If any of the LEDs do not light, return the keyset for repair.
4. Lift and replace the handset. The keyset rings momentarily and all of the LEDs go out. (Display keysets show KTS SELF TEST KEY MATRIX.)
5. Press keys in the following order. A progress tone is heard and the keyset rings momentarily if the key is functioning properly. If the signals are not heard, the key was either pressed out of order or is faulty. Return the keyset for repair if any key is faulty.

24-Line Keysets:

b. Feature keys in this order: HOLD, XFR, CNF, OUT (LCR), ANS (AUTO), DATA, REDL, SYS SPD, QUE, PAGE, SPKR, IC, MUTE, FWD, DND, MSG, BGN MUSIC, and SPCL.

c. Keypad keys in the following order: 1-9, *, 0, and #.

d. Speed-dial keys in this order: 1, 6, 2, 7, 3, 8, 4, 9, 5, and 0.

12-Line Keysets:

b. The call keys and station programmable keys in order: 1-12.

c. Feature keys in this order: CNF, SPKR, IC, OVER, HOLD, and XFR.

d. Keypad keys in the following order: 1-9, *, 0, and #.

e. Feature keys in this order: FWD, DND, MSG, and SPCL.

After all the keys have been tested, it takes about ten seconds for the keyset to return to normal operation. (Display keysets show KTS SELF TEST COMPLETED! for about five seconds. Then the keyset's identification displays for about five seconds.)

Replace the keyset if faulty.

Optional Data Port Module

3.6 GMX 24-line keysets may be equipped with optional Data Port Modules (refer to REPLACEMENT PARTS for the part number). The Data Port Module contains a four-conductor modular jack that can be used to connect either a data device (such as a personal computer with a direct-connect modem) or an LRA and an external signaling device (such as a loud bell, horn, flashing light, etc.) to the keyset.

3.7 Install the Data Port Module as outlined below. For a diagram, see Figure B-3 on page B-7.

1. Remove the keyset baseplate.

2. Unplug the line cord from its modular jack.

3. Remove the 10-pin shorting plug located on the keyset control board.

4. Save the shorting plug by taping it to the bottom cover of the keyset or to the inside of the baseplate. The plug must be replaced if the Data Port Module is later removed.

5. Align the Data Port Module over the appropriate screw holes (see Figure B-3) on the back cover of the keyset and insert the screws (do not over tighten).

6. Plug the Data Port Module cable into the pins on the keyset control board (where the shorting plug was previously located). Make sure the cable connector is securely seated.

7. Place jumper straps SP1, SP2, SP3, and SP4 on the Data Port Module in the appropriate positions. Depending on how the Data Port Module will be used, refer to one of the two possible settings outlined in Figure B-3.

8. If connecting a modem-equipped data device, refer to paragraphs 7.23 through 7.25 on page 3-78.

If connecting a loud ringing adapter and an external signaling device, refer to paragraphs 7.26 through 7.28 on page 3-80.
FIGURE B-3. GMX 24-LINE KEYSET DATA PORT MODULE INSTALLATION
B. **DSS/BLF UNIT INSTALLATION**

3.8 Before performing the installation instructions outlined in this section, refer to the information beginning on page 3-92.

DSS/BLF Unit Self-Test

3.9 To perform the GMX **DSS/BLF** Unit self-test, follow these instructions:

1. Remove the baseplate and locate the four DIP switches on the bottom of the unit (see Figure B-4 on the next page).

 NOTE: Most **DSS/BLF** Units have a cutout in the bottom cover so that the DIP switches can be reached without having to take the unit apart. With other units, the four screws on the bottom must be removed and the bottom cover must be opened.

2. Set DIP switch 1 to the **TEST** (closed) position. (If the bottom cover was previously opened, reassemble the unit without replacing the screws.)

3. Plug one end of the line cord into the modular jack assembly and plug the other end into the KSU jack on the bottom of the **DSS/BLF** Unit. The system automatically tests the unit’s processor.

 NOTE: If the test fails, you will not be able to continue to the next step; the unit will ignore all input. Remove and replace the line cord. If the test fails again, replace the **DSS/BLF** Unit.

4. Test the keys by pressing them one at a time, starting with the key in the upper-left corner and continuing from the top to the bottom of each column. As each key is pressed, the LED lights and remains lit. If an LED does not light, either the key was pressed out of order, the key is faulty, or the LED is faulty; the **DSS/BLF** Unit must be replaced.

5. Return DIP switch 1 to the **RUN** (open) position. **NOTE:** DIP switches 2-4 are not used.

6. Reassemble the **DSS/BLF** Unit.

C. **SLI INSTALLATION**

3.10 The GMX **SLI** installs and operates the same as the **SLI** described in the main part of the manual. Refer to the information beginning on page 3-95.
FIGURE B-4. GMX DSS/BLF UNIT BOTTOM,

NOTE: On most DSS/BLF Units, the DIP switches can be reached through the cutout in the bottom cover (as shown above). With other units, the four screws on the bottom must be removed and the bottom cover must be opened to access the switches.
4. FEATURES

4.1 GMX keysets and SLIs have feature keys that allow one-key dialing of feature codes. Information is programmed in the database to determine the arrangement of the feature keys and their default values. If desired, some of the keyset feature keys can be designated as user-programmable keys. All SLI feature keys are user-programmable.

4.2 Although their function is the same, some of the feature keys on the GMX keyset may have labels that are different than those described on page 4-46. For example, the ANS key on GMX keysets is the same as the OUTGOING key on the other keysets. Likewise, the FLASH key on GMX keysets is the same as the ANSWER key on the other keysets.

4.3 The OVER key on GMX 12-line keysets actually defaults to "data" when the system is in the default configuration. However, since GMX 12-line keysets cannot have Data Port Modules installed, the key is non-functional. If desired, the key can be reprogrammed in the database or by the user to access another feature code.

4.4 If the off-hook voice announce (OHVA) feature is enabled system-wide, each GMX keyset can be allowed or disallowed from placing OHVA calls. However, since GMX 12-line keysets do not have secondary voice path circuitry, they cannot receive off-hook voice announce (OH-VA) calls.

4.5 Each SLI can be programmed for placing OHVA calls, as desired. (SLIs cannot receive OHVA calls since they do not have secondary voice path circuitry.)

5. PROGRAMMING

5.1 The database contains up to 20 keys maps (30 in expanded systems) of default values for the database-programmable feature keys. Each GMX keyset can be assigned to one of the key maps using either the Station Programmable Key Programming window (see page 5-44) or the Key Assignments window (see page 5-44).

5.2 To help determine the layout of the keys on GMX keysets, program planning sheets are provided in Figure B-5 on the following pages. (Also refer to the program planning sheets beginning on page 5-177.)

5.3 The key maps and key values for GMX DSS/BLF Units are assigned using the procedures similar to those outlined in the manual (refer to pages 5-47 and 5-180). However, since they cannot be tandem units, select only the "1st Half" command button to program Part 1 of the key map.

5.4 The key maps and key values for GMX SLIs are assigned using the same procedures as those outlined for the SLI described in the main part of the manual (refer to pages 5-48 and 5-181).
FIGURE B-5. KEY ASSIGNMENTS (KEY)

TO USE: The following pages show the key numbering scheme and the default values of the keys on the GMX 24-line and 12-line keysets. Copy the diagrams, identify the key maps, and change the names of the appropriate keys to reflect their assignments in each keymap.

KEYSET KEY MAP NUMBER: ___________ DESCRIPTION: _____________________________

STATIONS: ________________________________

GMX 24-LINE KEYSET
FIGURE B-5. KEY ASSIGNMENTS (KEY) - Continued

KEYSET KEY MAP NUMBER: ___________________________ DESCRIPTION: ___________________________

STATIONS: _____________________________________

GMX 12-LINE KEYSET

<table>
<thead>
<tr>
<th>SD1</th>
<th>SD2</th>
<th>SD3</th>
<th>SD4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD5</td>
<td>SD6</td>
<td>SD7</td>
<td>SD8</td>
</tr>
<tr>
<td>CALL 1</td>
<td>CALL 2</td>
<td>CALL 3</td>
<td>CALL 4</td>
</tr>
<tr>
<td>CNF</td>
<td>SPKR</td>
<td>IC</td>
<td></td>
</tr>
<tr>
<td>HOLD</td>
<td>1</td>
<td>ABC</td>
<td>DEF</td>
</tr>
<tr>
<td>XFR</td>
<td>GHI</td>
<td>JKL</td>
<td>MNO</td>
</tr>
<tr>
<td>c 4</td>
<td>l</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>PRS</td>
<td>TUV</td>
<td>WXY</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>OPER</td>
<td>0</td>
<td>#</td>
</tr>
<tr>
<td>FWD</td>
<td>DND</td>
<td>MSG</td>
<td>SPCL</td>
</tr>
</tbody>
</table>
DEFAULT FEATURE CODES

Outside Trunk Access Codes:

Automatic Trunk Selection ... 89
Least-Cost Routing (LCR) ... 9
Select Trunk Group 147 ... 801-847

Extension Numbers:
Attendant ... 0
Stations ... 100-227
Hunt Groups ... 231-250

Modems:
Bell 202 — 300 baud .. 270
Bell 202 — 1200 baud .. 271
CCITT — 300 baud .. 272
CCITT — 1200 baud ... 273

Attendant Feature Codes:
Clear System Alarm ... 019
Database Programming Enable 029
Night Ring On/Off .. 010
Paging Speaker Music On/Off 018
Program Station Data .. 022
Program System DND Messages 024
Program System Reminder Messages 023
Program System Speed Dial ... 020
Remote Feature Cancel:
Group Do-Not-Disturb Cancel 012
Group Call Forward Cancel ... 013
Group DND/FWD Cancel .. 014
Hunt Group Replace .. 032
Hunt Group Remove .. 033
Individual Do-Not-Disturb Cancel 015
individual Call Forward Cancel 016
Individual DND/FWD Cancel .. 017
Set Time of Day .. 021
SMDA ... 025
Trunk Maintenance .. 027
Remove All Trunks From Maintenance 028

*Primary attendant only

Station Feature Codes:
AIM & Digital Keyset Default Volumes 394
Automatic Intercom Access .. 362
Automatic Intercom Access Cancel 363
Automatic Intercom Access On/Off 364
Automatic Trunk Access .. 360
Automatic Trunk Access Cancel 361
Automatic Trunk Access On/Off 374
Automatic Trunk Answer .. 350
Background Music Channel Selection 318
Background Music On/Off ... 313
Barge ... 397
Call Forward — All Calls ... 355
Call Forward — If Busy ... 357
Call Forward — If No Answer .. 356
Call Forward — If No Answer or Busy 358
Call Forward — Cancel Any .. 359
Call Splitting - Single-Line Set 337
Call Splitting — Keyset ... 338
Cancel Misc. Operations .. 395
Conference .. 5
Data .. 340
Data Port Monitor .. 341
Date And Time Display .. 300
Do-Not-Disturb .. 370
Do-Not-Disturb Cancel .. 371
Do-Not-Disturb On/Off ... 372
Override ... 373
Feature Key Default (returns all feature keys to default values) .. 325
Feature Key Display (displays current values) 326
Feature Key Programming .. 327
Handsfree Enable ... 311
Handsfree Disable ... 310
Handsfree On/Off ... 319
Headset Disable ... 315
Headset Mode On/Off .. 317
Hold - Individual ... 336
Hold — System ... 335
Hookflash ... 330
Hunt Group Remove .. 322
Hunt Group Replace .. 323
Hunt Group Remove/Replace On/Off 324
Leave Message .. 365
Cancel Current Message (at your own phone) 379
Message Cancel (that you left at another phone) 366
Silent Message ... 378
Microphone Mute On/Off ... 314
Optional Account Code .. 386
Page ... 7
Page Remove ... 332
Page Replace .. 333
Page Remove/Replace On/Off 334
Private CO (outside) Call .. 369
Queue (busy station/trunk callback) Request. 6
Queue Request Cancel .. 376
Redial ... 380
Redial Mode - East Number Dialed 320
Redial Mode - East Number Saved 321
Release ... 339
Reminder Message ... 305
Reminder Message Cancel .. 306
Reverse Transfer (call pick-up) 4
Ring Intercom Always ... 367
Cancel Ring Intercom Always 368
Ring Intercom Always On/Off 377
Ring Tone Selection ... 328
Speakerphone On/Off .. 312
Station Exchange ... 303
Station Monitoring ... 3%
Station Speed Dial .. 382
Station Speed Dial Programming 383
System Directory — intercom .. 307
System Directory — Outside ... 308
System Speed Dial ... 381
Transfer CO (outside) Call .. 343
Transfer Intercom Call .. 346
Transfer To Hold ... 347
<table>
<thead>
<tr>
<th>Area Codes</th>
<th>Allowed, 5-93</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>extended, 5-93</td>
</tr>
<tr>
<td></td>
<td>home/local, 4-29, 5-171</td>
</tr>
<tr>
<td></td>
<td>numbering plan, 4-28, 5-90</td>
</tr>
<tr>
<td></td>
<td>restricted, 5-93</td>
</tr>
<tr>
<td></td>
<td>used as office codes, 4-28, 5-90</td>
</tr>
<tr>
<td>Area/office</td>
<td>code reports, 5-150, 5-152, 5-156</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attendant Computer Console</th>
<th>2-28, 4-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>See also the manual provided with the Console</td>
<td></td>
</tr>
<tr>
<td>alias programming, 5-133</td>
<td></td>
</tr>
<tr>
<td>cabling, 3-4</td>
<td></td>
</tr>
<tr>
<td>capacity, 1-2, 2-21</td>
<td></td>
</tr>
<tr>
<td>database disk, 5-132</td>
<td></td>
</tr>
<tr>
<td>features, 1-7</td>
<td></td>
</tr>
<tr>
<td>Attendant recall, 4-105</td>
<td></td>
</tr>
<tr>
<td>Attendants, 4-12</td>
<td></td>
</tr>
<tr>
<td>capacity, 1-8</td>
<td></td>
</tr>
<tr>
<td>feature codes, 4-10</td>
<td></td>
</tr>
<tr>
<td>features, 1-7, 4-103</td>
<td></td>
</tr>
<tr>
<td>database programming enable, 4-10</td>
<td></td>
</tr>
<tr>
<td>do-not-disturb messages, 4-110</td>
<td></td>
</tr>
<tr>
<td>DSS/BLF Unit, 4-103</td>
<td></td>
</tr>
<tr>
<td>generate an SMDA report, 4-111</td>
<td></td>
</tr>
<tr>
<td>menu display, 4-10</td>
<td></td>
</tr>
<tr>
<td>night mode, 4-106</td>
<td></td>
</tr>
<tr>
<td>placing trunk out of service, 4-10, 4-113</td>
<td></td>
</tr>
<tr>
<td>recall, 4-105</td>
<td></td>
</tr>
<tr>
<td>reminder messages, 4-109</td>
<td></td>
</tr>
<tr>
<td>remote hunt group remove/replace, 4-10, 4-19, 4-111</td>
<td></td>
</tr>
<tr>
<td>remote station feature cancel, 4-111</td>
<td></td>
</tr>
<tr>
<td>setting time and date, 4-111</td>
<td></td>
</tr>
<tr>
<td>SMADA, 4-10</td>
<td></td>
</tr>
<tr>
<td>station programming, 4-107</td>
<td></td>
</tr>
<tr>
<td>system alarms, 4-112</td>
<td></td>
</tr>
<tr>
<td>initialized values, 5-24</td>
<td></td>
</tr>
<tr>
<td>programming, 4-107, 5-32, 5-38, 5-132, 5-135</td>
<td></td>
</tr>
<tr>
<td>remote station feature cancel, 4-10</td>
<td></td>
</tr>
<tr>
<td>Audible message indication, 5-68</td>
<td></td>
</tr>
<tr>
<td>Auto ring-in E&M trunks, 2-16, 4-34</td>
<td></td>
</tr>
<tr>
<td>Auto trunk, 4-31, 5-86</td>
<td></td>
</tr>
<tr>
<td>Automated attendant, 4-12</td>
<td></td>
</tr>
<tr>
<td>dialing during recording, 4-14, 5-68</td>
<td></td>
</tr>
<tr>
<td>digit translation, 4-14, 5-39</td>
<td></td>
</tr>
<tr>
<td>do-not-disturb breakthrough, 4-14, 5-30, 5-52</td>
<td></td>
</tr>
<tr>
<td>hunt group, 5-63</td>
<td></td>
</tr>
<tr>
<td>on IDC, 2-15</td>
<td></td>
</tr>
<tr>
<td>playback devices, 2-30, 4-13</td>
<td></td>
</tr>
<tr>
<td>programming, 5-38, 5-39</td>
<td></td>
</tr>
<tr>
<td>recall destination, 5-39</td>
<td></td>
</tr>
<tr>
<td>troubleshooting, 6-28</td>
<td></td>
</tr>
<tr>
<td>Automatic intercom access, 4-8, 4-52, 5-30, 5-52</td>
<td></td>
</tr>
<tr>
<td>Automatic outside call access, 4-8, 4-52</td>
<td></td>
</tr>
<tr>
<td>Automatic trunk answer/select, 4-5, 4-31, 5-30, 5-52</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>B8ZS. See Bipolar Eight Zero Substitution (B8ZS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background music, 4-53</td>
<td></td>
</tr>
<tr>
<td>channel, 5-31, 5-52</td>
<td></td>
</tr>
<tr>
<td>channel selection, 4-5-4-53</td>
<td></td>
</tr>
<tr>
<td>feature code, 4-8</td>
<td></td>
</tr>
<tr>
<td>paging speakers, 4-111</td>
<td></td>
</tr>
<tr>
<td>troubleshooting, 6-16</td>
<td></td>
</tr>
<tr>
<td>BACKSPC key, 4-41</td>
<td></td>
</tr>
<tr>
<td>Barge, 4-75</td>
<td></td>
</tr>
<tr>
<td>confirmation tone, 5-68</td>
<td></td>
</tr>
<tr>
<td>feature code, 4-8</td>
<td></td>
</tr>
<tr>
<td>programming, 5-30, 5-52, 5-68</td>
<td></td>
</tr>
<tr>
<td>Base number for DID, 4-37, 5-116</td>
<td></td>
</tr>
<tr>
<td>Basic software, 1-2</td>
<td></td>
</tr>
<tr>
<td>Batteries, 2-32</td>
<td></td>
</tr>
</tbody>
</table>
Cabling, 2-4
amphenol-type connectors, 2-4
connection to MDP, 3-11,3-21
DSS/BLF Unit, 3-6
E&M, 3-12
guidelines, 3-6
loop limits, 3-3, 3-6, 3-29
station, 2-4, 3-6
planning, 3-4
terminations, 3-7
T1 spans, 2-17, 2-20, 3-17, 3-19, 3-20
trunks, 2-5

Call cost, 4-114, 5-113, 5-137
adjustments, 4-114

Call forwarding, 4-16, 4-82
all calls, 4-82
feature codes, 4-5
FWD key, 4-82
if busy, 4-82
if no answer, 4-82
if no answer/busy, 4-82
resources, 2-11
timer, 5-81
to E&M, 4-82, 4-83
to message center, 4-84
to outside number, 4-82, 4-83
to voice mail, 4-70, 4-84
troubleshooting, 6-27
unsupervised CO timer, 4-83

Call keys, 2-14, 2-16, 4-42, 5-36, 5-49
secondary, 4-44, 5-36, 5-37, 5-49

Call monitoring, 4-19

Call pick-up, 4-7, 4-73

Call privacy, 4-74
feature code, 4-7
programming, 5-69
troubleshooting, 6-28

Call splitting, 4-5, 4-67, 4-68

Call transfer, 4-70
DSS/BLF Unit, 4-103
feature codes, 4-7
intercom call, 4-70
keyset call splitting, 4-8
outside call, 4-70
recalls, 4-71
resources, 2-11
timeq5-83
to E&M, 4-72
to extension number, 4-70
to hold, 4-70, 4-71
to hunt group, 4-70
to outside number, 4-72
to park, 4-70, 4-104
to voice mail, 4-70
troubleshooting, 6-24
unsupervised CO timer, 4-72

Call waiting, See Camp on
callback (queue)
capacity, 1-8
time, 5-82
trunk, 4-65

Camp on, 4-69
capacity, 1-8
DID, 5-30, 5-52
disallowing tones, 5-30
E&M, 5-31, 5-52
to hunt groups, 4-16
LCR facility groups, 5-52
to outside number, 4-70
moving call to DID, 4-69
station, 4-57
timers, 5-78
tones, 4-69, 5-30, 5-52
trunk, 4-65

CANCEL key, 4-41

Central office (C.O.) lines, See Trunks, 5-31
Channel service unit (CSU), 2-17, 2-18, 2-19, 4-35, 5-122, 5-128
check box, 5-13

Circuit cards
capacity, 1-1
defaults, 5-24
distribution of voice channels, 2-6
installation, 3-44, 3-61

Circuit numbers
display, 4-41
to outside number, 5-30
E&M, 4-65
station, 4-65
to hunt group, 4-65
trunks, 2-14

Class-of-service account codes, 4-28, 4-66, 5-56, 5-67
entering, 4-62
LCR calls, 4-63
programming, 5-32

Battery back-up
database, 2-10
system, 2-3, 2-9, 2-32

Battery check button, 3-45

Band rate, 5-9
8-line keysets, 2-23
serial ports, 5-169
SMDA output device, 2-32
SMDR output device, 2-32

Bipolar eight zero substitution (BESZS), 2-17, 4-35, 5-122, 5-128
BPV (bipolar violations) errors, 5-122

Buses, See PCM highways
Busy signal, 4-54
INTER-TELPRACTICES
IMX/GMX 256 INSTALLATION & MAINTENANCE

Database
- default configurations, 2-13
- save/restore, 5-4, S-10, S-167
- stand-alone update, 5-7
- update, 5-14

Database back-up battery, 2-10
Database programming enable, 4-10

Date (system), S-170
Date and time display, 4-41
- feature code, 4-8
- programming, 4-111, S-170

Day/night toll restriction, 4-25, 4-27, 5-42
Day/night trunk restriction, 4-25, 4-26, 5-28, 5-34

DB15 connector on T1 card, 3-20

DC ringing, 2-15, 2-29, 4-40

Dedicated isolated circuit, 2-8, 3-3
Default volumes, 4-8

Defective unit return policy, 6-41

Departments, 5-85

Detailed SMRDA reports, 4-115, 5-140

Detailed station report, 5-152, S-157

Dial initiation timer, 4-4

Dial rules, 4-32, S-98, 5-99
- voice computer, 4-21, 5-63

Dial tone, 4-54

Dial-pulse signaling, 2-14, 4-24

E&M, 2-16, 4-34
- programming, S-30, 5-52
- T1, 2-20

Dial-repeating E&M, 2-16, 4-34

Dialing feedback for T1, 2-19

Dialing timers, 5-78

DID digit translation, 5-110, 5-123

DID report, S-152, S-158

Digit translation, 5-39

Digital Direct Station Selection/Busy Lamp Field (DSS/BLF) Unit
- AC transformer, 2-24
- cabling, 3-4
- capacity, 1-2, 2-27
- dimensions, 2-27
- illustration, 2-44
- installation, 3-90
- key maps, 4-50, S-47
- programming, 5-135
- self-test, 3-90
- specifications, 2-27

Digital Keyset Card (DKSC), 1-2, 2-6, 2-12, 4-40

- connection to MDF, 3-21, 3-22
- installation, 3-47, 3-48
- LED's, 2-12, 6-3
- thermistors, 2-12

CLEAR key, 4-41
Clear system alarm, 4-10
CNF key, 4-46, 4-49
CO DIRECTORY key, 4-41
CO reseize, 5-30, 5-52
COM port, S-9
Command button, 5-13

Conference hold timer, S-78

Conferenceing, 4-76
- capacity, 1-8
- channels, 2-6
- feature code, 4-6
- resources, 2-11
- troubleshooting, 6-25

Configuration
- default, 2-13, 5-24
- IDC, S-171
- KSC-D, S-171
- system, S-170
- T1C, S-172

Consultation hold, 4-67, 4-68

Control board
- SMDR output device, 3-45
- voltage test points, 3-45

Controlled slips errors, S-122

Copy station features, S-26

CPERRXX.BIN, S-168

CPHISTXX.BIN, S-168

CRC-6 (cyclic redundancy check) errors, 5-122

Cross-tenant communication, 4-15

Crosstalk, 6-20

Cross-tenant traffic, 5-67
- voice mail, 5-67

CSU. See Channel Service Unit (CSU)

Current DT detect, 5-104

Customer support, 6-41

Customized reports, 5-152

D4 Superframe, 2-17, 2-19

Data device, 4-101
- data port monitor, 4-8
- feature code, 4-8
- installation, 3-70, 3-78, 3-87
- specifications, 2-23, 2-26
- troubleshooting, 6-32

DATA key, 4-46

Data noise, 6-33

Data port module, 4-101, B-1
- installation, 3-78, 3-87, B-6
- specifications, 2-23, 2-26
- timer, S-78
Digital keysets, 2-2, 4-40
attendant feature menu, 4-10
dimensions, 2-21
DSS/BLF Units, 2-12
electret microphone, 2-22, 2-25
Executive, 2-33
headset installation, 3-66
installation, 3-62
See also Keysets
LCD, 2-22, 3-62, 4-41
installation, 3-70
menu display, 4-9, 4-41
menu keys, 4-41
PCDPM, 2-12, 4-61, 4-101
installation, 3-66
secondary voice path, 4-61
self-test, 3-64
speakerphone, 2-22, 4-40
special cabling requirements, 3-7
standard, 2-34
volume control, 4-8
wall mounting, 3-66

Digital multiplex interface (DMI), 2-17
Direct inward dig (DID), 4-37
base number, 4-37, 5-116
batch programming ring-in, S-117
camp on, 4-69, S-30, 5-52
capacity, 1-2
DIA, 4-37, S-115
music-on-hold, 4-37, S-115
programming, s-106, s-108, S-115
ring-in/answer patterns, 4-25, 4-37, s-119
start type, 4-37, s-115
tenant group, 4-37, s-87, s-115
troubleshooting, 6-17
trunk groups, 5-107
trunk list, 4-37

Direct inward system access (DISA), 4-38
DID groups, 5-115
DID trunk, 4-37
do-not-disturb breakthrough, 4-38, S-G, S-52
resources, 2-11
security codes, 4-38, 5-112, 5-115

toll restriction, 4-38, S-106, S-107, S-112, S-116
troubleshooting, 6-15

Direct Station Selection/Busy Lamp Field (DSS/BLF) Unit, 4-50
cabling, 4-4

capacity, 1-4: 2-21, 2-27
dimensions, 2-27, 2-28, A-2, B-2
feature&-7:
call transfer, 4-103
intercom calls, 4-103
rev-transfer, 4-104
figure, 2-45
GMX, 2-28, B-2
GX, A-2
illustration, 2-46
installation, 3-92, 3-93, A-8, B-8
key maps, 2-27, 2-28, 4-50, S-47, 5-50
LEDs, 4-50
programming, 5-13s
self-test, 3-92, 3-93, A-8, B-8
tandem, A-8
troubleshooting, 6-13, 6-37, 6-38, 6-39

Display/suppress end-of-dialing digits, 5-69
Displays, 2-25
Distributed hunt group, 4-16, S-61, S-64
DKSC, See Digital Keyset Card (DKSC)
DML, See Digital multiplex interface (DML)
DND, See Do-not-disturb
DND key, 4-46

Do-not-disturb, 4-95
breakthrough, 4-14, 4-21, 4-38, 5-30, 5-52
feature codes, 4-6
messages, 4-95, S-87
capacity, 1-8
programming, 4-10, 4-110
override, 4-8, S-30, 5-52
permission, S-30, 5-52
troubleshooting, 6-28

Doorbox, 2-3
Drop incomplete outgoing calls, 2-14, S-68
DSS feature key lamp status flag, 5-68
DSS/BLF key, S-36, S-49
DSS/BLF unit, 4-50
keysets, 4-42

DSS/BLF Unit, See Direct Station Selection/Busy Lamp Field (DSS/BLF) unit
Dxx-1 interface, 4-35, S-122, S-128
line length, 2-17, 2-19, 4-35, S-122, S-128

DTMF, See Dual-tone, multi-frequency (DTMF)

DTMF digit mute, S-69

DTMF feedback tones, 4-21, S-31, S-81
extended, 5-68

DTMF sets, 4-49
Dual bantam jack on T1C, 2-18

Dual circuits, 2-13, 2-23

dual-tone multi-frequency (DTMF) signaling, 2-14, 2-16, 4-24
decoding circuits, 2-11
digit timers, S-79

E&M, 4-34
programming, s-105

T1.2-20

transmitter circuit, 2-11

E

E&M Card (EMC), 2-8, 2-16
block terminations, 3-16
capacity, 1-2
connection to MDF, 3-12
figure, 3-58
fuses, 2-16
installation, 3-57
LEDs, 6-4
make-busy switch, 2-16
E&M trunks, 2-16, 4-34
absorbed digits, 4-26
auto ring-in, 2-16
call routing 5-109
camp on, 4-69, 5-31.5-52
capacity, 1-2.2-16
circuits, 2-16
connection to MDF, 3-12
dial repeating, 2-16
DID digit translation, 5-110
handshaking, 5-109
hybrid balance, 2-16
ignore answer supervision, 5-105
LCR use, 2-16
placing outside calls, 4-62
programming, 5-104
receive-t gain, 2-16
redialing, 4-93
reorder tones, 5-109
return dial tone, 5-110
software, 1-2.5-3
timers, 5-79
trunk groups, 2-16, 5-106, 5-109
Elapsed time in seconds for SMDR, 4-123
Electret microphone, 2-22.2-25
Electrical test, 3-42
Electromagnetic interference (EMI), 2-4, 6-16
Emergency assistance, 6-41
Enhanced Single-Line Set (ESLS), 2-29, 4-49
design features, 2-29
dimensions, 2-29
features, 1-6
figure, 2-47
FLASH key, 4-4
installation, 3-95
user-programmable keys, 4-11
Environmental requirements, 2-8, 3-3
Equal access, 4-27, 5-113
Equipment cabinet, 2-6
AC power cable, 2-8
circuit cards, 2-10
dimensions, 2-6
figure, 2-7
grounding, 3-41
installation, 3-35, 3-61
power cable connectors, 3-36
power supply, 2-8
pre-assembly, 3-35
telecom motherboard power cable, 2-7
Error messages, 5-1456-5
copying to disk, 5-168
programming, 5-146
report, 5-146
Error reporting, 4-125
Error thresholds for T1, 2-19
ERRORLOG.TXT, s-168
ES (error seconds) errors, 5-122
ESF. See Extended Superframe (ESF)
ESLS. See Enhanced Single-Line Set (ESLS)
Exemption from LCR, 4-26, 5-113
Exit screen, 5-14
Extended area codes, 5-93
Feedback on keysets, 6-32
Ferite split beads, 2-32, 3-12
Field service diagnostics, 6-8, 6-10
FLASH key, 2-29, 4-4, 4-97
Flexible attendant arrangements, 4-12
Forced account codes, 4-66, 5-32
entering, 4-62
LCR-Only, 4-33, 4-66, 5-32, 5-54
programming, 5-54
validated, 4-66, 5-32, 5-33
Forward (FWD) key, 4-42, 4-46, 5-36, 5-49
programming, 4-82
FORWARD key, 4-41
Forwarding, 4-82
all calls, 4-82
FWD key, 4-82
if busy, 4-82
if no answer, 4-82
if no answer/busy, 4-82
system, 4-79.5-74
timer, 5-81
to E&M, 4-82, 4-83
to message center, 4-84
to outside number, 4-82, 4-83
troubleshooting, 6-27
unsupervised co timer, 4-83
weekly toll limit, 4-83
Forwarding path, 4-79, 5-41, 5-74
Forwarding point, 4-79, 5-74
Fractional T1, 2-17, 4-35
Framing bit, 2-17.2-19
Fuses
DKSC, 2-12
EMC, 2-16, 3-57
IDC, 2-15, 3-51
Ksc, 2-12, 3-49
LGCCSC, 2-14, 3-54
power supply, 2-8, 2-9, 3-42
SLC, 2-12, 3-51
G
Gas discharge tubes, 2-5, 3-12
General station reports, 5-152, 5-158
Glare prevention, 2-14
GMX Keysets, E1
Ground start trunks, 4-37. S-104.
Grounding, 3-41
Group call pick-up, 4-73
GX Keysets, A-1
H
Handset amplifier, 2-22, 3-n
Handsfree announce system forward, 4-80, 5-68
Handsfree enable/disable.
Handshaking, 2-31, 5-169
Hardware address numbers, 3-14
E&M stations, 3-6
T1, 2-20
Headsets, 2-22, 2-26, 4-9, 4-43
enable/disable, 5-31, 5-52
installation, 3-66, 3-52
troubleshooting, 6-31
Hold
call splitting, 4-67
individual, 4-6, 4-67
recall, 4-67, 4-68
skate to, 5-69
system, 4-9, 4-67
timer, 5-81
HOLD key, 4-46, 4-49
Home area code, 4-29, 5-171
Hookflash, 4-97
enable/disable, 5-106
feature code, 4-6
trunks, 4-37
Hot dial pad, 4-4, 4-42, 5-68
Hourglass cursor, 5-14
House phone, 4-92
day and night numbers, 5-40
programming, 5-38, 5-40
troubleshooting, 6-26
Humidity, 2-8, 3-3
Hunt group key, 4-42, 5-36, 5-49, 5-50
Hunt group report, 5-152, 5-159
Hunt groups, 4-16
all ring, 4-16
announcement station, 4-17, 5-61, 5-65
automated attendant hunt groups, 5-63
call circulation, 4-16
call forwarding, 4-16
call monitoring, 4-19
camp on, 4-16
capacity, 1-8, 4-16
distributed, 4-16
linear, 4-16
overflow station, 4-17, 5-61, 5-66
pilot number, 4-16, 5-58
playback devices, 2-30
programming, 5-61
queue position, 4-19
malls, 4-18
remove/replace, 4-4, 4-19
remote, 4-10, 4-19, 4-111
ring-in, 4-16
station list, 4-16, 4-21
station monitoring, 4-9
station monitoring tone, 5-69
supervisor, 4-19, 5-61, 5-64
using barge, 4-75
system forwarding point, 4-80
tenant groups, 4-15, 4-17
timers, 4-18, 5-65
transfer call type, 4-17, 5-68
troubleshooting, 6-27
voice mail/computer group, 5-61
Hybrid balance, 2-14, 5-104
E&M, 2-16
programming, 5-147
IC DIRECTORY key, 4-41
IC key, 4-42, 4-46, 5-36, 5-49
IC/CO speed-dial (SD) keys, 4-42, S-36, 5-49
Identification display on keysets, 5-68
Ignore answer supervision, S-105
Inactivity timer, 5-82
Incoming-only trunk & S-110
Individual hold, 4-67
Individual trunk keys, 4-42, S-36, 5-49
Installation
outline, 3-2
post-installation checklist, 3-100
preinstallation checklist, 3-3
tools and supplies, 3-3
Integrated services digital network (ISDN), 2-17
Integrated speakerphone, 2-22, 2-25, 4-40
Integrated switching matrix, 2-6
Inter-station messages, 4-58
alternate message source, 4-60
cancel, 4-59
capacity, 1-8
feature code, 4-6
silent, 4-58
Inter-Tel AIM keyset, 1-5, 4-40
12-line, 2-38
24-line, 2-36
8-line, 2-40, 4-40
cabling, 3-24
circuits, 3-6
switches, 3-76
self-test, 3-73
volume control, 4-8, 4-48
Inter-Tel DVK keyset, 2-2, 2-25, 3-81, 4-40
12-line, 2-42
24-line, 241
8-line, 2-43
data port module, 3-87
dimensions, 2-25
self-test, 3-85
Inter-Tel Services, 4-30, 5-97, 6-41
Intercom calls, 4-55
automatic call access, 4-52
callback (queue), 4-57
camp on, 4-57
DSS/BLF units, 4-103
messages, 4-58
off-hook voice announce, 4-61
placing calls, 4-55
private, 4-55
Intercom dial tone troubleshooting, 6-33
Intercom directory, 4-90
Intercom number display, 4-41
International LCR calls, 4-32, 5-98, 5-99, 5-100, 5-101
Inter-Tel AM keyset, 2-2, 2-21
8-line, line cords, 2-23
Inward Dialing Card (IDC), 2-6, 2-15, 4-40
AC/DC strap, 2-15
block terminations, 3-15
capacity, 1-2
configuration, S-171
circuit number display, 4-41
circuit noise, 6-33
circuit number display, 4-41
cordless headsets, 5-31
hot dial pad, 4-4, 4-42, 5-68
identification display, 4-41, 5-68
initialized values, 5-24
installation, 3-71, A-4
key maps, 4-42, 5-45, 5-49
LCD, 2-22, 2-25, 3-71, 8-41, A-1, A-6, B-1, B-5
LEDs, 447
louder ringing adapter, A-1
Keysets continued
optional equipment
data device, 4-101
data port module, 2-23, 2-26, 3-78, 3-87, B-6
handset amplifier, 2-22.3-77
headsets, 2-22, 2-26, 3-77, 3-86, 4-43
loud ringing adapter, 2-23,2-26
MDPM, 2-23
PCDFM, 2-23
programming, 4-107, 5-25, 5-30
ring pitch adjustment, A-2
secondary voice path. 4-61
selectable ring tone, 4-48
self-test, 3-73, 3-85, A-6, B-5
signals and tones, 4-54
SFCL key, 4-4
speakerphone, 2-22, 2-25, 4-40
speakerphone module, A-2
toll restriction, 4-27
troubleshooting, 6-34
user-programmable keys, 4-51, 5-46
volume controls, 4-48
wall mounting, 3-77, 3-86
KF-rating, 1-2, 5-3, 5-15
KSC-D. See Keyset Card (KSC)

Last number dialed/saved, 4-93, S-31, S-52
LCD. See Liquid crystal display (LCD)

LCR. See Least-cost routing (LCR)
LCR key, 4-49
Least-cost routing (LCR), 4-5, 4-32, 4-63
advance limit, 4-33, 4-42, 5-95
advance timer, 5-82
capacity, 1-8
data report, S-152, 5-161
dial rules, 4-32, 5-98
exempt from, 4-26
facility group camp on, 5-31, 5-52
facility groups, 4-32, 5-98
international, 4-32
on E&M, 2-16
operator-assisted, 4-32
programming, 5-98
programming reports, 5-150
recommended use for single-line sets, 2-14
route groups, 4-32, 5-98
time blocks, 4-32
transparent, 4-33, 5-31, 5-52

LED. See Light-emitting diodes (LEDs)

Light-emitting diodes (LEDs)
DKSC, 2-12, 6-3
DSS/BLF Unit, 4-50
EMC, 6-4
IDC, 6-3
keyset, 4-47
Ksc, 2-12, 6-3
LOG, 6-4
LSC, 6-4
RCPU, 2-10, 3-45, 6-3
SLC, 2-12, 6-3
T1C, 2-18, 6-4
troubleshooting, 6-1

Lightning protection. 2-5, 3-12
EMC, 2-16
IDC, 2-15
LGCC/SLSC fuses, 2-14
Line build-out (LBO), 2-17, 2-19, 4-35, S-122, 5-128
Linear hunt group, 4-16, 5-61, 5-64
Liquid crystal display (LCD), 2-22, 2-25, 4-41, A-1, B-1
installation, 3-62, 3-71, 3-81, A-6, B-5
troubleshooting. 6-31
List box, 5-12
Local area codes, 4-29, 5-171
Loop limits for cabling, 3-3, 3-6, 3-29
. OPX, 2-30
Loop Start Card (LSC), 2-5, 2-6, 2-14
block terminations, 3-13, 3-14
connection to MDF, 3-11
external paging port, 2-14
figure, 3-56
fuses, 2-14
installation, 3-54
LEDs, 6-4
Loop start trunks, 4-37, 5-104
Loop/Ground Start Card (LGC), 2-5, 2-6, 2-14
block terminations, 3-13, 3-14
connection to MDF, 3-11
external paging port, 2-14
figure, 3-56
fuses, 2-14
installation, 3-54
LEDs, 6-4
Load ringing adapter (LRA)
installation, 3-30, 3-39, A-1
specifications, 2-23, 2-26
troubleshooting, 6-34

Main distribution frame (MDF), 4-4
assembling, 3-9
backboard, 3-3, 3-9
bridging clips, 2-4
cable connection to RCPU, 3-30
E&M connections, 3-12
installation, 3-3
power supply installation, 3-40
sample, 3-10
state connections, 3-21, 3-28
STN blocks, 3-9
T1 alarm relays, 3-33
t1 connection, 3-17, 3-19, 3-20
terminal blocks, 2-4
trunk connections, 3-11

Maintenance of trunk & 4-37, 4-113, 5-148
Major alarms, 4-125.6-9
Make-busy switch, 4-37
Master/slave T1 clock, 2-17, 2-19, 4-35, 5-130
Material return authorization (MRA), xx, 6-41
MDF. See Main distribution frame (MDF)
Memory, 2-6
Message center, 4-58
for FAX station, 5-40
forwarding to, 4-84
programming, 5-32, 5-38, 5-40
INDEX

IMX/GMX 256 INSTALLATION & MAINTENANCE

Issue 1. November 1994

Message
- Lamps: S-31.5-52
- not supported on IDC, 2-29, 4-49
- Message waiting indications: 5-68
- troubleshooting: 6-38

Messages
- alternate message source: 4-60
- capacity: 1-8
- do-not-disturb: 4-110, 5-57
- feature codes: 4-6
- inter-station: 4-58
- message wait timer, reminder: 4-98, 4-109, 5-57

MF-rating: 1-2.5-3

Microphone
- electret circuitry: 2-22
- See also: Liquid crystal display (LCD)
- microphone mute: 4-9, 4-67, 4-68

Microsoft Windows: 5-11

Minor alarms: 4-125, 6-8

Miscellaneous
- station flags: 5-28
- station information: 5-28

Modem: 5-4
- RCPU circuit: 2-11
- setup: 5-9

Modem Data Port Module (MDPM): 4-101
- AC transformer: 2-23, 2-24
- installation: 3-70
- specifications: 2-23
- troubleshooting: 6-32

Modular jack assembly
- analog stations: 3-64, 3-73, 3-85
- T1: 3-18
- T1 alarms: 3-33
- trunks: 3-17

Modules for power supply: 2-8, 3-39, S-170
- MOH straps: 4-53
- Move board option: 5-171

MRA. See Material return authorization (MRA)
- MS-DOS: 5-3
- MSG key: 4-46, 4-49
- Mu-law/a-law. See Alternate Mark Inversion (AMI)
- Multiple-attendant operation: 4-12

Music channel: 5-52
- external paging: 5-68
- programming: 5-51
- selection: 4-53
- MUSIC key: 4-46
- Music-on-hold: 4-53
- background music: 4-53
- channel selection: 4-53, 5-52
- DID channel selection: 4-37
- MOH straps: 4-53
- music source: 2-3, 2-6, 4-53
- connector: 2-10
- installation: 5-99
- on/off strap: 2-11
- paging speakers: 4-53, 4-111
- troubleshooting: 6-16

MUTE key: 4-46
- during OHVA call: 4-68

NEXT key: 4-41
- Night mode: 4-25, 4-106
- Night ring: 4-10
- Night switch relay: 2-3, 4-25, 4-106, 5-73
- RCPU relay: 2-11
- Non-blocking voice channels: 2-6
- Non-blocking voice channels: 1-2, 2-6, 5-172
- Numbering plan: 4-28, 5-90

Non-blocking voice channels:
- AC transformer: 2-23, 2-24
- installation: 3-70
- specifications: 2-23
- troubleshooting: 6-16

OHVA key: 4-68
- Off-hook alarms: 5-68
- Off-hook voice announce (OHVA): 4-61, 5-31
- blocking: 4-61
- DSS station transmit: 5-69
- programming: 5-52, 5-69
- timer, 5-82
- troubleshooting: 6-34, 6-35, 6-38, 6-40
- using the MUTE key: 4-61

Office codes
- allowed/restricted: 5-94
- numbering plan: 4-28, 5-90
- programming: 5-90
- used as area codes: 4-28, 5-90

Off-premises extension (OPX): 2-3, 2-30, 4-49
- installation: 3-30
- loop limits: 2-30
- programming: 5-31
- receive/transmit gain: 5-33
- repeater unit: 2-30, 3-40
- ring type: 5-31

OHVA. See Off-hook voice announce (OHVA)
- On-board CSU: 2-17, 2-18, 2-19, 5-122, 5-128
- On-board oscillator: 2-19, 4-35
- On-hook dialing/monitoring: 4-64
- on-line monitor passwords: 5-149
- On-site programming: 5-4, 5-9
- Oneattendant operation: 4-12

Operating temperature: 2-g

OOF/COFA (out of frame/change of frame adjustment) errors: 5-122

Operator-assisted LCR calls: 4-32, 5-98, 5-99, 5-100, 5-101
- Option button: 5-13
- optional account codes: 4-6, 5-66

Page 1-9
optional equipment

installation, 3-5

station

data device, 4-101

data port module, 2-23, 2-26, 3-78, 3-87, 4-6

headset, amplifier, 2-22, 3-77

headsets, 2-22, 3-66, 3-77, 3-86, 4-43

MDM, 2-23, 3-70

PCDM, 2-23, 3-66

system, 2-3, 2-31

battery back-up, 2-3, 2-32

doorbox, 2-3

external music source, 2-3, 3-99

external paging speakers, 2-3, 3-98

FAX machine, 2-3

night switch, 2-3

off-premises extensions, 2-3

playback devices, 2-3

power failure transfer, 2-3

signal devices, 2-3

SDMA output device, 3-98

SDMR output device, 2-3, 2-31, 3-98

talkback speakers, 2-3

voice mail, 2-3

troubleshooting, 6-12

Ordering parts, 7-1

OTHER FEATURES key, 441

OUT key, 4-46

outgoing access, 4-24, 5-34, 5-110

OUTGOING key, 4-46

Outside calls, 4-62, 4-66

account codes, 4-66

automatic call access, 4-52

callback (queue), 4-65

camp on, 4-65

dropped calls, 6-14, 6-21

on-hook dialing/monitoring, 4-64

placing, 4-62

receiving, 4-62

troubleshooting, 6-20

Outside directory, 4-90, 4-91

overflow count, 5-66

overflow stations, 4-17, 5-61, 5-66

P

PAGE key, 4-46

Paging, 4-94

capacity, 1-8

external ports/relays, 5-70, 5-73

external speakers, 2-3-3-98

feature code, 4-6

programming, 5-70

remove/replacement, 4-9, 4-94, 5-31, 5-52

speaker background music, 4-10, 4-53, 4-111

timers, 5-82

troubleshooting, 6-26, 6-27

zones, 5-70
Programming
 abbreviated commands, 5-15, 5-16
 applications menu, 5-15
 check box, 5-13
 command button, 5-13
 exit screen, 5-14
 hourglass cursor, 5-14
 initialized values, 5-24
 list box, 5-12
 menus, 5-16
 on-site, 5-4
 option button, 5-13
planning, 5-3
remote, 5-4
screen saver, 5-11
session timer, 5-11
sign on, 5-15
stand-alone, 5-3, 4-5
 system set-up, 5-3
 text box, 5-12
 windows, 5-12
Pulse code modulation (PCM), 2-17
Q
Quad module, 2-9
QUE key, 4-46, 4-49
Queue
capacity, 1-8
 feature code, 4-7
 station, 4-57
timer, 5-82
 trunk, 4-65
R
Radio frequency interference (RFI), 2-4, 6-16
RAM, 2-6
RCPU. See ROM Central Processing Unit (RCPU)
Recall
attendant, 4-105
 automated attendant destination, 5-39
 hold, 4-67, 4-68, 4-105
 hunt groups, 4-18
timer, 5-82
transfer, 4-71, 4-104
unsupervised call, 4-72, 4-105
 voice mail/computer, 4-21
Recall destination, 5-64
Recall tones, 4-54
Receive gain, 2-14, 5-33, S-104
E&M, 2-16
OPX, 5-33
T1, 2-20
trunks, S-103
Recommended spare parts, 7-1
REDIAL key, 4-46, 4-49
Redialing, 4-93
 capacity, 1-8
 dialed digit suppression, 4-93, 4-123, 5-69
 feature code, 4-7, 4-9
 last number dialed, 4-93
 last number saved, 4-93
mode, 5-31, 5-52
PBX/E&M, 4-93
 troubleshooting, 6-25
REDL key, 4-49
Reference clock for TI, 2-19, 4-35, S-123, S-130
backup, 5-127
for system, S-130
programming, 5-122
slave/master, 5-130
source of, S-130
TI from public network, S-130
Relaxed ring detection, S-105
timer, 5-82
Relays
 night switch, 4-106
programming, 5-73
 signal devices, 5-121
TI, 2-19, 4-35, 5-122, S-129
Release, 4-9
Reminder messages, 4-98
 capacity, 1-8
 feature code, 4-9
 messages, 4-98
programming, 4-10, 4-109, 5-57
Remote hunt group remove/replace, 4-10, 4-19, 4-111
Remote programming, S-4.5-9
direct connection, 5-9
PC, 2-31
Remote station feature cancel, 4-111
Remote/replace hunt group, 4-19
remote, 4-10, 4-19, 4-111
Remote/replace paging, 4-94
Repeater
 OPX, 2-30
 T1, 2-17
Replacement parts ordering, 7-1
recommended spares, 7-1
Report programming, 5-150
 customized, 5-152
Reseize, S-30.5-52
Reset, 5-167
Reset switch on RCPU, 2-10
Resetting serial ports, 5-169
Restricted area codes, 5-93
Restricted office codes, 5-94
Return policy, 6-41
Reverse transfer, 4-73
DSS/BLF unit, 4-104
 feature code, 4-7
 immediate connection, 5-69
RFI/EMI troubleshooting, 6-16
Ring cadence, 5-31
Ring generator module, 2-8
Ring intercom always, 4-7, 4-55, 5-31, 5-52
Ring pitch adjustment, installation, A-2
Ring principal once, S-41
Ring tone selection, 4-48
Ring zones, 4-25, 4-49, 5-32, 5-51
Ring-in/answer patterns, 4-24, 5-107
capacity, 1-8
DID numbers, 4-37, S-119
E&M, 2-16
hunt groups, 4-16
programming, 5-106, S-108, S-109, S-120
signal device relays, S-121
trunks, 4-25
RI-type blocks, 2-5, 3-17
RJ-type jacks, 3-17
RJ48C jacks, 3-17
ROM Central Processing Unit (RCPU), 2-6, 2-7, 2-10
a-law/mu-law strap, 2-11
battery back-up strap, 2-10
battery check button, 3-45
battery voltage test point, 2-10
cable terminations, 3-31
cable configuration, 2-11
cable failure relay, 2-11
cable test point, 2-10, 3-61
cable troubleshooting, 6-13, 6-36
connections on RCPU, 2-10
SMDA output device, 2-31
SMDR, output device, 2-31

Safety regulations, xix, 3-3
Save/Restore, 5-4, 5-10, 5-167
SCOS. See station class of service (SCOS)
Screen saver, 5-11
SD keys, 4-42, 5-36, 5-49
Secondary call keys, 4-42, 4-44, 5-28, 5-49
programming, 5-36, 5-37
secondary stations, 5-29
Secondary station, 4-44, 5-29
Security codes, 4-38, 5-112, 5-115
Selectable ring tone, 4-9, 4-48
Selected device SMDA reports, S-140
Serial ports, 2-31
baud rate, 5-169
configuration, 5-169
reset, 5-169
T1C, 2-18
SES (severely error seconds) errors, 5-122
Session timer, 5-11
Setting time and date, 4-111
Signal devices, 2-3, 4-25
RCPU relay, 2-11, 5-73
ring-in, 5-121
Signals and tones, 4-54
Silent messages, 4-58
Single-Line Card (SLC), 1-2, 2-6, 2-12, 4-40
connection to MDF, 3-21, 3-26
external paging circuits, 2-12
installation, 3-51, 352
LED & 2-12, 6-3
thermisters, 2-12
Single-Line Instrument (SLI), installation, A-8, R-8
Single-line sets, 2-29, 4-49
AC/DC ringing, 2-29
alternate message source, 4-60
audible message indication, 5-68
billing, 35
capacity, 1-2, 2-21
features, 1-6
installation, 395
key maps, 5-48, 5-49
LCR only recommendation, 2-14
message lamps, 5-31, 5-52
off-premises stations, 4-49
ring cadence, 5-31
ring zones, 4-25, 4-49, 5-32, 5-51
troubleshooting, 6-13, 6-36
Single-Line Instrument (SLI), 2-29, 449
design features, 2-29
dimensions, 2-29
features & 1-6
figure, 2-48
FLASH key, 44
installation, 395
user-programmable keys, 4-51
Skate-to-bold disconnect, 4-67, 5-69
Slave/master T1 clock, 2-19, 4-35, S-130
SLI. See Single-Line Instrument (SLI)
SMDA. See Station message detail accounting (SMDA)
SMDR. See Station message detail recording (SMDR)
Software
installation, 3-44
packages, 5-3
version feature code, 4-7
Software packages, 1-2
Source of reference clock, S-130
Span jack on T1C, 2-18
SPCL key, 4-4, 4-42, 4-46, 5-36, 5-49
Speakerphone, 2-22, 2-25, 4-9, 4-40
Speakerphone module, A-2
Special purpose flags report, 5-152, 5-163
Special purpose stations, 5-29. 5-38

Speed dialing. 4-85
digit mute, 5-69
DSS/BLF Unit, 4-87
feature codes, 4-7
override toll restriction, 4-2
station, 4-88
pauses/hookflashes, 4-88
PBX/E&M, 4-88
programming, 4-88
system, 4-85
location codes, 4-85
non-display numbers, 4-85
pauses/hookflashes, 4-85
PBX/E&M, 4-85
programming, 4-85
tenant-specific numbers, 4-85

Speed-dial keys
DSS/BLF Unit, 4-50, 4-87, 5-50
keyset, 4-42, 5-36, 5-49

SPKR key. 4-42, 4-46

SPS. See Uninterruptable power supply (UPS)

Stand-alone programming, 5-3, 5-4, 5-7
database update, 5-7
printer drivers, 5-8

Stand-Alone/Remote software, 5-4
installation, 5-4

Standard account codes, 4-66, 5-32, 5-54

Standard tones, 5-69

Standby power supply (SPS). See Uninterruptable power supply (UPS)

Start type for DID, 4-37

Station call monitoring, 4-19

Station class of service (SCOS), 4-27
programming, 4-52, 4-59
speed dial override, 448,445, 5-69
user groups, 5-91

Station exchange. 4-7, 4-99, 5-25, 5-31, 5-52
password, 5-28

Station features
admin. 5-26
misc. flags, 5-28
misc. information, 5-28
outgoing access, 5-28
programmable keys, 5-28
programming, 5-52
secondary call keys, 5-28
secondary stations, 5-29
special purpose stations, 5-29

system forwarding, 5-29
toll restriction, 5-29

Station message detail accounting (SMDA), 4-115
account code reports, 4-115, 5-140
attendant feature code, 4-10,4-W

detailed report, 4-115, 5-140
format, 5-138
output device, 4-115
baud rate, 2-32
installation, 3-98
placement, 3-3
RS-232-C, 2-31
output port, 5-138
programming, 5-138
reporting interval, 5-138
selected device reports, 5-140
summary reports, 4-115, 5-140
troubleshooting, 6-29

Station monitoring
resources, 2-11
tone, 5-69

Station programmable keys, 4-42, 5-35, 5-49
setting to default, 5-46

Station speed dig, 4-88
capacity, 1-8
feature code, 4-7
pauses/hookflashes, 4-88
PBX/E&M, 4-88
programming, 4-88

stations, 2-21
cabling, 3-4, 3-6, 3-7
loop limits, 3-29
capacity, 1-2, 2-12
circuit numbers, 3-6
default configuration, 2-13
feature code, 1-5
installation, 3-62, 4-4, 4-B
programming, 4-10
account codes, 5-32
alternate message source, 5-32
attendant, 5-32
class-of-service account code, 5-32
message center, 5-32
tenant groups, 5-32
programming reports, 5-150

STN SPD key, 4-49

Summary: SMDA reports, 4-115,5-140
Suppress digits after end of dig, 5-69, 5-142
Suppress digits in SMDR, 5-143
Surge/spike protector, 2-9
Switching matrix, 2-6

SYS SPD key, 4-46, 4-49
System alarms, 4-112, 4-125, 5-68, 6-8
System battery back-up, 2-3, 2-9, 2-32
batteries, 2-32
specifications, 2-32
UPS, 2-32

System configuration
default, 5-24
IDC, 5-171
KSC-D, 5-171
move board, 5-171
programming, 5-170
TIC, 5-172

System directory, 4-9, 4-90
System error messages, 5-145
System error reporting, 4-125

System forwarding, 4-79, 5-29
advance timer, 4-79
capacity, 1-8
handfree announce option, 4-80, 5-68
initiate timer, 4-79
path programming, 5-74
programming, 5-41, 5-74
ring principal once, 5-41
timers, 5-83

System hold, 4-67

System memory, 2-6
System passwords, 5-149

System power supply, 2-8
AC power cable, 2-8
back-up power, 2-9
connector pinout, 3-43
electrical test, 3-42
fuses, 2-9
installation, 3-39, 3-40
isolated dedicated circuit, 2-8
modules, 2-8, 5-170
power cable pinout, 3-43
power output, 2-9
surge/spike protector, 2-9
voltage test points, 3-43

System report programming, 5-150
customized, 5-152

System speed dial report, 5-152, 5-164

System speed dialing, 4-85
capacity, 1-8
DSS/BLF Unit, 4-50
feature code, 4-7
location codes, 4-85
non-display numbers, 4-85, 5-75
p - 1/2

PBX/E&M, 4-85
programming, 4-10, 4-85, 5-75
programming station, 5-75
tenant-specific numbers, 4-85, 5-75
toll restriction override, 4-28, 4-85, 5-69

System timers
default values, 5-78, 5-83
programming, 5-77

T1 Card (T1C), 2-17
alarm relay, 2-18, 3-33
audio jack, 2-18
capacity, 2-18
card type, 4-35, 5-122, 5-128
circuits, 2-18, 2-20
configuration, 5-172
connecting two systems, 3-34
clock, 2-17, 2-19
CSU, 2-17, 2-19
CSU/DSX-1, 5-122, 5-128
DB15 connector, 2-18
dialing feedback configuration, 2-19
dialing feedback configuration, 2-19
DSX/CSU jumper plug, 2-18
dual bantam jack, 2-18
dual bantam jack, 2-18
derror diagnostics, 2-20
derror thresholds, 2-19
figure, 3-60
installation, 3-59
LEDs, 2-18, 6-4
line build-out jumper plug, 2-18
make-busy switch, 2-18, 4-37, 5-148
off-premises extension, 2-30
reference clock, 2-19
relay activation, 5-122, 5-129
relays, 2-19, 4-35
serial port, 2-18
dspan jack, 2-18
test tones, 2-19
testing, 2-18
T1 from public network, 5-130
T1 software, 1-2, 5-3
T1 span, 2-17, 4-35
applications, 4-36
cabling, 2-20, 3-17, 3-19, 3-20
cabling limits, 2-17
circuits, 2-17
clock, 2-17, 2-19
clock, 2-17, 2-19
connecting two systems, 2-17, 3-34, 4-35
CSU, 2-17, 2-19
CSU/DSX-1, 4-35, 5-122, 5-128
dialing feedback, 5-122, 5-126
DID digit translation, 5-123
DSX-1 line length, 2-17, 2-19
derror diagnostics, 5-123, 5-131
derror thresholds, 5-122, 5-126
dual bantam jack, 2-18
fractional, 2-17
ing, 2-17, 2-19
interface to public network, 2-17, 2-19
line build-out, 2-17, 2-19
master/slave clock, 2-19
PCU encoding law, 5-122, 5-129
programming, 5-122
receive/transmit gain, 2-20
reference clock, 2-35, 5-122, 5-123, 5-127, 5-130
repeaters, 2-17
RJ48C jack termination, 3-18
test tones, 5-129
tone code suppression scheme, 4-35
Talkback speakers, 2-3

Technical support, 6-41
Telecom motherboard power cable, 2-7, 3-36
Temperature, 2-8, 3-3
Troubleshooting
charts, 6-12, 6-40
checklist, 6-1
diagnostic messages, 6-10
DSS/BLF Unit, 6-13
features, 6-12
keysets, 6-13
LEDs, 6-1
lines, 6-12
major alarms, 6-9
minor alarms, 6-8
single-line sets, 6-13
system, 6-12
Trunk group keys, 4-43, 5-36, 5-49
Trunk group report, 5-152, 5-165
Trunk groups, 2-14, 2-15, 4-31
absorbed digits, 5-113
access codes, 4-5, 5-58
auto trunks, 5-86
call cost, 5-113
capacity, 1-8
DID, 5-107
E&M, 2-16, 5-106, 5-109
equal access, 5-113
exempt from LCR, 5-113
facility groups, 5-101
music-on-hold, 5-109
outgoing access, 5-110
programming, 5-104, 5-106, 5-108, 5-109
ring-in/answer patterns, 5-109
tenant group, 5-87
toll restriction, 5-113
Trunk restriction, 4-26
Trunks
absorbed digits, 4-26
access codes, 4-5
allowed answer, 4-24
auto trunk, 4-31
automatic trunk answer/selection, 4-31
call privacy, 4-74
capacity, 1-2, 1-8
characteristics, 2-5
connection to MDF, 3-11
current DTI detect, 5-104
day/night access, 5-28, 5-34
DID, 4-37
DTMF/dial-pulse signals, 2-14, 4-24, 5-105
E&M interface, 5-104
equal access, 4-27
exempt from LCR, 4-26
features, 1-4, 4-24
ground start, troubleshooting, 6-23
hookflash enable/disable, 5-106
hybrid balance, 2-14, 5-104, 5-147
ignore answer supervision, 5-105
incoming-only, 5-110
initialized values, 5-24
lightning protection, 2-5, 3-12
loop and ground start, 2-14, 4-37, 5-103, 5-104
maintenance, 4-10, 4-37, 4-113, 5-148
music-on-hold selection, 5-110
night mode, 4-25
noise on trunks, 6-22
not releasing, 6-22
outgoing access, 4-24, 5-34
privacy release, 4-74
programming, 5-103

Toll security, 4-30, 4-62, 4-63, 5-97
alarms, 6-8

Tone generator, 2-11
Tones, 4-54
Tool and supplies, 3-3
Transfer, 4-70
DSS/BLF Unit, 4-103
feature codes, 4-7
intercom call, 4-70
outside call, 4-70
recall, 4-71
timers, 5-83
to hold, 4-70
to park, 4-70
troubleshooting, 6-24
unsupervised CO timer, 4-72

Transmit gain, 2-14, 5-33, 5-104
E&M, 2-16
OPX, 5-33
T1, 2-20
trunks, 5-103
Transparent LCR, 4-33

Tenant groups, 4-15
auto trunks, 5-86
capacity, 1-8
cross-tenant communication, 5-67
cross-tenant traffic, 4-15
hunt groups, 4-17
DID groups, 5-87, 5-115
DID trunks, 4-37
programming, 4-107, 5-32, 5-85
speed-dial numbers, 4-85, 5-75
trunk groups, 5-87, 5-109

Terminal blocks, 2-4
Testing equipment for T1C, 2-18
Text box, 5-12
Thermistors, 2-12
Tie lines. See E&M trunks
Time, 5-170
Time blocks, 4-32
Time display, 4-10, 4-41, 4-111, 5-170
Time slots, 2-6
Time-division multiplex (TDM), 2-6, 2-17
Timer report, 5-152, 5-166
Timers
default values, 5-78, 5-83
hut group, 4-18, 5-65
programming, 5-77

TODV (transmit ones density violations) errors, 5-122

Toll digit required option, 4-28, 5-90

Toll restriction, 4-27, 5-29
DISA, 4-38, 5-105, 5-107, 5-112, 5-116
initialized values, 5-24
LCR advances, 5-95
programming, 5-42, 5-88
SCOS, 5-95
speed-dial override, 4-28, 4-85, 5-69
trunk groups, 5-113
user groups, 5-90, 5-91

Toll security, 4-30, 4-62, 4-63, 5-97
alarms, 6-8

Tone generator, 2-11
Tones, 4-54
Tool and supplies, 3-3
Transfer, 4-70
DSS/BLF Unit, 4-103
feature codes, 4-7
intercom call, 4-70
outside call, 4-70
recall, 4-71
timers, 5-83
to hold, 4-70
to park, 4-70
troubleshooting, 6-24
unsupervised CO timer, 4-72

Transmit gain, 2-14, 5-33, 5-104
E&M, 2-16
OPX, 5-33
T1, 2-20
trunks, 5-103
Transparent LCR, 4-33
INDEX
Issue 1, November 1994

INTER-TEL PRACTICES
DMX/GMX 256 INSTALLATION & MAINTENANCE

Trunks continued
- receive/transmit gain, 2–14, 5–33, 5–103, 5–104
- relaxed ring detection, 5–105
- resending, 6–21
- restriction, 4–26
- ring-in/answer patterns, 4–25, 5–111
- timers, 5–78
- troubleshooting, 6–12, 6–18
- trunk groups, 4–31, 5–104

U
- UAS (unavailable second) errors, 5–122
- Undefined keys, 5–43
- Uninterruptable Power Supply (UPS), 2–9, 2–32
- Unsupervised CO timer, 5–84
- attendant recall, 4–105
- call forwarding, 4–83
- DIA, 4–38
- loop start trunks, 4–37
- transfer to outside number, 4–72

UPS. See Uninterruptable power supply (UPS)

User groups, 5–42, 5–90
- capacity, 1–8
- programming, 5–91

User name
- display, 4–41
- programming, 4–107, 5–28, 5–58

User-programmable keys, 4–43, 4–51, 5–36, 5–49
- programming, 5–46
- setting to default, 5–46

V
- Valid call timer, 5–84
- Validated account codes, 4–66, 5–32, 5–33

Voice channels, 2–6
- allocation, 2–7
- capacity, 1–2
- circuit card distribution, 2–6
- non-blocking, 1–2, 5–172

Voice computer
- dial rules, 4–21, 5–63
- DND breakthrough, 4–21
- hunt groups, 4–16, 4–21

Voice mail, 2–3
- alternate message source, 4–60
- automated attendant hunt group, 5–63
- do-not-disturb breakthrough, 5–30, 5–52
- DTMF feedback tones, 4–21, 5–31, 5–52, 5–68
- hunt groups, 4–16, 4–21, 5–61, 5–62
- mailbox validation, 5–69
- on IDC, 2–15
- recall destination, 5–84
- station, 5–38, 5–40
- timer, 5–84
- transfer to, 4–70

Voltage test points
- system, 2–10, 3–45, 3–61
- system power supply, 3–43

Volume controls, 4–48

Volume level troubleshooting, 6–19

W
- Warranty, xx
- Weekly toll limits, 4–30, 4–62, 4–63, 4–83, 5–97
- Windows, 5–12

X
- XFR key, 4–46

Z
- Zero code suppression scheme, 2–17, 2–19, 4–35, 5–122, 5–128