๑Symetrix

460 Presentation Audio Mixer

460 Presentation Audio Mixer

Command Protocol

© 2000-2002 Symetrix, Inc.
All rights reserved.
Printed in the United States of America
The information in this guide is subject to change without notice. Symetrix, Inc. shall not be liable for technical or editorial errors or omissions contained herein; nor is it liable for incidental or consequential damages resulting from the furnishing, performance, or use of this material.

Mention of third-party products is for informational purposes only and constitutes neither an endorsement nor a recommendation. Symetrix assumes no responsibility with regard to the performance or use of these products.

Under copyright laws, no part of this user guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, without permission in writing from Symetrix, Inc. If, however, your only means of access is electronic, permission to print one copy is hereby granted. Permission to copy the Architects and Engineers Specifications for written proposals specifying equipment for sound reinforcement systems is, also, granted.

Product names mentioned herein may be trademarks and/or registered trademarks of their respective companies.

Symetrix, Inc.
6408 216th St. SW
Mountlake Terrace WA 98043
USA
Tel: (425) 778-7728
Fax: (425) 778-7727
Web: http://www.symetrixaudio.com
E-mail: tech@symetrixaudio.com

Contents

Introduction 5
About this document 5
Conventions used in this document 5
Getting Started 5
Data string format 5
Data string construction 5
Send data string example 5
Receive data string example 5
Return Codes 6
PA-422 ANNEX A defined status codes 6
460 specific status codes 6
Device type codes 6
Manufacturer's code 6
Checksum 6
Commands 6
\$82 Load Program 6
\$83 Set Program Pointer 7
\$85 Lock Device 7
\$86 Unlock Device 8
\$87 Mute Output(s) 8
\$88 Unmute Output(s) 8
\$89 Mute All Outputs 9
\$8A Unmute All Outputs 9
\$93 Save Program 9
\$94 Set System Data 10
\$A0 Send Parameter Data 10
\$A1 Send Program Name 11
\$00 Get Operational Status 11
\$02 Get Device Type and Device ID 11
\$12 Get Software Statistics 12
\$20 Receive Parameter Data 12
\$21 Read Program Name 13
\$22 Get Real-Time Status 13
Global Load Program 14
Parameter Definition 14
Parameter Indexes 14
Parameter Encoding Tables 16
Ratio1 16
Gain1 16
Gain2 17
Thresh1 18
Freq1 19
Delay1 20
Bw1 20

Introduction

About this document

The purpose of this document is to provide a technical understanding of the Symetrix 460 Presentation Audio Mixer Command Protocol. It will define and illustrate the data string structure used to communicate with the 460 via a serial RS-232 or RS-485.

Conventions used in this document

A dollar sign " $\$$ " preceding a set of two alphanumeric characters denotes a hex value. All other number values should be considered decimal values. Ex., "\$A0" represents the decimal value of " 160 ".

Getting Started

Data string format

We can say, for purposes of illustration, that the data string is made up of three parts; the address header, the MSB and LSB byte count. The address header consists of the address escape byte, $\langle \$$ FB $>$, and the number of the addressed unit, <\$ADDR>. The <\$FB> signals the beginning of a data string as well as an escape for the end of one. Anywhere a $<\$ \mathrm{FB}>$ byte is present in the outgoing data stream, it must be escaped with another $<\$ \mathrm{FB}>$ byte to indicate that the byte is to be treated as a data value and not the address mark. This additional escape byte is not factored into the checksum. The <\$ADDR> is the unit ID number (\$01-\$FA or 1-250; an address of \$00 or 0 is used for global or "broadcast" type commands). The MSB and LSB byte count indicate the number of bytes to follow (not including any <\$FB> escape bytes). The MSB and LSB together are treated as a 16 bit unsigned quantity, the MSB being the upper byte and the LSB the lower. The MSB will always be zero unless the command stream is more than 255 bytes long.

Here is another way to look at it:

PART	LENGTH	DESCRIPTION
Address Header	2 bytes	byte 1: Escape byte <\$FB>
		byte 2: Device Address <\$ADDR > (\$01-\$FA or 1-250; $0=$ global)
Data String Size	2 bytes	byte 1: MSB = normally zero (see above paragraph)
		byte 2: LSB = Command (1 byte) + Parameters (nn bytes) + Checksum (1 byte)
Command \&	1 byte	For example, \$A0 (Send Parameter Data)
Parameters	nn bytes	Format and size varies by command type (See Parameter Indexes, pgs. 13-14)
Checksum	1 byte	See Checksum on page 5

Data string construction

An example command string: Set IN 1 -> BUS 1 Gain to maximum output level using \$A0 Send Parameter Data.

An example return status string: No error.

$\$ 01$,	$\$ 46$,				
Device ID	Device Type	Manufactur- ers' Code	$\$ 00$,	$\$ 02$,	$\$ 00$,

Return codes

Returned status codes (PA-422 ANNEX A defined):
\$00: no error
\$01: invalid data
\$02: invalid command code
\$03: device locked
\$04: device not locked
\$05: channel(s) muted
\$06: channel(s) not muted

460 specific status codes:
\$07: checksum error
\$10: flash write error
\$11: invalid S Record
\$12: invalid password
\$13: command failed
Device Type Code:
\$46: 460 Multimedia Mixer
Manufacturers' Code:
\$38: Symetrix

Checksum

The checksum is the 2's complement of the LSB byte of the (32 bit internal) checksum. To compute the checksum, ignore the initial <\$FB> and <\$ADDR> bytes of the string so you are left with the MSB, LSB, command, and parameter data. Add the remaining bytes. Here is a simple formula:

```
sum = sum AND $FF :make sure the sum is less than $100 (256 in decimal)
checksum = $100 - sum :take the two's complement of sum
Example:
Data String with out checksum: $FB, $01, $00, $04,$A0, $04, $BB (251, 1, 0, 4, 160, 4, 187 in decimal)
Remove FB and address bytes: $00, $4,$A0, $4,$BB (0, 4, 160, 4, 187 in decimal)
Add remaining bytes: $163 (355 in decimal)
Ignore all but the bottom byte: $63 (99 in decimal)
Two's compliment: $9D (157 in decimal)
Data String with checksum: $FB,$1,$0,$4,$A0,$4,$BB,$9D (251, 1, 0, 4, 160, 4, 187, 157 in decimal)
```


Commands

$\$ 82$ Load Program - Loads a program into the edit buffer
Example: Load program 1
<\$FB, \$01, \$00, \$03, \$82, \$01, \$7A>

SEND RECEIVE	DESCRIPTION
\$FB	address mark
$\$$ ADDR	unit address (1-250)
$\$ 00$	(MSB) number of bytes to follow
$\$ 03$	(LSB) including command and checksum
$\$ 82$	command
$\$ n n$	memory number (1-8)
$\$ n n$	checksum (of all sent bytes after addressing)
	\$ADDR
$\$ D T$	unit address (1-250)
$\$ I D$	device type
$\$ 00$	manufacturer's code
$\$ 02$	(MSB) number of bytes to follow
$\$ n n$	(LSB) including status and checksum
$\$ n n$	returned status
	checksum (of all returned bytes)

\$83 Set Program Pointer - deferred load program
Note: Receiving a global load program command (address mark + unit address of 0) will load the program number set in this command. See Command: Global Load Program on page 13.

SEND	RECEIVE	DESCRIPTION
$\$ F B$	address mark	
$\$$ ADDR	unit address (1-250)	
$\$ 00$	(MSB) number of bytes to follow	
$\$ 03$	(LSB) including command and checksum	
$\$ 83$	command	
$\$ n n$		program pointer (0 = off, 1-8 = program memory)
checksum (of all sent bytes after addressing)		
	$\$ A D D R$	unit address (1-250)
	$\$ D T$	device type
	$\$ I D$	manufacturer's code
	$\$ 00$	(MSB) number of bytes to follow,
	$\$ 02$	(LSB) including status and checksum
	$\$ n n$	returned status
	$\$ n n$	checksum (of all returned bytes)

\$85 Lock Device

Lock states are controlled by setting bits in the lock word that is 16 bits long (for future expandibility). Locks for the front panel and the remote control are handled separately. A set bit enables the appropriate lock.

For the remote interface and rear panel inputs:
BIT Function
$0 \quad$ Disables program stores
$1 \quad$ Changes to the edit buffer are disabled except for output level control
2 Changes to the edit buffer output level parameters are disabled
3 Program loads from RS-232/RS-485 are disabled
For the front panel:
BIT Function
$0 \quad$ Disables program stores
$1 \quad$ Changes to the edit buffer are disabled except for output level control
2 All parameter changes are locked
3 Program loads are disabled
$4 \quad$ Changes are disabled from the external A/D inputs
5 Program loads from the external program pins are disabled

SEND RECEIVE DESCRIPTION

\$FB		address mark
\$ADDR		unit address (1-250)
\$00		(MSB) number of bytes to follow
\$16		(LSB) including command and checksum
\$85		command
\$nn		password (16 bytes, 0 filled) If no password was stored in the device then this field is ignored
\$nn		(MSB) rear/remote lock level
\$nn		(LSB) rear/remote lock level
\$nn		(MSB) front lock level
\$nn		(LSB) front lock level
\$nn		checksum (of all sent bytes after addressing)
	\$ADDR	unit address (1-250)
	\$DT	device type
	\$ID	manufacturer's code
	\$00	(MSB) number of bytes to follow
	\$02	(LSB) including status and checksum
	\$nn	returned status
	\$nn	checksum (of all returned bytes)

SEND RECEIVE DESCRIPTION

\$FB		address mark
\$ADDR		unit address (1-250)
\$00		(MSB) number of bytes to follow
\$22		(LSB) including command and checksum
\$86		command
\$nn		password (16 bytes, 0 filled) If no password was stored in the
\$78		checksum (of all sent bytes after addressing)
	\$ADDR	unit address (1-250)
	\$DT	device type
	\$ID	manufacturer's code
	\$00	(MSB) number of bytes to follow
	\$02	(LSB) including status and checksum
	\$nn	returned status
	\$nn	checksum (of all returned bytes)

\$87 Mute Output(s)

SEND	RECEIVE	DESCRIPTION
\$FB		address mark
\$ADDR		unit address (1-250)
\$00		(MSB) number of bytes to follow
\$03		(LSB) including command and checksum
\$87		command
\$nn		output channel ($0=$ all, $1=$ stereo output 1, $2=$ stereo output 2)
\$nn		checksum (of all sent bytes after addressing)
	\$ADDR	unit address (1-250)
	\$DT	device type
	\$ID	manufacturer's code
	\$00	(MSB) number of bytes to follow
	\$02	(LSB) including status and checksum
	\$nn	returned status
	\$nn	checksum (of all returned bytes)

\$88 Unmute Output(s)

SEND	RECEIVE	DESCRIPTION
\$FB		address mark
\$ADDR		unit address (1-250)
\$00		(MSB) number of bytes to follow
\$03		(LSB) including command and checksum
\$88		command
\$nn		output channel ($0=$ all, $1=$ stereo output 1, $2=$ stereo output 2$)$
\$nn		checksum (of all sent bytes after addressing)
	\$ADDR	unit address (1-250)
	\$DT	device type
	\$ID	manufacturer's code
	\$00	(MSB) number of bytes to follow
	\$02	(LSB) including status and checksum
	\$nn	returned status
	\$nn	checksum (of all returned bytes)

SEND	RECEIVE
\$FB	DESCRIPTION
\$ADDR	address mark
$\$ 00$	unit address (1-250)
$\$ 02$	(MSB) number of bytes to follow
$\$ 89$	(LSB) including command and checksum
$\$ 75$	command
	checksum (of all sent bytes after addressing)
\$ADDR	unit address (1-250)
\$DT	device type
\$ID	manufacturer's code
\$00	(MSB) number of bytes to follow
\$02	(LSB) including status and checksum
\$nn	returned status
\$nn	checksum (of all returned bytes)

\$8A Unmute All Outputs

SEND RECEIVE
 DESCRIPTION

\$FB	address mark
\$ADDR	unit address (1-250)
$\$ 00$	(MSB) number of bytes to follow
$\$ 02$	(LSB) including command and checksum
$\$ 8 \mathrm{~A}$	
$\$ 74$	command
	checksum (of all sent bytes after addressing)
\$ADDR	unit address (1-250)
\$DT	device type
\$ID	manufacturer's code
\$00	(MSB) number of bytes to follow
\$02	(LSB) including status and checksum
\$nn	returned status
$\$ n n$	checksum (of all returned bytes)

\$93 Save Program

Note: Two consecutive saves of program 255 will initialize all programs and global parameters.
SEND RECEIVE DESCRIPTION

```
$FB
$ADDR
$00
$03
$93
$nn
$nn
```

\$ADDR unit address (1-250)
\$DT device type
\$ID manufacturer's code
$\$ 00 \quad$ (MSB) number of bytes to follow
\$02 (LSB) including status and checksum
\$nn returned status
\$nn checksum (of all returned bytes)

Note: Although it is possible to read from the edit buffer and any stored program using command $\$ 20$, writing into the program storage EEPROM requires that the edit buffer be updated, then a save to program, command $\$ 93$, be executed.

SEND RECEIVE DESCRIPTION

\$FB		address mark
\$ADDR		unit address (1-250)
\$nn		(MSB) number of bytes to follow
\$nn		(LSB) including command, data and checksum
\$A1		command
\$nn		first program name character
\nn\$ n n$		last program name character
		checksum (of all sent bytes after addressing)
	\$ADDR	unit address (1-250)
	\$DT	device type
	\$ID	manufacturer's code
	\$00	(MSB) number of bytes to follow
	\$02	(LSB) including status and checksum
	\$nn	returned status
	\$nn	checksum (of all returned bytes)

\$00 Get Operational Status

SEND	RECEIVE	DESCRIPTION
\$FB		address mark
\$ADDR		unit address (1-250)
\$00		(MSB) number of bytes to follow
\$02		(LSB) including command and checksum
\$00		command
\$FE		checksum (of all sent bytes after addressing)
	\$ADDR	unit address (1-250)
	\$DT	device type
	\$ID	manufacturer's code
	\$00	(MSB) number of bytes to follow
	\$05	(LSB) including status and checksum
	\$nn	current program pointer ($0=$ not active)
	\$nn	1 = edit buffer modified
	\$nn	last error status (0 if none)
	\$nn	returned status
	\$nn	checksum (of all returned bytes)

\$02 Get Device Type and ID

SEND	RECEIVE	DESCRIPTION
\$FB		address mark
\$ADDR		unit address (1-250)
\$00		(MSB) number of bytes to follow
\$02		(LSB) including command and checksum
\$12		command
\$EC		checksum (of all sent bytes after addressing)
	\$ADDR	unit address (1-250)
	\$DT	device type
	\$ID	manufacturer's code
	\$00	(MSB) number of bytes to follow
	\$44	(LSB) including status and checksum
	\$nn	16 byte password
	\$inn	16 byte device name
	$\dot{\text { \$nn }}$	revision number *10
	\$nn	day
	\$nn	month
	\$nn	year (20<nn>)
	\$nn	reserved
	\$nn	(MSB) rear/remote lock level
	\$nn	(LSB) rear/remote lock level
	\$nn	(MSB) front lock level
	\$nn	(LSB) front lock level
	\$nn	inputs $1 \& 2$ operating mode ($0=$ separate mono, 1 = combined stereo)
	-•	in revisions 1.08 and above, the upper 4 bits have additional meaning:
		bit 4 clear = input 3 is separate mono
		bit 4 set = input 3 is combined stereo
		bit 5 clear = input 4 is separate mono
		bit 5 set = input 4 is combined stereo
		bit 6 clear = input 5 is separate mono
		bit 6 set = input 5 is combined stereo
		bit 7 clear $=$ input 6 is separate mono bit 7 set $=$ input 6 is combined stereo
	\$nn	return status \quad bit 7 set $=$ input 6 is combined stereo
	\$nn	checksum (of all returned bytes)

\$20 Receive Parameter Data

Note: Executing this command resets the 'EBCHANGED_LOCAL' (bit 1) flag in the real-time status command so that the front panel will no longer display the program as "dirty" or changed.

\$21 Read Program Name

Note: Although it isn't possible to write into any arbitrary program store in the EEPROM, it is possible to read data from any arbitrary program or edit buffer location.

SEND	RECEIVE	DESCRIPTION
\$FB		address mark
\$ADDR		unit address (1-250)
\$00		(MSB) number of bytes to follow
\$03		(LSB) including command and checksum
\$21		command
\$nn		program to read from ($0=$ edit buffer, 1-8 = user programs)
\$nn		checksum (of all sent bytes after addressing)
	\$ADDR	unit address (1-250)
	\$DT	device type
	\$ID	manufacturer's code
	\$nn	(MSB) number of bytes to follow
	\$nn	(LSB) including status and checksum
	\$nn	name string
	-	Note: name string is not necessarily ' 10 ' terminated
	\$nn	returned status
	\$nn	checksum (of all returned bytes)

\$22 Get Real-time Status

SEND RECEIVE DESCRIPTION

\$FB	address mark
\$ADDR	unit address (1-250)
\$00	(MSB) number of bytes to follow
$\$ 02$	
(LSB) including command and checksum	
\$DC	
	command: get real-time data checksum (of all sent bytes after addressing)
	\$ADDR

Note: Level values are $0.5 \mathrm{~dB} /$ step below 0 dBFS with a value of zero indicating 0 dBFS . Likewise, gate and compression attenuation is also $0.5 \mathrm{~dB} /$ step below 0 dBFS .

\$nn	IN 1 input level
$\$ n n$	IN 1 gate expansion
$\$ n n$	IN 2 input level
$\$ n n$	IN 2 gate expansion
$\$ n n$	IN 3L input level
$\$ n n$	IN 3R input level
$\$ n n$	IN 4L input level
$\$ n n$	IN 4R input level
$\$ n n$	IN 5L input level
$\$ n n$	IN 5R input level
$\$ n n$	IN 6L input level
$\$ n n$	IN 6R input level
$\$ n n$	OUT 1L output level
$\$ n n$	OUT 1R output level
$\$ n n$	OUT 1 output compression
$\$ n n$	OUT 2L output level
$\$ n n$	OUT 2R output level
$\$ n n$	OUT 2 output compression
$\$ n n$	Reserved
$\$ n n$	Reserved

Map of overload status bits. The bit is set if in overload, cleared after 3 seconds of inactivity.

	BIT	MODULE
\$nn	0	internal stereo bus 1 (either L or R)
	1	internal stereo bus 2 (either L or R)
	2	output 1 parametric (either L or R)
	3	output 2 parametric (either L or R)
	4	output 1 hold state ($0=$ following signal, $1=$ holding compression)
	5	output 2 hold state ($0=$ following signal, $1=$ holding compression)
\$nn		current program

Note: The top bit will be set if edit buffer has been changed by the front panel. The bit will be reset upon the next reading of the changed parameter(s) using \$20 Receive Parameter Data.

$\$ n n$	edit buffer changed flag Bit 0 set: edit buffer different from stored program Bit 1 set: changed since last status read
$\$ n n$	System settings changed flag
$\$ n n$	Bit 0 set: changed since the last $\$ 12$ Get Software Statistics command. Mute status: Bits $0-2$ set indicate output channels 1L/1R, 2L/2R respectively are muted
$\$ n n$	return status checksum (of all returned bytes)

Global Load Program - This is a special "broadcast" type command that will load the program that has been set up with command $\$ 83$ Set Program Pointer into all units that have received a non-zero preset load value. Any unit with a zero value for the preset load will ignore this command.

SEND RECEIVE	DESCRIPTION
$\$$ FB	address mark
$\$ 00$	load program pointed to by program pointer

Parameter Definition

Parameter Indexes

Note: To simplify the controlling GUI it is possible to bypass some individual modules by setting bit 7 in one of their parameters. This alleviates the need to remember their values when adjusting the bypass state. The variable used for the bypass function varies with the module (see below):

1. The Parametric module uses Boost/Cut Gain
2. The Gate/Compression module uses Ratio

In addition, the bus gains and output gains can be muted by setting bit 7 in their respective gain parameters.
PARAMETER INDEX FUNCTION MAPPING TABLE

Channel 1 Input

$\$ 00$	High Pass In/Out	0: Out, 1: In
$\$ 01$	Low Pass In/Out	0: Out, 1: In
$\$ 02$	Gate Threshold	Thresh1
$\$ 03$	Gate Depth	Thresh1
$\$ 04$	Bus 1 Gain	Gain2
$\$ 05$	Bus 2 Gain	Gain2

Channel 2 Input

$\$ 06$	High Pass In/Out
$\$ 07$	Low Pass In/Out
$\$ 08$	Gate Threshold
$\$ 09$	Gate Depth
$\$ 0 A$	Bus 1 Gain
$\$ 0 B$	Bus 2 Gain

0: Out, 1: In
0 : Out, 1: In
Thresh1
Thresh1
Gain2
Gain2
Channel 3 Input (3L/3R)
\$0C
\$0D
Channel 4 Input (4L/4R)
\$0E

$\$ 0 \mathrm{E}$	Bus 1 Gain
$\$ 0 \mathrm{~F}$	Bus 2 Gain
Channel 5 Input (5L/5R)	
$\$ 10$	Bus 1 Gain

Gain2
Gain2
\$10
Bu
Gain2
Gain2
Channel 6 Input (6L/6R)
$\$ 12 \quad$ Bus 1 Gain Gain2
\$13 Bus 2 Gain Gain2
Channel 1 Output (1L/1R)

$\$ 14$	Low Shelving Boost/Cut
$\$ 15$	Mid Eq Boost/Cut
$\$ 16$	Mid Eq Frequency
$\$ 17$	Mid Eq Band Width
$\$ 18$	Hi Shelving Boost/Cut
$\$ 19$	Compressor Mode
$\$ 1 A$	Compressor Threshold
$\$ 1 B$	AGC Autorelease Threshold
$\$ 1 C$	Compressor Ratio
$\$ 1 D$	Compressor Makeup Gain
$\$ 1 E$	Output Delay
$\$ 1 F$	Stereo Output Gain
$\$ 20$	Mono/Stereo

Gain1
Gain1
Freq1
Bw1
Gain1
0: Bypassed, 1: Limit, 2: Compressor, 3: AGC
Thresh1
Thresh1
Ratio1
Gain1 + 12 dB , set to 0 for limiter mode
Delay1
Gain2
0 : mono, 1: stereo
Channel 2 Output (2L/2R)

$\$ 21$	Low Shelving Boost/Cut
$\$ 22$	Mid Eq Boost/Cut
$\$ 23$	Mid Eq Frequency
$\$ 24$	Mid Eq Band Width
$\$ 25$	Hi Shelving Boost/Cut
$\$ 26$	Compressor Mode
$\$ 27$	Compressor Threshold
$\$ 28$	AGC Autorelease Threshold
$\$ 29$	Compressor Ratio
$\$ 2 A$	Compressor Makeup Gain
$\$ 2 B$	Output Delay
$\$ 2 C$	Stereo Output Gain
$\$ 2 D$	Mono/Stereo

Gain1
Gain1
Freq1
Bw1
Gain1
0: Bypassed, 1: Limit, 2: Compressor, 3: AGC
Thresh1
Thresh1
Ratio1
Gain1 + 12, set to 0 for limiter mode
Delay1
Gain2
0 : mono, 1: stereo

Test Oscillator Output

$\begin{array}{ll}\text { \$2E } & \text { Test oscillator type } \\ \$ 2 F & \text { Test oscillator }\end{array}$
\$30 Test oscillator bus 1L
\$31 Test oscillator bus 1R
\$32 Test oscillator bus 2L
\$33 Test oscillator bus 2R
0 : sine, 1: pink, 2: white
freq (sine only)
attenuation only, $0-100 \mathrm{~dB}$
attenuation only, 0-100dB
attenuation only, 0-100dB
attenuation only, $0-100 \mathrm{~dB}$

Program Name

\$34...\$43 Program name 16 characters, null filled

ADC Controllers

ADC1 control destination
ADC2 control destination

0: off, 1: Out 1 Gain, 2: Out 2 Gain, 3: Out 1/2 Gain
0 : off, 1: Out 1 Gain, 2: Out 2 Gain, 3: Out 1/2 Gain

For when Channels 3-6 are in SEPARATE MONO mode

$\$ 46$	3R Bus 1 Gain	Gain2
$\$ 47$	3R Bus 2 Gain	Gain2
$\$ 48$	4R Bus 1 Gain	Gain2
$\$ 49$	4R Bus 2 Gain	Gain2
$\$ 4 A$	5R Bus 1 Gain	Gain2
$\$ 4 B$	5R Bus 2 Gain	Gain2
$\$ 4 C$	6R Bus 1 Gain	Gain2
$\$ 4 D$	6R Bus 2 Gain	Gain2

PARAMETER INDEX FUNCTION MAPPING TABLE

ADC Controllers	ADC1 control destination	$0:$ off, 1: Out 1 Gain, 2: Out 2 Gain, 3: Out 1/2 Gain
$\$ 44$	ADC2 control destination	$0:$ off, 1: Out 1 Gain, 2: Out 2 Gain, 3: Out 1/2 Gain

For when Channels 3-6 are in SEPARATE MONO mode

$\$ 46$	3R Bus 1 Gain	Gain2
$\$ 47$	3R Bus 2 Gain	Gain2
$\$ 48$	4R Bus 1 Gain	Gain2
$\$ 49$	4R Bus 2 Gain	Gain2
$\$ 4 A$	5R Bus 1 Gain	Gain2
$\$ 4 B$	5R Bus 2 Gain	Gain2
$\$ 4 C$	6R Bus 1 Gain	Gain2
$\$ 4 D$	6R Bus 2 Gain	Gain2

Parameter Encoding Tables

Ratio1: 1.0 to 6.0 in 0.2 steps. 6.0 to 20.0 in 1.0 steps. Encoded from 0 to 39, where $0=1.0$ and $39=20.0$							
$\$ 00$	1.0	$\$ 0 A$	3.0	$\$ 14$	5.0	$\$ 1 \mathrm{E}$	11.0
$\$ 01$	1.2	$\$ 0 B$	3.2	$\$ 15$	5.2	$\$ 1 F$	12.0
$\$ 02$	1.4	$\$ 0 C$	3.4	$\$ 16$	5.4	$\$ 20$	13.0
$\$ 03$	1.6	$\$ 0 D$	3.6	$\$ 17$	5.0	$\$ 21$	14.0
$\$ 04$	1.8	$\$ 0 E$	3.8	$\$ 18$	5.8	$\$ 22$	15.0
$\$ 05$	2.0	$\$ 0 F$	4.0	$\$ 19$	6.0	$\$ 23$	16.0
$\$ 06$	2.2	$\$ 10$	4.2	$\$ 1 A$	7.0	$\$ 24$	17.0
$\$ 07$	2.4	$\$ 11$	4.4	$\$ 1 B$	8.0	$\$ 25$	18.0
$\$ 08$	2.6	$\$ 12$	4.6	$\$ 1 C$	9.0	$\$ 26$	19.0
$\$ 09$	2.8	$\$ 13$	4.8	$\$ 10$	10.0	$\$ 27$	20.0

Gain1: $+/-12 \mathrm{~dB}$ in 0.5 dB steps, encoded from 0 to 48 , where $0=-12.0 \mathrm{~dB}, 24=0 \mathrm{~dB}$ and $48=+12.0 \mathrm{~dB}$. For the case of makeup gain, the range is shifted by internally adding 24 dB of gain to the given value.

\$00	$-12.0 \mathrm{~dB}$	\$0D	$-5.5 \mathrm{~dB}$	\$19	$+0.5 \mathrm{~dB}$	\$25	+ 6.5 dB
\$01	-11.5dB	\$0E	$-5.0 \mathrm{~dB}$	\$1A	$+1.0 \mathrm{~dB}$	\$26	$+7.0 \mathrm{~dB}$
\$02	-11.0dB	\$0F	$-4.5 \mathrm{~dB}$	\$1B	$+1.5 \mathrm{~dB}$	\$27	$+7.5 \mathrm{~dB}$
\$03	$-10.5 \mathrm{~dB}$	\$10	$-4.0 \mathrm{~dB}$	\$1C	$+2.0 \mathrm{~dB}$	\$28	+ 8.0 dB
\$04	$-10.0 \mathrm{~dB}$	\$11	$-3.5 \mathrm{~dB}$	\$1D	$+2.5 \mathrm{~dB}$	\$29	$+8.5 \mathrm{~dB}$
\$05	$-9.5 \mathrm{~dB}$	\$12	- 3.0dB	\$1E	$+3.0 \mathrm{~dB}$	\$2A	+ 9.0 dB
\$06	-9.0dB	\$13	- 2.5 dB	\$1F	$+3.5 \mathrm{~dB}$	\$2B	$+9.5 \mathrm{~dB}$
\$07	-8.5dB	\$14	- 2.0dB	\$20	$+4.0 \mathrm{~dB}$	\$2C	+10.0 dB
\$08	-8.0dB	\$15	$-1.5 \mathrm{~dB}$	\$21	$+4.5 \mathrm{~dB}$	\$2D	+10.5dB
\$09	$-7.5 \mathrm{~dB}$	\$16	$-1.0 \mathrm{~dB}$	\$22	$+5.0 \mathrm{~dB}$	\$2E	+11.0dB
\$0A	- 7.0 dB	\$17	$-0.5 \mathrm{~dB}$	\$23	$+5.5 \mathrm{~dB}$	\$2F	+11.5dB
\$0B	$-6.5 \mathrm{~dB}$	\$18	0.0 dB	\$24	$+6.0 \mathrm{~dB}$	\$30	+12.0dB
\$0c	-6.0dB						

Gain2: OFF to -90 dB to -60 dB in 1 dB steps. -60 dB to +18 dB in 0.5 dB steps. Encoded from 0 to 187 , where $0=O F F$.							
\$00	OFF	\$2F	-52.0dB	\$5E	-28.5dB	\$8D	- 5.0 dB
\$01	-90.0dB	\$30	$-51.5 \mathrm{~dB}$	\$5F	$-28.0 \mathrm{~dB}$	\$8E	- 4.5 dB
\$02	-89.0dB	\$31	-51.0dB	\$60	$-27.5 \mathrm{~dB}$	\$8F	- 4.0 dB
\$03	-88.0dB	\$32	$-50.5 \mathrm{~dB}$	\$61	$-27.0 \mathrm{~dB}$	\$90	- 3.5 dB
\$04	-87.0dB	\$33	-50.0dB	\$62	$-26.5 \mathrm{~dB}$	\$91	- 3.0 dB
\$05	-86.0dB	\$34	-49.5dB	\$63	$-26.0 \mathrm{~dB}$	\$92	- 2.5 dB
\$06	-85.0dB	\$35	-49.0dB	\$64	$-25.5 \mathrm{~dB}$	\$93	-2.0dB
\$07	-84.0dB	\$36	-48.5dB	\$65	-25.0dB	\$94	$-1.5 \mathrm{~dB}$
\$08	-83.0dB	\$37	-48.0dB	\$66	-24.5dB	\$95	- 1.0dB
\$09	-82.0dB	\$38	-47.5dB	\$67	-24.0dB	\$96	- 0.5 dB
\$0A	-81.0dB	\$39	-47.0dB	\$68	$-23.5 \mathrm{~dB}$	\$97	0.0 dB
\$0B	-80.0dB	\$3A	-46.5dB	\$69	$-23.0 \mathrm{~dB}$	\$98	$+0.5 \mathrm{~dB}$
\$0C	$-79.0 \mathrm{~dB}$	\$3B	-46.0dB	\$6A	$-22.5 \mathrm{~dB}$	\$99	$+1.0 \mathrm{~dB}$
\$0D	$-78.0 \mathrm{~dB}$	\$3C	-45.5dB	\$6B	$-22.0 \mathrm{~dB}$	\$9A	$+1.5 \mathrm{~dB}$
\$0E	$-77.0 \mathrm{~dB}$	\$3D	-45.0dB	\$6C	$-21.5 \mathrm{~dB}$	\$9B	+ 2.0 dB
\$0F	$-76.0 \mathrm{~dB}$	\$3E	-44.5dB	\$6D	$-21.0 \mathrm{~dB}$	\$9C	+ 2.5 dB
\$10	$-75.0 \mathrm{~dB}$	\$3F	-44.0dB	\$6E	$-20.5 \mathrm{~dB}$	\$9D	$+3.0 \mathrm{~dB}$
\$11	$-74.0 \mathrm{~dB}$	\$40	$-43.5 \mathrm{~dB}$	\$6F	$-20.0 \mathrm{~dB}$	\$9E	$+3.5 \mathrm{~dB}$
\$12	$-73.0 \mathrm{~dB}$	\$41	-43.0dB	\$70	$-19.5 \mathrm{~dB}$	\$9F	$+4.0 \mathrm{~dB}$
\$13	$-72.0 \mathrm{~dB}$	\$42	-42.5dB	\$71	$-19.0 \mathrm{~dB}$	\$A0	+ 4.5 dB
\$14	$-71.0 \mathrm{~dB}$	\$43	-42.0dB	\$72	$-18.5 \mathrm{~dB}$	\$A1	+ 5.0 dB
\$15	$-70.0 \mathrm{~dB}$	\$44	-41.5dB	\$73	$-18.0 \mathrm{~dB}$	\$A2	+ 5.5 dB
\$16	- 69.0 dB	\$45	-41.0dB	\$74	$-17.5 \mathrm{~dB}$	\$A3	$+6.0 \mathrm{~dB}$
\$17	$-58.0 \mathrm{~dB}$	\$46	-40.5dB	\$75	$-17.0 \mathrm{~dB}$	\$A4	+ 6.5 dB
\$18	$-67.0 \mathrm{~dB}$	\$47	-40.0dB	\$76	$-16.5 \mathrm{~dB}$	\$A5	$+7.0 \mathrm{~dB}$
\$19	$-66.0 \mathrm{~dB}$	\$48	$-39.5 \mathrm{~dB}$	\$77	$-16.0 \mathrm{~dB}$	\$A6	$+7.5 \mathrm{~dB}$
\$1A	-65.0dB	\$49	-39.0dB	\$78	$-15.5 \mathrm{~dB}$	\$A?	$+8.0 \mathrm{~dB}$
\$18	-64.0dB	\$4A	$-38.5 \mathrm{~dB}$	\$79	$-15.0 \mathrm{~dB}$	\$ ${ }^{\text {8 }}$	+ 8.5 dB
\$1C	- 53.0 dB	\$4B	$-38.0 \mathrm{~dB}$	\$7A	$-14.5 \mathrm{~dB}$	\$A9	+ 9.0 dB
\$10	$-62.0 \mathrm{~dB}$	\$4C	$-37.5 \mathrm{~dB}$	\$7B	$-14.0 \mathrm{~dB}$	\$AA	+ 9.5 dB
\$1E	- 51.0 dB	\$4D	-37.0dB	\$7C	$-13.5 \mathrm{~dB}$	\$AB	+10.0dB
\$1F	$-50.0 \mathrm{~dB}$	\$4E	-36.5dB	\$70	$-13.0 \mathrm{~dB}$	\$AC	+10.5dB
\$20	$-59.5 \mathrm{~dB}$	\$4F	-36.0dB	\$7E	$-12.5 \mathrm{~dB}$	\$AD	+11.0dB
\$21	$-59.0 \mathrm{~dB}$	\$50	$-35.5 \mathrm{~dB}$	\$7F	$-12.0 \mathrm{~dB}$	\$AE	$+11.5 \mathrm{~dB}$
\$22	$-58.5 \mathrm{~dB}$	\$51	-35.0dB	\$80	$-11.5 \mathrm{~dB}$	\$AF	+12.0dB
\$23	$-58.0 \mathrm{~dB}$	\$52	$-34.5 \mathrm{~dB}$	\$81	$-11.0 \mathrm{~dB}$	\$B0	$+12.5 \mathrm{~dB}$
\$24	$-57.5 \mathrm{~dB}$	\$53	-34.0dB	\$82	$-10.5 \mathrm{~dB}$	\$B1	+13.0dB
\$25	$-57.0 \mathrm{~dB}$	\$54	$-33.5 \mathrm{~dB}$	\$83	$-10.0 \mathrm{~dB}$	\$B2	$+13.5 \mathrm{~dB}$
\$26	$-56.5 \mathrm{~dB}$	\$55	$-33.0 \mathrm{~dB}$	\$84	- 9.5 dB	\$B3	$+14.0 \mathrm{~dB}$
\$27	$-56.0 \mathrm{~dB}$	\$56	$-32.5 \mathrm{~dB}$	\$85	- 9.0dB	\$B4	$+14.5 \mathrm{~dB}$
\$28	$-55.5 \mathrm{~dB}$	\$57	$-32.0 \mathrm{~dB}$	\$86	$-8.5 \mathrm{~dB}$	\$B5	+15.0dB
\$29	$-55.0 \mathrm{~dB}$	\$58	$-31.5 \mathrm{~dB}$	\$87	-8.0dB	\$B6	$+15.5 \mathrm{~dB}$
\$2A	$-54.5 \mathrm{~dB}$	\$59	$-31.0 \mathrm{~dB}$	\$88	$-7.5 \mathrm{~dB}$	\$B7	+16.0dB
\$2B	$-54.0 \mathrm{~dB}$	\$5A	$-30.5 \mathrm{~dB}$	\$89	$-7.0 \mathrm{~dB}$	\$B8	$+16.5 \mathrm{~dB}$
\$2C	$-53.5 \mathrm{~dB}$	\$5B	-30.0dB	\$8A	$-6.5 \mathrm{~dB}$	\$B9	+17.0dB
\$20	$-53.0 \mathrm{~dB}$	\$5C	$-29.5 \mathrm{~dB}$	\$8B	- 6.0 dB	\$BA	$+17.5 \mathrm{~dB}$
\$2E	$-52.5 \mathrm{~dB}$	\$5D	-29.0dB	\$8C	$-5.5 \mathrm{~dB}$	\$BB	$+18.0 \mathrm{~dB}$

Thresh1: -100 dB to 0 dBFS in 0.5 dB steps. Encoded from 0 to 200, where $0=-100 \mathrm{~dB}$.							
\$00	OFF	\$32	-75.5dB	\$64	$-50.5 \mathrm{~dB}$	\$96	-25.5dB
\$01	-100.0dB	\$33	-75.0dB	\$65	$-50.0 \mathrm{~dB}$	\$97	-25.0dB
\$02	-99.5dB	\$34	$-74.5 \mathrm{~dB}$	\$66	$-49.5 \mathrm{~dB}$	\$98	$-24.5 \mathrm{~dB}$
\$03	-99.0dB	\$35	-74.0dB	\$67	-49.0dB	\$99	$-24.0 \mathrm{~dB}$
\$04	$-98.5 \mathrm{~dB}$	\$36	$-73.5 \mathrm{~dB}$	\$68	$-48.5 \mathrm{~dB}$	\$9A	$-23.5 \mathrm{~dB}$
\$05	-98.0dB	\$37	-73.0dB	\$69	$-48.0 \mathrm{~dB}$	\$9B	$-23.0 \mathrm{~dB}$
\$06	-97.5dB	\$38	$-72.5 \mathrm{~dB}$	\$6A	$-47.5 \mathrm{~dB}$	\$9C	$-22.5 \mathrm{~dB}$
\$07	-97.0dB	\$39	$-72.0 \mathrm{~dB}$	\$6B	$-47.0 \mathrm{~dB}$	\$9D	$-22.0 \mathrm{~dB}$
\$08	$-96.5 \mathrm{~dB}$	\$3A	$-71.5 \mathrm{~dB}$	\$6C	$-46.5 \mathrm{~dB}$	\$9E	$-20.5 \mathrm{~dB}$
\$09	-96.0dB	\$3B	$-71.0 \mathrm{~dB}$	\$6D	$-46.0 \mathrm{~dB}$	\$9F	-20.0dB
\$0A	$-95.5 \mathrm{~dB}$	\$3C	$-70.5 \mathrm{~dB}$	\$6E	$-45.5 \mathrm{~dB}$	\$AD	$-19.5 \mathrm{~dB}$
\$0B	-95.0dB	\$3D	-70.0dB	\$6F	$-45.0 \mathrm{~dB}$	\$A1	$-19.0 \mathrm{~dB}$
\$0C	-94.5dB	\$3E	-69.5dB	\$70	$-44.5 \mathrm{~dB}$	\$A2	$-18.5 \mathrm{~dB}$
\$0D	-94.0dB	\$3F	-69.0dB	\$71	$-44.0 \mathrm{~dB}$	\$A3	$-18.0 \mathrm{~dB}$
\$0E	$-93.5 \mathrm{~dB}$	\$40	-68.5dB	\$72	$-43.5 \mathrm{~dB}$	\$A4	$-17.5 \mathrm{~dB}$
\$0F	-93.0dB	\$41	-68.0dB	\$73	$-43.0 \mathrm{~dB}$	\$A5	$-17.0 \mathrm{~dB}$
\$10	$-92.5 \mathrm{~dB}$	\$42	-67.5dB	\$74	$-42.5 \mathrm{~dB}$	\$A6	$-16.5 \mathrm{~dB}$
\$11	$-92.0 \mathrm{~dB}^{\text {d }}$	\$43	-67.0dB	\$75	$-42.0 \mathrm{~dB}$	\$AT	$-16.0 \mathrm{~dB}$
\$12	$-91.5 \mathrm{~dB}$	\$44	-65.5dB	\$76	$-41.5 \mathrm{~dB}$	\$A8	$-15.5 \mathrm{~dB}$
\$13	-91.0dB	\$45	-65.0dB	\$77	$-41.0 \mathrm{~dB}$	\$A9	$-15.0 \mathrm{~dB}$
\$14	-90.5dB	\$46	-65.5dB	\$78	-40.5dB	\$AA	$-14.5 \mathrm{~dB}$
\$15	-90.0dB	\$47	-65.0dB	\$79	$-40.0 \mathrm{~dB}$	\$AB	$-14.0 \mathrm{~dB}$
\$16	-89.5dB	\$48	-64.5dB	\$7A	$-39.5 \mathrm{~dB}$	\$AC	$-13.5 \mathrm{~dB}$
\$17	-89.0dB	\$49	-64.0dB	\$7B	-39.0dB	\$AD	$-13.0 \mathrm{~dB}$
\$18	$-88.5 \mathrm{~dB}$	\$4A	$-63.5 \mathrm{~dB}$	\$7C	$-38.5 \mathrm{~dB}$	\$AE	$-12.5 \mathrm{~dB}$
\$19	-88.0dB	\$4B	-63.0dB	\$70	$-38.0 \mathrm{~dB}$	\$AF	$-12.0 \mathrm{~dB}$
\$1A	$-87.5 \mathrm{~dB}$	\$4C	$-62.5 \mathrm{~dB}$	\$7E	$-37.5 \mathrm{~dB}$	\$B0	$-11.5 \mathrm{~dB}$
\$1B	-87.0dB	\$4D	-62.0dB	\$7F	$-37.0 \mathrm{~dB}$	\$B1	$-11.0 \mathrm{~dB}$
\$1C	-86.5dB	\$4E	-61.5dB	\$80	$-36.5 \mathrm{~dB}$	\$B2	$-10.5 \mathrm{~dB}$
\$10	-86.0dB	\$4F	-61.0dB	\$81	$-36.0 \mathrm{~dB}$	\$B3	$-10.0 \mathrm{~dB}$
\$1E	$-85.5 \mathrm{~dB}$	\$50	$-60.5 \mathrm{~dB}$	\$82	$-35.5 \mathrm{~dB}$	\$B4	- 9.5 dB
\$1F	-85.0dB	\$51	-60.0dB	\$83	$-35.0 \mathrm{~dB}$	\$B5	- 9.0dB
\$20	-84.5dB	\$52	$-59.5 \mathrm{~dB}$	\$84	$-34.5 \mathrm{~dB}$	\$B6	- 8.5 dB
\$21	-84.0dB	\$53	-59.0dB	\$85	$-34.0 \mathrm{~dB}$	\$B7	-8.0dB
\$22	$-83.5 \mathrm{~dB}$	\$54	$-58.5 \mathrm{~dB}$	\$86	$-33.5 \mathrm{~dB}$	\$B8	$-7.5 \mathrm{~dB}$
\$23	-83.0dB	\$55	$-58.0 \mathrm{~dB}$	\$87	$-33.0 \mathrm{~dB}$	\$B9	- 7.0 dB
\$24	-82.5dB	\$56	$-57.5 \mathrm{~dB}$	\$88	$-32.5 \mathrm{~dB}$	\$BA	- 6.5 dB
\$25	-82.0dB	\$57	$-57.0 \mathrm{~dB}$	\$89	$-32.0 \mathrm{~dB}$	\$BB	- 6.0 dB
\$26	-81.5dB	\$58	$-56.5 \mathrm{~dB}$	\$8A	$-31.5 \mathrm{~dB}$	\$BC	$-5.5 \mathrm{~dB}$
\$27	-81.0dB	\$59	$-56.0 \mathrm{~dB}$	\$8B	-31.0dB	\$BD	- 5.0 dB
\$28	$-80.5 \mathrm{~dB}$	\$5A	$-55.5 \mathrm{~dB}$	\$8C	$-30.5 \mathrm{~dB}$	\$BE	$-4.5 \mathrm{~dB}$
\$29	-80.0dB	\$5B	$-55.0 \mathrm{~dB}$	\$8D	$-30.0 \mathrm{~dB}$	\$BF	- 4.0 dB
\$2A	$-79.5 \mathrm{~dB}$	\$5C	$-54.5 \mathrm{~dB}$	\$8E	$-29.5 \mathrm{~dB}$	\$C0	$-3.5 \mathrm{~dB}$
\$2B	-79.0dB	\$5D	$-54.0 \mathrm{~dB}$	\$8F	$-29.0 \mathrm{~dB}$	\$C1	$-3.0 \mathrm{~dB}$
\$2C	$-78.5 \mathrm{~dB}$	\$5E	$-53.5 \mathrm{~dB}$	\$90	$-28.5 \mathrm{~dB}$	\$C2	- 2.5 dB
\$2D	-78.0dB	\$5F	$-53.0 \mathrm{~dB}$	\$91	$-28.0 \mathrm{~dB}$	\$C3	-2.0dB
\$2E	$-77.5 \mathrm{~dB}$	\$60	$-52.5 \mathrm{~dB}$	\$92	$-26.5 \mathrm{~dB}$	\$C4	$-1.5 \mathrm{~dB}$
\$2F	-77.0dB	\$61	$-52.0 \mathrm{~dB}$	\$93	$-27.0 \mathrm{~dB}$	\$C5	-1.0dB
\$30	$-76.5 \mathrm{~dB}$	\$62	$-51.5 \mathrm{~dB}$	\$94	$-27.5 \mathrm{~dB}$	\$C6	- 0.5 dB
\$31	-76.0dB	\$63	$-51.0 \mathrm{~dB}$	\$95	$-26.0 \mathrm{~dB}$	\$C7	0.0 dB

Freq1: 16 Hz to 19.6 kHz in $1 / 20$ octave steps. Encoded from 0 to 205 , where $0=16 \mathrm{~Hz}$ and $205=19.6 \mathrm{kHz}$.

\$00	16.176 Hz	\$34	98.073Hz	\$68	594.604 Hz	\$9C	3.605 kHz
\$01	16.746 Hz	\$35	101.532 Hz	\$69	615.572 Hz	\$9D	3.732 kHz
\$02	17.337 Hz	\$36	105.112 Hz	\$6A	637.280 Hz	\$9E	3.863 kHz
\$03	17.948 Hz	\$37	108.819 Hz	\$6B	659.754 Hz	\$9F	4.000 kHz
\$04	18.581 Hz	\$38	112.656 Hz	\$6C	683.020 Hz	\$A0	4.141 kHz
\$05	19.237 Hz	\$39	116.629 Hz	\$6D	707.107 Hz	\$A1	4.287 kHz
\$06	19.915 Hz	\$3A	120.742 Hz	\$6E	732.043 Hz	\$A2	4.438 kHz
\$07	20.617 Hz	\$3B	125.000 Hz	\$6F	757.858 Hz	\$A3	4.594 kHz
\$08	21.344 Hz	\$3C	129.408 Hz	\$70	784.584 Hz	\$A4	4.756 kHz
\$09	22.097 Hz	\$3D	133.972 Hz	\$71	812.252 Hz	\$ ${ }^{\text {S }}$	4.924 kHz
\$0A	22.876 Hz	\$3E	138.696 Hz	\$72	840.896 Hz	\$AS	5.098 kHz
\$0B	23.683 Hz	\$3F	143.587 Hz	\$73	870.551 Hz	\$A?	5.278 kHz
\$0C	24.518 Hz	\$40	148.651 Hz	\$74	901.250 Hz	\$A8	5.464 kHz
\$00	25.383 Hz	\$41	153.893 Hz	\$75	933.033 Hz	\$A9	5.656 kHz
\$0E	26.278 Hz	\$42	159.320 Hz	\$76	965.936 Hz	\$AA	5.856 kHz
\$0F	27.205 Hz	\$43	164.938 Hz	\$77	1.000 kHz	\$AB	6.062 kHz
\$10	28.164 Hz	\$44	170.755 Hz	\$78	1.035 kHz	\$AC	6.276 kHz
\$11	29.157 Hz	\$45	176.777 Hz	\$79	1.071 kHz	\$AD	6.498 kHz
\$12	30.186 Hz	\$46	183.001 Hz	\$7A	1.109 kHz	\$AE	6.727 kHz
\$13	31.250 Hz	\$47	189.465 Hz	\$7B	1.148 kHz	\$AF	6.964 kHz
\$14	32.352 Hz	\$48	196.146 Hz	\$7C	1.189 kHz	\$B0	7.210 kHz
\$15	33.493 Hz	\$49	203.063 Hz	\$7D	1.231 kHz	\$B1	7.464 kHz
\$16	34.674 Hz	\$4A	210.224 Hz	\$7E	1.274 kHz	\$B2	7.727 kHz
\$17	35.897 Hz	\$4B	217.638 Hz	\$7F	1.319 kHz	\$B3	8.000 kHz
\$18	37.163 Hz	\$4C	225.313 Hz	\$80	1.366 kHz	\$B4	8.282 kHz
\$19	38.473 Hz	\$4D	233.258 Hz	\$81	1.414 kHz	\$B5	8.574 kHz
\$1A	39.830 Hz	\$4E	241.484 Hz	\$82	1.464 kHz	\$B6	8.876 kHz
\$1B	41.235 Hz	\$4F	250.000 Hz	\$83	1.515 kHz	\$B7	9.189 kHz
\$1C	42.689 Hz	\$50	258.816 Hz	\$84	1.569 kHz	\$B8	9.513 kHz
\$10	44.194 Hz	\$51	267.943 Hz	\$85	1.624 kHz	\$B9	9.849 kHz
\$1E	45.753 Hz	\$52	277.392 Hz	\$86	1.681 kHz	\$BA	10.196 kHz
\$1F	47.366 Hz	\$53	287.175 Hz	\$87	1.741 kHz	\$BB	10.556 kHz
\$20	49.037 Hz	\$54	297.302Hz	\$88	1.802 kHz	\$BC	10.928 kHz
\$21	50.766 Hz	\$55	307.786 Hz	\$89	1.866 kHz	\$BD	11.313 kHz
\$22	52.566 Hz	\$56	318.640 Hz	\$8A	1.931 kHz	\$BE	11.712 kHz
\$23	54.409 Hz	\$57	329.877 Hz	\$8B	2.000 kHz	\$BF	12.125 kHz
\$24	56.328 Hz	\$58	341.510 Hz	\$8C	2.070 kHz	\$C0	12.553 kHz
\$25	58.315 Hz	\$59	353.553 Hz	\$8D	2.143 kHz	\$C1	12.996 kHz
\$26	60.371 Hz	\$5A	366.021 Hz	\$8E	2.219 kHz	\$C2	13.454 kHz
\$27	62.500 Hz	\$5B	378.929 Hz	\$8F	2.297 kHz	\$C3	13.928 kHz
\$28	64.704Hz	\$5C	392.292 Hz	\$90	2.378 kHz	\$C4	14.420 kHz
\$29	66.986 Hz	\$5D	406.126 Hz	\$91	2.462 kHz	\$C5	14.928 kHz
\$2A	69.348 Hz	\$5E	420.448 Hz	\$92	2.549 kHz	\$C6	15.454 kHz
\$2B	71.794 Hz	\$5F	435.275 Hz	\$93	2.639 kHz	\$C7	16.000 kHz
\$2C	74.325 Hz	\$60	450.625 Hz	\$94	2.732 kHz	\$C8	16.564 kHz
\$20	76.947 Hz	\$61	466.517 Hz	\$95	2.828 kHz	\$C9	17.148 kHz
\$2E	79.660 Hz	\$62	482.968 Hz	\$96	2.928 kHz	\$CA	17.753 kHz
\$2F	82.469 Hz	\$63	500.000 Hz	\$97	3.031 kHz	\$CB	18.379 kHz
\$30	85.378 Hz	\$64	517.632 Hz	\$98	3.138 kHz	\$CC	19.027 kHz
\$31	88.388 Hz	\$65	535.887 Hz	\$99	3.249 kHz	\$CD	19.698 kHz
\$32	91.505 Hz	\$66	554.785 Hz	\$9A	3.363 kHz		
\$33	94.732 Hz	\$67	574.349 Hz	\$9B	3.482 kHz		

Delay1: 0 to 20 mS in 1 mS steps							
\$00	0 ms	\$06	6 ms	\$0B	11	\$10	16 mS
\$01	1 ms	\$07	7 ms	\$0C	12	\$11	17 mS
\$02	2 ms	\$08	8 mS	\$0D	13	\$12	18 mS
\$03	3 ms	\$09	9 mS	\$0E	14	\$13	19 mS
\$04	4 ms	\$0A	10 ms	\$0F	15	\$14	20 ms
\$05	5 ms						

Bw1: 0.050 to 0.095 in 0.005 octave steps and 0.10 to 3.0 in 0.1 octave steps.							
$\$ 00$	0.050	$\$ 0 A$	0.10	$\$ 14$	1.1		
$\$ 01$	0.055	$\$ 0 B$	0.20	$\$ 15$	1.2	$\$ 1 E$	2.1
$\$ 02$	0.060	$\$ 0 C$	0.30	$\$ 16$	1.3	$\$ 1 F$	2.2
$\$ 03$	0.065	$\$ 0 D$	0.40	$\$ 17$	1.4	$\$ 20$	2.3
$\$ 04$	0.070	$\$ 0 E$	0.50	$\$ 18$	1.5	$\$ 21$	2.4
$\$ 05$	0.075	$\$ 0 F$	0.60	$\$ 19$	1.6	$\$ 22$	2.5
$\$ 06$	0.080	$\$ 10$	0.70	$\$ 1 A$	1.7	$\$ 23$	2.6
$\$ 07$	0.085	$\$ 11$	0.80	$\$ 12$	0.90	$1 B$	1.8
$\$ 08$	0.090	$\$ 09$	0.095	$\$ 13$	1.00	$\$ 1 C$	1.9

END OF DOCUMENT

