VPH-D50Q
VPH-D50QM

DEST:.	CHASSISNO:	MODEL
US		
UCanadian	SCC-K78A-A	VPH-G70Q
AEP	SCC-K79A-A	VPH-G70QM
		VPH-G70QMG

VPH-D50Q/D50QM

VPH-G70Q/G70QM/G70QMG

REVISED-1

The material contained in this manual consists of information that is the property of Sony Corporation and is intended solely for use by the purchasers of the equipment described in this manual.
Sony Corporation expressly prohibits the duplication of any portion of this manual or the use thereof for any purpose other than the operation or maintenance of the equipment described in this manual without the express written permission of Sony Corporation.
Content of this manual is subject to change without prior notice.

1. INTRODUCTION

This protocol manual describes various commands provided for projectors VPH-G70 and VPH-D50.
Using these commands, an external computer is able to control VPH-G70 and VPH-D50. In the following paragraphs, CONTROLLER means an external device such as a PC which controls VPH-G70 and VPHD50 using these commands.

2. PROTOCOL SPECIFICATION

2-1. Communication Signal

- Standard (4 Wire) communication channel
- Unsynchronous bit serial, word serial digital signal
- Baud rate : 38.4K, 19.2K, 9600, 4800 bits per second (bps)
<Note>
1: Baud rate of PROJECTOR is originally set to 38.4 Kbps for the standard at the factory.
2: Baud rate of PROJECTOR is able to be changed in the item of 'Service Setting for RS422A' of OSD Menu of PROJECTOR.
- Bit configuration is defined as follows

1 START Bit +8 DATA Bits +1 PARITY Bit +1 STOP Bit

START BIT	D0 (LSB)	D1	D2	D3	D4	D5	D6	D7 (MSB)	PARITY (EVEN)	STOP BIT

EVEN Parity ... Total number of ' 1 's from D0 to D7 is even number

2-2. Command Block Format

Code from B 0 up to $\mathrm{Bn}+2$ as described bellow shall be transmitted.
< Note > $\mathrm{n}=16+$ the number of bytes of Data transmitted
(1)

B0
Start Code

(2)

B1	B2	B3	B4	B5
RECEIVER (To) Index				
Peripheral Index	Group Index			Device Index

B6	B7	B8	B9	B10
SENDER (From) Index				
Peripheral Index	Group Index	Device Index		

B11	B12	B13
COMMAND		
CMD1	CMD2	CMD3

(3)	(4)	(5)	(6)		(7)	
B14	B15	B16	B17	~	Bn	$\mathrm{Bn}+1$
Data Size of (4)~(6)	Sub Command	Data Size of (6)	Data (TOP)		Data (END)	Check SUM
(8)						B1 ~ Bn XOR
$\mathrm{Bn}+2$						
End Code						

2-3. Data of Code

(1) Start Condition

Bn	NAME	DATA	NOTE
B0	Start Code	A5	

(2) Index Header

/*-- RECEIVER INDEX		--*/	
B1	PERIPHERAL INDEX	01	Projector
B2	GROUP INDEX UPPER BYTE	00	
B3	GROUP INDEX LOWER BYTE	01	Group Index = 0001 hex
B4	DEVICE INDEX UPPER BYTE	00	
B5	DEVICE INDEX LOWER BYTE	01	Device Index = 0001 hex

B6	PERIPHERAL INDEX	03	CONTROLLER
B7	GROUP INDEX UPPER BYTE	00	
B8	GROUP INDEX LOWER BYTE	01	
	B9	DEVICE INDEX UPPER BYTE	00
B10	DEVICE INDEX LOWER BYTE	01	Device Index $=0001$ hex

/*-- COMMAND --*/

B11	CMD1		Refer to attached
B12	CMD2		Refer to attached
B13	CMD3	10	CRT Projector
		80	LCD Projector
		B0	DMD Projector

(3) Data Size

B14	Data Size	$x x$	Total Data Size of (4)~(6)

(4) Sub Command

B15	Sub Command	00	I am stationary in 00.

(5) Data Size

B16	Data Size	xx	Data Size of (6

(6) Data

B17~Bn	Data	xx	Bytes of Data depend on a COMMAND

(7) Check SUM

Bn +1	Check Sum	xx	Check SUM of Data of (2)~(6) (XOR of Data of (2)~(6)

(8) End Condition

$\mathrm{Bn}+2$	END Code	5 A	

Place Data for a Command Block as follows for VPH-G70 / D50.

B0	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13
A5	01	00	01	00	01	03	00	01	00	01	CMD1	CMD2	10
B14		B15		B16		B17		~	Bn		$\mathrm{Bn}+1$	Bn+2	
SIZE of $4 \sim 6$		00		SIZE of 6		DATA				Check SUM			5A

$¥$ Command Blocks from B 0 up to $\mathrm{Bn}+2$ shall be transmitted continuously. Transfer interval between bytes within a Command Block sent from CONTROLLER shall not exceed 4 ms .

COMMAND is composed of 3 part commands CMD1, CMD2 and CMD3 as shown on the section 3rd.
<CMD1> CMD1 is the first part command represents the basic operation of COMMAND, and classified into as follows.

CMD1	FUNCTION	DIRECTION
10	RETURN DATA FROM PJ	CONTROLLER <-- PROJECTOR
11	STATUS SENSE	CONTROLLER --> PROJECTOR
13	SYSTEM SELECT	CONTROLLER --> PROJECTOR
15	INTERNAL TEST SIGNAL GEN.	CONTROLLER --> PROJECTOR
16	SIRCS CODE DIRECT	CONTROLLER --> PROJECTOR
30	ACTIVE MEMORY READ	CONTROLLER --> PROJECTOR
32	ACTIVE MEMORY WRITE	CONTROLLER --> PROJECTOR

<CMD2> CMD2 is the second part command and shall be used with CMD1 for the real operation of COMMAND. Its role depends on a CMD1 combined.
<CMD3> CMD3 is the third part command which clarifies a category of PROJECTOR. This shall be set to 10 hex for VPH-G70 and D50.

2-4. Connection

Connector : 9 Pin D-subminiature female(D-9S)

If CONTROLLER is wired with RS-232C and PROJECTOR is with RS-422A, the following connection is recommended.

	CONTROLLER	PROJECTOR	
1	NC	GND	
2	RXDA	TX	
3	TXDA	RX	
4	NC	GND	
5	GND	NC	
6	DSR	GND	
7	RTS	TX	
8	CTS	$\overline{R X}$	
9	NC	GND	

CONTROLLER
or
MAX489ECSD
PROJECTOR

2-5. Communication Procedure

Communication between CONTROLLER (such as a PC) and DEVICE (such as a PROJECTOR) shall be performed with transmission of a Command Block format.
Communication starts with a Command transmitted by CONTROLLER, and ends with a Return Data from DEVICE to CONTROLLER, if DEVICE receives a Command and deal with it correctly.
CONTROLLER is prohibited to send plural Commands simultaneously, so that after transmission of a Command to DEVICE, CONTROLLER shall not transmit the next Command before receiving a Return Data from DEVICE.
Required time between transmission of a Command from CONTROLLER and that of Return Data from DEVICE depends on a Command transmitted, since DEVICE needs some time for dealing with it and then send back a Return Data

2-6. Communication Rules

- INDEX NUMBER of PROJECTOR shall be set to ' 01 '.
- After transmission of a Command to PROJECTOR, CONTROLLER shall not send the next Command before receiving Return Data (CMD1 $=10$ hex) from PROJECTOR. If not, any Data is not transmitted from PROJECTOR, neither any Error Code.
- In case of a communication error, PROJECTOR ignores all Data sent so far, and transmits 'NAK' to CONTROLLER as a Return Data.
- If unidentified Command is transmitted or Data is not acknowledged by PROJECTOR, PROJECTOR transmits 'NAK' to CONTROLLER as a Return Data.
- While a signal inputted to PROJECTOR is not stable (where 7 SEG LED indicates ' 10 '), Data transmitted to PROJECTOR is not recognised.
- In case of USER mode on PROJECTOR, a picture displayed might disappear accidentally and also might come out of any status to the normal, when a Command, especially DATA WRITE COMMAND is transmitted.
- In both cases of USER and SERVICEMAN mode, if PROJECTOR receives DATA WRITE COMMAND such as SYSTEM SELECT COMMAND and ACTIVE MEMORY WRITE COMMAND, PROJECTOR needs some more time to check its Data as explained bellow before sending back the Return Data to CONTROLLER. It takes around 800 ms totally between transmission of a Command from CONTROLLER and that of a Return Data from PROJECTOR.
- When SYSTEM SELECT COMMAND (CMD1=13hex) or ACTIVE MEMORY WRITE COMMAND (CMD1=32hex) is transmitted, its Data is checked by PROJECTOR firstly whether it is out of range or not. In case of out of range of Data, the followings are implemented by PROJECTOR.
a) In case of SYSTEM SELECT COMMAND (CMD1=13hex)
- 'NAK' is sent back from PROJECTOR to CONTROLLER. It takes around 800 ms until 'NAK' is sent back.
b) In case of ACTIVE MEMORY COMMAND (CMD1=32hex)
- Data is replaced automatically into appropriate one as it is just within a range, and 'NAK (RANGE OVER / Data $=06 \mathrm{hex}$)' is transmitted to CONTROLLER. It takes also around 800 ms until 'NAK' is sent back.
- Range of Data for SYSTEM SELECT COMMAND is described on Protocol Table attached.
- Range of Data for ACTIVE MEMORY WRITE COMMAND is not available as Table, since its Data is justified automatically as mentioned above.
- Range of Data for ACTIVE MEMORY WRITE COMMAND depends on the horizontal frequency of a signal inputted, either a product model (G70/D50) itself.
- After transmission of SIRCS DIRECT COMMAND (CMD1=16hex) and that of a Return Data (CMD1=10hex) from PROJECTOR, CONTROLLER shall not send the next SIRCS DIRECT COMMAND immediately. More than 180 ms is required for its interval.

Please pay special attention to the following ERROR Data, when SIRCS DIRECT COMMAND is transmitted.

04 : SIZE ERROR
05 : SELECT ERROR

The value of Data is not ' 2 '.
The value of the first Data is not ' 0 ', neither ' 1 '.

- ' 0 ' : simulation to press a key of the remote commander once
- ' 1 ' : simulation to keep pressing a key of theremote commander
07 : SIRCS BUSY ERROR SIRCS Encoder inside PROJECTOR is busy.

3. Command Block Table

The following is one of examples about a Command Block, which intends to set the green data of COLOR UNIFORMITY adjustment as $\mathrm{HG}=0, \mathrm{VG}=0$ and $\mathrm{V}=0$.

B11	B12	B13	B14	B15	B16	B17	B18	B19
CMD1	CMD2	CND3	Data Size	Sub Command	Data Size	Data1	Data2	Data3
32	08	10	07	00	05	01	01	00

B20	B21	B22
Data4	Data5	Check SUM
00	00	2A

SONY Corporation
Image \& Sound Communication Company

