SONY®

Digital Powered Mixer

SRP-X700P

RS-232C Interface Manual

1st Edition

Overview

This is the Interface Manual for the Sony SRP-X700P Digital Powered Mixer. This protocol is designed to control the SRP-X700P Digital Powered Mixer from an externally connected computer. Read this manual together with Operating Instructions.

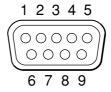
Caution

The material contained in this manual consists of information that is the property of Sony Corporation and is intended solely for use by the purchasers of the equipment described in this manual.

Sony Corporation expressly prohibits the duplication of any portion of this manual or the use thereof for any purpose other than the operation or maintenance of the equipment described in this manual without the express written permission of Sony Corporation.

Numeric expression and nomenclature of character

The numeric values followed by [H] indicate the hexadecimal numbers. Other numeric values are the decimal values. The characters surrounded by apostrophes ('') indicate the hexadecimal numbers converted the by the ASCII code.


Connecting Computer

Connect the COM port of a computer to the REMOTE RS-232C terminal of the SRP-X700P Digital Powered Mixer. The REMOTE RS-232C terminal of the SRP-X700P Digital Powered Mixer has the following specifications.

Terminal shape : D-SUB 9-pins, male, inch-sized screws Electrical specifications : Conforms to the RS-232C standard

Connection :

Pin No.	Name
1	F.G
2	RXD
3	TXD
4	DTR
5	GND
6	DSR
7	RTS
8	CTS
9	OPEN

SRP-X700P Computer COM port

REMOTE RS-232C terminal (for D-SUB 9-pins male connector)

Name	Pin No.	Pin No.	Name
RXD	2 ———	3	TXD
TXD	3 —	2	RXD
GND	5 ———	5	GND

Communication Format

The communication format is described below.

Baud rate : 9600 bps

Communication mode : Half-duplex start stop system (asynchronous)

Data length : 8 bits
Parity : Odd
Stop bit : 1 bit
Flow control : None

Communication Protocol

The communication protocol is described below.

- When the SRP-X700P has received a command from computer successfully, the SRP-X700P returns "ACK" (Acknowledge). When the SRP-X700P fails to process the command due to reception error or others, it returns "NAK" (Not Acknowledge).
- When a computer has sent a command, the computer should wait "ACK" or "NAK" to be returned from the SRP-X700P. Upon receipt of the return, a computer can send the next command.
- If a computer does not receive any return even after 1000 ms has elapsed since the transmission of a command, it means that the SRP-X700P has not received the command normally. A computer should re-send the command again.
- A command transmission from a computer should be completed within 500 ms.

 If transmission of a command cannot be completed within 500 ms, the command will not be processed and "NAK" will be returned.
- When a computer receives "NAK" during transmission of a command, a computer should stop sending the command immediately.

Handshake Code

ACK: 40[H] ('A')

When the SRP-X700P has received and processed the command from an external computer successfully, it returns "ACK" notifying that the command is executed. There are cases that other data are added to "ACK" and are returned together depending on the command. Refer to Command Reference for details.

NAK: 4E[H] ('N')

When the SRP-X700P fails to process the command supplied from an external computer, it returns "NAK" to a computer.

DELIMITER: 0D[H] ('CR')

The SRP-X700P adds the delimiter code 0D [H] (equivalent to the carriage return of the ASCII code) to the last byte of all commands.

Communication Packet Format

Communication packet has the variable data length.

A communication packet consists of command, parameter and delimiter as shown below.

Example; When selecting C with LINE4 SELECT. 43[H] 53[H] 45[H] 4C[H] 33[H] 0D[H] ('C S E L 3 CR')

1	Command
2	Parameter
3	Delimiter

1. Command

A command consists of the four bytes.

2. Parameter

Length of a parameter changes depending on command.

Refer to Command Reference for details.

3. Delimiter

The SRP-X700P adds the delimiter code 0D [H] (equivalent to the carriage return of the ASCII code) to the last byte of all commands.

Command Reference

Basic Control Commands

The group of the Basic Control Commands contains 12 commands that enable you to perform the basic operations such as changing the sound volume, switching the LINE4 SELECTOR of the SRP-X700P and others.

CONTROL S: 43[H] 52[H] 43[H] 53[H] ('CRCS')

This command is used to control an external equipment that is connected to the CONTROL S terminal of the SRP-X700P.

Packet format

43[H] 52[H] 43[H] 53[H] "parameter" 0D[H]

Parameter

The parameter consists of the two-byte data in the following order.

byte	Parameter name
1st	CHANNEL
2nd	REMOTE COMMAND

Channel

Specify the equipment to which you want to send the command.

CHANNEL	
LINE 3 INPUT	31[H] ('1')
LINE 4A INPUT	32[H] ('2')
LINE 4B INPUT	33[H] ('3')
LINE 4C INPUT	34[H] ('4')
LINE 4D INPUT	35[H] ('5')
LINE 4E INPUT	36[H] ('6')
LINE 4F INPUT	37[H] ('7')
LINE 4 INPUT	38[H] ('8')

When LINE 4 INPUT is specified, a remote command is sent to the channel that is currently selected by LINE 4 input.

• Remote command

Specify the command that you want to send.

REMOTE COMMAND	
Stop sending	30[H] ('0')
PLAY	31[H] ('1')
PAUSE	32[H] ('2')
STOP	33[H] ('3')
F.F.	34[H] ('4')
REW.	35[H] ('5')
REC	36[H] ('6')
NEXT	37[H] ('7')
PREV.	38[H] ('8')
POWER ON	39[H] ('9')
POWER STANDBY	3A[H] (':')

Because the SRP-X700P keeps sending the CONTROL S signal since its starts sending the "REMOTE COMMAND" of 31[H] - 3A[H] until it the "Stop sending command" 30[H] is sent, the computer must surely send the "Stop sending command" 30[H] after it sends the command of 31[H] - 3A[H] once.

Example: When activating PLAY (playback) of LINE3

43[H] 52[H] 43[H] 53[H] 31[H] 31[H] 0D[H] ('C R C S 1 1 CR')

LEVEL DOWN: 43[H] 4C[H] 56[H] 2D[H] ('CLV-')

This command is used to decrease the sound volume of the specified channel.

When this command is sent, the sound volume keeps decreasing. When the LEVEL UP/DOWN STOP command that is described later, is sent, the sound volume stops decreasing.

Variable range of a sound volume is from $-\infty$ to +10 dB when the sound volume is set to the reference level 0 dB.

Packet format

43[H] 4C[H] 56[H] 2D[H] "parameter" 0D[H]

Parameter

Specify the channel that you want to use, as the parameter.

CHANNEL		CHANNEL	
MIC1/WL1 INPUT	30[H] ('0')	LINE OUTPUT5	3C[H] ('<')
MIC2/WL2 INPUT	31[H] ('1')	LINE OUTPUT6	3D[H] ('=')
MIC3 INPUT	32[H] ('2')	LINE OUTPUT7	3E[H] ('>')
MIC4 INPUT	33[H] ('3')	LINE OUTPUT8	3F[H] ('?')
MIC5/LINE1 INPUT	34[H] ('4')	MASTER A	40[H] ('@')
MIC6/LINE2 INPUT	35[H] ('5')	MASTER B	41[H] ('A')
LINE 3 INPUT	36[H] ('6')	REMOTE 1	42[H] ('B')
LINE 4 INPUT	37[H] ('7')	REMOTE 2	43[H] ('C')
LINE OUTPUT1	38[H] ('8')	REMOTE 3	44[H] ('D')
LINE OUTPUT2	39[H] ('9')	REMOTE 4	45[H] ('E')
LINE OUTPUT3	3A[H] (':')	REMOTE 5	46[H] ('F')
LINE OUTPUT4	3B[H] (';')	REMOTE 6	47[H] ('G')

Example: When decreasing the sound volume of LINE4

43[H] 4C[H] 56[H] 2D[H] 37[H] 0D[H] ('C L V - 7 CR')

LEVEL UP: 43[H] 4C[H] 56[H] 2B[H] ('CLV+')

This command is used to increase the sound volume of the specified channel.

When this command is sent, the sound volume keeps increasing. When the LEVEL UP/DOWN STOP command that is described later, is sent, the sound volume stops increasing.

Variable range of a sound volume is from $-\infty$ to +10 dB when the sound volume is set to the reference level 0 dB.

Packet format

43[H] 4C[H] 56[H] 2B[H] "parameter" 0D[H]

Parameter

Same as that of the LEVEL DOWN command.

Example: When increasing the sound volume of MIC 3 INPUT 43[H] 4C[H] 56[H] 2B[H] 32[H] 0D[H] ('C L V + 2 CR')

LEVEL UP/DOWN STOP: 43[H] 4C[H] 56[H] 53[H] ('CLVS')

This command is used to stop increasing or to stop decreasing the sound volume caused by the LEVEL UP command and the LEVEL DOWN command.

· Packet format

43[H] 4C[H] 56[H] 53[H] "parameter" 0D[H]

Parameter

Same as that of LEVEL UP command.

Example: When stopping increasing/decreasing the sound volume of LINE4 $43[H] \ 4C[H] \ 56[H] \ 53[H] \ 37[H] \ 0D[H] \ ('C \ L \ V \ S \ 7 \ CR')$

LINE 4 SELECT: 43[H] 53[H] 45[H] 4C[H] ('CSEL')

This command is used to select the desired channel (A to F) for the LINE 4 input terminal.

Packet format

43[H] 53[H] 45[H] 4C[H] "parameter" 0D[H]

Parameter

Specify the channel that you want to select, as the parameter.

CHANNEL	
OFF	30[H] ('0')
Α	31[H] ('1')
В	32[H] ('2')
С	33[H] ('3')
D	34[H] ('4')
Е	35[H] ('5')
F	36[H] ('6')

Example: When selecting the channel-B of the LINE4 input terminal. 43[H] 53[H] 45[H] 4C[H] 32[H] 0D[H] ('C S E L 2 CR')

MUTING: 43[H] 4D[H] 55[H] 54[H] ('CMUT')

This command is used to mute the specified channel or cancel muting of the specified channel.

Packet format

43[H] 4D[H] 55[H] 54[H] "parameter" 0D[H]

Parameter

The parameter consists of the two-byte data in the following order.

byte	Parameter name
1st	CHANNEL
2nd	MUTING

Channel

Same as that of LEVEL UP command.

Muting

MUTING	
CANCEL MUNTING	40[H] ('@')
MUTING	41[H] ('A')

Example: When muting REMOTE1

43[H] 4D[H] 55[H] 54[H]42[H] 41[H] 0D[H] ('C M U T B A CR')

PARALLEL OUTPUT OFF: 43[H] 50[H] 4F[H] 46[H] ('CPOF')

This command is used to turn off OUTPUT of the REMOTE PARALLEL terminals separately of the SRP-X700P.

Packet format

43[H] 50[H] 4F[H] 46[H] "parameter" 0D[H]

Parameter

Specify any single channel that you want to turn off, as the parameter.

CHANNEL	
1	31[H] ('1')
2	32[H] ('2')
3	33[H] ('3')
4	34[H] ('4')
5	35[H] ('5')
6	36[H] ('6')
7	37[H] ('7')
8	38[H] ('8')
9	39[H] ('9')
10	3A[H] (':')

Example: When turning off channel 2

43[H] 50[H] 4F[H] 46[H] 32[H] 0D[H] ('C P O F 2 CR')

PARALLEL OUTPUT ON: 43[H] 50[H] 4F[H] 4E[H] ('CPON')

This command is used to turn on OUTPUT of the REMOTE PARALLEL terminals separately of the SRP-X700P.

Packet format

43[H] 50[H] 4F[H] 4E[H] "parameter" 0D[H]

Parameter

Same as that of the PARALLEL OUT OFF command.

Example: When turning on channel 1

43[H] 50[H] 4F[H] 4E[H] 31[H] 0D[H] ('C P O N 1 CR')

PROJECTOR POWER CONTROL: 43[H] 50[H] 4A[H] 50[H] ('CPJP')

This command is used to turn on the power or to set the power standby of the projected that is connected to the PROJECTOR CONTROL terminal of the SRP-X700P.

Packet format

43[H] 50[H] 4A[H] 50[H] "parameter" 0D[H]

Parameter

Specify either POWER ON or POWER STANDBY as the parameter.

POWER	
STANDBY	40[H] ('@')
ON	41[H] ('A')

Example: When turning on the power of projector

43[H] 50[H] 4A[H] 50[H]41[H] 0D[H] ('C P J P A CR')

SCENE RECALL: 43[H] 52[H] 43[H] 4C[H] ('CRCL')

This command is used to recall the desired scene.

Packet format

43[H] 52[H] 43[H] 4C[H] "parameter" 0D[H]

Parameter

Specify the scene number that you want to use, as the parameter.

· Scene No.

Specify the scene number that you want to use.

SCENE No.		SCENE No.	
1	31[H] ('1')	11	3B[H] (';')
2	32[H] ('2')	12	3C[H] ('<')
3	33[H] ('3')	13	3D[H] ('=')
4	34[H] ('4')	14	3E[H] ('>')
5	35[H] ('5')	15	3F[H] ('?')
6	36[H] ('6')	16	40[H] ('@')
7	37[H] ('7')	17	41[H] ('A')
8	38[H] ('8')	18	42[H] ('B')
9	39[H] ('9')	19	43[H] ('C')
10	3A[H] (':')	20	44[H] ('D')

Example: When recalling scene No.7

43[H] 52[H] 43[H] 4C[H] 3A[H] 0D[H] ('C R C L 7 CR')

STATUS REQUEST: 52[H] 53[H] 54[H] 54[H] ('RSTT')

This command is used to acquire the statuses such as level meter value and others from the SRP-X700P.

Packet format

52[H] 53[H] 54[H] 54[H] "specified value" 0D[H]

Specify any single value that corresponds to the parameter name in the following table.

Example: When reading the MIC5/LINE1 level meter value.

52[H] 53[H] 54[H] 54[H] 34[H] 0D[H] ('R S T T 4 CR')

Return packet format

When communication with the SRP-X700P is established with success, the single-byte parameter corresponding to the specified value is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

Global reading of all parameters

When you want to read all of the parameters that can be read by the STATUS REQUEST command, send the command in the following format.

Packet format

52[H] 41[H] 53[H] 54[H] 0D[H] ('R A S T CR')

Return packet format

The parameter containing the 74 bytes is returned always in the order shown in the following table.

Parameter

byte	Parameter name	Specified Value	byte	Parameter name	Specified Value
1st	MIC 1/WL 1 LEVEL METER VALUE	30[H] ('0')	38th	PARALLEL INPUT7-12	55[H] ('U')
2nd	MIC 2/WL 2 LEVEL METER VALUE	31[H] ('1')	39th	PARALLEL OUTPUT1-6	56[H] ('V')
3rd	MIC 3 LEVEL METER VALUE	32[H] ('2')	40th	PARALLEL OUTPUT7-10	57[H] ('W')
4th	MIC 4 LEVEL METER VALUE	33[H] ('3')	41st	MIC 1/WL 1 FADER VALUE	58[H] ('X')
5th	MIC 5/LINE 1 LEVEL METER VALUE	34[H] ('4')	42nd	MIC 2/WL 2 FADER VALUE	59[H] ('Y')
6th	MIC 6/LINE 2 LEVEL METER VALUE	35[H] ('5')	43rd	MIC 3 FADER VALUE	5A[H] ('Z')
7th	LINE 3 L LEVEL METER VALUE	36[H] ('6')	44th	MIC 4 FADER VALUE	5B[H] ('[')
8th	LINE 3 R LEVEL METER VALUE	37[H] ('7')	45th	MIC 5/LINE 1 FADER VALUE	5C[H] ('\')
9th	LINE 4 L LEVEL METER VALUE	38[H] ('8')	46th	MIC 6/LINE 2 FADER VALUE	5D[H] (']')
10th	LINE 4 R LEVEL METER VALUE	39[H] ('9')	47th	LINE 3 FADER VALUE	5E[H] ('^')
11th	LINE 4 RL LEVEL METER VALUE	3A[H] (':')	48th	LINE 4 FADER VALUE	5F[H] ('_')
12th	LINE 4 RR LEVEL METER VALUE	3B[H] (';')	49th	LINE OUTPUT 1 FADER VALUE	60[H] ('`')
13th	LINE 4 C LEVEL METER VALUE	3C[H] ('<')	50th	LINE OUTPUT 2 FADER VALUE	61[H] ('a')
14th	LINE 4 SW LEVEL METER VALUE	3D[H] ('=')	51st	LINE OUTPUT 3 FADER VALUE	62[H] ('b')
15th	LINE OUTPUT 1 LEVEL METER VALUE	3E[H] ('>')	52nd	LINE OUTPUT 4 FADER VALUE	63[H] ('c')
16th	LINE OUTPUT 2 LEVEL METER VALUE	3F[H] ('?')	53rd	LINE OUTPUT 5 FADER VALUE	64[H] ('d')
17th	LINE OUTPUT 3 LEVEL METER VALUE	40[H] ('@')	54th	LINE OUTPUT 6 FADER VALUE	65[H] ('e')
18th	LINE OUTPUT 4 LEVEL METER VALUE	41[H] ('A')	55th	LINE OUTPUT 7 FADER VALUE	66[H] ('f')
19th	LINE OUTPUT 5 LEVEL METER VALUE	42[H] ('B')	56th	LINE OUTPUT 8 FADER VALUE	67[H] ('g')
20th	LINE OUTPUT 6 LEVEL METER VALUE	43[H] ('C')	57th	MASTER A FADER VALUE	68[H] ('h')
21st	LINE OUTPUT 7 LEVEL METER VALUE	44[H] ('D')	58th	MASTER B FADER VALUE	69[H] (ʻi')
22nd	LINE OUTPUT 8 LEVEL METER VALUE	45[H] ('E')	59th	REMOTE 1 FADER VALUE	6A[H] ('j')
23rd	REC OUT 1 LEVEL METER VALUE	46[H] ('F')	60th	REMOTE 2 FADER VALUE	6B[H] ('k')
24th	REC OUT 2 LEVEL METER VALUE	47[H] ('G')	61st	REMOTE 3 FADER VALUE	6C[H] ('I')
25th	MIC SWICTH	48[H] ('H')	62nd	REMOTE 4 FADER VALUE	6D[H] ('m')
26th	WL RF	49[H] ('I')	63rd	REMOTE 5 FADER VALUE	6E[H] ('n')
27th	MIC INPUT OVER GAIN	4A[H] ('J')	64th	REMOTE 6 FADER VALUE	6F[H] ('o')
28th	LINE INPUT OVER GAIN	4B[H] ('K')	65th	MIC INPUT MUTING	70[H] ('p')
29th	MIC INPUT -∞	4C[H] ('L')	66th	LINE INPUT MUTING	71[H] ('q')
30th	LINE INPUT -∞	4D[H] ('M')	67th	LINE OUTPUT1-6 MUTING	72[H] ('r')
31st	LINE OUTPUT1-6 OVER GAIN	4E[H] ('N')	68th	LINE OUTPUT / REC OUT / SPEAKER OUTPUT MUTING	73[H] ('s')
32nd	LINE OUTPUT7,8 OVER GAIN	4F[H] ('O')	69th	MASTER MUTING	74[H] ('t')
33rd	LINE OUTPUT1-6 -∞	50[H] ('P')	70th	GROUP MUTING	75[H] ('u')
34th	LINE OUTPUT7,8 -∞	51[H] ('Q')	71st	LINE4 SELECT	76[H] ('v')
35th	CLIP/PROTECTION	52[H] ('R')	72nd	SCENE RECALL	77[H] ('w')
36th	GATE	53[H] ('S')	73rd	LOCK/FADER ACTIVE	78[H] ('x')
37th	PARALLEL INPUT1-6	54[H] ('T')	74 th	FR SETUP STATUS	79[H] ('y')

The parameters to be returned have the following meaning.

Level meter value

The level meter values [dB] are indicated as shown below.

LEVEL		LEVEL	
under -30	30[H] ('0')	-4	39[H] ('9')
-30	31[H] ('1')	-3	3A[H] (':')
-20	32[H] ('2')	-2	3B[H] (';')
-15	33[H] ('3')	-1	3C[H] ('<')
-10	34[H] ('4')	0	3D[H] ('=')
-8	35[H] ('5')	1	3E[H] ('>')
-7	36[H] ('6')	2	3F[H] ('?')
-6	37[H] ('7')	3	40[H] ('@')
-5	38[H] ('8')		

MIC SWITCH

This command is used to display the status of the +48V switches of the MIC1/WL1 to MIC6/LINE2 by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	MIC6/LINE2	MIC5/LINE1	MIC4	MIC3	MIC2/WL2	MIC1/WL1

When the corresponding bit is '1', the +48V switch is in the ON state. When the corresponding bit is '0', it is in the OFF state. Bit-6 and bit-7 are fixed all the time.

WL RF

Turning on/off of the RF indicator of the wireless tuner that is installed in the SRP-X700P is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	WL2	WL1
						RF	RF

When the corresponding bit is '1', the RF indicator turns on. When the corresponding bit is '0', the RF indicator turns off. Bit-2 to bit-7 are fixed all the time.

MIC OVER GAIN

Turning on/off of the OVER GAIN indicators of MIC1/WL1 to MIC6/LINE2 is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	MIC6/	MIC5/	MIC4	MIC3	MIC2/	MIC1/
		LINE2	LINE1			WL2	WL1

When the corresponding bit is '1', the OVER GAIN turns on. When the corresponding bit is '0', the OVER GAIN turns off. Bit-6 and bit-7 are fixed all the time.

LINE INPUT OVER GAIN

Turning on/off of the OVER GAIN indicators of LINE3 and 4 is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	LINE4	LINE3

When the corresponding bit is '1', the OVER GAIN turns on. When the corresponding bit is '0', the OVER GAIN turns off. Bit-2 to bit-7 are fixed all the time.

MIC INPUT -∞

Turning on/off of the -∞ indicators of MIC1/WL1 to MIC6/LINE2 is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	MIC6/	MIC5/	MIC4	MIC3	MIC2/	MIC1/
		LINE2	LINE1			WL2	WL1

When the corresponding bit is '1', $-\infty$ indicator turns on. When the corresponding bit is '0', $-\infty$ indicator turns off. Bit-6 and bit-7 are fixed all the time.

LINE INPUT OVER GAIN

Turning on/off of the $-\infty$ indicator of LINE3 and 4 is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	LINE4	LINE3

When the corresponding bit is '1', $-\infty$ indicator turns on. When the corresponding bit is '0', $-\infty$ indicator turns off. Bit-2 to bit-7 are fixed all the time.

LINE OUTPUT1-6 OVER GAIN

Turning on/off of the OVER GAIN indicators of LINE OUTPUT1 to 6 is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1

When the corresponding bit is '1', the OVER GAIN turns on. When the corresponding bit is '0', the OVER GAIN turns off. Bit-6 and bit-7 are fixed all the time.

LINE OUTPUT7,8 OVER GAIN

Turning on/off of the OVER GAIN indicators of LINE OUTPUT7 and 8 is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	OUT8	OUT7

When the corresponding bit is '1', the OVER GAIN turns on. When the corresponding bit is '0', the OVER GAIN turns off. Bit-2 to bit-7 are fixed all the time.

LINE OUTPUT1-6 -∞

Turning on/off of the $-\infty$ indicators of LINE OUTPUT1 to 6 is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1

When the corresponding bit is '1', $-\infty$ indicator turns on. When the corresponding bit is '0', $-\infty$ indicator turns off. Bit-6 and bit-7 are fixed all the time.

LINE OUTPUT7,8 -∞

Turning on/off of the $-\infty$ indicator of OUTPUT7 and 8 is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	OUT8	OUT7

When the corresponding bit is '1', $-\infty$ indicator turns on. When the corresponding bit is '0', $-\infty$ indicator turns off. Bit-2 to bit-7 are fixed all the time.

CLIP/PROTECTION

Turning on/off of the CLIP and PROTECTION indicators of speaker output is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	PROTECTION	CH2 CLIP	CH1 CLIP

When the corresponding bit is '1', the indicator turns on. When the corresponding bit is '0', the indicator turns off. Bit-2 to bit-7 are fixed all the time.

GATE

Operating status of the GATE of the automatic mixer block is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	MIC6/	MIC5/	MIC4	MIC3	MIC2/	MIC1/
		LINE2	LINE1			WL2	WL1

When the corresponding bit is '1', the GATE is in the close state (operating). When the corresponding bit is '0', the GATE is in the open state.

Bit-6 and bit-7 are fixed all the time.

PARALLEL INPUT1-6

Presence or absence of input signal to the PARALLEL INPUT1 to 6 connectors on the rear panel of the SRP-X700P is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	IN6	IN5	IN4	IN3	IN2	IN1

When the corresponding bit is '1', input signal is present. When the corresponding bit is '0', input signal is absent. Bit-6 and bit-7 are fixed all the time.

PARALLEL INPUT7-12

Presence or absence of input signal to the PARALLEL INPUT7 to 12 connectors on the rear panel of the SRP-X700P is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	IN12	IN11	IN10	IN9	IN8	IN7

When the corresponding bit is '1', input signal is present. When the corresponding bit is '0', input signal is absent. Bit-6 and bit-7 are fixed all the time.

PARALLEL OUTPUT1-6

Presence or absence of output signal at the PARALLEL OUTPUT1 to 6 connectors on the rear panel of the SRP-X700P is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1

When the corresponding bit is '1', output signal is present. When the corresponding bit is '0', output signal is absent. Bit-6 and bit-7 are fixed all the time.

PARALLEL OUTPUT7-10

Presence or absence of output signal at the PARALLEL OUTPUT7 to 10 connectors on the rear panel of the SRP-X700P is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	OUT10	OUT9	OUT8	OUT7

When the corresponding bit is '1', output signal is present. When the corresponding bit is '0', output signal is absent. Bit-4 to bit-7 are fixed all the time.

FADER VALUE

The fader value [dB] of each input channel, output channel and of the group fader is indicated as shown in the table below. The fader value of each input channel and output channel is the value that is shown by the yellow marker on the side of the fader in the INPUT OVERVIEW screen and OUTPUT OVERVIEW screen of the supplied software SRP-X700P Manager.

FADER VALUE		FADER VALUE		FADER VALUE	
- ∞	30[H] ('0')	-12.0	48[H] ('H')	+3.5	60[H] ("')
-70.0	31[H] ('1')	-11.0	49[H] ('l')	+4.0	61[H] ('a')
-60.0	32[H] ('2')	-10.0	4A[H] ('J')	+4.5	62[H] ('b')
-55.0	33[H] ('3')	-9.0	4B[H] ('K')	+5.0	63[H] ('c')
-50.0	34[H] ('4')	-8.0	4C[H] ('L')	+5.5	64[H] ('d')
-45.0	35[H] ('5')	-7.0	4D[H] ('M')	+6.0	65[H] ('e')
-40.0	36[H] ('6')	-6.0	4E[H] ('N')	+6.5	66[H] ('f')
-35.0	37[H] ('7')	-5.0	4F[H] ('O')	+7.0	67[H] ('g')
-32.5	38[H] ('8')	-4.5	50[H] ('P')	+7.5	68[H] ('h')
-30.0	39[H] ('9')	-4.0	51[H] ('Q')	+8.0	69[H] ('i')
-27.5	3A[H] (':')	-3.5	52[H] ('R')	+8.5	6A[H] ('j')
-25.0	3B[H] (';')	-3.0	53[H] ('S')	+9.0	6B[H] ('k')
-24.0	3C[H] ('<')	-2.5	54[H] ('T')	+10.0	6C[H] (1')
-23.0	3D[H] ('=')	-2.0	55[H] ('U')	+11.0	6D[H] ('m')
-22.0	3E[H] ('>')	-1.5	56[H] ('V')	+12.0	6E[H] ('n')
-21.0	3F[H] ('?')	-1.0	57[H] ('W')	+13.0	6F[H] ('o')
-20.0	40[H] ('@')	-0.5	58[H] ('X')	+14.0	70[H] ('p')
-19.0	41[H] ('A')	0	59[H] ('Y')	+15.0	71[H] ('q')
-18.0	42[H] ('B')	+0.5	5A[H] ('Z')	+16.0	72[H] ('r')
-17.0	43[H] ('C')	+1.0	5B[H] ('[')	+17.0	73[H] ('s')
-16.0	44[H] ('D')	+1.5	5C[H] ('\')	+18.0	74[H] ('t')
-15.0	45[H] ('E')	+2.0	5D[H] (']')	+19.0	75[H] ('u')
-14.0	46[H] ('F')	+2.5	5E[H] ('^')	+20.0	76[H] ('v')
-13.0	47[H] ('G')	+3.0	5F[H] ('_')		

MIC MUTING

Status of muting of MIC1/WL1 to MIC6/LINE2 is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	MIC6/	MIC5/	MIC4	MIC3	MIC2/	MIC1/
		LINE2	LINE1			WL2	WL1

When the corresponding bit is '1', the audio is muted. When the corresponding bit is '0', muting is released. Bit-6 and bit-7 are fixed all the time.

LINE INPUT MUTING

Status of muting of LINE3 and 4 is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	LINE4	LINE3

When the corresponding bit is '1', the audio is muted. When the corresponding bit is '0', muting is released. Bit-2 to bit-7 are fixed all the time.

LINE OUTPUT1-6 MUTING

Status of muting of OUTPUT1 to 6 is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1

When the corresponding bit is '1', the output signal is muted. When the corresponding bit is '0', muting is released. Bit-6 and bit-7 are fixed all the time.

LINE OUTPUT7,8/REC OUT1,2/SPEAKER OUTPUT 1,2 MUTING

Status of muting of OUTPUT7 and 8/RECOUT1 and 2/SPEAKER OUT1 and 2 is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	SPK2	SPK1	REC2	REC1	OUT8	OUT7

When the corresponding bit is '1', the output signal is muted. When the corresponding bit is '0', muting is released. Bit-6 and bit-7 are fixed all the time.

MASTER MUTING

Status of muting of MASTER A and B faders among the GROUP FADER is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	MASTER B	MASTER A

When the corresponding bit is '1', the MASTER fader is muted. When the corresponding bit is '0', muting is released. Bit-2 to bit-7 are fixed all the time.

GROUP MUTING

Status of muting of REMOTE1 to 6 among the GROUP FADER is indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	REMOTE6	REMOTE5	REMOTE4	REMOTE3	REMOTE2	REMOTE1

When the corresponding bit is '1', it is is muted. When the corresponding bit is '0', muting is released. Bit-6 and bit-7 are fixed all the time.

LINE4 SELECT

It indicates which channel of A to F is being selected in the LINE4. The following value is returned from the SRP-X700P.

CHANNEL	
OFF	30[H] ('0')
Α	31[H] ('1')
В	32[H] ('2')
С	33[H] ('3')
D	34[H] ('4')
Е	35[H] ('5')
F	36[H] ('6')

SCENE RECALL

It indicates the scene No. that is being selected at present. The following value is returned from the SRP-X700P.

SCENE No.		SCENE No.	
NONE	30[H] ('0')	11	3B[H] (';')
1	31[H] ('1')	12	3C[H] ('<')
2	32[H] ('2')	13	3D[H] ('=')
3	33[H] ('3')	14	3E[H] ('>')
4	34[H] ('4')	15	3F[H] ('?')
5	35[H] ('5')	16	40[H] ('@')
6	36[H] ('6')	17	41[H] ('A')
7	37[H] ('7')	18	42[H] ('B')
8	38[H] ('8')	19	43[H] ('C')
9	39[H] ('9')	20	44[H] ('D')
10	3A[H] (':')		

When the value is "NONE" (30[H]), it indicates the state that any scene call has never been attempted after the power is turned on.

LOCK/FADER

Status of the PANEL LOCK and that of FADER MODE are indicated by the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	PANEL LOCK	FADER

When bit 0 is '1', it indicates that the fader is in the ACTIVE mode. When bit 0 is '0', it indicates that the fader is in the INACTIVE mode. When bit 1 is '1', it indicates that operations from the front panel of the SRP-X700P are in the LOCKed state. When bit 1 is '0', it indicates that operations from the front panel of the SRP-X700P are in the UNLOCKed state. Bit-2 to bit-7 are fixed all the time.

FR SETUP STATUS

The progress status of the feedback reducer setup is indicated in the $16\ \mathrm{steps}.$

The "Finished (30[H])" flag indicates the setup is completed.

Progress status		Progress status	
Finished	30[H] ('0')	9	39[H] ('9')
1	31[H] ('1')	10	3A[H] (':')
2	32[H] ('2')	11	3B[H] (';')
3	33[H] ('3')	12	3C[H] ('<')
4	34[H] ('4')	13	3D[H] ('=')
5	35[H] ('5')	14	3E[H] ('>')
6	36[H] ('6')	15	3F[H] ('?')
7	37[H] ('7')	16	40[H] ('@')
8	38[H] ('8')		

Parameter Setting Commands

The following commands are the group of commands used to enable you the detailed setting of internal functions of the SRP-X700P.

AUTO MIX: 43[H] 41[H] 4D[H] 58[H] ('CAMX')

This command is used to set ON/OFF of the automatic mixer.

Packet format

43[H] 41[H] 4D[H] 58[H] "parameter" 0D[H]

The parameter consists of the 5 bytes all the time in the order as shown in the table below.

byte	ON	OFF
1st	3B[H] (';')	3B[H] (';')
2nd	33[H] ('3')	33[H] ('3')
3rd	31[H] ('1')	31[H] ('1')
4th	43[H] ('C')	40[H] ('@')
5th	7F[H] ('DELETE')	40[H] ('@')

Example: When turning OFF the automatic mixer

43[H] 41[H] 4D[H] 58[H] 38[H] 33[H] 40[H] 40[H] 0D[H] ('C A M X ; 3 1 @ @ CR')

AUTO MIX PARAMETER REQUEST: 52[H] 41[H] 4D[H] 58[H] ('RAMX')

This command is used to read the ON/OFF setup of automatic mixer from the SRP-X700P.

Packet format

52[H] 41[H] 4D[H] 58[H] 0D[H]

Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

Parameters are the same as those of the AUTO MIX command in the case of ON/OFF.

Example: When the automatic mixer is set to OFF

41[H] 3B[H] 33[H] 40[H] 40[H] 0D[H] ('A; 3 1 @ @ CR')

FACTORY PRESET: 43[H] 52[H] 53[H] 54[H] ('CRST')

This command is used to return the parameters of the SRP-X700P to the default values when shipped from the factory.

Packet format

43[H] 52[H] 53[H] 54[H] 0D[H]

When communication with the SRP-X700P is established with success, all parameters including scene memories return to the default state when shipped from the factory.

Caution

When the parameters are returned to the default state when shipped from the factory, all parameters that have been set by users will be overwritten

Before starting to execute this command, create backup of the parameter values using the supplied software SRP-X700P Manager.

FIRMWARE VERSION REQUEST: 52[H] 56[H] 45[H] 52[H] ('RVER')

This command is used to read the version number of the SRP-X700P firmware.

Packet format

52[H] 56[H] 45[H] 52[H] 0D[H]

• Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter consists of the 8 bytes all the time in the following order.

byte	Parameter name
1st-7th	FIRMWARE VERSION
8th	30[H] ('0') fixed

• FIRMWARE VERSION (1-7th byte)

The 7-bytes ASCII code indicate the firmware version of the SRP-X700P.

Example: When the firmware version is 1.00

41[H] 31[H] 2E[H] 30[H] 30[H] 20[H] 20[H] 20[H] 30[H] 0D[H] ('A 1 . 0 0 \square \square 1 CR')

("□" indicates the space.)

FR SETUP: 43[H] 46[H] 52[H] 53[H] ('CFRS')

This command is used to indicate start/stop of setting up the feedback reducer, to the SRP-X700P.

Packet format

43[H] 52[H] 53[H] 41[H] "parameter" 0D[H]

Parameter

Specify the channel that you want to implement setup, as the parameter. By sending the command CANCEL (37[H]), you can stop the setting up.

CHANNEL	
MIC1/WL1	31[H] ('1')
MIC2/WL2	32[H] ('2')
MIC3	33[H] ('3')
MIC4	34[H] ('4')
MIC5/LINE1	35[H] ('5')
MIC6/LINE2	36[H] ('6')
CANCEL	37[H] ('7')

You can check the progress status of the feedback reducer setting up using the STATUS REQUEST command or the ALL STATUS REQUEST command that are described later.

When setting up is complete, the SRP-X700P turns ON the feedback reducer automatically.

You can acquire the parameter of the notch filter that is set during the setting up, using the MIC INPUT STATUS REQUEST command.

Example: When setting the MIC1/WL1 feedback reducer to the automatic setup 43[H] 52[H] 53[H] 41[H] 31[H] 0D[H] ('C F R S 1 CR')

GROUP FADER: 43[H] 47[H] 46[H] 41[H],42[H] ('CGFA,B') 43[H] 47[H] 46[H] 31[H]-36[H] ('CGF1-2')

This command is used to set any desired single channel of the GROUP FADER.

Various setups can be memorized in the scene memories by specifying these scene Nos.

The commands that correspond to the respective channels are shown below.

GROUP FADER	Command
MASTER A	43[H] 47[H] 46[H] 41[H] 'CGFA'
MASTER B	43[H] 47[H] 46[H] 42[H] 'CGFB'
REMOTE 1	43[H] 47[H] 46[H] 31[H] 'CGF1'
REMOTE 2	43[H] 47[H] 46[H] 32[H] 'CGF2'
REMOTE 3	43[H] 47[H] 46[H] 33[H] 'CGF3'
REMOTE 4	43[H] 47[H] 46[H] 34[H] 'CGF4'
REMOTE 5	43[H] 47[H] 46[H] 35[H] 'CGF5'
REMOTE 6	43[H] 47[H] 46[H] 36[H] 'CGF6'

Packet format

43[H] 47[H] 46[H] 41[H] "parameter" 0D[H] (In the case of MASTER A)

Parameter

This parameter consists of the 13-byte data all the time in the order as shown in the table below.

byte	Parameter name
1st	SCENE No.
2nd-9th	INDEX
10 th	MIC INPUT FADER
11 th	LINE INPUT FADER
12th	LINE OUTPUT1-6 FADER
13 th	LINE OUTPUT7,8 FADER

When you specify NONE (30[H] '0') as the scene No. in the 1st byte, you can establish the present setup.

When you specify the scene No.(31[H] ('1') to 44[H] ('D')), parameters of the subsequent 2nd to 13th bytes are written in the scene memory.

• Scene No. (1st byte)

SCENE No.		SCENE No.		SCENE No.	
NONE	30[H] ('0')	7	37[H] ('7')	14	3E[H] ('>')
1	31[H] ('1')	8	38[H] ('8')	15	3F[H] ('?')
2	32[H] ('2')	9	39[H] ('9')	16	40[H] ('@')
3	33[H] ('3')	10	3A[H] (':')	17	41[H] ('A')
4	34[H] ('4')	11	3B[H] (';')	18	42[H] ('B')
5	35[H] ('5')	12	3C[H] ('<')	19	43[H] ('C')
6	36[H] ('6')	13	3D[H] ('=')	20	44[H] ('D')

• Index (2-9th byte)

This command is used to specify index of the input channels with 8 bytes of the ASCII code.

Caution

If number of index characters does not reach the 8 bytes, be sure to fill the blanks with the space (20[H]).

MIC INPUT fader (10th byte)

This command is used to set the MIC1/WL1 to MIC6/LINE2 channels' assign to the GROUP FADER with the 8-bit data. Set 1 to implement assign. Set 0 not to implement assign.

Bit-6 and bit-7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	MIC6/	MIC5/	MIC4	MIC3	MIC2/	MIC1/
		LINE2	LINE1			WL2	WL1

• LINE INPUT fader (11th byte)

This command is used to set the LINE3 and 4 channels' assign to the GROUP FADER with the 8-bit data.

Set 1 to implement assign. Set 0 not to implement assign.

Bit-2 to bit-7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	LINE4	LINE3

• LINE OUTPUT1-6 fader (12th byte)

This command is used to set the LINE OUTPUT1 to 6 channels' assign to the GROUP FADER with the 8-bit data. Set 1 to implement assign. Set 0 not to implement assign.

Bit-6 and bit-7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	LINE	LINE	LINE	LINE	LINE	LINE
		OUTPUT6	OUTPUT5	OUTPUT4	OUTPUT3	OUTPUT2	OUTPUT1

• LINE OUTPUT7,8 fader (13th byte)

This command is used to set the LINE OUTPUT7 and 8 channels' assign to the GROUP FADER with the 8-bit data. Set 1 to implement assign. Set 0 not to implement assign.

Bit-2 to bit-7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	LINE	LINE
						OUTPUT8	OUTPUT7

Caution

Do no assign the INPUT fader and the OUTPUT fader to the GROUP FADER of the same channel.

Example: When setting the MASTER A as shown below.

Index : MIC

MIC INPUT fader : Assign the MIC1/WL1 through MIC4.

: MIC5/LINE1 and MIC6/LINE2 are not assigned.

LINE INPUT fader : LINE 3 and 4 INPUTs are not assigned.

LINE OUTPUT1-6 fader : LINE OUTPUT1 through 6 are not assigned.

LINE OUTPUT7,8 fader : LINE OUTPUT7 and 8 are not assigned.

43[H] 47[H] 46[H] 41[H] 30[H] 4D[H] 49[H] 43[H] 20[H] 20[H] 20[H] 20[H] 20[H] 4F[H] 40[H] 40[H] 40[H] 0D[H] (' C G F A M I C □ □ □ □ □ ○ @ @ CR')

[&]quot;□" indicates the space.

GROUP FADER PARAMETER REQUEST: 52[H] 47[H] 46[H] 41[H],42[H] ('RGFA,B') 52[H] 47[H] 46[H] 31[H]-36[H] ('RGF1-2')

This command is used to read the setup of any desired single channel of the GROUP FADER from the SRP-X700P. The commands that correspond to the respective channels are shown below.

GROUP FADER	Command
MASTER A	52[H] 47[H] 46[H] 41[H] 'RGFA'
MASTER B	52[H] 47[H] 46[H] 42[H] 'RGFB'
REMOTE 1	52[H] 47[H] 46[H] 31[H] 'RGF1'
REMOTE 2	52[H] 47[H] 46[H] 32[H] 'RGF2'
REMOTE 3	52[H] 47[H] 46[H] 33[H] 'RGF3'
REMOTE 4	52[H] 47[H] 46[H] 34[H] 'RGF4'
REMOTE 5	52[H] 47[H] 46[H] 35[H] 'RGF5'
REMOTE 6	52[H] 47[H] 46[H] 36[H] 'RGF6'

Packet format

52[H] 52[H] 4C[H] 31[H] "parameter" 0D[H]

Parameter

Specify the scene No. of the scene memory that you want to read, as the parameter. For the method of specifying the scene No., refer to the GROUP FADER command (page 20).

Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameters are the same as the 12 bytes of the GROUP FADER command from which the scene No. is exempted.

INFORMATION: 43[H] 49[H] 4E[H] 46[H] ('CINF')

This command is used to set the information and to implement the power-on setting.

Packet format

43[H] 50[H] 49[H] 4F[H] "parameter" 0D[H]

Parameter

The parameter consists of the 129-byte data all the time in the order as shown in the table below.

byte	Parameter name
1st	Power On Setting
2nd-129th	INFORMATION

• Power On Setting (1st byte)

This command is sued to implement the Power On Setting.

Power On Setting	
LAST MEMORY	30[H] ('0')
DEFAULT	31[H] ('1')
SCENE No.1	32[H] ('2')

INFORMATION (2-129th byte)

Specify the index of the input channels using the ASCII code.

Caution

If number of index characters does not reach the 128 bytes, be sure to fill the blanks with the space (20[H]) so that it becomes 128 bytes all the time.

INFORMATION PARAMETER REQUEST: 52[H] 49[H] 4E[H] 46[H] ('RINF')

This command is used to read the information and the power-on setting from the SRP-X700P.

Packet format

52[H] 49[H] 4E[H] 46[H] 0D[H]

• Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter is the same as the 129-byte parameter of the INFORMATION command.

LINE 3 INPUT: 43[H] 49[H] 4D[H] 33[H] ('CIL3')

This command is used to implement setting up the LINE 3 input channel.

Various setups can be memorized in the scene memories by specifying these scene Nos.

Packet format

43[H] 49[H] 4D[H] 33[H] "parameter (19 bytes)" 0D[H]

Parameter

The parameter consists of the 19 bytes all the time in the order as shown in the table below.

byte	Parameter name	byte	Parameter name
1st	SCENE No.	14th	PEQ1 GAIN
2nd-9th	INDEX	15th	PEQ2 Frequency
10 th	TRIM	16th	PEQ2 Q
11 th	FUNCTION ON/OFF	17th	PEQ2 GAIN
12th	PEQ1 Frequency	18th	GAIN LIMIT LEVEL
13th	PEQ1 Q	19th	FADER LEVEL

When you specify NONE (30[H] '0') as the scene No. in the 1st byte, you can establish the present setup. At the same time, when you specify the scene No.(31[H] ('1') through 44[H] ('D')), the parameters of the subsequent 2nd through 19th bytes are written in the scene memories.

For the method of setting the scene No. and index, refer to the GROUP FADER command (pages 20 and 21).

• TRIM (10th byte)

This command is used to set the reference level of the input terminal.

REF LEVEL	
-10dBu	30[H] ('0')
-9dBu	31[H] ('1')
-8dBu	32[H] ('2')
-7dBu	33[H] ('3')
-6dBu	34[H] ('4')
-5dBu	35[H] ('5')
-4dBu	36[H] ('6')
-3dBu	37[H] ('7')
-2dBu	38[H] ('8')
-1dBu	39[H] ('9')
0dBu	3A[H] (':')

• Function ON/OFF (11th byte)

This command is used to turn ON/OFF the parametric equalizer with the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	PEQ	0	0

When you want to turn ON the function, set bit 2 to 1. When you want to turn OFF the function, set bit 2 to 0. Bit-0, bit-1 and bit-3 to bit-7 are fixed all the time.

• PEQ frequency (12 and 15th byte)

This command is used to set the center frequency [Hz] of parametric equalizer.

Frequency		Frequency		Frequency		Frequency	
25	20[H] ('□')	280	38[H] ('8')	1.12k	50[H] ('P')	4.50k	68[H] ('h')
31.5	21[H] ('!')	297	39[H] ('9')	1.18k	51[H] ('Q')	4.75k	69[H] ('i')
40	22[H] ('"')	315	3A[H] (':')	1.25k	52[H] ('R')	5.00k	6A[H] ('j')
50	23[H] ('#')	335	3B[H] (';')	1.32k	53[H] ('S')	5.30k	6B[H] ('k')
63	24[H] ('\$')	355	3C[H] ('<')	1.40k	54[H] ('T')	5.60k	6C[H] (1')
80	25[H] ('%')	375	3D[H] ('=')	1.50k	55[H] ('U')	5.95k	6D[H] ('m')
100	26[H] ('&')	400	3E[H] ('>')	1.60k	56[H] ('V')	6.30k	6E[H] ('n')
106	27[H] (''')	425	3F[H] ('?')	1.70k	57[H] ('W')	6.70k	6F[H] ('o')
112	28[H] ('(')	450	40[H] ('@')	1.80k	58[H] ('X')	7.10k	70[H] ('p')
118	29[H] (')')	474	41[H] ('A')	1.90k	59[H] ('Y')	7.50k	71[H] ('q')
125	2A[H] ('*')	500	42[H] ('B')	2.00k	5A[H] ('Z')	8.00k	72[H] ('r')
132	2B[H] ('+')	530	43[H] ('C')	2.12k	5B[H] ('[')	8.50k	73[H] ('s')
140	2C[H] (',')	560	44[H] ('D')	2.24k	5C[H] ('\')	9.00k	74[H] ('t')
150	2D[H] ('-')	595	45[H] ('E')	2.37k	5D[H] (']')	9.50k	75[H] ('u')
160	2E[H] ('.')	630	46[H] ('F')	2.50k	5E[H] ('^')	10.0k	76[H] ('v')
170	2F[H] ('/')	670	47[H] ('G')	2.65k	5F[H] ('_')	10.6k	77[H] ('w')
180	30[H] ('0')	710	48[H] ('H')	2.80k	60[H] (``')	11.2k	78[H] ('x')
190	31[H] ('1')	750	49[H] ('l')	2.97k	61[H] ('a')	11.8k	79[H] ('y')
200	32[H] ('2')	800	4A[H] ('J')	3.15k	62[H] ('b')	12.5k	7A[H] ('z')
212	33[H] ('3')	850	4B[H] ('K')	3.35k	63[H] ('c')	13.2k	7B[H] ('{')
224	34[H] ('4')	900	4C[H] ('L')	3.55k	64[H] ('d')	14.0k	7C[H](' ')
237	35[H] ('5')	950	4D[H] ('M')	3.75k	65[H] ('e')	16.0k	7D[H]('}')
250	36[H] ('6')	1.00k	4E[H] ('N')	4.00k	66[H] ('f')	20.0k	7E[H]('~')
265	37[H] ('7')	1.06k	4F[H] ('O')	4.25k	67[H] ('g')		

PEQ Q (13 and 16th byte)

This command is used to set the Q value of parametric equalizer.

Q		Q		Q		Q	
0.15	30[H] ('0')	0.56	37[H] ('7')	2.20	3E[H] ('>')	8.20	45[H] ('E')
0.18	31[H] ('1')	0.68	38[H] ('8')	2.70	3F[H] ('?')	10.0	46[H] ('F')
0.22	32[H] ('2')	0.82	39[H] ('9')	3.30	40[H] ('@')	12.0	47[H] ('G')
0.27	33[H] ('3')	1.00	3A[H] (':')	3.90	41[H] ('A')	15.0	48[H] ('H')
0.33	34[H] ('4')	1.20	3B[H] (';')	4.70	42[H] ('B')	18.0	49[H] ('l')
0.39	35[H] ('5')	1.50	3C[H] ('<')	5.60	43[H] ('C')	22.0	4A[H] ('J')
0.47	36[H] ('6')	1.80	3D[H] ('=')	6.80	44[H] ('D')		

PEQ gain (14 and 17th byte)
This command is used to set the gain [dB] at the center frequency of parametric equalizer.

GAIN		GAIN		GAIN		GAIN	
-15.0	30[H] ('0')	-7.0	40[H] ('@')	+1.0	50[H] ('P')	+9.0	60[H] ("")
-14.5	31[H] ('1')	-6.5	41[H] ('A')	+1.5	51[H] ('Q')	+9.5	61[H] ('a')
-14.0	32[H] ('2')	-6.0	42[H] ('B')	+2.0	52[H] ('R')	+10.0	62[H] ('b')
-13.5	33[H] ('3')	-5.5	43[H] ('C')	+2.5	53[H] ('S')	+10.5	63[H] ('c')
-13.0	34[H] ('4')	-5.0	44[H] ('D')	+3.0	54[H] ('T')	+11.0	64[H] ('d')
-12.5	35[H] ('5')	-4.5	45[H] ('E')	+3.5	55[H] ('U')	+11.5	65[H] ('e')
-12.0	36[H] ('6')	-4.0	46[H] ('F')	+4.0	56[H] ('V')	+12.0	66[H] ('f')
-11.5	37[H] ('7')	-3.5	47[H] ('G')	+4.5	57[H] ('W')	+12.5	67[H] ('g')
-11.0	38[H] ('8')	-3.0	48[H] ('H')	+5.0	58[H] ('X')	+13.0	68[H] ('h')
-10.5	39[H] ('9')	-2.5	49[H] ('I')	+5.5	59[H] ('Y')	+13.5	69[H] ('i')
-10.0	3A[H] (':')	-2.0	4A[H] ('J')	+6.0	5A[H] ('Z')	+14.0	6A[H] ('j')
-9.5	3B[H] (';')	-1.5	4B[H] ('K')	+6.5	5B[H] ('[')	+14.5	6B[H] ('k')
-9.0	3C[H] ('<')	-1.0	4C[H] ('L')	+7.0	5C[H] ('\')	+15.0	6C[H] ('l')
-8.5	3D[H] ('=')	-0.5	4D[H] ('M')	+7.5	5D[H] (']')		
-8.0	3E[H] ('>')	0	4E[H] ('N')	+8.0	5E[H] ('^')		
-7.5	3F[H] ('?')	+0.5	4F[H] ('O')	+8.5	5F[H] ('_')		

Gain Limit level (18th byte)

This command is used to set the level [dB] at the Gain Limit.

GAIN LIMIT		GAIN LIMIT	
-10	30[H] ('0')	+1	3B[H] (';')
-9	31[H] ('1')	+2	3C[H] ('<')
-8	32[H] ('2')	+3	3D[H] ('=')
-7	33[H] ('3')	+4	3E[H] ('>')
-6	34[H] ('4')	+5	3F[H] ('?')
-5	35[H] ('5')	+6	40[H] ('@')
-4	36[H] ('6')	+7	41[H] ('A')
-3	37[H] ('7')	+8	42[H] ('B')
-2	38[H] ('8')	+9	43[H] ('C')
-1	39[H] ('9')	+10	44[H] ('D')
0	3A[H] (':')		

• Fader level (19th byte)

This command is used to set the fader level [dB].

This fader levels are shown as the fader values on the INPUT OVERVIEW screen of the supplied software SRP-X700P Manager.

LEVEL		LEVEL		LEVEL		LEVEL	
-∞	30[H] ('0')	-20.0	40[H] ('@')	-4.5	50[H] ('P')	+3.5	60[H] ('`')
-70.0	31[H] ('1')	-19.0	41[H] ('A')	-4.0	51[H] ('Q')	+4.0	61[H] ('a')
-60.0	32[H] ('2')	-18.0	42[H] ('B')	-3.5	52[H] ('R')	+4.5	62[H] ('b')
-55.0	33[H] ('3')	-17.0	43[H] ('C')	-3.0	53[H] ('S')	+5.0	63[H] ('c')
-50.0	34[H] ('4')	-16.0	44[H] ('D')	-2.5	54[H] ('T')	+5.5	64[H] ('d')
-45.0	35[H] ('5')	-15.0	45[H] ('E')	-2.0	55[H] ('U')	+6.0	65[H] ('e')
-40.0	36[H] ('6')	-14.0	46[H] ('F')	-1.5	56[H] ('V')	+6.5	66[H] ('f')
-35.0	37[H] ('7')	-13.0	47[H] ('G')	-1.0	57[H] ('W')	+7.0	67[H] ('g')
-32.5	38[H] ('8')	-12.0	48[H] ('H')	-0.5	58[H] ('X')	+7.5	68[H] ('h')
-30.0	39[H] ('9')	-11.0	49[H] ('I')	0	59[H] ('Y')	+8.0	69[H] (ʻi')
-27.5	3A[H] (':')	-10.0	4A[H] ('J')	+0.5	5A[H] ('Z')	+8.5	6A[H] ('j')
-25.0	3B[H] (';')	-9.0	4B[H] ('K')	+1.0	5B[H] ('[')	+9.0	6B[H] ('k')
-24.0	3C[H] ('<')	-8.0	4C[H] ('L')	+1.5	5C[H] ('\')	+10.0	6C[H] ('I')
-23.0	3D[H] ('=')	-7.0	4D[H] ('M')	+2.0	5D[H] (']')		
-22.0	3E[H] ('>')	-6.0	4E[H] ('N')	+2.5	5E[H] ('^')		
-21.0	3F[H] ('?')	-5.0	4F[H] ('O')	+3.0	5F[H] ('_')		

Example: When setting the respective parameters as shown below.

Scene No. : NONE Index \cdot CD :-10dBu TRIM Function OFF : PEQ ON PEQ1,2 frequency : 1kHz PEQ1,2 Q :10 PEO1,2 gain : 0dB Gain Limit level :+10dBu Fader level : 0dB

LINE 3 INPUT PARAMETER REQUEST: 52[H] 49[H] 4D[H] 33[H] ('RIL3')

This command is used to read setup of the LINE 3 input channel from the SRP-X700P.

Packet format

52[H] 49[H] 4D[H] 33[H] "parameter" 0D[H]

Parameter

Specify the scene No. of the scene memory that you want to read, as the parameter.

Method of specifying the scene No. is the same as that of the GROUP FADER command. See page 20.

Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameters are the same as the 18-byte parameter of the LINE3 INPUT command from which the scene No. is exempted.

LINE 4 INPUT: 43[H] 49[H] 4D[H] 34[H] ('CIL4')

This command is used to implement setting up the LINE 4 input channel.

Various setups can be memorized in the scene memories by specifying these scene Nos.

Packet format

43[H] 49[H] 4D[H] 34[H] "parameter" 0D[H]

Parameter

The parameter consists of the 64 bytes all the time in the order as shown in the table below.

byte	Parameter name	byte	Parameter name
1st	SCENE No.	54th	LINE4 E TRIM
2nd-9th	LINE4 A INDEX	55th	LINE4 F TRIM
10th-17th	LINE4 B INDEX	56th	FUNCTION ON/OFF
18th-25th	LINE4 C INDEX	57th	PEQ1 Frequency
26th-33rd	LINE4 D INDEX	58th	PEQ1 Q
34th-41st	LINE4 E INDEX	59th	PEQ1 GAIN
42nd-49th	LINE4 F INDEX	60st	PEQ2 Frequency
50th	LINE4 A TRIM	61st	PEQ2 Q
51st	LINE4 B TRIM	62nd	PEQ2 GAIN
52nd	LINE4 C TRIM	63rd	GAIN LIMIT LEVEL
53rd	LINE4 D TRIM	64th	FADER LEVEL

When you specify NONE (30[H] '0') as the scene No. in the 1st byte, you can establish the present setup.

At the same time, when you specify the scene No.(31[H] ('1') through 44[H] ('D')), parameters of the subsequent 2nd through 64th bytes are written in the scene memory.

The method of setting the scene No. and index of LINE4A through F, is the same as that of the GROUP FADER command. See pages 20 and 21.

Method of setting the LINE4A-F TRIM, FUNCTION ON/OFF, PEQ1,2 frequency, PEQ1,2 Q, PEQ1,2 Gain, Gain Limit level and input fader level is the same as that of the LINE 3 INPUT command. See pages 23 to 26.

For the packet example, see the example of the LINE 3 INPUT command on page 26. However, the parameter length becomes 64 bytes.

LINE 4 INPUT PARAMETER REQUEST: 52[H] 49[H] 4D[H] 34[H] ('RIL4')

This command is used to read setup of the LINE 4 input channel from the SRP-X700P.

Packet format

52[H] 49[H] 4D[H] 34[H] "parameter" 0D[H]

Parameter

Specify the scene No. of the scene memory that you want to read, as the parameter.

Method of specifying the scene No. is the same as that of the GROUP FADER command. See page 20.

• Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below

41[H] "parameter" 0D[H]

The parameter is the same as the 63 bytes of the LINE4 INPUT command parameter from which the scene No. is exempted.

LINE OUTPUT1,2: 43[H] 4F[H] 4C[H] 31[H],32[H] ('COL1,2')

This command is used to implement setup of any desired single channel of the LINE OUTPUT1 and 2. Various setups can be memorized in the scene memories by specifying these scene Nos.

The commands that correspond to the respective channels are shown below.

CHANNEL	Command
LINE OUTPUT 1	43[H] 4F[H] 4C[H] 31[H] 'COL1'
LINE OUTPUT 2	43[H] 4F[H] 4C[H] 32[H] 'COL2'

Packet format

43[H] 4F[H] 4C[H] 31[H] "parameter" 0D[H] (In the case of LINE OUTPUT 1)

Parameter

The parameter consists of the 47 bytes all the time in the order as shown in the table below.

byte	Parameter name	byte	Parameter name
1st	SCENE No.	28th	PEQ6 Q
2nd-9th	INDEX	29th	PEQ6 GAIN
10th	REF LEVEL	30th	PEQ7 Frequency
11th	FUNCTION ON/OFF	31st	PEQ7 Q
12th	PEQ1 Frequency	32nd	PEQ7 GAIN
13th	PEQ1 Q	33rd	PEQ8 Frequency
14th	PEQ1 GAIN	34th	PEQ8 Q
15th	PEQ2 Frequency	35th	PEQ8 GAIN
16th	PEQ2 Q	36th	PEQ9 Frequency
17th	PEQ2 GAIN	37th	PEQ9 Q
18th	PEQ3 Frequency	38th	PEQ9 GAIN
19th	PEQ3 Q	39th	PEQ10 Frequency
20th	PEQ3 GAIN	40th	PEQ10 Q
21st	PEQ4 Frequency	41st	PEQ10 GAIN
22nd	PEQ4 Q	42nd	PEQ11 Frequency
23rd	PEQ4 GAIN	43rd	PEQ11 Q
24th	PEQ5 Frequency	44th	PEQ11 GAIN
25th	PEQ5 Q	45th	Delay
26th	PEQ5 GAIN	46th	GAIN LIMIT LEVEL
27th	PEQ6 Frequency	47th	FADER LEVEL

When you specify NONE (30[H] '0') as the scene No. in the 1st byte, you can establish the present setup.

When you specify the scene Nos.(31[H] ('1') through 44[H] ('D')), the parameters of the subsequent 2nd to 47th bytes are written in the scene memory.

For the method of setting the scene No. and index, refer to the GROUP FADER command (pages 20 and 21).

Method of setting the PEQ1-11 frequency, PEQ1-11 Q, PEQ1-11 Gain, Gain Limit level and fader level is the same as that of the LINE 3 INPUT command. See pages 23 to 26.

For the packet example, see the example of the LINE 3 INPUT command on page 26. However, the parameter length becomes 47 bytes.

• REF LEVEL (10th byte)

This command is used to set the reference output level [dBu].

REF LEVEL	
-10	30[H] ('0')
-5	35[H] ('5')
0	3A[H] (':')
4	3E[H] ('>')

• Function ON/OFF (11th byte)

This command is used to turn ON/OFF the delay (DELAY), parametric equalizer (PEQ) and high-cut filter (HCF) with the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Λ	1	Λ	Λ	Λ	HCF	PFO	DEL AY

Set the corresponding bit to 1 to turn ON the delay (DELAY), parametric equalizer (PEQ) and high-cut filter (HCF). Set the corresponding bit to 0 to turn them OFF.

Bit-3 to bit-7 are fixed all the time.

Caution

When the high-cut filter (HCF) is turned ON, the parameters that are set in PEQ11 are invalidated.

• Delay (45th byte)

This command is used to set the delay.

[ms]	[m]	[feet]		[ms]	[m]	[feet]	
0	0	0	30[H] ('0')	78.3	27	90.0	4B[H] ('K')
2.9	1	3.3	31[H] ('1')	81.2	28	93.3	4C[H] ('L')
5.8	2	6.7	32[H] ('2')	84.1	29	96.7	4D[H] ('M')
8.7	3	10.0	33[H] ('3')	87.0	30	100.0	4E[H] ('N')
11.6	4	13.3	34[H] ('4')	89.9	31	103.3	4F[H] ('O')
14.5	5	16.7	35[H] ('5')	92.8	32	106.7	50[H] ('P')
17.4	6	20.0	36[H] ('6')	95.7	33	110.0	51[H] ('Q')
20.3	7	23.3	37[H] ('7')	98.6	34	113.3	52[H] ('R')
23.2	8	26.7	38[H] ('8')	101.5	35	116.7	53[H] ('S')
26.1	9	30.0	39[H] ('9')	104.4	36	120.0	54[H] ('T')
29.0	10	33.3	3A[H] (':')	107.3	37	123.3	55[H] ('U')
31.9	11	36.7	3B[H] (';')	110.2	38	126.7	56[H] ('V')
34.8	12	40.0	3C[H] ('<')	113.1	39	130.0	57[H] ('W')
37.7	13	43.3	3D[H] ('=')	116.0	40	133.3	58[H] ('X')
40.6	14	46.7	3E[H] ('>')	118.9	41	136.7	59[H] ('Y')
43.5	15	50.0	3F[H] ('?')	121.8	42	140.0	5A[H] ('Z')
46.4	16	53.3	40[H] ('@')	124.7	43	143.3	5B[H] ('[')
49.3	17	56.7	41[H] ('A')	127.6	44	146.7	5C[H] ('\')
52.2	18	60.0	42[H] ('B')	130.5	45	150.0	5D[H] (']')
55.1	19	63.3	43[H] ('C')	133.4	46	153.3	5E[H] ('^')
58.0	20	66.7	44[H] ('D')	136.3	47	156.7	5F[H] ('_')
60.9	21	70.0	45[H] ('E')	139.2	48	160.0	60[H] (``')
63.8	22	73.3	46[H] ('F')	142.1	49	163.3	61[H] ('a')
66.7	23	76.7	47[H] ('G')	145.0	50	166.7	62[H] ('b')
69.6	24	80.0	48[H] ('H')	147.9	51	170.0	63[H] ('c')
72.5	25	83.3	49[H] ('l')	150.8	52	173.3	64[H] ('d')
75.4	26	86.7	4A[H] ('J')				

LINE OUTPUT 1,2 PARAMETER REQUEST : 52[H] 4F[H] 4D[H] 31[H],32[H] ('ROL1,2')

This command is used to read the setup of any desired single channel of the LINE OUTPUT 1 and 2 from the SRP-X700P. The commands that correspond to the respective channels are shown below.

CHANNEL	Command
LINE OUTPUT 1	52[H] 4F[H] 4C[H] 31[H] 'ROL1'
LINE OUTPUT 2	52[H] 4F[H] 4C[H] 32[H] 'ROL2'

Packet format

52[H] 4F[H] 4C[H] 31[H] "parameter" 0D[H] (In the case of LINE OUTPUT 1)

Parameter

Specify the scene No. of the scene memory that you want to read, as the parameter. Method of specifying the scene No. is the same as that of the GROUP FADER command. See page 20.

Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter is the same as the 46 bytes of the LINE OUTPUT1 and 2 commands' parameter from which the scene No. is exempted.

LINE OUTPUT3-8: 43[H] 4F[H] 4C[H] 33[H]-38[H] ('COL3-8')

This command is used to implement setting up the desired single channel of the LINE OUTPUT3 to 8. Various setups can be memorized in the scene memories by specifying these scene Nos.

The commands that correspond to the respective channels are shown below.

CHANNEL	Command
LINE OUTPUT 3	43[H] 4F[H] 4C[H] 33[H] 'COL3'
LINE OUTPUT 4	43[H] 4F[H] 4C[H] 34[H] 'COL4'
LINE OUTPUT 5	43[H] 4F[H] 4C[H] 35[H] 'COL5'
LINE OUTPUT 6	43[H] 4F[H] 4C[H] 36[H] 'COL6'
LINE OUTPUT 7	43[H] 4F[H] 4C[H] 37[H] 'COL7'
LINE OUTPUT 8	43[H] 4F[H] 4C[H] 38[H] 'COL8'

Packet format

43[H] 4F[H] 4C[H] 33[H] "parameter" 0D[H] (In the case of LINE OUTPUT 3)

Parameter

The parameter consists of the 26 bytes all the time in the order as shown in the table below.

byte	Parameter name	byte	Parameter name
1st	SCENE No.	18 th	PEQ3 Frequency
2nd-9th	INDEX	19 th	PEQ3 Q
10th	REF LEVEL	20 th	PEQ3 GAIN
11 th	FUNCTION ON/OFF	21 st	PEQ4 Frequency
12th	PEQ1 Frequency	22 nd	PEQ4 Q
13th	PEQ1 Q	23 rd	PEQ4 GAIN
14th	PEQ1 GAIN	24 th	DELAY
15th	PEQ2 Frequency	25 th	GAIN LIMIT LEVEL
16th	PEQ2 Q	26 th	FADER LEVEL
17th	PEQ2 GAIN		

When you specify NONE (30[H] '0') as the scene No. in the 1st byte, you can establish the present setup.

At the same time, when you specify the scene No.(31[H] ('1') through 44[H] ('D')), parameters of the subsequent 2nd to 26th bytes are written in the scene memory.

For the method of setting the scene No. and index, refer to the GROUP FADER command (pages 20 and 21).

Method of setting the PEQ1-4 frequency, PEQ1-4 Q, PEQ1-4 Gain, Gain Limit and fader level is the same as that of the LINE 3 INPUT command. See pages 23 to 26.

Method of setting the REF LEVEL, Function ON/OFF and delay is the same as that of the LINE OUTPUT1 and 2 commands. See page 29.

For the packet example, see the example of the LINE 3 INPUT command on page 26. However, the parameter length becomes 26 bytes.

• REF LEVEL (10th byte)

This command is used to set the reference output level [dBu].

REF LEVEL	
-10	30[H] ('0')
-5	35[H] ('5')
0	3A[H] (':')

LINE OUTPUT3-8 PARAMETER REQUEST:

52[H] 4F[H] 4D[H] 33[H]-38[H] ('ROL3-8')

This command is used to read the setup of any desired single channel of the LINE OUTPUT 3 to 8 from the SRP-X700P. The commands that correspond to the respective channels are shown below.

CHANNEL	Command
LINE OUTPUT 3	43[H] 4F[H] 4C[H] 33[H] 'ROL3'
LINE OUTPUT 4	43[H] 4F[H] 4C[H] 34[H] 'ROL4'
LINE OUTPUT 5	43[H] 4F[H] 4C[H] 35[H] 'ROL5'
LINE OUTPUT 6	43[H] 4F[H] 4C[H] 36[H] 'ROL6'
LINE OUTPUT 7	43[H] 4F[H] 4C[H] 37[H] 'ROL7'
LINE OUTPUT 8	43[H] 4F[H] 4C[H] 38[H] 'ROL8'

Packet format

52[H] 4F[H] 4C[H] 33[H] "parameter" 0D[H] (In the case of LINE OUTPUT 3)

Parameter

Specify the scene No. of the scene memory that you want to read, as the parameter. Method of specifying the scene No. is the same as that of the GROUP FADER command. See page 20.

· Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter is the same as the 25 bytes of the LINE OUTPUT 3 through 8 commands' parameter from which the scene No. is exempted.

MIC INPUT: 43[H] 49[H] 4D[H] 31[H]-36[H] ('CIM1-6')

This command is used to implement setting up the desired single channel of the MIC1/WL1 to MIC6/LINE2 input channels. Various setups can be memorized in the scene memories by specifying these scene Nos.

The commands that correspond to the respective channels are shown below.

CHANNEL	Command
MIC1/WL1	43[H] 49[H] 4D[H] 31[H] ('CIM1')
MIC2/WL2	43[H] 49[H] 4D[H] 32[H] ('CIM2')
MIC3	43[H] 49[H] 4D[H] 33[H] ('CIM3')
MIC4	43[H] 49[H] 4D[H] 34[H] ('CIM4')
MIC5/LINE1	43[H] 49[H] 4D[H] 35[H] ('CIM5')
MIC6/LINE2	43[H] 49[H] 4D[H] 36[H] ('CIM6')

Packet format

43[H] 49[H] 4D[H] 31[H] "parameter" 0D[H] (In the case of MIC1/WL1 input channels)

Parameter

The parameter consists of the 41 bytes all the time in the order as shown in the table below.

byte	Parameter name	byte	Parameter name
1st	SCENE No.	25th	46[H] ('F') fixed
2nd-9th	INDEX	26th	FR1 GAIN
10th	TRIM	27th	FR2 Frequency
11th	FUNCTIONON/OFF	28th	46[H] ('F') fixed
12th	PEQ1 Frequency	29th	FR2 GAIN
13th	PEQ1 Q	30th	FR3 Frequency
14th	PEQ1 GAIN	31st	46[H] ('F') fixed
15th	PEQ2 Frequency	32nd	FR3 GAIN
16th	PEQ2 Q	33rd	FR4 Frequency
17th	PEQ2 GAIN	34th	46[H] ('F') fixed
18th	PEQ3 Frequency	35th	FR4 GAIN
19th	PEQ3 Q	36th	FR5 Frequency
20th	PEQ3 GAIN	37th	46[H] ('F') fixed
21st	26[H] ('&') fixed	38th	FR5 GAIN
22nd	2F[H] ('/') fixed	39th	COMPRESSOR
23rd	30[H] ('0') fixed	40th	GAIN LIMIT LEVEL
24th	FR1 Frequency	41st	FADER LEVEL

When you specify NONE (30[H] '0') as the scene No. in the 1st byte, you can establish the present setup.

At the same time, when you specify the scene No.(31[H] ('1') through 44[H] ('D')), parameters of the subsequent 2nd through 41th bytes are written in the scene memory.

For the method of setting the scene No. and index, refer to the GROUP FADER command (pages 20 and 21).

Method of setting the PEQ1-3 frequency, PEQ1-3 Q, PEQ1-3 Gain, Gain Limit level and fader level is the same as that of the LINE 3 INPUT command. See pages 23 to 26.

For the packet example, see the example of the LINE 3 INPUT command on page 26. However, the parameter length becomes 41 byts.

• TRIM (10th byte)

This command is used to set the reference level [dBu] of the input terminals.

REF		
Mic level input	Line level input	
-60	-10	30[H] ('0')
-59	-9	31[H] ('1')
-58	-8	32[H] ('2')
-57	-7	33[H] ('3')
-56	-6	34[H] ('4')
-55	-5	35[H] ('5')
-54	-4	36[H] ('6')
-53	-3	37[H] ('7')
-52	-2	38[H] ('8')
-51	-1	39[H] ('9')
-50	0	3A[H] (':')
-49	+1	3B[H] (';')
-48	+2	3C[H] ('<')
-47	+3	3D[H] ('=')
-46	+4	3E[H] ('>')
-45	+5	3F[H] ('?')

• Function ON/OFF (11th byte)

This command is used to turn ON/OFF the parametric equalizer (PEQ), feedback reducer (FR) and low-cut filter (LCF) with the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	PFO	FR	LCF

When you want to turn ON PEQ, FR and LCF, set the corresponding bit to 1. When you want to turn them OFF, set the corresponding bit to 0.

Bit-3 to bit-7 are fixed all the time.

• FR frequency (24, 27, 30, 33 and 36th bytes), FR gain (26, 29, 32, 35 and 38th bytes)

This command is used to set the center frequency and the gain of the notch filter used for the feedback reducer. Method of setting is the same as the of the PEQ frequency and PEQ gain. See pages 24 and 25.

• Compressor (39th byte)

This command is used to set the compressor.

COMPRESSOR	
OFF	30[H] ('0')
SOFT	31[H] ('1')
MID	32[H] ('2')
HARD	33[H] ('3')

MIC INPUT PARAMETER REQUEST: 52[H] 49[H] 4D[H] 31[H]-36[H] ('RIM1-6')

This command is used to read the setup of any desired single channel of the MIC input channels from the SRP-X700P. The commands that correspond to the respective channels are shown below.

CHANNEL	Command
MIC1/WL1	52[H] 49[H] 4D[H] 31[H] ('RIM1')
MIC2/WL2	52[H] 49[H] 4D[H] 32[H] ('RIM2')
MIC3	52[H] 49[H] 4D[H] 33[H] ('RIM3')
MIC4	52[H] 49[H] 4D[H] 34[H] ('RIM4')
MIC5/LINE1	52[H] 49[H] 4D[H] 35[H] ('RIM5')
MIC6/LINE2	52[H] 49[H] 4D[H] 36[H] ('RIM6')

Packet format

52[H] 49[H] 4D[H] 31[H] "parameter" 0D[H] (In the case of MIC1/WL1)

Parameter

Specify the scene No. of the scene memory that you want to read, as the parameter. Method of specifying the scene No. is the same as that of the GROUP FADER command. See page 20.

• Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter is the same as the 40 bytes of the MIC INPUT command parameter from which the scene No. is exempted.

MUTING/LINE4 SELECT: 43[H] 4D[H] 54[H] 53[H] ('CMTS')

This command is used to write the muting setup of the respective input/output channels and GROUP FADER, and the LINE4 SELECT setup for each scene memory.

Packet format

43[H] 4D[H] 54[H] 53[H] "parameter" 0D[H]

Parameter

The parameter consists of the 8 bytes in the order as shown in the table below.

byte	Parameter name
1st	SCENE No.
2nd	MIC MUTING
3rd	LINE3,4 MUTING
4th	LINE OUTPUT1-6 MUTING
5th	LINE OUTPUT7,8/REC OUT/SPEAKER OUTPUT MUTING
6th	MASTER MUTING
7th	GROUP MUTING
8th	LINE4 SELECT

When you specify the scene No.(31[H] ('1') through 44[H] ('D')), parameters of the subsequent 2nd through 8th bytes are written in the scene memory.

• Scene No. (1st byte)

This command is used to specify the scene No.

SCENE No.		SCENE No.	
1	31[H] ('1')	11	3B[H] (';')
2	32[H] ('2')	12	3C[H] ('<')
3	33[H] ('3')	13	3D[H] ('=')
4	34[H] ('4')	14	3E[H] ('>')
5	35[H] ('5')	15	3F[H] ('?')
6	36[H] ('6')	16	40[H] ('@')
7	37[H] ('7')	17	41[H] ('A')
8	38[H] ('8')	18	42[H] ('B')
9	39[H] ('9')	19	43[H] ('C')
10	3A[H] (':')	20	44[H] ('D')

• MIC MUTING (2nd byte)

This command is used to specify muting of the MIC input channels with the 8-bit data.

When you want to set the MUTING status, set the corresponding bit to 1. When you want to cancel MUTING, set the corresponding bit to 0.

Bit-6 and bit-7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	MIC6/	MIC5/	MIC4	MIC3	MIC2/	MIC1/
		LINE2	LINE1			WL2	WL1

• LINE MUTING (3rd byte)

This command is used to specify muting of the LINE input channels with the 8-bit data.

When you want to set the MUTING status, set the corresponding bit to 1. When you want to cancel MUTING, set the corresponding bit to 0.

Bit-2 to bit-7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	I INF4	LINE3

• LINE OUTPUT1-6 MUTING (4th byte)

This command is used to specify muting of the LINE OUTPUT1 to 6 channels with the 8-bit data.

When you want to set the MUTING status, set the corresponding bit to 1. When you want to cancel MUTING, set the corresponding bit to 0.

Bit-6 and bit-7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	OUT6	OUT5	OUT4	OUT3	OUT2	OUT1

• LINE OUTPUT7,8/REC OUT1,2 /SPEAKER OUTPUT1,2 MUTING (5th byte)

This command is used to specify muting of the LINE OUTPUT7,8, REC OUT1,2, SPEAKER OUTPUT1 and 2 with the 8-bit data. When you want to set the MUTING status, set the corresponding bit to 1. When you want to cancel MUTING, set the corresponding bit to 0.

Bit-6 and bit-7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	SPEAKER	SPEAKER	REC	REC	OUTPUT8	OUTPUT7
		OUTPUT2	OUTPUT1	OUT2	OUT1		

MASTER MUTING (6th byte)

This command is used to specify muting of the MASTER A and B with the 8-bit data.

When you want to set the MUTING status, set the corresponding bit to 1. When you want to cancel MUTING, set the corresponding bit to 0.

Bit-2 to bit-7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	MASTER B	MASTER A

• GROUP FADER MUTING (7th byte)

This command is used to specify muting of the REMOTE1 to 6 with 8-bit data.

When you want to set the MUTING status, set the corresponding bit to 1. When you want to cancel MUTING, set the corresponding bit to 0

Bit-6 and bit-7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	REMOTE6	REMOTE5	REMOTE4	REMOTE3	REMOTE2	REMOTE1

• LINE4 SELECT (8th byte)

This command is used to specify the selection channel for the LINE4 SELECT.

СН	
OFF	30[H] ('0')
Α	31[H] ('1')
В	32[H] ('2')
С	33[H] ('3')
D	34[H] ('4')
Е	35[H] ('5')
F	36[H] ('6')

Example: When you want to write the following channels in the scene No.1 after setting MIC1/WL1-MIC4 in the MUTING status, LINE OUTPUT7 and 8 in the MUTING status, other channels in the MUTING-released status and LINE4 SELECT in B.

43[H] 4D[H] 54[H] 53[H] 31[H] 4F[H] 40[H] 40[H] 43[H] 40[H] 40[H] 32[H] 0D[H] (' C M T S 1 O @ @ C @ @ 2 CR')

MUTING/LINE4 SELECT PARAMETER REQUEST:

52[H] 4D[H] 54[H] 53[H] ('RMTS')

This command is used to read the muting setup of the respective input/output channels and GROUP FADER for each scene memory and to read the LINE4 SELECT setup from the SRP-X700P.

Packet format

52[H] 4D[H] 54[H] 53[H] "parameter" 0D[H]

Parameter

Specify the scene No. of the scene memory that you want to read, as the parameter. Method to specify the scene No. is the same as that of the MUTING/LINE4 SELECT command. See page 36.

• Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter is the same as the 7 bytes of the MUTING/LINE4 SELECT command parameter from which the scene No. is exempted.

PANEL LOCK/FADER MODE: 43[H] 53[H] 45[H] 4C[H] ('CSEL')

This command is used to set the PANEL LOCK and the FADER MODE.

Packet format

43[H] 53[H] 45[H] 4C[H] "parameter" 0D[H]

Parameter

Specify the setup of the PANEL LOCK and that of the FADER MODE as the parameters with the 8-bit data.

When you want to lock the PANEL LOCK, set 1. When you release the lock, set 0.

When you want to set the FADER MODE in the ACTIVE mode, set 1. When you want to set it in the INACTIVE mode, set 0. Bit-2 to bit-7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	PANEL	FADER
						LOCK	MODE

Example: When releasing lock of the PANEL LOCK and setting the FADER MODE to ACTIVE. 43[H] 53[H] 45[H] 42[H] 0D[H] ('C S E L B CR')

PARALLEL I/O: 43[H] 50[H] 49[H] 4F[H] ('CPIO')

This command is used to set the functions of the REMOTE PARALLEL terminal.

Packet format

43[H] 50[H] 49[H] 4F[H] "parameter" 0D[H]

Parameter

The parameter consists of the 44 bytes all the time in the order as shown in the table below.

byte	Parameter name	byte	Parameter name
1st	INPUT1 FUNCTION1	23rd	INPUT12 FUNCTION1
2nd	INPUT1 FUNCTION2	24th	INPUT12 FUNCTION2
3rd	INPUT2 FUNCTION1	25th	OUTPUT1 FUNCTION1
4th	INPUT2 FUNCTION2	26th	OUTPUT1 FUNCTION2
5th	INPUT3 FUNCTION1	27th	OUTPUT2 FUNCTION1
6th	INPUT3 FUNCTION2	28th	OUTPUT2 FUNCTION2
7th	INPUT4 FUNCTION1	29th	OUTPUT3 FUNCTION1
8th	INPUT4 FUNCTION2	30th	OUTPUT3 FUNCTION2
9th	INPUT5 FUNCTION1	31st	OUTPUT4 FUNCTION1
10th	INPUT5 FUNCTION2	32nd	OUTPUT4 FUNCTION2
11th	INPUT6 FUNCTION1	33rd	OUTPUT5 FUNCTION1
12th	INPUT6 FUNCTION2	34th	OUTPUT5 FUNCTION2
13th	INPUT7 FUNCTION1	35th	OUTPUT6 FUNCTION1
14th	INPUT7 FUNCTION2	36th	OUTPUT6 FUNCTION2
15th	INPUT8 FUNCTION1	37th	OUTPUT7 FUNCTION1
16th	INPUT8 FUNCTION2	38th	OUTPUT7 FUNCTION2
17th	INPUT9 FUNCTION1	39th	OUTPUT8 FUNCTION1
18th	INPUT9 FUNCTION2	40th	OUTPUT8 FUNCTION2
19th	INPUT10 FUNCTION1	41st	OUTPUT9 FUNCTION1
20th	INPUT10 FUNCTION2	42nd	OUTPUT9 FUNCTION2
21st	INPUT11 FUNCTION1	43rd	OUTPUT10 FUNCTION1
22nd	INPUT11 FUNCTION2	44th	OUTPUT10 FUNCTION2

• INPUT Function 1 (1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23rd byte) This command is used to set the PARALLEL INPUT function 1.

FUNCTION1		FUNCTION1	
NONE	30[H] ('0')	Muting	35[H] ('5')
AV SEL	31[H] ('1')	RECALL	36[H] ('6')
LVL+	32[H] ('2')	LINE3 Control	37[H] ('7')
LVL-	33[H] ('3')	LINE4 Control	38[H] ('8')
LVL	34[H] ('4')	PJ Power	39[H] ('9')

INPUT Function 2 (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24th byte)

This command is used to set the PARALLEL INPUT function 2.

The different functions are supported for the respective values depending on the setup of the PARALLEL INPUT function 1.

		FI	UNCTION2			
NONE	AV SEL	LVL+ LVL- LVL Muting	RECALL	LINE3 Control LINE4 Control	PJ Power	
NONE	Α	Mic1	1	Play	NONE	30[H] ('0')
	В	Mic2	2	Pause		31[H] ('1')
	С	Mic3	3	Stop		32[H] ('2')
	D	Mic4	4	FF		33[H] ('3')
	Е	Mic5Line1	5	Rew		34[H] ('4')
	F	Mic6Line2	6	Rec		35[H] ('5')
	OFF	Line3	7	Next		36[H] ('6')
	/	Line4	8	Prev		37[H] ('7')
		Out1	9	On		38[H] ('8')
		Out2	10	Standby		39[H] ('9')
		Out3	11	/		3A[H] (':')
		Out4	12	/		3B[H] (';')
		Out5	13	/		3C[H] ('<')
		Out6	14			3D[H] ('=')
		Out7	15			3E[H] ('>')
		Out8	16			3F[H] ('?')
		MasterA	17			40[H] ('@')
		MasterB	18			41[H] ('A')
		Remote1	19			42[H] ('B')
		Remote2	20			43[H] ('C')
		Remote3				44[H] ('D')
		Remote4				45[H] ('E')
		Remote5				46[H] ('F')
	/	Remote6		/		47[H] ('G')

• OUTPUT Function 1 (25, 27, 29, 31, 33, 35, 37, 39, 41, 43rd byte)

This command is used to set the PARALLEL OUTPUT function 1.

FUNCTION1	
NONE	30[H] ('0')
AV SEL	31[H] ('1')
-∞	32[H] ('2')
OVER	33[H] ('3')
RECALL	34[H] ('4')
PJ	35[H] ('5')

• OUTPUT Function 2 (26, 28, 30, 32, 34, 36, 38, 40, 42, 44th byte)

This command is used to set the PARALLEL OUTPUT function 2.

The different functions are supported for the respective values depending on the setup of the PARALLEL OUTPUT function 1.

	FUNCTION2				
NONE	AV	-∞	RECALL	PJ Power	
	SEL	Over	1120/122		
NONE	Α	Mic1	1	On	30[H] ('0')
	В	Mic2	2	Standby	31[H] ('1')
	С	Mic3	3	/	32[H] ('2')
	D	Mic4	4	/	33[H] ('3')
	E	MicLine5	5		34[H] ('4')
	F	MicLine6	6	/	35[H] ('5')
	OFF	Line3	7		36[H] ('6')
	/	Line4	8	/ [37[H] ('7')
		Out1	9	/	38[H] ('8')
		Out2	10	/	39[H] ('9')
		Out3	11		3A[H] (':')
		Out4	12		3B[H] (';')
		Out5	13		3C[H] ('<')
		Out6	14		3D[H] ('=')
		Out7	15		3E[H] ('>')
		Out8	16		3F[H] ('?')
		MasterA	17		40[H] ('@')
		MasterB	18		41[H] ('A')
/			19		42[H] ('B')
	/		20	/	43[H] ('C')

Example: When setting the respective parameters as shown below.

INPUT1 function 1 : AV SEL
INPUT1 function 2 : B
INPUT2-12 function 1 : NONE
INPUT2-12 function 2 : NONE
OUTPUT1 function 1 : RECALL
OUTPUT1 function 2 : 1
OUTPUT2-10 function 1 : NONE
OUTPUT2-10 function 2 : NONE

43[H] 4D[H] 54[H] 53[H] 31[H] 31[H] 30[H] 30[H]

PARALLEL I/O PARAMETER REQUEST: 52[H] 50[H] 49[H] 4F[H] ('RPIO')

This command is used to read setup of the REMOTE PARALLEL terminal from the SRP-X700P.

Packet format

52[H] 50[H] 49[H] 4F[H] 0D[H]

• Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter is the same as the 44 bytes of the PARALLEL I/O command parameter from which the scene No. is exempted.

REC OUT: 43[H] 4F[H] 52[H] 31[H],32[H] ('COR1,2')

This command is used to implement setting up the desired single channel of the REC OUT 1 and 2. Various setups can be memorized in the scene memories by specifying these scene Nos.

The commands that correspond to the respective channels are shown below.

CHANNEL	Command
REC OUT 1	52[H] 4F[H] 52[H] 31[H] 'ROR1'
REC OUT 2	52[H] 4F[H] 52[H] 32[H] 'ROR2'

Packet format

43[H] 4F[H] 52[H] 31[H] "parameter" 0D[H] (In the case of REC OUT 1)

Parameter

The parameter consists of the 10 bytes all the time in the order as shown in the table below.

byte	Parameter name
1st	SCENE No.
2nd-9th	INDEX
10th	REF LEVEL

When you specify NONE (30[H] '0') as the scene No. in the 1st byte, you can establish the present setup.

At the same time, when you specify the scene No. (31[H] ('1') through 44[H] ('D')), the parameters of the subsequent 2nd to 10th bytes are written in the scene memory.

 $Method \ to \ set \ the \ scene \ No. \ and \ index \ is \ the \ same \ as \ that \ of \ the \ GROUP \ FADER \ command. \ See \ pages \ 20 \ and \ 21.$

Method to set the REF LEVEL is the same as that of the LINE OUTPUT3-8 commands. See page 31.

For the packet example, see the example of the LINE 3 INPUT command on page 26. However, the parameter length becomes 10 bytes.

REC OUT PARAMETER REQUEST: 52[H] 4F[H] 4D[H] 33[H],32[H] ('ROR1,2')

This command is used to read parameter of the desired single channel of the REC OUT 1 and 2 from the SRP-X700P. The commands that correspond to the respective channels are shown below.

CHANNEL	Command
REC OUT 1	52[H] 4F[H] 52[H] 31[H] 'ROR1'
REC OUT 2	52[H] 4F[H] 52[H] 32[H] 'ROR2'

Packet format

52[H] 4F[H] 52[H] 31[H] "parameter" 0D[H] (In the case of REC OUT 1)

Parameter

Specify the scene No. of the scene memory that you want to read, as the parameter.

Method of specifying the scene No. is the same as that of the GROUP FADER command. See page 20.

Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter is the same as the 9 bytes of the REC OUT1, 2 commands' parameter from which the scene No. is exempted.

REMOTE: 43[H] 53[H] 49[H] 4F[H] ('CSIO')

This command is used to set the CONTROL S OUTPUT and the PROJECTOR CONTROL.

Packet format

43[H] 53[H] 49[H] 4F[H] "parameter" 0D[H]

Parameter

The parameter consists of the 24 bytes all the time in the order as shown in the table below.

The 24th byte should always be set to the fixed value (30[H] ('0')).

byte		byte	
1st	LINE3 MACHINE TYPE	13th	LINE4F MACHINE TYPE
2nd	LINE3 CONNECTED CHANNEL	14th	LINE4F CONNECTED CHANNEL
3rd	LINE4A MACHINE TYPE	15th	CONTROL S I/F TYPE
4th	LINE4A CONNECTED CHANNEL	16th	PJ CONTROL
5th	LINE4B MACHINE TYPE	17th	LINE4 A SIGNAL DEFINE
6th	LINE4B CONNECTED CHANNEL	18th	LINE4 B SIGNAL DEFINE
7th	LINE4C MACHINE TYPE	19th	LINE4 C SIGNAL DEFINE
8th	LINE4C CONNECTED CHANNEL	20th	LINE4 D SIGNAL DEFINE
9th	LINE4D MACHINE TYPE	21st	LINE4 E SIGNAL DEFINE
10th	LINE4D CONNECTED CHANNEL	22nd	LINE4 F SIGNAL DEFINE
11th	LINE4E MACHINE TYPE	23rd	PROJECTOR PROTOCOL
12th	LINE4E CONNECTED CHANNEL	24th	30[H] ('0') fixed

• LINE3-4F machine type (1, 3, 5, 7, 9, 11 and 13th byte)

This command is used to set category of the Control S.

MACHINE TYPE		MACHINE TYPE	
NONE	30[H] ('0')	VTR4(DV)	35[H] ('5')
DVD	31[H] ('1')	MD	36[H] ('6')
VTR1(Beta)	32[H] ('2')	CD	37[H] ('7')
VTR2(8mm)	33[H] ('3')	CD-R	38[H] ('8')
VTR3(VHS)	34[H] ('4')		

• LINE3-4F connection (2, 4, 6, 8, 10, 12 and 14th byte)

This command is used to set the output channel of the CONTROL S signal.

CHANNEL TYPE	
1	40[H] ('@')
2	41[H] ('A')
3	42[H] ('B')
4	43[H] ('C')

• **CONTROL S I/F TYPE (15th byte)**

This command is used to set the connection type of the channels 1 to 4 of the CONTROL S OUTPUT terminal.

When you want to set the I/F type to WIRED, set the corresponding bit to 0. When you want to set the I/F type to IR, set the corresponding bit to 1.

Bits 4 through 7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	CH4	CH3	CH2	CH1
				CONNECTION	CONNECTION	CONNECTION	CONNECTION
				TYPF	TYPF	TYPF	TYPF

• PJ CONTROL (16th byte)

This command is used to set ON/OFF of the REMOTE POWER ENABLE and selection of the PROJECTOR CONTROL terminal with the 8-bit data.

When you want to set the REMOTE POWER ENABLE to ON, set bit 1 to 1. When you to set it to OFF, set bit 1 to 0.

Bit 0 (I/F) changes depending on the setup of the "Projector Protocol" described later.

Bits 2 through 7 are fixed all the time.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	0	0	REMOTE	I/F
						POWER	
						ENABLE	

• Video signal type (17th through 22nd byte)

This command is used to set the type of video signal of the equipment connected to LINE4 A to F.

SIGNAL DEFINE	
VIDEO	30[H] ('0')
S VIDEO	31[H] ('1')
RGB	32[H] ('2')
COMPONENT	33[H] ('3')
LAN	34[H] ('4')

• Projector protocol (23rd byte)

This command is used to select protocol of the projector to be connected. Bit 0 of the "PJ CONTROL" changes depending on the protocol.

PROJECTOR		PJ CONTROL
PROTOCOL		bit0
VPL-FX50	30[H] ('0')	0
VPL-PX32/31/21	31[H] ('1')	0
PFM-42B1	32[H] ('2')	0
VPL-PX15	33[H] ('3')	1
VPL-PX10/PS10	34[H] ('4')	1
VPL-CX11/CX10	35[H] ('5')	1
SANYO LP-XP45/40	36[H] ('6')	0

Example: When setting the respective parameters as shown below.

LINE3 machine type : CD
LINE3 connected channel : 1
LINE4A-F machine type : NONE
LINE4A-F machine type : 2

CONTROL S I/F TYPE : CH1 is set to IR, and CH2-4 are set to WIRED. PJ CONTROL : REMOTE POWER ENABLE is set to ON.

LINE4 A-C signal define : VIDEO
LINE4 D-F signal define : RGB
Projector protocol : VPL-FX50

43[H] 4D[H] 54[H] 53[H] 37[H] 40[H] 30[H] 41[H] 30[H] 41[H] 30[H] 41[H] 30[H] 41[H] 30[H] 41[H] 30[H] 41[H] 42[H] 30[H] 30[H] 30[H] 32[H] 32[H] 32[H] 30[H] 30[H] 0D[H] (CSIO7@0A0A0A0A0A0A0A0AAB00CCR)

REMOTE PARAMETER REQUEST: 52[H] 50[H] 49[H] 4F[H] ('RPIO')

This command is used to read setups of the CONTROL S OUTPUT and PROJECTOR CONTROL from the SRP-X700P.

Packet format

52[H] 50[H] 49[H] 4F[H] 0D[H]

• Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter is the same as the 24 byte parameter of the REMOTE command.

ROUTING: 43[H] 52[H] 4C[H] 31[H]-38[H] ('CRL1-8') 43[H] 52[H] 52[H] 31[H]-32[H] ('CRR1-2')

This command is used to set the routing for the OUTPUT channels.

Various setups can be memorized in the scene memories by specifying these scene Nos.

The commands that correspond to the respective channels are shown below.

CHANNEL	Command
LINE OUTPUT 1	43[H] 52[H] 4C[H] 31[H] 'CRL1'
LINE OUTPUT 2	43[H] 52[H] 4C[H] 32[H] 'CRL2'
LINE OUTPUT 3	43[H] 52[H] 4C[H] 33[H] 'CRL3'
LINE OUTPUT 4	43[H] 52[H] 4C[H] 34[H] 'CRL4'
LINE OUTPUT 5	43[H] 52[H] 4C[H] 35[H] 'CRL5'
LINE OUTPUT 6	43[H] 52[H] 4C[H] 36[H] 'CRL6'
LINE OUTPUT 7	43[H] 52[H] 4C[H] 37[H] 'CRL7'
LINE OUTPUT 8	43[H] 52[H] 4C[H] 38[H] 'CRL8'
REC OUT 1	43[H] 52[H] 52[H] 31[H] 'CRR1'
REC OUT 2	43[H] 52[H] 52[H] 32[H] 'CRR2'

Packet format

43[H] 52[H] 4C[H] 31[H] "parameter" 0D[H] (In the case of LINE OUTPUT1)

Parameter

The parameter consists of the 20 bytes all the time in the order as shown in the table below.

byte	Parameter name	byte	Parameter name
1st	SCENE No.	11 th	LINE4 A-C,F R LEVEL
2nd	MIC1/WL1 LEVEL	12th	LINE4 D-E L LEVEL
3rd	MIC2/WL2 LEVEL	13th	LINE4 D-E R LEVEL
4th	MIC3 LEVEL	14th	LINE4 D-E LS LEVEL
5th	MIC4 LEVEL	15th	LINE4 D-E RS LEVEL
6th	MIC5/LINE1 LEVEL	16th	LINE4 D-E C LEVEL
7th	MIC6/LINE2 LEVEL	17th	LINE4 D-E SW LEVEL
8th	LINE3 L LEVEL	18th	MIC1/WL1-MIC6/LINE2 ON/OFF
9th	LINE3 R LEVEL	19th	LINE3-LINE4A-C ON/OFF
10th	LINE4 A-C,F L LEVEL	20th	LINE4 D,E ON/OFF

When you specify NONE (30[H] '0') as the scene No. in the 1st byte, you can establish the present setup.

At the same time, when you specify the scene No.(31[H] ('1') through 44[H] ('D')), parameters of the subsequent 2nd through 20th byte are written in the scene memory.

For the method of setting the scene No., see the GROUP FADER command (pages 20 and 21).

• Level (2-17th byte)

This command is used to set the ASSIGN level [dB].

LEVEL	
-20	40[H] ('@')
-15	45[H] ('E')
-12	48[H] ('H')
-9	4B[H] ('K')
-6	4E[H] ('N')
-3	53[H] ('S')
0	59[H] ('Y')

• MIC1/WL1-MIC6/LINE2 ON/OFF (18th byte)

This command is used to turn ON/OFF the routing of the MIC1/WL1 to MIC6/LINE2 with the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	MIC6/	MIC5/	MIC4	MIC3	MIC2/	MIC1/
		LINE2	LINF1			WI 2	WI 1

When you want to set the respective input channels to ON, set the corresponding bit to 1. When you want to set the corresponding bit to 0.

Bit-6 and bit-7 are fixed all the time.

• LINE3-LINE4 A-C ON/OFF (19th byte)

This command is used to turn ON/OFF the routing of the LINE3 and LINE4 A to C with the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	0	LINE4 A-C	LINE4 A-C	LINE3	LINE3
				R	1	R	1

When you want to set the respective input channels to ON, set the corresponding bit to 1. When you want to set the corresponding bit to 0.

Bit-4 to bit-7 are fixed all the time.

• LINE4 D,E ON/OFF (20th byte)

This command is used to turn ON/OFF the routing of the LINE4 D and E with the 8-bit data.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	LINE4	LINE4	LINE4	LINE4	LINE4	LINE4
		D,E	D,E	D,E	D,E	D,E	D,E
		RS	LS	SW	R	С	L

When you want to set the respective input channels to ON, set the corresponding bit to 1. When you want to set the corresponding bit to 0

Bit-6 and bit-7 are fixed all the time.

Example: When setting the respective parameters of LINE OUTPUT1 as shown below.

MIC1/WL1-MIC5/LINE2 level : 0dB LINE3 L - LINE 4D-E SW level : -9dB

MIC1/WL1-MIC6/LINE2 ON/OFF : MIC1/WL1 through MIC4 are set to ON.

MIC5/LINE1 and MIC6/LINE2 are set to OFF.

LINE3 - LINE4A-C ON/OFF: LINE3 : Set all to OFF. LINE4 D,E ON/OFF : Set all to OFF.

43[H] 52[H] 4C[H] 31[H] 30[H] 59[H] 59[H] 59[H] 59[H] 59[H] 59[H] 4B[H] 4C[H] 4O[H] 0D[H] ('C R L 1 0 Y Y Y Y Y Y K K K K K K K K K K K K C @ @')

ROUTING PARAMETER REQUEST : 52[H] 52[H] 4C[H] 31[H]-38[H] ('RRL1-8') 52[H] 52[H] 52[H] 31[H]-32[H] ('RRR1-2')

This command is used to read setup of the routing to the OUTPUT channels with the 8-bit data from the SRP-X700P. The commands that correspond to the respective channels are shown below.

CHANNEL	Command
LINE OUTPUT 1	52[H] 52[H] 4C[H] 31[H] 'RRL1'
LINE OUTPUT 2	52[H] 52[H] 4C[H] 32[H] 'RRL2'
LINE OUTPUT 3	52[H] 52[H] 4C[H] 33[H] 'RRL3'
LINE OUTPUT 4	52[H] 52[H] 4C[H] 34[H] 'RRL4'
LINE OUTPUT 5	52[H] 52[H] 4C[H] 35[H] 'RRL5'
LINE OUTPUT 6	52[H] 52[H] 4C[H] 36[H] 'RRL6'
LINE OUTPUT 7	52[H] 52[H] 4C[H] 37[H] 'RRL7'
LINE OUTPUT 8	52[H] 52[H] 4C[H] 38[H] 'RRL8'
REC OUT 1	52[H] 52[H] 52[H] 31[H] 'RRR1'
REC OUT 2	52[H] 52[H] 52[H] 32[H] 'RRR2'

Packet format

52[H] 52[H] 4C[H] 31[H] "parameter" 0D[H]

Parameter

Specify the scene No. of the scene memory that you want to read, as the parameter.

Method of specifying the scene No. is the same as that of the GROUP FADER command. See page 20.

Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter is the same as the 19 bytes of the ROUTING command parameter from which the scene No. is exempted.

SCENE INDEX REQUEST: 52[H] 53[H] 43[H] 49[H] ('RSCI')

This command is used to read index of the scene memory from the SRP-X700P.

Packet format

52[H] 53[H] 43[H] 49[H] "parameter" 0D[H]

Parameter

Specify the scene No. of the scene memory that you want to read, as the parameter. Method of specifying the scene No. is the same as that of the SCENE STORE command.

Return packet format

When communication with the SRP-X700P is established with success, the 8-bytes index is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "index" 0D[H]

SCENE PARAMETER REQUEST: 52[H] 53[H] 43[H] 52[H] ('RSTR')

This command is used to read the setups of the functions of recalling at the event of scene recall from the SRP-X700P for all scene memories

Packet format

52[H] 53[H] 43[H] 52[H] 0D[H]

• Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter consists of the 40 bytes all the time in the order as shown in the table below.

byte	Parameter name	byte	Parameter name
1st	SCENE No.1 FUNCTION1	21st	SCENE No.11 FUNCTION1
2nd	SCENE No.1 FUNCTION2	22nd	SCENE No.11 FUNCTION2
3rd	SCENE No.2 FUNCTION1	23rd	SCENE No.12 FUNCTION1
4th	SCENE No.2 FUNCTION2	24th	SCENE No.12 FUNCTION2
5th	SCENE No.3 FUNCTION1	25th	SCENE No.13 FUNCTION1
6th	SCENE No.3 FUNCTION2	26th	SCENE No.13 FUNCTION2
7th	SCENE No.4 FUNCTION1	27th	SCENE No.14 FUNCTION1
8th	SCENE No.4 FUNCTION2	28th	SCENE No.14 FUNCTION2
9th	SCENE No.5 FUNCTION1	29th	SCENE No.15 FUNCTION1
10th	SCENE No.5 FUNCTION2	30th	SCENE No.15 FUNCTION2
11th	SCENE No.6 FUNCTION1	31st	SCENE No.16 FUNCTION1
12th	SCENE No.6 FUNCTION2	32nd	SCENE No.16 FUNCTION2
13th	SCENE No.7 FUNCTION1	33rd	SCENE No.17 FUNCTION1
14th	SCENE No.7 FUNCTION2	34th	SCENE No.17 FUNCTION2
15th	SCENE No.8 FUNCTION1	35th	SCENE No.18 FUNCTION1
16th	SCENE No.8 FUNCTION2	36th	SCENE No.18 FUNCTION2
17th	SCENE No.9 FUNCTION1	37th	SCENE No.19 FUNCTION1
18th	SCENE No.9 FUNCTION2	38th	SCENE No.19 FUNCTION2
19th	SCENE No.10 FUNCTION1	39th	SCENE No.20 FUNCTION1
20th	SCENE No.10 FUNCTION2	40th	SCENE No.20 FUNCTION2

Parameters of the Functions 1 and 2 are the same as those of the SCENE STORE command. See page 50.

SCENE RECALL BUTTON: 43[H] 52[H] 53[H] 41[H] ('CRSA')

This command is used to set the scene No. to be recalled, to the SCENE RECALL A to D buttons on the front of the SRP-X700P.

Packet format

43[H] 52[H] 53[H] 41[H] "parameter" 0D[H]

Parameter

The parameter consists of the 4 bytes all the time in the order as shown in the table below.

byte	Parameter name
1st	RECALL A SCENE No.
2nd	RECALL B SCENE No.
3rd	RECALL C SCENE No.
4th	RECALL D SCENE No.

Method of specifying the scene No. is the same as that of the SCENE STORE command.

Example: When you want to set the respective buttons as shown below.

RECALL A : Scene No.1
RECALL B : Scene No.2
RECALL C : Scene No.3
RECALL D : Scene No.4

43[H] 52[H] 53[H] 41[H] 31[H] 32[H] 33[H] 34[H] 0D[H] ('C R S A 1 2 3 4 CR')

SCENE RECALL BUTTON PARAMETER REQUEST:

52[H] 52[H] 53[H] 41[H] ('RRSA')

This command is used to read the scene Nos. that are set to the SCENE RECALL A to D buttons on the front of the SRP-X700P.

Packet format

52[H] 52[H] 53[H] 41[H] 0D[H]

• Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter is the same as that of the SCENE RECALL BUTTON command.

SCENE STORE: 43[H] 53[H] 54[H] 52[H] ('CSTR')

This command is used to store the scenes to the scene memory.

The procedure to store the scenes to the scene memory is shown below.

- 1. Specify the scene numbers that you want to store using the respective commands of MIC INPUT, LINE3 INPUT, LINE4 INPUT, ROUTING, LINE OUTPUT 1 and 2, LINE OUTPUT 3 through 8, REC OUT, SPEAKER OUTPUT, MUTING/LINE 4 SELECT and GROUP FADER. Then send the parameters that you want to store, to the scene memory.
- 2. Send the SCENE STORE command to store the scenes.

Packet format

43[H] 53[H] 54[H] 52[H] "parameter" 0D[H]

Parameter

The parameter consists 11 bytes all the time in the order as shown in the table below.

byte	Parameter name		
1st	SCENE No.		
2nd-9th	INDEX		
10th	FUNCTION1		
11th	FUNCTION2		

Method of setting index is the same as that of the GROUP FADER command. See page 20.

• Scene No. (1st byte)

This command is used to specify the scene No. to be stored.

SCENE No.		SCENE No.	
1	31[H] ('1')	11	3B[H] (';')
2	32[H] ('2')	12	3C[H] ('<')
3	33[H] ('3')	13	3D[H] ('=')
4	34[H] ('4')	14	3E[H] ('>')
5	35[H] ('5')	15	3F[H] ('?')
6	36[H] ('6')	16	40[H] ('@')
7	37[H] ('7')	17	41[H] ('A')
8	38[H] ('8')	18	42[H] ('B')
9	39[H] ('9')	19	43[H] ('C')
10	3A[H] (':')	20	44[H] ('D')

• Function 1, 2 (10, 11th byte)

This command is used to specify the function to implement recalling at the event of scene recall with the two 8-bit data.

When you want to recall the scene, set the corresponding bit to 1. When you do not want to recall the scene, set the corresponding bit to 0.

If bit 5 (Clear) of the function 1 is 1, the scene memory is cleared and the scene will not be recalled.

Bit-6 and bit-7 of the function 1 and bit-5 to bit-7 of the function 2 are fixed all the time.

<function< th=""><th>1 I></th><th></th><th></th><th></th><th></th><th></th><th></th></function<>	1 I>						
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	Clear	ROUTING	AV	INPUT	INPUT	INPUT
				SELECTOR	FADER	MUTING	FUNCTION
<function< td=""><td>1 2></td><td></td><td></td><td></td><td></td><td></td><td></td></function<>	1 2>						
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	0	FADER	GROUP	OUTPUT	OUTPUT	OUTPUT
			GROUP	MUTING	FADER	MUTING	FUNCTION

Example: When setting the respective parameters as shown below.

Scene No. : 1
Index : START
Function 1,2 : All recall

43[H] 53[H] 54[H] 52[H] 31[H] 53[H] 54[H] 41[H] 52[H] 54[H] 20[H] 20[H] 20[H] 5F[H] 5F[H] 0D[H]

('C S T R 1 S T A R T 🗆 🗆 🗆 _ _ CR')

" \square " indicates the space.

SPEAKER OUTPUT: 43[H] 4F[H] 53[H] 50[H] ('COSP')

This command is used to set the SPEAKER OUTPUT.

Various setups can be memorized in the scene memories by specifying these scene Nos.

Packet format

43[H] 4F[H] 4C[H] 33[H] "parameter" 0D[H]

Parameter

The parameter consists of the 22 bytes all the time in the order as shown in the table below.

byte	Parameter name		
1st	SCENE No.		
2nd	FUNCTION ON/OFF		
3rd-10th	CH1 INDEX		
11th	CH1 SELECTOR		
12th	CH1 ATT		
13th-20th	CH2 INDEX		
21st	CH2 SELECTOR		
22nd	CH2 ATT		

When you specify NONE (30[H] '0') as the scene No. in the 1st byte, you can establish the present setup. At the same time, when you specify the scene No. (31[H] ('1') through 44[H] ('D')), parameters of the subsequent 2nd through 22nd byte are written in the scene memory.

Method of setting the scene No. and setting index of each channel, refer to the GROUP FADER command (pages 20 through 21). For the packet example, see the example of the LINE 3 INPUT command on page 26. However, the parameter length becomes 22 bytes.

Function ON/OFF (2nd byte)

This command is used to set the mode of the SPEAKER OUT terminal.

When you want to set the Lo Imp. mode, set 40[H] ('@'). When you want to set the 70V LINE mode, set 41[H] ('A').

• CH1, 2 selector (11, 21st byte)

This command is used to select the signal to be output from the SPEAKER OUTPUT terminal.

CHANNEL		CHANNEL	
LINE OUTPUT 1	30[H] ('0')	LINE OUTPUT 6	35[H] ('5')
LINE OUTPUT 2	31[H] ('1')	LINE OUTPUT 7	36[H] ('6')
LINE OUTPUT 3	32[H] ('2')	LINE OUTPUT 8	37[H] ('7')
LINE OUTPUT 4	33[H] ('3')	REC OUT1	38[H] ('8')
LINE OUTPUT 5	34[H] ('4')	REC OUT2	39[H] ('9')

• ATT (12, 22nd byte)

This command is used to set the ATT level [dB] of SPEAKER OUTPUT.

ATT LEVEL		ATT LEVEL		ATT LEVEL	
∞	30[H] ('0')	18	42[H] ('B')	8	4C[H] ('L')
30	39[H] ('9')	17	43[H] ('C')	7	4D[H] ('M')
27	3A[H] (':')	16	44[H] ('D')	6	4E[H] ('N')
25	3B[H] (";")	15	45[H] ('E')	5	4F[H] ('O')
24	3C[H] ('<')	14	46[H] ('F')	4	51[H] ('Q')
23	3D[H] ('=')	13	47[H] ('G')	3	53[H] ('S')
22	3E[H] ('>')	12	48[H] ('H')	2	55[H] ('U')
21	3F[H] ('?')	11	49[H] ('l')	1	57[H] ('W')
20	40[H] ('@')	10	4A[H] ('J')	0	59[H] ('Y')
19	41[H] ('A')	9	4B[H] ('K')		

SPEAKER OUTPUT PARAMETER REQUEST: 52[H] 4F[H] 53[H] 50[H] ('ROSP')

This command is used to read the setup of the SPEAKER OUTPUT from the SRP-X700P.

Packet format

52[H] 4F[H] 53[H] 50[H] "parameter" 0D[H]

• Parameter

Specify the scene No. of the scene memory that you want to read, as the parameter. Method of specifying the scene No. is the same as that of the GROUP FADER command. See page 20.

Return packet format

When communication with the SRP-X700P is established with success, the parameter is returned together with ACK (41[H] ('A')) in the order shown below.

41[H] "parameter" 0D[H]

The parameter is the same as the 21 bytes of the SPEAKER OUTPUT command parameter from which the scene No. is exempted.