PROTOCOL USED FOR VS-606 COMMUNICATION (RS-232)

Communication with the VS-606 is done using three bytes of information as defined below. The rate of data is 9600 baud, with no parity, 8 data bits and one stop bit.

First Byte:

					Address			
0	D	0	0	0	A2	A1	A0	
7	6	5	4	3	2	1	0	

Second Byte:

	Command								
1									
7	6	5	4	3	2	1	0		

Third Byte:

	Data								
1									
7	6	5	4	3	2	1	0		

DETAILED DESCRIPTION

First byte

First byte - bits 0..2 - ADDRESS. These bits describe the Machine number that is influenced by COMMAND. The number of the machine can be 1 (master) to 8.

Machine number	A2	A1	A0	
1	0	0	0	Master
2	0	0	1	Slave
3	0	1	0	Slave
4	0	1	1	Slave
5	1	0	0	Slave
6	1	0	1	Slave
7	1	1	0	Slave
8	1	1	1	Slave

1st byte - bit 6 - destination bit (D).

When sending a message from the PC (ie. to machine), this bit must be 0. When the machine sends a message to the PC, this bit is 1.

1st byte - bits 3,4,5,7 - must be 0.

Second byte

Second byte - bits 0..6 - COMMAND. These bits describe the "CODE" corresponding to each "COMMAND", as shown in the table below.

last bit - bit 7 must be 1.

Third byte

Third byte - bits 0..6 - DATA. These bits describe the DATA that is influenced by COMMAND. For example to connect input 7 to output 3, the DATA should be 7 (hex). last bit - bit 7 must be 1.

List of Commands

Code (Hex)	Command	Address	Data	Reply
01	Set Output 1	Machine number –1 (0-7)	Input number (0-6)	Three bytes as was sent, except for D which will be 1.
02	Set Output 2	Machine number –1 (0-7)	Input number (0-6)	Three bytes as was sent, except for D which will be 1.
03	Set Output 3	Machine number –1 (0-7)	Input number (0-6)	Three bytes as was sent, except for D which will be 1.
04	Set Output 4	Machine number –1 (0-7)	Input number (0-6)	Three bytes as was sent, except for D which will be 1.
05	Set Output 5	Machine number –1 (0-7)	Input number (0-6)	Three bytes as was sent, except for D which will be 1.
06	Set Output 6	Machine number –1 (0-7)	Input number (0-6)	Three bytes as was sent, except for D which will be 1.
07	Set Output 7	Machine number –1 (0-7)	Input number (0-6)	Three bytes as was sent, except for D which will be 1.
08	Set Output 8	Machine number –1 (0-7)	Input number (0-6)	Three bytes as was sent, except for D which will be 1.
09	Set all outputs	Machine number –1 (0-7)	Input number (0-6)	Three bytes as was sent, except for D which will be 1.
0A	Get the status of output	Machine number –1 (0-7)	Input number (0-6)	Address - as sent Command – output number Data – input number
OB	Get the machine type	Machine number –1 (0-7)		Address – as sent Command – 0. Data - 88

Examples how to use the protocol:

1) To connect input 6 in machine 2 to output 5, set the byte as below: First byte - 00(hex) + ADDRESS(hex) = 00 + 02 = 02(hex). Second byte - 80(hex) + COMMAND = 80 + 05 = 85(hex). Third byte - 80(hex) + DATA(hex) = 80 + 06 = 86(hex).

DIP SWITCH SETTINGS

Machine	Switch Number									
Number	8	7	6	5	4	3	2	1		
1 (Master)	ON	ON	ON	ON	ON	ON	ON	ON		
2	Off	Off	ON	ON	ON	ON	ON	Off		
3	Off	Off	ON	ON	ON	ON	Off	ON		
4	Off	Off	ON	ON	ON	ON	Off	Off		
5	Off	Off	ON	ON	ON	Off	ON	ON		
6	Off	Off	ON	ON	ON	Off	ON	Off		
7	Off	Off	ON	ON	ON	Off	Off	ON		
8	Off	Off	ON	ON	ON	Off	Off	Off		

Switch Matrix Coding for the VS-606

	Output #	All					
	1	2	3	4	5	6	Outputs
Input # 1	00H	00H	00H	00H	00H	00H	00H
	81H	82H	83H	84H	85H	86H	89H
	81H	81H	81H	81H	81H	81H	81H
Input # 2	00H	00H	00H	00H	00H	00H	00H
	81H	82H	83H	84H	85H	86H	89H
	82H	82H	82H	82H	82H	82H	82H
Input # 3	00H	00H	00H	00H	00H	00H	00H
	81H	82H	83H	84H	85H	86H	89H
	83H	83H	83H	83H	83H	83H	83H
Input # 4	00H	00H	00H	00H	00H	00H	00H
	81H	82H	83H	84H	85H	86H	89H
	84H	84H	84H	84H	84H	84H	84H
Input # 5	00H	00H	00H	00H	00H	00H	00H
	81H	82H	83H	84H	85H	86H	89H
	85H	85H	85H	85H	85H	85H	85H
Input # 6	00H	00H	00H	00H	00H	00H	00H
	81H	82H	83H	84H	85H	86H	89H
	86H	86H	86H	86H	86H	86H	86H
Off	00H	00H	00H	00H	00H	00H	00H
	81H	82H	83H	84H	85H	86H	89H
	80H	80H	80H	80H	80H	80H	80H