Acknowledgments

Envivio Incorporated acknowledges use of software from the following sources and includes their copyright notices and required statements. here.

This software is based in part on the code of the Darwin Streaming Server (for which the source code is available under the terms of the Apple Public Source License Version 1.2 at http://www.opensource.apple.com/projects/streaming/).

The modifications applied to the original code are available at: http://www.envivio.tv/downloads/qtss.
Contents

Chapter 1 Introduction ...11
 Overview ... 12
 VOD functions ... 12
 Networking ... 12
 Monitoring and administration 13
 Performance .. 13
 Error Resilience ... 13
 Supported standards ... 13
 Envivio Professional Services and Support 15

Chapter 2 WebAdmin ..17
 Overview ... 18
 Restricting access to the WebAdmin 19
 Using the WebAdmin configuration file 19
 Using the WebAdmin user interface 19
 Changing the WebAdmin default user name and password ... 20

Chapter 3 Video Server ..23
 Setting up Movie folders ... 24
 Using 4Sight as a reflector 26
 Overview ... 26
 Basic setup ... 26
 Configuration examples ... 26
 Using 4Sight as a relay ... 28
 Overview ... 28
 Basic setup ... 28
 Configuration examples ... 30
Contents

- Relay a UDP stream ... 30
- Relay an RTSP requested stream 32
- Relay an SAP announced stream 34
- Connection to the output stream using an SDP file 36
- Connection to the output stream using SAP 37
- Status of the configured relays 37

Stream Switching ... 38
- Overview ... 38
- Basic setup ... 38
- Configuration example 39
 - Connection to the output stream 41
 - Status of the configured switchers 42

Chapter 4 Playlist Broadcaster 43
- Overview ... 44
- Basic setup ... 45
 - Setting up a playlist using the WebAdmin 46
- Restrictions .. 49

Chapter 5 Load Balancer 51
- Overview ... 52
- Basic setup ... 53
 - Adding a slave server 53
 - Deleting a slave server 54

Chapter 6 Authentication and Authorization 55
- Overview ... 56
- Basic Setup ... 57
- User, Group, and Access files 59
 - User file .. 59
 - Group file ... 59
The contents of the page include:

Chapter 7

- **External authorization module**
 - Overview
 - Installing the authorization module
 - Basic example of external authorization module

Chapter 8

- **SNMP monitoring**
 - Using SNMP monitoring
 - Monitoring 4Sight using MG-SOFT MIB Browser
 - Enabling SNMP trap reception

Appendix A

- **How-To**
 - How to update an SDP file
 - How to link to a streamable content in a web page
 - How to embed a streamable content in a web page
 - What is a hint track
 - Can I use multicast over Internet?

Appendix B

- **The Video Server configuration file parameters**
 - General parameters
 - Thinning parameters
 - More general parameters
 - Reliable UDP parameters
 - RTSP debugging parameters
 - Specific parameters
 - Reflector module parameters
 - Access Log module parameters
 - Error Log modules parameters
Contents

- Access module parameters .. 93
- WebAdmin parameters ... 94
- File module parameters ... 94
- Flow control module parameters .. 95
- Multiple movie folders parameters .. 96
- Relay parameters .. 96
- Switcher parameters ... 96
- Licensing module parameters .. 97
- Load balancing module parameters .. 97
- External authentication parameters .. 97
- Recorder module .. 97

Appendix C The Playlist Broadcaster configuration file 99

Appendix D The Web Admin configuration file 103

Appendix E Video Server access log file 105

Glossary ... 109

Index ... 115
CHAPTER I

Introduction
Overview

The 4Sight Video Server from Envivio provides MPEG-4 and H.264 streaming capabilities for small, medium and large scale enterprise, broadband and broadcast deployments. It has been designed and optimized to meet the needs of professional video distribution applications.

Broadcasters and cable operators can use the 4Sight Video Server to manage and distribute interactive multimedia content through IP networks to EnvivioTV or any other MPEG-4 compliant player.

VOD functions

The 4Sight Video Server can stream any MPEG-4 file that conforms to the ISO standard, whether the file is generated by the Envivio 4Coder or some other MPEG-4 encoding tool. Both Advanced Video Coding (AVC/H.264) and Advanced Simple Profile (ASP) are supported.

Files need to be hinted before being served by the 4Sight Video Server. The 4Sight Video Server supports trick play features (fast forward, fast backward) on all MPEG-4 content. The rendering of content played in fast forward or fast backward depends on the way the content is encoded (more specifically on the key frame frequency).

Networking

The 4Sight Video Server sends media to the network using the IETF defined suite of protocols based on IP for real-time streaming, and supports HTTP tunnelling to support firewall configurations. It also uses
the associated IETF recommendations dedicated to MPEG-4 transport over IP.

Monitoring and administration

Monitoring of the 4Sight Video Server can be done while it is online using either the 4Sight WebAdmin which is a web-based interface or using SNMP.

When the 4Sight Video Server is offline, monitoring can be done using the log files.

Performance

In streaming, 4Sight can support up to 400 simultaneous users, at 1.5 Mbps.

Error Resilience

4Sight offers error resilience so that EnvivioTV can receive content smoothly under severe network packet loss conditions (up to 2% packet loss rate).

Both 4Sight and EnvivioTV provide a rebuffering management policy that improves the user experience when traffic is congested.

Supported standards

The following protocols and standards are implemented in the 4Sight Video Server:

- RTSP (Real Time Streaming Protocol), IETF RFC 2326
- SDP (Session Description Protocol), IETF RFC 2327
• UDP (User Datagram Protocol), IETF RFC 769
• TCP (Transmission Control Protocol), IETF RFC 793
• IP (Internet Protocol), IETF RFC 791
• RTP (Transport Protocol for Real-Time Applications), IETF RFC 3550
• SAP (Session Announcement Protocol), IETF RFC 2974
• IGMP v2 (Internet Group Management Protocol), IETF RFC 2236
• SNMP (Simple Network Management Protocol), IETF RFC 1157
Envivio Professional Services and Support

You may contact us for specific projects requiring customized options or specific development, available through our service organization. For contact information, see the Envivio website at http://www.envivio.com.

If you have support questions, contact Envivio Customer Services.
Chapter 1
Introduction

Version 5.0
Chapter 2

WebAdmin
Overview

4Sight WebAdmin is a web based administration tool that allows the administrator to monitor and configure the 4Sight Streaming Server. Using this tool, you can setup and monitor relays, switcher and playlists. You can also setup movie folders, authorization and streaming ports.

In order to connect to this administration tool, you can either:
Restricting access to the WebAdmin

Using the WebAdmin configuration file

To restrict access to the WebAdmin, you can use the two keywords, allow or deny, in your streamingadminserver.conf.

For example, at the end of the file, add the following:

allow=192.168.105.187 127.0.0.1
deny=192.168.105.113

This allows access to the WebAdmin from local host and 192.168.105.187 and explicitly denies it from 192.168.105.113.

Using the WebAdmin user interface

You can restrict access to the WebAdmin by using a login screen. The user will have to provide a user name and password to connect to the WebAdmin.

1. Using a web browser, connect to the WebAdmin (see “WebAdmin” on page 17).
2. Click on the Server Configuration>General Settings menu item.
3. Select the Authentication for the web admin check box to restrict access to the WebAdmin, then click the Save changes button. You will be disconnected from the WebAdmin.
4. Reconnect to the WebAdmin using the default user name (admin) and password (admin).

5. Using a web browser, connect to the WebAdmin: (see “WebAdmin” on page 17).

6. Select the Server Configuration>General Settings menu item.

7. Click the Change Admin Username/Password... link. The following page should be displayed:
8. Fill the different fields, then click the **Change password** button. You will be disconnected from the WebAdmin.

9. Reconnect to the WebAdmin using the new user name and password.
CHAPTER 3

Video Server
Setting up Movie folders

To serve on-demand MPEG-4 files stored on your server, 4Sight needs to know where your files are located.

You can change the default movie folder or add new ones using the WebAdmin:

1. **Open a web browser and connect to your WebAdmin (see “WebAdmin” on page 17 for further details).**
2. **Click the Movie Folders menu item.** You will see a list of movie folders as shown in the figure below:

![Movie Folders Settings](image)

3. **To change the default movie folder, click the Edit default movie folder button.**
4. **To add a movie folder to your list, click the New movie Folder button.** Then enter the complete path of your folder.

NOTE

The path to the movie folder must respect the path format of the operating system where 4Sight is installed.

Version 5.0
5. Click the **Saves Changes** button to add this new folder, as shown in the figure below:

Movie folder details

| Movie folder name: | /usr/Envisio/4Sight/Movies |

Save Changes
Using 4Sight as a reflector

Overview

Most routers on the Internet cannot properly interpret multicast information as they are set up to transfer traditional Internet Protocol (IP) unicast packets that have a single, specific destination.

A reflector is a built-in mechanism of the server that converts one multicast stream to a series of individual unicast streams. The server’s reflector module feeds each client with an individual stream.

Basic setup

In most cases, the reflector receives either a multicast or unicast stream from a broadcaster (an application which sends RTP packets) such as 4Caster. The reflector forwards the RTP streams upon request, in real time. The SDP file generated by the broadcaster must be placed in one of the movie folders of 4Sight.

Configuration examples

Once your broadcaster is setup and has started to broadcast to a multicast address, you can get the SDP associated with the multicast stream. Then, without changing anything in the SDP file, you can copy it into one of the server’s movie folders. You are then ready for accessing the multicast stream using the 4Sight Video Server reflecting capabilities.
For example, if the SDP file referring to the multicast stream is called **live.m4e**, once it is copied on the server, you can access the multicast stream using the following URL:

```
e-rtsp://server_name:7070/live.m4e
```

A unicast session will then be created for your client that will be a reflected copy of the multicast stream.

WARNING

If you use reliable UDP (see "reliable_udp" on page 90), check that the M4E file does not contain the following line:

```
b=RR:0
```

This may prevent the player from sending the RTCP packets that are mandatory for using reliable UDP.
Using 4Sight as a relay

Overview

A relay is a built-in mechanism of the server that accepts a stream from another video server or a broadcaster and sends it or "relays" it to one or more unicast or multicast destinations.

Basic setup

To set up the relay using the WebAdmin, follow these steps:

1. Using a web browser, connect to the WebAdmin (see "WebAdmin" on page 17).
2. Select the Relay Settings menu item. You will see a list of your configured relays.
3. Click on New Relay to create a new relay. The following page is displayed:

 Relay Settings

 Other Relays:
<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>My Relay</td>
<td>Stopped</td>
</tr>
</tbody>
</table>

4. Fill in the different fields, then click the Save Changes button.
5. Your relay will then be listed in the relay list, followed by its status that can be either *Started* or *Stopped*.

NOTE You can click the ▶️ or ▶️ buttons to respectively start or stop the relay.
Configuration examples

Relay a UDP stream

Consider the following graph where the user wants to relay a multicast stream to another multicast address and simultaneously to a unicast client.

Figure 2. Relaying a UDP stream

In this case, the relay module of the 4Sight Video Server Streaming Server will fetch the multicast stream coming from the broadcaster (1) and send it to both the multicast address and the unicast client (2).

To relay a UDP stream, you need to follow these steps:

1. Specify the source address (this address can be either multicast or unicast to the server).
2. Select the Relay a UDP Source radio button.
3. Specify the ports you want to listen to (ports number can be separated by commas, semicolons or spaces).
4. Provide the information about the destination (you can add more destinations if needed).

Version 5.0
5. Click the **Save Changes** button.

Source Settings

- **Description (optional):** Relay Source
- **Source Hostname or IP Address:** 203.25.53.48
- **UDP Port List:** 6004, 6006

4Sight will then start relaying the source address to the configured destination addresses:

Destination Settings (1 of 2)

- **Description (optional):** Relay Multicast Output
- **Hostname or IP Address:** 203.52.51.50
- **UDP Ports:** 6606, 6608
- **Multicast TTL:** 6
- **Local Output Interface:** 192.168.105.138
- **SAP Session Name (optional):**

[Remove Destination]

Destination Settings (2 of 2)

- **Description (optional):** Relay Unicast Output
- **Hostname or IP Address:** 192.168.105.25
- **UDP Ports:** 7070, 7072
- **Multicast TTL:** 6
- **Local Output Interface:** 192.168.105.138
- **SAP Session Name (optional):**

[Remove Destination]
You can define the network interface card that you want to use for sending packets by specifying the **Local Output Interface** parameter in the **Destination** section.

The SAP session name for outputs is only available when relaying an SAP source.

NOTE

The multicast time to live (TTL, see "Glossary" on page 109) is mandatory if you relay towards a multicast address, and it must be greater than 0. It can be omitted if relaying to a unicast address.

Relay an RTSP requested stream

This configuration is for the scenario where you have a server configured and running that you would like to relay, but the server is not broadcasting anything, it is just accepting and handling requests from clients. In order to relay requests, you will need to have an incoming stream.

Figure 3. Relaying an RTSP requested stream
The 4Sight Video Server Video Server will request a stream from the RTSP server specified in the source settings (1), get the video stream back (2) and relay it to the destinations (3). If an output SAP session is specified, then the relay will also announce the new session using SAP (4). A player will then be able to connect using SAP to the relayed stream.

By setting the IP address and the filename of the movie you want to relay, and selecting the Request Incoming Stream radio button, your server will get the stream as if it was a client and relay it to the destinations you configured.

If the origin server needs authorization, provide a user name and password in your relay configuration as shown in the figure below:

Let’s consider the same use case than in the previous paragraph, but instead of having a broadcaster as a source, we have a second video server that is able to handle RTSP requests and serve videos. In this case, we can configure our relay to request the video on the source server and relay it the different outputs we set up.
Relay an SAP announced stream

In this last case, we suppose that we have a broadcaster that is able to announce the session to the SAP address. In this case, the 4Sight's relay module is able to connect to the announced stream and to send it to the different outputs we set up.

Figure 4. Relaying an SAP announced stream

The 4Sight Video Server will wait till it gets the announcement specified in the source settings (1), then, it will connect to the announced stream (2) and relay it to the destinations (3). If an output SAP session is specified (as shown in the screen capture below), then the relay will also announce the new session using SAP (4). A player will then be able to connect to the relayed stream using SAP.
The following capture shows the source setup for an SAP relay:

When the 4Caster sends a unicast stream to the 4Sight Video Server Video Server, it also sends a unicast stream with the connection SDP. This stream is interpreted as an SAP stream by the 4Sight Video Server which acts exactly the same way than in the setup described above.

Figure 5. Relaying a 4Caster unicast stream
Connection to the output stream using an SDP file

To connect to an output stream of the relay, you will need to provide the description file of the stream (SDP file). The easiest way to do it is to get the SDP file from the source and modify it according to the output address and ports values that you set in the relay.

Once the SDP file is modified, you can feed it directly to the client or put it in the movie folder of the 4Sight Streaming Server and access it using an RTSP request.

For further details on how to modify the SDP file, see "How to update an SDP file" on page 80".
Connection to the output stream using SAP

In the case of an SAP relay, there is a simpler way to connect to the output stream. In the destination settings of your relay, you can specify an SAP session name. The relay will then forward the SAP messages containing the new connection settings for the relayed stream.

Then, if your player supports SAP URLs, you can feed it with an URL such as the following:

```
sap://session_name
```

Status of the configured relays

Once everything is configured, you can check that the source stream is effectively relayed by going to the Relay status page.

The following window should be displayed:

![Relay Status Table](image)

```
List of active relays

<table>
<thead>
<tr>
<th>Relay Name</th>
<th>Source</th>
<th>Destination</th>
<th>Bandwidth</th>
<th>Total bytes relayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>My Relay</td>
<td>Relay Sensitive</td>
<td>Relay Multicast Output</td>
<td>10/10 Gbps</td>
<td>1.174 MB</td>
</tr>
</tbody>
</table>
```

Version 5.0
Stream Switching

Overview

The Stream Switcher is a tool for relaying one stream out of a number of sources towards one output with the ability to select the source to be relayed using a control tool such as the WebAdmin. The switch operation is seamless for the clients connected to the output of the switcher.

Basic setup

To set up the Stream Switcher using the WebAdmin, follow these steps:

1. Using a web browser, connect to the WebAdmin (see "WebAdmin" on page 17 for more details).
2. Select the Switcher Settings menu item. You will see a list of your configured switchers.
3. Click on New Switcher to create a new switcher. The following page is displayed:

 Switcher Settings

 Switcher List:
 Name | Status
 My Switcher | Started

4. Fill in the different fields you need to set up your Stream Switcher and then click the Save Changes button.
5. Your switcher will then be listed in the switcher list, followed by its status that can be either **Enabled** or **Disabled**.

Switcher Settings

![Switcher List](image)

NOTE You can click the ![Start Relay](image) or ![Stop Relay](image) buttons to respectively start or stop the relay.

Configuration example

We will use the following network topology to demonstrate the configuration of a switcher.

![Network Topology](image)

To setup this switcher, you need to follow these steps:
1. Specify the output address (this address can be either multicast or unicast), the description, the local output interface, the UDP port list and the multicast TTL.

<table>
<thead>
<tr>
<th>Output Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description (optional):</td>
</tr>
<tr>
<td>Output Hostname or IP Address:</td>
</tr>
<tr>
<td>UDP Port List:</td>
</tr>
<tr>
<td>Multicast TTL:</td>
</tr>
<tr>
<td>Local Output Interface:</td>
</tr>
</tbody>
</table>

You can define the network interface card that you want to use for sending packets by specifying the **Local Output Interface** parameter in the **Destination** section.

NOTE

The multicast time to live (TTL, see "Glossary" on page 109) is mandatory if you relay towards a multicast address, and it must be greater than 0. It can be omitted if relaying to a unicast address.

2. Provide the information about the input. Enter the hostname or IP address, then specify the ports you want to listen to (ports number can be separated by commas, semicolons or spaces).

<table>
<thead>
<tr>
<th>Source Settings (1 of 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description (optional):</td>
</tr>
<tr>
<td>Hostname or IP Address:</td>
</tr>
<tr>
<td>UDP Port List:</td>
</tr>
</tbody>
</table>

Version 5.0
3. You can add more sources by clicking the **Add source** link.

Source Settings (1 of 2)

<table>
<thead>
<tr>
<th>Description (optional):</th>
<th>Switcher Source 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname or IP Address:</td>
<td>192.168.82.28</td>
</tr>
<tr>
<td>UDP Port List:</td>
<td>5000, 5050</td>
</tr>
</tbody>
</table>

[Remove Source]

Source Settings (2 of 2)

<table>
<thead>
<tr>
<th>Description (optional):</th>
<th>Switcher Source 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname or IP Address:</td>
<td>192.168.1.1 11.128</td>
</tr>
<tr>
<td>UDP Port List:</td>
<td>5048, 5050</td>
</tr>
</tbody>
</table>

[Remove Source]

4. Then click the **Save Changes** button.

WARNING

If you change an existing active switcher, when saving the modifications, the active source will switch to the first source declared in the switcher.

Connection to the output stream

To connect to the output stream of the switcher, you will need to provide the description file of the stream (SDP file). The easiest way to do it is to get the SDP file of one of the sources and modify it according to the address and port values that you set in the switcher.

Once the SDP file is modified, you can feed it directly to the client or put it in the movie folder of the 4Sight Video Server Streaming Server and access it using an RTSP request.

For further details on how to modify the SDP file, see "How to update an SDP file" on page 80.
Status of the configured switchers

Once everything is configured, you can check that the source stream is effectively relayed by going to the Switcher status page.

The following window should be displayed:

You can switch to the other source by clicking the link Switcher source 2.

Connection to the output stream using an SDP file

To connect to the output stream of the switcher, you will need to provide the description file of the stream (SDP file). The easiest way to do it is to get the SDP file of one of the sources and modify it according to the output address and ports values that you set in the switcher.

Once the SDP file is modified, you can feed it directly to the client or put it in the movie folder of the 4Sight Streaming Server and access it using an RTSP request.

For further details on how to modify the SDP file, see "How to update an SDP file" on page 80.
Chapter 4

Playlist Broadcaster
Overview

The Playlist Broadcaster is a tool for broadcasting a set of movies.

This section describes how to configure and start a playlist. It also describes simple use cases and applications of the Playlist Broadcaster.

A detailed description of the config file parameters is provided along with troubleshooting hints.
Basic setup

There are two ways to set up a playlist and broadcast it using the Playlist Broadcaster:

- using the WebAdmin,
- or by editing the playlist configuration files and running the Playlist Broadcaster in command line mode.

These two methods are not mutually exclusive and can be combined for advanced use of the Playlist Broadcaster.
Setting up a playlist using the WebAdmin

Using a web browser, connect to the WebAdmin (see “WebAdmin” on page 17 for more details). Click the Playlists menu item. You will see a list of your configured playlists. Click New MPEG4 Movie Playlist to create a new playlist. The following page is displayed:

Movie Playlist Details

- **Name:**
- **SDP File:**

Play Mode: Sequential

Drag and drop the content you want to broadcast from the left panel to the right list.

Drag and drop the content you want to broadcast from the left panel to the right list.

Version 5.0
Second part of the page lists the broadcast parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname or IP Address</td>
<td>238.1.1.10</td>
</tr>
<tr>
<td>Destination Base Port</td>
<td>9675</td>
</tr>
<tr>
<td>Multicast TTL</td>
<td>1</td>
</tr>
<tr>
<td>Local Output Interface</td>
<td>192.168.105.138</td>
</tr>
</tbody>
</table>

- Log this playlist’s activity

Select an announce mode for this playlist
- No announce for this playlist
- Broadcast SDP on the same address port 9675
 - Session name: [input]
- Broadcast SDP using SAP
 - Session name: MySAPSession

Fill in the different fields you need to set up your playlist and then click on the **Save Changes** button.

Example:

To broadcast the mp4profile.mp4 file in continuous loop mode, you should follow these steps:

1. Name the playlist: **myPlaylist**
2. Give a path to the SDP file: **myPlaylist.m4e**
3. In the **Play Mode** combo box, select **Sequential Looped**
4. Click and drag the mp4profile.mp4 file from the list of files to the Playlist items
5. Then click the **Save Changes** button
Your playlist will then appear in the list of available playlists.

Playlists

Available Playlists:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp4playlist</td>
<td>Stopped</td>
</tr>
<tr>
<td>myPlaylist</td>
<td>Stopped</td>
</tr>
</tbody>
</table>

You can then start and stop it directly by clicking on the play/stop icon on the right of the playlist.

If an error occurs, a red stop sign appears near the play icon. You can click on it to look at the log file.

Playlists

Available Playlists:

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>mp4playlist</td>
<td>Stopped</td>
</tr>
<tr>
<td>myPlaylist</td>
<td>Stopped</td>
</tr>
</tbody>
</table>

You can test that your playlist is working by opening the SDP file in your player.

Version 5.0
Restrictions

All the MPEG-4 files that you hint and include in your playlist must be ISMA-compliant and have exactly the same characteristics:

- contain one audio plus one video that have the same duration
- same video properties (video size, frames per second)
- same audio encoding parameters (frequency, stereo/mono).

NOTE

You can put files encoded at different bit rate in your playlist only if the \texttt{sdp_reference_movie} or the first movie in the list has the highest bit rate.

If they do not have the same characteristics, EnvivioTV™ client will play the first stream fine and will probably stop whenever the video size, the number of streams, or any parameter is different in the next MPEG-4 file. This is due to the fact that the SDP file is generated only with regard to one MPEG-4 file (either the \texttt{sdp_reference_movie} or the first movie in the list).
Chapter 5

Load Balancer
Overview

The Load Balancer distributes traffic efficiently among video servers so that no individual server is overburdened. The master server redirects the player towards a randomly chosen slave server.

1. The player connects to the server.
2. The master server makes a random selection, and redirects the player to another server (4Sight #2).

NOTE The master server can also accept connections acting as a slave server.
Basic setup

Adding a slave server

To set up the load balancing using the WebAdmin, follow these steps:

1. Click the **Load Balancing** menu item. You will see a list of your configured servers.

2. Check the **Enable Load Balancing** check box to activate the load balancing mechanism on the server.

3. Click **New Slave server** to add a slave server to the list. The following page is displayed:

 Slave server details

 - **Slave server IP**: 192.178.152.17:7080

4. Enter the IP address, followed by the port number of your slave server, then click the **Save Changes** button.

NOTE

If you do not specify the port number, the server will use the default streaming port.
5. The slave server will then be listed, followed by its status (either **Enabled** or **Disabled**).

6. Click **Save Changes** to confirm your modifications.

Deleting a slave server

To remove a server from the server list, select the IP address of the server you want to delete and click the **Delete Slave server** link. The server is removed from the list after your confirmation.

NOTE

If you remove all the servers from the server list, the default server IP address will be automatically added to the server list.

To remove the default server IP address, add a new address, then delete the default server IP address.
Chapter 6

Authentication and Authorization
Overview

4Sight provides authentication and authorization services. This is configured using three types of configuration files:

- Access file (for example, qtaccess)
- User file (for example, qtusers)
- Group file (for example, qtgroups)

and the qtpasswd executable.
Basic Setup

If you want the end user to be prompted for a user name and password when he/she tries to stream a content from the server, follow the steps described below:

1. Create a user file and/or a group file to define the users and groups allowed on your video server.
2. Create passwords for the new users using the qtpasswd utility.
3. Create an access file.

The content of each file and the use of the qtpasswd utility is described in the following sections.

Before going further, you should check that the two properties `modAccess_groupsfilepath` and `modAccess_userfilepath` are set correctly.

The `modAccess_qtaccessfilename` property specifies the name given to the access files. By default, access files are called `qtaccess`.

Here is the QTSSAccessModule section of the `streamingserver.xml` file:

```xml
<MODULE NAME="QTSSAccessModule" >
  <PREF NAME="modAccess_qtaccessfilename" >qtaccess </PREF>
  <PREF NAME="modAccess_groupsfilepath" >/usr/Envivio/4Sight/Config/qtgroups</PREF>
  <PREF NAME="modAccess_usersfilepath" >/usr/Envivio/4Sight/Config/qtusers</PREF>
</MODULE>
```
The streamingserver.xml file also contains two parameters that are used for authentication and authorization:

- **default_authorization_realm**
 The text to display by default in the password dialog boxes

- **authentication_scheme**
 The default authentication scheme to be used by the server (basic, digest, or none)
User, Group, and Access files

By default, three files are provided as examples in /usr/Envivio/4Sight/Config: qtusers, qtgroups and qtaccess. These files create a user with user name admin, password admin and group admin.

User file

The user file contains the list of users and their encrypted passwords. The first line of this file is the realm to be used. This file should not be modified manually (unless you want to modify the realm); use the qtpasswd utility to edit it.

This is an example of a user file with only one user called admin:

```
realm Envivio Streaming Server
admin:$dufr$.S5.....$DCUFFaEjQuyqcFbq9XXEk0:e7b400d4a5bb4e1020621ab84d7c5ed1
```

NOTE

User names cannot be more than 255 characters long and must not include a colon.
Passwords cannot be more than 80 characters long.

Group file

The group file is a list of groups, each of which lists the users in that group.

To add, remove or modify a group, use a simple text editor and modify the group file.

The syntax of a line in the group file is:

```
grouplname : <username> <username> ... <username>
```

Version 5.0
Access file

An access file is a text file containing parameters to control access to a directory for a specific realm, a specific user or a specific group.

There is one access file per protected directory. If an access file is placed in a directory, all the subdirectories are protected in the same way, unless another access file is present in the subdirectory.

The following is a list of parameters accepted in the access file and their possible values.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuthName</td>
<td>This is the realm name. Realm name is displayed in the password dialog boxes.</td>
</tr>
</tbody>
</table>
| AuthScheme | Can be either "basic" or "digest".
- If basic is selected, a simple authentication is done with realm, user and password (base64 encoded).
- If digest is selected, a MD5 based authentication system is used. |
| AuthUserFile | The user file to use in this directory. |
| AuthGroupFile | The group file to use in this directory. |
NOTE
Parameter names and values are case sensitive. Respect the case for the following words:
AuthName, AuthScheme, AuthUserFile, AuthGroupFile, require, Limit, basic, digest

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Value</th>
</tr>
</thead>
</table>
| require user | A space separated list of user names or group names. This parameter specifies which users and/or groups are allowed to access the media in this folder. Two specific cases can be used:
 • require any-user
 any user is allowed
 • require valid-user
 any authenticated user is allowed |
| require group | A space separated list of user names or group names. This parameter specifies which users and/or groups are allowed to access the media in this folder. Two specific cases can be used:
 • require any-user
 any user is allowed
 • require valid-user
 any authenticated user is allowed |
| <Limit [READ|WRITE]>…</Limit> | Specifies access control for read and/or write privileges. If this parameter is not present or set, all parameters apply for read privileges. The parameters AuthName, AuthUserFile, AuthGroupFile and require can be defined between the two "Limit" tags. |
The qtpasswd utility

The qtpasswd utility lets you create a user file, and to add and delete users. To create a user, the name of the user is mandatory.

The syntax is the following:
```
```

The following are optional flags that can be used:

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f</td>
<td>Password file to modify (defaults to the value set in streamingserver.xml)</td>
</tr>
<tr>
<td>-F</td>
<td>Does not confirm when deleting users or overwriting existing files</td>
</tr>
<tr>
<td>-c</td>
<td>Creates a new user file</td>
</tr>
<tr>
<td>-r</td>
<td>Realm to use when creating a new file with "-c" Default: "Envivio Streaming Server"</td>
</tr>
<tr>
<td>-p</td>
<td>Allows entry of the password at command line rather than prompting for it</td>
</tr>
<tr>
<td>-P</td>
<td>File to read the password from rather than prompting for it</td>
</tr>
<tr>
<td>-d</td>
<td>Deletes the specified user</td>
</tr>
<tr>
<td>-h</td>
<td>Displays usage</td>
</tr>
</tbody>
</table>
Configuration example

You can have multiple access files, user files, and group files. One way to configure your server is to have one movie folder associated to each realm.

For example, if you want to serve both Europe and US from your video server, follow the steps below:

1. Create two movie folders, one called Movie_US, and one called Movie_Europe.

2. Create a qtaccess file in each of those movie folders with the following parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value for US</th>
<th>Value for Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>AuthName</td>
<td>4Sight for US</td>
<td>4Sight for Europe</td>
</tr>
<tr>
<td>AuthUserFile</td>
<td>path_to_qtusers_US</td>
<td>path_to_qtusers_EU</td>
</tr>
<tr>
<td>require user</td>
<td>user_US1 user_US2 ... user_USN</td>
<td>user_EU1 user_EU2 ... user_EUN</td>
</tr>
</tbody>
</table>

3. Create the password file with a specific realm by running:
   ```
   qtpasswd -f _to_qtusers_US -c -r "4Sight US" user_US1
   qtpasswd -f _to_qtusers_EU -c -r "4Sight EU" user_EU1
   ```

4. Then create a password entry for all the other users by running:
   ```
   qtpasswd -f qtusers_US user_USx
   qtpasswd -f qtusers_EU user_EUx
   ```
Chapter 7

External authorization module
Overview

The Authorization module allows you to develop your own access control for the movies stored on the server.

By adding specific information into the URL, you will be able to apply your own dedicated authorization mechanism.

4Sight calls a function in the Authorization module for every incoming RTSP request:

```c
bool ESSRequestAuthorization(char* inURL, char* inIPAddress, char* inQueryString);
```

where:

- `inURL` is the path to the movie – for example, if the request is `rtsp://192.178.155.10/tutorial1/file.mp4`, the URL is `tutorial1/file.mp4`.
- `inIPAddress` is the IP address of the player requesting the movie,
- `inQueryString` is extra information from the player that is included in the URL after `?`. This information can include a user name and any specific information that you need. The field is `NULL` if nothing has been specified in the URL.
- The return value is `true` if you want to accept the RTSP request or `false` to refuse the RTSP request.

URL example:

```
rtsp://192.178.155.10/tutorial1/file.mp4?user=julien&auth=123
```

See “Basic example of external authorization module” on page 68.
Installing the authorization module

This document explains how to install the external authorization module.

1. Stop 4Sight.
2. Create a new directory called plugins in your server directory.
3. Copy your authorization library into the plugins directory.
4. Open the server configuration file, `streamingserver.xml`.
5. Update the following lines in the `ESSEnternalAuthModule` section:

   ```xml
   <MODULE NAME="ESSEnternalAuthModule">
      <PREF NAME="enabled" TYPE="Bool16" >true</PREF>
      <PREF NAME="auth_lib_file">path_to_your_library</PREF>
   </MODULE>
   
   6. Restart the server.
Basic example of external authorization module

AuthModuleTestLib.h
extern "C"
{
  bool ESSRequestAuthorization(char* inURL, char* inIPAddress, char* inQueryString);
}

AuthModuleTestLib.cpp
#include "AuthModuleTestLib.h"
#include <stdio.h>
bool ESSRequestAuthorization(char* inURL, char* inIPAddress, char* inQueryString)
{
  char buf[256];
  bool authorize = false;
  if(inQueryString != NULL)
  {
    sprintf(buf, "IP Address : %s
Requested URL: %s
Query String: %s
Authorize ?", inIPAddress, inURL, inQueryString);
  } else {
    sprintf(buf, "IP Address : %s
Requested URL: %s
Authorize ?", inIPAddress, inURL);
  }
  char c;
  int result;
  printf( "%s (y)es (n)o ?", buf);
  do {
    c = getchar();
  } while ( c!='y' && c!='n' );
  if ( c == 'y') {
    authorize = true;
  } else {
    authorize = false;
  }
  return authorize;
}
Chapter 8

SNMP monitoring
Using SNMP monitoring

The 4Sight Video Server supports monitoring using the SNMP protocol. This makes 4Sight Video Server plugable into any of the network monitoring software like HP OpenView for example.

You can also use an SNMP browser like the one from MG-SOFT \(^{(1)}\) to monitor one or more 4Sight Video Server at the same time. Open source solution like NET-SNMP \(^{(2)}\) can also be used.

During the installation, all the necessary MIBs are copied to the \texttt{c:\Envisivo\snmp\mibs} directory (or \texttt{/usr/Envisivo/snmp/mibs} for Linux and MacOSX). You can find them there.

Two MIBs are necessary for monitoring a 4Sight Video Server using SNMP:

- \texttt{ENVIVIO-COMMON-MIB.txt} that is needed for all Envivio products
- \texttt{ENVIVIO-4SIGHT-MIB.txt} that is specific for 4Sight

---

1. MG-SOFT MIB Browser, [http://www.mg-soft.com](http://www.mg-soft.com)
Monitoring 4Sight using MG-SOFT MIB Browser

NOTE This example is for windows only.

Once you have downloaded and installed the MIB Browser, follow these steps to compile the two MIBs mentioned above:

1. From the Start>Program Files>MG-Soft MIB Browser menu, select MIB Compiler.
2. Compile the MIB: go to the Tools>Batch Compile menu, select the C:\Envivio\snmp\mibs folder and click OK.
3. Click the Save All button, then click OK. This will save all the compiled MIBs in the correct folder for MIB Browser.
4. Exit the MIB compiler.

Your MIBs are now ready to be used in the MIB Browser. Follow these steps to tell the MIB Browser which MIBs to use:

5. From the Start>Program Files>MG-Soft MIB Browser menu, select MIB Browser.
6. From the MIB tab, select the MIBs that you want to load from the bottom panel, then click the up arrow to load them. You need to select at least ENVIVIO-COMMON-MIB.txt and ENVIVIO-4SIGHT-MIB.txt.
Version 5.0
Your MIB Browser is now ready to be used with the 4Sight Video Server:

7. In the MIB Browser, return to the Query tab and enter the 4Sight IP address in the Remote SNMP agent field and select in the menu. Select SNMP> Contact, then expand the MIB tree to see the 4Sight Video Server.
You can now query all the fields available in the 4Sight Video Server MIB. The following graphic gives the output of a “walk” query on the envivio node.
Enabling SNMP trap reception

The 4Sight Video Server uses traps to notify the SNMP monitor of events and alarms. To receive those traps, the monitor needs to be registered as a trap listener for 4sight. Each 4Sigh Video Server can send traps to up to ten trap listeners.

Follow the steps below to register the MIB Browser (IP Address 192.168.105.32) as a trap receiver for 4Sight Video Server (IP Address 192.168.105.138):

1. In the MIB Browser look for the TrapConfig node in the common MIB.
2. Right click on the `destinationIpAddress` node and select `Set`.

3. Double click on the first instance and specify the IP address of the MIB Browser.

*Version 5.0*
4. Repeat the operation for the first instance of the \texttt{destinationEnable} node and set it to \textit{On}.

Your MIB Browser is now configured to receive the traps generated by the 4Sight Video Server.

The following graphic is an example of a "Disk Full" alarm.
Appendix A

How-To
How to update an SDP file

In order to successfully open a multicast stream, you simply need to open the associated SDP file in a player. In the case of a relay or a switcher, you will need to update the information contained in the SDP file before opening it.

For example, let’s say we are relaying multicast address 236.130.82.35, ports 6850 and 6852 towards address 235.55.58.54 ports 6002 and 6004. You will need to follow these steps to visualize the final stream:

1. Retrieve the SDP file created by one of the sources, for example, Envivio 4Caster.
2. Change the IP address (c=) and port (m=) to those defined in the output settings.

In our example, change:

- c=IN IP4 236.130.82.35/1 to c=IN IP4 235.55.58.54 for the IP address,
- m=video 6850 RTP/AVP 96 to m=video 6002 RTP/AVP 96,
- m=audio 6852 RTP/AVP 97 to m=audio 6004 RTP/AVP 97 for the port numbers and so on for each m= line.
How to link to a streamable content in a web page

You can link to an MPEG-4 streamed file directly into an HTML page. Opening the link will start an external player that will be used to read the file.

The two ways of doing that are listed below:

1. Use an anchor element pointing to an M4E file:
   ```html
 Movie
   ```
   where `movie.m4e` contains: `url=rtsp://server/movie.mp4`

2. Or use an anchor with an RTSP URL:
   ```html
 Movie
   ```
How to embed a streamable content in a web page

When you embed a content in a web page, no external player is used and the content is played directly in the web page.

This can be done either with the Windows Media Player or with EnvivioTV ActiveX plugin:

- With the Windows Media Player
  
  ```html
 <object id="vidplayer"
 standby="Loading file in Windows Media Player..."
 classid="{22D6F312-B0F6-11D0-94AB-0080C74C7E95}"
 codebase="http://activex.microsoft.com/activex/controls/mplayer/en/nsmp2inf.cab#Version=6,0,02,902"
 type="application/x-mplayer2">
 <param name="src" value="e-rtsp://server/movie.mp4">
 <param name="autostart" value="true">
 </object>
  ```

- With the EnvivioTV ActiveX plugin
  
  ```html
 <object ID="ActiveX" CLASSID="{9272C6BB-41DD-4111-9B9E-91D48AE1F4D1}">
 <param name="url" value="e-rtsp://server/movie.mp4">
 <param name="refresh_rate" value="40">
 </object>
  ```

You can display an MPEG-4 streamed file directly into an HTML page.
What is a hint track

To be streamed, an MPEG-4 file has to be hinted. The server uses hint tracks in an MPEG-4 file to packetize the media into RTP streams.

During the preparation of the MPEG-4 file for streaming, one hint track is added to the MPEG-4 file for each track whose media will be streamed over RTP. The hint tracks within the MPEG-4 file provide the information needed to turn the media into RTP packets.

These hint tracks are part of the MPEG-4 atom structure, and are similar to Apple QuickTime file format.
Can I use multicast over Internet?

Multicast will work on a LAN if multicast forwarding is enabled on the routers between the network segments (unless your router does not support multicast mode). However, this will not usually work across the Internet since most of the routers are not configured to support multicast, and you cannot be sure which routers will be used by your streams. Clients that are located behind routers, that do not implement multicasting can still receive a multicast by requesting the stream from a reflector.
Appendix B

The Video Server configuration file parameters
## General parameters

The following are general parameters, valid across all modules of the server:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>rtsp_port</strong></td>
<td>Port(s) for accepting client connections. NOTE: Add port 80 to this list if you are streaming across the Internet and want clients behind firewalls to be able to connect to the Video Server.</td>
</tr>
<tr>
<td><strong>default_authorization_realm</strong></td>
<td>The text to display as the login entity &quot;realm&quot; in the client is defined by default_authorization_realm. If the default realm is not defined here, then the default realm is set to &quot;Streaming Server&quot;. The realm used in a response can also be dynamically set by authorizing modules.</td>
</tr>
<tr>
<td><strong>authentication_scheme</strong></td>
<td>Set this to be the authentication scheme you want the server to use. &quot;basic&quot;, &quot;digest&quot;, and &quot;none&quot; are the currently supported values.</td>
</tr>
<tr>
<td><strong>do_report_http_connection_ip_address</strong></td>
<td>When behind a DNS round robin, the client needs to be told the specific IP address of the server handling its request. This preference tells the server to report its IP address in the reply to the HTTP GET request when tunneling RTSP through HTTP.</td>
</tr>
<tr>
<td><strong>tcp_seconds_to_buffer</strong></td>
<td>The &quot;scaling factor&quot; to appropriately scale the buffer size. Using the bitrate of the movie as a guide, the server will set the TCP send buffer to fit this number of seconds of data.</td>
</tr>
<tr>
<td><strong>max_tcp_buffer_size</strong></td>
<td>Maximum size the send buffer can be set to.</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------------------------------</td>
</tr>
<tr>
<td><strong>min_tcp_buffer_size</strong></td>
<td>Minimum size the send buffer can be set to.</td>
</tr>
<tr>
<td><strong>error_logging</strong></td>
<td>Either &quot;true&quot; or &quot;false&quot;. This toggles error logging on and off.</td>
</tr>
<tr>
<td><strong>screen_logging</strong></td>
<td>If screen_logging is true, all error messages will be written to the terminal window. Note that in order to see these messages on screen, the server must be launched from the command-line, and must be launched in foreground mode (triggered by the addition of the -d flag).</td>
</tr>
<tr>
<td><strong>logs_folder</strong></td>
<td>Path to the folder containing the log files.</td>
</tr>
<tr>
<td><strong>module_folder</strong></td>
<td>Path to the folder containing dynamic loadable server modules.</td>
</tr>
<tr>
<td><strong>pid_file</strong></td>
<td>Path to the pid file.</td>
</tr>
<tr>
<td><strong>safe_play_duration</strong></td>
<td>If the server discovers it is serving more than its allowed maximum bandwidth (using the average bandwidth computation) it will attempt to disconnect the most recently connected clients until the average bandwidth drops to acceptable levels. However, it will not disconnect clients if they have been connected for longer than this time, in seconds. If this value is set to 0, it will never disconnect clients.</td>
</tr>
<tr>
<td><strong>average_bandwidth_update</strong></td>
<td>This is the interval in seconds between computations of the server's average bandwidth.</td>
</tr>
<tr>
<td><strong>total_bytes_update</strong></td>
<td>The interval in seconds between updates of the server's total bytes and current bandwidth statistics.</td>
</tr>
</tbody>
</table>
The following preferences configure the server thinning algorithm. They are all in milliseconds.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bind_ip_addr</td>
<td>This tells the server what IP address(es) it should accept client connections on. A value of 0 means all IP addresses currently enabled for the machine.</td>
</tr>
<tr>
<td>rtp_timeout</td>
<td>Amount of time in seconds the server will wait before disconnecting idle RTP clients. This timer is reset each time the server receives an RTCP status packet from the client.</td>
</tr>
<tr>
<td>maximum_bandwidth</td>
<td>Maximum amount of bandwidth (in kbps) the server is allowed to serve. If this limit is exceeded, new client requests for additional streams will receive the RTSP error 453, &quot;Not Enough Bandwidth&quot;</td>
</tr>
<tr>
<td>maximum_connections</td>
<td>Maximum number of concurrent connections allowed by the server.</td>
</tr>
<tr>
<td>real_rtsp_timeout</td>
<td>rtsp_timeout is the time-out that gets reported to the client. This is the actual time-out value.</td>
</tr>
<tr>
<td>rtsp_timeout</td>
<td>Amount of time in seconds the server will wait before disconnecting idle RTSP clients. This timer is reset each time the server receives a new RTSP request from the client.</td>
</tr>
</tbody>
</table>

### Thinning parameters

The following preferences configure the server thinning algorithm. They are all in milliseconds.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>drop_all_packets_delay</td>
<td>If a packet is only sent this far ahead of when the client needs to play it, it is dropped</td>
</tr>
<tr>
<td>drop_all_video_delay</td>
<td>If a video packet passes this delay, it is dropped.</td>
</tr>
</tbody>
</table>
### More general parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>always_thin_delay</strong></td>
<td>If a packet passes this delay, thin some more.</td>
</tr>
<tr>
<td><strong>thin_all_the_way_delay</strong></td>
<td>If a packet is only sent this far ahead of when the client needs to play it, the server thins the stream as much as possible.</td>
</tr>
<tr>
<td><strong>start_thinning_delay</strong></td>
<td>If a packet is this late, we might thin some more.</td>
</tr>
<tr>
<td><strong>start_thickening_delay</strong></td>
<td>If the server is sending packets this far ahead of when the client needs them, it will attempt to add a little bandwidth to the stream.</td>
</tr>
<tr>
<td><strong>thick_all_the_way_delay</strong></td>
<td>If a packet is this late, restores full quality.</td>
</tr>
<tr>
<td><strong>quality_check_interval</strong></td>
<td>The server checks packet delay differences at this interval.</td>
</tr>
<tr>
<td><strong>append_source_addr_in_transport</strong></td>
<td>If this is true, the server will add its source address to its transport headers. This is necessary on certain networks where the source address is not necessarily known.</td>
</tr>
<tr>
<td><strong>alt_transport_src_ipaddr</strong></td>
<td>The server appends its own IP address into the transport header. If you want an alternate address placed there, use this preference to specify the address.</td>
</tr>
<tr>
<td><strong>send_interval</strong></td>
<td>Minimum time in msec the server will wait between sending packet data to a client.</td>
</tr>
<tr>
<td><strong>max_send_ahead_time</strong></td>
<td>The server tries to get ahead of clients. This is the farthest ahead in seconds that the server can go.</td>
</tr>
<tr>
<td><strong>overbuffer_rate</strong></td>
<td>Rate at which to overbuffer the max_send_ahead_time.</td>
</tr>
</tbody>
</table>
## Reliable UDP parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>max_retransmit_delay</strong></td>
<td>Maximum interval between when a retransmit is supposed to be sent and when it actually gets sent. Lower values mean smoother flow but slower server performance.</td>
</tr>
<tr>
<td><strong>small_window_size</strong></td>
<td>If the client does not explicitly say what its window is, the server will use this as a default value. Specified in kilobytes.</td>
</tr>
<tr>
<td><strong>medium_window_size</strong></td>
<td>If the client does not explicitly say what its window is, the server will use this as a default value. Specified in kilobytes.</td>
</tr>
<tr>
<td><strong>large_window_size</strong></td>
<td>If the client does not explicitly say what its window is, the server will use this as a default value. Specified in kilobytes.</td>
</tr>
<tr>
<td><strong>window_size_threshold</strong></td>
<td>Bit rate (in kbps) at which the server switches to medium window size.</td>
</tr>
<tr>
<td><strong>window_size_max_threshold</strong></td>
<td>Bit rate (in kbps) at which the server switches to large window size.</td>
</tr>
<tr>
<td><strong>rtcp_poll_interval</strong></td>
<td>Time in msec between server checks for incoming RTCP packets. Longer interval means better server performance but less accurate estimates of packet round-trip-times.</td>
</tr>
<tr>
<td><strong>rtcp_rcv_buf_size</strong></td>
<td>Size in kilobytes for the RTCP UDP socket receive buffers. This needs to be large to absorb bursts of RTCP ACKs. Lower value may mean ACKs will get dumped by the kernel.</td>
</tr>
<tr>
<td><strong>reliable_udp</strong></td>
<td>Enable/disable reliable UDP protocol.</td>
</tr>
</tbody>
</table>
### RTSP debugging parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>reliable_udp_dirs</strong></td>
<td>If reliable UDP is enabled, specify the directories in which it is enabled. Directories should be relative to the movies folder, with a leading slash but no trailing slash. For example: <code>/reliable_udp_dir</code></td>
</tr>
<tr>
<td><strong>reliable_udp_slow_start</strong></td>
<td>Enables or disables reliable UDP slow start. Disabling this may lead to an initial burst of packet loss due to the misestimation of the client's available bandwidth. Enabling this may lead to early thinning.</td>
</tr>
<tr>
<td><strong>RTSP_error_message</strong></td>
<td>Enable debugging error messages in RTSP error response.</td>
</tr>
<tr>
<td><strong>RTSP_server_info</strong></td>
<td>Enable the server to send informations about itself.</td>
</tr>
</tbody>
</table>
Specific parameters

These parameters are module-specific.

Reflector module parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enforce_static_sdp_port_range</td>
<td>Turns on or off checking static ports in SDP files against a valid range. If an SDP file is played and it contains a port outside the static SDP range, then an invalid media error is returned to the client. Announced broadcasts will also receive the invalid media error from the server for setups on an invalid static port.</td>
</tr>
<tr>
<td>maximum_static_sdp_port</td>
<td>The maximum value for a static port. See enforce_static_sdp_port_range.</td>
</tr>
<tr>
<td>minimum_static_sdp_port</td>
<td>The minimum value for a static port. See enforce_static_sdp_port_range.</td>
</tr>
</tbody>
</table>

Access Log module parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled</td>
<td>Either &quot;true&quot; or &quot;false&quot;. This toggles access logging on and off.</td>
</tr>
<tr>
<td>filename</td>
<td>Name of the access log file (default is 4SightAccess)</td>
</tr>
<tr>
<td>rotation_size</td>
<td>Maximum allowed size in bytes for the access log. A value of 0 means unlimited</td>
</tr>
</tbody>
</table>
**Error Log modules parameters**

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled</td>
<td>Either &quot;true&quot; or &quot;false&quot;. This toggles access logging on and off.</td>
</tr>
<tr>
<td>filename</td>
<td>Name of the access log file (default is 4SightAccess)</td>
</tr>
<tr>
<td>rotation_size</td>
<td>Maximum allowed size in bytes for the access log. A value of 0 means unlimited</td>
</tr>
<tr>
<td>rotation_interval</td>
<td>Amount of time in days between rolls of the access log. A value of 0 means unlimited</td>
</tr>
<tr>
<td>verbosity</td>
<td>Verbosity of the logger (between 0 and 10)</td>
</tr>
</tbody>
</table>

**Access module parameters**

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>modAccess_qtaccessfilename</td>
<td>The file name for the Access module access file as it appears in controlled directories.</td>
</tr>
<tr>
<td>modAccess_groupsfilepath</td>
<td>The default path and file name for the Access module group list.</td>
</tr>
<tr>
<td>modAccess_usersfilepath</td>
<td>The default path and file name for the Access module user list.</td>
</tr>
</tbody>
</table>
### WebAdmin parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RequestTimeIntervalMilli</td>
<td>The minimum delay (in milliseconds) between processing each admin request.</td>
</tr>
<tr>
<td>LocalAccessOnly</td>
<td>Only requests from 127.0.0.1 are allowed if LocalAccessOnly is true. If set to false, then IP addresses as defined by the IPAccessList may make requests.</td>
</tr>
<tr>
<td>Authenticate</td>
<td>Require admin requests to authenticate with the server.</td>
</tr>
<tr>
<td>enable_remote_admin</td>
<td>Turn on or off remote admin request processing.</td>
</tr>
<tr>
<td>IPAccessList</td>
<td>A list of IP addresses that are allowed to make admin requests. LocalAccessOnly must be set to false before network addresses will be accepted. A wildcard of * is allowed for designating ranges. *<em>.<em>.</em>.</em> means all addresses.</td>
</tr>
<tr>
<td>AdministratorGroup</td>
<td>The user has to belong to this group in order to be authorized by the admin module for admin requests.</td>
</tr>
</tbody>
</table>

### File module parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>sdp_url</td>
<td>This URL will be included in the dynamically generated SDP returned to the client. Typically, this should be set to your default web URL.</td>
</tr>
<tr>
<td>admin_email</td>
<td>This email address will be included in the dynamically generated SDP returned to the client.</td>
</tr>
</tbody>
</table>
### Flow control module parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>max_allowed_speed</td>
<td>File module accepts the RTSP Speed header, which controls the overall play rate. This is the maximum rate it will allow.</td>
</tr>
<tr>
<td>max_allowed_scale</td>
<td>Maximum scale for fast forward and fast backward.</td>
</tr>
<tr>
<td>flow_control_probe_interval</td>
<td>When sending packets to the client, the connection may sometimes get flow controlled. When that happens, the server periodically checks to see if the condition has been lifted. This is how often it checks.</td>
</tr>
<tr>
<td>enable_shared_file_buffers</td>
<td>Parameters used for file management.</td>
</tr>
<tr>
<td>enable_private_file_buffers</td>
<td></td>
</tr>
<tr>
<td>num_shared_buffer_increase_per_session</td>
<td></td>
</tr>
<tr>
<td>shared_buffer_unit_k_size</td>
<td></td>
</tr>
<tr>
<td>private_buffer_unit_k_size</td>
<td></td>
</tr>
<tr>
<td>num_shared_buffer_units_per_buffer</td>
<td></td>
</tr>
<tr>
<td>num_private_buffer_units_per_buffer</td>
<td></td>
</tr>
<tr>
<td>max_shared_buffer_units_per_buffer</td>
<td></td>
</tr>
<tr>
<td>max_private_buffer_units_per_buffer</td>
<td></td>
</tr>
<tr>
<td>add_seconds_to_client_buffer_delay</td>
<td></td>
</tr>
<tr>
<td>record_movie_file_sdp</td>
<td></td>
</tr>
<tr>
<td>enable_movie_file_sdp</td>
<td></td>
</tr>
<tr>
<td>loss_thin_tolerance</td>
<td>If a client reports loss percentages greater than loss_thin_tolerance, over the course of num_losses_to_thin consecutive RTCP (status) packets, the server will drop the bitrate of stream.</td>
</tr>
<tr>
<td>num_losses_to_thin</td>
<td></td>
</tr>
</tbody>
</table>
### Multiple movie folders parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>movies_folders</td>
<td>List of extra movie folders.</td>
</tr>
</tbody>
</table>

### Relay parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>relay_prefs_file</td>
<td>Path to the relay preferences file.</td>
</tr>
</tbody>
</table>

### Switcher parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>switcher_prefs_file</td>
<td>Path to the stream switcher preferences file.</td>
</tr>
<tr>
<td>time_to_wait_for_synchro</td>
<td>After this amount of time (in ms), the switcher will try to force the switch.</td>
</tr>
<tr>
<td>switch_timeout</td>
<td>If switch did not occur by this time (in ms), it will be cancelled.</td>
</tr>
</tbody>
</table>
Licensing module parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>license_file_dir</td>
<td>Path to the license file.</td>
</tr>
</tbody>
</table>

Load balancing module parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled</td>
<td>Enable/disable load balancing.</td>
</tr>
<tr>
<td>slave_server</td>
<td>List of server IP addresses for load balancing.</td>
</tr>
</tbody>
</table>

External authentication parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>enabled</td>
<td>Enable/disable an external authentication library.</td>
</tr>
<tr>
<td>auth_lib_file</td>
<td>Path to the authentication library.</td>
</tr>
</tbody>
</table>

Recorder module

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>record_folder</td>
<td>Location of the recorder movies</td>
</tr>
</tbody>
</table>
Appendix C

The Playlist Broadcaster configuration file
Figure 1. Playlist configuration file parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>playlist_file</strong></td>
<td>Playlist filename and path. The path can be absolute or relative.</td>
</tr>
</tbody>
</table>
| **play_mode**    | Three modes are available  
  • sequential: The media is broadcast in the order it appears in the playlist file. When the last media file is done playing, the broadcast stops.  
  • sequential_looped: The media is broadcast in the order it appears in the playlist file. When the last media file is done playing, the playlist repeats in the same order. |
<p>| <strong>sdp_reference_movie</strong> | Reference movie file path and name. The absolute or relative pathname of the reference movie, which can be one of the media files you are broadcasting. |
| <strong>broadcast_name</strong> | Name of the playlist                                                                                                                                 |
| <strong>destination_ip_address</strong> | The default value is the loopback address 127.0.0.1. You can also specify a unicast or multicast IP address |
| <strong>destination_base_port</strong> | The base port number for the broadcast must be an even number. If you do not specify a port number, the default port (5004) is used. |
| <strong>sdp_file</strong>     | Path and name of the SDP file. The path can be absolute or relative path. This parameter is mandatory.                                         |
| <strong>destination_sdp_file</strong> | Needs to be set to the same value as sdp_file.                                                                                                                                 |
| <strong>announce_type</strong> | Specify the announce type for this playlist. Value can be &quot;SAP&quot;, &quot;RTSP&quot; or &quot;None&quot;. If not specified, value will be &quot;None&quot;  |
| <strong>session_name</strong> | Name of the SAP session if announce_type is SAP.                                                                                       |
| <strong>broadcast_SDP_is_dynamic</strong> | Can be either &quot;enabled&quot; or &quot;disabled&quot;.                                                                                                    |</p>
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>broadcaster_name</td>
<td>User name if one needs to be provided to the destination address.</td>
</tr>
<tr>
<td>broadcaster_password</td>
<td>Password to be provided to the destination address.</td>
</tr>
<tr>
<td>multicast_ttl</td>
<td>Time to live of the multicast packets in the case of a multicast playlist.</td>
</tr>
<tr>
<td>pid_file</td>
<td>PID file of the broadcaster. This file is mandatory if you want to use the Playlist Broadcaster in both command line and WebAdmin.</td>
</tr>
<tr>
<td>logging</td>
<td>Can be either &quot;enabled&quot; or &quot;disabled&quot;. If you enable logging, the Playlist Broadcaster records information about the broadcast in the log file, including error messages.</td>
</tr>
<tr>
<td>log_file</td>
<td>Path and name of the log file. If you enable logging but do not specify a file, then the Playlist Broadcaster creates a file with the name of the playlist followed by &quot;.&quot; in the same directory as the playlist configuration file.</td>
</tr>
<tr>
<td>sap_session_name</td>
<td>In case of an SAP announce, use this session name</td>
</tr>
<tr>
<td>output_interface</td>
<td>Use this local interface to broadcast the playlist</td>
</tr>
</tbody>
</table>
Appendix D

The Web Admin configuration file
Table 1. WebAdmin streamingadminserver.conf parameters

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>port</strong></td>
<td>The port on which WebAdmin listens for requests.</td>
</tr>
<tr>
<td><strong>root</strong></td>
<td>The root directory for all the HTML and CGI files. This path should be absolute.</td>
</tr>
<tr>
<td><strong>plroot</strong></td>
<td>The root directory for playlists managed by 4Sight. The path should be absolute.</td>
</tr>
<tr>
<td><strong>host</strong></td>
<td>The host name of 4Sight.</td>
</tr>
<tr>
<td><strong>qtssIPAddress</strong></td>
<td>The IP address of 4Sight to administrate.</td>
</tr>
<tr>
<td><strong>qtssPort</strong></td>
<td>The port of 4Sight to administrate.</td>
</tr>
<tr>
<td><strong>qtssName</strong></td>
<td>The name of 4Sight executable.</td>
</tr>
<tr>
<td><strong>realm</strong></td>
<td>The authorization realm for 4Sight.</td>
</tr>
<tr>
<td><strong>log</strong></td>
<td>Enable logging (1) or disable logging (0) for 4Sight.</td>
</tr>
<tr>
<td><strong>Logfile</strong></td>
<td>The full path of the WebAdmin log file.</td>
</tr>
<tr>
<td><strong>logtime</strong></td>
<td>Number of hours before which logs are rolled.</td>
</tr>
<tr>
<td><strong>allow</strong></td>
<td>Allow the following IP to access the server (optional).</td>
</tr>
<tr>
<td><strong>deny</strong></td>
<td>Deny access to the following IP (optional).</td>
</tr>
</tbody>
</table>
Appendix E

Video Server access log file
<table>
<thead>
<tr>
<th>Field</th>
<th>Name</th>
<th>W3C or Custom</th>
<th>Example value</th>
</tr>
</thead>
<tbody>
<tr>
<td>c-ip</td>
<td>IP address of client</td>
<td>W3C</td>
<td>157.100.200.300</td>
</tr>
<tr>
<td>date</td>
<td>Date of the access</td>
<td>W3C</td>
<td>11/16/1998</td>
</tr>
<tr>
<td>time</td>
<td>Time of the access</td>
<td>W3C</td>
<td>15:30:30</td>
</tr>
<tr>
<td>c-dns</td>
<td>Resolved dns of the client</td>
<td>W3C</td>
<td>fredj.ford.com</td>
</tr>
<tr>
<td>cs-uri-stem</td>
<td>Requested file</td>
<td>W3C</td>
<td>rtsp://saturn/mp4profile.mp4</td>
</tr>
<tr>
<td>c-starttime</td>
<td>Start time</td>
<td>W3C</td>
<td>0 [in seconds, no fractions]</td>
</tr>
<tr>
<td>x-duration</td>
<td>Duration of the session (s)</td>
<td>W3C</td>
<td>31 [in seconds, no fractions]</td>
</tr>
<tr>
<td>c-rate</td>
<td>Rate file was played by client</td>
<td>Custom</td>
<td>1 [1= play, -5=rewind, +5=fforward]</td>
</tr>
<tr>
<td>c-status</td>
<td>HTTP return code</td>
<td>Custom</td>
<td>200 [mapped to HTTP/RTSP status codes; 200 is success, 404 file not found,…]</td>
</tr>
<tr>
<td>c-playerid</td>
<td>unique player ID</td>
<td>Custom</td>
<td>[a GUID value]</td>
</tr>
<tr>
<td>c-playerversion</td>
<td>player version</td>
<td>Custom</td>
<td>3.0.0.1212</td>
</tr>
<tr>
<td>c-playerlanguage</td>
<td>player language</td>
<td>Custom</td>
<td>EN [two letter country code]</td>
</tr>
<tr>
<td>cs(User-Agent)</td>
<td>user agent</td>
<td>W3C</td>
<td>Mozilla/2.0+(compatible;+MSIE+3.0;+Windows 95) - this is a sample user-agent string</td>
</tr>
<tr>
<td>cs(Referer)</td>
<td>referring URL</td>
<td>W3C</td>
<td><a href="http://www.gte.com">http://www.gte.com</a></td>
</tr>
<tr>
<td>c-hostexe</td>
<td>host program</td>
<td>Custom</td>
<td>iexplore.exe [iexplore.exe, netscape.exe, dshow.exe, nsplay.exe, vb.exe, etc.]</td>
</tr>
<tr>
<td>c-hostexecver</td>
<td>version</td>
<td>Custom</td>
<td>4.70.1215</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
<td>Value</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------------</td>
<td>---------------------------</td>
<td>--------------------------------------------</td>
</tr>
<tr>
<td>c-os</td>
<td>os</td>
<td>Custom</td>
<td>Windows [Windows, Windows NT, Unix-[flavor], Mac-[flavor]]</td>
</tr>
<tr>
<td>c-osversion</td>
<td>os version</td>
<td>Custom 4.0.0.1212</td>
<td></td>
</tr>
<tr>
<td>c-cpu</td>
<td>cpu type</td>
<td>Custom Pentium [486, Pentium, Alpha %d, Mac?, Unix?]</td>
<td></td>
</tr>
<tr>
<td>filelength</td>
<td>file length (seconds)</td>
<td>Custom 60 [in seconds, no fractions]</td>
<td></td>
</tr>
<tr>
<td>filesize</td>
<td>file size (bytes)</td>
<td>Custom 86000 [that is 86kbytes]</td>
<td></td>
</tr>
<tr>
<td>avgbandwidth</td>
<td></td>
<td>Custom 24300 [that is 24.3kbps]</td>
<td></td>
</tr>
<tr>
<td>protocol</td>
<td></td>
<td>Custom MMS [mms, http]</td>
<td></td>
</tr>
<tr>
<td>transport</td>
<td></td>
<td>Custom UDP [udp, tcp, or mc]</td>
<td></td>
</tr>
<tr>
<td>audiocodec</td>
<td></td>
<td>Custom MPEG-Layer-3</td>
<td></td>
</tr>
<tr>
<td>videocodec</td>
<td></td>
<td>Custom MPEG4</td>
<td></td>
</tr>
<tr>
<td>channelURL</td>
<td></td>
<td>Custom <a href="http://server/channel.nsc">http://server/channel.nsc</a></td>
<td></td>
</tr>
<tr>
<td>sc-bytes</td>
<td>bytes sent by server</td>
<td>W3C 30000 [30k bytes sent from the server to the client]</td>
<td></td>
</tr>
<tr>
<td>cs-bytes</td>
<td>bytes received by client</td>
<td>W3C 28000 [bytes received]</td>
<td></td>
</tr>
<tr>
<td>s-pkts-sent</td>
<td>packets sent</td>
<td>Custom 55</td>
<td></td>
</tr>
<tr>
<td>c-pkts-received</td>
<td>packets received</td>
<td>Custom 50</td>
<td></td>
</tr>
<tr>
<td>c-pkts-lost-client</td>
<td>packets lost</td>
<td>Custom 5</td>
<td></td>
</tr>
<tr>
<td>c-pkts-lost-net</td>
<td></td>
<td>Custom 2 [renamed from &quot;erasures&quot;; refers to packets lost at the network layer]</td>
<td></td>
</tr>
<tr>
<td>c-pkts-lost-cont-net</td>
<td></td>
<td>Custom 2 [continuous packets lost at the network layer]</td>
<td></td>
</tr>
<tr>
<td>c-resendreqs</td>
<td>packets resent</td>
<td>Custom 5</td>
<td></td>
</tr>
<tr>
<td>c-pkts-recovered-ECC</td>
<td>packets resent successfully</td>
<td>Custom 1 [this refers to packets recovered in the client layer]</td>
<td></td>
</tr>
<tr>
<td>Metric</td>
<td>Type</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>------------------------------------</td>
<td></td>
</tr>
<tr>
<td>c-pkts-recovered-resent</td>
<td>Custom</td>
<td>5 [this refers to packets recovered via UDP retransmission]</td>
<td></td>
</tr>
<tr>
<td>c-buffercount</td>
<td>Custom</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c-totalbuffertime</td>
<td>Custom</td>
<td>20 [in seconds]</td>
<td></td>
</tr>
<tr>
<td>c-quality</td>
<td>Custom</td>
<td>89 [in percent]</td>
<td></td>
</tr>
<tr>
<td>s-ip</td>
<td>server ip</td>
<td>W3C 155.12.1.234 [entered by the unicast server]</td>
<td></td>
</tr>
<tr>
<td>s-dns</td>
<td>server dns</td>
<td>W3C foo.company.com</td>
<td></td>
</tr>
<tr>
<td>s-totalclients</td>
<td>Custom</td>
<td>201 [total clients]</td>
<td></td>
</tr>
<tr>
<td>s-cpu-util</td>
<td>cpu utilization at time of access</td>
<td>Custom 40 [in percent]</td>
<td></td>
</tr>
<tr>
<td>cs-uri-query</td>
<td>W3C</td>
<td>language=EN&amp;rate=1&amp;CPU=486&amp;protocol=MMS&amp;transport=UDP&amp;quality=89&amp;avgbandwidth=24300</td>
<td></td>
</tr>
</tbody>
</table>
ADSL

Asymmetric Digital Subscriber Line.

bandwidth

Bandwidth has many meanings, depending on context. It started as a radio term and has been expanded to include other kinds of communications. It is the numerical difference between the highest and lowest frequencies of a radio band or channel.

Bandwidth means the same thing in audio, although in most applications, the lowest frequency is sufficiently low enough to be considered equal to zero. Hence, audio bandwidth usually means the highest frequency of an audio signal or the highest frequency that can be carried by an audio system.

BIFS

Binary Format for Scene. A set of nodes, based on VRML, that make it possible to combine 2D and 3D graphics, natural and synthetic sound, audio and video information, and stored and streamed material in one environment.

bit rate

The rate for transmitting data over a network. Envivio products use several bit rates. The channel capacity is the limit of the network. The maximum bit rate is a limit, less than the channel capacity, that the fitter uses to fit data into the actual bandwidth for a streaming server. The audio encoder uses an average bit rate and a maximum bit rate for variable bit rate encoding.

broadband

A general term for DSL, cable modem, and T1 lines.
codec

The software that encodes and decodes a file. The word is a shortened form of coder-decoder or compression-decompression. This product has an audio codec and a video codec.

FTP

File Transfer Protocol

hinted movies

Movies that can be streamed for broadcast over the Internet. A hint track has information about the media file so that it can be streamed properly.

HTTP

Hypertext Transfer Protocol

I-frames

An MPEG-4 term for key frames.

IANA

Internet Assigned Numbers Authority

Internet

An interconnected system of networks that connects computers around the world via the TCP/IP protocol.

IOD

Initial Object Descriptor.

ISMA

Internet Streaming Media Alliance.
ISO

International Standards Organization.

kbps

Kilobits per second.

key frame

A frame that fully refreshes its contents and that can be used as a reference point for other frames in the sequence. In MPEG terms, this is an I-frame.

M4E

Envivio extension for SDP files. Allows to open SDP files using directly Envivio plug-in.

MIB

Management Information Base.

MPEG

As defined on the MPEG website, mpeg (pronounced M-peg), stands for Moving Picture Experts Group, and is the name given to a family of International Standards used for coding audio-visual information in a digital compressed format. The MPEG family of standards includes MPEG-1, MPEG-2, and MPEG-4, which is formally known as ISO/IEC-11172, ISO/IEC-13818 and ISO/IEC-14496.

multicast

Process where a single stream is served from one server to multiple clients. It is a one-to-many communication.

multimedia

As the name suggests, one presentation with multiple forms of media—text, graphics, sound, video, and animation. MPEG-4 gives
broadcasters the tools to deliver multimedia presentations over the Web.

Real-time

Rapid transmission and processing of event-oriented data and transactions as they occur instead of being stored and retransmitted or processed as batches.

realm

Authentication context.

RTCP

Real Time Control Protocol.

RTP

Real-time Transport Protocol.

RTSP

Real Time Streaming Protocol.

SAP

Session Announcement Protocol. SAP is a protocol to announce multicast broadcast sessions. A broadcast session is announced by periodically multicasting an SDP announcement packet to a common multicast address and port.

scene description

A description of the media in a presentation and how they are to be reconstructed. The technical term is BIFS (Binary Information for Scene).

SDP

Session Description Protocol.
Smoother

A process that modifies the send times of media packets to fit the transmission channel and makes the transmission information available to other processes, such as the user interface.

SNMP


SSRC

Synchronization Source.

stream

The encoded media or scene description data in an MPEG-4 file.

streaming

Sending media streams from a streaming server to a player as a steady, continuous stream. The player reconstructs media scenes using information in the scene description.

TCP

Transmission Control Protocol.

TTL

TTL stands for Time To Live. A value in the range 0 through 255 defines the scope within which multicast packets should be sent over a network using Internet Protocol (IP). Each router decrements the TTL by one. When the value reaches a predefined lower limit, the router throws the packet away. By default the TTL is set to 1.

UDP

User Datagram Protocol.
Unicast
Unicast is communication between a single sender and a single receiver over a network.

URL
Index

Numerics
4Caster 26

A
access file 60
Access module
access file 93
group list 93
user list 93
add
destination 30, 41
group file 59
movie folder 24
user 62
admin module 94
admin request 94
authentication 56
scheme 86
authorization 56

B
bandwidth
client 91
server 87, 88
statistics 87
stream 89
broadcast
playlist 45

C
client
available bandwidth 91
DNS 106
IP address 106
configuration file
parameters 37
CPU 108

dev
debugging
error messages 91
DNS 106
DNS round robin 86

e
encrypted password 59
EnvivioTV 49
error logging 87
error messages
debbuging 91
extension
M4E 111

F
fast backward
scale 95
fast forward
scale 95
file
access 60
hinted 49
log 48, 101
M4E 27, 111
PID 87, 101
SDP 49
user 56, 57, 59, 60, 62, 63
firewall 86
G
GET request 86
group file 56, 59
  add 59
  modify 59
  remove 59
GUID value 106

H
hint track 83
hinted file 49
  hinted 83
host program 106
HTML page 82
HTTP
  GET request 86
  return code 106

I
IP address 33, 86, 88, 100, 104
IPAccessList 94
ISMA-compliant 49

L
Load Balancer 52
log
  client DNS 106
  client IP address 106
  host program 106
  HTTP return code 106
  player ID 106
  player language 106
  player version 106
  user agent 106
log file 48, 101

M
M4E file 27, 111
master server 52
modify group file 59
movie folder 24, 63
  add 24
  change 24
multicast 30, 40
  address 32, 40
  forwarding 84
  IP address 100
  packet 101
  playlist 101
  stream 26
  time to live 32, 40

O
output stream
  switcher 41

P
password 33, 57, 59, 63
  encrypted 59
PID file 87, 101
play/stop icon 48
player
  ID 106
  language 106
  version 106
playlist 44, 46, 49
  broadcast 45
  set up 28, 38, 45, 46, 53
Playlist Broadcaster 43, 44, 45, 101
port
  for client connection 86

Q
qtaccess 56, 57, 63
qtgroups 56, 59
qtpasswd 56, 57, 59, 62
qtusers 56, 59
QuickTime 83

R
realm 59, 60, 62, 63, 86, 104
red stop sign 48
reflecting 26, 92
reflector 26, 84
relay 28, 29, 32, 40
  configuration 33
  list 29
  status 37
  UDP stream 30
reliable UDP 27, 90
  slow start 91
remove
group file 59
root directory 104
router 84
RTCP
  incoming packets 90
  packets 27
  status packet 88
RTP
  client 88
  packets 26, 83
RTSP
  client 88
  debugging parameters 91
  error 453 88
  error response 91
  request 88
  Speed header 95
  tunneling through HTTP 86

S
SDP
  file 47, 48, 49, 100
  returned to the client 94
  SDP file 41
  send buffer 86, 87
server 24, 30, 33, 83
  bandwidth 87, 88
  list 54
  master 52
  slave 52
  source address 89
set up
  playlist 28, 38, 45, 46, 53
  slave server 52
  source address
    server 89
  static port 92
statistics
  bandwidth 87
  stream
    bandwidth 89
    switcher 96
  stream switcher 38
  switcher
    output stream 41

T
TCP
  send buffer 86
TCP/IP protocol 110
  thinning algorithm 88
transport header 88
TTL 32, 40, 101

U
UDP
  reliable 90
stream 30
unicast 30, 40
    address 32, 40
user agent 106
user file 56, 57, 59, 60, 62, 63
    create 62
user name 33, 57, 59, 61

W
WebAdmin 19, 20, 21, 24, 28, 38, 45, 46, 53
    access restriction 19
    changing password 20
    changing username 20
    configuration file 19
    login screen 19
    parameters 94
    password 19, 20
    restrict access 19
    restricted access 19
    user interface 19
    user name 19, 20