

## Installation \& Operations Manual

## TS612 Installation and Operations Manual <br> Gentner Part No. 800-003-000 <br> July 1999 (Rev. 3.0)

© Copyright 1999 by Gentner Communications Corporation. All rights reserved. Gentner Communications Corporation reserves specification privileges. Information in this manual is subject to change without notice.

This equipment complies with the requirements of the EU guidelines:

C $\epsilon$89/336/EEC "Electromagnetic Compatibility"
73/23/EEC "Electrical operating material for use within specific voltage limits"

Conformity of the equipment with the above guidelines is attested by the CE mark.

98/482/EC
"Single terminal connection to the public switched telephone network (PSTN)"

## able of Contents

Introduction ..... 3
What's In This Manual ..... 4
Sales and Customer Service ..... 4
Technical Support ..... 4
Unpacking ..... 5
Warranty Instructions ..... 5
Overview ..... 7
About the TS612 ..... 7
Off-Air Telephone Use ..... 7
On-Air Telephone Use ..... 7
Dedicated Screening Station ..... 7
About Version 2.5 .....  8
Operational Requirements .....  9
Telephone Line Requirements ..... 9
Power Requirements .....  9
Equipment Placement ..... 9
Installation ..... 11
Telephone Line Setup ..... 11
Telephone Connections ..... 11
Line Expansion ..... 12
Configuring the TS612 ..... 13
Single-Studio Mixed Caller ..... 15
Single-Studio Split Caller ..... 16
Single-Studio Split-Hybrid ..... 17
Dual-Studio ..... 18
Equipment Interconnections ..... 19
Audio Hookup ..... 19
Record Control Hookup ..... 21
Aux I/O Hookup ..... 22
Control Surface Hookup ..... 24
Calibration ..... 26
Calibration of Send Audio ..... 26
Calibration of Caller Audio ..... 27
Calibration of Hold Audio ..... 28
Calibration of AGC ..... 29
Setup and Operation ..... 31
Operational Setup ..... 31
Networking Mode ..... 31
RS232 Standard Mode ..... 31
Loop-Override mode ..... 32
Setup Mode ..... 32
Additional Operational Modes ..... 34
Using the Control Surface ..... 37
Studio Control Surface ..... 37
Screener Control Surface ..... 37
Control Surface Buttons ..... 38
Screener Control Surface Buttons ..... 43
Call Handling ..... 44
On the Handset ..... 44
On-Air ..... 45
Glossary ..... 47
Appendices ..... 51
Appendix A: Specifications ..... 51
Appendix B: Pinouts ..... 54
Appendix C: Serial Communications Protocol ..... 57
Hex Codes ..... 57
Status Bytes ..... 58
Peek/Poke, Reset, and Other Commands ..... 65
Appendix D: Schematics ..... 67
Appendix E: Bill of Materials ..... 86
Appendix F: Warranty ..... 94
Warranty ..... 94
Appendix G: Compliance ..... 95
FCC Part 15 Compliance ..... 95
FCC Part 68 Compliance ..... 95
IC Compliance ..... 96
Safety Information ..... 97
Information for CTR21 ..... 97
Network Compatibility Declaration ..... 97
Alphabetical Index ..... 99

Congratulations on purchasing the TS612 multi-line telephone system. The TS612 interfaces telephone calls to your audio equipment, providing superior analog telephone integration into broadcast applications. Ease of use, quick installation, and versatility have made the TS612 one of the most popular telephone interface systems in the broadcast industry today.

The TS612 features two internal digital hybrids, providing high-quality interface to six telephone lines (expandable to 12). The dual hybrids allow the TS612 to operate as a single-studio telephone system able to conference up to four callers simultaneously, or a two-studio system able to conference two callers to each studio.

This manual gives instructions on installation, set up, and operation of the TS612. It also helps you resolve technical problems, should any arise.

For more information, please contact Gentner Communications. We welcome and encourage your comments so we can continue to improve our products and serve your needs.

## What's In This <br> Manual

The manual is divided into the following sections:
"Overview" is a basic introduction to the TS612.
"Installation" explains how to install the TS612 in a professional setting. Detailed diagrams and descriptions will help you decide on the best configuration settings for the needs of your environment.
"Setup and Operation" describes how to use the TS612 on a day-to-day basis. It also contains information on how to set up the control surfaces.
"Glossary" defines some of the industry-standard terminology as well as other terms that you will find throughout this manual.
"Appendices" include additional information such as schematics, connector pinouts, and serial communications protocol.

For additional help on how to install, set up, or operate the TS612 system, please contact Gentner:

## Sales and Customer Service

| Telephone: | 1.800 .945 .7730 (USA) or 1.801 .975 .7200 |
| :--- | :--- |
| Fax: | 1.800 .933 .5107 (USA) or 1.801 .977 .0087 |
| e-mail: | bcastinfo@gentner.com |

## Technical Support

Telephone: 1.800.283.5936 (USA) or 1.801.974.3760
Fax: 1.801.974.3638
e-mail: tech1@gentner.com

# Gentner Communications Corporation www.gentner.com 

1825 Research Way, Salt Lake City, UT 84119

## Unpacking

Please check that the following was received with your shipment:


TS612 Mainframe
Part 850-003-006
 (domestic)
International power cord provided with international TS612


Direct Plug-In Power Transformer Part 830-003-203


25-foot Telephone Cable
Part 830-000-025

One male, One female Parts 664-600-003 and 664-500-003
Surface
Surface


25-foot Control Surface Cable Part 830-003-025

TS612 Operations Quick Reference Card Part 800-003-003


TS612 Installation and
Operations Manual Part 800-003-000


$!$
Gentner Communications is not responsible for product damage incurred during shipment. You must make claims directly with the carrier. Inspect your shipment carefully for obvious signs of damage. If the shipment appears to be damaged, retain the original boxes and packing material for inspection by the carrier. Contact your carrier immediately.

# Warranty <br> Instructions 

Please register your TS612 online by visiting Gentner Technical Support on the World Wide Web at www.gentner.com. When your product is properly registered, Gentner Communications will be able to serve you better should you require technical assistance. Warranty information will also be used to notify you of upgrades, new product information, etc.

6

About the TS612

The TS612 is a multi-line telephone system with a separate mainframe and control surface. The mainframe contains two internal digital hybrids which provide high-quality interface to six telephone lines (expandable to 12). The dual hybrids allow the TS612 to operate as a single-studio telephone system able to conference up to four callers simultaneously, or a two-studio system able to conference two callers to each studio.

## Off-Air Telephone Use

The TS612 operates off-air like a standard multi-line telephone system. Using the control surface, outgoing and incoming calls can be placed and answered in complete privacy, even while other calls are on hold and on-air.

## On-Air Telephone Use

Once connected, any call can be placed on-air at the touch of a button. Special features such as Screen, Next, and VIP, enable you to make sure that the right call goes on-air at the right time.

## Dedicated Screening Station

The TS612 supports a dedicated call-screening control surface. An offair screener takes incoming calls and places them in a screened-hold queue. The on-air talent or producer may press any line to put it on-air. To automatically place a call on-air from the top of the screened hold queue the on-air talent simply presses the Next button.

Firmware version 2.5.3 introduces user-selectable capabilities including split-caller mode, split-hybrid mode, previous-hold, two-button hold, and two-button off, and screener air control. These and others features will be discussed in detail later on in the manual.

## Split-Caller Mode

You can use the TS612 as a single studio system and bring each of the hybrid outputs independently to the audio console with a single feed for both hybrids.

## Split-Hybrid Mode

Like Split-Caller Mode, you can bring each hybrid out to the console independently. However, you can return independent feeds for each hybrid in Split-Hybrid Mode.

## Previous-Hold

This mode places calls on hold automatically when you select another line. You can switch between previous-hold mode and traditional line switching (with automatic disconnect) via the control surface.

## Two-Button Hold

With Two-Button Hold you can place a single call on hold when two or more lines are conferenced together.

## Two-Button Off

This mode allows you to disconnect any line by pressing the Off button followed by the line button you wish to disconnect.

## Screener Air Control

When enabled, this mode allows the screening control surface to place calls to and from air.

## Operational Requirements

## Telephone Line Requirements

The TS612 requires analog (POTS) telephone lines or analog extension lines from a PBX that fully emulates analog lines (loop-start plus battery).

For the best performance, Gentner Communications recommends that you connect directly to telephone-company provided POTS lines, rather than PBX extensions.

To simplify TS612 installation with POTS lines, request that your telephone company provide lines with an RJ21X connector (wired according to the pinout table on page 11). If your telephone company provides only individual lines with RJ11C connectors, an RJ11 interface panel may be ordered from Gentner (part number 676-550-001). If you plan to loop through the TS612 to your business-telephone system, make sure you have the loop-extension cable prewired to prevent disruption to your business telephone service.

If you use analog extensions of your business PBX, use a separate extension for each telephone-line input at the TS612. Remember that these lines cannot contain digitized audio or telephone-set control signals. The TS612 (handset) can transfer calls to another PBX extension provided the PBX extension supports hook flash commands.

If you are uncertain whether the your PBX extensions are analog, a good (although not infallible) test is to connect to an external modem or fax machine. If the modem or fax operates correctly, the line will probably work with the TS612. To set up analog loop-start extensions for the TS612, contact your PBX system provider.

## Power Requirements

The TS612 mainframe will accommodate 85-240 Vac, $50-60 \mathrm{~Hz}$ and uses 30 watts of power maximum, in accordance with the supplied power module. International customers should request that the dealer provide a molded power cord (grounded) with the appropriate plug.

The TS612 control surface will accommodate 12 Vdc 500 mA , in accordance with the supplied power module. The supplied wall adapter operates on 117 Vac unless your dealer ordered the 220 Vac version.

## Equipment Placement

The TS612 mainframe fits a standard 19-inch equipment rack.

## Installation

## Telephone Line Setup

The TS612 connects to six or 12 telephone lines, depending on your hardware configuration. The basic configuration supports six lines. For instructions on installing the expansion cards to increase TS612 capacity to 12 lines, see page 12.

## Telephone Connections

Six or 12 telephone lines may be connected to the each of the mainframe's two 50-pin Centronix connectors (RJ21X). Phone Lines In is a male connector. Phone Lines Out is a female connector.

Connecting six or 12 telephone lines to the Phone Lines Out connector on the mainframe enables the loop-out function of the TS612. Lines not in use by the TS612 are then available for use on a separate telephone system.

| Phone Line | Pin | Wire Color* | Pin | Wire Color* |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 TP | blue/white | 26 AINC | white/blue |
| 2 | 2 | orange/white | 27 AINC | white/orange |
| 8 | 3 Tl | green/white | 28 AINC | white/green |
| 4 | 4 HP | brown/white | 29 페C | white/brown |
| 5 | 5 HP | silver/white | 30 AINC | white/silver |
| 6 | 6 T1P | blue/red | 31 RINC | red/blue |
| 7 | 7 IIP | orange/red | 32 AINC | red/orange |
| 8 | 8 HP | green/red | 33 AINC | red/green |
| $\varepsilon$ | 9 | brown/red | 34 AINC | red/brown |
| 10 | 10 T1P | silver/red | 35 AINC | red/silver |
| 1 | 11 ITP | blue/black | 36 AINC | black/blue |
| 12 | 12 | orange/black | 37 AINC | black/orange |

*Wire colors are presented in the following format: base/stripe

To prevent electrical shock or possible equipment damage, disconnect the unit from all electrical power before proceeding.

## Line Expansion

A six line TS612 is shipped from the factory configured for six telephone lines. You may expand a six line system to 12 lines by adding two additional telco cards. Cards must be installed in sets of two in order for the system to function properly. Once line expansion is completed, lines $7-12$ are active on your control surface.

Follow the step-by-step instructions below to ensure proper installation of additional Telco cards:

1) Remove the top cover of the mainframe chassis by loosening four screws; two on each of the mainframe side panels. Lift the top off carefully.
2) Find the two empty PCB card slots. They are located on the left-hand side of the mainframe when it is viewed from the front.

3) Carefully insert the two expansion cards into the two expansion slots. Either card can be placed in either slot. Be careful that the cards are inserted correctly. The component side of the PCB must be toward the left side of the chassis, the same as previously installed cards. Press down gently to make certain the cards are seated completely.
4) Place the top chassis cover back onto the mainframe and tighten the four screws.
5) Reconnect the mainframe to your power source.

## Configuring the TS612

To best suit your requirements, the TS612 may be configured in several ways. The type of configuration is determined by the positions of the DIP switches located behind the access panel on the front of the mainframe. Unscrew the two large screws on the front of the main frame and remove the access panel to change DIP switch settings.


The table below indicates the configuration mode associated with each DIP switch. DIP switches 1, 3, 6, and 7 affect TS612 configuration directly and are discussed below in relation to the possible configurations. Other DIP switches are discussed later in the manual.

| Dip Switch | Description | Up Position | Down Position |
| :---: | :--- | :--- | :--- |
| 1 | Mainframe Operation | Single | Split Studio |
| 2 | Open Collector Outputs | Momentary | Latching |
| 3 | Mix-Minus | Internal | External |
| 4 | COM Port Operation | Standard Control | Network Interface |
| 5 | Not Active |  |  |
| 6 | Split Caller | Off | On |
| 7 | Split Hybrid | Off | On |
| 8 | Loop Override | Off | On |
| 9 | Aux Inputs | Momentary | Latching |
| 10 | Operating Mode | Operational | Setup |
|  |  |  |  |

The TS612 may be used as a single-studio or dual-studio system. In a single-studio setting, the TS612 operates as a dual-hybrid telephone system, with up to 12 lines and three control surfaces: main/studio 1 , aux/studio 2, and screener. The main/studio 1, aux/studio 2 control surfaces have parallel control of all on-air functions.


In a dual-studio setting, the TS612 operates as two single-hybrid telephone systems. A dual-studio system must have the 12 -line expansion installed or switch \#4 activated to operate. As a split-studio configuration, lines 1-6 and hybrid 1 are dedicated to studio 1 , and lines $7-12$ and hybrid 2 are dedicated to studio 2 unless switch 4 is activated in which case lines $1-12$ are shared by both studios. The studio control surfaces operate independently of each other, while the screener control surface can screen lines for either studio. The configurations for single-studio and dual-studio systems are discussed in detail on the following pages.


## Single-Studio Mixed Caller

In mixed-caller mode, all calls placed to air are routed to the audio console through the Main Caller output regardless of which hybrid a call is routed through. Each of the TS612's two hybrids has two call slots. This allows up to four calls to be placed to air simultaneously by conferencing them together.


DIP Switch Settings. For mixed-caller mode, DIP switch 1 should be up. DIP switch 3 determines the mix-minus setup for the configuration. If DIP switch 3 is in the up position, the TS612's internal mix-minus feature is active. Full program audio (including the caller audio) may be routed
 to the Main Send input. Caller audio will be removed by the TS612 before transmitting the signal back to the caller.

If DIP switch 3 is in the down position, external mix-minus must be provided. Caller audio must be removed from the program mix before routing the signal to the Send input.


| Order Calls are <br> Placed into <br> Conference | Hybrid / Slot | Caller Output |
| :---: | :---: | :---: |
| 1 | $\mathrm{H} 1 / \mathrm{S} 1$ | Main |
| 2 | $\mathrm{H} 2 / \mathrm{S} 1$ | Aux |
| 3 | $\mathrm{H} 2 / \mathrm{S} 2$ | Aux |
| 4 | $\mathrm{H} 1 / \mathrm{S} 2$ | Main |

## Single-Studio Split Caller

In split-caller mode when conference mode is enabled, caller audio is routed to the audio console through both Caller outputs (Main and Aux) as shown in the diagram below. The advantage of split-caller mode is that caller audio is separated into two audio signals that may be connected to separate inputs on your audio console. Calls are routed to the hybrids (placed on-air) in the order they are added to the conference. See the table on the right for more information. Hybrid 1 audio is routed to the Main Caller output. Hybrid 2 audio is routed to the Aux Caller Output.


DIP Switch Settings. For split-caller mode, DIP switch 6 should be down. DIP switch 3 determines the mix-minus setup for the configuration. If DIP switch 3 is in the up position, the TS612's internal mix-minus feature is active. Full program audio (including the caller audio) may be routed to the Main Send input. Caller audio will be removed by the TS612 before transmitting the signal back to the caller.


If DIP switch 3 is in the down position, external mix-minus must be provided. Caller audio from both Caller outputs (Main and Aux) must be removed from the program mix before routing the signal to the Main Send input.

## Single-Studio Split-Hybrid

In split-hybrid mode, the two hybrids operate independently. Caller audio is routed to the audio console through both Caller outputs (Main and Aux) in the same manner as split-caller mode. The primary difference is that the hybrids receive program audio through two separate Send inputs (Main and Aux). As in split-caller mode, Hybrid 1 audio is routed to the Main Caller output and Hybrid 2 audio is routed to the Aux Caller output.


DIP Switch Settings. For split-hybrid mode, DIP switch 7 should be down. The recommended mix-minus setting for split hybrid mode is DIP switch 3 down. This setting requires external mix-minus. The audio mix routed to the Main Send input should not have callers two and three mixed in. Likewise, the Aux Send audio input should not have callers one and four mixed in. This allows the studio console operator to adjust the caller to caller level between the two TS612 hybrids.

For configurations requiring internal mixminus, we recommend that you use Split-Caller Mode. You will only have to provide one program mix from the studio console to the TS612.



## Dual-Studio

In this configuration, the TS612 operates as two single-hybrid telephone systems in either split or shared mode.

Split Mode. In split mode, the two talent control surfaces operate independently. Studio 1 controls lines 1-6 and studio 2 controls lines $7-12$. The screener accesses all 12 lines to screen calls for either talent. All calls placed to air by studio 1 are routed to the audio console through the Main Caller output. All calls placed to air by studio 2 are routed to the audio console through the Aux Caller output. Because each of the TS612's two hybrids has two call slots, each studio can conference a maximum of two calls together.


DIP Switch Settings. For dual-studio mode, DIP switch 1 should be down. DIP switch 3 determines the mix-minus setup. If DIP switch 3 is up, the TS612's internal mix-minus feature is active. Studio 1 program audio (including the caller audio) may be routed to the Main Send input and Studio 2 program audio may be routed to the Aux Send input. Caller audio is removed by the TS612 before returning to the caller. If DIP switch 3 is down, external mix-minus must be provided. Caller audio must be removed from the program mix by each studio console before routing the signal to a Send input.

Shared Mode. In shared mode, both studios have control of all 12 lines and can see when a line is in use by the other studio.

If DIP switch 4 is down (shared mode), Studio 1 and Studio 2 have access to all 12 lines.

## Audio Hookup

The TS612 connects easily to a professional audio console using XLR connectors. The number of connections required is determined by the studio configuration you have established using the DIP switches. For more information on configuring the TS612, see page 13.

Send Balanced Audio Input. The TS612 has two send inputs: one for Main (Studio 1) input, and one for Aux (Studio 2) input. Send is a female XLR connector. Balanced program audio is routed from the console to the Send input for transmission to the telephone line. The nominal operating level sensitivity of this input is +0 dBu . Additional gain may be added to weak signals by adjusting the Send trim pots. For instructions, see the Calibration section beginning on page 26.

As shipped from the factory, the TS612 is set for operation with external (console) mix-minus. If your console does not supply a mix-minus, the TS612 will generate internal mix-minus when DIP switch 3 is placed in the up position. When internal mix-minus is selected, however, caller-tosend audio must not be increased more than 18 dB in the external loop. This external loop consists of the Caller and Send trim pots as well as any console trim pots. An increase of more than 18 dB in the external loop will produce echo or feedback.

Hold Balanced Audio Input. The TS612 has two hold inputs: one for Main (Studio 1) input, and one for Aux (Studio 2) input. Hold is a female XLR connector. Balanced program audio is routed from the console and predelay (if using a digital delay), to the Hold input for use by the hold circuitry of the TS612. This is the audio which callers hear when placed on hold. For single-studio operation, only the Main Hold input should be connected to the console. For dual-studio operation, both Hold inputs (Main and Aux) should be connected.

The nominal operating level sensitivity for the Hold input is +0 dBu . Additional gain may be added to weak signals by adjusting the Hold trim pots. For instructions, see the Calibration section beginning on page 26.


Caller Balanced Audio Output. The TS612 has two caller outputs: Main (Studio 1) and Aux (Studio 2). Caller is a male XLR connector. This output is used to connect audio from the digital hybrid (and from the telephone line) to an input on the console. When calls are conferenced, the Caller output contains a mix of these callers. The TS612 can conference up to four callers at a time in the conference mode. Both Caller output connections may be required depending on the TS612's configuration (see pages 13-18, Configuring the TS612).

The nominal operating level sensitivity for the Caller output is +0 dBu . Additional gain may be added to weak signals by adjusting the Caller trim pots. For instructions, see the Calibration section beginning on page 26.

## Record Control Hookup

You can control external recording devices with start, stop, and enable standby signals provided by the TS612. For dual studio operation, two separate record controls and record mix outputs may be connected (one for each studio). In single studio modes, only one recording device needs to be connected.

Connect your recording device to the record-control connector located in the Main (Studio 1) section of the mainframe's back panel. The record-control connector provides open collector outputs capable of sinking 50 Vdc 40 mA . It is a DB9 female connector. For pinout mapping, see Appendix B (page 54). As shipped from the factory, the TS612 is set for momentary action of the control signals. If you wish to change the action of the control signals to latching, move DIP switch 2 to the down position.

Rec Mix is a male XLR connector. This output is used to connect a balanced mix of caller and send audio to an input on an external recording device.


DIP Switch 2 is a global parameter. Changing the setting from momentary to latching will affect all open collector outputs, including record control.


## Aux I/O Hookup

The Aux I/O port is a DB25 female connector used to connect auxiliary devices to the TS612. These Aux inputs and outputs provide status information and control using the control surface Aux buttons. The six auxiliary inputs are opto-isolated and require a closure to ground for activation of the input. The eight auxiliary outputs are open-collector and will pull low when activated. Each output is capable of sinking 50 Vdc 40 mA .


As shipped from the factory, the Aux inputs and outputs are set for momentary action. If you wish to change the action of the outputs to latching, move DIP switch 2 to the down position. To change the action of the inputs to latching mode, move DIP switch 9 to the down position. The tables on the following page indicate the functions associated with each input and output. For pinout mapping, see Appendix B (Page 56).


| Inputs | Momentary | Latching |
| :---: | :---: | :---: |
| Screener AUX LED* | Toggles with each closure | On when latched |
| Studio 1 AUX LED | Toggles with each closure | On when latched |
| Studio 2 AUX LED* | Toggles with each closure | On when latched |
| NEXT button input (defaults to Studio 1 in dual-studio mode) | - Places the next caller to handset or air with each closure. <br> - If conference is pressed on control surface each closure will conference next call to air up to four | - Places the next caller to handset or air with each closure. <br> - If conference is pressed on control surface. Each closure will conference next call to air up to four |
| NEXT Hybrid 1 button | - Places the next caller to air with each closure. <br> - If conference mode is on then up to two calls can be placed to the hybrid. Remove calls from air with OFF button. | - Places the next caller to air with each closure. <br> - If conference mode is on then up to two calls can be placed to the hybrid. Remove calls from air with OFF button. |
| NEXT Hybrid 2 button | - Places the next caller to air with each closure. <br> - If conference mode is on then up to two calls can be placed to the hybrid. Remove calls from air with OFF button. | - Places the next caller to air with each closure. <br> - If conference mode is on then up to two calls can be placed to the hybrid. Remove calls from air with OFF button. |
| *These inputs may be reassigned as Hybrid 1 Off and Hybrid 2 Off respectively. For detailed setup instructions see Setup mode, page 32. |  |  |

Aux Output Functions Table

| Outputs | Momentary | Latching |
| :--- | :--- | :--- |
| Screener AUX output | Pulses 500 mS when <br> Aux button is pressed | Toggles output on and off with <br> each press of the AUX button |
| Studio 1 AUX output | Pulses 500 mS when <br> Aux button is pressed | Toggles output on and off with <br> each press of the AUX button |
| Studio 2 AUX output | Pulses 500 mS when <br> Aux button is pressed | Toggles output on and off with <br> each press of the AUX button |
| Common Ring output | Activates when <br> lines are ringing | Active when <br> lines are ringing |
| Screened Hold indication | Activates when calls <br> are in hold queue | Active when calls <br> are in hold queue |
| Hybrid 1 Active | Pulses 500 mS when <br> the hybrid turns on | Active while the <br> hybrid is active |
| Hybrid 2 Active | Pulses 500 mS when <br> the hybrid turns on | Active while the <br> hybrid is active |
| Rec/Stop/Start/Enable | Pulses 500 mS when <br> record mode is active | Latches when record <br> mode is active |

## Control Surface Hookup

You may connect up to three control surfaces to the mainframe. Each Control Surface port on the back of the TS612 mainframe is a DB15 female connector. The port on the back of the control surface is a DB15 male connector. A 25 -foot cable is included with each control surface. If the control surface cable is not long enough, a 25 -foot extension cable is available from Gentner Communications Corporation (part number 830-003-025). For connector pinouts, see Appendix B page 54.

Each control surface has its own power supply. Do not plug the power supply into a wall outlet until you have finished installation of your system.

Both the Main (Studio 1) and Aux (Studio 2) control surfaces have complete control of on-air operations as well as independent access to off-air calls. The screener control surface has independent access to off-air calls and the ability to screen calls, but limited control of on-air operations. Control surface capabilities and setup will be discussed in detail in the chapter on Operation beginning page 31.


To prevent accidental disconnection of power to the control surface, install a cable clamp.

Secure the U-clamp to the bottom of the control surface. Replace the existing screw with the \#4 X 3/8 PPH self-tapping screw (supplied with the U-clamp).

Control Surface
Back View


## Calibration

Your TS612 has been calibrated at the factory to give optimum audio levels for most studios ( +0 dBu ). You can make adjustments to audio levels with the front-panel trim pots.

The trim pots for send audio, hold audio, caller audio, and automatic gain control of caller audio are behind the front access panel of the mainframe. Each trim pot is identified on the inside of the access panel.


## Calibration of Send Audio

To adjust the send audio, perform the following steps:

1. Using the talent control-surface handset in studio 1 , dial an outside telephone number. Ask the answering party to create a quiet line by either disconnecting the handset cord or covering the mouthpiece of the telephone.
2. Press the Air button on the control surface to transfer the call from the handset to internal digital hybrid 1 . The line indicator will glow red.
3. Set the program audio at normal operating level. If you have not already connected the program audio to the Send XLR connector in the Main (Studio 1) section of the back panel of the mainframe, make that connection now.
4. Locate the hybrid 1 Send trim pot behind the front access panel on the mainframe. While observing the hybrid 1 Send LED indicator on the front panel of the mainframe, turn the trim pot with a small flathead screwdriver until the indicator glows green most of the time, occasionally flashing red on peak volume. Red indicates a level of 6 dB before clipping.
5. Using the talent control-surface handset in studio 2 , repeat steps $1-3$ above. Or if you're using split-hybrid operation, enable conference mode and send a second call to air using any control surface.
6. Locate the hybrid 2 Send level trim pot behind the front access panel on the mainframe, repeat steps 3-4 above.
7. Press the Off button on the control surface to disconnect the telephone line(s).

## Calibration of Caller Audio

To adjust the caller audio, perform the following steps:

1. Using the talent control-surface handset in studio 1 , dial an outside telephone number.
2. Press the Air button on the control surface to transfer the call from the handset to the internal digital hybrid 1 . The line indicator will go red.
3. Set the Caller input on the studio console to its normal operating level.
4. Locate the hybrid 1 Caller trim pot behind the mainframe front access panel. With the called party speaking normally, turn the trim pot to match your audio equipment's input level. The Caller LED indicator on the front panel of the mainframe shows the strength of the caller signal coming off the telephone line; the caller-level trim pot has no effect on this indicator.
5. Using the talent control-surface handset in studio 2 , repeat steps $1-2$ above. If you're using split-hybrid or split-caller operation, enable conference mode and send a second call to air using any control surface.
6. Locate the hybrid 2 caller trim pot behind the mainframe front access panel, repeat step 4.
7. Press the control surface Off button to disconnect the telephone line(s).


Step 5 through 7 apply to dual-studio and single-studio split-hybrid operations.

## Calibration of Hold Audio

To adjust the hold audio, perform the following steps:

1. Calibrate the send audio for studio 1 .
2. Set the program audio at normal operating level. If you have not already connected the program audio to the Hold XLR connector in the Main/Studio 1 section of the mainframe back panel, make that connection now.
3. Using the talent control-surface handset in studio 1 , dial an outside telephone number.
4. Press the Air button on the control surface to transfer the call from the handset to internal digital hybrid 1. The line indicator will glow red. The hybrid 1 Send indicator on the front panel of the mainframe will indicate the proper audio levels being sent down the telephone line.
5. Press the Hold button on the control surface to transfer the call to hold. The line indicator will change from glowing red to a slowly flashing green.
6. The hold audio level to the caller should be at the same level as the program audio when on-air. If the called party says there is a discrepancy between the two, locate the Hold 1 Send trim pot behind the mainframe front access panel. Alternately switch the line from air to hold (with the Air and Hold buttons), while turning the trim pot. Stop when the called party says the hold audio is at the same level as the send audio.

Steps 7-10 apply to dualstudio operation only.
7. Calibrate the send audio for studio 2.
8. Using the talent control-surface handset in studio 2 , dial an outside telephone number.
9. Repeat steps 4-6 (above) for digital hybrid 2 and the associated trim pot.
10. Press the control surface Off button to disconnect the telephone line.

## Calibration of AGC

AGC (Automatic Gain Control) keeps the caller level from the TS612 to your audio equipment at a relatively consistent level regardless of the level received from the phone line. It's similar to having someone sitting at the caller trim pot and adjusting the pot up and down for each phone call. Each hybrid has a trim pot to adjust the speed of the AGC. The trim pot when turned fully counter clockwise will disable the AGC. With the trim pot turned fully clockwise the AGC will adjust the caller audio $6 \mathrm{~dB} / 100 \mathrm{mS}$.

From the factory, the TS612's AGC is set aggressively. To adjust the amount of AGC, perform the following steps:

1 Using a talent control surface handset, dial an outside telephone number.
2. Press the Air button to transfer the call from the handset to air.
3. Locate the AGC trim pot behind the mainframe front access panel and turn it fully counterclockwise, disabling the AGC.
4. Place the caller on hold and then back to air. Monitor the caller level with no AGC. If this is acceptable then go to step 6 . If you want more AGC then go to step 5 .
5. While monitoring the caller audio, slowly turn the AGC trim pot clockwise until an acceptable amount of AGC is achieved.
6. Repeat steps $1-5$ for hybrid 2 . In Single Studio mode, enable conference mode and monitor the second caller's audio while making adjustments. In Dual Studio mode use Control Surface 2.
7. To optimize your AGC adjustment, spend time listening to the effect of AGC on various types of calls. (e.g. Long distance and local calls, calls from men and women).


## Setup and Operation

Operational Setup
Setup is an important part of operation because it allows you to determine how you want the TS612 to function. During setup you will be able to configure several operational modes which are discussed in detail on the following pages.

## Networking Mode

The COM port located on the rear panel of the TS612 can be used to network multiple TS612 systems together. In network mode, the TS612 Network Interface (Gentner part number 910-003-320) passes line status information from one TS612 system to another, allowing several systems to share the same telephone lines and show proper hold, air, and in use status between systems. Network mode is selected by moving DIP switch 4 to the down position.

## RS232 Standard Mode

In standard mode, the COM port operates as a parallel control of any control surface port. All commands received by the COM port will be treated exactly as if they came directly from the selected control surface. You may choose which control surface will be emulated by the
 COM port during control surface setup (page 34). For more information on serial communications protocol and serial codes, see Appendix C (page 57). RS232 standard mode is selected by moving DIP switch 4 to the up position.



## Loop-Override mode

The TS612 allows you to loop telephone lines through the system for use by telephone equipment downstream of the TS612 mainframe. When these lines are in use downstream, the TS612 is normally unable to access them. An in-use line appears amber on the control surface and the line cannot be picked up by pressing the button.

The TS612 can pick up lines which are already in use by downstream equipment when loop-override is activated. This feature should be used with caution. Once a downstream line is picked up it is no longer available to the downstream equipment until the 612 hangs up the line. Turn on loop-override mode by moving DIP switch 8 to the down position.

## Setup Mode

This mode allows you to enable or disable the remaining operational modes of the TS612.

To enter setup mode, disconnect power to the TS612 mainframe and move DIP switch 10 to the down position. Then reconnect power to the TS612 mainframe.

Setup mode uses buttons on the Main (Studio 1) control surface to enable or disable specific operational modes. The position of DIP switch 10 at power up determines whether the control surface is ready for operation or setup. The control surface must also have power during setup mode.


The table below shows the operational modes which can be selected during setup mode. Beginning on page 34, the operational modes are discussed in the order they appear on the table.

To select an operational mode, follow the steps below:

1. Select the register. To select a programming register, press the Mode button on the control surface followed by the numbers (001 or 002) on the touch-tone dial pad. You must enter all three numbers (0-01) in order to select the register.

LED Color Coding. Upon power up, the Mode LED will be green. When Mode is pressed the LED will turn amber. When the touchtone dial buttons are pressed, the assigned Line LED will briefly light up green to indicate that you have pressed the button. Line $10=0$, Line $1=1$, and Line $2=2$. After the register has been selected the Mode LED will turn green again. A red Mode LED indicates an invalid register selection

| Register | Line LED | Operational Mode | Buttons Used |
| :--- | :--- | :--- | :--- |
| 001 | $1^{*}$ | Main (Studio 1) Control Surface Emulation | N/A |
| 001 | $2^{*}$ | Aux (Studio 2) Control Surface Emulation | N/A |
| 001 | $3^{*}$ | Screener Control Surface Emulation | N/A |
| 001 | $4^{*}$ | Master Mode Emulation (All Control Surfaces) | N/A |
| 001 | 5 | Line / Hybrid Status | N/A |
| 001 | 6 | 9600 Baud Screener Port | N/A |
| 001 | 7 | 9600 Baud Aux/Studio Two Port | N/A |
| 002 | 1 | Two Button Hold Mode | HOLD+ LINE |
| 002 | 2 | Screener Air Control | AIR or AIR + LINE |
| 002 | 3 | Previous Hold Mode | MODE \& HOLD |
| 002 | 4 | Two Button Off Mode | OFF + LINE |
| 002 | 5 | Hook Flash Timing | FLSH |



Only one of the emulation modes marked by an asterisk (*) may be selected during setup mode. More than one selection will prevent the COM port from sending any data.
2. Select the operational mode. An operational mode is selected by pressing the corresponding Line button. You may select as many operational modes as you like, except where noted on the table. For example, if you have selected register 002, pressing Line buttons 1, 2, and 3 will activate Two Button Hold Mode, Screener Air Control, and Previous Hold mode.

LED Color Coding. The corresponding line LED will light up red when selected and remain lit until the mode is deselected.
3. Exit the register. To accept your changes, press the Flash (FLSH) button. You may now select another register to continue setup (Steps 1 and 2), or return to operational mode.

LED Color Coding. The Flash LED will light up red for a brief moment to indicate that the changes have been accepted to the register.
4. Return to Operational Mode. Once you have completed setup mode, disconnect power to the TS612 mainframe. Move DIP switch 10 to the up position, then reconnect power to the mainframe. All changes made during setup are now in effect.

## Additional Operational Modes

The following modes are enabled during setup mode by pressing buttons on the control surface.
*Main (Studio 1) Control Surface Emulation. When this operational mode is selected, all commands received by the COM port are treated as if they were sent from the Main (Studio 1) control surface. For example, a line selected via a command to the COM port is routed to the handset of the Main (Studio 1) Control Surface. A call sent to air is routed to the Main (Studio 1) Caller connector. This mode is valid only when the mainframe COM port is set to RS232 standard mode (see page 31).
*Aux (Studio 2) Control Surface Emulation. All commands received by the COM port are treated as if they were sent from the Aux (Studio 2) control surface. For example, a line selected via a command to the COM port is routed to the handset of the Aux (Studio 2) Control Surface and/or on-air connector. This mode is also valid only when used with RS232 standard mode.
*Screener Control Surface Emulation. All commands received by the COM port are treated as if they were sent from the screener control surface. A line selected is routed to the handset of the Screener Control Surface. Calls can be placed on hold, screened hold, or on-air (if Screener Air Control has been activated). This mode is valid only when used with RS232 standard mode.
*Master Mode Emulation (All Control Surfaces). This mode allows commands for all control surfaces to be received by the COM port. The TS612 treats commands just as if they were sent from the corresponding control surface. This mode is also valid only when used with RS232 standard mode.

Line/Hybrid Status. When this mode is selected, the COM port sends out data that indicates which line is active on which hybrid. This mode may be selected in conjunction with any of the above emulation modes and functions accordingly. This mode is also valid only when used with RS232 standard mode.

Screener Port 9600 Baud. When this mode is selected, the Screener port of the mainframe will operate at 9600 baud. Default is 1200 baud. A standard control surface will not operate at 9600 baud.

Aux/Studio 2 Port 9600 Baud. When this mode is selected, the Aux/Studio 2 port of the mainframe will operate at 9600 baud. Default is 1200 baud and a standard control surface will not operate at 9600 baud.

Two Button Hold Mode. This mode is for use when two or more calls are conferenced together. In normal operation, pressing Hold places all conferenced calls on hold at once. In Two Button Hold mode, you can place only one of the conferenced lines on hold by pressing Hold followed by a Line button.

LED Color Coding. The Hold LED is solid red in this mode. Pressing the Hold button will cause the Hold LED to flash green. When a Line button is pressed, the Hold LED will return to red. If no Line button is pressed, the Hold LED will return to red after a brief delay.

Screener Air Control. This mode allows the screener control surface to place callers to air and to remove calls from the air to place them on hold. To place calls to air directly from the handset, press the Air button. If a screened call is on hold and you want to place it on air, press Air and then the line button. If a call is on-air and you want to place it on hold, press Air and then the line button. The status of the call determines whether the call is placed on air or put on hold.

LED Color Coding. When you have pressed the Air button, the Air LED will flash red until a Line button is pressed.

Previous Hold Mode. This mode allows you to switch from line to line quickly without disconnecting your callers. If you are on a call, pressing the Line button on another line will place the previous call on hold automatically. To disconnect a line while in Previous Hold mode, place the handset in the cradle or press the Off button. Normal hold mode requires you to press the Hold button to place a call on hold before you answer another line.

Once Previous Hold mode is activated in setup (page 32), you can switch back and forth between normal and Previous Hold modes using the control surface. The change is made by pressing and holding down the Mode button followed by a quick press of the Hold button.

LED Color Coding. The Hold LED is amber when Previous Hold mode is enabled. When Previous Hold mode is disabled, the Hold LED will turn off. If you are using Two Button Hold mode at the same time, the Hold LED will follow Previous Hold Color Coding, but still flash green while awaiting a line selection.

Two Button Off Mode. This mode allows you to disconnect any call by pressing the Off button followed by the Line button to be disconnected. This works for calls on the handset, on air, or on hold.

LED Color Coding. The Off LED is solid red when no calls are on air. The LED will turn off when calls are on air. In Two Button Off mode, pressing the Off button will cause the Off LED to flash red. When a Line button is pressed, the Off LED will return to solid red.

Hook Flash Timing. The hook flash function is used to signal PBX equipment or a central office switch. The timing length requirement for this hook flash varies between switch manufacturers. The default timing length is a 500 ms pulse. If you enable the Hook Flash Timing mode in setup (page 32), the timing length will be changed to a 55 ms pulse. Typically the 500 ms timing works with most switches in the U.S. and Canadian markets. The 55 ms timing works with most switches in the European and Latin American markets.

Hybrid 1 \& 2 Off (Aux Inputs). When you enable this feature in setup mode (page 32), two of the Aux inputs are reassigned. The Screener Aux LED and Studio 2 Aux LED status inputs are reassigned as Hybrid 1 Off and Hybrid 2 Off inputs respectively. This provides you with parallel control to disconnect calls from the hybrids with a closure to ground.

# Using the Control Surface 

The control surface is your primary tool for day-to-day operations. Once the TS612 system is installed and configured, no further attention to the mainframe should be required. Up to three control surfaces may be connected directly to the mainframe: Main (Studio 1), Aux (Studio 2), and Screener. The studio control surfaces may be used as full dual controls in a single-studio setting, or as two separate control surfaces in a dual-studio setting. The screener control can be used to screen calls only, or can be used to screen calls and place them on the air (with limited capabilities).

## Studio Control Surface

When plugged into a studio port, the control surface is really two telephone systems in one: a regular multiline telephone and an on-air telephone.

1. Regular Multi-line Telephone. When the handset is removed from the cradle, the TS612 routes a selected line to the handset.
2. On-Air Telephone. When you leave the handset in the cradle and select a line, the TS612 routes the call to one of the internal digital hybrids for use on-air.

Because the TS612 system is two instruments, one call can be answered on the handset and a separate call can be on-air through the internal hybrids at the same time. In conference mode, up to four calls can be on-air simultaneously while you continue answering calls on the handset.

## Screener Control Surface

When plugged into the screener port, the control surface has limited functions. In standard mode, only the handset function is active. A call cannot be placed on-air from a screener control surface, only on hold or screened hold. When Screener Air Control is active, the screener can also place screened calls on air, and put on-air calls to hold.

When the handset is up, all actions affect the call on the handset. When the handset is down, all actions affect the call on the hybrids (on-air).

## Control Surface Buttons

The operation of each of the control surface buttons is dependent upon which mainframe port the control surface is connected to. The buttons will be discussed first as they function when the control surface is plugged into a studio port. A discussion of button use with the screener port begins on page 43.


Telephone Line Buttons. The Line buttons are used for selecting telephone lines. Pushing a Line button will select that line. If the handset has been picked up before the line is selected, the call will be connected to the handset. If the handset is down when a Line button is pressed, the call will be placed on the air.

If you are on a call and press another Line button, the first line will be automatically disconnected. However, the TS612 also offers a new feature called Previous Hold Mode. When this mode is enabled in setup (page 32), you can switch lines without disconnecting the previous call. When a new line is selected, the previous line is put automatically on hold. For more information about this feature see page 36.

Line button operation does change, however, when the control surface is in conference mode. Push-on/push-off operation allows you to conference several lines together at one time, yet still disconnect individual callers from the conference. Press a connected Line button and only the caller on that line will be disconnected. The Off button will disconnect all of the conferenced callers.

LED Color Coding. Each Line button has an LED line-status indicator located above it. These LED's have three colors to indicate call status: red, green, and amber. The status indications for Line LED are described below.

Not in use. When a line is not in use, the LED is off.

Ringing. A ringing line is indicated by a green LED that flashes on at a quick 4 Hz rate for one second, then off for one second, in a repeating cycle until answered.

In use on handset. When a call is connected to the handset, the Line LED will appear solid green.

In use on-air. A line that is in use on-air is indicated by an LED that is solid red.

In use elsewhere. When a call is in use by another control surface, or a networked TS612 mainframe, or downstream equipment, the Line LED will appear solid amber.

On hold. A line on hold is indicated by a green LED that is flashing at a slow 1 Hz rate.

On screened hold. A line on screened hold is indicated by a red LED that is flashing at a quick 2 Hz rate.

| Color | Activity | Status |
| :--- | :--- | :--- |
| None | None | Not In Use |
| Green | Solid | In Use on Handset |
| Green | Flashing @ 4 Hz <br> pulsed on \& off @ 0.5 Hz | Ringing |
| Green | Flashing at a 1 Hz rate | On Hold |
| Red | Solid | In Use On-Air |
| Red | Flashing red at a 2 Hz rate | On Screened Hold |
| Amber | Solid | In Use Elsewhere |



Touch-Tone Pad. The touch-tone pad is used for dialing out on the telephone system. Pressing any of these buttons will generate the appropriate touch tone. Remember that the touch tones generated are fixed pulse lengths. Pressing and holding a touch-tone number will not generate a continuous tone. Dialing can be done through the handset or on the hybrids (on air).

Hold Button. The Hold button places a call on hold. Pressing the Hold button while the handset is off the cradle will place the call on the handset on hold. Pressing the Hold button while the handset is in the cradle will place the call(s) that are on-air on hold.

The Hold button is also used in Two Button Hold mode. This mode is enabled during setup (page 32). Two Button Hold works in conference mode and allows you to place only one call on hold while leaving the others connected. Just press Hold and then the button for the line you want to place on hold. For more information on Two Button Hold, see page 35 .

Off Button. The Off button disconnects on-air calls. The Off button normally has no effect on handset calls. To hang up a handset call, place the handset back in the cradle. The Off LED glows red when no lines are in use on-air. The LED is off when a line is in use on-air.

The Off button is also used in Two Button Off mode. This mode is enabled during setup (page 32). Two Button Off allows you to disconnect any call whether it is on the air, on hold, or on the handset. Just press Off and then the button of the line you want to disconnect. For more information on Two Button Off, see page 36.

AIR Button. The AIR button is used to instantly transfer a handset call to air. If there was a previous call on the air, it will be automatically disconnected. If you are in conference mode, the calls will be conferenced together on-air.

NEXT Button. The NEXT button is used for selecting calls which have been placed on hold. There are two different modes of operation for the NEXT button: NEXT non-screened and NEXT screened caller. When pressed in the non-screened mode, the NEXT button will select the line of the oldest holding call. In the screened mode, the NEXT button will select the line of the oldest holding screened call.

LED Color Coding. The NEXT LED is off if there are no calls on hold. The LED will glow green if there are non-screened callers on hold. The LED will glow red if there are screened calls on hold.

MODE Button. The MODE button is used during Setup mode. For more information, see page 32. MODE is also used to toggle the previous hold mode, see page 36 .

Aux Button. The Aux button is used to control external equipment such as a digital delay box. Pressing this button activates an output on the Aux I/O port. The Aux LED will light up red when a closure is applied to the appropriate Aux I/O input pin. For more information, see page 22.

FLSH Button. The FLSH button is used to hook-flash (temporarily disconnect) a line that is on the handset. This feature allows your TS612 to take advantage of line-handling features like transferring a call from the TS612 to an outside extension. Refer to your PBX single-line analog-extension features to determine line-handling features.

LED Color Coding. The indicator above the FLSH button will light up when the FLSH button is pressed.

REC Button. The REC button is used to control an external recording device. REC is active for on-air calls only. If pressed when a line is selected on-air, a start-recording signal will be sent to the external recorder; if pressed a second time, a stop signal will be sent to the external recorder.

If the REC button is pressed while no line is selected to air, the TS612 will go into a record-standby mode. In this mode, the start-recording signal will be automatically sent to the external recorder as soon as a line is selected to air. When the line is disconnected, a stop signal will be sent to the external recorder. The TS612 will remain in record mode until the REC button is pressed a second time.

LED Color Coding. The LED above the REC button will glow red when recording and flash red when in record-standby mode. It will be off when the record mode is off.

SCRN Button. Pressing the SCRN button places the control surface in screening mode. This changes the NEXT button function from taking the oldest non-screened holding call to only taking screened calls from the screener surface.

LED Color Coding. The SCRN LED is solid red when in screening mode, and is off when not in screening mode.


FLSH only works on the handset; it does not work for lines selected on-air.



The CONF mode can be used in conjunction with the VIP mode to allow the conference of two additional callers with the VIP caller. In VIP mode and CONF mode, only three lines can be conferenced together. This provides the VIP with a dedicated hybrid for the best audio quality.

MUTE Button. Pressing the MUTE button will mute the on-air caller audio. This button operates in a push-on/push-off mode. The caller will remain muted for as long as the MUTE button is on.

LED Color Coding. The MUTE LED is off when mute is off and solid red when mute is on.

CONF Button. The CONF button places the TS612 into the conference mode. Conference mode applies only to on-air lines, it does not apply to lines on the handset. This changes the line-button operation to push-on/push-off, allowing lines to be conferenced together.

In single-studio mode, up to four lines can be conferenced together on-air. Once four lines have been selected for conference, no other lines can be selected until one of the four conferenced lines is deselected. In the dual-studio mode, only two lines may be conferenced together per studio.

In the conference mode, if the Off button is pressed, all active lines will be dropped. You may disconnect individual lines by pushing the line button, or by using the Two Button Off feature. The same is true for the Hold button; all active lines will be placed on hold, unless you are using the Two Button Hold feature.

LED Color Coding. The CONF LED is red when conference mode is enabled and off when it is disabled.

VIP Button. The VIP button places line 6 or line 12 into VIP mode. When in VIP mode, a call on line 6 or 12 (whichever line is selected first) is locked on. It cannot be accidentally dropped or placed on hold. This feature is used when you have a guest on line who you do not want to accidentally disconnect. VIP mode also places the TS612 into a special conference mode, which allows you to conference line-to-line, connecting a single caller to your VIP guest without needing to enable the conference mode.

LED Color Coding. The VIP LED is red when VIP mode is on, and off when VIP mode is not in use.

## Screener Control Surface Buttons

The operation of each of the control surface buttons is dependent upon which mainframe port the control surface is connected to. This section describes the functions of the control surface when it is connected to the screener port.

The operation of the screener control surface is the same for many buttons, but there are some important differences. These differences will be discussed on the following pages.

Off Button. Pressing the Off button on the screener surface will disconnect a call. This eliminates the need to place the handset in the cradle to disconnect calls. The same is true when the screener is using a headset instead of the handset for screening calls.

Air Button. The screener does not normally have the ability to place a call on the air. However, when the Screener Air Control feature is enabled in setup (see page 32), the screener can place calls on the air and put on-air calls on hold. If a call is on the handset, the screener can immediately send them to air by pressing the Air button. If a previously
 screened call is holding, it can be placed on air by pressing Air and then the Line button. To put an on-air call on hold, press Air and then the Line button.

Next Button. The Next button is used for selecting calls which have been placed on hold. When pressed, the Next button will select the line of the oldest holding call. The indicator above the Next button is used to indicate callers in the hold queue. The indicator will be off if there are no calls on hold, glow green if there are callers on hold.

Screen Button. From the screener position, the Screen (SCRN) button is used to put a call on screened hold. When pressed, the active line will be placed into the screened hold queue. The Line LED will flash red. These calls are also made available to the studio control surfaces as screened-holding calls. The Screen LED is always green on a screener control surface.

## Hold, Mode, Aux, Flash, Line Buttons, and Touch Tone Pad.

 These buttons operate in the same manner as when the control surface is connected to a studio port.Rec, Mute, Conf, and VIP. These buttons are non-functional on the screener control surface.

## Call Handling

## On the Handset

The following section reviews how calls are handled on the handset.

Answering a Call. Pick up the handset and press the line button of the ringing (green flashing) line. You may do this at any time, regardless of whether or not other calls are already on-air. Your handset will be connected off-air to the incoming caller. The LED for that line will glow solid green. Calls can be answered by going from line to line. Each time a new line is taken, the previous line will be disconnected, unless you are in Previous Hold mode (see page 36).

Making a Call. Pick up the handset and press the line button of any line not in use. You will hear a dial tone, and the line's LED will glow green, indicating that the call is on the handset. Dial the telephone number normally.

Hanging Up a Call. To disconnect the line on the handset, replace the handset in the cradle. The LED for the line will go out.

Placing a Call On Hold. While the call is on the handset (out of the cradle) press the Hold button. The caller will connect to hold audio. The line LED will slowly flash green, and the NEXT status indicator will glow solid green, indicating at least one call is on hold.

Taking a Call Off Hold. To take a call off hold and talk on the handset, press any green, slowly flashing line button with the handset off-hook. Your handset will be connected to the line off-air, and the line's LED will glow green, indicating that the call is on the handset. You can also press the NEXT button. This will take the oldest call on hold and connect it to your handset off-air. The Line LED of the oldest call on hold will change from a slow green flash to a steady, green glow, indicating that the call is now on the handset.

Transferring a Call from the Handset to Air. You must be at a studio control surface to place an on-air call. (A screener control surface cannot place an on-air call, unless you have enabled the Screener Air Control feature.) With the call on the handset, press the AIR button. This immediately transfers the call from the handset to the hybrid for on-air use. The Line LED will change from a green glow to a red glow, indicating that the call is on-air.

## On-Air

The following section reviews how calls are handled on the air.

Answering a Call On-Air. You must be at a studio control surface to answer a call on the air. (A screener control surface cannot answer calls on-air.) With the handset down, press the line button of the ringing (green rapidly flashing) line. The line will be routed to a hybrid for on-air use (the LED for that line will glow red) allowing you to communicate with the caller through the audio console. Calls can be answered by going from line to line. Each time a new line is taken, the previous line is disconnected, unless you are in Previous Hold mode (see page 36).

Making a Call On-Air. Although dialing on air is not recommended due to changes in send to caller separation and the possibility for feedback, it may be performed as follows. With the handset down, press the line button of any line that is not in use. You will hear a dial tone through your console and the line's LED indicator will glow red, indicating that the call is on-air. Dial the telephone number using the touch-tone keypad.

Hanging Up a Call. To hang up an on-air call, press the Off button. The LED for the line will go out. If conference mode is enabled (the red conference LED is lit), you may simply press the line button of the line you wish to hang up.

Putting an On-Air Call on Hold. With the handset down, press the Hold button. The caller will be connected to hold audio. The Line LED will slowly flash green, and the NEXT status indicator will glow green, indicating at least one call on hold. In conference mode, all calls will be placed to hold unless two button hold or VIP mode is selected.

Transferring a Call from Hold to Air. You can place a holding call directly to air by pressing the holding call's Line button with the handset down. The Line LED will glow red, indicating the call is on-air. You can also press the NEXT button. This will take the oldest call on hold and connect it to the hybrid for on-air use. The Line LED will change from a slow flashing green to a solid red glow, indicating that the call is now on-air.

Taking Screened Calls. Calls may be screened from the screening control surface and placed into a screened hold queue. The studio control surfaces enter screening mode by pressing the SCRN button. The SCRN LED will glow red. This changes the operation of the NEXT button from taking the oldest call on hold to taking the oldest screened hold call. The NEXT button will take calls in the order they were screened. If there is at least one call in the screened hold queue, the NEXT status indicator will glow red. Screened calls may also be taken by simply


The touch tones will be heard on-air unless you press the MUTE button first.


Returning to a screened caller will affect the order in the queue. The caller that the screener returned to will be bumped to the end of the queue.
pressing the associated line button. The advantage of using the NEXT button is that it ensures that only screened calls are taken to air and that they are taken in the order they were screened. Return the control surface to non-screened mode at any time by pressing the SCRN button again. The SCRN LED indicator will go off.

VIP for Guest Talents. The VIP mode protects one VIP (usually a show guest) from accidental disconnection. While in the VIP mode, the protected line cannot be placed on hold or disconnected. VIP mode works only for either line 6 or line 12.

Handling Multiple Callers in Conference Mode. Conference mode allows up to four callers to be on-air at the same time. The first two calls in the conference mode will have excellent quality. The third and fourth calls are button-mashed on top of the first two calls in each digital hybrid, slightly decreasing the performance of each hybrid. If VIP mode is activated, one digital hybrid is reserved for the VIP guest; in that case, up to two other callers can be button-mashed onto the other hybrid for a conference with the VIP guest. In the split-studio mode, with one hybrid dedicated to each studio, the second call is immediately but-ton-mashed. Press the CONF button of a studio control surface to enable the conference mode. The LED above the CONF button glows red.

Conference mode changes the line button operation to push-on/ push-off mode. Press the line button of another line to add it to the conference. Its status indicator will glow red. Keep connecting additional lines/disconnecting existing conferenced lines, as you wish. The maximum for a conference is a total of four lines, if not in VIP mode; if in VIP mode, the VIP line and two others are the maximum possible. To disconnect a single caller from the conference, press its associated line button to disconnect only that caller from the conference.

Recording a Call. A recording device must be connected to the REC MIX and Record Control connectors (see page 21) on the back panel in order for a recording to be made. To activate the recording device, press the REC button. If at least one line is active, the REC LED will glow red, indicating that the TS612 has started the recording device. If no line is active, the REC LED will flash red, indicating that the record mode is in standby, awaiting an active line before starting to record. When a line button is pressed, the record signal will be sent, and the REC LED will glow red. The record mode will change back to standby when there are no active on-air lines. To stop recording, press the REC button again. The REC LED will go off.


Glossary
AGC. Automatic Gain Control holas the TS612 output audio substantially constant despite input-signal amplitude fluctuations.

Balanced Audio. A two-line audio signal without reference to ground (i.e. differential-mode audio).

Console. The audio mixer used to combine all programming sources (i.e. announcer's voice, music, commercial announcements, etc.). A console is also called a mixing board, mixer, audio board, etc. In radio and TV, the console is located in a control room and is run by an announcer, operator or producer. In other applications, the console is the audio-mixing system used to combine audio sources for transmission. If using microphones, the audio console will typically be a microphone mixer. For assistance specifying a microphone mixer or console for your application, contact Gentner Communications Corporation.

Control Surface. The TS612 telephone used at the control locations. Broadcasters refer to these devices as control surfaces because of their system-control functions.

Digital Signal Processing. Digitally modifying a signal to provide a specific function or output. The TS612's digital signal processing enhances the separation of send to caller audio and performs automatic gain control and auto mix minus if selected.

DIP Switch. Dual in-line package of miniature rocker switches.

DTMF. Dual-tone multi-frequency (touch-tones by AT\&T) for dialing on the phone system.

Handset. The hand held part of a communications system usually consisting of a phone, speaker and a microphone.

Hold. As with a business telephone, the TS612 hold feature takes calls off-air, or off the handset, and places them in a waiting mode. Special hold audio can be provided.

Hybrid. See Telephone Hybrid.

Keypad. The buttons on the control surface that control TS612 functions such as dialing, line selection and other function-related options.

Latching. A control signal that remains in a fixed state until you release it. This is opposed to a momentary control which is a pulsed signal.

LED. Light Emitting Diode. A semiconductor diode used in an electronic display that emits a light when subjected to an applied voltage.

Loop Through. Where the incoming signal is brought into the system and looped back out for use by other external equipment.

Loop Start. An analog type of telephone line in which the line is idle until loop current is drawn and the line is activated.

Mainframe. In this manual, Mainframe refers to the TS612 rack-mount central processing unit for this system.

Mix-Minus. Refers to the audio that must be sent to callers to prevent feedback on the audio system through the hybrid. Mix-minus is a mix of all audio on the console, minus the caller's audio. Without a mix-minus feed, the caller audio appearing on the console will be sent back to the caller. This feedback can create anything from echo to a howling squeal. Many broadcast consoles provide a mix-minus feed via a telephone module.

NEXT. A special feature of the TS612. As calls are answered and placed on hold, they go into a queue (sequence) enabling them to be taken in the order that they were answered or screened. The NEXT feature enables the operator to take calls in this order by pressing a button.

Off. Disconnects callers that are active on the system. It does not affect TS612 power.

On-Air. The operator is placing calls on the TS612 hybrids. In a broadcast application, callers are being put on-air with the announcer so the listening audience may hear the conversation.

Opto-Isolated. A control signal that is optically coupled. Usually used to prevent ground hum in an electrical system (optically isolated from the rest of the system).

PBX. Post Branch Exchange. See Telephone Line.

Pinouts. Configuration of signal-carrying lines on a connector.

POTS. See Telephone Line.

Screener. This refers to the person previewing calls before the announcer places them on-air. A typical screener will answer ringing lines and place them on hold, then will go back to each holding line and get specific information about each caller. A screener or producer typically decides whether to place a caller on-air after initial contact.

Superhybrid. The class of telephone hybrid used in the TS612. A Superhybrid uses DSP technology to automatically match the telephone line to your audio equipment; it also creates its own mix-minus feed (See Mix-Minus.) to callers. Superhybrids also provide AGC for improved clarity of the caller's audio.

Telephone Hybrid. A device which converts a telephone line (two-wire, low-level signal) into a balanced, four-wire, line-level signal with independent send/receive ports. A telephone hybrid provides necessary electronic matching between the telephone line and the audio equipment. Generally referred to in this manual as simply a hybrid.

Telephone Line. In this manual, a telephone line is defined as the line delivered by the telephone company to an individual subscriber. Sometimes known as a POTS (Plain Old Telephone Service) line, this is an analog line as required by fax machines or modems. The TS612 requires analog telephone lines for all phone-line connections.

You may use the TS612 in conjunction with a PBX (business telephone system). A PBX brings in a bank of telephone lines from the telephone company and provides a variety of functions with multi-line access.

Trim Pot. A potentiometer for adjusting (or trimming) signal levels.

VIP. Very Important Person. With the TS612, lines 6 and 12 are selectable VIP lines, preventing accidental disconnection from guest hosts and/or special interview guests.

XLR. A type of electrical connector.

# Appendix A: Specifications 

## Control Surface Dimensions

$11^{\prime \prime} / 48.3 \mathrm{cmW} \times 2.5^{\prime \prime}\left(3.75^{\prime \prime} \mathrm{w} /\right.$ handset $) / 4.45 \mathrm{~cm}(9.5 \mathrm{~cm} \mathrm{w} /$ handset) $\mathrm{H} \times$
8.0 " $/ 30.5 \mathrm{cmD}$

## Mainframe Dimensions

$19 " / 48.3 \mathrm{cmW} \times 10-1 / 4^{\prime \prime} / 26 \mathrm{cmH} \times 3.5$ " $/ 8.9 \mathrm{cmD}$

## TS612 System Weight

$12.1 \mathrm{lbs} . / 5.5 \mathrm{~kg}$ dry $19 \mathrm{lbs} . / 8.6 \mathrm{~kg}$ shipping
Operating Temperature Range
32-100 F/0-38 C

## Humidity Range

0-80 percent

## Control Surface Electrical

12 Vdc

## Mainframe Electrical

85-240Vac 50/60Hz; 30W maximum

## Connectors

| Power: | Auto-adjusting power module |
| :--- | :--- |
| RS232: | DB9 female serial port 9600 Baud, no parity, <br> 8 data bits, 1 stop bit |
| Record Control: | DB9 female. Open collector outputs. |
| Auxiliary: | DB25 female |
| XLR: | 3-pin audio connectors; pin 2 hot |
| PHONE LineS IN: | $21 \times, 50-$ pin centronix male |

## Telephone Transmit

All measurements are referenced to a +0 dBm input and $\mathrm{a}-15 \mathrm{dBm}$ output level on the telephone line.

Frequency Response: $\pm 3 d B u$ from 250 Hz to 3.3 KHz
THD: : 0.2 percent
SNR: 65 dBu

## Telephone Receive

All measurements are referenced to a -15 dBm telephone input and a +0 dBm output level.

Frequency Response: $\pm 1 \mathrm{dBu}$ from 250 Hz to 3.3 KHz
THD: : 0.2 percent
SNR: 63dBu

| Audio Interface |  |
| :--- | :--- |
| MAIN SEND Input: | 10k ohm active balanced, XLR bridging input <br> +4dBm nominal with clipping threshold of <br> +20dBm. This connector contains either <br> Send mix-minus or program audio depending <br> on mode. Level is adjustable via front access <br> panel trim pot. |
| HOLD Input: | 10k ohm active balanced, XLR bridging input <br> +4dBm nominal with clipping threshold of <br> +20dBm. This connector contains the audio <br> you want the caller to hear when placed on <br> hold. Level is adjustable via front access <br> panel trim pot. |
| CALLERr Output: | 50ohm nominal output <br> impedance. Nominal output level +4dBm. <br> Level is adjustable via front access panel |
| trim pot. |  |

## Accessories (provided)

Power Transformer 25 -foot interconnect cable
4 XLR connectors Installation and Operations Manual
Rack screws
Quick Reference Card

## Specifications are subject to change without notice.

## Appendix B: Pinouts

| Telco IN/OUT Pinout Table | Phone Line | Pin | Wire Color* | Pin | Wire Color* |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 IIP | blue/white | 26 RINC | white/blue |
|  | 2 | $2 \pi$ - | orange/white | 27 RINC | white/orange |
|  | 8 | $3 \pi$ | green/white | 28 AINC | white/green |
|  | 4 | 4 TIP | brown/white | 29 RINC | white/brown |
|  | 5 | 5 TlP | silver/white | 30 alve | white/silver |
|  | 6 | 6 | blue/red | 31 AINC | red/blue |
|  | 7 | 7 Tl | orange/red | 32 RINC | red/orange |
|  | 8 | 8 | green/red | 33 aive | red/green |
|  | $\bigcirc$ | 9 TIP | brown/red | 34 RINC | red/brown |
|  | 10 | 10 T1P | silver/red | 35 Rivc | red/silver |
|  | 11 | 11 T1P | blue/black | 36 RINC | black/blue |
|  | 12 | 12 Tl | orange/black | 37 RINC | black/orange |
|  | *Wire colors are presented in the following format: base/stripe |  |  |  |  |

RS232 Com Port Pinout Table

| Pin | Description |
| :---: | :--- |
| 1 | No Connection |
| 2 | Receive Data |
| 3 | Transmit Data |
| 4 | No Connection |
| 5 | Nound |
| 6 | No Gonnection |
| 7 | No Gonnection |
| 9 |  |


| Pin | Description |
| :--- | :--- |
| 1 | Start |
| 2 | No connection |
| 3 | Stop |
| 4 | Record Enable |
| 6 | Tape Start Com |
| 7 | No connection |
| 8 | Tape Stop Com |
| 9 | Record Enable Com |

Record Control Connector Pinout Table

## Control Surface Cable Pinout Tables (both cable ends are shown)

Use twisted pair cable for the connections indicated below.

| TS612 Mainframe (DB15M) |  | TS612 Control Surface (DB15F) |  |
| :---: | :---: | :---: | :---: |
| Pin | Description | Description | Pin |
| 1 | Serial TX - | Serial TX- | 1 |
| 2 | Serial TX + | Serial TX + | 2 |
| 3 | Serial RX - | Serial RX- | 3 |
| 4 | Serial RX + | Serial RX + | 4 |
| 5 | Speaker + | Speaker + | 5 |
| 6 | Speaker - | Speaker - | 6 |
| 7 | Mic - | Mic - | 7 |
| 8 | Mic + | Mic + | 8 |
| 9 | Surface Reset | Surface Reset | 9 |
| 10 | Ground | Ground | 10 |
| 11-14 | No Connection | No Connection | 11-14 |
| 15 | Ground | Ground | 15 |

XLR Connector Pinout Table
Pin
Description
1
Ground

| 2 | Positive Audio ( + ) |
| :--- | :--- |
| 3 | Negative Audio ( - ) |

Aux I/O Connector Pinouts

| Pin | Description | Pin |
| :---: | :---: | :--- |
| 1 | Common | 14 |
| 2 | Studio 1 Aux Lamp | 15 |
| 3 | Studio 2 Aux Lamp | 16 |

## Appendix C: Serial Communications Protocol

The COM port of the TS612 is an RS232 serial communications port used for control by external equipment such as a PC running screening software, or a digital storage device. This section defines the protocol used for communication and control of the TS612 system.

Currently, this port has been defined to have access to all status and commands used by the TS612 for communication with the control surfaces.

The interface to the mainframe through this port is an asynchronous, full-duplex RS232 serial interface. Connection is made through a DB nine-pin female connector. The pinout table can be found on page 54.

The specification table for the serial interface is shown below.
Serial Communication Protocol

| Baud Rate | 9,600 Baud |
| :--- | :--- |
| Start Bit | Low |
| 8 Data Bits | Least Significant Bit First |
| No Parity Bit | N/A |
| Stop Bit | High |

Reception begins when a start bit is detected on the receive line. The bit detector samples the value on the third, fourth, and fifth bits. The value accepted is the value that was seen in two of the three samples.

When issuing commands to the TS612 through the COM port, there is a 4 byte buffer. Bytes must be spaced $20-50 \mathrm{~ms}$ apart.

## Hex Codes

Communication between the control surface and the mainframe consists of hex codes which define button closures and lamp-status indications. The mainframe CPU maintains the status of the TS612 system. The control surface is a dumb terminal that is programmed to constantly scan and update the mainframe with a unique hex code which defines the condition of each button (released or pressed) on the control surface. The mainframe determines the proper action to take based upon the button hex codes received from each control surface. The table on the facing page shows the assigned hex codes.

## Button Closure Hex Codes

| Button Function | Released | Pressed | Button Function | Released | Pressed |
| :--- | :---: | :---: | :--- | :---: | :---: |
| Line 1 | 11 | 10 | DTMF 1 | 05 | 04 |
| Line 2 | 31 | 30 | DTMF 2 | 25 | 24 |
| Line 3 | 51 | 50 | DTMF 3 | 45 | 44 |
| Line 4 | 71 | 70 | DTMF 4 | $0 D$ | 0 C |
| Line 5 | 91 | 90 | DTMF 5 | $2 D$ | $2 C$ |
| Line 6 | B1 | B0 | DTMF 6 | $4 D$ | $4 C$ |
| Line 7 | 19 | 18 | DTMF 7 | 65 | 64 |
| Line 8 | 39 | 38 | DTMF 8 | 85 | 84 |
| Line 9 | 59 | 58 | DTMF 9 | A5 | A4 |
| Line 10 | 79 | 78 | DTMF 0 | $8 D$ | $8 C$ |
| Line 11 | 99 | 98 | DTMF * | AD | 6 C |
| Line 12 | B9 | B8 | DTMF \# | AC |  |
| OFF | 01 | 00 | AUX | A8 |  |
| HOLD | 21 | 20 | FLSH | 69 | 68 |
| NEXT | 41 | 40 | REC | 09 | 08 |
| AIR | A1 | A0 | SCRN | 61 | 60 |
| MODE | 89 | 88 | MUTE | 29 | 28 |
| CONF | 49 | 48 | VIP | 80 |  |
| Hook Switch on Hook |  | C1 | Hook Switch Off Hook |  | C0 |
| Control Surface Reset |  | F0 | Control surface Query response | F1 |  |

Status byte sent from mainfame to the control surace.

COL address bits
ROW address bits

## Status Bytes

Status for the system is displayed at each control surface. Each button, other than the DTMF buttons, has a status LED associated with it. These LED's are used to indicate the various states of operation. The mainframe maintains the status information and sends updates of this status to the control surface. A separate 8 bit encoded byte is sent to the control surface for each of the 24 LED's on the control surface. This byte is encoded to contain the address of the LED and the mode to be displayed by that address. The diagram to the right defines the encoding scheme used for the control surface status bytes:

The control surface has eight different LED modes embedded in the microprocessor program for the control surface. These modes are the same for all LED's on the control surface. The tables on the following pages define each button's LED status indications.

LINE 1 LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 000 | 10 | 000 | Both red and green off | Line not active |
| 000 | 10 | 001 | Solid red on | Line is selected on air |
| 000 | 10 | 010 | Solid green on | Line is selected on handset |
| 000 | 10 | 011 | Solid red and green on (amber) | Line is in use elsewhere |
| 000 | 10 | 100 | Not used | Not used |
| 000 | 10 | 101 | Flashing red @ 2 Hz rate | Line is on screened hold |
| 000 | 10 | 110 | Flashing green @ 1 Hz rate | Line is on hold |
| 000 | 10 | 111 | Flashing green @ 4 Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | Line is ringing |

## LINE 2 LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 001 | 10 | 000 | Both red and green off | Line not active |
| 001 | 10 | 001 | Solid red on | Line is selected on air |
| 001 | 10 | 010 | Solid green on | Line is selected on handset |
| 001 | 10 | 011 | Solid red and green on (amber) | Line is in use elsewhere |
| 001 | 10 | 100 | Not used | Not used |
| 001 | 10 | 101 | Flashing red @ 2 Hz rate | Line is on screened hold |
| 001 | 10 | 110 | Flashing green @ 1 Hz rate | Line is on hold |
| 001 | 10 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | Line is ringing |

## LINE 3 LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 010 | 10 | 000 | Both red and green off | Line not active |
| 010 | 10 | 001 | Solid red on | Line is selected on air |
| 010 | 10 | 010 | Solid green on | Line is selected on handset |
| 010 | 10 | 011 | Solid red and green on (amber) | Line is in use elsewhere |
| 010 | 10 | 100 | Not used | Not used |
| 010 | 10 | 101 | Flashing red @ 2 Hz rate | Line is on screened hold |
| 010 | 10 | 110 | Flashing green @ 1 Hz rate | Line is on hold |
| 010 | 10 | 111 | Flashing green @ 4 Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | Line is ringing |

LINE 4 LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 011 | 10 | 000 | Both red and green off | Line not active |
| 011 | 10 | 001 | Solid red on | Line is selected on air |
| 011 | 10 | 010 | Solid green on | Line is selected on handset |
| 011 | 10 | 011 | Solid red and green on (amber) | Line is in use elsewhere |
| 011 | 10 | 100 | Not used | Not used |
| 011 | 10 | 101 | Flashing red @ 2 Hz rate | Line is on screened hold |
| 011 | 10 | 110 | Flashing green @ 1 Hz rate | Line is on hold |
| 011 | 10 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | Line is ringing |

LINE 5 LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 100 | 10 | 000 | Both red and green off | Line not active |
| 100 | 10 | 001 | Solid red on | Line is selected on air |
| 100 | 10 | 010 | Solid green on | Line is selected on handset |
| 100 | 10 | 011 | Solid red and green on (amber) | Line is in use elsewhere |
| 100 | 10 | 100 | Not used | Not used |
| 100 | 10 | 101 | Flashing red @ 2 Hz rate | Line is on screened hold |
| 100 | 10 | 110 | Flashing green @ 1 Hz rate | Line is on hold |
| 100 | 10 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | Line is ringing |

LINE 6 LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 101 | 10 | 000 | Both red and green off | Line not active |
| 101 | 10 | 001 | Solid red on | Line is selected on air |
| 101 | 10 | 010 | Solid green on | Line is selected on handset |
| 101 | 10 | 011 | Solid red and green on (amber) | Line is in use elsewhere |
| 101 | 10 | 100 | Not used | Not used |
| 101 | 10 | 101 | Flashing red @ 2 Hz rate | Line is on screened hold |
| 101 | 10 | 110 | Flashing green @ 1 Hz rate | Line is on hold |
| 101 | 10 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | Line is ringing |

LINE 7 LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 000 | 11 | 000 | Both red and green off | Line not active |
| 000 | 11 | 001 | Solid red on | Line is selected on air |
| 000 | 11 | 010 | Solid green on | Line is selected on handset |
| 000 | 11 | 011 | Solid red and green on (amber) | Line is in use elsewhere |
| 000 | 11 | 100 | Not used | Not used |
| 000 | 11 | 101 | Flashing red @ 2 Hz rate | Line is on screened hold |
| 000 | 11 | 110 | Flashing green @ 1 Hz rate | Line is on hold |
| 000 | 11 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | Line is ringing |

LINE 8 LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 001 | 11 | 000 | Both red and green off | Line not active |
| 001 | 11 | 001 | Solid red on | Line is selected on air |
| 001 | 11 | 010 | Solid green on | Line is selected on handset |
| 001 | 11 | 011 | Solid red and green on (amber) | Line is in use elsewhere |
| 001 | 11 | 100 | Not used | Not used |
| 001 | 11 | 101 | Flashing red @ 2 Hz rate | Line is on screened hold |
| 001 | 11 | 110 | Flashing green @ 1 Hz rate | Line is on hold |
| 001 | 11 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | Line is ringing |

LINE 9 LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 010 | 11 | 000 | Both red and green off | Line not active |
| 010 | 11 | 001 | Solid red on | Line is selected on air |
| 010 | 11 | 010 | Solid green on | Line is selected on handset |
| 010 | 11 | 011 | Solid red and green on (amber) | Line is in use elsewhere |
| 010 | 11 | 100 | Not used | Not used |
| 010 | 11 | 101 | Flashing red @ 2 Hz rate | Line is on screened hold |
| 010 | 11 | 110 | Flashing green @ 1 Hz rate | Line is on hold |
| 010 | 11 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | Line is ringing |

LINE 10 LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 011 | 11 | 000 | Both red and green off | Line not active |
| 011 | 11 | 001 | Solid red on | Line is selected on air |
| 011 | 11 | 010 | Solid green on | Line is selected on handset |
| 011 | 11 | 011 | Solid red and green on (amber) | Line is in use elsewhere |
| 011 | 11 | 100 | Not used | Not used |
| 011 | 11 | 101 | Flashing red @ 2 Hz rate | Line is on screened hold |
| 011 | 11 | 110 | Flashing green @ 1 Hz rate | Line is on hold |
| 011 | 11 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | Line is ringing |

LINE 11 LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 100 | 11 | 000 | Both red and green off | Line not active |
| 100 | 11 | 001 | Solid red on | Line is selected on air |
| 100 | 11 | 010 | Solid green on | Line is selected on handset |
| 100 | 11 | 011 | Solid red and green on (amber) | Line is in use elsewhere |
| 100 | 11 | 100 | Not used | Not used |
| 100 | 11 | 101 | Flashing red @ 2 Hz rate | Line is on screened hold |
| 100 | 11 | 110 | Flashing green @ 1 Hz rate | Line is on hold |
| 100 | 11 | 111 | Flashing green @ 4 Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | Line is ringing |

LINE 12 LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 101 | 11 | 000 | Both red and green off | Line not active |
| 101 | 11 | 001 | Solid red on | Line is selected on air |
| 101 | 11 | 010 | Solid green on | Line is selected on handset |
| 101 | 11 | 011 | Solid red and green on (amber) | Line is in use elsewhere |
| 101 | 11 | 100 | Not used | Not used |
| 101 | 11 | 101 | Flashing red @ 2 Hz rate | Line is on screened hold |
| 101 | 11 | 110 | Flashing green @ 1 Hz rate | Line is on hold |
| 101 | 11 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | Line is ringing |

MODE LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 011 | 01 | 000 | Both red and green off | Mode not active |
| 011 | 01 | 001 | Solid red on | Invalid register entry |
| 011 | 01 | 010 | Solid green on | Indicates register is selected |
| 011 | 01 | 011 | Solid red and green on (amber) | Awaiting register selection |
| 011 | 01 | 100 | Not used | Not used |
| 011 | 01 | 101 | Flashing red @ 2 Hz rate | $\mathrm{N} / \mathrm{A}$ |
| 011 | 01 | 110 | Flashing green @ 1 Hz rate | $\mathrm{N} / \mathrm{A}$ |
| 011 | 01 | 111 | Flashing green @ 4 Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | $\mathrm{~N} / \mathrm{A}$ |

## AUX LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 100 | 01 | 000 | Both red and green off | No input to opto coupler |
| 100 | 01 | 001 | Solid red on | Closure at opto coupler input |
| 100 | 01 | 010 | Solid green on | N/A |
| 100 | 01 | 011 | Solid red and green on (amber) | $\mathrm{N} / \mathrm{A}$ |
| 100 | 01 | 100 | Flashing red @ 1 Hz rate | $\mathrm{N} / \mathrm{A}$ |
| 100 | 01 | 101 | Flashing red @ 2 Hz rate | $\mathrm{N} / \mathrm{A}$ |
| 100 | 01 | 110 | Flashing green @ 1 Hz rate | $\mathrm{N} / \mathrm{A}$ |
| 100 | 01 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | $\mathrm{~N} / \mathrm{A}$ |

## FLSH LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 101 | 01 | 000 | Both red and green off | N/A |
| 101 | 01 | 001 | Solid red on | Programming register |
| 101 | 01 | 010 | Solid green on | Generating Hook Flash |
| 101 | 01 | 011 | Solid red and green on (amber) | N/A |
| 101 | 01 | 100 | Flashing red @ 1 Hz rate | Not used |
| 101 | 01 | 101 | Flashing red @ 2 Hz rate | $\mathrm{N} / \mathrm{A}$ |
| 101 | 01 | 110 | Flashing green @ 1 Hz rate | $\mathrm{N} / \mathrm{A}$ |
| 101 | 01 | 111 | Flashing green $@ 4 \mathrm{~Hz}$ pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | $\mathrm{~N} / \mathrm{A}$ |

REC LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 010 | 01 | 000 | Both red and green off | Record mode not active. |
| 010 | 01 | 001 | Solid red on | Recording |
| 010 | 01 | 010 | Solid green on | $\mathrm{N} / \mathrm{A}$ |
| 010 | 01 | 011 | Solid red and green on (amber) | $\mathrm{N} / \mathrm{A}$ |
| 010 | 01 | 100 | Flashing red @ 1 Hz rate | Not used |
| 010 | 01 | 101 | Flashing red @ 2 Hz rate | Record mode enabled |
| 010 | 01 | 110 | Flashing green @ 1 Hz rate | $\mathrm{N} / \mathrm{A}$ |
| 010 | 01 | 111 | Flashing green @ 4 Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | $\mathrm{~N} / \mathrm{A}$ |

SCRN LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 000 | 01 | 000 | Both red and green off | Screening disabled (studio) |
| 000 | 01 | 001 | Solid red on | Screening active (studio) |
| 000 | 01 | 010 | Solid green on | Screener control surface (on) |
| 000 | 01 | 011 | Solid red and green on (amber) | Screening locked out (studio) |
| 000 | 01 | 100 | Flashing red @ 1 Hz rate | Not used |
| 000 | 01 | 101 | Flashing red @ 2 Hz rate | N/A |
| 000 | 01 | 110 | Flashing green @ 1Hz rate | N/A |
| 000 | 01 | 111 | Flashing green @ 4Hz pulsed on <br> and off at1/2 Hz | N/A |

## MUTE LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 001 | 01 | 000 | Both red and green off | MUTE diabled |
| 001 | 01 | 001 | Solid red on | MUTE enabled |
| 001 | 01 | 010 | Solid green on | N/A |
| 001 | 01 | 011 | Solid red and green on (amber) | N/A |
| 001 | 01 | 100 | Flashing red @ 1 Hz rate | Not used |
| 001 | 01 | 101 | Flashing red @ 2 Hz rate | N/A |
| 001 | 01 | 110 | Flashing green @ 1Hz rate | N/A |
| 001 | 01 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | N/A |

## CONF LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 000 | 01 | 000 | Both red and green off | Conference Mode disabled |
| 000 | 01 | 001 | Solid red on | Conference Mode enabled |
| 000 | 01 | 010 | Solid green on | N/A |
| 000 | 01 | 011 | Solid red and green on (amber) | N/A |
| 000 | 01 | 100 | Flashing red @ 1 Hz rate | Not used |
| 000 | 01 | 101 | Flashing red @ 2 Hz rate | N/A |
| 000 | 01 | 110 | Flashing green @ 1 Hz rate | N/A |
| 000 | 01 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | N/A |

VIP LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 100 | 00 | 000 | Both red and green off | VIP mode disabled |
| 100 | 00 | 001 | Solid red on | VIP mode enabled |
| 100 | 00 | 010 | Solid green on | N/A |
| 100 | 00 | 011 | Solid red and green on (amber) | N/A |
| 100 | 00 | 100 | Flashing red @ 1 Hz rate | Not used |
| 100 | 00 | 101 | Flashing red @ 2 Hz rate | N/A |
| 100 | 00 | 110 | Flashing green @ 1 Hz rate | N/A |
| 100 | 00 | 111 | Flashing green @ 4 Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | N/A |

HOLD LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 001 | 00 | 000 | Both red and green off | Previous Hold Mode disabled |
| 001 | 00 | 001 | Solid red on | 2 Button Hold Mode enabled |
| 001 | 00 | 010 | Solid green on | Calls in the hold queue |
| 001 | 00 | 011 | Solid red and green on (amber) | Previous Hold Mode enabled |
| 001 | 00 | 100 | Flashing red @ 1 Hz rate | Not used |
| 001 | 00 | 101 | Flashing red @ 2 Hz rate | 2 Button Hold Mode awaiting <br> line selection |
| 001 | 00 | 110 | Flashing green @ 1Hz rate | Awaiting line selection |
| 001 | 00 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | N/A |

OFF LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 000 | 00 | 000 | Both red and green off | Call on air |
| 000 | 00 | 001 | Solid red on | No calls on air |
| 000 | 00 | 010 | Solid green on | N/A |
| 000 | 00 | 011 | Solid red and green on (amber) | N/A |
| 000 | 00 | 100 | Flashing red @ 1 Hz rate | Not used |
| 000 | 00 | 101 | Flashing red @ 2 Hz rate | 2Button Off Mode <br> awaiting line selection |
| 000 | 00 | 110 | Flashing green @ 1Hz rate | N/A |
| 000 | 00 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 ~ H z$ | N/A |

AIR LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 101 | 00 | 000 | Both red and green off | $\mathrm{N} / \mathrm{A}$ |
| 101 | 00 | 001 | Solid red on | $\mathrm{N} / \mathrm{A}$ |
| 101 | 00 | 010 | Solid green on | $\mathrm{N} / \mathrm{A}$ |
| 101 | 00 | 011 | Solid red and green on (amber) | $\mathrm{N} / \mathrm{A}$ |
| 101 | 00 | 100 | Flashing red @ 1 Hz rate | Not used |
| 101 | 00 | 101 | Flashing red @ 2 Hz rate | Screener Air Control <br> awaiting line selection |
| 101 | 00 | 110 | Flashing green @ 1Hz rate | $\mathrm{N} / \mathrm{A}$ |
| 101 | 00 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | $\mathrm{~N} / \mathrm{A}$ |

## NEXT LED

| Status | byte | LED | Indication | Status |
| :--- | :--- | :--- | :--- | :--- |
| 010 | 00 | 000 | Both red and green off | No calls in hold or <br> screened hold queue. |
| 010 | 00 | 001 | Solid red on | Screening Mode active. <br> Calls in Screen Hold queue. |
| 010 | 00 | 010 | Solid green on | Screen Mode not active. <br> Calls in Hold queue. |
| 010 | 00 | 011 | Solid red and green on (amber) | N/A |
| 010 | 00 | 100 | Flashing red @ 1 Hz rate | Not used |
| 010 | 00 | 101 | Flashing red @ 2 Hz rate | N/A |
| 010 | 00 | 110 | Flashing green @ 1Hz rate | N/A |
| 010 | 00 | 111 | Flashing green @ 4Hz pulsed on <br> and off at $1 / 2 \mathrm{~Hz}$ | N/A |

## Peek/Poke, Reset, and Other Commands

Peek and Poke are special commands to the TS612 mainframe which allow the user to examine and change memory one byte at a time. The entire RAM space from 0x2000 to 0x5260 and the EEPROM memory space from 0xB600 to 0xB7FF are valid for peek/poke commands. Be aware that the TS612 is oblivious to any changes made through the peek and poke commands.

Peek Command. The Peek command allows the user to "Peek" at, or examine memory space. The command format is as follows:

| PC sends: | 0xC9 | Haddr Laddr |
| :--- | :--- | :--- | :--- |
| TS612 replies | $0 x C 9$ | Haddr Laddr data checksum byte |

Note that the TS612 echoes the command back to the PC before sending one byte of data and one byte checksum. Haddr is the high order address byte of the data, and Laddr is the low order address byte of the data.

Poke Command. The Poke command allows the user to change a byte value in memory. The command format is as follows:

| PC sends: | $0 x C A$ | Haddr Laddr data checksum byte |
| :--- | :--- | :--- |
| TS612 replies: | $0 x C A$ | result |

The result codes are:

> 0x55 "Successful command"
> $0 x A A$ "Bad checksum"
> $0 x F F \quad$ "The address is outside of RAM and
> EEPROM ranges"

EEPROM Layout. The EEPROM is laid out in the following fashion:

| Address |  | Description |
| :--- | :--- | :--- |
| B600 |  | EEPROM Software Revision High Byte |
| B601 |  | EEPROM Software Revision Low Byte |
| B602 |  | RS232 Port Emulation and Data Configuration (001) |
| B603 |  | EEPGM1 Software Configuration Register 1 (002) |
| B604 | B7FF - Reserved for Future Use |  |

Register 001. RS232 Port Configuration
Bit Description
$0 \quad$ COM port emulates Control Surface 1
COM port emulates Control Surface 2
COM port emulates Screener
COM port is in Master Mode
Hybrid Status transmitted over the COM port
9600 Baud Screener Port
9600 Baud Aux/Studio 2 Port
$7 \quad$ Not used

Only one of the COM port bits (0-3) may be enabled at the same time.

Register 002. Software Configuration.

| $\frac{\text { Bit }}{0}$ | $\frac{\text { Description }}{\text { 2-Button Hold is enabled when set }}$ |
| :--- | :--- |
| 1 | Screener Air Control is enabled when set |
| 2 | Previous Hold is enabled when set |
| 3 | Two-Button Off is enabled when set |
| 4 | Hook Flash Rate $=500 \mathrm{mS}$ when clear, 55 mS when set <br> 5 |
| Control Surface 2 and Screener Auxiliary Outputs <br> normal when clear, Hybrid $1 \&$ Hybrid 2 Off when set |  |
| 6-7 | Not Used |

Mainframe Reset. The reset command resets the mainframe by sending the following code:

$$
0 x C F
$$

Master Mode. Master mode allows the PC to simulate commands from any control surface. Master mode is enabled during Setup (see page 32). The master mode protocol is as follows:

| PC sends: | cmd | surface |
| :--- | :--- | :--- |
| TS612 replies: | code | surface |

The valid cmd and code values are the assigned hex code values (see page 56 ). The valid surface values are $\mathbf{0}$ (control surface 1 ), $\mathbf{1}$ (control surface 2), and 2 (screener control surface).

Line/Hybrid Status. This mode allows the PC to retrieve status information for the emulated control surface (or all control surfaces if Master Mode is enabled). Line/Hybrid Status mode is enabled during Setup (see page 32). The Line/Hybrid Status protocol is as follows:

TS612 sends: C8 byte1 byte2 byte3 byte4 (surface)

The hex code C8 is used as a flag for the line/hybrid status. The following four bytes indicate which calls are active on the hybrids in the following order:

$$
\begin{array}{ll}
\text { Byte } 1=\text { Hybrid } 1 \text { Slot } 1 & \text { Byte2 }=\text { Hybrid } 1 \text { Slot } 2 \\
\text { Byte3 }=\text { Hybrid } 2 \text { Slot } 1 & \text { Byte }=\text { Hybrid } 2 \text { Slot } 2
\end{array}
$$

The following table lists the hex codes and their associated lines:

| HEX CODE | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | $0 A$ | OB | FF |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| ACTIVE LINE | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | NONE |

Example: C8 000102 FF would indicate that line 1 is active on Hybrid 1 Slot 1 , line 2 is active on Hybrid 1 Slot 2 , line 3 is active on Hybrid 2 Slot 1 , and no line is active on Hybrid 2 Slot 2.





TECHNICAL SUPPORT: 1.800.283.5936 (USA) OR 1.801.974.3760





TECHNICAL SUPPORT: 1.800.283.5936 (USA) OR 1.801.974.3760



TECHNICAL SUPPORT: 1.800.283.5936 (USA) OR 1.801.974.3760



TECHNICAL SUPPORT: 1.800.283.5936 (USA) OR 1.801.974.3760



TECHNICAL SUPPORT: 1.800.283.5936 (USA) OR 1.801.974.3760



TECHNICAL SUPPORT: 1.800.283.5936 (USA) OR 1.801.974.3760


## Appendix E: Bill of Materials

The following bill of materials is accurate as of this printing. The information herein is subject to change without notice. If you want a more current bill of materials, please contact technical support as noted on the bottom of the page.

TS612 6-LINE UNIT 910-003-006

| Item | Item Description(s) |  |  |
| :---: | :---: | :---: | :---: |
| 400-241-614 | BOX, TS612 SYSTEM SHIPPING, 24X16X14 |  |  |
| 400-241-617 | INSERT, TS612 MAINFRAME DIVIDER, CORR |  |  |
| 400-241-618 | INSERT, TS612 CONSOLE DUMMY, CORR | Item |  |
| 400-300-009 | INSERT, KORRVU SINGLE/DOUBLE RACK UNITS |  |  |
| 400-300-011 | INSERT, USE W/400-300-009 ACC. DIVIDER |  | 612 6-LINE UNIT 910-003-006 |
| 401-000-070 | BAG, 14" 4MIL CLR PLASTIC TUBING |  | Item Description(s) |
| 401-000-060 | BAG, 12" 4MIL CLR PLASTIC TUBING |  |  |
| 432-000-015 | LABEL, COMPLIANCE FCC PART 15 | 740-003-101 | CHASSIS, RU,TS612 |
| (domestic) |  | 740-003-102 | PANEL, FRONT RU, TS612 |
| 432-000-018 | LABEL, BLANK $1.75 \times 2.5$, PRODUCT I.D. | 740-009-003 | COVER, DH |
| 432-000-019 | LABEL, BLANK 3X3 1/4" w/peel away, PKG I.D | 740-009-304 | PANEL, ACCESS, DH |
| 432-003-001 | LABEL, ACCESS PANEL TS612 | 800-003-000 | MANUAL, TS612 |
| 432-003-002 | LABEL, CANADA COMPLIANCE | 800-003-003 | CARD, QUICK REF TS612 LAMINATED |
| (domestic) |  | 820-003-113 | PCB ASSY, AUDIO CARDEDGE (CYBERGATE) |
| 432-110-004 | LABEL, CAUT ELECT SHOCK ADH | $\begin{gathered} 820-003-114 \\ \text { (domestic) } \\ \hline \end{gathered}$ | PCB ASSY, DIGITAL (CYBERGATE) |
| 460-110-005 | PWR SUPPLY, CP\# NFS40-7608 + \&-12/40W 5V |  |  |
| 460-402-013 | TWEAKER, TRIMPOT ADJUSTMENT? | 820-003-115 <br> (international) | PCB ASSY, DIGITAL INT'L (CYBERGATE) |
| 585-600-001 | FOAM, TAPE MISC 1" |  |  |
| 664-500-003 | CONN, XLR F 3P CABLE MNT | 820-003-106 | PCB ASSY, GCU TS612 VER 1.5B |
| 664-600-003 | CONN, XLR M 3P CABLE MNT | $\begin{gathered} 820-003-108 \\ \text { (domestic) } \\ \hline \end{gathered}$ | PCB ASSY, CYBERGATE TELCO CARDEDGE |
| 671-000-009 | HOOD, DB9 |  |  |
| 671-000-025 | HOOD, DB25 | $\begin{gathered} \text { 820-003-109 } \\ \text { (international) } \\ \hline \end{gathered}$ | PCB ASSY, CYBERGATE TELCO CARDEDGE IN |
| 671-220-009 | CONN, DB9 M CABLE MT |  |  |
| 671-220-025 | CONN, DB25 M CABLE MT | 830-000-025 | CABLE ASSY, 25 PAIR D50M/D50F 25FT |
| 681-010-204 | SCREW, 4-40 $\times 1 / 4$ " PPH BLK ANOD SELF-TAP | 830-003-101 | CABLE ASSY, MASC3P/MASC3P 18AWG 4" |
| 681-010-506 | SCREW, \#6-32 X 3/8 PPH BLK W/INTTH WASH | 830-003-103 | CABLE ASSY, DB50M/IDC26PF RIBBON 6" |
| 681-010-604 | SCREW, 6-32 $\times 1 / 4$ " PPH NYLON/LOCKING | 830-110-003 | CABLE ASSY, MASC 6P/MASC 6P -9" |
| 681-210-606 | SCREW, 6-32 X 3/8" PPH BLK | 830-110-012 | CABLE ASSY, CRIMP LUG/FASTON F-4" GRND |
| 681-400-002 | SCREW, $10-32 \times 5 / 8 "$ BLK POH, DECORATIVE | 830-110-013 | CABLE ASSY, FASTON F/MASC 3P-3" |
| 682-010-060 | NUT, 6-32 X 1/4 | $\begin{gathered} \text { 910-003-200 } \\ \text { (domestic) } \\ \hline \end{gathered}$ | TS612 CONTROL SURFACE UNIT (110) |
| 683-046-403 | SPACER, KIT M/F 4-40 $\times 3 / 16$ W/HARDWARE |  | TS612 CONTROL SURFACE UNIT (INT'L) |
| 683-046-620 | SPACER, M/F 6-32 X 1 1/4" HEX | $\begin{aligned} & 910-003-220 \\ & \text { (international) } \end{aligned}$ |  |
| 684-050-060 | WASHER, \#6 INTERN TOOTH |  |  |
| 684-400-001 | WASHER, RACK CUP DECORATIVE |  |  |
| 685-410-604 | SCREW, 6-32 X 1/4" BUTTON HEX |  |  |
| 699-150-006 | PWR CORD, MOLDED 8' BLK 3 COND |  |  |
| 699-360-001 | MOD, PWR ENTRY RECEPT W/EMI FILT 3 AMPS |  |  |

PCB ASSY, AUDIO CARDEDGE (CYBERGATE) 820-003-113

| Item | Item Description(s) | Item Location(s) |
| :---: | :---: | :---: |
| 432-500-010 | LABEL, BLANK 1 X. 5 WHT. |  |
| 500-005-817S | DIODE, 1N5817 SOD-87 PKG SMT | CR1, CR2 |
| 507-012-001 | LED, RED/GRN RECTANGULAR 2X5 MM | DS1, DS2, DS3, DS4 |
| 511-011-150S | RES, 150 OHM 1/10 W 1\% 0805 C SMT | $\begin{aligned} & \text { R140, R141, R167, R168, R169, R170, R171, } \\ & \text { R172, R173, R174 } \end{aligned}$ |
| 511-011-604S | RES, 604 OHM 1/10 W 1\% 0805 C SMT | $\begin{aligned} & \text { R38, R47, R56, R72, R86, R87, R88, R89, R90, } \\ & \text { R94, R96, R100, R101, R102, R107, R110, R116, } \\ & \text { R117, R118, R119, R120, R121, R122, R123 } \end{aligned}$ |
| 511-012-100S | RES, 1.00 KOHM 1/10 W 1\% 0805 C SMT | R125, R126, R127, R133, R146, R147, R185, R186, R187, R199 |
| 511-012-200S | RES, 2.00 KOHM 1/10 W 0805 | R33, R42, R51, R82, R95, R106, R111 |
| 511-012-221S | RES, 2.21 KOHM 1/10 W 1\% 0805 C SMT | R134, R145 |
| 511-012-499S | RES, 4.99 KOHM 1/10 W 1\% 0805 C SMT | R75, R97, R142, R158, R175, R178 |
| 511-012-768S | RES, 7.68 KOHM 1/10 W 1\% 0805 C SMT | R204, R207 |
| 511-013-100S | RES, 10.0 KOHM 1/10 W 1\% 0805 C SMT | R2, R4, R6, R11, R13, R14, R16, R17, R18, R21, R22, R23, R26, R27, R28, R31, R32, R34, R35, R36, R37, R39, R40, R41, R43, R44, R45, R46, R48, R49, R50, R52, R53, R54, R55, R57, R58, R59, R60, R62, R63, R64, R65, R67, R76, R78, R79, R80, R81, R83, R84, R85, R91, R92, R93, R108, R109, R112, R113, R114, R115, R124, R128, R129, R130, R131, R132, R135, R136, R137, R138, R139, R144, R148, R149, R150, R151, R162, R164, R165, R166, R176, R179, R188, R189, R190, R191, R192, R193, R203, R205, R208, R211, R212, R213, R214, R215, R216, R217 |
| 511-013-150S | RES, 15.0 KOHM 1/10 W 1\% 0805 C SMT | R74, R98, R206, R210 |
| 511-013-200S | RES, 20.0 KOHM 1/10 W 1\% 0805 C SMT | $\begin{aligned} & R 1, R 3, R 5, R 7, R 8, R 9, R 10, R 12, R 15, R 19, R 20, \\ & R 24, R 25, R 29, R 30, R 61, R 68, R 69, R 70, R 71, \\ & R 103, R 104, R 105 \end{aligned}$ |
| 511-013-324S | RES, 32.4 KOHM 1/10 W 1\% 0805 C SMT | R73, R99, R143, R157 |
| 522-400-103 | RES, POT 10 KOHM 3/8" SQ TRIMMER | R153, R154, R155, R156, R159, R160, R161, R163 |
| 533-200-132S | IC, DIG 74HC132 QUAD SCHMITT NAND GT | U25 |
| 533-204-316S | IC, MIX HC4316 QUAD ANLG SWITCH | U9 |
| 535-300-815S | IC, ANA MT8815AP SWITCH ARRAY 44P PLCC | U10, U11, U12 |

## PCB ASSY, AUDIO CARDEDGE (CYBERGATE) 820-003-113

| Item | Item Description(s) | Item Location(s) |
| :---: | :---: | :---: |
| 540-300-347S | IC, ANA LF347M QUAD BI-FET OP AMP SMT | $\begin{aligned} & \text { U4, U6, U7, U8, U13, U14, U15, U17, U22, U24, } \\ & \text { U26 } \end{aligned}$ |
| 540-302-142 | 1 C ANA SSM2142 INF DRIVFR | U1 U2 U3 U5 |
| 540-405-532S | 1 C ANA NE55320 DUAL OP-AMP I W NOISE SMT | U16 U18 U21 U23 |
| 543-007-805 | 1 C ANA REG AN7805CT $1 \mathrm{AMP}+5 \mathrm{~V}$ TO 220 | 120 |
| 543-007-905 | 1 C ANA RFG 1 M $7905 \mathrm{CT} 1 \mathrm{AMP}-5 \mathrm{~V}$ TO 220 | 119 |
| 558-032-001S | FERRITE, CHIP BLM32AO7 40ohm 1206 C SMT | $\begin{aligned} & \text { L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, } \\ & \text { L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, } \\ & \text { L23, L24. } \end{aligned}$ |
| 561-103-904S | TRANS, 2 N3904 SMT | $\begin{aligned} & \text { Q1, Q2, Q3, Q4, Q9, Q10, Q11, Q12, Q13, Q14, } \\ & \text { Q15, Q16, Q18, Q20, Q22 } \end{aligned}$ |
| 561-103-906S | TRANS. 2 N3906 PNP SMT | Q5, Q6, Q7, Q8, Q17. Q19, Q21 |
| 563-300-702S | TRANS. 2N7002 SMT | Q23, Q26 |
| 570-000-008 | SOCKET, IC 8 PIN WIPER TIN | XU1, XU2, XU3, XU5 |
| 616-101-501S | CAP, 100PF 50V CERAMIC NPO 0805 SMT | C29, C30, C31, C32, C63, C76, C77 C122, C129 |
| 616-104-501S | CAP, 0.1UF 50V Z5U 0805 C SMT | C16, C17, C18, C19, C35, C38, C41, C44, C47, C49, C50, C51, C53, C54, C55, C56, C57, C58, C64, C66, C68, C70, C72, C73, C78, C84, C88, C89, C93, C96, C97, C98, C100, C104, C105, C106, C107, C108, C112, C115, C121, C128, C130, C131, C132, C133, C134, C154, C155, C156, C157 |
| 616-106-016S | CAP, 10UF 16V TAN 6032 C SMT | C26, C27, C85, C99, C101, C102, C103, C109, C110, C111, C126, C127, C160, C161 |
| 616-222-501S | CAP, 2200PF 50V NPO 1206 C SMT | C79, C80, C90, C94, C135, C137, C138, C159 |
| 616-471-100S | CAP, 470PF 100V NPO 0805 C SMT | $\begin{aligned} & \text { C1, C2, C3, C6, C7, C8, C11, C12, C13, C21, C22, } \\ & \text { C23, C86, C87, C95, C140, C141, C142, C144, } \\ & \text { C145, C162, C163, C164, C165, C166, C167 } \end{aligned}$ |
| 616-472-100S | CAP, 4700PF 100V NPO 1206 C SMT | C20, C28, C34, C36, C37, C40, C42, C43, C46, <br> C48, C59, C60, C61, C62, C65, C67, C69, C113, <br> C114, C116, C117, C118, C123, C124, C125, <br> C143, C146, C147, C148, C149 |

PCB ASSY, AUDIO CARDEDGE (CYBERGATE) 820-003-113

| Item | Item Description(s) | Item Location(s) |
| :---: | :---: | :---: |
| 616-474-501S | CAP, 0.47UF 50V Z5U 1812 C SMT | $\begin{aligned} & \text { C4, C5, C9, C10, C14, C15, C24, C25, C33, C39, } \\ & \text { C45, C52, C71, C74, C75, C81, C82, C83, C91, } \\ & \text { C92, C119, C120, C136, C139, C150, C151 } \end{aligned}$ |
| 620-010-011 | SWITCH, DIP RA 10 POLE 20 PIN BLK | SW1 |
| 664-260-003 | CONN, XLR M 3P PC/ PNL BLK | J4, J5, J8, J9 |
| 664-360-003 | CONN, XLR F 3P PNL MNT BLK | J2, J3, J6, J7 |
| 670-040-003S | CONN, 40 PM $.21 \mathrm{H} .05 \times .05$ SMT | J17, J18 |
| 671-720-050 | CONN, DB50 F R/A PIN PC MNT | J1 |
| 673-012-003 | CONN, HEADER POST 3P MASC . 15 C SPFL | J20 |
| 673-012-006 | CONN, HEADER POST 6P MASC .15C SPFL | J19 |
| 673-020-040S | CONN, HEADER 2X20 X. 1 F SMT | J15, J16 |
| 673-021-026S | CONN, HEADER STRIP 2X13=26P M, SHROUDED | J10 |
| 673-023-043 | CONN, CARD EDGE 43P . 156 SINGLE ROW | J11, J12, J13, J14 |
| 678-103-002S | TEST POINT, PC MOUNT SMT | TP1, TP2, TP3 |
| 720-003-113 | PCB, AUDIO/CPU, TS612 (CARDEDGE) |  |

PCB ASSY, DIGITAL, TS612 (CYBERGATE) 800-003-114

| Item | Item Description(s) | Item Location(s) |
| :---: | :---: | :---: |
| 432-500-010 | LABEL, BLANK 1 X. 5 WHT. |  |
| 511-010-100S (international) | RES, 10 OHM 1/10 W 1\% 0805 | R57 |
| $\begin{aligned} & \text { 511-011-301S } \\ & \text { (domestic) } \end{aligned}$ | RES, 301 OHM 1/10 W 1\% 0805 C SMT | R61 |
| 511-015-100S | RES, 1.00 MOHM 1/10 W $1 \% 0805$ C SMT | R22 |
| 512-011-150S | RES, 150 OHM 1/8 W 1206 C SMT | R1, R2, R3, R4, R5, R6, R7, R10, R20, R57 |
| 512-012-100S | RES, 1.00 KOHM 1/8 W $1 \% 1206$ C SMT | R8, R9, R11, R12, R13, R14, R15, R16, R17, R18, R19, R21 |
| 512-013-100S | RES, 10.0 KOHM 1/8 W 1\% 1206 C SMT | R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, R36, R37, R38, R39, R40, R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, R53, R54, R55, R56, R58, R59, R60, R62, R63, R64, R65, R67, R68, R69, R70, R71, R72, R73, R74 |
| 533-200-541S | IC, DIG 74HC541 OCTAL TRISTATE BUFF | U23, U25 |
| 533-204-573S | IC, 74HC573D | U26 |
| 533-204-574S | IC, DIG 74HC574W CMOS FLIP FLOP SMT | U10, U11, U16, U17, U19 |
| 533-555-089 | IC, MIX VRC TP5089 NATIONAL ONLY | U30 |
| 534-006-256S | IC, DIG 32KX8 STAT RAM 100NS 5.0V SOP | U28 |
| 534-068-111S | IC, DIG 68HC11A1 MICRO CONTROLLER | U20 |
| 534-075-179S | IC, DIG SN75179 B RS422 TRANS/REC | U1, U8, U14 |
| 534-082-684S | IC, DIG 82 C 684 CMOS QUAD CH UART RX/TX | U29 |
| 535-102-003S | IC, ANA ULN2003A TRANS ARRAY SMT,MC1413D | U9, U12, U15, U18, U31 |
| 535-201-111S | IC, ANA MCAH11L1 OPTO COUP | U2, U3, U4, U5, U6, U7 |
| 540-001-202S | IC, MIX RS232 MAX202 TRANSCEVR SMT | U13 |
| 540-001-232S | IC, DIG MAX1232CSA WATCHD TIMER 8PSO SMT | U22 |
| 558-032-001S | FERRITE, CHIP BLM32AO7 40ohm 1206 C SMT | $\begin{aligned} & \text { L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, } \\ & \text { L14, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, } \\ & \text { L26, L27, L28, L29, L30, L31, L32, L33, L34, L35, L36, } \\ & \text { L37, L38, L39, L40, L41, L42, L43, L44, L45, L46, L47, } \\ & \text { L48, L49, L50, L51, L52 } \end{aligned}$ |
| 570-450-028 | SOCKET, IC 28 PIN . 600 SPC MACH GLD |  |
| 583-180-358 | CRYSTAL, 3.579545 MHZ HC-18U C | Y2 |
| 583-180-737 | CRYSTAL, $7.3728 \mathrm{MHz} \mathrm{HC-49/U} \mathrm{C}$ | Y1 |
| 616-104-501S | CAP, 0.1UF 50V Z5U 0805 C SMT | $\begin{aligned} & \text { C1, C2, C3, C5, C6, C7, C8, C9, C10, C11, C12, C13, } \\ & \text { C16, C17, C18, C21, C23, C24, C26, C27, C28, C29, } \\ & \text { C31, C32, C33, C34, C35, C36, C37, C41 } \end{aligned}$ |

PCB ASSY, DIGITAL, TS612 (CYBERGATE) 800-003-114

| Item | Item Description(s) | Item Location(s) |
| :---: | :---: | :---: |
| 432-500-010 | LABEL, BLANK 1 X. 5 WHT. |  |
| 511-010-100S (international) | RES, 10 OHM 1/10 W 1\% 0805 | R57 |
| 511-011-301S (domestic) | RES, 301 OHM 1/10 W 1\% 0805 C SMT | R61 |
| 511-015-100S | RES, 1.00 MOHM 1/10 W 1\% 0805 C SMT | R22 |
| 512-011-150S | RES, 150 OHM 1/8 W 1206 C SMT | R1, R2, R3, R4, R5, R6, R7, R10, R20, R57 |
| 512-012-100S | RES, 1.00 KOHM 1/8 W $1 \% 1206$ C SMT | R8, R9, R11, R12, R13, R14, R15, R16, R17, R18, R19, R21 |
| 512-013-100S | RES, 10.0 KOHM 1/8 W $1 \% 1206$ C SMT | $R 23, R 24, R 25, R 26, R 27, R 28, R 29, R 30, R 31, R 32$, R33, R34, R35, R36, R37, R38, R39, R40, R41, R42, R43, R44, R45, R46, R47, R48, R49, R50, R51, R52, R53, R54, R55, R56, R58, R59, R60, R62, R63, R64, R65, R67, R68, R69, R70, R71, R72, R73, R74 |
| 533-200-541S | IC, DIG 74HC541 OCTAL TRISTATE BUFF | U23, U25 |
| 533-204-573S | IC, 74HC573D | U26 |
| 533-204-574S | IC, DIG 74HC574W CMOS FLIP FLOP SMT | U10, U11, U16, U17, U19 |
| 533-555-089 | IC, MIX VRC TP5089 NATIONAL ONLY | U30 |
| 534-006-256S | IC, DIG 32KX8 STAT RAM 100NS 5.0V SOP | U28 |
| 534-068-111S | IC, DIG 68HC11A1 MICRO CONTROLLER | U20 |
| 534-075-179S | IC, DIG SN75179 B RS422 TRANS/REC | U1, U8, U14 |
| 534-082-684S | IC, DIG 82C684 CMOS QUAD CH UART RX/TX | U29 |
| 535-102-003S | IC, ANA ULN2003A TRANS ARRAY SMT,MC1413D | U9, U12, U15, U18, U31 |
| 535-201-111S | IC, ANA MCAH11L1 OPTO COUP | U2, U3, U4, U5, U6, U7 |
| 540-001-202S | IC, MIX RS232 MAX202 TRANSCEVR SMT | U13 |
| 540-001-232S | IC, DIG MAX1232CSA WATCHD TIMER 8PSO SMT | U22 |
| 558-032-001S | FERRITE, CHIP BLM32AO7 40ohm 1206 C SMT | $\begin{aligned} & \text { L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, } \\ & \text { L14, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, } \\ & \text { L26, L27, L28, L29, L30, L31, L32, L33, L34, L35, L36, } \\ & \text { L37, L38, L39, L40, L41, L42, L43, L44, L45, L46, L47, } \\ & \text { L48, L49, L50, L51, L52 } \end{aligned}$ |
| 570-450-028 | SOCKET, IC 28 PIN . 600 SPC MACH GLD |  |
| 583-180-358 | CRYSTAL, 3.579545 MHZ HC-18U C | Y2 |
| 583-180-737 | CRYSTAL, $7.3728 \mathrm{MHz} \mathrm{HC-49/U} \mathrm{C}$ | Y1 |
| 616-104-501S | CAP, 0.1UF 50V Z5U 0805 C SMT | $\begin{aligned} & \text { C1, C2, C3, C5, C6, C7, C8, C9, C10, C11, C12, C13, } \\ & \text { C16, C17, C18, C21, C23, C24, C26, C27, C28, C29, } \\ & \text { C31, C32, C33, C34, C35, C36, C37, C41 } \end{aligned}$ |

## PCB ASSY, GCU (60 MHZ) PROG. SING-SIDE (820-130-106)

| Item | Item Description | Item Location(s) |
| :---: | :---: | :---: |
| 432-500-010 | LABEL, BLANK 1 X. 5 WHT. |  |
| 503-030-318S | DIODE, SCHOTTKY 30V 200 NM SOT-23 SMT | CR1 |
| 511-000-022S | RES, 2.2 OHM 1/8 W 1\% 1206 C SMT | R24 |
| 511-011-604S | RES, 604 OHM 1/10 W 1\% 0805 C SMT | R20, R21 |
| 511-013-100S | RES, 10.0 KOHM 1/10 W 1\% 0805 C SMT | R1, R2, R3, R5, R6, R7, R8, R9, R10, R11 <br> R12, R13, R14, R15, R16, R17, R18, R19, R22, R23, R25 |
| 511-015-100S | RES, $1.00 \mathrm{MOHM} 1 / 10 \mathrm{~W} 1 \% 0805 \mathrm{C}$ SMT | R4 |
| 534-056-004S | IC, DIG 56002 DSP 40MHZ PQFP SMT | U3 |
| 534-056-006S | IC, DIG DSP56156 60MHZ CQFP SMT | U6 |
| 535-310-849S | IC, MIX CS4215 STEREO CODEC 16BIT SMT | U7 |
| 537-127-120S | IC, DIG 29 F010 1MBIT FLASH PROM 150NS | U1, U4, U5 |
| 540-001-232S | IC, DIG MAX1232CSA WATCHD TIMER 8PSO SMT | U2 |
| 584-205-409S | CRYSTAL, 4.096MHZ SX2050P PKG SMT | Y1 |
| 616-102-101S | CAP, 1000PF 100V NPO 0805 C SMT | C25, C34, C36 |
| 616-104-501S | CAP, 0.1UF 50V Z5U 0805 C SMT | $\begin{aligned} & \text { C4, C5, C6, C7, C8, C9, C11, C12, C13, } \\ & \text { C14, C15, C16, C17, C18, C19, C20, C21, } \\ & \text { C22, C23, C24, C26, C28, C29, C33 } \end{aligned}$ |
| 616-105-016S | CAP, 1UF 16V TANT 3216 C SMT | C27, C32 |
| 616-106-016S | CAP, 10UF 16V TAN 6032 C SMT | C10, C35 |
| 616-220-100S | CAP, 22PF 100V NPO 1206 C SMT | C1, C2 |
| 616-472-100S | CAP, 4700PF 100V NPO 1206 C SMT | C3, C30, C31 |
| 670-040-002S | CONN, 40 PF. 21 H . $05 \times .05$ SMT | J1 |
| 678-700-080S | JUMPER, 0 OHM 0805 C SMT | JP1 |
| 720-130-013 | PCB, GCU, SINGLE-SIDED |  |

UNIT ASSY, TS612 CONTROL SURFACE (850-003-200)

| Item | Item Description |
| :--- | :--- |
| $401-000-060$ | BAG, 12" 4MIL CLR PLASTIC TUBING |
| $432-000-018$ | LABEL, BLANK 1.75 X 2.5, PRODUCT I.D |
| $460-003-201$ | PAD, SWITCH COND RUBBER, TS6 12 CONS |
| $585-100-005$ | BUMPER, RUBBER GREY 1/2"D 14 HIGH |
| $681-010-312$ | SCREW, 4-40 X 3/4 PPH SELF TAP TYPE B |
| $681-010-320$ | SCREW, 4-40 X 1 1/4 PPH SELF TAP TYPE B |
| $681-810-500$ | SCREW, 4 X 1/4" PPH SHT MTL TAPPING |
| $683-046-403$ | SPACER, KIT M/F 4-40 X 3/16 W/HARDWARE |
| $684-040-040$ | WASHER, \#4 FLAT\& SPLIT LOCK |
| $740-003-201$ | CHASSIS, UPPER CONSOLE, TS612 |
| $740-003-202$ | CHASSIS, LOWER CONSOLE, TS612 |
| $740-003-203$ | BRACKET, CONN CONSOLE, TS612 |
| $740-003-204$ | OVERLAY, KEYPAD MYLAR, CONSOLE TS612 |
| $740-003-205$ | OVERLAY, PAPER, SCREENER CONTROL TS612 |
| $740-003-206$ | OVERLAY, PAPER, STUDIO CONTROL TS612 |
| $820-003-201$ | PCB ASSY, CONTROL SURFACE, TS612 |
| $830-003-201$ | CABLE ASSY, RIB DB15M/IDC16PF 12" |
| $830-003-202$ | CABLE ASSY, DCPWRF/MASC2P 22AWG 12" |

PCB ASSY, CONTROL SURFACE, TS612 (820-003-201)

| Item | Item Description | Item Location(s) |
| :---: | :---: | :---: |
| 500-004-004 | DIODE, 1N4004 1 AMP 400V | D11 |
| 507-010-022 | LED, BI-COLOR FLAT | $\begin{aligned} & \text { D1, D2, D3, D4, D5, D6, D7, D8, D13, D14, } \\ & \text { D15, D16, D17, D18, D19, D20, D21, D22, } \\ & \text { D23, D24, D25, D26, D27, D28 } \end{aligned}$ |
| 508-010-001 | SENSOR, PHOTO | PS1 |
| 512-010-750S | RES, 75 OHMS 1/8 W 1\% 1206 C SMT | R2, R15, R16, R17, R18, R19, R20, R21, R22, R28 |
| 512-011-150S | RES, 150 OHM 1/8 W 1206 C SMT | R6 |
| 512-011-750S | RES, 750 OHM 1/8 W 1\% 1206 C SMT | R35 |
| 512-012-100S | RES, 1.00 KOHM 1/8 W $1 \% 1206$ C SMT | R5, R7, R8 |
| 512-012-432S | RES, 4.32 KOHM 1/8 W 1 \% 1206 C SMT | R36 |
| 512-013-100S | RES, 10.0 KOHM 1/8 W 1\% 1206 C SMT | R9, R10, R11, R12, R13, R14, R23, R24, R25, R26, R29, R30, R31, R32, R33, R34 |
| 512-013-324S | RES, 32.4 KOHM 1/8 W 1\% 1206 C SMT | R1 |
| 533-200-132S | IC, DIG 74 HC 132 QUAD SCHMITT NAND GT | U8 |
| 534-075-179S | IC, DIG SN75179 B RS422 TRANS/REC | U3 |
| 540-001-232S | IC, DIG MAX1232CSA WATCHD TIMER 8PSO SMT | U4 |
| 540-002-895S | IC, DIG UNC,5895EP 8BIT SER IIN SOURCE | U7 |
| 540-405-532S | IC, ANA NE5532D DUAL OP-AMP LW NOISE SMT | U6 |
| 543-000-086 | IC, ANA REG LT1086CT 1.5A ADJ LW DRP OUT | Q10 |
| 543-007-805 | IC, ANA REG AN7805CT 1 AMP +5V TO 220 | Q3 |
| 558-032-001S | FERRITE, CHIP BLM32AO7 40ohm 1206 C SMT | $\begin{aligned} & \text { L1, L2, L3, L4, L5, L6, L7, L8, L9, } \\ & \text { L10, L11, L12, L13, L14 } \end{aligned}$ |
| 563-300-702S | TRANS, 2N7002 SMT | Q1, Q2, Q4, Q5, Q6, Q7, Q9 |
| 571-500-028S | SOCKET, IC 28P PLCC SMT | XU 2 |
| 583-180-110 | CRYSTAL, 11.0592 MHZ HC18U C | Y1 |
| 586-010-320 | SPEAKER, MINILERT MCP32OB2 PC MNT | B1 |
| 616-102-101S | CAP, 1000PF 100V NPO 0805 C SMT | C25 |
| 616-104-100S | CAP, 0.1UF 50V Z5U 1206 C SMT | $\begin{aligned} & \text { C3, C6, C13, C14, C15, C16, C18, C20, } \\ & \text { C21, C26 } \end{aligned}$ |
| 616-106-016S | CAP, 10UF 16V TAN 6032 C SMT | C1, C2, C5, C19, C22 |
| 616-220-100S | CAP, 22PF 100V NPO 1206 C SMT | C9, C11 |
| 616-471-100S | CAP, 470PF 100 V NPO 0805 C SMT | C27 |
| 616-471-501S | CAP, 470PF 50V NPO 1206 C SMT | C24 |
| 616-474-501S | CAP, 0.47UF 50V Z5U 1812 C SMT | C12 |
| 673-002-002 | CONN, HEADER POST 2P MASC. 10 C | J3 |
| 676-150-004 | CONN, TELE 4P R/A LOW PRO LINE JACK | J2 |
| 678-224-016 | PIN, STRIP DUAL 2X8=16PIN . 24 TALL | J2 |
| 678-700-080S | JUMPER, 0 OHM 0805 C SMT | R37 |
| 681-810-500 | SCREW, $4 \times 1 / 4$ " PPH SHT MTL TAPPING | Q3, Q10 |
| 720-003-201 | PCB, KEYBOARD, TS6 12 |  |
| 807-003-201 | FIRMWARE, U2, TS612 CONSOLE | U2 |

PCB ASSY, CYBERGATE TELCO CARDEDGE (820-003-108)

| Item | Item Description(s) | Item Location(s) |
| :---: | :---: | :---: |
| 511-011-150S | RES, 150 OHM 1/10 W 1\% 0805 C SMT | R19, R36, R48 |
| 511-011-301S | RES, 301 OHM 1/10 W 1\% 0805 C SMT | R14, R31, R47, R49, R50, R51 |
| 511-012-249S | RES, 2.49 KOHM 1/10 W 1\% 0805 C SMT | R13, R30, R44 |
| 511-012-499S | RES, $4.99 \mathrm{KOHM} \mathrm{1/10} \mathrm{~W} \mathrm{1} \mathrm{\%} 0805 \mathrm{C} \mathrm{SMT}$ | R3, R9, R20, R25, R35, R40 |
| 511-012-562S | RES, 5.62 KOHM 1/10 W 1\% 0805 C SMT | R11, R27, R42 |
| 511-012-604S | RES, 6.04 KOHM 1/10 W 1\% 0805 C SMT | [R4, R23, R38 domestic] [R10, R26, R45 international] |
| 511-013-100S | RES, 10.0 KOHM 1/10 W 1\% 0805 C SMT | R1, R2, R5, R7, R12, R17, R18, R22, R28, R29, R33, R34, R37, R43, R46 |
| $\begin{aligned} & \text { 511-013-150S } \\ & \text { (international) } \\ & \hline \end{aligned}$ | RES, 15.0 KOHM 1/10 W 1\% 0805 C SMT | R4, R6, R23, R24, R38, R41 |
| 510-013-243S | RES, 24.3 KOHM 1/10 1\% C SMT | R6, R24, R41 |
| 511-013-200S | RES, 20.0 KOHM 1/10 W 1\% 0805 C SMT | R8, R21, R39 |
| $\begin{aligned} & \text { 511-014-511S } \\ & \text { (international) } \\ & \hline \end{aligned}$ | RES, 511 KOHM 1/10 W 1\% 0805 C SMT | R15, R16, R32 |
| $\begin{array}{r} 533-200-123 S \\ \text { (international) } \\ \hline \end{array}$ | IC, DIG 74HC123D DU RETRIG MONOST M SMT | U6, U12 |
| 535-201-100S | IC, ANA LDA 100 OPTO COUPLER SOLID STATE | U5, U13, U19 |
| $\begin{aligned} & \text { 535-201-200 } \\ & \text { (domestic) } \\ & \hline \end{aligned}$ | IC, ANA CYBERGATE 2000 DAA MODULE | U3, U10, U17 |
| 535-201-206 <br> (international) | IC, ANA CYBERGATE 2111,DAA MOD.PAN EURO | U2, U9, U18 |
| 540-300-347S | IC, ANA LF347M QUAD BI-FET OP AMP SMT | U21 |
| 540-405-532S | IC, ANA NE5532D DUAL OP-AMP LW NOISE SMT | U1, U4, U8, U11, U14, U16 |
| 544-203-100S | SUPPRESSOR, TRANS SIDACTOR P3100SA | Q3, Q6, Q9 |
| 561-103-904S | TRANS, 2N3904 SMT | Q2, Q5, Q8 |
| 561-103-906S | TRANS, 2 N3906 PNP SMT | Q1, Q4, Q7 |
| 616-101-501S | CAP, 100PF 50V CERAMIC NPO 0805 SMT | C5, C22, C36 [C5, C21, C36 international only] |
| 616-102-101S | CAP, 1000PF 100V NPO 0805 C SMT | C1, C10, C15, C26, C29, C38 |
| 616-104-501S | CAP, 0.1UF 50V Z5U 0805 C SMT | C2, C3, C6, C7, C16, C17, C19, C20, C28, C30, C32, C34, C39, C40 [C12, C23 international only] |
| 616-106-016S | CAP, 10UF 16V TAN 6032 C SMT | C14, C25, C35 |
| 616-474-501S | CAP, 0.47UF 50V Z5U 1812 C SMT | C4, C18, C31 [C11, C13, C27 international only] |
| 621-100-001S | SWITCH, SPST TELCOM 8P DIP | U7, U15, U20 |
| 640-300-075S | FUSE, $3 / 4$ AMP 250V TELECOM SMT | F1, F2, F3 |
| 678-103-002S | TEST POINT, PC MOUNT SMT | TP1, TP2 |
| 678-200-110 | PIN, STRIP DUAL 2X5=10P . 24 TALL R/A | J6 |
| 678-700-080S (domestic) | JUMPER, 0 OHM 0805 C SMT | R10, R26, R45 |

TECHNICAL SUPPORT: 1.800.283.5936 (USA) OR 1.801.974.3760

## Appendix F: Warranty

## Warranty

Gentner Communications Corporation (Manufacturer) warrants that this product is free of defects in both materials and workmanship. Should any part of this equipment be defective, the Manufacturer agrees, at its option, to:
A. Repair or replace any defective part free of charge (except transportation charges) for a period of one year from the date of the original purchase, provided the owner returns the equipment to the Manufacturer at the address set forth below. No charge will be made for parts of labor during this period;
B. Furnish replacement for any defective parts in the equipment for a period of one year from the date of original purchase. Replacement parts shall be furnished without charge, except labor and transportation.

This Warranty excludes assembled products not manufactured by the Manufacturer whether or not they are incorporated in a Manufacturer product or sold under a Manufacturer part or model number.

## THIS WARRANTY IS VOID IF:

A. The equipment has been damaged by negligence, accident, act of God, or mishandling, or has not been operated in accordance with the procedures described in the operating and technical instructions; or,
B. The equipment has been altered or repaired by other than the Manufacturer or an authorized service representative of the Manufacturer; or,
C. Adaptations or accessories other than those manufactured or provided by the Manufacturer have been made or attached to the equipment which, in the determination of the Manufacturer, shall have affected the performance, safety or reliability of the equipment; or,
D. The equipment's original serial number has been modified or removed.

NO OTHER WARRANTY, EXPRESS OR IMPLIED, INCLUDING WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR USE, APPLIES TO THE EQUIPMENT, nor is any person or company authorized to assume any warranty for the Manufacturer or any other liability in connection with the sale of the Manufacturer's products.

Manufacturer does not assume any responsibility for consequential damages, expenses, or loss of revenue or property, inconvenience, or interruption in operation experienced by the customer due to a mal-
function in the purchased equipment. No warranty service performed on any product shall extend the applicable warranty period.

In case of unsatisfactory operation, the purchaser shall promptly notify the Manufacturer at the address set forth below in writing, giving full particulars as to the defects or unsatisfactory operation. Upon receipt of such notice, the Manufacturer will give instructions respecting the shipment of the equipment, or such other matters as it elects to honor this warranty as above provided. This warranty does not cover damage to the equipment during shipping and the Manufacturer assumes no responsibility for such damage. All shipping costs shall be paid by the customer.

This warranty extends only to the original purchaser and is not assignable or transferable.

## Gentner Communications Corporation, 1825 Research Way, Salt Lake City, Utah 84119

## Appendix G: Compliance

## FCC Part 15 Compliance

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his/her own expense.

Changes or modifications not expressly approved by Gentner Communications Corporation could void the user's authority to operate the equipment.

## FCC Part 68 Compliance The Ringer Equivalence Number (REN) is 0.7 B

A label containing, among other information, the FCC registration number and Ringer Equivalence Number (REN) for this equipment is prominently posted on the top plate, near the rear of the equipment. If requested, this information must be provided to your telephone company.
USOC Jacks: This device uses RJ11C and RJ21X terminal jacks.

The REN is used to determine the quantity of devices which may be connected to the telephone line. Excessive RENs on the telephone line may result in the devices not ringing in response to an incoming call. In most, but not all areas, the sum of the RENs should not exceed five (5). To be certain of the number of devices that may be connected to the line, as determined by the total RENs, contact the telephone company to obtain the maximum RENs for the calling area.

If this equipment causes harm to the telephone network, the telephone company will notify you in advance that temporary discontinuance of service may be required. If advance notice is not practical, the telephone company will notify the customer as soon as possible. Also, you will be advised of your right to file a complaint with the FCC if you believe it is necessary.

The telephone company may make changes in its facilities, equipment, operations, or procedures that could affect the operation of the equipment. If this happens, the telephone company will provide advance notice for you to make the necessary modifications in order to maintain uninterrupted service.

If you experience problems with this equipment, contact Gentner Communications Corporation, 1825 Research Way, Salt Lake City, Utah 84119, or by phone at (801) 975-7200 for repair and warranty information. If the trouble is causing harm to the telephone network, the telephone company may request you remove the equipment from the network until the problem is resolved.

No user serviceable parts are contained in this product. If damage or malfunction occurs, contact Gentner Communications for instructions on its repair or return.
This equipment cannot be used on telephone company provided coin service. Connection to Party Line Service is subject to state tariffs.

## IC Compliance

This equipment has been tested and approved for Canadian compliance. At the time of this printing, the CCL DOC number has not been released.

The Load Number of this equipment is: $\mathbf{7}$

NOTICE: The Industry of Canada label identifies certified equipment. This certification means that the equipment meets certain telecommunications network protective operational and safety requirements. The Department does not guarantee the equipment will operate to the user's satisfaction.

Before installing this equipment, users should ensure that it is permissible to be connected to the facilities of the local telecommunications company. The equipment must also be installed using an acceptable method of connection. In some cases, the company's inside wiring associated with a single line individual service may be extended by means of a certified connector assembly (telephone extension cord). The customer should be aware that compliance with the above conditions may not prevent degradation of service in some situations.

Repairs to certified equipment should be made by an authorized Canadian maintenance facility designated by Gentner
Communications. Any repairs or alterations made by the user to this equipment, or equipment malfunctions, may give the telecommunications company cause to request the user to disconnect the equipment. Users should ensure for their own protection that the electrical ground connections of the power utility, telephone lines and internal metallic water pipe system, if present, are connected together. This precaution may be particularly important in rural areas.

## Safety Information

Caution: For use only with certified telecommunications equipment.

## Information for CTR21

The TS612 has been approved in accordance with Council Decision 98/482/EC for pan-European single terminal connection to the public switched telephone network (PSTN). However, due to differences between the individual PSTNs provided in different countries, the approval does not of itself give an unconditional assurance of successful operation on every PSTN network termination point. In the event of problems, you should contact your equipment supplier.

## Network Compatibility Declaration

Gentner Communications Corporation of 1825 Research Way, Salt Lake City, Utah 84119 USA declares that the product TS612 is designed to be compatible with the following networks: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Liechtenstein, Luxembourg, The Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and United Kingdom.

## ndex



AIR Button: 27-30, 35, 40, 43-44
Answering a Call: 44-45
Aux Button: 23, 36, 41, 43
Aux (Studio 2): 20, 25, 34
Aux I/O: 23, 41
?
Calibration: 27-30
Calibration of Caller Audio: 28
Calibration of DEA: 30
Calibration of Hold Audio: 29
Calibration of Send Audio: 27
Call Handling: 44
CONF Button: 42-43, 46
Conference Mode: 21, 37-38, 40, 42, 46
Control Surface Buttons: 38, 43
Control Surface Emulation: 34-35
Control Surface Hookup: 25
Control Surface Setup: 31


DIP Switch Settings: 14, 16-19
Dual-Studio: 15, 19, 20, 28, 37, 42


FLSH Button: 34, 41, 43


Hex Codes: 56, 65
Hold Audio: 27, 29, 44-45, 48
Hold Button: 20, 29, 35-36, 40, 42-45, 48, 52
Hook Flash Timing: 36
Hybrid 1: 15, 17-18, 27-30, 36, 65
Hybrid 2: 15, 17-18, 28-30, 36, 65


Latching: 22-23, 48
LED: 27-28, 33-36, 39-46, 48, 57
LED Color Coding: 33-36, 39-42
Line Expansion: 13
Line LED Quick Reference Table: 39


Main (Studio 1): 20-22, 25, 27, 32, 34, 37
Making a Call: 44-45
Mixed-Caller: 16
Mix-Minus: 16-20, 48-49, 52
MODE Button: 33, 36, 41, 43
Momentary: 22-23,48
MUTE Button: 42-43


NEXT Button: 6, 40, 41, 43-45, 48


Off Button: 7, 28-29, 36, 38, 40, 42-43, 45, 48
On-Air: 6, 17, 25, 29, 34-35, 37, 39, 40-49
Operational Modes: 31-34


Parallel Control: 36
PBX: 8, 10-11, 36, 41, 49
Phone Lines IN: 9, 50
Phone Lines OUT: 9,50
Pinouts: 49, 53
Previous Hold Mode: 34, 36, 38, 41, 44-45


REC: 22, 41, 43, 46
REC MIX: 22, 46
Record Control: 22-23, 46, 50
$\infty$
Schematics: 66
Screened Calls: 37, 40-41, 45
Screener: 15, 19, 25, 34-38, 41, 43-45, 49, 64-65
Screener Air Control: 34-35, 37, 43-44, 65
Screener Control Surface: 15, 25, 35, 37, 43-45, 65
SCRN Button: 41, 43, 45
Send Audio: 20, 22, 27, 29
Serial Communications Protocol: 31, 56
Setup Mode: 32-34, 36, 41
Specifications: 50-52
Split-Caller: 7, 17-18, 28
Split-Hybrid: 7, 18, 28
Status Bytes: 57


Telephone Line: $6,8-10,12-13,20-21,28-29,31-32,38,48-49,51,94-$ 95
Trim Pot: 20-21, 27-30, 49, 52
Two Button Hold Mode: 34-36, 40
Two Button Off Mode: 36, 40


VIP: 6, 42-43, 46, 49


Warranty: 5, 93, 95

