# Flectro-Voice<sup>®</sup>1



### T251+

### Trapezoidal Stage Sneaker System

- 2 dB greater LF output than the T251
- Ring-Mode Decoupling (RMD™) for increased intelligibility
- PRO™ circuit provides HF driver protection
- Integral stand mount
- Roadworthy enclosure with metal corners and grille, and heavy-duty handles
  - Constant-directivity 60° x 40° horn
    High-excursion 400 W DI 15ST
  - High-excursion, 400 W, DL15S1 15-in. woofer
- Biampable, passive network included

### Description

The compact, trapezoidal-shaped Electro-Veloc T251-1 is 460-witt, two way, high-efficiency, constant-directivity stage system. A stand socket for I/h-inch diameter stands, such as the Electro-Veloc 100BK, is provided. The system combines professional-quality components, arranged in a time coherent vertical army, within a durable vented enclosure. The result is clear and articulate, high-quality sound.

The enclosure is constructed of 7-ply voidfree plywood. This high-strength shell is covered with densely woven, abuse-resistant black carpeting.

The high-frequency section of the T251+ utilizes a 67° x 40° constant-directivity horn driven by a one-inch-tirout, wide-band-width, titanium disphragm DH2T driver. This driver uses a unique convex dispersion of the time Path\* phasing plug structure (U.S. Patent #4,525,604) for smooth and centended high-frequency performance. The voice coil is coupled to the disphragm with USV's exclusive Resonant Drive\* technology. This increases and smooths the high-frequency response and reduces the amounts of internal equalization required for flat frequency response and reduces the amount of internal equalization required for flat frequency response.

EV's self-resetting PRO™ circuit is built into the crossover network to guard the compression driver from damage. If input power to the driver exceeds the nominal rating, the PRO™ circuit is activated, reducing the power delivered to the driver by 6 dB. The system will remain in this mode of operation until input power is reduced to a safe level.

The optimally vented bass section of the T251+ is designed using Thiele-Small parameters for efficient performance to below 50 Hz. The DL15ST high-excursion 15-inch woofer features beryllium copper lead wires with a low-mass, extended-length, edgewound voice coil and high-temperature materials, EV's unique Thermo Inductive Ring (TIR™) is placed on top of the pole piece, where the extended-length voice coil would normally be exposed, placing metal in close proximity to the coil and providing a major heat-transfer path that helps keep the voice coil cool. Also, the part of the magnetic structure adjacent to the coil is insulated from any rubbing contact induced by high power innuts, using EV's exclusive PROTEF™ coating (U.S. Patent #4,547,632). The coil is driven by a massive, 16-lb magnetic structure.

#### Ring-Mode Decoupling (RMD<sup>TM</sup>)

The T251+ controls both acoustical and mechanical ring modes to provide dramatically increased intelligibility, using techniques learned from the development of the Electro-Voice X-Array<sup>NM</sup> concert speakers. There is much less coloration of the sound from resonating sources, leaving only the intended sound to be heard by the audience.

#### Constant-Directivity Speaker System

The crossover frequency and speaker component geometries have been selected so that the directional characteristics of the wooffer and constant-directivity horn match at the crossover frequency (approximately 90° circular coverage patterns for each) to creat a sepecial yissent year—the constant-directivity system. At higher frequencies the horizontal coverage pattern remains constant and the vertical pattern smoothly transitions to a 40° angle above 400° Hz. Responses within the 60° x 40° rated coverage angle is uniform, which means dependable audience coverage without "hot spots" or dead zones cortain frequencies. The 60° x 40° disperse cortain frequencies. The 60° x 40° disperse

sion observeresistic also belos avoid early reflections from nearby floor or side wall surfaces which could descrade performance. The

controlled directivity of the high- and low-

frequency transducers also eliminates re-

soonse irregularities caused by diffraction off

nearby enclosure edges and, in combination

with an essentially flat on-axis frequency

response, produces a total acoustic nower

A combination of dado, cut joints, tough ad-

hesives and proper bracine ensures a soni-

cally dead enclosure free from panel reso-

The densely woven, industrial-grade, abase-

resistant carpeting provides a finish that is

both attractive and highly durable. Large,

heavy-daty metal corner protectors, firmly

secured rubber feet and recessed handles

complete the picture and ensure that the

T251+ speaker system is ideally suited for a

The T251+ high-frequency horn may be eas-

ily regard about its major axis, providing

covernor independent of enclosure orienta-

tion. First remove the enclosure grille, then

the born. Both are affixed with #2 Phillips-

hand screws. Regate the horn 90° about its

Biamped or passive crossover with Neutrik

Speakon® connectors. Pins 1+ and 1- are used

avis and prinstall the components.

Connections

in massive crossover

Biamped Operation

long and reliable life "on the road."

Retating the High-Frequency Horn

output that is uniform with frequency

Enclosure Construction

nances.

T251+ Trapezoidal Stage Speaker System fuses, but rather are functioning together as a four pole switch. To convert the T251+ to hisma operation, move each first over one

position. The fores should, once again, all be in one column and nearest the word BIAMP on the printed circuit board. Replace the input panel/crossover assembly in the enclosure and carefully replace the screwsbeing careful not to strip the holes. To return the system to full-range operation, repeat the

steps in a similar manner. Remember, all fuses must be arranged in one vertical columo for safe, recover operation. Neutrik Speakon® connectors are used. Pins 1+/1- are wired to the low-frequency driver and nins 2+/2- to the high-frequency section. The high-frequency section incorporates a low-frequency blocking capacitor with a 3-dB-down point of 800 Hz and

PRO™ circuit auto resettine overload protection.

Frequency Response

The combination of a 15-inch woofer, widehandwidth high-frequency driver and an equalized crossover results in the wide and smooth overall response shown in Figure 1. The T251+'s axial frequency response was measured in Electro-Voice's large mechoic chamber at a distance of 10 feet with a swept

sine-wave input of 4 volts. Figure 1 has been averaged and corrected for | watt/I meter. Directivity A unique feature of the T251+ is the con-

stant-directivity dispersion provided by the 60° x 40° horn. The polar response of the system at selected one-third-octave bandwidths is shown in Figure 2. These polar resoonses were measured in an anechoic environment at 10 feet using one-third-octave pink-noise inputs. The frequencies selected

are fully representative of the polar response of the system. Reamwidth of the system utilizing the complete one-third-octave polar data is shown in Figure 3. R. and directivity index (D.) are plotted in Figure 4.

cal failure moder

Power-Handling Capacity

The T251+ is shipped from the factory in "full range mode" with its passive crossover utilized. If biamp operation is desired, this is easily achieved. The input panel/crossover

assembly (on the back of the system) must first be removed using a #2 Phillips screwdriver. After removing the input panel/crossover assembly notice the conscour instrucfour automotive fuses on the printed circuit board. These fuses are not functioning as

tion label on the side of the name). There are

lish a nower test closely related to real-life

To our knowledge, Electro-Voice was the first U.S. manufacturer to develop and pub-

Architects' and Engineers' Specifications

(91.2 volts neak). This recordere provides a riscross test of both thermal and mechani-The loudspeaker system shall be a two-way, following design consisting of a 381-mm

conditions. First, we use a random-noise in-

war signal because it contains many fromms

cies simultaneously, just like real voice or

instrument program. Second, our signal con-

tains more energy at extremely high and low

frequencies than typical actual program, add-

ing an extra measure of reliability. Third, the

test signal includes not only the overall "long-term average" or "continuous" level-

which our ears intermet as loudness—but

also short-duration peaks which are many

times higher than the average, just like ac-

tool program. The long-term average level

stresses the speaker thermally (heat). The

instantaneous peaks tost mechanical reliabil-

ity (core and disphraem excursion). Note

that the sine-wave test signals sometimes

used have a much less demanding peak value

relative to their average level. In actual use,

lone-term average levels exist from several

seconds on up, but we apply the long-term

average for several hours, adding another

Specifically, the T251+ is designed to with-

stand the power test described in EIA Stan-

duel BS-426-A 1980. The FIA test spectrum

is arrelied for eight hours. To obtain the spec-

trum, the output of a white-noise generator

(white noise is a particular type of random

noise with equal energy per bandwidth in Hz)

is fed to a sharing filter with 6-dB-per-oc-

tave slopes below 40 Hz and above 318 Hz.

When measured with an analyzer having the

usual constant-percentage bandwidth (onethird octave), this shaping filter produces a

spectrum whose 3-dB-down points are at

100 Hz and 1,200 Hz with a 3-dB-per-oc-

tave slope above 1,200 Hz. This shaped sig-

nal is sent to the power amplifier with the

continuous power set at 400 watts into the

5.2-ohm EIA equivalent impedance

(45.6 volts true rms). Amplifier clipping

sets instantaneous peaks at6 dB above the

continuous nower or 1,600 watts neak

extra measure of reliability

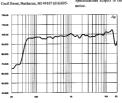
shaped enclosure, a high-frequency compression driver mounted on a 60° x 40° constantdirectivity horn, and a passive crossover/ equalizer network. The loudspeaker shall meet the following performance criteria: frequency response of \$0-20,000 Hz. -3 dB; power handling of 400 watts long term and 1,600 watts abort term with a shaped random-noise input per EIA Standard RS-426-A 1980; sensitivity of 99 dB SPL at 1 meter with a 1-watt, 300-2,000-Hz pink-noise input: 6-dB-down horizontal coverage angle of 60° ±10° in the 2.500-20.000-Hz range: 6.dB.down vertical coverage apple of 40° ±4° in the 3,150-20,000-Hz range; crossover frequency of 2,200 Hz; nominal impedance of 8 ohms; and minimum impedance of 6 ohms. Innut connections shall be two naralleled Neutrik Speakon® connectors. The enclosure shall be constructed of 7-ply voidfree plywood, covered in black carpet and fitted with a black steel grille, metal corner protectors, rubber feet and two recessed carrving handles. Dimensions shall be 818 mm (32.2 in ) bish x 488 mm (19.2 in.) wide at front x 229 mm (9.0 in.) wide at rear x 599 mm (23.6 in.) deep. Not weight shall be 35.5 kg

(15-inch) woofer in a vented, trapezoidal-

(78 lb) The landspeaker system shall be the Electro-Voice T251+

#### Limited Warranty

Electro-Voice products are guaranteed seniest malfunction due to defects in materials or workmanship for a specified period. as noted in the individual product-line statement(s) below, or in the individual prodnet data sheet or owner's manual, beginning with the date of original purchase. If such malfunction occurs during the specified peried, the product will be repaired or replaced (at our option) without charge. The product will be returned to the customer prepaid. Exclusions and Limitations: The Limited Warranty does not apply to: (a) exterior finish or annearance: (b) certain specific items described in the individual product-line statement(s) below, or in the individual product data sheet or owner's manual; (c) malfunction resulting from use or operation of the product other than as specified in the product data sheet or owner's manual; (d) malfunction resulting from misuse or abuse of the product; or (e) malfunction occurring at any time after repairs have been made to the avaduat by anyone other than Electro-Voice or any of its authorized service representatives. Obtaining Warranty Service: To obtain wagranty service, a customer must deliver the product, prepaid, to Electro-Voice or any of its authorized service representatives together with proof of purchase of the product in the form of a bill of sale or receipted invoice. A list of authorized service representatives is available from Flectro-Voice at 600


6831 or 800/234-6831) and/or Electro-Voice West, at 8234 Don Avenue, Vitalia, CA 93291 (209/651-7777 or 800/825-1242). Incidental and Consequential Damages Excluded: Product renair or replacement and return to the customer are the only remedies provided to the customer. Electro-Voice shall not be liable for any incidental or consequential damages including, without limitation, injury to pursons or property or loss of use. Some states do not allow the exclusion or limitation of incidental or consequential damages so the above limitation or exclusion may not apply to you. Other Rights: This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.

Flectro-Voice Speakers and Speaker Systems are guaranteed against malfunction due to defects in materials or workmanship for a neriod of five (5) years from the date of original purchase. The Limited Warranty does not apply to burned voice coils or malfunctions such as cone and/or coil demane resulting from immenserly designed enclosures. Electro-Voice active electronics associated with the speaker systems are guaranteed for three (3) years from the date of original purchase. Additional detrils are included in the Uniform Limited Warranty statement. Service and repair address for this product:

Electro-Voice, Inc., 600 Cecil Street, Buchsnan. Michigan 49107 (616/695-6831 or 800/234-6831) Specifications subject to change without

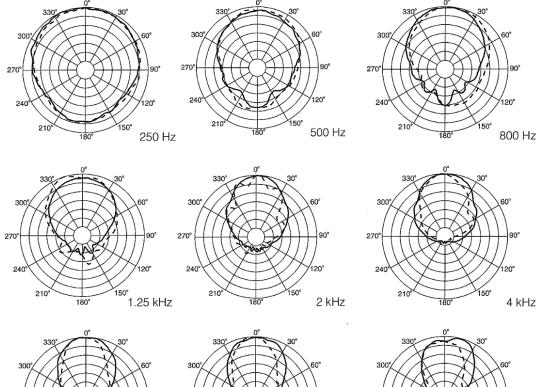

notice

Figure 1-T251+ Frequency Response



270°

16 kHz



270°

6.3 kHz

210

270°

10 kHz

## T251 + Trapezoidal Stage Speaker System

Figure 3—T251+ Beamwidth vs. Frequency, Whole Space (anechoic)

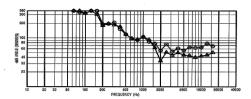



Figure 4—T251+ Directivity vs. Frequency, Whole Space (anechoic)

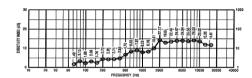
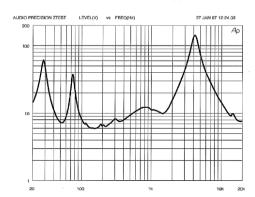




Figure 5—T251+ Impedance



## T251 + Trapezoidal Stage Speaker System

### Specifications

Frequency Response, Measured at 10 Feet on Axis, Swept 1/3-octave, Half-Space Anechoic Environment (see Figure 1. Curve shown has been

normalized for 1 watt/1 meter):

50-16,000 Hz

Low-Frequency 3-dB-Down Point: 50 Hz Usable Low-Frequency Limit (10-dB-

down point):

45 Hz Half-Space Reference Efficiency:

Long-Term Average Power-Handling Capacity per EIA Standard RS-426-A

1980 (see Power-Handling Capacity section):

400 watts

Recommended Crossover Frequency: 1,200 Hz

Crossover Slopes,

Recommended:

24-dB per octave

Minimum:

12-dB per octave

Long-Term Average Power-Handling Capacity (see Power-Handling Test section).

Low Frequency (per EIA RS-426-A 1980):

400 watts

High Frequency (per AES2-1984/ ANSI S4.26-1984):

60 watts

Sensitivity (far-field SPL referred to 1 meter, 1-watt input(2.83 V), anechoic environment, band-limited pink noise).

Low Frequency (100-800 Hz): 98 dB

High Frequency (500-5,000 Hz):

112 dB

SPL at Full Power (far-field SPL at 1 watt/1 meter referred to full power, anechoic environment, band-limited pink noise), Long-Term Average/

Peak, Low Frequency (100-1,200 Hz): 124 dB/130 dB

High Frequency (1,200-5,000 Hz): 129 dB/135 dB

Impedance,

Nominal (low frequency/high

frequency):

8 ohms/8 ohms

Minimum (low frequency/ high frequency):

6.0 ohms/6.3 ohms

Average Efficiency,

Low Frequency: 4%

High Frequency: 25%

Nominal Coverage Angle, Horizontal: 60°

Vertical: 40°

Beamwidth (angle included by 6-dBdown points on polar responses, indicated one-third-octave bands of pink noise, see Figure 4),

2,500 to 16,000 Hz Horizontal:

60° (+12°, -1°)

500 to 16,000 Hz Vertical:

 $40^{\circ} (+2, -12^{\circ})$ 

Directivity Factor R<sub>a</sub>(Q), 500- to 16,000-Hz Median (see Figure 5):

18.0 (+8.7, -8.5)

Directivity Index D., 500- to 16,000-Hz

Median (see Figure 5):

12.6 dB (+9.4 dB, -9.3 dB)

Distortion (4 W), 1% Rated Input Power (on axis at 1 meter from system).

Second Harmonic,

100 Hz: 0.3%

1,000 Hz: 0.4%

10.000 Hz: 1.3% Third Harmonic.

> 100 Hz: 0.1% 1.000 Hz: 0.4%

10,000 Hz: 0.6%

Distortion Response (40 W),

Rated Input Power (on axis at 1 meter from system; see Figure 5),

Second Harmonic,

100 Hz: 0.7% 1.000 Hz: 1.0%

10,000 Hz: 10.0% Third Harmonic, 100 Hz: 0.3%

1.000 Hz: 0.6% 10,000 Hz: 1.6%

Transducer Complement,

Low Frequency:

DL15ST 381-mm (15-in.) woofer in a vented enclosure

High Frequency:

HP64M 60° x 40° horn mounted to DH2T compression driver

**Box-tuning Frequency:** 

55 Hz

Driver Protection, High Frequency:

Solid-state self-resetting circuit (PRO™ circuit) drops input 6 dB; blocking capacitor with 800-Hz corner frquency and 6-dB-per-octave slope

**Enclosure Materials and Color:** Black, 7-ply void-free carpet-covered

plywood

Grille:

Black powder coated, vibrationresistant steel, removable

Dimensions,

Height:

818 mm (32.2 in.)

Width at Front:

488 mm (19.2 in.)

Width at Rear: 229 mm (9.0 in.)

Depth:

599 mm (23.6 in.)

Side-Wall Draft Angle:

10°

Net Weight:

35.5 kg (78 lb) Shipping Weight:

41.5 kg (91 lb)

