SECTION

CONTENTS

SERVICE INFORMATION 4
PRECAUTIONS 4
Precaution for Supplemental Restraint System(SRS) "AIR BAG" and "SEAT BELT PRE-TEN-SIONER" 4
Precaution for work 4
PREPARATION 5
Special Service Tool 5
Commercial Service Tool5
SQUEAK AND RATTLE TROUBLE DIAG- NOSES 6
Work Flow 6
Generic Squeak and Rattle Troubleshooting 8
Diagnostic Worksheet 10
HOOD 12
Fitting Adjustment 12
Removal and Installation of Hood Assembly 13
Removal and Installation of Hood Lock Control 14
Hood Lock Control Inspection 15
POWER DOOR LOCK SYSTEM 16
Component Parts and Harness Connector Loca- tion 16
System Description 16
Schematic 19
Wiring Diagram - D/LOCK 21
Terminal and Reference Value for BCM 33
Work Flow 33
CONSULT-III Function (BCM) 34
Trouble Diagnosis Symptom Chart 35
BCM Power Supply and Ground Circuit Inspection35
Door Switch Check (Without Automatic Back Door System) 35
Door Switch Check (With Automatic Back Door System) 37
Key Switch (Insert) Check 39
Door Lock/Unlock Switch Check 40
Front Door Lock Assembly LH (Actuator) Check 42
Front Door Lock Actuator RH Check 43
Door Lock Actuator Check (Sliding Door) 44
Back Door Lock Actuator Check (Without Auto- matic Back Door) 44
Front Door Lock Assembly LH (Key Cylinder Switch) Check 45
REMOTE KEYLESS ENTRY SYSTEM 48
Component Parts and Harness Connector Loca- tion 48
System Description 48
CAN Communication System Description 51
Schematic 52
Wiring Diagram - KEYLES 53
Terminal and Reference Value for BCM 55
Terminal and Reference Value for IPDM E/R 55
CONSULT-III Function (BCM) 56
CONSULT-III Application Item 56
Trouble Diagnosis Procedure 58
Pre-Diagnosis Inspection 58
Trouble Diagnosis 58
Key Switch (insert) Check 60
Door Switch Check (Without Automatic Back Door System) 61
Door Switch Check (With Automatic Back Door System) 63
Keyfob Battery and Function Check 65
Remote Keyless Entry Receiver System Inspec- tion 66
ACC Power Check 67
IPDM E/R Operation Check 67
Check Hazard Function 68
Check Horn Function 68
Check Headlamp Function 68
Check Interior Lamp Illumination Function 69
ID Code Entry Procedure 69
Keyfob Battery Replacement 71
VEHICLE SECURITY (THEFT WARNING) SYSTEM 72
Component Parts and Harness Connector Loca- tion 72
System Description 72
CAN Communication System Description 74
Schematic 75
Wiring Diagram - VEHSEC 76
Terminal and Reference Value for BCM 80
Terminal and Reference Value for IPDM E/R 80
CONSULT-III Function (BCM) 81
Trouble Diagnosis 82
Preliminary Check 83
Symptom Chart 84
Diagnosis Procedure 1 84
Diagnosis Procedure 2 88
Diagnosis Procedure 3 89
Diagnosis Procedure 4 91
Diagnosis Procedure 5 91
Diagnosis Procedure 6 91
AUTOMATIC SLIDING DOOR SYSTEM 92
Component Parts and Harness Connector Loca- tion 92
System Description 92
Automatic Sliding Door Initialization Procedure 98
Schematic 101
Wiring Diagram - S/CLOS 104
Sliding Door Control Unit Harness Connector Ter- minal Layout 119
Terminal and Reference Value for Sliding Door Control Unit 119
Sliding Door Latch Control Unit Harness Connec- tor Terminal Layout 121
Terminal and Reference Value for Sliding Door Latch Control Unit 121
Terminal and Reference Value for BCM 122
Trouble Diagnosis Procedure 122
Self-Diagnosis Procedure 123
Diagnosis Chart 124
Auto Sliding Door Power Supply and Ground Cir- cuit Inspection 125
Automatic Door Main Switch System Inspection 126
Sliding Door Open/Close Switch System Inspec- tion 126
Sliding Door Motor System Inspection 127
Magnetic Clutch Line Check 128
Sliding Door Encoder System Inspection 128
Sliding Door Remote Control Switch System In- spection 130
Child Lockout Switch System Inspection 131
Latch Release Actuator System Inspection 131
Warning Chime System Inspection 132
Half-Latch Switch System Inspection 133
Full-Latch Switch System Inspection 134
Neutral Switch System Inspection 135
Cinch Latch Motor System Inspection 136
AUTOMATIC BACK DOOR SYSTEM 138
Component Parts and Harness Connector Loca- tion 138
System Description 138
Schematic 143
Wiring Diagram - B/CLOS 144
Back Door Control Unit Harness Connector Termi- nal Layout 149
Terminal and Reference Value for Back Door Control Unit 149
Terminal and Reference Value for BCM 150
Trouble Diagnosis Procedure 150
Self-Diagnosis Procedure 151
Diagnosis Chart 152
Back Door Control Unit Power Supply and Ground Circuit Inspection 153
Automatic Door Main Switch System Inspection 153
Back Door Close Switch System Inspection 155
Pinch Strip System Inspection 156
Back Door Warning Chime System Inspection 157
Half-Latch Switch System Inspection 157
Open Switch System Inspection 158
Close Switch System Inspection 159
Back Door Handle Switch System Inspection 160
Cinch Latch Motor System Inspection 161
DOOR 163
Fitting Adjustment 163
Removal and Installation 166
FRONT DOOR LOCK 169
Component Structure 169
Removal and Installation 169
Disassembly and Assembly 171
SLIDE DOOR LOCK 172
Removal and Installation 172
BACK DOOR LOCK 176
Component Structure 176
Back Door Latch 177
Back Door Power Lift Assembly 178
FUEL FILLER LID OPENER 179
Wiring Diagram - F/LID 179
NVIS(NISSAN Vehicle Immobilizer System- NATS) 181
Component Parts and Harness Connector Loca- tion 181
System Description 181
System Composition 181
ECM Re-communicating Function 182
Wiring Diagram - NATS 183
Terminal and Reference Value for BCM 183
CONSULT-III Function 183
Trouble Diagnosis Procedure 185
Trouble Diagnosis 186
Diagnosis Procedure 1 188
Diagnosis Procedure 2 189
Diagnosis Procedure 3 189
Diagnosis Procedure 4 190
Body Component Parts 198Diagnosis Procedure 5191
Diagnosis Procedure 6 193
How to Replace NATS Antenna Amp 194
HOMELINK UNIVERSAL TRANSCEIVER 195
Wiring Diagram - TRNSCV - 195
Trouble Diagnosis 195
BODY REPAIR 197
Corrosion Protection 201
Body Sealing 203
Body Construction 207
Body Alignment 207
Handling Precaution for Plastics 219
Precaution in Repairing High Strength Steel 222
Foam Repair 224
Replacement Operation 225
Body Exterior Paint Color 197

SERVICE INFORMATION
 PRECAUTIONS

Precaution for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted. Information necessary to service the system safely is included in the SRS and SB section of this Service Manual.
WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the SRS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.

Precaution for work

- After removing and installing the opening/closing parts, be sure to carry out fitting adjustments to check their operation.
- Check the lubrication level, damage, and wear of each part. If necessary, grease or replace it.

PREPARATION

< SERVICE INFORMATION >

PREPARATION

Special Service Tool

The actual shapes of Kent-Moore tools may differ from those of special service tools illustrated here.
Tool number
(Kent-Moore No.)
Tool name
(J-39570)
Chassis ear
—
(J-43980)
NISSAN Squeak and Rat-
tle Kit
(J-43241)
Remote Keyless Entry
Tester

Commercial Service Tool

(Kent-Moore No.)	Description	
Tool name		Locating the noise
(J-39565)		

Work Flow

CUSTOMER INTERVIEW

Interview the customer if possible, to determine the conditions that exist when the noise occurs. Use the Diagnostic Worksheet during the interview to document the facts and conditions when the noise occurs and any customer's comments; refer to BL-10, "Diagnostic Worksheet". This information is necessary to duplicate the conditions that exist when the noise occurs.

- The customer may not be able to provide a detailed description or the location of the noise. Attempt to obtain all the facts and conditions that exist when the noise occurs (or does not occur).
- If there is more than one noise in the vehicle, be sure to diagnose and repair the noise that the customer is concerned about. This can be accomplished by test driving the vehicle with the customer.
- After identifying the type of noise, isolate the noise in terms of its characteristics. The noise characteristics are provided so the customer, service adviser and technician are all speaking the same language when defining the noise.
- Squeak -(Like tennis shoes on a clean floor)

Squeak characteristics include the light contact/fast movement/brought on by road conditions/hard surfaces = higher pitch noise/softer surfaces = lower pitch noises/edge to surface $=$ chirping.

- Creak-(Like walking on an old wooden floor)

Creak characteristics include firm contact/slow movement/twisting with a rotational movement/pitch dependent on materials/often brought on by activity.

- Rattle-(Like shaking a baby rattle)

Rattle characteristics include the fast repeated contact/vibration or similar movement/loose parts/missing clip or fastener/incorrect clearance.

- Knock -(Like a knock on a door)

Knock characteristics include hollow sounding/sometimes repeating/often brought on by driver action.

- Tick-(Like a clock second hand)

Tick characteristics include gentle contacting of light materials/loose components/can be caused by driver action or road conditions.

- Thump-(Heavy, muffled knock noise)

Thump characteristics include softer knock/dead sound often brought on by activity.

- Buzz-(Like a bumble bee)

Buzz characteristics include high frequency rattle/firm contact.

- Often the degree of acceptable noise level will vary depending upon the person. A noise that you may judge as acceptable may be very irritating to the customer.
- Weather conditions, especially humidity and temperature, may have a great effect on noise level.

DUPLICATE THE NOISE AND TEST DRIVE

If possible, drive the vehicle with the customer until the noise is duplicated. Note any additional information on the Diagnostic Worksheet regarding the conditions or location of the noise. This information can be used to duplicate the same conditions when you confirm the repair.

SQUEAK AND RATTLE TROUBLE DIAGNOSES

< SERVICE INFORMATION >
If the noise can be duplicated easily during the test drive, to help identify the source of the noise, try to duplicate the noise with the vehicle stopped by doing one or all of the following:

1) Close a door.
2) Tap or push/pull around the area where the noise appears to be coming from.
3) Rev the engine.
4) Use a floor jack to recreate vehicle "twist".
5) At idle, apply engine load (electrical load, half-clutch on M / T model, drive position on A / T model).
6) Raise the vehicle on a hoist and hit a tire with a rubber hammer.

- Drive the vehicle and attempt to duplicate the conditions the customer states exist when the noise occurs.
- If it is difficult to duplicate the noise, drive the vehicle slowly on an undulating or rough road to stress the vehicle body.

CHECK RELATED SERVICE BULLETINS

After verifying the customer concern or symptom, check ASIST for Technical Service Bulletins (TSBs) related to that concern or symptom.
If a TSB relates to the symptom, follow the procedure to repair the noise.

LOCATE THE NOISE AND IDENTIFY THE ROOT CAUSE

1. Narrow down the noise to a general area. To help pinpoint the source of the noise, use a listening tool (Chassis Ear: J-39570, Engine Ear: J-39565 and mechanic's stethoscope).
2. Narrow down the noise to a more specific area and identify the cause of the noise by:

- removing the components in the area that you suspect the noise is coming from.

Do not use too much force when removing clips and fasteners, otherwise clips and fasteners can be broken or lost during the repair, resulting in the creation of new noise.

- tapping or pushing/pulling the component that you suspect is causing the noise.

Do not tap or push/pull the component with excessive force, otherwise the noise will be eliminated only temporarily.

- feeling for a vibration with your hand by touching the component(s) that you suspect is (are) causing the noise.
- placing a piece of paper between components that you suspect are causing the noise.
- looking for loose components and contact marks.

Refer to BL-8, "Generic Squeak and Rattle Troubleshooting".
REPAIR THE CAUSE

- If the cause is a loose component, tighten the component securely.
- If the cause is insufficient clearance between components:
- separate components by repositioning or loosening and retightening the component, if possible.
- insulate components with a suitable insulator such as urethane pads, foam blocks, felt cloth tape or urethane tape. A NISSAN Squeak and Rattle Kit (J-43980) is available through your authorized NISSAN Parts Department.
CAUTION:
Do not use excessive force as many components are constructed of plastic and may be damaged.
Always check with the Parts Department for the latest parts information.
The following materials are contained in the NISSAN Squeak and Rattle Kit (J-43980). Each item can be ordered separately as needed.
URETHANE PADS [1.5 mm (0.059 in) thick]
Insulates connectors, harness, etc.
76268-9E005: $100 \times 135 \mathrm{~mm}(3.94 \times 5.31 \mathrm{in}) / 76884-71$ L01: $60 \times 85 \mathrm{~mm}(2.36 \times 3.35 \mathrm{in}) / 76884-71$ L02: 15×25
mm ($0.59 \times 0.98 \mathrm{in}$)
INSULATOR (Foam blocks)
Insulates components from contact. Can be used to fill space behind a panel.
$73982-9 E 000: 45 \mathrm{~mm}$ (1.77 in) thick, $50 \times 50 \mathrm{~mm}(1.97 \times 1.97 \mathrm{in}) / 73982-50 \mathrm{Y} 00: 10 \mathrm{~mm}$ (0.39 in) thick,
$50 \times 50 \mathrm{~mm}$ ($1.97 \times 1.97 \mathrm{in}$)
INSULATOR (Light foam block)
80845-71L00: 30 mm (1.18 in) thick, $30 \times 50 \mathrm{~mm}(1.18 \times 1.97 \mathrm{in}$)
FELT CLOTH TAPE
Used to insulate where movement does not occur. Ideal for instrument panel applications.
$68370-4 B 000: 15 \times 25 \mathrm{~mm}$ ($0.59 \times 0.98 \mathrm{in}$) pad/ $68239-13 \mathrm{E} 00: 5 \mathrm{~mm}(0.20 \mathrm{in}$) wide tape roll. The following materials not found in the kit can also be used to repair squeaks and rattles.
UHMW (TEFLON) TAPE
Insulates where slight movement is present. Ideal for instrument panel applications.

SQUEAK AND RATTLE TROUBLE DIAGNOSES

< SERVICE INFORMATION >
SILICONE GREASE
Used instead of UHMW tape that will be visible or not fit.
Note: Will only last a few months.
SILICONE SPRAY
Use when grease cannot be applied.
DUCT TAPE
Use to eliminate movement.
CONFIRM THE REPAIR
Confirm that the cause of a noise is repaired by test driving the vehicle. Operate the vehicle under the same conditions as when the noise originally occurred. Refer to the notes on the Diagnostic Worksheet.

Generic Squeak and Rattle Troubleshooting

Refer to Table of Contents for specific component removal and installation information.

INSTRUMENT PANEL

Most incidents are caused by contact and movement between:

1. The cluster lid A and instrument panel
2. Acrylic lens and combination meter housing
3. Instrument panel to front pillar garnish
4. Instrument panel to windshield
5. Instrument panel mounting pins
6. Wiring harnesses behind the combination meter
7. A/C defroster duct and duct joint

These incidents can usually be located by tapping or moving the components to duplicate the noise or by pressing on the components while driving to stop the noise. Most of these incidents can be repaired by applying felt cloth tape or silicone spray (in hard to reach areas). Urethane pads can be used to insulate wiring harness.
CAUTION:
Do not use silicone spray to isolate a squeak or rattle. If you saturate the area with silicone, you will not be able to recheck the repair.

CENTER CONSOLE

Components to pay attention to include:

1. Shifter assembly cover to finisher
2. A/C control unit and cluster lid C
3. Wiring harnesses behind audio and A / C control unit

The instrument panel repair and isolation procedures also apply to the center console.

DOORS

Pay attention to the:

1. Finisher and inner panel making a slapping noise
2. Inside handle escutcheon to door finisher
3. Wiring harnesses tapping
4. Door striker out of alignment causing a popping noise on starts and stops

Tapping or moving the components or pressing on them while driving to duplicate the conditions can isolate many of these incidents. You can usually insulate the areas with felt cloth tape or insulator foam blocks from the NISSAN Squeak and Rattle Kit (J-43980) to repair the noise.

TRUNK

Trunk noises are often caused by a loose jack or loose items put into the trunk by the owner. In addition look for:

1. Trunk lid bumpers out of adjustment
2. Trunk lid striker out of adjustment
3. The trunk lid torsion bars knocking together
4. A loose license plate or bracket

SQUEAK AND RATTLE TROUBLE DIAGNOSES

< SERVICE INFORMATION >
Most of these incidents can be repaired by adjusting, securing or insulating the item(s) or component(s) causing the noise.

SUNROOF/HEADLINING

Noises in the sunroof/headlining area can often be traced to one of the following:

1. Sunroof lid, rail, linkage or seals making a rattle or light knocking noise
2. Sun visor shaft shaking in the holder
3. Front or rear windshield touching headliner and squeaking

Again, pressing on the components to stop the noise while duplicating the conditions can isolate most of these incidents. Repairs usually consist of insulating with felt cloth tape.
OVERHEAD CONSOLE (FRONT AND REAR)
Overhead console noises are often caused by the console panel clips not being engaged correctly. Most of these incidents are repaired by pushing up on the console at the clip locations until the clips engage. In addition look for:

1. Loose harness or harness connectors.
2. Front console map/reading lamp lense loose.
3. Loose screws at console attachment points.

SEATS

When isolating seat noise it's important to note the position the seat is in and the load placed on the seat when the noise is present. These conditions should be duplicated when verifying and isolating the cause of the noise.
Cause of seat noise include:

1. Headrest rods and holder
2. A squeak between the seat pad cushion and frame
3. The rear seatback lock and bracket

These noises can be isolated by moving or pressing on the suspected components while duplicating the conditions under which the noise occurs. Most of these incidents can be repaired by repositioning the component or applying urethane tape to the contact area.

UNDERHOOD

Some interior noise may be caused by components under the hood or on the engine wall. The noise is then transmitted into the passenger compartment.
Causes of transmitted underhood noise include:

1. Any component mounted to the engine wall
2. Components that pass through the engine wall
3. Engine wall mounts and connectors
4. Loose radiator mounting pins
5. Hood bumpers out of adjustment
6. Hood striker out of adjustment

These noises can be difficult to isolate since they cannot be reached from the interior of the vehicle. The best method is to secure, move or insulate one component at a time and test drive the vehicle. Also, engine RPM or load can be changed to isolate the noise. Repairs can usually be made by moving, adjusting, securing, or insulating the component causing the noise.

Dear Customer:
We are concerned about your satisfaction with your vehicle. Repairing a squeak or rattle sometimes can be very difficult. To help us fix your vehicle right the first time, please take a moment to note the area of the vehicle where the squeak or rattle occurs and under what conditions. You may be asked to take a test drive with a service advisor or technician to ensure we confirm the noise you are hearing.

SQUEAK \& RATTLE DIAGNOSTIC WORKSHEET

I. WHERE DOES THE NOISE COME FROM? (circle the area of the vehicle)

The illustrations are for reference only, and may not reflect the actual configuration of your vehicle.

Continue to page 2 of the worksheet and briefly describe the location of the noise or rattle. In addition, please indicate the conditions which are present when the noise occurs.

SQUEAK \& RATTLE DIAGNOSTIC WORKSHEET - page 2
Briefly describe the location where the noise occurs:
\qquad
II. WHEN DOES IT OCCUR? (please check the boxes that apply)

\square Anytime	\square After sitting out in the rain
\square 1st time in the morning	\square When it is raining or wet
\square Only when it is cold outside	\square Dry or dusty conditions
\square Only when it is hot outside	\square Other:
III. WHEN DRIVING:	IV. WHAT TYPE OF NOISE
\square Through driveways	\square Squeak (like tennis shoes on a clean floor)
\square Over rough roads	\square Creak (like walking on an old wooden floor)
\square Over speed bumps	\square Rattle (like shaking a baby rattle)
\square Only about __ mph	\square Tick (like a clock second hand)
\square On acceleration	\square Thump (heavy muffled knock noise)
\square Coming to a stop	\square Buzz (like a bumble bee)
\square On turns: left, right or either (circle)	\square With passengers or cargo
\square Other: \ldots After driving ___ miles or ___minutes	

TO BE COMPLETED BY DEALERSHIP PERSONNEL
Test Drive Notes:

	YES	NO	Initials of person performing
Vehicle test driven with customer			\square
- Noise verified on test drive	\square	\square	\square
- Noise source located and repaired	\square	\square	\square
- Follow up test drive performed to confirm repair	\square	\square	\square

VIN: \qquad Customer Name \qquad
W.O.\# \qquad Date: \qquad
This form must be attached to Work Order

Fitting Adjustment

1. Hood hinge
2. Hood lock assembly
3. Headlamp
4. Front grille
D. $6.0-10.0 \mathrm{~mm}(0.236-0.394 \mathrm{in})$
E. $\quad 0.0-4.0 \mathrm{~mm}(0.000-0.157 \mathrm{in})$
5. Hood assembly
6. Front fender
G. $5.1-7.1 \mathrm{~mm}(0.201-0.280 \mathrm{in})$

CLEARANCE AND SURFACE HEIGHT ADJUSTMENT

HOOD

< SERVICE INFORMATION >

1. Remove the hood lock assembly and adjust the height by rotating the bumper rubber until the hood clearance of hood and fender becomes $1 \mathrm{~mm}(0.04 \mathrm{in})$ lower than fitting standard dimension.
2. Temporarily tighten the hood lock, and position it by engaging it with the hood striker. Check the lock and striker for looseness, and tighten the lock bolt to the specified torque.
3. Adjust the clearance and surface height of hood and fender according to the fitting standard dimension by rotating right and left bumper rubbers.
CAUTION:
Adjust right/left gap between hood and each part to the following specification.

Hood and headlamp (B-B) : Less than 2.0 mm

HOOD LOCK ADJUSTMENT

1. Move the hood lock to the left or right so that striker center is vertically aligned with hood lock center (when viewed from vehicle front).
2. Make sure the secondary latch is properly engaged with the secondary striker with hood's own weight by dropping it from approx. $200 \mathrm{~mm}(7.87 \mathrm{in})$ height or by pressing it lightly approx. $3 \mathrm{~kg}(29 \mathrm{~N}, 7 \mathrm{lb})$.
CAUTION:
Do not drop the hood from 300 mm (11.81 in) height or higher.
3. After adjusting hood lock, tighten the lock bolts to the specified torque.

Removal and Installation of Hood Assembly

1. Hood assembly
2. Hood hinge
3. Hood front sealing rubber
4. Hood insulator
5. Support the hood by the striker with a suitable tool to prevent it from falling.
6. Remove the hinge to hood nuts to remove the hood assembly.

CAUTION:

Operate with two workers, because of its heavy weight.
3. Installation is in the reverse order of removal.

Removal and Installation of Hood Lock Control

1. Hood lock assembly
2. Hood lock cable
3. Radiator core support side
4. Hood ledge reinforce upper
5. Hood ledge upper
6. Clip

REMOVAL

1. Remove the front grille. Refer to El-17, "Removal and Installation".
2. Remove the front fender protector (LH). Refer to El-21, "Removal and Installation".
3. Disconnect the hood lock cable from the hood lock, and unclip it from the radiator core support upper and hoodledge.
4. Remove the bolt and the hood opener.
5. Remove the grommet on the dash lower panel, and pull the hood lock cable toward the passenger room.
CAUTION:
While pulling, be careful not to damage the outside of the hood lock cable.

6. Pull the hood lock cable through the dash lower panel hole to the engine room.

Be careful not to bend the cable too much, keeping the radius 100 mm (3.94 in) or more.
2. Make sure the cable is not offset from the positioning grommet, and push the grommet into the panel hole securely.
3. Apply the sealant around the grommet at * mark.

4. Install the cable securely to the lock.
5. After installing, check the hood lock adjustment and hood opener operation. Refer to BL-12, "Fitting Adjustment".

Hood Lock Control Inspection

CAUTION:

If the hood lock cable is bent or deformed, replace it.

1. Make sure the secondary latch is properly engaged with the secondary striker with hood's own weight by dropping it from approx. 200 mm (7.87 in) height.
2. While operating the hood opener, carefully make sure the front end of the hood is raised by approx. 20 mm (0.79 in). Also make sure the hood opener returns to the original position.

3. Check the hood lock lubrication condition. If necessary, apply "body grease" to the points shown in the figure.

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >

POWER DOOR LOCK SYSTEM

Component Parts and Harness Connector Location

1. Sliding door switch

LH B46
RH B135
4. Front door lock assembly LH D14 (key cylinder switch)
7. Back door latch (door ajar switch) D511
(with power back door)
Back door switch D512
(without power back door)
2. BCM M18, M19, M20
(view with instrument panel removed)
5. Main power window and door lock/unlock switch LH D7, D8
Power window and door lock/unlock switch RH D105
8. Key switch M27
3. Front pillar LH
6. Front door switch

LH B8
RH B108
9. Sliding door lock actuator LH D205
RH D305

System Description

WITHOUT AUTOMATIC SLIDING DOOR SYSTEM AND AUTOMATIC BACK DOOR SYSTEM

Power is supplied at all times

- through 50A fusible link (letter \mathbf{j}, located in the fuse and fusible link box)
- to BCM terminal 70 and
- through 15A fuse [No. 3, located in the fuse block (J/B)]
- to BCM terminal 57
- through 15A fuse [No. 19, located in the fuse block (J/B)]
- to key switch terminal 1.

With ignition key inserted, power is supplied

- through key switch terminal 2
- to BCM terminal 37.

Ground is supplied to terminal 67 of BCM through body grounds M57, M61 and M79.
When the door is locked or unlocked with main power window and door lock/unlock switch, ground is supplied

- to CPU of main power window and door lock/unlock switch
- through main power window and door lock/unlock switch terminal 15
- through grounds M57, M61 and M79.

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >
Then main power window and door lock/unlock switch operation signal is supplied

- to BCM terminal 22
- through main power window and door lock/unlock switch terminal 12.

When the door is locked or unlocked with power window and door lock/unlock switch RH, ground is supplied

- to CPU of power window and door lock/unlock switch RH
- through power window and door lock/unlock switch RH terminal 11
- through grounds M57, M61 and M79.

Then power window and door lock/unlock switch RH operation signal is supplied

- to BCM terminal 22
- through power window and door lock/unlock switch RH terminal 16.

When the door is locked with front door lock assembly LH (key cylinder switch), ground is supplied

- to main power window and door lock/unlock switch terminal 6
- through front door lock assembly LH (key cylinder switch) terminals 1 and 5
- through grounds M57, M61 and M79.

Then front door lock assembly LH (key cylinder switch) operation signal is supplied

- to BCM terminal 22
- through main power window and door lock/unlock switch terminal 12.

When the door is unlocked with front door lock assembly LH (key cylinder switch), ground is supplied

- to main power window and door lock/unlock switch terminal 7
- through front door lock assembly LH (key cylinder switch) terminals 6 and 5
- through grounds M57, M61 and M79.

Then front door lock assembly LH (key cylinder switch) operation signal is supplied

- to BCM terminal 22
- through main power window and door lock/unlock switch terminal 12.

BCM is connected to main power window and door lock/unlock switch and power window and door lock/unlock switch RH through the power window serial link.
When the front door switch LH is ON (door is open), ground is supplied

- to BCM terminal 47
- through front door switch LH terminal 1
- through front door switch LH case ground.

When the front door switch RH is ON (door is open), ground is supplied

- to BCM terminal 12
- through front door switch RH terminal 1
- through front door switch RH case ground.

When the sliding door switch LH is ON (door is open), ground is supplied

- to BCM terminal 48
- through sliding door switch LH terminal 1
- through sliding door switch LH case ground.

When the sliding door switch RH is ON (door is open), ground is supplied

- to BCM terminal 13
- through sliding door switch RH terminal 1
- through sliding door switch RH case ground.

When the back door switch is ON (door is open), ground is supplied

- to BCM terminal 43
- through back door switch terminal 1
- through back door switch terminal 3
- through grounds D403 and D404.

WITH AUTOMATIC SLIDING DOOR SYSTEM AND AUTOMATIC BACK DOOR SYSTEM

Power is supplied at all times

- through 50A fusible link (letter \mathbf{j}, located in the fuse and fusible link box)
- to BCM terminal 70 and
- through 15A fuse [No. 3, located in the fuse block (J/B)]
- to BCM terminal 57
- through 15A fuse [No. 19, located in the fuse block (J/B)]
- to key switch terminal 1.

With ignition key inserted, power is supplied

- through key switch terminal 2
- to BCM terminal 37.

Ground is supplied to terminal 67 of BCM through body grounds M57, M61 and M79.
When the door is locked or unlocked with main power window and door lock/unlock switch, ground is supplied - to CPU of main power window and door lock/unlock switch

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >

- through main power window and door lock/unlock switch terminal 17
- through grounds M57, M61 and M79.

Then main power window and door lock/unlock switch operation signal is supplied

- to BCM terminal 22
- through main power window and door lock/unlock switch terminal 14.

When the door is locked or unlocked with power window and door lock/unlock switch RH, ground is supplied

- to CPU of power window and door lock/unlock switch RH
- through power window and door lock/unlock switch RH terminal 11
- through grounds M57, M61 and M79.

Then power window and door lock/unlock switch RH operation signal is supplied

- to BCM terminal 22
- through power window and door lock/unlock switch RH terminal 16.

When the door is locked with front door lock assembly LH (key cylinder switch), ground is supplied

- to main power window and door lock/unlock switch terminal 4
- through front door lock assembly LH (key cylinder switch) terminals 1 and 5
- through grounds M57, M61 and M79.

Then the front door lock assembly LH (key cylinder switch) operation signal is supplied

- to BCM terminal 22
- through main power window and door lock/unlock switch terminal 14.

When the door is unlocked with front door lock assembly LH (key cylinder switch), ground is supplied

- to main power window and door lock/unlock switch terminal 6
- through front door lock assembly LH (key cylinder switch) terminals 6 and 5
- through grounds M57, M61 and M79.

Then front door lock assembly LH (key cylinder switch) operation signal is supplied

- to BCM terminal 22
- through main power window and door lock/unlock switch terminal 14.

BCM is connected to main power window and door lock/unlock switch and power window and door lock/unlock switch RH through a serial link.
When the front door switch LH is ON (door is open), ground is supplied

- to BCM terminal 47
- through front door switch LH terminal 1
- through front door switch LH case ground.

When the front door switch RH is ON (door is open), ground is supplied

- to BCM terminal 12
- through front door switch RH terminal 1
- through front door switch RH case ground.

When the sliding door switch LH is ON (door is open), ground is supplied

- to BCM terminal 48
- through sliding door switch LH terminal 1
- through sliding door switch LH case ground.

When the sliding door switch RH is ON (door is open), ground is supplied

- to BCM terminal 13
- through sliding door switch RH terminal 1
- through sliding door switch RH case ground.

When the back door switch (built into back door latch) is ON (door is open), ground is supplied

- to BCM terminal 43
- through back door latch (door ajar switch) assembly terminal 7
- through back door latch assembly terminal 8
- through grounds D403 and D404.

OUTLINE

Functions available by operating the door lock and unlock switches on driver's door and passenger's door

- Interlocked with the locking operation of door lock and unlock switch, door lock actuators of all doors are locked.
- Interlocked with the unlocking operation of door lock and unlock switch, door lock actuators of all doors are unlocked.

Functions available by operating the front door lock assembly LH (key cylinder switch)

- Interlocked with the locking operation of door key cylinder, door lock actuators of all doors are locked.
- When door key cylinder is unlocked, front door lock assembly LH (actuator) is unlocked.

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >

- When door key cylinder is unlocked for the second time within 5 seconds after the first operation, door lock actuators on all doors are unlocked.
Key reminder door system
When door lock and unlock switch is operated to lock doors with ignition key in key cylinder and any door open, all door lock actuators are locked and then unlocked.
Schematic

WITHOUT AUTOMATIC SLIDING DOOR SYSTEM AND AUTOMATIC BACK DOOR SYSTEM

POWER DOOR LOCK SYSTEM

WIWA1811E

BL-D/LOCK-02

WIWA1812E

WIWA1813E

WIWA1816E

WIWA1817E

BL-D/LOCK-08

BL-D/LOCK-10

WIWA1821E

Terminal and Reference Value for BCM

Refer to BCS-11, "Terminal and Reference Value for BCM".

Work Flow

1. Check the symptom and customer's requests.

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >
2. Understand the outline of system. Refer to BL-16, "System Description".
3. According to the trouble diagnosis chart, repair or replace the cause of the malfunction. Refer to BL-35. "Trouble Diagnosis Symptom Chart".
4. Does power door lock system operate normally? OK: GO TO 5, NG: GO TO 3.
5. Inspection End.

CONSULT-III Function (BCM)

CONSULT-III can display each diagnostic item using the diagnostic test modes shown following.

BCM diagnostic test item	Diagnostic mode	
Inspection by part	WORK SUPPORT	Supports inspections and adjustments. Commands are transmitted to the BCM for setting the status suitable for required operation, input/output sig- nals are received from the BCM and received date is displayed.
	DATA MONITOR	Displays BCM input/output data in real time.
	ACTIVE TEST	Operation of electrical loads can be checked by sending drive signal to them.
	SELF-DIAG RESULTS	Displays BCM self-diagnosis results.
	CAN DIAG SUPPORT MNTR	The result of transmit/receive diagnosis of CAN communication can be read.
	ECU PART NUMBER	BCM part number can be read.
	CONFIGURATION	Performs BCM configuration read/write functions.

DATA MONITOR

Monitor item "OPERATION"		Content
KEY ON SW	"ON/OFF"	Indicates [ON/OFF] condition of key switch.
CDL LOCK SW	"ON/OFF"	Indicates [ON/OFF] condition of lock signal from lock/unlock switch LH and RH.
CDL UNLOCK SW	"ON/OFF"	Indicates [ON/OFF] condition of unlock signal from lock/unlock switch LH and RH.
KEY CYL LK-SW	"ON/OFF"	Indicates [ON/OFF] condition of lock signal from key cylinder.
KEY CYL UN-SW	"ON/OFF"	Indicates [ON/OFF] condition of unlock signal from key cylinder.
IGN ON SW	"ON/OFF"	Indicates [ON/OFF] condition of ignition switch.
DOOR SW-DR	"ON/OFF"	Indicates [ON/OFF] condition of front door switch LH.
DOOR SW-AS	"ON/OFF"	Indicates [ON/OFF] condition of front door switch RH.
DOOR SW-RR	"ON/OFF"	Indicates [ON/OFF] condition of sliding door switch RH.
DOOR SW-RL	"ON/OFF"	Indicates [ON/OFF] condition of sliding door switch LH.
BACK DOOR SW	"ON/OFF"	Indicates [ON/OFF] condition of back door switch.

ACTIVE TEST

Test item	Content
ALL LOCK/UNLOCK	This test is able to check all door lock actuators lock operation. These actuators lock when "ON" on CONSULT-III screen is touched.
DR UNLOCK	This test is able to check front door lock assembly LH (actuator) unlock operation.These actu- ators lock when "ON" on CONSULT-III screen is touched.
OTHER UNLOCK	This test is able to check door lock actuators [except front door lock assembly LH (actuator)] unlock operation.These actuators unlock when "ON" on CONSULT-III screen is touched.

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >
Trouble Diagnosis Symptom Chart

Symptom	Repair order	Refer to page
Key reminder door function does not operate properly.	1. Door switch check	BL-35
	2. Key switch (Insert) check	BL-39
	3. Replace BCM.	BCS-17
Power door lock does not operate with door lock and unlock switch on main power window and door lock/unlock switch or power window and door lock/unlock switch RH.	1. Door lock/unlock switch check	BL-40
Front door lock assembly LH (actuator) does not operate.	1. Front door lock assembly LH (actuator) check	BL-42
Specific door lock actuator does not operate.	1. Door lock actuator check (Front LH)	BL-42
	2. Door lock actuator check (Front RH)	BL-43
	3. Door lock actuator check (Sliding door)	BL-44
	4. Back door lock actuator check (Without automatic back door system)	BL-44
	5. Back door lock actuator check (With automatic back door system)	BL-151
Power door lock does not operate with front door lock assembly LH (key cylinder switch) operation.	1. Front door lock assembly LH (key cylinder switch) check	BL-45
	2. Replace BCM.	BCS-17
Power door lock does not operate.	1. BCM power supply and ground circuit check	BL-35
	2. Door lock/unlock switch check	BL-40
	3. Replace BCM.	BCS-17

Refer to BCS-15, "BCM Power Supply and Ground Circuit Inspection".

Door Switch Check (Without Automatic Back Door System)

1. CHECK DOOR SWITCHES INPUT SIGNAL

With CONSULT-III
Check door switches ("DOOR SW-DR", "DOOR SW-AS", "DOOR SW-RL", "DOOR SW-RR", "BACK DOOR SW") in DATA MONITOR mode with CONSULT-III. Refer to BL-34, "CONSULT-III Function (BCM)".

- When doors are open:

DOOR SW-DR	: ON
DOOR SW-AS	: ON
DOOR SW-RR	: ON
DOOR SW-RL	: ON
BACK DOOR SW	: ON

- When doors are closed:

DOOR SW-DR	: OFF
DOOR SW-AS	: OFF
DOOR SW-RR	: OFF
DOOR SW-RL	: OFF
BACK DOOR SW	: OFF

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >
(8) Without CONSULT-III

Check voltage between BCM connector M18 or M19 terminals 12, 13, 43, 47, 48 and ground.

Connec- tor	Item	Terminals		Condition	Voltage (V) (Approx.)
	Back door switch	43			
	Front door switch LH	47	Ground	Open \downarrow Closed	Battery voltage

OK or NG
OK >> Door switch circuit is OK.
NG >> GO TO 2.
2. CHECK DOOR SWITCH CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect door switch and BCM.
3. Check continuity between door switch connector (B) B8 (Front LH), B108 (Front RH), B46 (Sliding LH), B135 (Sliding RH) or D512 (Back) terminal 1 and BCM connector (A) M18, M19 terminals 12, 13, 43, 47 and 48.

$1-12$: Continuity should exist.
$1-13$: Continuity should exist.
$1-43$: Continuity should exist.
$1-47$: Continuity should exist.
$1-48$: Continuity should exist.

4. Check continuity between door switch connector (B) B8 (Front LH), B108 (Front RH), B46 (Sliding LH), B135 (Sliding RH) or D512 (Back) terminal 1 and ground.

1 - Ground : Continuity should not exist.
OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness.
3. CHECK DOOR SWITCHES

FRONT AND SLIDING DOORS

Check continuity between front or sliding door switch terminal 1 and exposed metal of switch while pressing and releasing switch.

Door switch is released : Continuity should exist.
Door switch is pushed : Continuity should not exist.

BACK DOOR

Check continuity between back door switch terminals 1 and 3 while pressing and releasing switch.

Door switch is released : Continuity should exist.
Door switch is pushed : Continuity should not exist.
OK or NG
OK >> (Front and sliding doors) Switch circuit is OK.
OK >> (Back door) GO TO 4.
NG >> Replace door switch.

4.CHECK BACK DOOR SWITCH GROUND

Check continuity between back door switch connector D512 terminal 3 and ground.

$$
3 \text { - Ground } \quad: \text { Continuity should exist. }
$$

OK or NG
OK >> Back door switch circuit is OK.
NG >> Repair or replace harness.

Door Switch Check (With Automatic Back Door System)

1. CHECK DOOR SWITCHES INPUT SIGNAL

With CONSULT-III
Check door switches ("DOOR SW-DR", "DOOR SW-AS", "DOOR SW-RL", "DOOR SW-RR", "BACK DOOR SW") in DATA MONITOR mode with CONSULT-III. Refer to BL-34, "CONSULT-III Function (BCM)".

- When doors are open:

DOOR SW-DR	: ON
DOOR SW-AS	: ON
DOOR SW-RR	: ON
DOOR SW-RL	: ON
BACK DOOR SW	: ON

- When doors are closed:

DOOR SW-DR	: OFF
DOOR SW-AS	: OFF
DOOR SW-RR	: OFF
DOOR SW-RL	: OFF
BACK DOOR SW	: OFF

(1.) Without CONSULT-III

Check voltage between BCM connector M18 or M19 terminals 12, 13, 43, 47, 48 and ground.

POWER DOOR LOCK SYSTEM
< SERVICE INFORMATION >

Connector	Item	Terminals		Condition	Voltage (V) (Approx.)
		(+)	(-)		
M19	Back door latch (door ajar switch)	43	Ground	Open \downarrow Closed	0\downarrowBattery voltage
	Front door switch LH	47			
	Sliding door switch LH	48			
M18	Front door switch RH	12			
	Sliding door switch RH	13			

OK or NG
OK >> Door switch is OK.
NG >> GO TO 2.
2. CHECK DOOR SWITCH CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect door switch and BCM.
3. Check continuity between door switch connector (B) B8 (Front LH), B108 (Front RH), B46 (Sliding LH), B135 (Sliding RH) terminal 1 or back door latch (door ajar switch) connector (C) D511 terminal 7 and BCM connector (A) M18, M19 terminals 12, 13, 43, 47 and 48.

$1-47$: Continuity should exist.
$1-12$: Continuity should exist.
$1-48$: Continuity should exist.
$1-13$: Continuity should exist.
$7-43$: Continuity should exist.

4. Check continuity between door switch connector (B) B8 (Front LH), B108 (Front RH), B46 (Sliding LH), B135 (Sliding RH) terminal 1 or back door latch (door ajar switch) connector (C) D511 terminal 7 and ground.

$1-$ Ground	: Continuity should not exist.

OK or NG

OK >> GO TO 3.
NG >> Repair or replace harness.

3. CHECK DOOR SWITCHES

FRONT AND SLIDING DOORS

POWER DOOR LOCK SYSTEM

Check continuity between front or sliding door switch terminal 1 and exposed metal of switch while pressing and releasing switch.

Door switch is released : Continuity should exist.
Door switch is pushed : Continuity should not exist.

BACK DOOR

Check continuity between back door latch (door ajar switch) terminals 7 and 8 while pressing (closing back door) and releasing (opening back door) switch.

When back door is open : Continuity should exist.
When back door is closed : Continuity should not exist.

OK or NG

OK >> (Front and sliding doors) Switch circuit is OK.
OK >> (Back door) GO TO 4.
NG >> Replace door switch.

4. CHECK BACK DOOR SWITCH GROUND

Check continuity between back door latch (door ajar switch) connector D511 terminal 8 and ground.

8 - Ground

: Continuity should exist.
OK or NG
OK >> Back door switch circuit is OK.
NG >> Repair or replace harness.

Key Switch (Insert) Check
1.CHECK KEY SWITCH INPUT SIGNAL

With CONSULT-III

Check key switch "KEY ON SW" in DATA MONITOR mode with CONSULT-III. Refer to BL-34, "CONSULT-III Function (BCM)".

- When key is inserted to ignition key cylinder:

> KEY ON SW : ON

- When key is removed from ignition key cylinder:

KEY ON SW : OFF
(18) Without CONSULT-III

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >
Check voltage between BCM connector M18 terminal 37 and ground.

Connec- tor	Terminal		Condition	Voltage (V) (Approx.)
	$(+)$	$(-)$		Battery voltage
M18	37	Ground	Key is inserted.	0
			0	

OK or NG
OK >> Key switch (insert) circuit is OK.

2. CHECK KEY SWITCH (INSERT)

1. Turn ignition switch OFF.
2. Disconnect key switch.
3. Check continuity between key switch terminals 1,2 .

Terminals	Condition	Continuity
$1-2$	Key is inserted.	Yes
	Key is removed.	No

OK or NG
OK >> Repair or replace harness.
NG >> Replace key switch. Refer to PS-9.

Door Lock/Unlock Switch Check

1.CHECK DOOR LOCK/UNLOCK SWITCH INPUT SIGNAL

With CONSULT-III
Check door lock/unlock switch ("CDL LOCK SW", "CDL UNLOCK SW") in DATA MONITOR mode in CON-SULT-III. Refer to BL-34, "CONSULT-III Function (BCM)".

- When door lock/unlock switch is turned to LOCK:

CDL LOCK SW : ON

- When door lock/unlock switch is turned to UNLOCK:

CDL UNLOCK SW : ON

Without CONSULT-III

1. Remove key from ignition key cylinder.
2. Check the signal between BCM connector M18 terminal 22 and ground with oscilloscope when door lock/ unlock switch is turned to LOCK or UNLOCK.
3. Make sure the signals which are shown in the figure below can be detected during 10 seconds just after the door lock/unlock switch is turned to LOCK or UNLOCK.

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >

Connector	Terminal		Voltage (V) (Approx.)
	$(+)$	$(-)$	
M18	22	Ground	 PIIA1297E

OK or NG
OK >> Door lock and unlock switch circuit is OK.
NG >> GO TO 2.
2. CHECK BCM OUTPUT SIGNAL

Check ("POWER WINDOW DOWN") in ACTIVE TEST mode for "MULTI REMOTE ENT" with CONSULT-III. Refer to BL-56, "CONSULT-III Application Item".

When "ACTIVE TEST" is performed, are the front windows lowered?

YES or NO

YES >> GOTO 3.
NO >> Replace BCM. Refer to BCS-17, "Removal and Installation of BCM".
3. CHECK DOOR LOCK/UNLOCK SWITCH GROUND HARNESS

1. Turn ignition switch OFF.
2. Disconnect main power window and door lock/unlock switch or power window and door lock/unlock switch RH.
3. Check continuity between main power window and door lock/ unlock switch connector D7 terminal 15 (without automatic back door system) or D8 terminal 17 (with automatic back door system) and ground.

$15-$ Ground	: Continuity should exist.
$17-$ Ground	: Continuity should exist.

4. Check continuity between power window and door lock/unlock switch RH connector D105 terminal 11 and ground.

11 - Ground : Continuity should exist.
OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness.

4. CHECK POWER WINDOW SERIAL LINK CIRCUIT

1. Disconnect BCM.
2. Check continuity between BCM connector M18 terminal 22 and main power window and door lock/unlock switch connector D7 terminal 12 (without automatic back door system) or terminal 14 (with automatic back door system).

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >

```
22-12
    :Continuity should exist.
22-14
: Continuity should exist.
```


3. Check continuity between BCM connector M18 terminal 22 and power window and door lock/unlock switch RH connector D105 terminal 16.

22-16 : Continuity should exist.
OK or NG
OK >> Replace main power window and door lock/unlock switch or power window and door lock/unlock switch RH. Refer to EI-29, "Removal and Installation".
NG >> Repair or replace harness.

Front Door Lock Assembly LH (Actuator) Check

1. CHECK FRONT DOOR LOCK ASSEMBLY LH (ACTUATOR) HARNESS

1. Turn ignition switch OFF.
2. Disconnect BCM and front door lock assembly LH (actuator).
3. Check continuity between BCM connector M20 terminals 59, 65 and front door lock assembly LH (actuator) connector D14 terminals 2,3 .

Connector	Terminals	Connector	Terminals	Continuity
M20	59	D14	2	Yes
	65		3	Yes

4. Check continuity between BCM connector M20 terminals 59, 65 and body ground.

Connector	Terminals		Continuity
M20	59	Ground	No
	65		No

OK or NG

OK >> GOTO 2.
NG >> Repair or replace harness.
2. CHECK FRONT DOOR LOCK ASSEMBLY LH (ACTUATOR) SIGNAL

1. Reconnect BCM.

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >
2. Check voltage between BCM connector M20 terminals 59, 65
and ground.

$\begin{array}{c}\text { Con- } \\ \text { nec- } \\ \text { tor }\end{array}$	Terminals		Condition	$\begin{array}{c}\text { Voltage (V) } \\ \text { (Approx.) }\end{array}$
M20	59	$(-)$		$\begin{array}{l}\text { Driver door lock/unlock } \\ \text { Mritch is turned to UNLOCK }\end{array}$

for 300 \mathrm{~ms}\end{array}\right] .\)| Ground |
| :--- |

OK or NG

OK >> Replace front door lock assembly LH (actuator). Refer to BL-169, "Removal and Installation". NG >> Replace BCM. Refer to BCS-17. "Removal and Installation of BCM".

Front Door Lock Actuator RH Check

1. CHECK DOOR LOCK ACTUATOR HARNESS

1. Turn ignition switch OFF.
2. Disconnect BCM and front door lock actuator RH.
3. Check continuity between BCM connector M20 terminals 65, 66 and front door lock actuator RH connector D114 terminals 2, 3.

Connector	Terminals	Connector	Terminals	Continuity
M20	65	D114	3	Yes
	66		2	Yes

4. Check continuity between BCM connector M20 terminals 65, 66 and body ground.

Connector	Terminals		Continuity
M20	65	Ground	No
	66		No

OK or NG

OK >> GO TO 2.
NG >> Repair or replace harness.
2. CHECK DOOR LOCK ACTUATOR SIGNAL

1. Reconnect BCM.
2. Check voltage between BCM connector M20 terminals 65, 66 and ground.

Connector	Terminals		Condition	$\begin{array}{c}\text { Voltage (V) } \\ \text { (Approx.) }\end{array}$
	$(+)$	$(-)$		$\begin{array}{c}\text { Door lock/unlock switch } \\ \text { is turned to LOCK }\end{array}$

for 300 \mathrm{~ms}\end{array}\right]\).

OK or NG
OK >> Replace front door lock actuator RH. Refer to BL-169, "Removal and Installation".

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >
NG >> Replace BCM. Refer to BCS-17, "Removal and Installation of BCM".

Door Lock Actuator Check (Sliding Door)

1. CHECK DOOR LOCK ACTUATOR HARNESS
2. Turn ignition switch OFF.
3. Disconnect $B C M$ and each door lock actuator.
4. Check continuity between BCM connector (A) M20 terminals 65, 66 and sliding door lock actuator connector (B) D205 (LH) or D305 (RH) terminals 2, 4.

Connector	Terminals	Connector	Terminals	Continuity
M20	65	D205 or	4	Yes
	66	D305	2	Yes

4. Check continuity between BCM connector (A) M20 terminals 65, 66 and body ground.

Connector	Terminals		Continuity
M20	65	Ground	No
	66		No

OK or NG
OK >> GO TO 2.
NG >> Repair or replace harness.
2. CHECK DOOR LOCK ACTUATOR SIGNAL

1. Reconnect BCM.
2. Check voltage between BCM connector M20 terminals 65, 66 and ground.

Connector	Terminals		Condition	Voltage (V) (Approx.)
	(+)	(-)		
M19	65	Ground	Door lock/unlock switch is turned to LOCK	$0 \rightarrow$ Battery voltage for 300 ms
	66		Door lock/unlock switch is turned to UNLOCK	$0 \rightarrow$ Battery voltage for 300 ms

OK or NG
OK >> Replace sliding door lock actuator. Refer to BL-172.
NG >> Replace BCM. Refer to BCS-17, "Removal and Installation of BCM".
Back Door Lock Actuator Check (Without Automatic Back Door)

1. CHECK BACK DOOR LOCK ACTUATOR harness

1. Turn ignition switch OFF.
2. Disconnect BCM and back door lock actuator.

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >
3. Check continuity between BCM connector (A) M20 terminals 65, 66 and back door lock actuator connector (B) D513 terminals 2, 4.

Connector	Terminals	Connector	Terminals	Continuity
M20	65	D513	2	Yes
	66		4	Yes

4. Check continuity between BCM connector (A) M19 terminals 50, 51 and body ground.

Connector	Terminals		Continuity
M20	65	Ground	No
	66		No

OK or NG

OK >> GO TO 2.
NG >> Repair or replace harness.
2. CHECK DOOR LOCK ACTUATOR SIGNAL

1. Reconnect BCM.
2. Check voltage between BCM connector M20 terminals 65, 66 and ground.

Connector	Terminals		Condition	Voltage (V) (Approx.)
	(+)	(-)		
M20	65	Ground	Door lock/unlock switch is turned to LOCK	$0 \rightarrow$ Battery voltage for 300 ms
	66		Door lock/unlock switch is turned to UNLOCK	$0 \rightarrow$ Battery voltage for 300 ms

BCM connector

LIIA1048E

OK or NG

OK >> Replace back door lock actuator. Refer to BL-177, "Back Door Latch".
NG >> Replace BCM. Refer to BCS-17, "Removal and Installation of BCM".

Front Door Lock Assembly LH (Key Cylinder Switch) Check

1. CHECK DOor kEY CYLINDER SWITCH LH

(®)With CONSULT-III
Check front door lock assembly LH (key cylinder switch) ("KEY CYL LK-SW") and ("KEY CYL UN-SW) in DATA MONITOR mode in CONSULT-III. Refer to BL-34, "CONSULT-III Function (BCM)".

- When key inserted in front key cylinder is turned to LOCK:

KEY CYL LK-SW : ON

- When key inserted in front key cylinder is turned to UNLOCK:

KEY CYL UN-SW : ON

8Without CONSULT-III

Check voltage between main power window and door lock/unlock switch connector D7 terminals 6, 7 (without automatic sliding door system) or terminals 4, 6 (with automatic sliding door system) and ground.

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >
Without Automatic Sliding Door System

Connector	Terminals		Condition	Voltage (V) (Approx.)
	(+)	(-)		
D7	6	Ground	Neutral/Unlock	5
			Lock	0
			Neutral/Lock	5
			Unlock	0

With Automatic Sliding Door System

Connector	Terminals		Condition	Voltage (V) (Approx.)
	$(+)$	(-)		
D7	4	Ground	Neutral/Unlock	5
			Lock	0
	6		Neutral/Lock	5
			Unlock	0

OK or NG

OK >> Front door lock assembly LH (key cylinder switch) signal is OK.
NG >> GO TO 2.
2. CHECK DOOR KEY CYLINDER SWITCH LH GROUND HARNESS

1. Turn ignition switch OFF.
2. Disconnect front door lock assembly LH (key cylinder switch).
3. Check continuity between front door lock assembly LH (key cylinder switch) connector D14 terminal 5 and body ground.

Connector	Terminals	Continuity
D14	$5-$ Ground	Yes

OK or NG

OK >> GO TO 3.
NG >> Repair or replace harness.
3. CHECK DOOR KEY CYLINDER SWITCH LH

Check continuity between front door lock assembly LH (key cylinder switch) terminals.

Terminals	Condition	Continuity
$1-5$	Key is turned to UNLOCK or neutral.	No
	Key is turned to LOCK.	Yes
$5-6$	Key is turned to LOCK or neutral.	No
	Key is turned to UNLOCK.	Yes

Front door lock assembly LH (key cylinder switch)

POWER DOOR LOCK SYSTEM

< SERVICE INFORMATION >
OK >> GO TO 4.
NG >> Replace front door lock assembly LH (key cylinder switch). Refer to BL-169.
4. CHECK DOOR KEY CYLINDER HARNESS

Check continuity between main power window and door lock/unlock switch connector (A) D7 terminals 6, 7 (without automatic sliding door system) or terminals 4,6 (with automatic sliding door system) and front door lock assembly LH (key cylinder switch) connector (B) D14 terminals 1, 6 and body ground.

Without Automatic Sliding Door System

Connector	Terminals	Connector	Terminals	Continuity
A: Main power win- dow and door lock	6	B: Front door lock	7	1
	LH (key cylinder switch)	6	Yes	
	6	Ground		Yes
	7	Ground		No

With Automatic Sliding Door System

Connector	Terminals	Connector	Terminals	Continuity
A: Main power window and door lock/ unlock switch	4	B: Front door lock assembly LH (key cylinder switch)	1	Yes
	6		6	Yes
	4	Ground		No
	6	Ground		No

OK or NG

OK >> Replace main power window and door lock/unlock switch.
NG >> Repair or replace harness.

REMOTE KEYLESS ENTRY SYSTEM

Component Parts and Harness Connector Location

1. BCM M18, M19, M20
(view with instrument panel removed)
2. Back door latch (door ajar switch) D511
(with power back door)
Back door switch D512
(without power back door)
3. Front pillar RH
4. Sliding door switch

LH B46
RH B135

System Description

8. Horn (low) E3
(below front combination lamp LH)
9. Front pillar LH
10. Key switch M27
11. Front door switch LH B8 RH B108
12. Remote keyless entry receiver M120
13. Horn (high) E108
(below front combination lamp RH)

INPUTS

Power is supplied at all times

- to BCM terminal 70
- through 50A fusible link (letter \mathbf{j}, located in the fuse and fusible link box)
- to BCM terminal 57

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >

- through 15A fuse [No. 3, located in the fuse block (J/B)].

When the ignition key is inserted in the ignition cylinder, power is supplied

- to BCM terminal 37
- through key switch terminals 1 and 2
- through 15A fuse [No. 19, located in the fuse block (J/B)].

When the ignition switch is in ACC or ON, power is supplied

- to BCM terminal 11
- through 10A fuse [No. 4, located in the fuse block (J/B)].

When the ignition switch is in ON or START, power is supplied

- to BCM terminal 38
- through 10A fuse [No. 16, located in the fuse block (J/B)].

When the front door switch LH is ON (door is OPEN), ground is supplied

- to BCM terminal 47
- through front door switch LH terminal 1
- through front door switch LH case ground.

When the front door switch RH is ON (door is OPEN), ground is supplied

- to BCM terminal 12
- through front door switch RH terminal 1
- through front door switch RH case ground.

When the sliding door switch LH is ON (door is OPEN), ground is supplied

- to BCM terminal 48
- through sliding door switch LH terminal 1
- through sliding door switch LH case ground.

When the sliding door switch RH is ON (door is OPEN), ground is supplied

- to BCM terminal 13
- through sliding door switch RH terminal 1
- through sliding door switch RH case ground.

When the back door switch is ON (door is OPEN), ground is supplied

- to BCM terminal 43
- through back door switch terminal 1 (without power back door) or,
- through back door latch terminal 7 (with power back door)
- through back door switch terminal 3 (without power back door)
- through back door latch terminal 8 (with power back door)
- through body grounds D403 and D404.

Keyfob signal is supplied to BCM from the remote keyless entry receiver.
The remote keyless entry system controls operation of the

- power door locks
- sliding door opener (with automatic sliding door system)
- back door opener (with power back door)
- interior lamps
- panic alarm
- hazard and horn reminder
- keyless power window down (open)

OPERATION PROCEDURE

- The BCM only locks/unlocks the doors if the ID number matches. (Remote control entry functions)
- When the keyfob is operated, the signal from the keyfob is sent and the remote keyless entry receiver receives the signal and sends it to the BCM. Only if the ID number matches does the BCM send the open/ close signal to the sliding door control unit. (Remote control automatic sliding door function)
- Unless the key is inserted into the ignition key cylinder or one of the doors is opened within 1 minute after the UNLOCK switch on the keyfob is pressed, all the doors are automatically locked. (Auto lock function)
- When a door is locked or unlocked, the vehicle hazard lamps flash and the horn sounds to verify operation. (Active check function)
- When the key is in the ignition key cylinder (when the key switch is ON) and one of the doors is open, the door lock function does not work even when the door lock is operated with the keyfob.
- Keyfob ID set up is available.
- If a keyfob is lost, a new keyfob can be set up. A maximum of 5 IDs can be set up.

Remote Control Entry Functions

Operation Description

- When a button on the keyfob is operated, the signal is sent from the keyfob and received by the remote keyless entry receiver.

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >

- The received signal is sent to the BCM and compared with the registered ID number.
- If the ID number matches, the BCM sends the lock/unlock signal to each door lock actuator.
- When the door lock actuators receive this signal, each operates to lock/unlock its door.
- BCM locks all doors with input of LOCK signal from keyfob.
- When an UNLOCK signal is sent from keyfob once, driver's door will be unlocked.
- Then, if an UNLOCK signal is sent from keyfob again within 5 seconds, all other doors will be unlocked.

Remote control entry operation conditions

Keyfob operation	Operation condition
Door lock operation (locking)	• With key removed (key switch: OFF) \cdot Closing all doors (door switch: OFF)
Door lock operation (unlocking)	With key removed (key switch: OFF)

Auto Lock Function

Operation Description

- Unless the key is inserted into the ignition key cylinder or one of the doors is opened, within 1 minute after a door lock is unlocked by keyfob operation, all the doors are automatically locked.
The 1 minute timer count is executed by the BCM and after 1 minute, the BCM sends the lock signal to all doors.
Lock operations are the same as for the remote control entry function.
Remote Control Automatic Sliding Door Function (Vehicles With Automatic Sliding Door System)
For the auto sliding door system operation, refer to BL-92, "System Description".
Active Check Function
Operation Description
When a door is locked or unlocked by keyfob operation, the vehicle hazard lamps flash and the horn sounds to verify operation.
- When a button on the keyfob is operated, the signal is sent from the keyfob and received by the keyless remote entry receiver.
- The received signal is sent to the BCM and compared with the registered ID number.
- If the ID number matches, the BCM sends the hazard lamps flashing and horn signals to the IPDM E/R.
- The IPDM E/R flashes the hazard lamps and sounds the horn (when in C mode) for each keyfob operation.

Operating function of hazard and horn reminder

	C mode		S mode	
Keyfob operation	Lock	Unlock	Lock	Unlock
Hazard warning lamp flash	Twice	Once	Twice	-
Horn sound	Once	-	-	-

Hazard and Horn Reminder
BCM output to IPDM E/R for horn reminder signal as DATA LINE (CAN-H line and CAN-L line). The hazard and horn reminder has C mode (horn chirp mode) and S mode (non-horn chirp mode).
How to change hazard and horn reminder mode
(®) With CONSULT-III
Hazard and horn reminder can be changed using "WORK SUPPORT" mode in "MULTI ANSWER BACK SET".
(8) Without CONSULT-III

Refer to Owner's Manual for instructions.
Interior Lamp Operation
When the following input signals are both supplied:

- all door switches are in the OFF position (when all the doors are closed);
- lamps on demand switch is in DOOR position.

Remote keyless entry system turns on interior lamps for 30 seconds with input of UNLOCK signal from keyfob.
For detailed description, refer to LT-107, "System Description".
Panic Alarm Operation
When key switch is OFF (when ignition key is not inserted in key cylinder), remote keyless entry system turns on and off horn and headlamp intermittently with input of PANIC ALARM signal from keyfob.
The alarm automatically turns off after 25 seconds or when BCM receives any signal from keyfob.

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >
Keyless Power Window Down (open) Operation
When keyfob unlock switch is turned ON with ignition switch OFF, and the switch is detected to be on continuously for more than 3 seconds, the driver's door and passenger's door power windows are simultaneously opened.
Power window is operated to open and the operation continues as long as the keyfob unlock switch is pressed.
CAN Communication System Description
Refer to LAN-3.

REMOTE KEYLESS ENTRY SYSTEM
< SERVICE INFORMATION >
Schematic

REMOTE KEYLESS ENTRY SYSTEM
< SERVICE INFORMATION >
Wiring Diagram - KEYLES -

REMOTE KEYLESS ENTRY SYSTEM
< SERVICE INFORMATION >

REMOTE KEYLESS ENTRY SYSTEM

Terminal and Reference Value for BCM
Refer to BCS-11, "Terminal and Reference Value for BCM".

Refer to PG-24, "Terminal and Reference Value for IPDM E/R".

REMOTE KEYLESS ENTRY SYSTEM

<SERVICE INFORMATION >
CONSULT-III Function (BCM)
INFOID:0000000004277149
CONSULT-III can display each diagnostic item using the diagnostic test modes shown following.

BCM diagnostic test item	Diagnostic mode	Description
Inspection by part	WORK SUPPORT	Supports inspections and adjustments. Commands are transmitted to the BCM for setting the status suitable for required operation, input/output sig- nals are received from the BCM and received date is displayed.
	DATA MONITOR	Displays BCM input/output data in real time.
	ACTIVE TEST	Operation of electrical loads can be checked by sending drive signal to them.
	SELF-DIAG RESULTS	Displays BCM self-diagnosis results.
	CAN DIAG SUPPORT MNTR	The result of transmit/receive diagnosis of CAN communication can be read.
	ECU PART NUMBER	BCM part number can be read.
	CONFIGURATION	Performs BCM configuration read/write functions.

CONSULT-III Application Item
"MULTI REMOTE ENT"

Data Monitor

Monitored Item	Description
ACC ON SW	Indicates [ON/OFF] condition of ignition switch in ACC position.
DOOR SW-AS	Indicates [ON/OFF] condition of front door switch RH.
DOOR SW-DR	Indicates [ON/OFF] condition of front door switch LH.
DOOR SW-RL	Indicates [ON/OFF] condition of sliding door switch LH.
DOOR SW-RR	Indicates [ON/OFF] condition of sliding door switch RH.
IGN ON SW	Indicates [ON/OFF] condition of ignition switch in ON position.
KEY CYL LK-SW	Indicates [ON/OFF] condition of lock signal from door key cylinder switch.
KEY CYL UN-SW	Indicates [ON/OFF] condition of unlock signal from door key cylinder switch.
KEYLESS LOCK	Indicates [ON/OFF] condition of remote locking signal.
KEYLESS PANIC	Indicates [ON/OFF] condition of panic signal from keyfob.
KEYLESS PSD	Indicates [ON/OFF] condition when keyfob sliding door button is pushed (with RH power door only).
KEYLESS PSD L	Indicates [ON/OFF] condition when keyfob left sliding door button is pushed (with LH and RH power doors).
KEYLESS PSD R	Indicates [ON/OFF] condition when keyfob right sliding door button is pushed (with LH and RH power doors).
KEYLESS UNLOCK	Indicates [ON/OFF] condition of remote unlocking signal.
KEY ON SW	Indicates [ON/OFF] condition of key switch.
LK BUTTON/SIG	Indicates [ON/OFF] condition of lock signal from keyfob.
LK/UN BTN ON	Indicates [ON/OFF] condition of lock/unlock signal at the same time from keyfob.
LOCK SW DR/AS	Indicates [ON/OFF] condition of lock signal from lock/unlock switch.
PANIC BTN	Indicates [ON/OFF] condition of panic signal from keyfob.
RKE KEEP UNLK	Indicates [ON/OFF] condition. Keep pushing UNLOCK, turns to ON 3 seconds after UNLOCK button is pushed.
RKE LCK-UNLCK	Indicates [ON/OFF] condition when keyfob LOCK and UNLOCK buttons are pushed at the same time.
UN BUTTON/SIG	Indicates [ON/OFF] condition of unlock signal from keyfob.
UNLK SW DR/AS	Indicates [ON/OFF] condition of unlock signal from lock/unlock switch.
UN BUTTON ON	Indicates [ON/OFF] condition of unlock signal from keyfob.

Active Test

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >

Test Item	Description
INT ILLUM	This test is able to check interior lamp illumination operation. The interior lamp illumination is turned on when "ON" on CONSULT-III screen is touched.
IGN ILLUM	This test is able to check ignition keyhole illumination operation. The ignition keyhole illumination is turned on when "ON" on CONSULT-III screen is touched.
FLASHER RIGHT(CAN)	This test is able to check right hazard reminder operation. The right hazard lamp turns on when "ON" on CONSULT-III screen is touched.
FLASHER LEFT(CAN)	This test is able to check left hazard reminder operation. The left hazard lamp turns on when "ON" on CONSULT-III screen is touched.
HORN	This test is able to check panic alarm and horn reminder operations. The alarm activates for 0.5 sec- onds after "ON" on CONSULT-III screen is touched.
HEAD LAMP (HI)	This test is able to check headlamps panic alarm operation. The headlamp illuminates for 0.5 sec- onds after "ON" on CONSULT-III screen is touched.
POWER WINDOW DOWN	This test is able to check power window down operation. The windows are lowered when "ON" on CONSULT-III screen is touched.
TRUNK/BACK DOOR	This test is able to check back door actuator operation. The back door is unlocked when "ON" on CONSULT-III screen is touched.

Work Support

Test Item	Description
REMO CONT ID REGIST	keyfob ID code can be registered.
REMO CONT ID ERASUR	keyfob ID code can be erased.
REMO CONT ID CONFIR	It can be checked whether keyfob ID code is registered or not in this mode.
HORN CHIRP SET	Horn reminder mode can be changed in this mode. The horn reminder mode will be changed when "CHANGE SETT" on CONSULT-III screen is touched.
HAZARD LAMP SET	Hazard reminder mode can be changed in this mode. The hazard reminder mode will be changed when "CHANGE SETT" on CONSULT-III screen is touched.
MULTI ANSWER BACK SET	Hazard and horn reminder mode can be changed in this mode. The reminder mode will be changed when "CHANG SETT" on CONSULT-III screen is touched.
AUTO LOCK SET	Auto locking function mode can be changed in this mode. The function mode will be changed when "CHANG SETT" on CONSULT-III screen is touched.
PANIC ALRM SET	Panic alarm operation mode can be changed in this mode. The operation mode will be changed when "CHANG SETT" on CONSULT-III screen is touched.
TRUNK OPEN SET	Back door opener operation mode can be changed in this mode. The operation mode will be changed when "CHANG SETT" on CONSULT-III screen is touched.
PW DOWN SET	Keyless power window down (open) operation mode can be changed in this mode. The operation mode will be changed when "CHANG SETT" on CONSULT-III screen is touched.

Hazard and horn reminder mode												
	MODE 1 (C mode)		MODE 2 (S mode)		MODE 3		MODE 4		MODE 5		MODE 6	
Keyfob operation	Lock	Unlock										
Hazard warning lamp flash	Twice	Once	Twice	-	-	-	Twice	Once	Twice	-	-	Once
Horn sound	Once	-	-	-	-	-	-	-	Once	-	Once	-

Auto locking function mode

	MODE 1	MODE 2	MODE 3
Auto locking function	5 minutes	Nothing	1 minute
Panic alarm operation mode	MODE 1	MODE 2	MODE 3
	0.5 seconds	Nothing	1.5 seconds
Keyfob operation			

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >

Trunk lid open operation mode			
	MODE 1	MODE 2	MODE 3
Keyfob operation	0.5 seconds	Nothing	1.5 seconds
Keyless power window down operation mode			
	MODE 1	MODE 2	MODE 3
Keyfob operation	3 seconds	Nothing	5 seconds

Trouble Diagnosis Procedure

1. Check the symptom and customer's requests.
2. Understand outline of system. Refer to BL-48, "System Description".
3. Confirm system operation.

- Check that the power door lock system operates normally. Refer to BL-16.
- Check that the automatic sliding door system operates normally. Refer to BL-92.
- Check that the automatic back door system operates normally. Refer to BL-138.

4. Perform pre-diagnosis inspection. Refer to BL-58, "Pre-Diagnosis Inspection".
5. Refer to trouble diagnosis chart by symptom, repair or replace any malfunctioning parts. Refer to BL-58, "Trouble Diagnosis".
6. Inspection End.

Pre-Diagnosis Inspection

BCM Power Supply and Ground Circuit Inspection
Refer to BCS-15, "BCM Power Supply and Ground Circuit Inspection".

Trouble Diagnosis

SYMPTOM CHART

NOTE:

- Always check the "Trouble Diagnosis Procedure" before troubleshooting. Refer to BL-58, "Trouble Diagnosis Procedure".
- Always check keyfob battery before replacing keyfob. Refer to BL-65, "Keyfob Battery and Function Check".
- The panic alarm operation of the remote keyless entry system does not activate with the ignition key inserted in the ignition key cylinder.
- Use Remote Keyless Entry Tester J-43241 (follow instructions on tester) to check operation of keyfob before replacing keyfob.

Symptom	Diagnoses/service procedure	Reference page
All functions of remote keyless entry system do not operate.	1. Keyfob battery and function check (use Remote Keyless Entry Tester J-43241). NOTE: If the result of keyfob function check is OK, keyfob is not malfunctioning.	BL-65
	2. Check BCM and remote keyless entry receiver.	BL-66
The new ID of keyfob cannot be entered.	1. Keyfob battery and function check (use Remote Keyless Entry Tester J-43241). NOTE: If the result of keyfob function check is OK, keyfob is not malfunctioning.	BL-65
	2. Key switch (insert) check.	BL-60
	3a. Door switch check (without automatic back door system).	BL-61
	3b. Door switch check (with automatic back door system).	BL-63
	4. ACC power check.	BL-67
	5. Replace BCM.	BCS-17

REMOTE KEYLESS ENTRY SYSTEM

SERVICE INFORMATION >

Symptom	Diagnoses/service procedure	Reference page
Door lock or unlock does not function. (If the power door lock system does not operate manually, check power door lock system. Refer to BL-16.)	1. Keyfob battery and function check (use Remote Keyless Entry Tester J-43241). NOTE: If the result of keyfob function check is OK, keyfob is not malfunctioning.	BL-65
	2. Replace BCM.	BCS-17
Hazard and horn reminder does not activate properly when pressing lock or unlock button of keyfob.	1. Check hazard and horn reminder mode with CONSULT-III. NOTE: Hazard and horn reminder mode can be changed. First check the hazard and horn reminder mode setting.	BL-56
	2a. Door switch check (without automatic back door system).	BL-61
	2 b . Door switch check (with automatic back door system).	BL-63
	3. Replace BCM.	BCS-17
Hazard reminder does not activate properly when pressing lock or unlock button of keyfob. (Horn reminder OK)	1. Check hazard reminder mode with CONSULT-III. NOTE: Hazard reminder mode can be changed. First check the hazard reminder mode setting.	BL-56
	2. Check hazard function with hazard switch.	BL-68
	3. Replace BCM.	BCS-17
Horn reminder does not activate properly when pressing lock or unlock button of keyfob. (Hazard reminder OK)	1. Check horn reminder mode with CONSULT-III. NOTE: Horn reminder mode can be changed. First check the horn reminder mode setting.	BL-56
	2. Check horn function with horn switch.	WW-39
	3. IPDM E/R operation check.	BL-67
	4. Replace BCM.	BCS-17
Sliding door open/close operation is not carried out with keyfob operation. (The automatic sliding door system is normal.)	1. Keyfob battery and function check (use Remote Keyless Entry Tester J-43241). NOTE: If the result of keyfob function check is OK, keyfob is not malfunctioning.	BL-65
	2. Key switch (insert) check.	BL-60
	3. Remote keyless entry receiver system check.	BL-66
	4. Replace BCM.	BCS-17
Interior lamp operation do not activate properly.	1. Room lamp operation check.	BL-68
	2. Ignition keyhole illumination operation check.	BL-69
	3. Step lamp operation check.	LT-107
	4a. Door switch check (without automatic back door).	BL-61
	4b. Door switch check (with automatic back door).	BL-63
	5. Replace BCM.	BCS-17
Panic alarm (horn and/or headlamp output) does not activate when panic alarm button is continuously pressed.	1. Keyfob battery and function check (use Remote Keyless Entry Tester J-43241). NOTE: If the result of keyfob function check is OK, keyfob is not malfunctioning.	BL-65
	2. Key switch (insert) check.	BL-60
	3. Check horn function.	BL-68
	4. Check headlamp function.	BL-68
	5. Replace BCM.	BCS-17

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >

Symptom	Diagnoses/service procedure	Reference page
Auto door lock operation does not activate properly. (All other remote keyless entry functions OK.)	1. Check auto door lock operation mode with CONSULT-III. NOTE: Auto door lock operation mode can be changed. First check the auto door lock operation mode setting.	
	2. Replace BCM.	BL-56
	1. Check power window down operation mode with CONSULT-III. NOTE: Power window down operation mode can be changed. First check the power window down operation mode setting.	BCS-17
	2. Check power window function with switch.	BL-56
	3. Replace BCM.	GW-17

Key Switch (insert) Check

1. CHECK KEY SWITCH INPUT SIGNAL

With CONSULT-III

Check key switch "KEY ON SW" in DATA MONITOR mode with CONSULT-III. Refer to BL-34, "CONSULT-III Function (BCM)".

- When key is inserted to ignition key cylinder:

KEY ON SW

- When key is removed from ignition key cylinder:
KEY ON SW : OFF
(8) Without CONSULT-III

Check voltage between BCM connector M18 terminal 37 and ground.

Connec- tor	Terminal		Condition	Voltage (V) (Approx.)
	(+)	(-)		
M18	37	Ground	Key is inserted.	Battery voltage
			Key is removed.	0
OK or NG				
$\begin{aligned} & \text { OK } \\ & \text { NG } \end{aligned}$	$\begin{aligned} & \text { Key s } \\ & \text { GO T } \end{aligned}$	itch (inse $2 .$	circuit is OK.	

2. CHECK KEY SWITCH (INSERT)

1. Turn ignition switch OFF.
2. Disconnect key switch.
3. Check continuity between key switch terminals 1, 2 .

Terminals	Condition	Continuity
$1-2$	Key is inserted.	Yes
	Key is removed.	No

OK or NG
OK >> Repair or replace harness.
NG >> Replace key switch.

REMOTE KEYLESS ENTRY SYSTEM
< SERVICE INFORMATION >

Door Switch Check (Without Automatic Back Door System)

1. CHECK DOOR SWITCHES INPUT SIGNAL

With CONSULT-III
Check door switches ("DOOR SW-DR", "DOOR SW-AS", "DOOR SW-RL", "DOOR SW-RR", "BACK DOOR SW") in DATA MONITOR mode with CONSULT-III. Refer to BL-34, "CONSULT-III Function (BCM)".

- When doors are open:

DOOR SW-DR	: ON
DOOR SW-AS	: ON
DOOR SW-RR	: ON
DOOR SW-RL	: ON
BACK DOOR SW	: ON

- When doors are closed:

DOOR SW-DR	: OFF
DOOR SW-AS	: OFF
DOOR SW-RR	: OFF
DOOR SW-RL	: OFF
BACK DOOR SW	: OFF

(18) Without CONSULT-III

Check voltage between BCM connector M18 or M19 terminals 12, 13, 43, 47, 48 and ground.

Connector	Item	Terminals		Condition	Voltage (V) (Approx.)
		(+)	(-)		
M19	Back door switch	43	Ground	Open Closed	$\begin{gathered} 0 \\ \downarrow \\ \text { Battery voltage } \end{gathered}$
	Front door switch LH	47			
	Sliding door switch LH	48			
M18	Front door switch RH	12			
	Sliding door switch RH	13			

OK >> Door switch circuit is OK.
NG >> GO TO 2.
2. CHECK DOOR SWITCH CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect door switch and BCM.
3. Check continuity between door switch connector (B) B8 (Front LH), B108 (Front RH), B46 (Sliding LH), B135 (Sliding RH) or D512 (Back) terminal 1 and BCM connector (A) M18, M19 terminals 12, 13, 43, 47 and 48.

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >
1-12 : Continuity should exist.
1-13 : Continuity should exist.
1-43 : Continuity should exist.
1-47 : Continuity should exist.
1-48 : Continuity should exist.
4. Check continuity between door switch connector (B) B8 (Front LH), B108 (Front RH), B46 (Sliding LH), B135 (Sliding RH) or D512 (Back) terminal 1 and ground.

1-Ground : Continuity should not exist.
OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness.
3. CHECK DOOR SWITCHES

FRONT AND REAR DOORS

Check continuity between front or rear door switch terminal 1 and exposed metal of switch while pressing and releasing switch.

Door switch is released : Continuity should exist.
Door switch is pushed : Continuity should not exist.

BACK DOOR

Check continuity between back door switch terminals 1 and 3 while pressing and releasing switch.

Door switch is released : Continuity should exist.
Door switch is pushed : Continuity should not exist. OK or NG
OK >> (Front and rear doors) Switch circuit is OK.
OK >> (Back door) GO TO 4.
NG >> Replace door switch.

4.CHECK BACK DOOR SWITCH GROUND

Check continuity between back door switch connector D512 terminal 3 and ground.

$$
\text { 3-Ground } \quad \text { : Continuity should exist. }
$$

OK or NG
OK >> Back door switch circuit is OK.
NG >> Repair or replace harness.

REMOTE KEYLESS ENTRY SYSTEM
< SERVICE INFORMATION >

Door Switch Check (With Automatic Back Door System)

1.CHECK DOOR SWITCHES INPUT SIGNAL

With CONSULT-III
Check door switches ("DOOR SW-DR", "DOOR SW-AS", "DOOR SW-RL", "DOOR SW-RR", "BACK DOOR SW") in DATA MONITOR mode with CONSULT-III. Refer to BL-34, "CONSULT-III Function (BCM)".

- When doors are open:

DOOR SW-DR	: ON
DOOR SW-AS	: ON
DOOR SW-RR	: ON
DOOR SW-RL	: ON
BACK DOOR SW	: ON

- When doors are closed:

DOOR SW-DR	: OFF
DOOR SW-AS	: OFF
DOOR SW-RR	: OFF
DOOR SW-RL	: OFF
BACK DOOR SW	: OFF

(1) Without CONSULT-III

Check voltage between BCM connector M18 or M19 terminals 12, 13, 43, 47, 48 and ground.

Connector	Item	Terminals		Condition	Voltage (V) (Approx.)
		(+)	(-)		
M20	Back door latch (door ajar switch)	43	Ground	Open Closed	
	Front door switch LH	47			
	Sliding door switch LH	48			
M18	Front door switch RH	12			
	Sliding door switch RH	13			

OK or NG
OK >> Door switch circuit is OK.
NG >> GO TO 2.
2. CHECK DOOR SWITCH CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect door switch and BCM.
3. Check continuity between door switch connector (B) B8 (Front LH), B108 (Front RH), B46 (Sliding LH), B135 (Sliding RH) terminal 1 or back door latch (door ajar switch) connector (C) D511 terminal 7 and BCM connector (A) M18, M19 terminals 12, 13, 43, 47 and 48.

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >

$1-47$: Continuity should exist.
$1-12$: Continuity should exist.
$1-48$: Continuity should exist.
$1-13$: Continuity should exist.
$7-43$: Continuity should exist.

4. Check continuity between door switch connector (B) B8 (Front LH), B108 (Front RH), B46 (Sliding LH), B135 (Sliding RH) terminal 1 or back door latch (door ajar switch) connector (C) D511 terminal 7 and ground.

1-Ground	: Continuity should not exist.

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness.

3. CHECK DOOR SWITCHES

FRONT AND REAR DOORS

Check continuity between front or rear door switch terminal 1 and exposed metal of switch while pressing and releasing switch.

Door switch is released : Continuity should exist.
Door switch is pushed : Continuity should not exist.

BACK DOOR

Check continuity between back door latch (door ajar switch) terminals 7 and 8 while pressing (closing back door) and releasing (opening back door) switch.

When back door is open : Continuity should exist.
When back door is closed : Continuity should not exist.
OK or NG

$$
\begin{array}{ll}
\text { OK } & \gg \text { (Front and rear doors) Switch circuit is OK. } \\
\text { OK } & \gg \text { (Back door) GO TO 4. } \\
\text { NG } & \gg \text { Replace door switch. }
\end{array}
$$

4. CHECK BACK DOOR SWITCH GROUND

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >
Check continuity between back door latch (door ajar switch) connector D511 terminal 8 and ground.

8 - Ground : Continuity should exist.
OK or NG
OK >> Back door switch circuit is OK.
NG >> Repair or replace harness.

INFOID:0000000004277157

Keyfob Battery and Function Check

1.CheCK keyfob battery

Remove battery and measure voltage across battery positive and negative terminals, (+) and (-).

$$
\text { Voltage } \quad: 2.5 \mathrm{~V}-3.0 \mathrm{~V}
$$

NOTE:
Keyfob does not function if battery is not set correctly.
OK or NG
OK >> GO TO 2.
NG >> Replace keyfob battery. Refer to BL-71, "Keyfob Battery Replacement".

*1: With auto sliding door RH
*2: With auto sliding door RH and LH

(8)Without CONSULT-III

Check keyfob function using Remote Keyless Entry Tester J-43241.
OK or NG

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >

```
OK >> WITH CONSULT-III: Keyfob, remote keyless entry receiver and wiring harness between BCM and remote keyless entry receiver are OK. Replace BCM. Refer to BCS-17, "Removal and Installation of BCM".
OK \(\gg\) WITHOUT CONSULT-III: Keyfob is OK. Further inspection is necessary. Refer to BL-58, "Trouble Diagnosis".
NG >> WITH CONSULT-III: Further inspection is necessary. Refer to BL-58, "Trouble Diagnosis".
NG >> WITHOUT CONSULT-III: Replace keyfob. Refer to BL-69, "ID Code Entry Procedure".
```


Remote Keyless Entry Receiver System Inspection

INFOID:0000000004277158

1. REMOTE KEYLESS ENTRY RECEIVER SIGNAL

Check signal voltage waveform between BCM connector M18 terminal 20 and ground using an oscilloscope.

Condition:

Keyfob buttons released : Refer to BL-55, "Terminal and Reference Value for BCM".

Keyfob buttons pressed
: Refer to BL-55, "Terminal and Reference Value for BCM".

OK or NG
OK >> Remote keyless entry receiver signal power supply, ground and signal circuits are OK. Replace BCM. Refer to BCS-17, "Removal and Installation of BCM".
NG >> GO TO 2.
2. REMOTE KEYLESS ENTRY RECEIVER POWER SUPPLY INSPECTION

Check signal voltage waveform between BCM connector M18 terminal 19 and ground using an oscilloscope.

```
19-Ground
```

```
: Refer to BL-55, "Terminal and Reference Value for BCM".
```

OK or NG
OK >> GO TO 3.
NG >> Replace BCM. Refer to BCS-17, "Removal and Installation of BCM".

3. REMOTE KEYLESS ENTRY RECEIVER GROUND CIRCUIT INSPECTION (BCM)

Check continuity between BCM connector M18 terminal 18 and ground.

18-Ground
: Continuity should exist.

OK or NG

OK >> GO TO 4.
NG >> Replace BCM. Refer to BCS-17. "Removal and Installation of $\mathrm{BCM}^{\prime \prime}$.

4. HARNESS INSPECTION BETWEEN BCM AND REMOTE KEYLESS ENTRY RECEIVER

1. Disconnect remote keyless entry receiver and BCM connectors.

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >
2. Check continuity between remote keyless entry receiver connector M120 terminals 1, 2, 4 and BCM connector M18 terminals $18,19,20$.

$1-18$: Continuity should exist.
$2-20$: Continuity should exist.
$4-19$: Continuity should exist.

3. Check continuity between remote keyless entry receiver terminals 1, 2 and 4 and ground.

$$
\begin{array}{ll}
1 \text { - Ground } & \text { : Continuity should not exist. } \\
2 \text { - Ground } & \text { : Continuity should not exist. } \\
4 \text { - Ground } & \text { : Continuity should not exist. }
\end{array}
$$

OK or NG
OK >> Replace remote keyless entry receiver.
NG >> Repair or replace the harness between the remote keyless entry receiver and BCM.

ACC Power Check

With CONSULT-III
Check "ACC ON SW" in DATA MONITOR mode with CONSULT-III. Refer to BL-34, "CONSULT-III Function (BCM)".

Monitor Item	Condition	
ACC ON SW	Ignition switch position is ACC	: ON
	Ignition switch position is OFF	: OFF

(8) Without CONSULT-III

Check voltage between BCM connector M18 terminal 11 and ground.

Connec- tor	Terminal		Condition	Voltage (V) (Approx.)
	$(+)$	$(-)$		Battery voltage

OK or NG

OK >> ACC power circuit is OK.
NG >> Check the following:

- 10A fuse [No. 4, located in fuse block (J/B)]
- Harness for open or short.

IPDM E/R Operation Check

1. CHECK IPDM E/R INPUT VOLTAGE

Check voltage between IPDM E/R connector E121 terminal 51 and ground.

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >

Connector	Terminal		Voltage (V) (Approx.)
	(+)	(-)	
E121	51	Ground	Battery voltage
OK or NG			
$\begin{array}{ll} \mathrm{OK} & \gg \\ \mathrm{NG} & \gg \end{array}$	>> Replace IPDM E/R. Refer to PG-28, "Removal and Installation of IPDM E/R".		

2. CHECK IPDM E/R INPUT VOLTAGE

1. Turn ignition switch OFF.
2. Disconnect IPDM E/R and horn relay.
3. Check continuity between IPDM E/R connector E121 terminal 51 and horn relay connector $\mathrm{H}-1$ terminal 1.

51-1
:Continuity should exist.
4. Check continuity between IPDM E/R connector E121 terminal 51 and ground.

51 - Ground :Continuity should not exist.
OK or NG
OK >> Further inspection is necessary. Refer to BL-58, "Trouble Diagnosis".
NG >> Repair or replace harness.

Check Hazard Function

1. CHECK HAZARD WARNING LAMP

Does hazard indicator flash with hazard switch?
Yes or No
Yes >> Hazard warning lamp circuit is OK.
No >> Check hazard indicator. Refer toLT-55.

Check Horn Function

INFOID:0000000004277162
First, perform the "SELF-DIAG RESULTS" in "BCM" with CONSULT-III, then perform the trouble diagnosis of malfunction system indicated in "SELF-DIAG RESULTS" of "BCM".
1.CHECK HORN FUNCTION

Does horn sound with horn switch?
Yes or No
Yes >> Horn circuit is OK.
No >> Check horn circuit. Refer to WW-39.

Check Headlamp Function

First, perform the "SELF-DIAG RESULTS" in "BCM" with CONSULT-III, then perform the trouble diagnosis of malfunction system indicated in "SELF-DIAG RESULTS" of "BCM".

1. CHECK HEADLAMP OPERATION

Does headlamp come on when turning lighting switch ON?
Yes or No
< SERVICE INFORMATION >
Yes >> Headlamp operation circuit is OK.
No >> Check headlamp circuit. Refer to LT-5.
Check Interior Lamp Illumination Function

1. CHECK LAMP FUNCTION

When lamps on demand switch is in DOOR position, open the front door LH or RH.
Interior lamp should illuminate.
OK or NG
OK >> System is OK.
NG >> Check interior lamp circuit. Refer to LT-106.
ID Code Entry Procedure

KEYFOB ID SET UP WITH CONSULT-III

NOTE:

- If a keyfob is lost, the ID code of the lost keyfob must be erased to prevent unauthorized use. A specific ID code can be erased with CONSULT-III. However, when the ID code of a lost keyfob is not known, all controller ID codes should be erased. After all ID codes are erased, the ID codes of all remaining and/or new keyfobs must be re-registered.
- When registering an additional keyfob, the existing ID codes in memory may or may not be erased. If five ID codes are stored in memory when an additional code is registered, only the oldest code is erased. If less than five codes are stored in memory when an additional code is registered, the new ID code is added and no ID codes are erased.
- Entry of a maximum of five ID codes is allowed. When more than five codes are entered, the oldest ID code will be erased.
- Even if the same ID code that is already in memory is input, the same ID code can be entered. The code is counted as an additional code.

1. Touch "MULTI REMOTE ENT".
2. Touch "WORK SUPPORT".
3. The items below can be set up.

- "REMO CONT ID CONFIR"

Use this mode to confirm if a keyfob ID code is registered or not.

- "REMO CONT ID REGIST"

Use this mode to register a keyfob ID code.
NOTE:
Register the ID code when keyfob or BCM is replaced, or when additional keyfob is required.

- "REMO CONT ID ERASUR"

Use this mode to erase a keyfob ID code.

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >
KEYFOB ID SET UP WITHOUT CONSULT-III

NOTE:

- If a keyfob is lost, the ID code of the lost keyfob must be erased to prevent unauthorized use. A specific ID code can be erased with CONSULT-III. However, when the ID code of a lost keyfob is not known, all controller ID codes should be erased. After all ID codes are erased, the ID codes of all remaining and/or new keyfobs must be re-registered.
To erase all ID codes in memory, register one ID code (keyfob) five times. After all ID codes are erased, the ID codes of all remaining and/or new keyfobs must be re-registered.

REMOTE KEYLESS ENTRY SYSTEM

< SERVICE INFORMATION >

- When registering an additional keyfob, the existing ID codes in memory may or may not be erased. If five ID codes are stored in memory, when an additional code is registered, only the oldest code is erased. If less than five ID codes are stored in memory, when an additional ID code is registered, the new ID code is added and no ID codes are erased.
- If you need to activate more than two additional new keyfobs, repeat the procedure "Additional ID code entry" for each new keyfob.
- Entry of maximum five ID codes is allowed. When more than five ID codes are entered, the oldest ID code will be erased.
- Even if same ID code that is already in the memory is input, the same ID code can be entered. The code is counted as an additional code.

Keyfob Battery Replacement

NOTE:

- Be careful not to touch the circuit board or battery terminal.
- The keyfob is water-resistant. However, if it does get wet, immediately wipe it dry.

1. Open the lid using a coin.
2. Remove the battery.
3. Install the new battery, positive side down.
4. Close the lid securely. Push the keyfob buttons two or three times to check operation.

VEHICLE SECURITY (THEFT WARNING) SYSTEM < SERVICE INFORMATION >

 VEHICLE SECURITY (THEFT WARNING) SYSTEM

 VEHICLE SECURITY (THEFT WARNING) SYSTEM
 Component Parts and Harness Connector Location

1. BCM M18, M19, M20
(view with instrument panel removed)
2. Main power window and door lock/unlock switch LH D7, D8
Power window and door lock/unlock switch RH D105
3. Sliding door switch

LH B46
RH B135

System Description

2. Front pillar LH
3. Front door switch

LH B8
RH B108
8. Horn (low) E3
(below front combination lamp LH)
3. Front door lock assembly LH D14 (key cylinder switch)
6. Back door latch (door ajar switch) D511 (with power back door)
Back door switch D512
(without power back door)
9. Horn (high) E108
(below front combination lamp RH)

DESCRIPTION

Operation Flow

VEHICLE SECURITY (THEFT WARNING) SYSTEM

< SERVICE INFORMATION >

Setting the vehicle security system

Initial condition

- Ignition switch is OFF.

Disarmed phase

- When the vehicle is being driven or when doors are open, the vehicle security system is set in the disarmed phase on the assumption that the owner is inside or near the vehicle.

Pre-armed phase and armed phase

- There are three conditions to enable the vehicle security system to turn into the "pre-armed" phase and transition into armed phase. The initial requirements are that hood, glass hatch and all doors must be closed (ignition key removed) for the transition to take place. Those three conditions are:

1. Locking vehicle with either front power door lock switch before exiting vehicle and closing all doors.
2. Using keyfob to lock already closed doors after leaving the vehicle.
3. Using driver key cylinder switch to lock already closed doors after leaving the vehicle.

- Upon any of the above three steps taking place, the security indicator lamp illuminates for 30 seconds, then the system automatically shifts into the "armed" phase.
Canceling the set vehicle security system
When one of the following operations is performed, the armed phase is canceled.

1. Unlock the front doors with the key or the keyfob.
2. If equipped, open the back door with the keyfob. When the back door is closed after opening the back door with the keyfob, the system returns to the armed phase.
3. If equipped, open the sliding door(s) with the keyfob. With the sliding door(s) closed after opening the sliding door(s) with the keyfob, the system returns to the armed phase.
Activating the alarm operation of the vehicle security system Make sure the system is in the armed phase.
When one of the following operations is performed, the system sounds the horns and flashes the headlamps for about 50 seconds.
4. Any door is opened before unlocking door with key or keyfob.
5. Door is opened without using key or keyfob.
6. Back door is opened without using keyfob (with automatic back door system).
7. Sliding door(s) opened without using keyfob (with automatic sliding door system).

POWER SUPPLY AND GROUND CIRCUIT

Power is supplied at all times

- through 10A fuse [No.19, located in the fuse block (J/B)]
- to combination meter (security indicator lamp) terminal 40
- through 50A fusible link (letter j, located in the fuse and fusible link box)
- to BCM terminal 70
- through 15A fuse [No. 3, located in the fuse block (J/B)]

VEHICLE SECURITY (THEFT WARNING) SYSTEM

< SERVICE INFORMATION >

- to BCM terminal 57
- through 15A fuse (No. 25, located in the fuse and fusible link box)
- to horn relay terminal 2 and
- through 15A fuse (No. 34, located in the IPDM E/R)
- to IPDM E/R internal CPU.

With the ignition switch in the ACC or ON position, power is supplied

- through 10A fuse [No. 4, located in the fuse block (J/B)]
- to BCM terminal 11.

Ground is supplied

- to BCM terminal 67
- through body grounds M57, M61 and M79 and
- to IPDM E/R terminals 38 and 60
- through body ground E9, E15 and E24.

INITIAL CONDITION TO ACTIVATE THE SYSTEM

The operation of the vehicle security system is controlled by the doors.
To activate the vehicle security system, BCM must receive signals indicating the doors are closed and locked.
When a door is open, BCM terminal 12, 13, 43, 47 or 48 receives a ground signal from each door switch.
When front door LH is unlocked, BCM terminal 22 receives a signal from terminal 12 (without power back door) or terminal 14 (with power back door) of main power window and door lock/unlock switch.
When front door RH is unlocked, BCM terminal 22 receives a signal from terminal 16 of power window and door lock/unlock switch RH.
When the back door is open, BCM terminal 43 receives a ground signal

- from terminal 1 (without power back door) of the back door switch or terminal 7 (with power back door) of the back door latch (door ajar switch)
- through body grounds D403 and D404.

VEHICLE SECURITY SYSTEM ALARM OPERATION
When the vehicle security system is triggered, ground is supplied intermittently

- from IPDM E/R CPU
- to headlamp high relay and
- from IPDM E/R terminal 51
- to horn relay terminal 1.

The headlamps flash and the horn sounds intermittently.
The alarm automatically turns off after 50 seconds, but will reactivate if the vehicle is tampered with again.

VEHICLE SECURITY SYSTEM DEACTIVATION

To deactivate the vehicle security system, a door must be unlocked with the key or keyfob.
When the key is used to unlock a door, BCM terminal 22 receives signal

- from terminal 12 (without power back door) or terminal 14 (with power back door) of the main power window and door lock/unlock switch.
When the BCM receives unlock signal from keyfob or key cylinder switch, the vehicle security system is deactivated. (Disarmed phase)

PANIC ALARM OPERATION

Remote keyless entry system can operate vehicle security system (horn and headlamps) as required.
When the panic alarm is triggered, ground is supplied intermittently

- from IPDM E/R CPU
- to headlamp high relay and
- to horn relay terminal 1.

The headlamps flash and the horn sounds intermittently.
The alarm automatically turns off after 25 seconds or when BCM receives any signal from keyfob.

Refer to LAN-3.

VEHICLE SECURITY (THEFT WARNING) SYSTEM

< SERVICE INFORMATION >
Schematic

A

VEHICLE SECURITY (THEFT WARNING) SYSTEM
< SERVICE INFORMATION >
Wiring Diagram - VEHSEC -

VEHICLE SECURITY (THEFT WARNING) SYSTEM

BL-VEHSEC-02

VEHICLE SECURITY (THEFT WARNING) SYSTEM
< SERVICE INFORMATION >

WIWA1831E

VEHICLE SECURITY (THEFT WARNING) SYSTEM

< SERVICE INFORMATION >
 CONSULT-III Function (BCM)

CONSULT-III can display each diagnostic item using the diagnostic test modes shown following.

BCM diagnostic test item	Diagnostic mode	Description
Inspection by part	WORK SUPPORT	Supports inspections and adjustments. Commands are transmitted to the BCM for setting the status suitable for required operation, input/output sig- nals are received from the BCM and received date is displayed.
	DATA MONITOR	Displays BCM input/output data in real time.
	ACTIVE TEST	Operation of electrical loads can be checked by sending drive signal to them.
	SELF-DIAG RESULTS	Displays BCM self-diagnosis results.
	CAN DIAG SUPPORT MNTR	The result of transmit/receive diagnosis of CAN communication can be read.
	ECU PART NUMBER	BCM part number can be read.
	CONFIGURATION	Performs BCM configuration read/write functions.

CONSULT-III APPLICATION ITEM
Data Monitor

Monitored Item	
IGN ON SW	Indicates [ON/OFF] condition of ignition switch in ON position.
ACC ON SW	Indicates [ON/OFF] condition of ignition switch in ACC position.
KEYLESS LOCK	Indicates [ON/OFF] condition of lock signal from keyfob.
KEYLESS UNLOCK	Indicates [ON/OFF] condition of unlock signal from keyfob.
KEYLESS TRUNK	Indicates [ON/OFF] condition of power back door open signal from keyfob.
KEYLESS PSD R	Indicates [ON/OFF] condition of power sliding door LH signal from keyfob.
KEYLESS PSD L	Indicates [ON/OFF] condition of power sliding door RH signal from keyfob.
KEYLESS PBD	Indicates [ON/OFF] condition of power back door close signal from keyfob.
TRNK OPNR SW	Indicates [ON/OFF] condition of power back door switch.
TRNK CYL SW	OFF (not equipped)
TRNK OPN MNTR	Indicates [ON/OFF] condition of power back door position.
HOOD SW	OFF (not equipped)
DOOR SW-DR	Indicates [ON/OFF] condition of front door switch LH.
DOOR SW-AS	Indicates [ON/OFF] condition of rear door switch RH.
DOOR SW-RR	Indicates [ON/OFF] condition of rear door switch LH.
DOOR SW-RL	Indicates [ON/OFF] condition of back door switch.
BACK DOOR SW	Indicates [ON/OFF] condition of lock signal from door key cylinder switch.
KEY CYL LK-SW	Indicates [ON/OFF] condition of unlock signal from door key cylinder switch.
KEY CYL UN-SW	Indicates [ON/OFF] condition of lock signal from lock/unlock switch.
CDL LOCK SW	Indicates [ON/OFF] condition of unlock signal from lock/unlock switch.
CDL UNLOCK SW	

Active Test

Test Item	Description
THEFT IND	This test is able to check security indicator lamp operation. The lamp will be turned on when "ON" on CONSULT-III screen is touched.

VEHICLE SECURITY (THEFT WARNING) SYSTEM
 < SERVICE INFORMATION >

Test Item	Description
HEADLAMP (HI)	This test is able to check vehicle security lamp operation. The high beam headlamps will be acti- vated for 0.5 seconds after "ON" on CONSULT-III screen is touched.
VEHICLE SECURITY HORN	This test is able to check vehicle security horn operation. The horns will be activated for 0.5 sec- onds after "ON" on CONSULT-III screen is touched.

Work Support

Test Item	Description
SECURITY ALARM SET	This mode can confirm and change security alarm ON-OFF setting.
THEFT ALM TRG	The switch which triggered vehicle security alarm is recorded. This mode is able to confirm and erase the record of vehicle security alarm. The trigger data can be erased by touching "CLEAR" on CONSULT-III screen.

Trouble Diagnosis

WORK FLOW

- For "POWER DOOR LOCK SYSTEM" diagnosis, refer to BL-16.
- For "REMOTE KEYLESS ENTRY SYSTEM" diagnosis, refer to BL-48.

VEHICLE SECURITY (THEFT WARNING) SYSTEM

Preliminary Check

The system operation is canceled by turning ignition switch to ACC at any step between START and ARMED in the following flow chart.

WIIA1152E
After performing preliminary check, go to symptom chart.

VEHICLE SECURITY (THEFT WARNING) SYSTEM

< SERVICE INFORMATION >
Symptom Chart

	SYMPTOM	PROCEDURE	Diagnostic procedure
1	Vehicle security system cannot be set by	All items	Diagnostic Procedure 1 Refer to BL-84, "Diagnosis Procedure 1".
			If the above systems are "OK", replace BCM.
		Lock/unlock switch	Diagnostic Procedure 6 Refer to BL-91, "Diagnosis Procedure 6".
			If the above systems are "OK", check main power window and door lock/ unlock switch.
		Door outside key (driver)	Diagnostic Procedure 3 Refer to BL-89, "Diagnosis Procedure 3".
			If the above systems are "OK", check main power window and door lock/ unlock switch.
		Keyfob	Check remote keyless entry function.
			If the above systems are "OK", replace BCM.
2	Security indicator does not turn "ON".	Combination meter	Diagnostic Procedure 2 Refer to BL-88, "Diagnosis Procedure 2".
		BCM	If the above systems are "OK", replace BCM.
3	*1 Vehicle security system does not alarm when	Any door is opened.	Diagnostic Procedure 1 Refer to BL-84, "Diagnosis Procedure 1".
			If the above systems are "OK", replace BCM.
4	Vehicle security alarm does not activate.	Horn alarm	Diagnostic Procedure 4 Refer to BL-91, "Diagnosis Procedure 4".
			If the above systems are "OK", check horn system. Refer to WW-39.
		Headlamp alarm	Diagnostic Procedure 5 Refer to BL-91, "Diagnosis Procedure 5".
			If the above systems are "OK", replace BCM.
5	Vehicle security system cannot be canceled by	Door outside key (driver)	Diagnostic Procedure 3 Refer to BL-89, "Diagnosis Procedure 3".
			If the above systems are "OK", check main power window and door lock/ unlock switch.
		Keyfob	Check remote keyless entry function.
			If the above systems are "OK", replace BCM.

*1: Make sure the system is in the armed phase.

Diagnosis Procedure 1

Door Switch Check (Without Automatic Back Door System)

1.CHECK DOOR SWITCHES INPUT SIGNAL
E)With CONSULT-III

Check door switches ("DOOR SW-DR", "DOOR SW-AS", "DOOR SW-RL", "DOOR SW-RR", "BACK DOOR SW") in DATA MONITOR mode with CONSULT-III. Refer to BL-34, "CONSULT-III Function (BCM)".

- When doors are open:

DOOR SW-DR	: ON
DOOR SW-AS	: ON
DOOR SW-RR	: ON

VEHICLE SECURITY (THEFT WARNING) SYSTEM

< SERVICE INFORMATION >

DOOR SW-RL	ON
BACK DOOR SW	ON

- When doors are closed:

DOOR SW-DR	: OFF
DOOR SW-AS	: OFF
DOOR SW-RR	: OFF
DOOR SW-RL	: OFF
BACK DOOR SW	: OFF

(6) Without CONSULT-III

Check voltage between BCM connector M18 or M19 terminals 12, 13, 43, 47, 48 and ground.

Connector	Item	Terminals		Condition	Voltage (V) (Approx.)
		(+)	(-)		
M19	Back door switch	43	Ground	Open \downarrow Closed	$\begin{gathered} 0 \\ \downarrow \\ \text { Battery voltage } \end{gathered}$
	Front door switch LH	47			
	Sliding door switch LH	48			
M18	Front door switch RH	12			
	Sliding door switch RH	13			

OK or NG

OK >> Door switch circuit is OK.
NG >> GO TO 2.
2. CHECK DOOR SWITCH CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect door switch and BCM.
3. Check continuity between door switch connector (B) B8 (Front LH), B108 (Front RH), B46 (Sliding LH), B135 (Sliding RH) or D512 (Back) terminal 1 and BCM connector (A) M18, M19 terminals 12, 13, 43, 47 and 48.

$1-12$: Continuity should exist.
$1-13$: Continuity should exist.
$1-43$: Continuity should exist.
$1-47$: Continuity should exist.
$1-48$: Continuity should exist.

4. Check continuity between door switch connector (B) B8 (Front LH), B108 (Front RH), B46 (Sliding LH), B135 (Sliding RH) or D512 (Back) terminal 1 and ground.

1 - Ground : Continuity should not exist.
OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness.
3. CHECK DOOR SWITCHES

VEHICLE SECURITY (THEFT WARNING) SYSTEM

< SERVICE INFORMATION >
Check continuity between front or rear door switch terminal 1 and exposed metal of switch while pressing and releasing switch.

Door switch is released : Continuity should exist. Door switch is pushed : Continuity should not exist.

BACK DOOR

Check continuity between back door switch terminals 1 and 3 while pressing and releasing switch.

Door switch is released : Continuity should exist.
Door switch is pushed : Continuity should not exist.
OK or NG
OK >> (Front and rear doors) Switch circuit is OK.
OK >> (Back door) GO TO 4.
NG >> Replace door switch.

4.CHECK BACK DOOR SWITCH GROUND

Check continuity between back door switch connector D512 terminal 3 and ground.

$$
3 \text { - Ground } \quad: \text { Continuity should exist. }
$$

OK or NG
OK >> Back door switch circuit is OK.
NG >> Repair or replace harness.

Door Switch Check (With Automatic Back Door System)
1.CHECK DOOR SWITCHES INPUT SIGNAL

With CONSULT-III
Check door switches ("DOOR SW-DR", "DOOR SW-AS", "DOOR SW-RL", "DOOR SW-RR", "BACK DOOR SW") in DATA MONITOR mode with CONSULT-III. Refer to BL-34, "CONSULT-III Function (BCM)".

- When doors are open:

DOOR SW-DR	: ON
DOOR SW-AS	: ON
DOOR SW-RR	: ON
DOOR SW-RL	: ON
BACK DOOR SW	: ON

- When doors are closed:

DOOR SW-DR	: OFF
DOOR SW-AS	: OFF
DOOR SW-RR	: OFF

VEHICLE SECURITY (THEFT WARNING) SYSTEM

< SERVICE INFORMATION >

DOOR SW-RL	OFF
BACK DOOR SW	: OFF

(8) Without CONSULT-III

Check voltage between BCM connector M18 or M19 terminals 12, 13, 43, 47, 48 and ground.

Connector	Item	Terminals		Condition	Voltage (V) (Approx.)
		(+)	(-)		
M19	Back door latch	43	Ground	Open\downarrowClosed	0\downarrowBattery voltage
	Front door switch LH	47			
	Sliding door switch LH	48			
M18	Front door switch RH	12			
	Sliding door switch RH	13			

OK or NG

OK >> Door switch is OK.
NG >> GO TO 2.
2. CHECK DOOR SWITCH CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect door switch and BCM.
3. Check continuity between door switch connector (B) B8 (Front LH), B108 (Front RH), B46 (Sliding LH), B135 (Sliding RH) terminal 1 or back door latch (door ajar switch) connector (C) D511 terminal 7 and BCM connector (A) M18, M19 terminals 12, 13, 43, 47 and 48.

$1-47$: Continuity should exist.
$1-12$: Continuity should exist.
$1-48$: Continuity should exist.
$1-13$: Continuity should exist.
$7-43$: Continuity should exist.

4. Check continuity between door switch connector (B) B8 (Front LH), B108 (Front RH), B46 (Sliding LH), B135 (Sliding RH) terminal 1 or back door latch (door ajar switch) connector (C) D511 terminal 7 and ground.

$$
\begin{array}{ll}
1-\text { Ground } & \text { : Continuity should not exist. } \\
7 \text { - Ground } & \text { : Continuity should not exist. }
\end{array}
$$

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness.

VEHICLE SECURITY (THEFT WARNING) SYSTEM

< SERVICE INFORMATION >
Check continuity between front or rear door switch terminal 1 and exposed metal of switch while pressing and releasing switch.

Door switch is released : Continuity should exist. Door switch is pushed : Continuity should not exist.

WIIA0782E

BACK DOOR

Check continuity between back door latch (door ajar switch) terminals 7 and 8 while pressing (closing back door) and releasing (opening back door) switch.

When back door is open : Continuity should exist.
When back door is closed : Continuity should not exist.
OK or NG
OK >> (Front and rear doors) Switch circuit is OK.
OK >> (Back door) GO TO 4.
NG >> Replace door switch.

4.CHECK BACK DOOR SWITCH GROUND

Check continuity between back door latch connector D511 terminal 8 and ground.

8 - Ground

: Continuity should exist.
OK or NG
OK >> Back door switch circuit is OK.
NG >> Repair or replace harness.

Diagnosis Procedure 2

SECURITY INDICATOR LAMP CHECK

1.SECURITY INDICATOR LAMP ACTIVE TEST
(1) With CONSULT-III

Check "THEFT IND" in "ACTIVE TEST" mode with CONSULT-III.
(8)Without CONSULT-III

1. Disconnect BCM.
2. Check voltage between BCM harness connector M18 terminal 23 and ground.

Connector	Terminal		Condition	Voltage (V) (Approx.)
	$(+)$	$(-)$		0
	23	Ground	ON	OFF
Battery volt- age				

OK or NG

OK >> Security indicator lamp is OK.

VEHICLE SECURITY (THEFT WARNING) SYSTEM

< SERVICE INFORMATION >
NG >> GO TO 2.
2. SECURITY INDICATOR LAMP CHECK

Check indicator lamp condition.
Refer to DI-23.
OK or NG
OK >> GO TO 3.
NG >> Replace combination meter (security indicator lamp). Refer to IP-10, "Instrument Panel".
3. CHECK HARNESS CONTINUITY

1. Turn ignition switch OFF.
2. Disconnect BCM and combination meter connector.
3. Check continuity between BCM connector (A) M18 terminal 23 and combination meter connector (B) M24 terminal 35.
```
23-35
: Continuity should exist.
```

4. Check continuity between BCM connector (A) M18 terminal 23 and ground.

23-Ground : Continuity should not exist.
OK or NG
OK >> Check the following:

- 10A fuse [No. 19, located in fuse block (J/B)]
- Harness for open or short between security indicator lamp and fuse

NG >> Repair or replace harness.

Diagnosis Procedure 3

1. CHECK FRONT DOOR LOCK ASSEMBLY LH (KEY CYLINDER SWITCH)
(B) With CONSULT-III

Check front door lock assembly LH (key cylinder switch) ("KEY CYL LK-SW") and ("KEY CYL UN-SW) in DATA MONITOR mode with CONSULT-III. Refer to BL-34, "CONSULT-III Function (BCM)".

- When key inserted in left front door key cylinder is turned to LOCK:

KEY CYL LK-SW : ON

- When key inserted in left front key cylinder is turned to UNLOCK:

KEY CYL UN-SW : ON
(8)Without CONSULT-III

Check voltage between main power window and door lock/unlock switch connector D7 terminals 6, 7 (without automatic sliding door system or automatic back door system) or terminals 4, 6 (with automatic sliding door system or automatic back door system) and ground.

Without Automatic Sliding Door System or Automatic Back Door System

Connector	Terminals		Condition of left front key cylinder	Voltage (V) (Approx.)
	(+)	(-)		
D7		Ground	Neutral/Unlock	5
			Lock	0
	7		Neutral/Lock	5
			Unlock	0

VEHICLE SECURITY (THEFT WARNING) SYSTEM

< SERVICE INFORMATION >
With Automatic Sliding Door System or Automatic Back Door System

Connector	Terminals		Condition of left front key cylinder	Voltage (V) (Approx.)
	(+)	(-)		
D7		Ground	Neutral/Unlock	5
			Lock	0
	6		Neutral/Lock	5
			Unlock	0

OK or NG
OK >> Key cylinder switch signal is OK.
NG >> GO TO 2.
2. CHECK DOOR KEY CYLINDER SWITCH LH GROUND HARNESS

Check continuity between front door lock assembly LH (key cylinder switch) connector D14 terminal 5 and body ground.

Connector	Terminals	Continuity
D14	5 - Ground	Yes

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness.
3. CHECK DOOR KEY CYLINDER SWITCH LH

Check continuity between front door lock assembly LH (key cylinder switch) terminals.

Terminals	Condition	Continuity
$1-5$	Key is turned to UNLOCK or neutral.	No
	Key is turned to LOCK.	Yes
$5-6$	Key is turned to LOCK or neutral.	No
	Key is turned to UNLOCK.	Yes

OK or NG

OK >> GO TO 4.
NG >> Replace front door lock assembly LH (key cylinder switch). Refer to BL-169.
4. CHECK DOOR KEY CYLINDER HARNESS

Check continuity between main power window and door lock/unlock switch connector (A) D7 terminals 6, 7 (without automatic sliding door system) or terminals 4, 6 (with automatic sliding door system) and front door lock assembly LH (key cylinder switch) connector (B) D14 terminals 1, 6 and body ground.

VEHICLE SECURITY (THEFT WARNING) SYSTEM

< SERVICE INFORMATION >

With Automatic Sliding Door System

Connector	Terminals	Connector	Terminals	Continuity
A: Main power win- dow and door lock/ unlock switch	4	B: Front door lock assembly	6	LH (key cylinder switch)
	4	6	Yes	
	6	Ground		Yes

OK or NG
OK >> Replace main power window and door lock/unlock switch.
NG >> Repair or replace harness.

Diagnosis Procedure 4

VEHICLE SECURITY HORN ALARM CHECK
 1.CHECK HORN OPERATION

Check if horn sounds with horn switch.
Does horn operate?
Yes >> Check harness for open or short between IPDM E/R and horn relay.
No >> Check horn circuit. Refer to WW-39.

Diagnosis Procedure 5

VEHICLE SECURITY HEADLAMP ALARM CHECK

1.CHECK VEHICLE SECURITY HEADLAMP ALARM OPERATION

Check if headlamps operate with lighting switch.
Do headlamps come on when turning switch ON?
Yes >> Headlamp alarm is OK.
No >> Check headlamp system. Refer to LT-5 or LT-25.

Diagnosis Procedure 6

DOOR LOCK/UNLOCK SWITCH CHECK

1.CHECK DOOR LOCK/UNLOCK SWITCH INPUT SIGNAL

Check if power door lock operates with door lock/unlock switch.
Do doors lock/unlock when using each door lock/unlock switch?
Yes >> Door lock/unlock switch is OK.
No >> Refer to BL-16.

AUTOMATIC SLIDING DOOR SYSTEM

Component Parts and Harness Connector Location

1. Sliding door switch LH B46
RH B135
2. Sliding door open/close switch LH
3. Sliding door open/close switch LH B58
RH B140
4. Remote keyless entry receiver M120 (view with instrument panel removed)
5. BCM M18, M19, M20
(view with instrument panel removed)
6. Automatic door main switch R10
7. Sliding door control unit LH B60, B61, B501 (left rear body) RH B143, B144, B401 (right rear body)
8. Front pillar RH
9. Front pillar LH
10. Sliding door open/close switch RH
11. Sliding door motor assembly LH B59 (left rear body) RH B145 (right rear body)

System Description

- It is possible to automatically open/close the sliding doors with automatic main door switch, keyfob, or sliding door open/close switch.
- It is possible to switch the sliding doors between auto and manual operation by switching the automatic main door switch ON/OFF.

OPERATION DESCRIPTION

Automatic Door Main Switch Operation (Fully Closed \rightarrow Fully Open Operation)

- When the automatic door main switch is pressed, sliding door control unit terminal 15 receives the signal.
- The sliding door control unit checks the automatic transaxle selector lever (A/T device) position through terminal 18, vehicle speed through terminal 7 and battery voltage.
- For automatic sliding door LH, fuel lid door status is checked through sliding door control unit terminal 13.
- Door lock status is checked through terminal 3. If the door is locked, the sliding door control unit will unlock the door through terminal 30.
- When the sliding door control unit receives the signal, if the auto sliding door operating enable conditions are met, it sends the unlock signal to the sliding door latch control unit.
- When the sliding door latch control unit receives the signal, it supplies voltage from terminal 10 to operate the release actuator and unlatches the door lock.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >

- The sliding door control unit supplies power from terminal 33 and supplies power from terminal 34 to the magnetic clutch to operate the sliding door motor and slide the sliding door in the open direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the sliding door is opened to the full-open position, the full-open position is detected by the encoder (built into the sliding door motor assembly), and the sliding door control unit switches the sliding door motor OFF and controls the magnetic clutch ON \rightarrow half clutch \rightarrow OFF.
- The sliding door is mechanically held in the fully open position by the checker.

Remote Keyless Entry Switch Operation (Fully Closed \rightarrow Fully Open Operation)

- When the keyfob button is pressed for at least 0.5 seconds, sliding door control unit terminal 7 receives the signal.
- The sliding door control unit checks the automatic transaxle selector lever (A / T device) position through terminal 18, vehicle speed through terminal 7 and battery voltage.
- For automatic sliding door LH, fuel lid door status is checked through sliding door control unit terminal 13.
- Door lock status is checked through terminal 3, if the door is locked, the sliding door control unit will unlock the door through terminal 30.
- When the sliding door control unit receives the signal, if the auto sliding door operating enable conditions are met, it sends the unlock signal to the sliding door latch control unit.
- When the sliding door latch control unit receives the signal, it supplies voltage from terminal 10 to operate the release actuator and unlatches the door lock.
- The sliding door control unit supplies power from terminal 33 and supplies power from terminal 34 to the magnetic clutch to operate the sliding door motor and slide the sliding door in the open direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the sliding door is opened to the full-open position, the full-open position is detected by the encoder (built into the sliding door motor assembly), and the sliding door control unit switches the sliding door motor OFF and controls the magnetic clutch $\mathrm{ON} \rightarrow$ half clutch \rightarrow OFF.
- The sliding door is mechanically held in the fully open position by the checker.

Sliding Door Open/Close Switch Operation (Fully Closed \rightarrow Fully Open Operation)

- When the sliding door open/close switch is pressed, sliding door control unit terminal 2 receives the signal.
- The sliding door control unit checks the automatic transaxle selector lever (A / T device) position through terminal 18, vehicle speed through terminal 7 and battery voltage.
- For automatic sliding door LH, fuel lid door status is checked through sliding door control unit terminal 13.
- When the sliding door control unit receives the signal, if the auto sliding door operating enable conditions are met, including automatic door main switch in the ON position, doors in the unlock position and the child lock switch in the OFF position, it sends the unlock signal to the sliding door latch control unit.
- When the sliding door latch control unit receives the signal, it supplies voltage from terminal 10 to operate the release actuator and unlatches the door lock.
- The sliding door control unit supplies power from terminal 33 and supplies power from terminal 34 to the magnetic clutch to operate the sliding door motor and slide the sliding door in the open direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the sliding door is opened to the full-open position, the full-open position is detected by the encoder (built into the sliding door motor assembly), and the sliding door control unit switches the sliding door motor OFF and controls the magnetic clutch $\mathrm{ON} \rightarrow$ half clutch \rightarrow OFF.
- The sliding door is mechanically held in the fully open position by the checker.

Automatic Door Main Switch Operation (Fully Open \rightarrow Fully Closed Operation)

- When the automatic door main switch is pressed, the sliding door control unit terminal 15 receives the signal.
- When the sliding door control unit receives the signal, if the auto sliding door operating enable conditions are met, it operates the sliding door motor.
- The sliding door control unit supplies power from terminal 36 and supplies power from terminal 34 to the magnetic clutch to operate the sliding door motor and slide the sliding door in the close direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the sliding door reaches the half-latch state, the half-latch switch closes and the sliding door control unit detects the signal through terminal 5.
- When the sliding door control unit receives the signal, it switches OFF the sliding door motor and sends the latch command through terminal 26 to the sliding door latch control unit terminal 6.
- When the sliding door auto closure operates the cinch latch motor and the full-latch switch detects this, sliding door latch control unit terminal 7 receives the signal and reverses the latch motor to the neutral position.
- The siding door auto closure operation ends when the door is fully closed. The sliding door remains unlocked.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
Remote Keyless Entry Operation (Fully Open \rightarrow Fully Closed Operation)

- When the keyfob button is pressed for at least 0.5 seconds, the sliding door control unit terminal 7 receives the signal.
- When the sliding door control unit receives the signal, if the auto sliding door operating enable conditions are met, it operates the sliding door motor.
- The sliding door control unit supplies power from terminal 36 and supplies power from terminal 34 to the magnetic clutch to operate the sliding door motor and slide the sliding door in the close direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the sliding door reaches the half-latch state, the half-latch switch closes and the sliding door control unit detects the signal through terminal 5.
- When the sliding door control unit receives the signal, it switches OFF the sliding door motor and sends the latch command through terminal 26 to the sliding door latch control unit terminal 6.
- When the sliding door auto closure operates the cinch latch motor and the full-latch switch detects this, sliding door latch control unit terminal 7 receives the signal and reverses the latch motor to the neutral position.
- The sliding door auto closure operation ends when the door is fully closed. The sliding door remains unlocked.
Remote Keyless Entry Operation (Fully Open \rightarrow Fully Closed Operation)
Power Assist Function
- When the sliding door is pushed or pulled from any position, operations switch to the auto open/close function.
- The automatic door main switch must be in the ON position.

Sliding Door Power Assist Operation (Fully Closed \rightarrow Fully Open Operation)

- For automatic sliding door LH, fuel lid door status is checked through sliding door control unit terminal 13.
- The sliding door control unit checks the automatic transaxle selector lever (A/T device) position through terminal 18 , vehicle speed through terminal 7 and battery voltage.
- When the sliding door control unit detects motion through terminals 4 and 17, if the auto sliding door operating enable conditions are met, it applies power to terminals 33 and 34 to operate the door in the open direction.
- The sliding door control unit supplies power from terminal 33 and supplies power from terminal 34 to the magnetic clutch to operate the sliding door motor and slide the sliding door in the open direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the sliding door is opened to the full-open position, the full-open position is detected by the encoder (built into the sliding door motor assembly), and the sliding door control unit switches the sliding door motor OFF and controls the magnetic clutch $\mathrm{ON} \rightarrow$ half clutch \rightarrow OFF.
- The sliding door is mechanically held in the fully open position by the checker.

Sliding Door Power Assist Operation (Fully Open \rightarrow Fully Closed Operation)

- When the handle is pulled or the door is moved in the closed direction, sliding door control unit initiates the power assist close operation.
- The sliding door control unit supplies power from terminal 36 and supplies power from terminal 34 to the magnetic clutch to operate the sliding door motor and slide the sliding door in the close direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the sliding door reaches the half-latch state, the half-latch switch closes and the sliding door control unit detects the signal through terminal 5 .
- When the sliding door control unit receives the signal, it switches OFF the sliding door motor and sends the latch command through terminal 26 to the sliding door latch control unit terminal 6.
- When the sliding door auto closure operates the cinch latch motor and the full-latch switch detects this, sliding door latch control unit terminal 7 receives the signal and reverses the latch motor to the neutral position.
- The siding door auto closure operation ends when the door is fully closed. The sliding door remains unlocked.

Reverse Function

- During auto open/close operation, if automatic door main switch, keyfob button or sliding door open/close switch is pressed, the sliding door reverses direction. A chime will sound to announce the reversal.

Anti-Pinch Function

- During auto open/close operation, if pinching of an object is detected, the sliding door reverses direction to prevent pinching by moving to the full open or close position.

Intermittent Clutch Control Function

- During automatic operation, if the door is stopped midway, for example due to the automatic door main switch being switched to OFF or a system error, the clutch is intermittently turned ON \rightarrow OFF to prevent sud-

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
den opening or closing. Intermittent clutch control ends after 6 seconds or when no door motion is detected. If the vehicle is on level ground, intermittent clutch control is executed for $1 / 2$ second.
Precautions

- Check and inspect operation of the remote control auto sliding door system on level ground.

Auto Sliding Door Operation Enable Conditions

Operation	Automatic door main switch or remote keyless entry		Sliding door open/close switch		Power assist	
Operating direction	Fully closed \rightarrow open	Fully open \rightarrow closed	Fully closed \rightarrow open	Fully open \rightarrow closed	Fully closed \rightarrow open	$\text { Fully open } \rightarrow$ closed
Main switch	-		ON			
Vehicle stop condition	Automatic transmission selector lever in P position and vehicle speed signal is less than 2 km/h	-	Automatic transmission selector lever in P position and vehicle speed signal is less than 2 km/h	-	Automatic transmission selector lever in P position and vehicle speed signal is less than 2 km/h	-
Door lock knob state	-				Unlock (if door is fully closed)	-
Battery voltage	Approx. 11V or more				About 9V min. (operates with warning chime for low voltage of $9-11 \mathrm{~V}$)	

Control When Handle Open/Closed When Operating Enable Conditions Not Yet Met

Items	Operation condition	Not met case	Control
Main switch	ON	OFF	Manual mode (Power operation is available with automatic door main switch and remote keyless entry)
A/T selector lever P position	P position	Other	Power close operation
Voltage drop	$9-6 \mathrm{~V}$	Stopped while constrained (clutch is engaged and warning chime sounds)	

Control When Operating Enable Conditions No Longer Met

Description	Operation	Condition
Main switch turned OFF during power open or close	Warning chime active and clutch intermit- tent mode \rightarrow Shift to manual mode (Recovery to power mode when main switch turned ON or door fully closed)	\rightarrow Shift to manual mode
A/T selector lever P position	Warning chime active continuously (0.66 second dings) and one-way operation con- tinues if closing Warning chime active continuously (0.33 second beep followed by 0.33 second pause) and one-way operation continues if opening. Warning chime remains on after completing open function.	Stop continued
Voltage drop 11-9V	One-way operation continued (equivalent to the case of starting voltage $\leftarrow 11 \mathrm{~V}$ for handle operation with warning chime ac- tive)	Normal operation

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >

Description	Operation	Condition
Voltage drop 9-micro reset V	Motor stopped (clutch ON) \rightarrow stop contin- ued while still constrained \rightarrow (Switching the main switch OFF shifts operation to inter- mittent mode.)	\rightarrow Shift to manual mode unless voltages re- turns to $>9 \mathrm{~V}$ within 5 seconds
Voltage drop below micro reset V	Stop continued while still constrained (Clutch ON circuit) Clutch is released when micro reset occurs	
(Clutch hold not possible voltage)	The clutch force is weak, so there is slip- ping on hills, etc.	\rightarrow Shift to manual mode

Warning Chime Active Conditions

The warning chime uses two types of audio warnings, a friendly chime and a warning chime. The friendly chime consists of dings lasting 0.66 seconds each immediately followed by the next ding. The warning chime consists of beeps lasting 0.33 seconds with a pause of 0.33 seconds between each beep.

Operation status	Operation or conditions	Warning chime pattern
When reverse operation starts	When reverse operation detected	Friendly chime 1.33 seconds, 2 dings
During power close	When vehicle not in P position	Friendly chime Continuous
During power open or close	Obstacle is detected	Warning chime 2 seconds, 3 beeps
During power open	When vehicle not in P position or vehi- cle is moving at greater than $2 \mathrm{~km} / \mathrm{h}$	Warning chime Continuous until vehicle is shifted to P position

Reverse Conditions

Type	Control
Automatic door main switch, remote keyless entry or sliding door open/close switch operation	Both open/close directions
Detection method	Operation speed and motor current change direction
Non-reversed area	- Between full open and approx. 45 mm (near full-open lock) - Closure operation area
Number of times reverse allowed	A maximum of one obstacle is allowed during an open or close op- eration. If a second obstacle is detected, the door will enter man- ual mode.

[^0]- Open operation from fully closed

- Close operation from fully open

LIIA1628E

SLIDING DOOR LATCH AUTO CLOSURE FUNCTION DESCRIPTION

- If the sliding door is ajar (with lock and striker engaged), the motor automatically retracts the door to fully close it.
- During auto-close operation, if the exterior/interior handle is operated, the retraction mechanism is mechanically cancelled, and the door can open/close.

SLIDING DOOR LATCH AUTO CLOSURE OPERATION DESCRIPTION

- If the sliding door is ajar, sliding door latch control unit terminal 8 receives the signal, supplies power from terminal 3 to cinch latch motor terminals 1, grounds sliding door latch control unit terminal 9 from terminal 2, and rotates the cinch latch motor in the close direction.
- When the motor rotates, the cable is retracted and the close lever rotated.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >

- Pressed by the rotated close lever, the latch rotates and pulls in the door until it is fully latched.
- When the sliding door is fully latched, sliding door latch control unit terminal 7 receives the signal, supplies power from terminal 9 to cinch latch motor terminal 2, grounds sliding door control unit terminals 3 from terminal 1, and rotates the closure motor in the open direction.
- Then, when the neutral switch is pressed and the signal is received by sliding door latch control unit terminal 1, it stops the cinch latch motor and stops with the door fully closed.

Automatic Sliding Door Initialization Procedure

RESTART PROCEDURE WHEN CONTROL UNIT OR BATTERY IS DISCONNECTED

Some power sliding door functions will become disabled after the battery terminal is disconnected and/or the electrical supply is interrupted.
The following procedure must be used to restart each power sliding door so that all functions are enabled:

1. Turn the Automatic Door Main Switch OFF.

2. Manually open the power sliding door to its fully open position.
3. Turn the Automatic Door Main Switch ON.
4. Press and HOLD the overhead Sliding Door Open/Close Switch until the door completely closes and stops, then release the switch.

5. Press and HOLD the overhead Sliding Door Open/Close Switch again until the door completely opens and stops, then release the switch.
6. Press and HOLD the overhead Sliding Door Open/Close Switch again until the door completely closes and stops, then release the switch.
7. Turn ignition switch OFF.

The power sliding door restart procedure is complete. The above procedure must be repeated for the other power sliding door (if equipped).
INITIALIZATION PROCEDURE WHEN A COMPONENT IS REPLACED
Initialization mode is used to set the default values of door full open position and normal motor current. It is necessary to complete initialization and reset the default settings under any of the following circumstances:

- Sliding door control unit is replaced.
- Sliding door motor is replaced.
- Sliding door is adjusted.
- Sliding door panel is replaced or repaired.
- Body panel near sliding door is replaced or repaired.
- Any sliding door roller is replaced or adjusted.
- Any sliding door striker is replaced or adjusted.
- Any sliding door dovetail is replaced or adjusted.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >

- Sliding door lock assembly is replaced.
- Rear rail is replaced.
- Sliding door weatherstrip is replaced.
- Sliding door contact switch is replaced or adjusted.
- When the battery is first connected, the sliding door control unit is automatically set to the initialization mode. The sliding door control unit may be manually set to initialization mode by performing the following procedure: NOTE:
While in initialization mode, only the overhead sliding door open/close switches are enabled. Remote keyless entry, door pillar switch and power assist functions are disabled. Each of the power sliding doors must be initialized individually. The following procedure can be repeated for each power sliding door needing initialization.

1. Open the sliding door being initialized.
2. Turn ignition switch ON.
3. Turn the Automatic Door Main Switch OFF.

4. Within 3 seconds after step 3, press the door pillar Sliding Door Open/Close Switch of the door being initialized 10 times within 10 seconds.

5. Within 3 seconds after step 4, turn ignition switch OFF then ON.

- You should hear three sliding door warning chimes.
- The three chimes indicate the sliding door control unit has entered initialization mode.
- Normal door functions are disabled during initialization.

6. Turn the Automatic Door Main Switch ON.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
7. Press and HOLD the overhead Sliding Door Open/Close Switch of the door being initialized until the door completely closes and stops, then release the switch.

8. Press and HOLD the same overhead Sliding Door Open/Close Switch of the door being initialized again until the door completely opens and stops, then release the switch.
9. Press and HOLD the same overhead Sliding Door Open/Close Switch of the door being initialized again until the door completely closes and stops, then release the switch.
10. Turn ignition switch OFF.

The power sliding door initialization process is complete. The above procedure may be repeated for the other power sliding door (if equipped).

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
Schematic

WITH RH AUTOMATIC SLIDING DOOR SYSTEM

AUTOMATIC SLIDING DOOR SYSTEM

WITH RH AND LH AUTOMATIC SLIDING DOOR SYSTEM

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
Wiring Diagram - S/CLOS -
WITH RH AUTOMATIC SLIDING DOOR SYSTEM

AUTOMATIC SLIDING DOOR SYSTEM

AUTOMATIC SLIDING DOOR SYSTEM

WITH RH AND LH AUTOMATIC SLIDING DOOR SYSTEM

AUTOMATIC SLIDING DOOR SYSTEM

AUTOMATIC SLIDING DOOR SYSTEM

$\frac{8}{172} \sqrt{3 / 45} \frac{6}{\frac{810}{w}}$

AUTOMATIC SLIDING DOOR SYSTEM
< SERVICE INFORMATION >

AUTOMATIC SLIDING DOOR SYSTEM
< SERVICE INFORMATION >
Sliding Door Control Unit Harness Connector Terminal Layout

Terminal and Reference Value for Sliding Door Control Unit

Terminal	Wire Color	Item	Condition	Voltage (V) (Approx.)
1	$\begin{gathered} \mathrm{L} / \mathrm{Y}^{* 1} \\ \mathrm{BR} / \mathrm{W}^{* 2} \end{gathered}$	Automatic door main switch ON/OFF switch	Automatic door main switch ON	0
			Automatic door main switch OFF	5
2	R/G	Sliding door open/close switch	Sliding door open/close switch ON	0
			Sliding door open/close switch OFF	5
3	$\begin{aligned} & \mathrm{Y} / \mathrm{R}^{* 1} \\ & \mathrm{P} / \mathrm{G}^{* 2} \end{aligned}$	Sliding door lock/unlock actuator unlock output signal	Power door lock switch door unlock operation	$0 \rightarrow$ Battery voltage $\rightarrow 0$
			Other than above	0
4	$\begin{gathered} \mathrm{L}^{* 1} \\ \mathrm{~W} / \mathrm{B}^{* 2} \end{gathered}$	Encoder pulse signal A	Sliding door (motor active)	 PIIA1060E
5	O/B	Half-latch switch	Sliding door Fully open \rightarrow half \rightarrow fully closed	
6	G	Ignition switch	Ignition switch ON	Battery voltage
			Ignition switch OFF	0
7	$\begin{gathered} \mathrm{Y}^{* 1} \\ \mathrm{Y} / \mathrm{B}^{* 2} \end{gathered}$	Power window serial link	When ignition switch is ON or power window timer operates	 PIIA2344E
8	LG/B*1		Warning chime ON	0
8	Y/G*	Warning chime output signar	Warning chime OFF	5
11	$\begin{aligned} & \mathrm{R}^{* 1} \\ & \mathrm{G}^{* 2} \end{aligned}$	Encoder power supply	-	9
12	Y/R	Battery power supply	-	Battery voltage

AUTOMATIC SLIDING DOOR SYSTEM
< SERVICE INFORMATION >

Terminal	Wire Color	Item	Condition	Voltage (V) (Approx.)
13	LG/W* ${ }^{*}$	Fuel door interlock switch	Fuel door closed	0
			Fuel door open	5
14	$\begin{aligned} & W / G^{* 1} \\ & R / W^{*} \end{aligned}$	Sliding door switch	OPEN	0
			CLOSED	5
15	$\begin{aligned} & \text { L/W }{ }^{* 1} \\ & \text { GR/W*2 } \end{aligned}$	Automatic door main switch	ON	0
			OFF	5
16	L	Child lockout switch	UNLOCK position	Battery voltage
			LOCK position while door is closing	0
17	$\begin{gathered} \mathrm{Y}^{* 1} \\ \mathrm{R} / \mathrm{B}^{* 2} \end{gathered}$	Encoder pulse signal B	Sliding door (motor active)	PIIA1060E
18	G/Y	A/T device (park position switch)	P position	0
			Other than above	5
22	$\begin{aligned} & \mathrm{G}^{* 1} \\ & \mathrm{~B}^{* 2} \end{aligned}$	Encoder ground	-	-
23	B	Ground	-	-
26	GR/L	Closure motor CLOSE output signal	Sliding door Fully open \rightarrow half \rightarrow fully closed	 SIIA1480E
27	W	Battery power supply	-	Battery voltage
28	G/Y	Door unlock input	Door lock \& unlock switch (Neutral \rightarrow Unlock)	$0 \rightarrow$ Battery voltage
30	$\begin{gathered} \mathrm{G} / \mathrm{Y}^{* 1} \\ \mathrm{BR} / \mathrm{R}^{* 2} \end{gathered}$	Sliding door lock motor unlock signal	Door lock (Neutral \rightarrow Unlock)	$0 \rightarrow$ Battery voltage
31	Y	Closure motor RETURN output signal	Sliding door Fully open \rightarrow half \rightarrow fully closed	 SIIA1480E
32	B	Ground	-	-
33	R	Sliding door motor OPEN output signal	Sliding door auto OPEN operation (motor active)	Battery voltage
			Other than above	0

AUTOMATIC SLIDING DOOR SYSTEM
< SERVICE INFORMATION >

Terminal	Wire Color	Item	Condition	Voltage (V) (Approx.)
			Auto sliding door (Motor active)	0
34	Y	Magnetic clutch power supply	Auto sliding door (Motor active to stationary)	
				PlIA1798E
36	B	Sliding door motor CLOSE output signal	Sliding door auto CLOSE operation (motor active)	Battery voltage
			Other than above	0
37	Y	Magnetic clutch ground	-	-

*1: LH
*2: RH
Sliding Door Latch Control Unit Harness Connector Terminal Layout

Terminal and Reference Value for Sliding Door Latch Control Unit

Terminal	Wire Col- or	Item	Condition	Voltage (V) (Approx.)
1	G	Neutral switch signal	Sliding door Fully open \rightarrow half \rightarrow fully closed	
2	Y	Cinch latch motor RETURN signal	Sliding door Fully open \rightarrow half \rightarrow fully closed	 SIIA1480E

AUTOMATIC SLIDING DOOR SYSTEM
< SERVICE INFORMATION >

Terminal	Wire Color	Item	Condition	Voltage (V) (Approx.)
3	G/B	Cinch latch motor CLOSE output	Latch Open (ON) \rightarrow Closed (OFF)	 SIIA1480E
			Other than above	0
	SB	Handle switch (open) signal	Handle operation	0
5			Other than above	5
6	GR/L	Cinch latch motor CLOSE signal	Sliding door Fully open \rightarrow half \rightarrow fully closed	 SIIA1480E
7	LG	Full-latch switch signal	Sliding door Fully open \rightarrow half \rightarrow fully closed	PIIA2171E
8	O/B	Half-latch switch signal	Sliding door Fully open \rightarrow half \rightarrow fully closed	PIIA2169E
9	L/B	Cinch latch motor OPEN output	Latch Close (OFF) \rightarrow Open (ON)	 SIIA1480E
			Other than above	0
10	R/W	Latch release actuator output	$\begin{gathered} \text { Latch } \\ (\text { Lock } \rightarrow \text { Unlock }) \end{gathered}$	$0 \rightarrow$ Momentarily above 0
			Other than above	0

Terminal and Reference Value for BCM

Refer to BCS-11, "Terminal and Reference Value for BCM".

Trouble Diagnosis Procedure

1. Check the symptom and customer's requests.
2. Understand outline of system. Refer to BL-92, "System Description".

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
3. Confirm system operation.
4. Perform self-diagnosis procedures. Refer to BL-123, "Self-Diagnosis Procedure".
5. Refer to diagnosis chart by symptom, repair or replace any malfunctioning parts. Refer to BL-124, "Diagnosis Chart".
6. Inspection End.

Self-Diagnosis Procedure

INPUT SIGNAL CHECK MODE

Input signal check mode allows testing of switch input signal to the sliding door control unit.
To activate input signal check mode on the automatic sliding door, perform the following steps:

1. Turn ignition switch OFF.
2. Turn automatic door main switch OFF (system cancelled).
3. Place A / T selector lever in P position.
4. Confirm fuel door closed (with LH sliding door).
5. Open sliding door RH or LH manually.
6. Have an assistant press and hold the sliding door open/close switch RH or LH.
7. While the assistant continues to hold the sliding door open/close switch RH or LH, turn ignition switch ON (DO NOT start engine).
8. After approximately 5 seconds, the back door warning chime will sound for 0.5 seconds.
9. Release the sliding door open/close switch RH or LH.
10. Within 8 seconds of the back door warning chime sounding, press and hold the automatic door main sliding door open/close switch RH or LH.
11. After approximately 5 seconds, the back door warning chime will sound for 1 second.
12. Release the automatic door main sliding door open/close switch RH or LH.
13. The input signal check mode is now initialized.

The input signal check mode can test the following inputs. The back door warning chime will sound for approximately 0.5 seconds each time a switch signal input occurs. Use this test when one of these inputs is not responding during normal automatic sliding door operation.

Switch signal	Operation	Refer to
Automatic door main switch	OFF \rightarrow ON	BL-126
Automatic door main sliding door open/close switch RH or LH	OFF \rightarrow ON	BL-126
Sliding door open/close switch RH or LH	OFF \rightarrow ON	BL-126
Sliding door switch RH or LH	OFF (door closed) \rightarrow ON (door open)	BL-63
A/T device (park position switch)	P position \rightarrow other than P position	$\underline{\text { SE-64 }}$
Fuel door interlock switch	OFF (fuel door closed) \rightarrow ON (fuel door open)	$\underline{\text { BL-179 }}$
Sliding door lock/unlock signal	LOCK \rightarrow UNLOCK	$\underline{B L-130 ~}$
Vehicle speed*	Vehicle speed	$\underline{B L-48}$
Remote keyless entry signal	Keyfob switch OFF \rightarrow ON	$\underline{B L-66 ~}$
Door lock/unlock signal	LOCK \rightarrow UNLOCK	$\underline{B L-63}$

*Back door warning chime should sound as soon as vehicle moves.
Turn ignition switch OFF to end input signal check mode.

OPERATING CHECK MODE

Operating check mode allows self-diagnosis of the automatic sliding door system.
To activate operating check mode on the automatic sliding door, perform the following steps:

1. Turn ignition switch OFF.
2. Turn automatic door main switch OFF (system cancelled).
3. Place A / T selector lever in P position.
4. Open sliding door RH or LH manually.
5. Have an assistant press and hold the sliding door open/close switch RH or LH.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
6. While the assistant continues to hold the sliding door open/close switch RH or LH, turn ignition switch ON (DO NOT start engine).
7. After approximately 5 seconds, the back door warning chime will sound for 0.5 seconds.
8. Release the sliding door open/close switch RH or LH.
9. Within 8 seconds of the back door warning chime sounding, press the automatic door main sliding door open/close switch RH or LH 5 times in rapid succession.
10. After approximately 5 seconds, the back door warning chime will sound for 1 second.
11. Release the automatic door main sliding door open/close switch RH or LH.
12. Immediately close the sliding door RH or LH manually.
13. Turn automatic door main switch ON.
14. Open and close the back door with the automatic door main sliding door open/close switch RH or LH to activate operating check mode.
Self-diagnosis results are indicated by the back door warning chime.

Back door warning chime order	Back door warning chime length	
Start self-diagnosis	OK	1.5 seconds
	0.5 seconds	NG
1. Operating conditions diagnosis	0.5 seconds	0.2 seconds
2. Sliding door encoder diagnosis	0.5 seconds	0.2 seconds
3. Sliding door clutch diagnosis	0.5 seconds	0.2 seconds
4. Sliding door motor diagnosis	0.5 seconds	0.2 seconds
5. Cinch latch motor diagnosis		0.2 seconds
Restart self-diagnosis		

Item	NG Result	Refer to
1. Operating conditions diagnosis result	One of the following operating conditions no longer met: ignition switch ON, automatic door main switch ON, A/T selector lever in P posi- tion	-
2. Sliding door encoder diagnosis result	Sensor diagnosis/short, pulse signal, pulse signal direction	BL-128
3. Sliding door clutch diagnosis result	Sliding door clutch does not operate	BL-128
4. Sliding door motor diagnosis result	Sliding door motor does not operate (no oper- ating current)	BL-127

Turn ignition switch OFF to end input signal check mode.

Diagnosis Chart

Symptom	Suspect systems	Refer to
Automatic operations are not executed from the sliding door fully closed or fully open position. (Auto open/close operations from a position midway through au- tomatic operation, power assist, and auto closure operate normal-	Latch release actuator system inspection	BL-131
ly.)		

AUTOMATIC SLIDING DOOR SYSTEM

SERVICE INFORMATION >

Symptom	Suspect systems	Refer to
Automatic operations are not carried out together with open/close operations. (Manual operations are normal.)	Automatic door main switch system inspection	BL-126
	Sliding door open/close switch system inspection	BL-126
	Magnetic clutch line check	BL-128
	Auto sliding door power supply and ground circuit system inspection.	BL-125
Stops midway through sliding door open/close operations, power assist does not operate.	Encoder system inspection	BL-128
Warning chime does not sound.	Warning chime system inspection	BL-132
During auto closing operations, if obstruction is detected, the door does not operate in reverse.	Encoder system inspection	BL-128
During cinching operations, the door does not operate in reverse if the sliding door handle is operated.	Handle switch system	BL-130
Child lockout system does not operate.	Child lockout switch system inspection	BL-131
When the keyfob is operated, the sliding door does not operate automatically.	Remote keyless entry system inspection	BL-48
Auto closure does not operate.	Half-latch switch system	BL-133
	Cinch latch motor system	BL-136
	Handle switch system	BL-130
	Contact switch	-
The sliding door does not open. (Closure motor rotation is not reversed.)	Neutral switch system	BL-135
	Full-latch switch	BL-134
	Handle switch system	BL-130
	Door switch	BL-37
Auto closure operation works, but the sliding door is not fully closed.	Full-latch switch system	BL-134
	Handle switch system	BL-130
	Cinch latch motor system	BL-136
	Sliding door latch assembly mechanism damaged or worn.	BL-131

Auto Sliding Door Power Supply and Ground Circuit Inspection

1.AUTO SLIDING DOOR POWER SUPPLY CIRCUIT INSPECTION

1. Turn ignition switch OFF.
2. Disconnect sliding door control unit.
3. Check voltage between sliding door control unit connectors B60, B61 (LH) or B143, B144 (RH) terminals 12, 27 and ground.

12 - Ground
: Approx. battery voltage
27 - Ground
: Approx. battery voltage
OK or NG
OK >> GO TO 2.
NG >> Repair the sliding door control unit power supply circuit.

2.AUTO SLIDING DOOR GROUND CIRCUIT INSPECTION

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
Check continuity between sliding door control unit connectors B60, B61 (LH) or B143, B144 (RH) terminals 23, 32 and ground.

```
23-Ground : Continuity should exist.
32-Ground : Continuity should exist.
```

OK or NG
OK >> Ground circuit is OK.
NG >> Repair or replace harness.

Automatic Door Main Switch System Inspection

1.AUTOMATIC DOOR MAIN SWITCH FUNCTION INSPECTION

Check automatic door main switch using switch operation.
OK or NG
OK >> Automatic door main switch is OK.
NG >> GO TO 2.
2.AUTOMATIC DOOR MAIN SWITCH SIGNAL INSPECTION

1. Turn ignition switch OFF.
2. While operating the automatic door main switch, check voltage between sliding door control unit connector B60 (LH) or B143 (RH) terminal 1 and ground.

Terminal		Measuring condition		Voltage (V) (Approx.)
(+)	(-)			
1	Ground	Automatic door main switch	ON	0
			OFF	5

OK or NG

OK >> Automatic door main switch is OK.
NG >> GO TO 3.
3.AUTOMATIC DOOR MAIN SWITCH CIRCUIT INSPECTION

1. Disconnect automatic door main switch and sliding door control unit.
2. Check continuity between automatic door main switch connector R10 terminals 3 (LH) or 4 (RH) and sliding door control unit connector B60 (LH) or B143 (RH) terminal 15.
```
3-15
: Continuity should exist.
4-15
: Continuity should exist.
```

OK or NG
OK >> Replace automatic door main switch.
NG >> Repair or replace harness.

Sliding Door Open/Close Switch System Inspection

1.SLIDING DOOR OPEN/CLOSE SWITCH FUNCTION INSPECTION

Check sliding door open/close switch using switch operation.
OK or NG
OK >> Sliding door open/close switch is OK.
NG >> GO TO 2.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >

2.SLIDING DOOR OPEN/CLOSE SWITCH SIGNAL INSPECTION

1. Turn ignition switch OFF.
2. While operating the sliding door open/close switch, check voltage between sliding door control unit connector B60 (LH) or B143 (RH) terminal 2 and ground.

Sliding door control unit connector

LIIA0755E

Terminal		Measuring condition		Voltage (V) (Approx.)
2	$(+)$			
	Ground	Sliding door open/close switch	ON	0
		OFF	5	

OK or NG
OK >> Sliding door open/close switch is OK.
NG >> GO TO 3.
3. SLIDING DOOR OPEN/CLOSE SWITCH CIRCUIT INSPECTION

1. Disconnect sliding door open/close switch and sliding door control unit.
2. Check continuity between sliding door open/close switch connector B58 (LH) or B140 (RH) terminal 1 and sliding door control unit connector B60 (LH) or B143 (RH) terminal 2.

1-2 : Continuity should exist.
OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness.

4. SLIDING DOOR OPEN/CLOSE SWITCH GROUND INSPECTION

Check continuity between sliding door open/close switch connector B58 (LH) or B140 (RH) terminal 2 and ground.

$$
2 \text { - Ground }
$$

: Continuity should exist.
OK or NG
OK >> Replace the sliding door open/close switch.
NG >> Repair or replace harness.

Sliding Door Motor System Inspection

INFOID:0000000004277199

1. SLIDING DOOR MOTOR SIGNAL INSPECTION
2. Turn ignition switch OFF.
3. Operate the sliding door fully open \rightarrow fully closed and check voltage between sliding door control unit connector B69 (LH) or B141 (RH) terminals 33, 36 and ground.

Terminal		Measuring condition	Voltage (V) (Approx.)
$(+)$	$(-)$		0
33	Ground	Fully open \rightarrow half \rightarrow fully closed	$0 \rightarrow$ Battery voltage $\rightarrow 0$

Sliding door control unit connector

LIIA0761E

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >

OK $\quad>$ GO TO 2.

NG >> Replace sliding door control unit.
2. SLIDING DOOR MOTOR OPERATION INSPECTION

Connect battery power to terminals 33 and 36 on the sliding door control unit connector B69 (LH) or B141 (RH) and check motor operation.
$33(+)-36$ (-) : It operates.
$33(-)-36$ (+) : It operates. (Reverse rotation)
OK or NG
OK >> Motor is OK.
NG >> Replace the sliding door motor. Refer to BL-172.

Magnetic Clutch Line Check

1.MAGNETIC CLUTCH SIGNAL INSPECTION

1. Turn ignition switch OFF.
2. Operate the sliding door and check voltage waveform between sliding door control unit connector B69 (LH) or B141 (RH) terminal 34 and ground using an oscilloscope.

Sliding Door Encoder System Inspection
INFOID:0000000004277201

1. SLIDING DOOR ENCODER POWER SUPPLY CIRCUIT INSPECTION
2. Turn ignition switch OFF.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
2. Check voltage between sliding door control unit connector B60 (LH) or B143 (RH) terminal 11 and ground.

11 - Ground
: Approx. 9V
OK or NG
OK >> GO TO 3.
NG >> GO TO 2.

2. SLIDING DOOR ENCODER GROUND CIRCUIT INSPECTION

Check continuity between sliding door control unit connector B60 (LH) or B143 (RH) terminal 22 and ground.

22 - Ground
 : Continuity should exist.

OK or NG
OK >> GO TO 4.
NG >> Replace sliding door control unit.

3. ENCODER (POSITION) SIGNAL INSPECTION

Operate the sliding door and check voltage waveform between sliding door control unit connector B60 (LH) or B143 (RH) terminals 4, 17 and ground using an oscilloscope.

4 - Ground 17 - Ground	OCC3383D
OK or NG	
OK >> GOTO 4. NG >> Replace sliding door encoder.	
4.SLIDING DOOR EN	UIT INSPECTION

1. Disconnect sliding door control unit and sliding door motor assembly.
2. Check continuity between sliding door control unit connector B60 (LH) or B143 (RH) (A) terminals 4, 11, 17, 22 and sliding door motor assembly connector B59 (LH) or B145 (RH) (B) terminals 1, 2, 3, 4.
Sliding Door RH

4-3
11-1
17-2
22-4
Sliding Door LH
4-2
11-1
17-3
22-4
: Continuity should exist.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
OK or NG
OK >> Sliding door encoder circuit is OK.
NG >> Repair or replace harness.
Sliding Door Remote Control Switch System Inspection

1. SLIDING DOOR REMOTE CONTROL SWITCH FUNCTION INSPECTION

Check sliding door remote control switch operation.
OK or NG
OK >> Sliding door remote control switch is OK.
NG >> GO TO 2.
2. SLIDING DOOR REMOTE CONTROL SWITCH SIGNAL INSPECTION

1. Turn ignition switch OFF.
2. Close the sliding door.
3. While operating the sliding door remote control switch, check voltage between sliding door latch control unit connector D204 (LH) or D304 (RH) terminal 5 and ground.

Terminal		Measuring condition	Voltage (V) (Approx.)
$(+)$	$(-)$		Sliding door handle open direc- tion operation
5	Other than above	0	
	5	5	

Sliding door latch C/U connector

LIIA0769E

OK or NG
OK >> Sliding door remote control switch is OK.
NG >> GO TO 3.
3. SLIDING DOOR REMOTE CONTROL SWITCH CIRCUIT INSPECTION

1. Disconnect sliding door remote control switch and sliding door latch control unit.
2. Check continuity between sliding door remote control switch connector D207 (LH) or D307 (RH) terminal 1 and sliding door latch control unit connector D204 (LH) or D304 (RH) terminal 5.

> 1-5 : Continuity should exist.

OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness.

4.SLIDING DOOR REMOTE CONTROL SWITCH GROUND INSPECTION

1. Close the sliding door.
2. Check continuity between sliding door remote control switch connector D207 (LH) or D307 (RH) terminal 3 and ground.

3 - Ground : Continuity should exist.

OK or NG
OK >> Replace the sliding door remote control switch. NG >> Repair or replace harness.

Sliding door remote control switch connector

LIIA0771E

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >

Child Lockout Switch System Inspection

1. CHILD LOCKOUT SWITCH SIGNAL INSPECTION

1. Turn ignition switch OFF.
2. Set child lockout switch in LOCK position and close door.
3. While operating the sliding door in the open direction, check voltage between sliding door control unit connector B60 (LH) or B143 (RH) terminal 16 and ground.

Terminal		Measuring condition	Voltage (V) (Approx.)
$(+)$	$(-)$		Sliding door handle in the open direction
16		0	

OK or NG

OK >> Switch is OK.

Sliding door control unit connector

LIIA0773E

NG >> GO TO 2.
2. CHILD LOCKOUT SWITCH CIRCUIT INSPECTION

1. Disconnect sliding door remote control switch and sliding door control unit.
2. Close the sliding door.
3. Check continuity between sliding door remote control switch connector D207 (LH) or D307 (RH) terminal 2 and sliding door control unit connector D204 (LH) or D304 (RH) terminal 16.
2-16 : Continuity should exist.

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness.

3. CHILD LOCKOUT SWITCH GROUND INSPECTION

Check continuity between sliding door remote control switch connector D207 (LH) or D307 (RH) terminal 3 and ground.

$$
3 \text { - Ground : Continuity should exist. }
$$

OK or NG
OK >> Replace the sliding door remote control switch.
NG >> Repair or replace harness.

Latch Release Actuator System Inspection

1. LATCH RELEASE ACTUATOR SIGNAL INSPECTION

1. Turn ignition switch OFF.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
2. While opening the sliding door, check voltage between sliding door latch control unit connector D204 (LH) or D304 (RH) terminal 10 and ground.

Terminals		Measuring condition	Voltage (V) (Approx.)
$(+)$	$(-)$		0
10	Ground	Latch release actuator operation (opening door)	$0 \rightarrow$ Momentarily above 0
	Other than above	0	

OK or NG

OK >> Latch release actuator is OK.
NG >> GO TO 2.
2. LATCH RELEASE ACTUATOR CIRCUIT INSPECTION

1. Disconnect latch release actuator and sliding door latch control unit.
2. Check continuity between latch release actuator connector D206 (LH) or D306 (RH) terminal 2 and sliding door latch control unit connector D204 (LH) or D304 (RH) terminal 10.

2-10 : Continuity should exist.
OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness.

Sliding door latch Latch release

3. LATCH RELEASE ACTUATOR GROUND inSPECTION

1. Close the sliding door.
2. Check continuity between latch release actuator connector D206 (LH) or D306 (RH) terminal 1 and ground.

1 - Ground : Continuity should exist.
OK or NG
OK >> Replace the latch release actuator.
NG >> Repair or replace harness.

Latch release actuator connector

LIIA1637E

Warning Chime System Inspection

1.WARNING CHIME OUTPUT SIGNAL INSPECTION

1. Turn ignition switch OFF.

2. While opening or closing the sliding door, check voltage waveform between sliding door control unit connector B60 (LH) or B143 (RH) terminal 8 and ground using an oscilloscope as you press the sliding door open/close switch to reverse door direction.

Sliding door control unit connector

LIIA1911E

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >

8 - Ground

LIIA2490E
OK or NG
OK >> Warning chime system is OK.
NG >> Replace sliding door control unit.
Half-Latch Switch System Inspection

1. HALF-LATCH SWITCH SIGNAL INSPECTION
2. Turn ignition switch OFF.
3. While fully opening and closing the sliding door, check voltage waveform between sliding door latch control unit connector D204 (LH) or D304 (RH) terminal 8 and ground using an oscilloscope.
8 - Ground

OK or NG
OK >> Half-latch switch is OK.
NG >> GO TO 2.
2. HALF-LATCH SWITCH CIRCUIT INSPECTION

1. Disconnect cinch latch switch and sliding door latch control unit.
2. Check continuity between cinch latch switch connector D202 (LH) or D302 (RH) terminal 2 and sliding door latch control unit connector D204 (LH) or D304 (RH) terminal 8.
2-8 : Continuity should exist.

OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness.
3. HALF-LATCH SWITCH GROUND INSPECTION

1. Close the sliding door.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
2. Check continuity between cinch latch switch connector D202 (LH) or D302 (RH) terminal 1 and ground.

1-Ground

: Continuity should exist.
OK or NG
OK >> Replace the cinch latch switch.
NG >> Repair or replace harness.

Full-Latch Switch System Inspection

1.FULL-LATCH SWITCH SIGNAL INSPECTION

1. Turn ignition switch OFF.
2. While fully closing and opening the sliding door, check voltage waveform between sliding door latch control unit connector D204 (LH) or D304 (RH) terminal 7 and ground using an oscilloscope.

7 - Ground

OK or NG
OK >> Full-latch switch is OK.
NG >> GO TO 2.
2. FULL-LATCH SWITCH CIRCUIT INSPECTION

1. Disconnect cinch latch switch and sliding door latch control unit.
2. Check continuity between cinch latch switch connector D202 (LH) or D302 (RH) terminal 3 and sliding door latch control unit connector D204 (LH) or D304 (RH) terminal 7.
3-7
: Continuity should exist.

OK or NG

OK >> GO TO 3.
NG >> Repair or replace harness.

3. FULL-LATCH SWITCH GROUND INSPECTION

1. Close the sliding door.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
2. Check continuity between cinch latch switch connector D202 (LH) or D302 (RH) terminal 1 and ground.

1-Ground
 : Continuity should exist.

OK or NG
OK >> Replace the cinch latch switch.
NG >> Repair or replace harness.

Neutral Switch System Inspection

1.NEUTRAL SWITCH SIGNAL INSPECTION

1. Turn ignition switch OFF.
2. While fully opening and closing the sliding door, check voltage waveform between sliding door latch control unit connector D204 (LH) or D304 (RH) terminal 1 and ground using an oscilloscope.

OK or NG

OK >> Neutral switch is OK.
NG >> GO TO 2.
2. NEUTRAL SWITCH CIRCUIT INSPECTION

1. Disconnect cinch latch switch and sliding door latch control unit.
2. Check continuity between cinch latch switch connector D202 (LH) or D302 (RH) terminal 4 and sliding door latch control unit connector D204 (LH) or D304 (RH) terminal 1.
4-1 : Continuity should exist.

OK or NG

OK >> GO TO 3.
NG >> Repair or replace harness.

3. NEUTRAL SWITCH GROUND INSPECTION

1. Close the sliding door.

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
2. Check continuity between cinch latch switch connector D202 (LH) or D302 (RH) terminal 1 and ground.

1-Ground
: Continuity should exist.
OK or NG
OK >> Replace the cinch latch switch.
NG >> Repair or replace harness.

Cinch Latch Motor System Inspection

1. CINCH LATCH MOTOR SIGNAL INSPECTION

1. Turn ignition switch OFF.
2. While fully opening and closing the sliding door, check voltage waveform between sliding door latch control unit connector D204 (LH) or D304 (RH) terminals 3, 9 and ground using an oscilloscope.

3. CINCH LATCH MOTOR OPERATION INSPECTION

AUTOMATIC SLIDING DOOR SYSTEM

< SERVICE INFORMATION >
Connect battery power to terminals 1 and 2 on the cinch latch motor and check motor operation.

$$
\begin{array}{ll}
1(+)-2(-) & \text { : It operates. } \\
1(-)-2(+) & \text { : It operates. (Reverse rotation) }
\end{array}
$$

OK or NG
OK >> Motor is OK.
NG >> Replace the cinch latch motor.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >

AUTOMATIC BACK DOOR SYSTEM

Component Parts and Harness Connector Location

1. Back door handle switch D510
2. Pinch strip RH D505
3. Front pillar LH
4. Back door close switch B63
5. Back door latch D511
6. Backdoor warning chime D514
7. Automatic door main switch R10
8. Back door control unit B55
9. Pinch strip LH D517
10. BCM M18, M19, M20 (view with instrument panel removed)
11. Back door switch
12. Remote keyless entry receiver M120 (view with instrument panel removed)
13. Front pillar RH

System Description

NOTE:

The automatic back door system must be initialized by fully closing the back door anytime the battery or the back door control unit has been disconnected.
The automatic back door system consists of a one piece unit that combines the back door control unit along with the back door motor, back door clutch and the back door encoder. The back door latch contains a lock function that can control the two functions of automatic back door latch closure and electrical opener with a single motor when the back door is closed to the halfway state.

- Back door auto closure

When the back door is closed to the half-way state (half-latch) position, the motor drives to rotate the latch lever and pull it in from half latched to full latched and automatically close the door.

- Power back door

With the back door closed, press the automatic door main switch or press the remote keyless entry button, or pull the back door handle with the back door unlocked, the back door latch motor drives the open the locking plate and releases the latch. The back door motor then raises the door to the full open position.
With the back door open, press the automatic door main switch, keyfob button or the back door close switch, the back door motor closes the door to the half-latch state. The back door latch motor then drives the latch to the full close position.
On an open or close signal, the hazard lamps will flash 3 times and the warning chime will sound 3 dings lasting a total of 2 seconds.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >

OPERATION DESCRIPTION

Automatic Door Main Switch Operation (Fully Closed \rightarrow Fully Open Operation)

- When the automatic door main switch is pressed, back door control unit terminal 23 receives the signal.
- The back door control unit checks the automatic transaxle select lever (A/T device) position through terminal 18, vehicle speed through terminal 21 and battery voltage.
- When the back door control unit receives the signal, if the auto back door operating enable conditions are met, it sends a signal through terminal 6 and grounds terminal 9 to sound the warning chime, sends a signal to the BCM through terminal 4 to flash the hazard lamps and sends the unlock signal to the back door latch.
- When the back door latch receives the signal, it supplies voltage from terminal 12 to operate the release actuator and releases the door lock.
- The back door control unit supplies power to the magnetic clutch and the back door motor and moves the back door in the open direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the back door is opened to the full-open position, the full-open position is detected by the encoder, and the back door control unit switches the back door motor OFF and the magnetic clutch is pulsed and then turned OFF.
- The back door is held in the fully open position by the gas stays.

Remote Keyless Entry Operation (Fully Closed \rightarrow Fully Open Operation)

- When the keyfob button is pressed for at least 0.5 seconds, back door control unit terminal 21 receives the signal.
- The back door control unit checks the automatic transaxle select lever (A / T device) position through terminal 18, vehicle speed through terminal 21 and battery voltage.
- When the back door control unit receives the signal, if the auto back door operating enable conditions are met, it sends a signal through terminal 6 and grounds terminal 9 to sound the warning chime, sends a signal to the BCM through terminal 4 to flash the hazard lamps and sends the unlock signal to the back door latch.
- When the back door latch receives the signal, it supplies voltage from terminal 12 to operate the release actuator and releases the door lock.
- The back door control unit supplies power to the magnetic clutch and the back door motor and moves the back door in the open direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the back door is opened to the full-open position, the full-open position is detected by the encoder, and the back door control unit switches the back door motor OFF and the magnetic clutch is pulsed and then turned OFF.
- The back door is held in the fully open position by the gas stays.

Back Door Handle Switch Operation (Fully Closed \rightarrow Fully Open Operation)

- When the back door is unlocked and the back door handle is pulled, back door control unit terminal 26 receives the signal.
- The back door control unit checks the automatic transaxle select lever (A / T device) position through terminal 18, vehicle speed through terminal 21 and battery voltage and automatic door main switch position through terminal 13.
- When the back door control unit receives the signal, if the auto back door operating enable conditions are met, it sends a signal through terminal 6 and grounds terminal 9 to sound the warning chime, sends a signal to the BCM through terminal 4 to flash the hazard lamps and sends the unlock signal to the back door latch.
- When the back door latch receives the signal, it supplies voltage from terminal 12 to operate the release actuator and releases the door lock.
- The back door control unit supplies power to the magnetic clutch and the back door motor and moves the back door in the open direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the back door is opened to the full-open position, the full-open position is detected by the encoder, and the back door control unit switches the back door motor OFF and the magnetic clutch is pulsed and then turned OFF.
- The back door is held in the fully open position by the gas stays.

Automatic Door Main Switch Operation (Fully Open \rightarrow Fully Closed Operation)

- When the automatic door main switch is pressed, the back door control unit terminal 23 receives the signal.
- The back door control units checks battery voltage.
- When the back door control unit receives the signal, if the auto back door operating enable conditions are met, it sends a signal through terminal 6 and grounds terminal 9 to sound the warning chime and sends a signal to the BCM through terminal 4 to flash the hazard lamps.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >

- The back door control unit supplies power to the magnetic clutch and the back door motor and move the back door in the close direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the back door reaches the half-latch state, the half-latch switch detects this and the signal is sent to the back door control unit terminal 22.
- When the back door control unit receives the signal, it switches OFF the back door motor and the magnetic clutch.
- When the cinch latch motor operates and the close switch detects this, the back door control unit terminal 14 receives the signal from back door latch terminal 5.
- When the back door latch operates and full close is detected through terminal 14 of the back door control unit, the back door auto closure operation ends and the door is fully closed.

Remote Keyless Entry Operation (Fully Open \rightarrow Fully Closed Operation)

- When the keyfob button is pressed for at least 0.5 seconds, the back door control unit terminal 21 receives the signal.
- The back door control units checks battery voltage.
- When the back door control unit receives the signal, if the auto back door operating enable conditions are met, it sends a signal through terminal 6 and grounds terminal 9 to sound the warning chime and sends a signal to the BCM through terminal 4 to flash the hazard lamps.
- The back door control unit supplies power to the magnetic clutch and the back door motor and move the back door in the close direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the back door reaches the half-latch state, the half-latch switch detects this and the signal is sent to the back door control unit terminal 22.
- When the back door control unit receives the signal, it switches OFF the back door motor and the magnetic clutch.
- When the cinch latch motor operates and the close switch detects this, the back door control unit terminal 14 receives the signal from back door latch terminal 5.
- When the back door latch operates and full close is detected through terminal 14 of the back door control unit, the back door auto closure operation ends and the door is fully closed.

Back Door Close Switch Operation (Fully Open \rightarrow Fully Closed Operation)

- When the back door close switch is pressed with the automatic main door switch ON, the back door control unit terminal 8 receives the signal.
- The back door control units checks battery voltage.
- When the back door control unit receives the signal, if the auto back door operating enable conditions are met, it sends a signal through terminal 6 and grounds terminal 9 to sound the warning chime and sends a signal to the BCM through terminal 4 to flash the hazard lamps.
- The back door control unit supplies power to the magnetic clutch and the back door motor and move the back door in the close direction. (At this time, it also executes speed control, input reverse, and overload reverse control.)
- When the back door reaches the half-latch state, the half-latch switch detects this and the signal is sent to the back door control unit terminal 22.
- When the back door control unit receives the signal, it switches OFF the back door motor and the magnetic clutch.
- When the cinch latch motor operates and the close switch detects this, the back door control unit terminal 14 receives the signal from back door latch terminal 5.
- When the back door latch operates and full close is detected through terminal 14 of the back door control unit, the back door auto closure operation ends and the door is fully closed.
Reverse Function
The door will reverse direction during power open or close operation if the automatic door main switch, keyfob or back door close switch is operated. A chime will sound to announce the reversal.

Anti-Pinch Function

- During auto operation, if an object is detected in the door's path, a warning chime sounds and the back door operates in the reverse direction to prevent pinching.
- During auto close operation, if an object is detected by the pinch strips in the door's path, a warning chime sounds and the back door operates in the open direction until it is fully open.

Gas Stay Check

- During each power open operation, the back door control unit monitors motor current draw to determine if the gas stays are functioning properly.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >

- If a malfunction of the gas stays is detected, the back door control unit will close the back door while sounding the warning chime. The back door cannot be opened using the switches until the gas malfunction is repaired.
Warning Functions
- The hazard warning lamps flash and a warning chime is sounded according to the back door operating state, operations, and conditions.

Auto Back Door Operation Enable Conditions

Operation	Automatic door main switch		Remote keyless entry		Back door handle switch		Back door close switch	
Operating direction	Fully closed \rightarrow open	Fully open \rightarrow closed	Fully closed \rightarrow open	Fully open \rightarrow closed	Fully closed \rightarrow open	Fully open \rightarrow closed	Fully closed \rightarrow open	Fully open \rightarrow closed
Main switch	ON							
Vehicle stop condition	A/T selector lever in P position and vehicle speed less than 2 km/h	-	A/T selector lever in P position and vehicle speed less than 2 km/h	-	A/T selector lever in P position and vehicle speed less than 2 km/h	-		
Battery voltage	Approx. 11V or more						Approx. 11V (operates with warning chime for low voltage of 9-11V)	

Control When Handle Pulled When Operating Enable Conditions Not Yet Met

Items	Operation condition	Not met case	Control
Main switch	ON	OFF	Manual mode (after finishing open/close operation if active)
A/T selector lever P position	P position	Other than P position	Power close operation only
Voltage drop	$11>\mathrm{V}>9$	Power operation will continue but will not begin from full close position	
		$9>\mathrm{V}>$ reset voltage	Power operation will stop and warning chime will sound
		Reset voltage $>\mathrm{V}$	No power function available

Control When Operating Enable Conditions No Longer Met

Description	Operation	Full open stop
Main switch turned OFF	Warning chime active \rightarrow Shift to manual mode after full open or close operation is complete (Recovery to power mode when main switch turned ON or door fully closed)	\rightarrow Shift to manual mode
A/T selector lever P position	Warning chime active and one-way opera- tion continuous (Warning chime inactive and door fully open or fully closed or operating conditions re- covered)	Stop continued
Voltage drop 11-9V	One-way operation continued (equivalent to the case of starting voltage $\leftarrow 11 \mathrm{~V}$ for handle operation with warning chime ac- tive)	Not allowed
Voltage drop 6-4V (Microcomputer reset voltage - clutch hold voltage)	- Motor stopped - Control not possible because microcom- puter being reset	Control not possible because microcomput- er being reset

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >

Warning Chime Active Conditions

The warning chime uses two types of audio warnings, a friendly chime and a warning chime. The friendly chime consists of dings lasting 0.66 seconds each immediately followed by the next ding. The warning chime consists of beeps lasting 0.33 seconds with a pause of 0.33 seconds between each beep.

Operation status	Operation or conditions	Warning chime pattern
When auto operation starts	Automatic door main switch operation	Friendly chime 2 seconds, 3 dings
	Back door handle switch operation	
	Back door close switch operation	
When reverse operation starts	When reverse request is detected from automatic door main switch, remote keyless entry or back door close switch	Friendly chime 1.3 seconds, 2 dings
	When obstacle is detected	Warning chime 2 seconds, 3 beeps
Operating at low voltage	When operating with handle	Warning chime 2 seconds, 3 beeps
A / T selector lever not in P position	Back door close operation	Friendly chime Continuous dings
	Back door open operation	Warning chime Continuous beeps

Reverse Conditions

Type	Overload reverse		
Operation covered	Both directions		
Detection method	Operation speed and motor current change direction		
	Pinch strips during back door close operation		
Number of times reverse allowed	- For about 0.5 seconds immediately after drive motor operation starts Between full open and approx. 7° from full open - Closure operation area		One reversal is allowed (if a second obstacle is detected during a
:---			
power open or close operation, the door reverts to manual mode).	.		

AUTOMATIC BACK DOOR SYSTEM

AUTOMATIC BACK DOOR SYSTEM
< SERVICE INFORMATION >
Wiring Diagram - B/CLOS -

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >
BL-B/CLOS-02

AUTOMATIC BACK DOOR SYSTEM

AUTOMATIC BACK DOOR SYSTEM

AUTOMATIC BACK DOOR SYSTEM
< SERVICE INFORMATION >

AUTOMATIC BACK DOOR SYSTEM

Terminal and Reference Value for Back Door Control Unit

Terminal	Wire Col- or	Item	Condition	Voltage (V) (Approx.)
1	B	Ground	-	-
2	B	Ground	-	-
3	Y/R	Battery power supply	-	Battery voltage
4	GR	Hazard lamp output	Request to flash hazards	Pulse must be $>50 \mathrm{~ms}$ but less than 250 ms
5	LG/W	Pinch strip ground	-	-
6	P/L	Warning chime output	Back door motor active	Battery voltage
7	G	Ignition switch	Ignition switch ON	Battery voltage
			Ignition switch OFF	0
8	GR/B	Back door close switch	Back door close switch ON	0
			Back door close switch OFF	Battery voltage
9	GR	Warning chime ground	-	-
10	W	Battery power	-	Battery voltage
11	L/B	Cinch latch motor CLOSE output	Back door close operation	Battery voltage
12	L/W	Cinch latch motor RETURN output	Back door open operation	Battery voltage
13	L/Y	Automatic door main switch ON/OFF switch	Automatic door main switch ON	0
			Automatic door main switch OFF	9
14	P	Close switch signal	While fully opening back door	

AUTOMATIC BACK DOOR SYSTEM
< SERVICE INFORMATION >

Terminal	Wire Color	Item	Condition	Voltage (V) (Approx.)
15	O/B	Open switch signal	While fully closing back door	 PIIA2171E
18	G/Y	A/T device (park position switch)	P or N position (Ignition is ON)	0
			Other than above (Ignition is ON)	9
19	BR/W	Pinch strip RH	Detecting obstruction	0
			Other than above	4
20	L/Y	Pinch strip LH	Detecting obstruction	0
			Other than above	4
21	Y	Power window serial link	-	 PIIA2344E
22	BR	Half-latch switch	Back door close operation	
23	G/R	Automatic door main switch	ON	0
			OFF	Battery voltage
24	Y/G	Sliding door RH warning chime request	Sliding door active	0
			Other than above	5
25	LG/B	Sliding door LH warning chime request	Sliding door active	0
			Other than above	5
26	V/W	Back door handle switch signal	Back door handle switch (open)	0
			Back door handle switch (at rest)	Battery voltage

Terminal and Reference Value for BCM

Refer to BCS-11, "Terminal and Reference Value for BCM".

Trouble Diagnosis Procedure

1. Check the symptom and customer's requests.
2. Understand outline of system. Refer to BL-138, "System Description".
3. Confirm system operation.
4. Perform self-diagnosis procedures. Refer to BL-151, "Self-Diagnosis Procedure".
5. Refer to diagnosis chart by symptom, repair or replace any malfunctioning parts. Refer to BL-152, "Diagnosis Chart".
6. Inspection End.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >

Self-Diagnosis Procedure

INPUT SIGNAL CHECK MODE

Input signal check mode allows testing of switch input signal to the back door control unit.
To activate input signal check mode on the automatic sliding door, perform the following steps:

1. Turn ignition switch OFF.
2. Turn automatic door main switch OFF (system cancelled).
3. Place A / T selector lever in P position.
4. Using the inside emergency release lever, open the back door.
5. Have an assistant press and hold the back door close switch.
6. While the assistant continues to hold the back door close switch, turn ignition switch ON (DO NOT start engine).
7. After approximately 5 seconds, the back door warning chime will sound for 0.5 seconds.
8. Release the back door close switch RH or LH.
9. Within 8 seconds of the back door warning chime sounding, press and hold the automatic door main back door open/close switch.
10. After approximately 5 seconds, the back door warning chime will sound for 1 second.
11. Release the automatic door main back door open/close switch.
12. The input signal check mode is now initialized.

The input signal check mode can test the following inputs. The back door warning chime will sound for approximately 0.5 seconds each time a switch signal input occurs. Use this test when one of these inputs is not responding during normal automatic sliding door operation.

Switch signal		Refer to
Automatic door main switch	OFF \rightarrow ON	BL-153
Automatic door main back door open/close switch	OFF \rightarrow ON	BL-153
Back door close switch	OFF \rightarrow ON	BL-155
Back door handle switch	OFF \rightarrow ON	BL-160
A/T device (park position switch)	P position \rightarrow other than P position	SE-64
Vehicle speed*	Vehicle speed	-
Remote keyless entry signal	Keyfob switch OFF \rightarrow ON	BL-66
Door lock/unlock signal	LOCK \rightarrow UNLOCK	BL-40
Pinch strip LH signal	OFF \rightarrow ON	$\underline{B L-156 ~}$
Pinch strip RH signal	OFF \rightarrow ON	$\underline{B L-156 ~}$

*Back door warning chime should sound as soon as vehicle moves.
Turn ignition switch OFF to end input signal check mode.

OPERATING CHECK MODE

Operating check mode allows self-diagnosis of the automatic back door system.
To activate operating check mode on the automatic back door, perform the following steps:

1. Turn ignition switch OFF.
2. Turn automatic door main switch OFF (system cancelled).
3. Place A/T selector lever in P position.
4. Using the inside emergency release lever, open the back door.
5. Have an assistant press and hold the back door close switch.
6. While the assistant continues to hold the back door close switch, turn ignition switch ON (DO NOT start engine).
7. After approximately 5 seconds, the back door warning chime will sound for 0.5 seconds.
8. Release the back door close switch.
9. Within 8 seconds of the back door warning chime sounding, press the automatic door main back door open/close switch 5 times in rapid succession.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >
10. After approximately 5 seconds, the back door warning chime will sound for 1 second.
11. Release the automatic door main back door open/close switch.
12. Immediately close the back door manually.
13. Turn automatic door main switch ON.
14. Open and close the back door with the automatic door main back door open/close switch to activate operating check mode.
Self-diagnosis results are indicated by the back door warning chime.

Back door warning chime order	Back door warning chime length	
Start self-diagnosis	OK	1.5 seconds
	0.5 seconds	NG
1. Operating conditions diagnosis	0.5 seconds	0.2 seconds
2. Back door encoder diagnosis	0.5 seconds	0.2 seconds
3. Back door clutch diagnosis	0.5 seconds	0.2 seconds
4. Back door motor diagnosis	0.5 seconds	0.2 seconds
5. Cinch latch motor diagnosis		0.2 seconds
Restart self-diagnosis		

Item	NG Result	Refer to
1. Operating conditions diagnosis result	One of the following operating conditions no longer met: ignition switch ON, automatic door main switch ON, A/T selector lever in P posi- tion	-
2. Back door encoder diagnosis result	Sensor diagnosis/short, pulse signal, pulse signal direction	$\underline{\text { BL-153 }}$
3. Back door clutch diagnosis result	Back door clutch does not operate	$\underline{\text { BL-157 }}$
4. Back door motor diagnosis result	Back door motor does not operate (no operat- ing current)	$\underline{\text { BL-153 }}$
5. Cinch latch motor diagnosis result	Cinch latch motor does not operate (no operat- ing current)	$\underline{B L-161}$

Turn ignition switch OFF to end input signal check mode.
Diagnosis Chart

Symptom	Suspect systems	Refer to
Automatic operations are not executed from the back door fully closed or fully open position. (Auto closure operates normally.)	Automatic door main switch system inspection	BL-153
	A/T device (park position switch)	-
	Pinch strip system inspection	BL-156
Automatic operations are not carried out together with open/close operations. (Manual operations are normal.)	Automatic door main switch system inspection	BL-153
	Back door close switch system inspection	BL-155
	Back door control unit power supply and ground circuit system inspection.	BL-153
The auto closure function does not operate. (Stops at the halfway position for auto closing operations.)	Pinch strip system inspection	BL-156
During auto closing operations, if obstruction is detected, the door does not operate in reverse.	Back door motor assembly	-
During close or cinch operations, the door does not operate in re- verse if the back door handle is operated.	Handle switch system	BL-160

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >

Symptom	Suspect systems	Refer to
When the keyfob is operated, the back door does not operate automatically.	Remote keyless entry system inspection	BL-48
	Power window serial link	BL-150
	Pinch strip system inspection	BL-156
Auto closure does not operate.	Half-latch switch system	BL-157
	Cinch latch motor system	BL-161
	Handle switch system	BL-160
The back door does not open. (Closure motor rotation is not reversed.)	Open switch system	BL-158
	Handle switch system	BL-160
Warning chime does not sound.	Back door warning chime system	BL-157
Auto closure operation works, but the back door is not fully closed.	Close switch system	BL-159
	Handle switch system	BL-160
	Cinch latch motor system	BL-161
	Back door latch assembly mechanism damaged or worn.	-

Back Door Control Unit Power Supply and Ground Circuit Inspection

1.BACK DOOR CONTROL UNIT POWER SUPPLY CIRCUIT INSPECTION

1. Turn ignition switch OFF.
2. Disconnect back door control unit.
3. Check voltage between back door control unit connector B55 terminals 3, 10 and ground.

3 - Ground
10 - Ground
OK or NG
OK >> GO TO 2.
NG >> Repair or replace harness.
: Approx. battery voltage
: Approx. battery voltage

Back door C/U connector

WIIA0567E
2. BACK DOOR CONTROL UNIT GROUND CIRCUIT INSPECTION

Check continuity between back door control unit connector B55 terminals 1,2 and ground.
1-Ground
: Continuity should exist.
2 - Ground
: Continuity should exist.

OK or NG
OK >> Ground circuit is OK.
NG >> Repair or replace harness.

Automatic Door Main Switch System Inspection

1.AUTOMATIC DOOR MAIN SWITCH FUNCTION INSPECTION

Check automatic door main switch using switch operation.
OK or NG
OK >> Automatic door main switch is OK.
NG >> GO TO 2.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >

2. AUTOMATIC DOOR MAIN SWITCH POWER SUPPLY CIRCUIT INSPECTION

1. Turn ignition switch OFF.
2. Check voltage between automatic door main switch connector R10 terminal 8 and ground.

$$
8 \text { - Ground }
$$

: Approx. battery voltage
OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness.

3.AUTOMATIC DOOR MAIN SWITCH SIGNAL INSPECTION

While operating the automatic door main switch, check voltage between back door control unit connector B55 terminal 23 and ground.

Terminals		Measuring condition		Voltage (V) (Approx.)
23	$(+)$	Ground	Automatic door main switch	ON
		OFF	Battery voltage	

OK or NG

OK >> Switch is OK.
NG >> GO TO 4.
4. AUTOMATIC DOOR MAIN SWITCH CIRCUIT INSPECTION

1. Disconnect automatic door main switch and back door control unit.
2. Check continuity between automatic door main switch connector
(B) R10 terminal 2 and back door control unit connector (A) B55 terminal 23.

2-23
 : Continuity should exist.

3. Check continuity between automatic door main switch connector (B) R10 terminal 2 and ground.

$$
2 \text { - Ground }
$$

: Continuity should not exist.
OK or NG

OK >> GO TO 5.
NG >> Repair or replace harness.
5.AUTOMATIC DOOR MAIN SWITCH GROUND INSPECTION

Check continuity between automatic door main switch connector terminal 6 and ground.

6 - Ground

: Continuity should exist.

OK or NG
OK >> Replace the automatic door main switch.
NG >> Repair or replace harness.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >

Back Door Close Switch System Inspection

1. BACK DOOR CLOSE SWITCH FUNCTION INSPECTION

Check back door close switch using switch operation.

OK or NG

OK >> Back door close switch is OK.
NG >> GO TO 2.
2. BACK DOOR CLOSE SWITCH SIGNAL INSPECTION

1. Turn ignition switch OFF.
2. While operating the back door close switch, check voltage between back door control unit connector B55 terminal 8 and ground.

Terminals		Position of back door close switch		Voltage (V) (Approx.)
$(+)$	$(-)$			ON
8	Ground	Momentary close position	OFF	Battery voltage

OK or NG

OK >> Switch is OK.

NG >> GO TO 3.

3.BACK DOOR CLOSE SWITCH CIRCUIT INSPECTION

1. Disconnect back door close switch and back door control unit.
2. Check continuity between back door close switch connector (B) B63 terminal 1 and back door control unit connector (A) B55 terminal 8.

1-8

: Continuity should exist.

3. Check continuity between back door close switch connector (B) B63 terminal 1 and ground.

1 - Ground : Continuity should not exist.
OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >
Check continuity between back door close switch connector B63 terminal 2 and ground.
2 - Ground
: Continuity should exist.

OK or NG
OK >> Replace the back door close switch.
NG >> Repair or replace harness.

Pinch Strip System Inspection

1. PINCH STRIP SIGNAL INSPECTION

1. Turn ignition switch OFF.
2. While operating the pinch strip, check voltage between back door control unit connector B55 terminals 19 (RH), 20 (LH) and ground.

Terminals		Measuring condition	Voltage (V) (Approx.)
$(+)$	$(-)$		0
19	Ground	Pinch strip operation	4
20		4	

OK or NG

OK >> Switch is OK.
NG >> GO TO 2.
2. PINCH STRIP CIRCUIT INSPECTION

1. Disconnect pinch strip and back door control unit.
2. Check continuity between pinch strip connector (B) D505 (RH), D517 (LH) terminals 1, 2 and back door control unit connector (A) B55 terminals 5, 19 (RH), 20 (LH).

$1-19$: Continuity should exist.
$1-20$: Continuity should exist.
$2-5$: Continuity should exist.

3. Check continuity between pinch strip connector (B) D505 (RH), D517 (LH) terminal 1and ground.

1-Ground
: Continuity should not exist.
OK or NG
OK >> GO TO 3.
NG >> Repair or replace harness.
3. PINCH STRIP GROUND INSPECTION

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >
Check continuity between pinch strip connector terminal 2 and ground.

$$
2 \text { - Ground } \quad: \text { Continuity should exist. }
$$

OK or NG
OK >> Replace the pinch strip.
NG >> Repair or replace harness.

Back Door Warning Chime System Inspection

1.bACK DOOR WARNING CHIME CIRCUIT INSPECTION

1. Turn ignition switch OFF.
2. Disconnect back door warning chime and back door control unit.
3. Check continuity between back door warning chime connector (B) D514 terminal 2 and back door control unit connector (A) B55 terminal 6.
2-6 : Continuity should exist.
4. Check continuity between back door warning chime connector (B) D514 terminal 2 and ground.

2-Ground
 : Continuity should not exist.

OK or NG

OK >> GO TO 2.
NG >> Repair or replace harness.
2. BACK DOOR WARNING CHIME CIRCUIT INSPECTION

1. Check continuity between back door warning chime connector (B) D514 terminal 1 and back door control unit connector (A) B55 terminal 9 .
1-9 : Continuity should exist.
2. Check continuity between back door warning chime connector (B) D514 terminal 1 and ground.

1 - Ground : Continuity should not exist.

OK or NG

OK >> Replace warning chime.
NG >> Repair or replace harness.
Half-Latch Switch System Inspection

1. HALF-LATCH SWITCH SIGNAL INSPECTION
2. Turn ignition switch OFF.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >
2. While fully opening and closing the sliding door, check voltage waveform between back door control unit connector B55 terminal 22 and ground using an oscilloscope.
22-Ground
OK or NG
OK >> Half-latch switch is OK.
NG >> GO TO 2.
2. HALF-LATCH SWITCH CIRCUIT INSPECTION

1. Disconnect back door latch switch and back control unit.
2. Check continuity between back door latch (half-latch switch) connector (B) D511 terminal 6 and back door control unit connector (A) B55 terminal 22.
6-22
: Continuity should exist.
3. Check continuity between back door latch (half-latch switch) connector (B) D511 terminal 6 and ground.

6-Ground : Continuity should not exist.
OK or NG

OK >> GO TO 3.
NG >> Repair or replace harness.
3. HALF-LATCH SWITCH GROUND INSPECTION

Check continuity between back door latch (half-latch switch) connector D511 terminal 8 and ground.

8 - Ground
 : Continuity should exist.

OK or NG

OK >> Replace the back door latch. Refer to BL-176. NG >> Repair or replace harness.

Open Switch System Inspection

1. OPEN SWITCH SIGNAL INSPECTION
2. Turn ignition switch OFF.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >
2. While fully closing and opening the back door, check voltage waveform between back door control unit connector B55 terminal 15 and ground using an oscilloscope.

15 - Ground	 WIIA1047E			

OK or NG

OK >> Open switch is OK.
NG >> GO TO 2.

2. OPEN SWITCH CIRCUIT INSPECTION

1. Disconnect back door latch and back door control unit.
2. Check continuity between back door latch (open switch) connector (B) D511 terminal 4 and back door control unit connector (A) B55 terminal 15.

4-15 : Continuity should exist.
3. Check continuity between back door latch (open switch) connector (B) D511 terminal 4 and ground.

4 - Ground
 : Continuity should not exist.

OK or NG

OK >> GO TO 3.
NG >> Repair or replace harness.
3. OPEN SWITCH GROUND INSPECTION

Check continuity between back door latch (open switch) connector D511 terminal 8 and ground.

8 - Ground : Continuity should exist.
OK or NG
OK >> Replace the back door latch.
NG >> Repair or replace harness.

Close Switch System Inspection

1. close switch signal inspection
2. Turn ignition switch OFF.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >
2. While fully opening and closing the back door, check voltage waveform between back door control unit connector B55 terminal 14 and ground using an oscilloscope.

OK or NG
OK >> Close switch is OK.
NG >> GO TO 2.
2. CLOSE SWITCH CIRCUIT INSPECTION

1. Disconnect back door latch and back door control unit.
2. Check continuity between back door latch (close switch) connector (B) D511 terminal 5 and back door control unit connector (A) B55 terminal 14.

5-14
: Continuity should exist.
3. Check continuity between back door latch (close switch) connector (B) D511 terminal 5 and ground.

5 - Ground : Continuity should not exist.
OK or NG

OK >> GO TO 3.
NG >> Repair or replace harness.
3. CLOSE SWITCH GROUND INSPECTION

Check continuity between back door latch (close switch) connector D511 terminal 8 and ground.

$$
8 \text { - Ground } \quad: \text { Continuity should exist. }
$$

OK or NG

OK >> Replace the back door latch.
NG >> Repair or replace harness.

Back Door Handle Switch System Inspection

1. back door handle switch signal inspection
2. Turn ignition switch OFF.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >
2. While operating the back door handle switch, check voltage between back door control unit connector B55 terminal 26 and ground.

Terminal		Measuring condition	Voltage (V) (Approx.)
$(+)$	$(-)$		0
26	Ground	Pull the back door handle switch (ON)	Other (OFF)

OK or NG

OK >> Back door handle switch circuit is OK.
NG >> GO TO 2.
2. BACK DOOR HANDLE SWITCH CIRCUIT INSPECTION

1. Disconnect back door handle switch and back door control unit.
2. Check continuity between back door handle switch connector (B) D510 terminal 1 and back door control unit connector (A) B55 terminal 26.

> 1-26 : Continuity should exist.
3. Check continuity between back door handle switch connector (B) D510 terminal 1 and ground.

1 - Ground : Continuity should not exist.
OK or NG

OK >> GO TO 4.
NG >> Repair or replace harness.

3.back door handle switch ground inspection

Check continuity between back door handle switch connector D510 terminal 2 and ground.

2-Ground : Continuity should exist.

OK or NG
OK >> Replace the back door handle switch.
NG >> Repair or replace harness.

Cinch Latch Motor System Inspection

1. CINCH LATCH MOTOR CIRCUIT INSPECTION

1. Turn ignition switch OFF.
2. Disconnect back door latch and back door control unit.

AUTOMATIC BACK DOOR SYSTEM

< SERVICE INFORMATION >
3. Check continuity between back door latch (cinch latch motor) connector (B) D511 terminals 1, 2 and back door control unit connector (A) B55 terminals 11, 12.
1-12
: Continuity should exist.
2-11
: Continuity should exist.
4. Check continuity between back door latch (cinch latch motor) connector (B) D511 terminals 1, 2 and ground.

```
1-Ground : Continuity should not exist.
```


OK or NG
OK >> GO TO 2.
NG >> Repair or replace harness.
2. CINCH LATCH MOTOR OPERATION INSPECTION

Connect battery power to terminals 1 and 2 on the back door latch connector and check motor operation.

$$
\begin{array}{ll}
1(+)-2(-) & \text { : It operates. } \\
1(-)-2(+) & \text { : It operates. (Reverse rotation) }
\end{array}
$$

OK or NG
OK >> GO TO 3.
NG >> Replace the back door latch.

3. CINCH LATCH MOTOR SIGNAL INSPECTION

1. Reconnect back door latch and back door control unit.
2. While fully opening and closing the back door, check voltage between back door control unit connector B55 terminals 11, 12 and ground.

Terminals		Measuring condition	Voltage (V) (Approx.)
$(+)$	$(-)$		
11	Ground	While closing back door	Battery voltage
12			

OK or NG

OK >> Cinch latch motor circuit is OK.
NG >> Replace the back door control unit.

Fitting Adjustment

FRONT DOOR

Longitudinal clearance and surface height adjustment at front end

1. Remove the front fender. Refer to El-20, "Removal and Installation".
2. Loosen the hinge nuts or bolts and adjust as needed.

Striker Adjustment

1. Adjust the striker so that it becomes parallel with the lock insertion direction.

SLIDE DOOR

Longitudinal clearance, surface height and outboard adjustment at front end

DOOR

< SERVICE INFORMATION >

1. Remove the sliding door trim panel. Refer to El-29, "Removal and Installation".
2. Accessing from inside the vehicle, loosen the nuts. Open the sliding door and adjust as needed.

Striker Adjustment
NOTE:
Turn OFF automatic sliding door system, if equipped.

1. Inspect the door latch-to-striker clearance for the front and rear strikers.

- Slowly open and close the sliding door.
- Confirm the strikers meet the latches correctly.
- Adjust striker height up or down as needed.

2. Slightly loosen the door strikers, upper and lower dovetails, and contact switch.
NOTE:
Loosened parts should not move on their own.
3. Open and close the door three or four times to allow the strikers and contact switch to align themselves.
4. Carefully tighten all loosened parts using care not to move the parts.
5. Open and close door three or four times to confirm smooth latching.

BACK DOOR

SEC. 900

AWIIA0729ZZ

1. Back door
2. Body side outer
3. Rear bumper fascia
J. 2.5 mm (0.10 in)
N. $6.5 \mathrm{~mm}(0.26 \mathrm{in})$
R. $1.4 \mathrm{~mm}(0.06 \mathrm{in})$
U. $\quad 6.2 \mathrm{~mm}(0.24 \mathrm{in})$
4. Back door hinge RH \& LH
5. Back door glass
6. $17 \mathrm{~N} \cdot \mathrm{~m}(1.7 \mathrm{Kg} \cdot \mathrm{m}, 13 \mathrm{ft}-\mathrm{lb})$
K. $\quad 6.8 \mathrm{~mm}$ (0.27 in)
P. $\quad 2.8 \mathrm{~mm}(0.11 \mathrm{in})$
S. $\quad 6.2 \mathrm{~mm}(0.24 \mathrm{in})$
V. $\quad 0.4 \mathrm{~mm}(0.02 \mathrm{in})$
7. Roof
8. Rear combination lamp
H. $\quad 10.0 \mathrm{~mm}(0.4 \mathrm{in})$
M. $\quad 0.8 \mathrm{~mm}$ (0.03 in)
Q. $\quad 6.7 \mathrm{~mm}(0.26 \mathrm{in})$
T. $\quad 0.4 \mathrm{~mm}(0.02 \mathrm{in})$
W. $\quad 6.1 \mathrm{~mm}(0.24 \mathrm{in})$

Longitudinal clearance, surface height and outboard adjustment at front end

1. Open and support the back door.
2. Slightly loosen the hinge nuts.
3. Reposition the door as necessary and tighten the nuts.
4. Confirm the adjustment. Repeat as necessary to obtain the desired fit.

Striker Adjustment

1. Adjust the striker so that it becomes parallel with the lock insertion direction.

Removal and Installation
INFOID:0000000004277231

FRONT DOOR

CAUTION:

- When removing and installing the door assembly, support the door with a jack and shop cloth to protect the door and body.
- When removing and installing door assembly, be sure to carry out the fitting adjustment.
- Check the hinge rotating part for poor lubrication. If necessary, apply "body grease".

1. Remove the door window and module assembly. Refer to GW-67, "Removal and Installation".
2. Remove the door harness.
3. Remove the check link cover.
4. Remove the check link bolt from the hinge pillar.

5. Remove the door-side hinge nuts and bolts, and remove the door assembly.
Installation is in the reverse order of removal.

- Align the front door. Refer to BL-163, "Fitting Adjustment".

SLIDE DOOR
CAUTION:

- When removing and installing the door assembly, support the door with a jack and shop cloth to protect the door and body.

DOOR

< SERVICE INFORMATION >

- When removing and installing door assembly, be sure to carry out the fitting adjustment.
- Check the hinge rotating part for poor lubrication. If necessary, apply "body grease".

1. Remove the upper and lower door finishers. Refer to El-29, "Removal and Installation".
2. Remove the door glass. Refer to GW-70.
3. Remove the door lock and handle assemblies. Refer to BL-172.
4. Remove the upper and lower male dovetail assemblies.
5. Remove the door wiring harness.
6. Remove the door.

- Disconnect the rear slide door guide.
- Remove the lower hinge bracket.
- Remove the upper hinge bracket.

Installation is in the reverse order of removal.

- Align the front door. Refer to BL-163, "Fitting Adjustment".

BACK DOOR

WARNING:

Always support back door when removing or replacing back door stays. Power back door opener will not support back door with back door stays removed.

1. Remove the back door glass. Refer to GW-13.
2. Remove the license lamp finisher. Refer to El-23.
3. Remove the back door lock assembly. Refer to BL-176.
4. Remove the rear wiper motor. Refer to WW-34, "Rear Wiper Motor".
5. Remove the back door wire harness.
6. Remove the rear washer nozzle and hose from the back door. Refer to WW-36, "Rear Washer Nozzle". CAUTION:
Two technicians should be used to avoid damaging the back door during removal.
7. Support the back door with a suitable tool.
8. Disconnect the power back door lift arm from the door.
9. Remove the back door stays.
10. Remove the door side nuts and the back door assembly.

Installation is in the reverse order of removal.

- Align the back door. Refer to BL-163, "Fitting Adjustment".

Component Structure

1. Front gasket
2. Rear gasket
3. Key cylinder rod (Driver side only)
4. Inside handle cable
5. Outside handle
6. Outside handle bracket
7. Outside handle cable
8. Lock knob cable
9. Door key cylinder assembly (Driver side)
Outside handle escutcheon (Passenger side)
10. Grommet
11. Door lock assembly
12. Inside handle

Removal and Installation

1. Remove the front door window regulator assembly. Refer to GW-67, "Removal and Installation".
2. Remove the front door window rear glass run.
3. Remove the grommet, and remove door key cylinder assembly (driver side) or outside handle escutcheon (passenger side) bolts (TORX T30) from grommet hole.

4. While pulling the outside handle (1), remove door key cylinder assembly or escutcheon (2).

FRONT DOOR LOCK

5. Separate the key cylinder rod from the door key cylinder assembly (if equipped).
6. While pulling outside handle (2), slide toward rear of vehicle to remove (1).

7. Remove the front and rear gaskets.

8. Remove the TORX bolts (T30) and the door lock assembly.

Door lock assembly bolts : $5.3 \mathrm{Nm}(0.54 \mathrm{~kg}-\mathrm{m}, 47 \mathrm{in}-\mathrm{lb})$

9. Remove the TORX bolt (T30) from the outside handle bracket.

10. While pulling the outside handle bracket, slide it toward the rear of the vehicle to remove it and the door lock assembly.

11. Disconnect the door lock actuator electrical connector.
12. Separate the outside handle cable connection from the outside handle bracket.

Installation is in the reverse order of removal.
CAUTION:
To install each rod, be sure to rotate the rod holder until a click is felt.
Disassembly and Assembly
DOOR KEY CYLINDER ASSEMBLY

SLIDE DOOR LOCK

< SERVICE INFORMATION >

SLIDE DOOR LOCK

Removal and Installation

OUTSIDE HANDLE

1. Remove the sliding door finisher. Refer to El-29, "Removal and Installation".
2. Remove the grommet, and the outside handle escutcheon bolt (TORX T30) from grommet hole.

3. While pulling the outside handle (1), remove outside handle escutcheon (2).

4. While pulling outside handle (1), slide toward rear of vehicle to remove (2).

5. Remove the front gasket and rear gasket.

SLIDE DOOR LOCK

6. Remove the TORX bolts (T30), remove the door lock assembly.

7. Remove the TORX bolt (T30), and remove the outside handle bracket.

8. While pulling outside handle, slide toward rear of vehicle to remove outside handle and door lock assembly.

9. Disconnect the door lock actuator connector.
10. Separate outside handle cable from the outside handle bracket. Installation is in the reverse order of removal.

SLIDE DOOR LOCK

1. Remove sliding door finisher. Refer to El-29, "Removal and Installation".
2. Remove exterior door handle.
3. Disconnect sliding door lock assembly electrical connectors.
4. Remove sliding door lock assembly.

- Remove screws from front and rear latches.

Installation is in the reverse order of removal.
SLIDING DOOR CABLE ASSEMBLY AND MOTOR

SLIDE DOOR LOCK

1. Rear roller
2. Front roller
3. Sliding door motor
\Leftarrow Front
4. Sliding door cable assembly
5. Remove sliding door rail cover. Refer to El-27, "Removal and Installation".
6. Disconnect slide door cables.
7. Remove luggage lower trim. Refer to El-31, "Removal and Installation".
8. Disconnect sliding door motor electrical connector.
9. Remove sliding door link rollers.
10. Remove sliding door cable and motor assembly.
11. Remove sliding door motor from sliding door cable assembly. Installation is in the reverse order of removal.

BACK DOOR LOCK

< SERVICE INFORMATION >

BACK DOOR LOCK

Component Structure

1. Back door motor assembly
2. Back door closure rod
3. Back door handle
4. Back door striker
5. Back door opener actuator assembly
6. Back door motor assembly bracket
7. Pinch strip
8. Power back door latch assembly
9. Dovetail (door side)
10. Lower back door lock assembly
11. Back door motor gear assembly
12. Back door latch release cable
13. Power back door latch cinch motor
14. Dovetail (body side)
15. Back door lock bracket

BACK DOOR LOCK

< SERVICE INFORMATION >

SEC. 905

1. Back door assembly
2. Back door striker
3. Manual back door latch assembly
$\Leftarrow \quad$ Front
4. Power back door latch assembly

REMOVAL

1. Remove the back door lower finisher. Refer to El-31, "Removal and Installation"

BACK DOOR LOCK

< SERVICE INFORMATION >

2. Remove the weather seal.
3. On manual doors, disconnect the back door latch release cable.
4. For power doors, disconnect the cinch motor electrical connector.
5. Remove the back door latch assembly (power door) or the back door lock assembly (manual door).

INSTALLATION
Installation is in the reverse order of removal.

- Align the back door latch. Refer to BL-163, "Fitting Adjustment".

Back Door Power Lift Assembly

REMOVAL

1. Remove the LH rear pillar upper finisher. Refer to El-31, "Removal and Installation".
2. Remove the closure rod to door bolt.
3. Remove the back door motor gear assembly.
4. Remove the back door motor.

- Disconnect the electrical connector.

INSTALLATION
Installation is in the reverse order of removal.

FUEL FILLER LID OPENER
< SERVICE INFORMATION >
FUEL FILLER LID OPENER

Wiring Diagram - F/LID -

$\frac{1}{3} \frac{\sqrt{B 28}}{w} \sqrt{211} \frac{\sqrt{26}}{w}$

1. Fuel filler lid opening (LH rear fender) 2. Lock ring
2. Electrical connector
3. Fuel filler lid opener actuator
4. Remove LH rear lower finisher. Refer to El-31, "Removal and Installation".
5. Open fuel filler lid.
6. Disconnect fuel filler lid opener actuator electrical connector.
7. Remove lock ring and fuel filler lid opener actuator.

- Turn lock ring $1 / 4$ turn counter-clockwise to remove.

INSTALLATION

Installation is in the reverse order of removal.

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

< SERVICE INFORMATION >

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

Component Parts and Harness Connector Location

LIIA2467E

1. BCM M18, M19, M20
2. NATS antenna amp. M21
3. Front pillar LH
4. ECM E16
5. Combination Meter M24

System Description

NVIS (Nissan Vehicle Immobilizer System-NATS) has the following immobilizer functions:

- Since only NVIS (NATS) ignition keys, whose IDs have been registered into the ECM and BCM, allow the engine to run, operation of a stolen vehicle without a NVIS (NATS) registered key is prevented by NVIS (NATS).
NVIS (NATS) will immobilize the engine if someone tries to start it without the registered key of NVIS (NATS).
- All of the originally supplied ignition key IDs have been NVIS (NATS) registered.

If requested by the vehicle owner, a maximum of five key IDs can be registered into the NVIS (NATS) components.

- The security indicator blinks when the ignition switch is in OFF or ACC position. NVIS (NATS) warns outsiders that the vehicle is equipped with the anti-theft system.
- When NVIS (NATS) detects a malfunction, the security indicator lamp lights up while ignition key is in the ON position.
- NVIS (NATS) trouble diagnoses, system initialization and additional registration of other NVIS (NATS) ignition key IDs must be carried out using CONSULT-III hardware and CONSULT-III NVIS (NATS) software.
When NVIS (NATS) initialization has been completed, the ID of the inserted ignition key is automatically NVIS (NATS) registered. Then, if necessary, additional registration of other NVIS (NATS) ignition key IDs can be carried out.
Regarding the procedures of NVIS (NATS) initialization and NVIS (NATS) ignition key ID registration, refer to CONSULT-III Operation Manual NATS-IVIS/NVIS.
- When servicing a malfunction of the NVIS (NATS) (indicated by lighting up of Security Indicator Lamp) or registering another NVIS (NATS) ignition key ID, it may be necessary to re-register original key identification. Therefore, be sure to receive ALL KEYS from vehicle owner.

System Composition

The immobilizer function of the NVIS (NATS) consists of the following:

- NATS ignition key
- NATS antenna amp. located in the ignition key cylinder
- Body control module (BCM)
- Engine control module (ECM)
- Security indicator

NOTE:

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

< SERVICE INFORMATION >
The communication between ECM and BCM uses the CAN communication system.

ECM Re-communicating Function
The following procedure can automatically perform re-communication of ECM and BCM, but only when the ECM has been replaced with a new one which has never been energized on-board. (In this step, initialization procedure by CONSULT-III is not necessary).
NOTE:

- When registering new Key IDs or replacing the ECM other than brand new, refer to CONSULT-III Operation Manual NATS-IVIS/NVIS.
- If multiple keys are attached to the key holder, separate them before work.
- Distinguish keys with unregistered key ID from those with registered ID.

1. Install ECM.
2. Using a registered key (*1), turn ignition switch to ON.
*1: To perform this step, use the key that has been used before performing ECM replacement.
3. Maintain ignition switch in ON position for at least 5 seconds.
4. Turn ignition switch to OFF.
5. Start engine.

If engine can be started, procedure is completed.
If engine cannot be started, refer to CONSULT-III Operation Manual and initialize control unit.

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

Terminal and Reference Value for BCM

Refer to BCS-11, "Terminal and Reference Value for BCM".

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

< SERVICE INFORMATION >

1. Turn ignition switch OFF.
2. Connect CONSULT-III to data link connector.

3. Turn ignition switch ON .
4. Touch "START".
5. Touch "OTHER".
6. Select "NATS V.5.0". If "NATS V5.0" is not indicated, go to Gl-35, "CONSULT-III Data Link Connector (DLC) Circuit".
7. Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-III Operation Manual.
CONSULT-III DIAGNOSTIC TEST MODE FUNCTION

CONSULT-III DIAGNOSTIC TEST MODE	Description
C/U INITIALIZATION	When replacing any of the following components, C/U initialization and re-registration of all NATS mechanical keys are necessary. [NATS mechanical key/ BCM/ ECM*]
SELF-DIAG RESULTS	Detected items (screen terms) are as shown in the chart. Refer to "NATS SELF-DIAGNOSTIC RESULTS ITEM CHART".
Wher	

*: When replace ECM, refer to BL-182, "ECM Re-communicating Function" .
NOTE:

- When any initialization is performed, all ID previously registered will be erased and all NATS mechanical keys must be registered again.
- The engine cannot be started with an unregistered key. In this case, the system will show "DIFFERENCE OF KEY" or "LOCK MODE" as a self-diagnostic result on the CONSULT-III screen.
- In rare case, "CHAIN OF ECM-IMMU" might be stored as a self-diagnostic result during key registration procedure, even if the system is not malfunctioning.

NVIS (NATS) SELF-DIAGNOSTIC RESULTS ITEM CHART

Detected items [NVIS (NATS) program card screen terms]	P No. Code (Self-diagnostic result of "ENGINE")	Malfunction is detected when.....	Reference page
CHAIN OF ECM-IMMU [P1612]	NATS MAL- FUNCTION P1612	Communication impossible between ECM and BCM In rare case, "CHAIN OF ECM-IMMU" might be stored during key registration procedure, even if the system is not malfunctioning.	Refer to BL-188.
DIFFERENCE OF KEY [P1615]	NATS MAL- FUNCTION P1615	BCM can receive the key ID signal but the result of ID verification between key ID and BCM is NG.	Refer to BL-189.
CHAIN OF IMMU-KEY [P1614]	NATS MALFUNCTION P1614	BCM cannot receive the key ID signal.	Refer to BL-191.
ID DISCORD, IMM-ECM [P1611]	NATS MAL- FUNCTION P1611	The result of ID verification between BCM and ECM is NG. System initialization is required.	Refer to BL-189.

Detected items [NVIS (NATS) program card screen terms]	P No. Code (Self-diagnostic result of "EN- GINE")	Malfunction is detected when.....	Reference page
LOCK MODE	NATS MAL- FUNCTION P1610	When the starting operation is carried out five or more times consecutively under the following conditions, NVIS (NATS) will shift the mode to one which prevents the en- gine from being started. - Unregistered ignition key is used. BCM or ECM's malfunctioning.	Refer to BL-190.
DON'T ERASE BEFORE CHECK-	-	All engine trouble codes except NVIS (NATS) trouble code has been detected in ECM.	Refer to BL-185.

Trouble Diagnosis Procedure

WORK FLOW
 1.starting engine

Check if the engine could be started by inserting the key into the ignition key cylinder and operate ignition switch.
OK >> System is normal.

NG >> GO TO 2.
2. PERFORM SELF DIAGNOSIS

Perform SELF-DIAGNOSIS "NATS V5.0" using CONSULT-III.

NOTE:
NATS program card is necessary to display the "SELF-DIAGNOSIS".

No malfunction is detected>>Recheck the starting engine section GO TO 1.
Malfunction related to NATS is detected>>GO TO 3.
Malfunctions related to "DON'T ERASE BEFORE CHECKING ENG DIAG" and NATS are detected>>GO TO 7.

3. IDENTIFYING NATS MALFUNCTION

Self-diagnosis results referring to NATS, but no information about engine self-diagnosis result is displayed on CONSULT-III. Refer to BL-186, "Trouble Diagnosis" .
>> GO TO 4.

4.NATS TROUBLE DIAGNOSIS

Repair NATS (if necessary, perform "C/U INITIALIZATION" with CONSULT-III.)
>> GO TO 5.
5. ERASE SELF-DIAGNOSIS

Erase the record of "SELF-DIAGNOSIS" by using CONSULT-III.
>> GO TO 6.
6. STARTING ENGINE

Check if the engine could be started by inserting the key into the ignition key cylinder and operate ignition switch.

NG >> GO TO 2.
OK >> End of inspection.
7.IDENTIFYING NATS AND ENGINE CONTROL MALFUNCTION

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

< SERVICE INFORMATION >
NATS malfunction and "DON'T ERASE BEFORE CHECKING ENG DIAG" are displayed on the CONSULT-III screen.
NOTE:
This indication means that malfunction have been detected in NATS and engine control system.
>> GO TO 8.
8. NATS TROUBLE DIAGNOSIS

Repair NATS according to self-diagnosis results refer to NATS (if necessary, perform "C/U INITIALZATIN" with CONSULT-III.)
NOTE:
Do not erase "SELF-DIAGNOSIS" by using CONSULT-III.
>> GO TO 9.
9. IDENTIFYING ENGINE CONTROL MALFUNCTION

Check engine "SELF-DIAGNOSIS" records with a generalized program card instead of the NATS program card.
>> GO TO 10.
10. ENGINE CONTROL SYSTEM TROUBLE DIAGNOSIS

Repair engine control system if engine related malfunction is detected.
With engine diagnostic codes present, refer to EC-10 .
Without engine diagnostic codes present, refer to EC-84 .
NOTE:
If only "NATS MALFUNCTION" is displayed, erase the self-diagnosis results.
>> GO TO 11.
11. STARTING ENGINE

Check if the engine could be started by inserting the key into the ignition key cylinder and operate ignition switch.

$$
\begin{aligned}
& \text { OK >> GO TO } 12 . \\
& \text { NG >> GO TO } 2 . \\
& \text { 12. ERASE SELF-DIAGNOSIS }
\end{aligned}
$$

Erase both NATS and ENGINE "SELF-DIAGNOSIS" records by using CONSULT-III NATS program card and generalized program card.
>> GO TO 13
13. COMFIRMATION

Perform running test with CONSULT-III in engine "SELF-DIAGNOSIS" mode.
"NO DTC" is displayed>> End of inspection.
Malfunction information is displayed>>GO TO 2.

Trouble Diagnosis

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

Symptom	Displayed "SELF-DIAG RESULTS" on CON-SULT-III screen.	Diagnostic Procedure (Reference page)	System (Malfunctioning part or mode)	Reference Part No. Of IIlustration On System Diagram
- Security indicator lighting up* - Engine cannot be started	CHAIN OF ECM-IMMU [P1612]	PROCEDURE 1 (BL-188)	In rare case, "CHAIN OF ECM-IMMU" might be stored during key registration procedure, even if the system is not malfunctioning.	-
			Open circuit in battery voltage line of BCM circuit	C1
			Open circuit in ignition line of BCM circuit	C2
			Open circuit in ground line of BCM circuit	C3
			Open or short circuit between BCM and ECM communication line	C4
			ECM	B
			BCM	A
	DIFFERENCE OF KEY[P1615]	PROCEDURE 2 (BL-189)	Unregistered key	D
			BCM	A
	CHAIN OF IMMU-KEY [P1614]	PROCEDURE 5 (BL-191)	Malfunction of key ID chip	E5
			Communication line between ANT/ AMP and BCM: Open circuit or short circuit of battery voltage line or ground line	E1
				E3, E4
			Open circuit in power source line of ANT/ AMP circuit	E3
			Open circuit in ground line of ANT/ AMP circuit	E4
			NATS antenna amp.	E6
			BCM	A
	ID DISCORD, IMM-ECM [P1611]	$\begin{gathered} \text { PROCEDURE } 3 \\ \text { (르-189) } \end{gathered}$	System initialization has not yet been completed.	F
			ECM	B
	$\begin{aligned} & \text { LOCK MODE } \\ & \text { [P1610] } \end{aligned}$	$\begin{gathered} \text { PROCEDURE } 4 \\ (\underline{\underline{(B L-190)})} \end{gathered}$	LOCK MODE	D
Security indicator lighting up*	DON'TERASEBEFORE CHECKING ENG DIAG	WORK FLOW (BL-186, "Trouble Diagnosis")	Engine trouble data and NVIS (NATS) trouble data have been detected in ECM	-

[^1]
SYMPTOM MATRIX CHART 2

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)
< SERVICE INFORMATION >

Symptom	Diagnostic Procedure (Reference page)	System (Malfunctioning part or mode)	Reference Part No. Of Illustration On System Diagram
Security indicator does not light up*.	PROCEDURE 6 (BL-193, "Diagnosis Procedure 6")	Combination meter (security indictor lamp)	E2
		Open circuit between Fuse and BCM	C1, C2
		BCM	A

*: CONSULT-III self-diagnostic results display screen "no malfunction is detected".

Diagnosis Procedure 1

Self-diagnostic results:

"CHAIN OF ECM-IMMU" displayed on CONSULT-III screen
First perform the "SELF-DIAG RESULTS" in "BCM" with CONSULT-III, then perform the trouble diagnosis of malfunction system indicated "SELF-DIAG RESULTS" of "BCM". Refer to BL-183, "CONSULTIII Function".

1.CONFIRM SELF-DIAGNOSTIC RESULTS

Confirm SELF-DIAGNOSTIC RESULTS "CHAIN OF ECM-IMMU" displayed on CONSULT-III screen.

NOTE:

In rare case, "CHAIN OF ECM-IMMU" might be stored during key registration procedure, even if the system is not malfunctioning.
Is CONSULT-III screen displayed as above?

```
Yes >> GOTO 2.
No >> GO TO BL-186, "Trouble Diagnosis".
2.CHECK POWER SUPPLY CIRCUIT FOR BCM
```

1. Turn ignition switch OFF.
2. Disconnect BCM.
3. Check voltage between BCM connector M20 terminal 70 and ground.

$$
70 \text { - Ground } \quad \text { : Battery voltage }
$$

OK or NG
OK >> GO TO 3.
NG >> Check the following:

- 50A fusible link (letter j, located in fuse and fusible link box).
- Harness for open or short between fuse and BCM connector.

3. CHECK IGN sw. on signal
4. Turn ignition switch ON.
5. Check voltage between BCM connector M18 terminal 38 and ground.
```
38 - Ground : Battery voltage
```

OK or NG
OK >> GO TO 4.

NG >> Check the following:

- 10A fuse [No. 16, located in the fuse block (J/B)].
- Harness for open or short between fuse and BCM connector.

4. CHECK GROUND CIRCUIT FOR BCM

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

< SERVICE INFORMATION >

1. Turn ignition switch OFF.
2. Check continuity between BCM connector M20 terminal 67 and ground.

67 - Ground : Continuity should exist.
OK or NG
OK >> GO TO 5.
NG >> Repair or replace harness.

5. replace bcm

1. Replace BCM. Refer to BCS-17, "Removal and Installation of BCM".
2. Perform initialization with CONSULT-III.

For initialization, refer to "CONSULT-III Operation Manual.
Does the engine start?
Yes >> BCM is malfunctioning.
No $\gg \cdot$ ECM is malfunctioning.

- Replace ECM.
- Perform initialization or re-communicating function.
- For initialization, refer to CONSULT-III Operation Manual.
- For re-communicating function, refer to BL-182, "ECM Re-communicating Function".

Diagnosis Procedure 2

Self-diagnostic results:

"DIFFERENCE OF KEY" displayed on CONSULT-III screen
1.CONFIRM SELF-DIAGNOSTIC RESULTS

Confirm SELF-DIAGNOSTIC RESULTS "DIFFERENCE OF KEY" displayed on CONSULT-III screen.
Is CONSULT-III screen displayed as above?

```
Yes >> GO TO 2.
No >> GO TO BL-186, "Trouble Diagnosis".
2.PERFORM INITIALIZATION WITH CONSULT-III
```

Perform initialization with CONSULT-III. Re-register all NATS ignition key IDs.
For initialization and registration of NATS ignition key IDs, refer to CONSULT-III Operation Manual.
NOTE:
If the initialization is not completed or malfunctions, CONSULT-III shows message on the screen.
Can the system be initialized and can the engine be started with re-registered NATS ignition key?

```
Yes >> • Ignition key ID was unregistered.
No >> • BCM is malfunctioning.
- Replace BCM. Refer to BCS-17, "Removal and Installation of BCM".
- Perform initialization with CONSULT-III.
- For initialization, refer to "CONSULT-III Operation Manual.
```


Diagnosis Procedure 3

Self-diagnostic results:
 "ID DISCORD, IMM-ECM" displayed on CONSULT-III screen
 1.CONFIRM SELF-DIAGNOSTIC RESULTS

Confirm SELF-DIAGNOSTIC RESULTS "ID DISCORD, IMM-ECM" displayed on CONSULT-III screen.
NOTE:
"ID DISCORD IMM-ECM":
Registered ID of BCM is in discord with that of ECM.
Is CONSULT-III screen displayed as shown?

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

< SERVICE INFORMATION >

```
Yes >> GO TO 2.
No >> GO TO BL-186, "Trouble Diagnosis".
```

2. PERFORM INITIALIZATION WITH CONSULT-III

Perform initialization with CONSULT-III. Re-register all NATS ignition key IDs.
For initialization, refer to CONSULT-III Operation Manual.
NOTE:
If the initialization is not completed or malfunctions, CONSULT-III shows message on the screen.
Can the system be initialized?

```
Yes >> • Start engine. (END)
- System initialization had not been completed.
No >>•ECM is malfunctioning.
- Replace ECM.
```

- Perform initialization with CONSULT-III. For initialization, refer to CONSULT-III Operation Manual.

Diagnosis Procedure 4

Self-diagnostic results:

"LOCK MODE" displayed on CONSULT-III screen

1.CONFIRM SELF-DIAGNOSTIC RESULTS

Confirm SELF-DIAGNOSTIC RESULTS "LOCK MODE" is displayed on CONSULT-III screen. Is CONSULT-III screen displayed as shown?

```
Yes >> GO TO 2.
No >> GO TO BL-186, "Trouble Diagnosis".
```

2. ESCAPE FROM LOCK MODE
3. Turn ignition switch OFF.
4. Turn ignition switch ON with registered key. (Do not start engine.) Wait 5 seconds.
5. Return the key to OFF position. Wait 5 seconds.
6. Repeat steps 2 and 3 twice (total of three cycles).
7. Start the engine.

Does engine start?
Yes >> System is OK (Now system is escaped from "LOCK MODE").
No $\quad>\mathrm{GOTO} 3$.
3. PERFORM INITIALIZATION WITH CONSULT-III

Perform initialization with CONSULT-III.
For initialization, refer to CONSULT-III Operation Manual.
NOTE:
If the initialization is not completed or malfunctions, CONSULT-III shows the message on the screen.
Can the system be initialized?
Yes >> System is OK.
No >> GO TO 4.
4. PERFORM INITIALIZATION WITH CONSULT-III AGAIN

1. Replace BCM. Refer to BCS-17, "Removal and Installation of BCM".
2. Perform initialization with CONSULT-III.

For initialization, refer to CONSULT-III Operation Manual.
NOTE:
If the initialization is not completed or malfunctions, CONSULT-III shows the message on the screen.
Can the system be initialized?
Yes >> System is OK. BCM is malfunctioning.
No $\gg \cdot$ ECM is malfunctioning.

- Replace ECM.
- Perform initialization with CONSULT-III.

For initialization, refer to "CONSULT-III Operation Manual.

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

< SERVICE INFORMATION >

Diagnosis Procedure 5

Self-diagnostic results:

"CHAIN OF IMMU-KEY" displayed on CONSULT-III screen
1.CONFIRM SELF-DIAGNOSTIC RESULTS

Confirm SELF-DIAGNOSTIC RESULTS "CHAIN OF IMMU-KEY" displayed on CONSULT-III screen.
Is CONSULT-III screen displayed as shown?

$$
\begin{array}{ll}
\text { Yes >> GO TO } 2 . \\
\text { No } \quad \gg \text { GO TO BL-186, "Trouble Diagnosis". } \\
\text { 2. CHECK NATS ANTENNA AMP. INSTALLATION }
\end{array}
$$

Check NATS antenna amp. installation. Refer to BL-194, "How to Replace NATS Antenna Amp".

 OK or NGOK >> GO TO 3.
NG >> Reinstall NATS antenna amp. correctly.
3. CHECK NVIS (NATS) IGNITION KEY ID CHIP

Start engine with another registered NATS ignition key.
Does the engine start?
Yes >>• Ignition key ID chip is malfunctioning.

- Replace the ignition key.
- Perform initialization with CONSULT-III. For initialization, refer to "CONSULT-III Operation Manual.
No >> GO TO 4.

4. CHECK POWER SUPPLY FOR NATS ANTENNA AMP.
5. Turn ignition switch ON.
6. Check voltage between NATS antenna amp. connector M21 terminal 1 and ground.

1 - Ground : Battery voltage
OK or NG
OK >> GO TO 5.
NG >> Repair or replace fuse or harness.

5. CHECK NATS ANTENNA AMP. SIGNAL LINE- 1

Check voltage between NATS antenna amp. connector M21 terminal 2 and ground with analog tester.

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)
< SERVICE INFORMATION >

Connector terminals		Position of ignition key cylinder	$\begin{array}{c}\text { Voltage (V) } \\ \text { (Approx.) }\end{array}$
2	$(-)$		Battery voltage
	Ground	Before inserting ignition key	After inserting ignition key

then return to battery voltage\end{array}\right]\)

OK or NG

OK >> GO TO 6.
NG >>• Repair or replace harness.
NOTE:
If harness is OK, replace BCM. Refer to BCS-17, "Removal and Installation of BCM". perform initialization with CONSULT-III. For initialization, refer to "CONSULT-III Operation Manual.
6. CHECK NATS ANTENNA AMP. SIGNAL LINE- 2

Check voltage between NATS antenna amp. connector M21 terminal 4 and ground with analog tester.

Connector terminals		Position of ignition key cylinder	$\begin{array}{c}\text { Voltage (V) } \\ \text { (Approx.) }\end{array}$
4	$(-)$		Battery voltage
	Ground	Before inserting ignition key	After inserting ignition key

then return to battery voltage\end{array}\right]\)

OK or NG

OK >> GO TO 7.
NG >>• Repair or replace harness.
NOTE:
If harness is OK, replace BCM, perform initialization with CONSULT-III. For initialization, refer to CONSULT-III Operation Manual.
7. CHECK NATS ANTENNA AMP. GROUND LINE CIRCUIT

1. Turn ignition switch OFF.
2. Disconnect NATS antenna amp. connector.
3. Check continuity between NATS antenna amp. connector M21 terminal 3 and ground.

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

< SERVICE INFORMATION >

3 - Ground : Continuity should exist.
OK or NG
OK >>• NATS antenna amp. is malfunctioning.
NG >>• Repair or replace harness.
NOTE:
If harness is OK, replace BCM. Refer to BCS-17. "Removal and Installation of BCM". Perform initialization with CONSULT-III. For initialization, refer to CON-SULT-III Operation Manual.

INFOID:0000000004277254

Diagnosis Procedure 6

"SECURITY INDICATOR LAMP DOES NOT LIGHT UP"

1. CHECK FUSE

Check 15A fuse [No.19, located in the fuse block (J/B)].
OK or NG
OK >> GO TO 2.
NG >> If fuse is blown, be sure to eliminate cause of problem before installing new fuse. Refer to PG-3.
2. CHECK SECURITY INDICATOR LAMP

1. Start engine and turn ignition switch OFF.
2. Check the security indicator lamp lights up.

Security indicator lamp should light up.
OK or NG
OK >> Inspection End.
NG >> GO TO 3.
3. CHECK SECURITY INDICATOR LAMP POWER SUPPLY CIRCUIT

1. Disconnect combination meter (security indicator lamp).
2. Check voltage between combination meter connector M24 terminal 40 and ground.

$$
40 \text { - Ground }
$$

: Battery voltage
OK or NG
OK >> GO TO 4.
NG >> Repair or replace harness.

4. CHECK BCM (NATS CONTROL UNIT) FUNCTION

1. Connect combination meter (security indicator lamp).
2. Disconnect BCM.
3. Check voltage between BCM connector M18 terminal 23 and ground.
23 - Ground
: Battery voltage

OK or NG
OK >> BCM is malfunctioning.

- Replace BCM. Refer to BCS-17, "Removal and Installation of BCM".
- Perform initialization with CONSULT-III.

NVIS(NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

< SERVICE INFORMATION >

- For initialization, refer to CONSULT-III Operation Manual.

NG >> Check the following:

- Harness for open or short between security indicator lamp and BCM (NATS control unit).
- Indicator lamp condition.

How to Replace NATS Antenna Amp
NOTE:

- If NATS antenna amp. is not installed correctly, NVIS (NATS) system will not operate properly and SELF-DIAG RESULTS on CONSULT-III screen will show "LOCK MODE" or "CHAIN OF IMMU-KEY".
- Initialization is not necessary when only NATS antenna amp. is replaced with a new one.

Wiring Diagram - TRNSCV -

Trouble Diagnosis

HOMELINK UNIVERSAL TRANSCEIVER

< SERVICE INFORMATION >

Before conducting the procedure given below, make sure that system receiver (garage door opener, etc.) operates with original, hand-held transmitter. If $N G$, receiver or hand-held transmitter is malfunctioning, not vehicle related.

1. ILLUMINATION CHECK

1. Turn ignition switch OFF.
2. Does red light (1) of transmitter illuminate when any of the three transmitter buttons (2) is pressed?
YES or NO
YES >> GO TO 2.
NO >> GO TO 3.

2. TRANSMITTER CHECK

Check transmitter with Tool*.
*:For details, refer to Technical Service Bulletin.

OK or NG

OK >> Receiver or hand-held transmitter malfunction, not vehicle related.
NG >> Replace auto anti-dazzling inside mirror (homelink universal transceiver).
3.power supply check

1. Turn ignition switch OFF.
2. Disconnect auto anti-dazzling inside mirror (homelink universal transceiver) connector.
3. Check voltage between auto anti-dazzling inside mirror connector R17 terminal 10 and ground.
```
10 - Ground
: Battery voltage
```

OK or NG
OK >> GO TO 4.
NG >> Check the following:

- 15A fuse [No. 3, located in the fuse block (J / B)].
- Harness for open or short between fuse and auto antidazzling inside mirror (homelink universal transceiver).

4. ground circuit check

Check continuity between auto anti-dazzling inside mirror connector R17 terminal 8 and body ground.
8 - Ground
: Continuity should exist.
OK or NG
OK >> Replace auto anti-dazzling inside mirror (homelink universal transceiver).
NG >> Repair or replace harness.

BODY REPAIR

Body Exterior Paint Color

M: Metallic; 2S: 2-Coat Solid, 2P: 2-Coat Pearl; 3P: 3-Coat Pearl; t: New Cross Linking Clear Coat

UNDERBODY COMPONENT PARTS

5. Side cowl top RH/LH
6. Rear lower hoodledge RH/LH
7. Upper dash
8. Front cowl top
9. Center cowl top
10. Cowl top extension
11. Cowl top extension bracket RH/LH
12. Lower dash
13. Dash lower cross member
14. 2nd cross member assembly
15. Inner sill RH/LH
16. Front floor
17. Center front floor
18. 2nd seat mounting bracket assembly RH/LH

19 Front floor rear
20. Rear floor step RH/LH
25. Front side member extension reinforcement RH/LH
26. Front side member reinforcement RH/LH
27. Front side member front extension RH/LH
28. Inner front side member assembly RH/LH
29. Floor center member assembly
30. Outer 3rd seat mounting bracket
31. Center 1st cross member assembly
32. Front side member rear extension RH/LH
33. Lower guide rail assembly RH/LH
34. 4th cab moulting cross member
35. Rear seat cross member
36. Rear side member RH/LH
37. Center rear seat cross member
38. 2nd rear cross member
39. Front hook RH/LH

1. Hood
2. Front fender (RH\&LH)
3. Front door assembly
4. Slide door assembly
5. Body side outer
6. Center pillar reinforcement
7. Inner roof side rail
8. Upper guide rail
9. Upper guide rail
10. Roof drip rail
11. Rear fender
12. Body side outer reinforcement
13. Back pillar reinforcement
14. Inner side panel
15. Front pillar lower hinge brace
16. Outer sill reinforcement
17. Inner lower front pillar
18. Inner upper front pillar
19. Upper hinge pillar brace assembly
20. Inner roof rail reinforcement
21. Inner center pillar
22. Waist rail guide
23. Back panel assembly
24. Back panel assembly
25. Standard roof assembly
26. Roof assembly with sunroof
27. Front roof rail
28. Roof side molding assembly
29. Roof bow No. 2
30. Rear roof bow
31. Rear roof rail

Corrosion Protection

DESCRIPTION

To provide improved corrosion prevention, the following anti-corrosive measures have been implemented in NISSAN production plants. When repairing or replacing body panels, it is necessary to use the same anti-corrosive measures.

ANTI-CORROSIVE PRECOATED STEEL (GALVANNEALED STEEL)

To improve repairability and corrosion resistance, a new type of anticorrosive precoated steel sheet has been adopted replacing conventional zinc-coated steel sheet.
Galvannealed steel is electroplated and heated to form Zinc-iron alloy, which provides excellent and long term corrosion resistance with cationic electrode position primer.

Nissan Genuine Service Parts are fabricated from galvannealed steel. Therefore, it is recommended that GENUINE NISSAN PARTS or equivalent be used for panel replacement to maintain the anti-corrosive performance built into the vehicle at the factory.

PHOSPHATE COATING TREATMENT AND CATIONIC ELECTRODEPOSITION PRIMER

A phosphate coating treatment and a cationic electrode position primer, which provide excellent corrosion protection, are employed on all body components.
CAUTION:
Confine paint removal during welding operations to an absolute minimum.

Nissan Genuine Service Parts are also treated in the same manner. Therefore, it is recommended that GENUINE NISSAN PARTS or equivalent be used for panel replacement to maintain anti-corrosive performance built into the vehicle at the factory.

ANTI-CORROSIVE WAX

To improve corrosion resistance, anti-corrosive wax is applied inside the body sill and inside other closed sections. Accordingly, when replacing these parts, be sure to apply anti-corrosive wax to the appropriate areas of
the new parts. Select an excellent anti-corrosive wax which will penetrate after application and has a long shelf life.

UNDERCOATING

The underside of the floor and wheelhouse are undercoated to prevent rust, vibration, noise and stone chipping. Therefore, when such a panel is replaced or repaired, apply undercoating to that part. Use an undercoating which is rust preventive, soundproof, vibration-proof, shock-resistant, adhesive, and durable.
Precautions in undercoating

1. Do not apply undercoating to any place unless specified (such as the areas above the muffler and three way catalyst which are subjected to heat).
2. Do not undercoat the exhaust pipe or other parts which become hot.
3. Do not undercoat rotating parts.
4. Apply bitumen wax after applying undercoating.

The following figure shows the areas which are sealed at the factory. Sealant which has been applied to these areas should be smooth and free from cuts or gaps. Care should be taken not to apply an excess amount of sealant and not to allow other unaffected parts to come into contact with the sealant.

A mark has been placed on each part of the body to indicate the vehicle center. When repairing parts damaged by an accident which might affect the vehicle frame (members, pillars, etc.), more accurate and effective repair will be possible by using these marks together with body alignment specifications.

PANEL PARTS MATCHING MARKS

A mark has been placed on each body panel to indicate the parts matching positions. When repairing parts damaged by an accident which might affect the vehicle structure (members, pillars, etc.), more accurate and effective repair will be possible by using these marks together with body alignment specifications.

Type v：©－－－－－－日日
Type w：© …．．．－صー」

DESCRIPTION

－All dimensions indicated in the figures are actual．
－When using a tracking gauge，adjust both pointers to equal length．Then check the pointers and gauge itself to make sure there is no free play．
－When a measuring tape is used，check to be sure there is no elongation，twisting or bending．
－Measurements should be taken at the center of the mounting holes．
－An asterisk（＊）following the value at the measuring point indicates that the measuring point on the other side is symmetrically the same value．

< SERVICE INFORMATION >

- The coordinates of the measurement points are the distances measured from the standard line of " X ", " Y " and " Z ".

Engine Compartment

MEASUREMENT POINTS

(a) LH cowl
(b) Fender installation hole center
(c) Panel alignment hole
(d) Front end module installation hole center
(e) Strut installing hole center
(j) 12 mm Dia

LIIA0860E
Underbody

MEASUREMENT POINTS

WIIA0359E

Passenger Compartment

Unit: mm
WIIA0537E

MEASUREMENT POINTS

(a) Center of upper dash panel.

(C), (C) Inner front pillar lower reinforcement panel overlap.

(D).(d) Upper door opening front joggle center.
(P).(D) Center pillar rear upper joggle center.

(K).(K) Upper sliding door opening rear joggle center.
(L).(I) Rear fender inner reinforcement upper panel overlap.
(M),(m) Outer sill rear fold over tab center.
(N),(n) Center pillar rear upper joggle center.

Figures marked with a (*) indicate
symmetrically identical dimensions on both right and left hand sides of vehicle.

Unit: mm
WIIA0539E

(R), r Rear pillar upper reinforcement and roof overlap..

BODY REPAIR

< SERVICE INFORMATION >

Abbreviation	Material name	Heatresisting temperature ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	Resistance to gasoline and solvents	Other cautions
PE	Polyethylene	60 (140)	Gasoline and most solvents are harmless if applied for a very short time (wipe up quickly).	Flammable
PVC	Polyvinyl Chloride	80 (176)	Same as above.	Poison gas is emitted when burned.
$\begin{aligned} & \text { EPM/ } \\ & \text { EPDM } \end{aligned}$	Ethylene Propylene (Diene) rubber	80 (176)	Same as above.	Flammable
$\begin{aligned} & \text { TPO/ } \\ & \text { TPR } \end{aligned}$	Thermoplastic Olefine/ Thermoplastic Rubber	80 (176)	Same as above.	Flammable
PP	Polypropylene	90 (194)	Same as above.	Flammable, avoid battery acid.
UP	Polyester thermoset	90 (194)	Same as above.	Flammable
PS	Polystyrene	80 (176)	Avoid solvents.	Flammable
ABS	Acrylonitrile Butadiene Styrene resin	80 (176)	Avoid gasoline and solvents.	
AES	Acrylonitrile Ethylene Styrene	80 (176)	Same as above.	
PMMA	Polymethyl Methacrylate	85 (185)	Same as above.	
AAS	Acrylonitrile Acrylic Styrene	85 (185)	Same as above.	
AS	Acrylonitrile Styrene	85 (185)	Same as above.	
EVA	Polyvinyl Ethyl Acetate	90 (194)	Same as above.	
ASA	Acrylonitrile Styrene Acrylate	100 (222)	Same as above.	Flammable
$\begin{aligned} & \text { PPO/ } \\ & \text { PPE } \end{aligned}$	Polyphenylene Oxide/ Polyphenylene Ether	110 (230)	Same as above.	
PC	Polycarbonate	120 (248)	Same as above.	
PAR	Polyacrylate	180 (356)	Same as above.	
LLDPE	Lenear Low Density PE	45 (100)	Gasoline and most solvents are harmless.	Flammable
PUR	Polyurethane	90 (194)	Same as above.	
TPU	Thermoplastic Urethane	110 (230)	Same as above.	
PPC	Polypropylene Composite	115 (239)	Same as above.	Flammable
POM	Polyacetal	120 (248)	Same as above.	Avoid battery acid.
$\begin{aligned} & \text { PBT+P } \\ & \text { C } \end{aligned}$	Polybutylene Terephthalate+Polycarbonate	120 (248)	Same as above.	Flammable
PA	Polyamide (Nylon)	140 (284)	Same as above.	Avoid immersing in water.
PBT	Polybutylene Terephthalate	140 (284)	Same as above.	
FRP	Fiber Reinforced Plastics	170 (338)	Same as above.	Avoid battery acid.
PET	Polyethylene Terephthalate	180 (356)	Same as above.	
PEI	Polyetherimide	200 (392)	Same as above.	

1. When repairing and painting a portion of the body adjacent to plastic parts, consider their characteristics (influence of heat and solvent) and remove them if necessary or take suitable measures to protect them.
2. Plastic parts should be repaired and painted using methods suiting the materials' characteristics.

Precaution in Repairing High Strength Steel

INFOID:0000000004277265
High strength steel is used for body panels in order to reduce vehicle weight.
Accordingly, precautions in repairing automotive bodies made of high strength steel are described below:
High strength steel (hss) used in Nissan vehicles

Tensile strength	Nissan/Infiniti designation	Major applicable parts
$\begin{gathered} 373 \mathrm{~N} / \mathrm{mm}^{2} \\ \left(38 \mathrm{~kg} / \mathrm{mm}^{2}, 54 \mathrm{klb} / \mathrm{sq} \mathrm{in}\right) \end{gathered}$	SP130	- Front side member assembly - Upper hoodledge - Upper pillar hinge brace assembly - Rear side member extension - Other reinforcements
$785-981 \mathrm{~N} / \mathrm{mm}^{2}$ $\left(80-100 \mathrm{~kg} / \mathrm{mm}^{2}\right.$ $114-142 \mathrm{klb} / \mathrm{sq} \mathrm{in})$	SP150	- Front bumper reinforcement - Rear bumper reinforcement

SP130 is the most commonly used HSS.
SP150 HSS is used only on parts that require much more strength.
Read the following precautions when repairing HSS:

1. Additional points to consider

- The repair of reinforcements (such as side members) by heating is not recommended since it may weaken the component. When heating is unavoidable, do not heat HSS parts above $550^{\circ} \mathrm{C}\left(1,022^{\circ} \mathrm{F}\right)$.
Verify heating temperature with a thermometer.
(Crayon-type and other similar type thermometer are appropriate.)

- When straightening body panels, use caution in pulling any HSS panel. Because HSS is very strong, pulling may cause deformation in adjacent portions of the body. In this case, increase the number of measuring points, and carefully pull the HSS panel.

- When cutting HSS panels, avoid gas (torch) cutting if possible. Instead, use a saw to avoid weakening surrounding areas due to heat. If gas (torch) cutting is unavoidable, allow a minimum margin of 50 mm (1.97in).

- When welding HSS panels, use spot welding whenever possible in order to minimize weakening surrounding areas due to heat.
If spot welding is impossible, use M.I.G. welding. Do not use gas (torch) welding because it is inferior in welding strength.

- The spot weld on HSS panels is harder than that of an ordinary steel panel.
Therefore, when cutting spot welds on a HSS panel, use a low speed high torque drill (1,000 to $1,200 \mathrm{rpm}$) to increase drill bit durability and facilitate the operation.
- SP150 HSS panels with a tensile strength of 785 to $981 \mathrm{~N} /$ mm^{2} (80 to $100 \mathrm{~kg} / \mathrm{mm}^{2}$, 114 to $142 \mathrm{klb} / \mathrm{sq} \mathrm{in}$), used as reinforcement in the door guard beams, is too strong to repair. When these HSS parts are damaged, the outer panels also sustain substantial damage; therefore, the assembly parts must be replaced.

BODY REPAIR

< SERVICE INFORMATION >

2. Precautions in spot welding HSS

This work should be performed under standard working conditions. Always note the following when spot welding HSS:

- The electrode tip diameter must be sized properly according to the metal thickness.

- The panel surfaces must fit flush to each other, leaving no gaps.

- Follow the specifications for the proper welding pitch.

Thickness (t)	Minimum pitch (ℓ)
$0.6(0.024)$	$10(0.39)$ or over
$0.8(0.031)$	$12(0.47)$ or over
$1.0(0.039)$	$18(0.71)$ or over
$1.2(0.047)$	$20(0.79)$ or over
$1.6(0.063)$	$27(1.06)$ or over
$1.8(0.071)$	$31(1.22)$ or over

Unit:mm

Foam Repair

During factory body assembly, foam insulators are installed in certain body panels and locations around the vehicle. Use the following procedure(s) to replace any factory-installed foam insulators.
URETHANE FOAM APPLICATIONS
Use commercially available spray foam for sealant (foam material) repair of material used on vehicle. Read instructions on product for fill procedures.

FILL PROCEDURES

1. Fill procedures after installation of service part.

- Remove foam material remaining on vehicle side.
- Clean area in which foam was removed.
- Install service part.
- Insert nozzle into hole near fill area and fill foam material or fill in enough to close gap with the service part.

2. Fill procedures before installation of service part.

- Remove foam material remaining on vehicle side.
- Clean area in which foam was removed.
- Fill foam material on wheelhouse outer side.

NOTE:

Fill in enough to close gap with service part while avoiding flange area.

- Install service part.

NOTE:

Refer to label for information on working times.

Replacement Operation

DESCRIPTION

This section is prepared for technicians who have attained a high level of skill and experience in repairing col-lision-damaged vehicles and also use modern service tools and equipment. Persons unfamiliar with body repair techniques should not attempt to repair collision-damaged vehicles by using this section.

Technicians are also encouraged to read Body Repair Manual (Fundamentals) in order to ensure that the original functions and quality of the vehicle can be maintained. The Body Repair Manual (Fundamentals) contains additional information, including cautions and warnings, that are not including in this manual. Technicians should refer to both manuals to ensure proper repairs.

Please note that this information is prepared for worldwide usage, and as such, certain procedures may not apply in some regions or countries.

The symbols used in this section for cutting and welding / brazing operations are shown below.

PIIA0149E

- Front pillar butt joint can be determined anywhere within shaded area as shown in the figure. The best location for the butt joint is at position A due to the construction of the vehicle. Refer to the front pillar section.

- Determine cutting position and record distance from the locating indent. Use this distance when cutting the service part. Cut outer front pillar over 60 mm above inner front pillar cut position.

- Prepare a cutting jig to make outer pillar easier to cut. Also, this will permit service part to be accurately cut at joint position.

- An example of cutting operation using a cutting jig is as follows.

1. Mark cutting lines.

A: Cut position of outer pillar
B: Cut position of inner pillar
2. Align cutting line with notch on jig. Clamp jig to pillar.
3. Cut outer pillar along groove of jig. (At position A)
4. Remove jig and cut remaining portions.
5. Cut inner pillar at position B in same manner.

HOODLEDGE

- Work after radiator core support has been removed.

Service Joint

FRONT SIDE MEMBER

- Work after hoodledge and radiator core support have been removed.

Service Joint

LIIA0869E

- Work after radiator core support has been removed.

Service Joint

Unit : mm

2 -spot welds	3 -spot wel	IG Plug weld		MIG seam weld Point weld
				m

WIIA0361E

FRONT PILLAR

- Work after rear hoodledge reinforcement has been removed.

Service Joint

Service Joint

Service Joint

Unit: mm

CENTER PILLAR

Service Joint

B

Service Joint

Unit: mm

| 2-spot welds | 3-spot welds | MIG Plug weld |
| :---: | :---: | :---: | :---: |

Service Joint

Service Joint

| 2-spot welds | 3-spot welds |
| :--- | :--- | :--- |

Service Joint

REAR FLOOR REAR

- Work after rear panel has been removed.

Service Joint

- Work after rear panel and rear end crossmember have been removed.

Service Joint

| 2-spot welds | 3-spot welds |
| :---: | :---: | :---: | :---: | :---: |

[^0]: Operation Chart

[^1]: *: When NVIS (NATS) detects a malfunction, the security indicator lights up while ignition key is in the "ON" position.

