

D

Е

Н

CONTENTS

INDEX FOR DTC	8	NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM	I-
DTC No. Index	8	NATS)	47
Alphabetical Index	12	Description	47
PRECAUTIONS		ON BOARD DIAGNOSTIC (OBD) SYSTEM	48
Precautions for Supplemental Restraint System		Introduction	
(SRS) "AIR BAG" and "SEAT BELT PRE-TEN-		Two Trip Detection Logic	48
SIONER"	16	Emission-related Diagnostic Information	49
On Board Diagnostic (OBD) System of Engine ar	nd	Malfunction Indicator Lamp (MIL)	64
A/T	16	OBD System Operation Chart	68
Precaution	16	BASIC SERVICE PROCEDURE	73
PREPARATION		Basic Inspection	
Special Service Tools	20	Idle Speed and Ignition Timing Check	78
Commercial Service Tools	22	Procedure After Replacing ECM	79
ENGINE CONTROL SYSTEM	23	VIN Registration	79
System Diagram	23	Accelerator Pedal Released Position Learning	80
Multiport Fuel Injection (MFI) System	24	Throttle Valve Closed Position Learning	80
Electronic Ignition (EI) System	26	Idle Air Volume Learning	80
Fuel Cut Control (at No Load and High Engine		Fuel Pressure Check	82
Speed)		TROUBLE DIAGNOSIS	86
AIR CONDITIONING CUT CONTROL	28	Trouble Diagnosis Introduction	86
Input/Output Signal Chart	28	DTC Inspection Priority Chart	
System Description	28	Fail-Safe Chart	
AUTOMATIC SPEED CONTROL DEVICE (ASCI	0) 29	Symptom Matrix Chart	
System Description	29	Engine Control Component Parts Location	99
Component Description	30	Vacuum Hose Drawing	106
CAN COMMUNICATION		Circuit Diagram	
System Description		ECM Harness Connector Terminal Layout	
EVAPORATIVE EMISSION SYSTEM	32	ECM Terminals and Reference Value	
Description		CONSULT-II Function (ENGINE)	
Component Inspection		Generic Scan Tool (GST) Function	
Removal and Installation		CONSULT-II Reference Value in Data Monitor	134
How to Detect Fuel Vapor Leakage	36	Major Sensor Reference Graph in Data Monitor	
ON BOARD REFUELING VAPOR RECOVERY		Mode	
(ORVR)		TROUBLE DIAGNOSIS - SPECIFICATION VALUE	
System Description		Description	
Diagnostic Procedure		Testing Condition	
Component Inspection		Inspection Procedure	
POSITIVE CRANKCASE VENTILATION		Diagnostic Procedure	
Description		TROUBLE DIAGNOSIS FOR INTERMITTENT INC	
Component Inspection	45	DENT	149

Description	149	Component Description	192
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor Mod	ek
POWER SUPPLY AND GROUND CIRCUIT	150		.192
Wiring Diagram	150	On Board Diagnosis Logic	192
Diagnostic Procedure	153	DTC Confirmation Procedure	193
Ground Inspection	158	Overall Function Check	194
DTC U1000, U1001 CAN COMMUNICATION LINE	159	Wiring Diagram	195
Description		Diagnostic Procedure	196
On Board Diagnosis Logic	159	Component Inspection	200
DTC Confirmation Procedure		Removal and Installation	201
Wiring Diagram	160	DTC P0102, P0103 MAF SENSOR	202
Diagnostic Procedure	161	Component Description	202
DTC U1010 CAN COMMUNICATION		CONSULT-II Reference Value in Data Monitor Mod	de
Description	162		.202
On Board Diagnosis Logic	162	On Board Diagnosis Logic	202
DTC Confirmation Procedure		DTC Confirmation Procedure	203
Diagnostic Procedure	163	Wiring Diagram	204
DTC P0011, P0021 IVT CONTROL	164	Diagnostic Procedure	
Description		Component Inspection	
CONSULT-IIReference Value in Data Monitor Mode		Removal and Installation	
	164	DTC P0112, P0113 IAT SENSOR	
On Board Diagnosis Logic	165	Component Description	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Wiring Diagram	
Removal and Installation		Diagnostic Procedure	
DTC P0031, P0032, P0051, P0052 A/F SENSOR 1		Component Inspection	
HEATER	168	Removal and Installation	
Description		DTC P0117, P0118 ECT SENSOR	
CONSULT-IIReference Value in Data Monitor Mode	100	Component Description	
	168	On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Wiring Diagram	
Wiring Diagram		Diagnostic Procedure	
Diagnostic Procedure		Component Inspection	
<u> </u>		·	
Component Inspection		Removal and Installation	
Removal and InstallationDTC P0037, P0038, P0057, P0058 HO2S2 HEATER		DTC P0122, P0123 TP SENSOR	
		Component Description	
Description	176	CONSULT-II Reference Value in Data Monitor Mod	
	470	On Doord Diagnosis Louis	.222
-	176	On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Wiring Diagram	
Wiring Diagram		Diagnostic Procedure	
Diagnostic Procedure		Component Inspection	
Component Inspection		Removal and Installation	
Removal and Installation	184	DTC P0125 ECT SENSOR	
DTC P0075, P0081 IVT CONTROL SOLENOID		Component Description	
VALVE		On Board Diagnosis Logic	
Component Description	185	DTC Confirmation Procedure	
CONSULT-IIReference Value in Data Monitor Mode		Diagnostic Procedure	
	185	Component Inspection	
On Board Diagnosis Logic		Removal and Installation	
DTC Confirmation Procedure		DTC P0127 IAT SENSOR	
Wiring Diagram	186	Component Description	
Diagnostic Procedure	190	On Board Diagnosis Logic	234
Component Inspection		DTC Confirmation Procedure	
Removal and Installation	191	Diagnostic Procedure	235
DTC P0101 MAF SENSOR	192		

Component Inspection			. 295
Removal and Installation		On Board Diagnosis Logic	
DTC P0128 THERMOSTAT FUNCTION		DTC Confirmation Procedure	
On Board Diagnosis Logic		Overall Function Check	
DTC Confirmation Procedure		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	303
Component Inspection		Component Inspection	
Removal and Installation		Removal and Installation	
DTC P0130, P0150 A/F SENSOR 1		DTC P0139, P0159 HO2S2	
Component Description		Component Description	
CONSULT-II Reference Value in Data Monitor	Mode	CONSULT-II Reference Value in Data Moni	torMode
	. 239		. 310 D
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Overall Function Check	241	Overall Function Check	311 _E
Wiring Diagram	242	Wiring Diagram	
Diagnostic Procedure	246	Diagnostic Procedure	
Removal and Installation		Component Inspection	319
DTC P0131, P0151 A/F SENSOR 1	250	Removal and Installation	
Component Description	250	DTC P0171, P0174 FUEL INJECTION SYS	STEM
CONSULT-II Reference Value in Data Monitor	Mode	FUNCTION	322
	. 250	On Board Diagnosis Logic	322 G
On Board Diagnosis Logic	250	DTC Confirmation Procedure	322
DTC Confirmation Procedure	250	Wiring Diagram	324
Wiring Diagram	252	Diagnostic Procedure	328 _H
Diagnostic Procedure		DTC P0172, P0175 FUEL INJECTION SYS	
Removal and Installation		FUNCTION	334
DTC P0132, P0152 A/F SENSOR 1	260	On Board Diagnosis Logic	334
Component Description		DTC Confirmation Procedure	334
CONSULT-II Reference Value in Data Monitor	Mode	Wiring Diagram	336
	. 260	Diagnostic Procedure	
On Board Diagnosis Logic	260	DTC P0181 FTT SENSOR	
DTC Confirmation Procedure		Component Description	346
Wiring Diagram	262	On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Removal and Installation		Wiring Diagram	
DTC P0133, P0153 A/F SENSOR 1	270	Diagnostic Procedure	349
Component Description		Component Inspection	
CONSULT-II Reference Value in Data Monitor		Removal and Installation	
	. 270	DTC P0182, P0183 FTT SENSOR	352
On Board Diagnosis Logic	270	Component Description	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram	273	DTC Confirmation Procedure	
Diagnostic Procedure		Wiring Diagram	353
Removal and Installation		Diagnostic Procedure	
DTC P0137, P0157 HO2S2		Component Inspection	
Component Description		Removal and Installation	
CONSULT-II Reference Value in Data Monitor		DTC P0222, P0223 TP SENSOR	
	. 283	Component Description	
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Moni	
DTC Confirmation Procedure			. 357
Overall Function Check		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Wiring Diagram	
Component Inspection		Diagnostic Procedure	
Removal and Installation		Component Inspection	
DTC P0138, P0158 HO2S2		Removal and Installation	
Component Description		DTC P0300 - P0306 MULTIPLE CYLINDE	

CONSULT-II Reference Value in Data Monitor Mode

On Board Diagnosis Logic	365	Overall Function Check	420
DTC Confirmation Procedure	365	Diagnostic Procedure	421
Diagnostic Procedure	366	DTC P0441 EVAP CONTROL SYSTEM	425
DTC P0327, P0328 KS	374	System Description	425
Component Description	374	On Board Diagnosis Logic	425
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Overall Function Check	
Wiring Diagram		Diagnostic Procedure	
Diagnostic Procedure		DTC P0442 EVAP CONTROL SYSTEM	
Component Inspection		On Board Diagnosis Logic	
Removal and Installation		DTC Confirmation Procedure	
DTC P0335 CKP SENSOR (POS)		Diagnostic Procedure	
Component Description		DTC P0443 EVAP CANISTER PURGE VOLU	
CONSULT-IIReference Value in Data Monitor		CONTROL SOLENOID VALVE	
CONCOLI INVOICIONO VARGONI DATA MONICON	.379	Description	
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor I	
DTC Confirmation Procedure		CONCOLT III CICIONOC VAIACIII DAIA MOTILOTI	.439
Wiring Diagram		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection		Wiring Diagram	
·			
Removal and Installation		Diagnostic Procedure	
DTC P0340, P0345 CMP SENSOR (PHASE)		Component Inspection	
Component Description		Removal and Installation	
On Board Diagnosis Logic		DTC P0444, P0445 EVAP CANISTER PURGE	
DTC Confirmation Procedure		UME CONTROL SOLENOID VALVE	
Wiring Diagram		Description	
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor I	
Component Inspection		0.0.10:	.447
Removal and Installation		On Board Diagnosis Logic	
DTC P0400 EGR FUNCTION		DTC Confirmation Procedure	
Description		Wiring Diagram	
CONSULT-IIReference Value in Data Monitor I		Diagnostic Procedure	
0.5 .5	. 399	Component Inspection	
On Board Diagnosis Logic		Removal and Installation	
DTC Confirmation Procedure		DTC P0447 EVAP CANISTER VENT CONTR	
Wiring Diagram		VALVE	
Diagnostic Procedure		Component Description	
DTC P0403 EGR VOLUME CONTROL VALV		CONSULT-II Reference Value in Data Monitor I	
Description		0.0.10:	.454
CONSULT-IIReference Value in Data Monitor I		On Board Diagnosis Logic	
0.5 .5	. 406	DTC Confirmation Procedure	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Wiring Diagram		Component Inspection	
Diagnostic Procedure		DTC P0448 EVAP CANISTER VENT CONTR	
Component Inspection		VALVE	
Removal and Installation		Component Description	
DTC P0405, P0406 EGRT SENSOR		CONSULT-II Reference Value in Data Monitor I	
Component Description			.461
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Wiring Diagram		Wiring Diagram	
Diagnostic Procedure		Diagnostic Procedure	
Component Inspection		Component Inspection	
Removal and Installation		DTCP0451EVAPCONTROLSYSTEMPRESS	
DTC P0420, P0430 THREE WAY CATALYST F		SENSOR	
TION		Component Description	
On Board Diagnosis Logic		CONSULT-II Reference Value in Data Monitor I	
DTC Confirmation Procedure	419		.468

l	L	ı	'n	
	ì	İ		

D

Е

F

G

Н

Κ

L

M

Α

On Board Diagnosis Logic512

DTC Confirmation Procedure	469	DTC Confirmation Procedure	512
Diagnostic Procedure	470	Diagnostic Procedure	513
Component Inspection		DTC P0507 ISC SYSTEM	
DTCP0452EVAPCONTROLSYSTEMPRESS		Description	
SENSOR		On Board Diagnosis Logic	
Component Description		DTC Confirmation Procedure	
CONSULT-II Reference Value in Data Monitor N		Diagnostic Procedure	
Correct microromed value in Ediamenticin	. 472	DTC P0550 PSP SENSOR	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor Mo	
Wiring Diagram		CONSOLT-III CEIEI EI CE VAI GEIT DALA MOTILOT MC	. 516
		On Board Diagnosis Logic	
Diagnostic Procedure		DTC Confirmation Procedure	
Component Inspection			
DTC P0453 EVAP CONTROL SYSTEM PRESS		Wiring Diagram	
SENSOR		Diagnostic Procedure	
Component Description		Component Inspection	
CONSULT-II Reference Value in Data Monitor N		Removal and Installation	
	. 479	DTC P0603 ECM POWER SUPPLY	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		On Board Diagnosis Logic	
Wiring Diagram		DTC Confirmation Procedure	
Diagnostic Procedure		Wiring Diagram	
Component Inspection		Diagnostic Procedure	
DTC P0455 EVAP CONTROL SYSTEM		DTC P0605 ECM	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure	488	On Board Diagnosis Logic	
Diagnostic Procedure	489	DTC Confirmation Procedure	526
DTC P0456 EVAP CONTROL SYSTEM	495	Diagnostic Procedure	527
On Board Diagnosis Logic	495	DTC P0643 SENSOR POWER SUPPLY	529
DTC Confirmation Procedure	496	On Board Diagnosis Logic	529
Overall Function Check	497	DTC Confirmation Procedure	529
Diagnostic Procedure	498	Wiring Diagram	530
DTC P0460 FUEL LEVEL SENSOR		Diagnostic Procedure	
Component Description		DTC P0850 PNP SWITCH	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		CONSULT-II Reference Value in Data Monitor Mo	
Diagnostic Procedure			. 535
Removal and Installation		On Board Diagnosis Logic	
DTC P0461 FUEL LEVEL SENSOR		DTC Confirmation Procedure	
Component Description		Overall Function Check	
On Board Diagnosis Logic		Wiring Diagram	
Overall Function Check		Diagnostic Procedure	
Diagnostic Procedure		DTC P1148, P1168 CLOSED LOOP CONTROL	550 511
Removal and Installation			
		On Board Diagnosis Logic	
DTC P0462, P0463 FUEL LEVEL SENSOR		DTC P1211 TCS CONTROL UNIT	
Component Description		Description	
On Board Diagnosis Logic		On Board Diagnosis Logic	
DTC Confirmation Procedure		DTC Confirmation Procedure	
Diagnostic Procedure		Diagnostic Procedure	
Removal and Installation		DTC P1212 TCS COMMUNICATION LINE	
DTC P0500 VSS		Description	
Description		On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Diagnostic Procedure	
Overall Function Check	511	DTC P1217 ENGINE OVER TEMPERATURE	
Diagnostic Procedure	511	Description	
DTC P0506 ISC SYSTEM		CONSULT-II Reference Value in Data Monitor Mo	de
Description	512		. 545

On Board Diagnosis Logic468

On Board Diagnosis Logic	546	DTC Confirmation Procedure	586
Overall Function Check		Wiring Diagram	587
Wiring Diagram	548	Diagnostic Procedure	588
Diagnostic Procedure		Component Inspection	589
Main 12 Causes of Overheating	553	Removal and Installation	590
Component Inspection	554	DTC P1805 BRAKE SWITCH	591
DTC P1225 TP SENSOR	555	Description	
Component Description	555	CONSULT-II Reference Value in Data Monitor M	ode
On Board Diagnosis Logic	555		.591
DTC Confirmation Procedure	555	On Board Diagnosis Logic	591
Diagnostic Procedure	556	DTC Confirmation Procedure	591
Removal and Installation		Wiring Diagram	
DTC P1226 TP SENSOR	557	Diagnostic Procedure	
Component Description		Component Inspection	
On Board Diagnosis Logic		DTCP2100,P2103THROTTLECONTROLMOT	
DTC Confirmation Procedure		RELAY	
Diagnostic Procedure		Component Description	
Removal and Installation		CONSULT-II Reference Value in Data Monitor M	ode
DTC P1402 EGR FUNCTION			.596
Description		On Board Diagnosis Logic	
CONSULT-IIReference Value in Data Monitor I	Mode	DTC Confirmation Procedure	
	. 561	Wiring Diagram	
On Board Diagnosis Logic	561	Diagnostic Procedure	
DTC Confirmation Procedure	561	DTC P2101 ELECTRIC THROTTLE CONTROL	_
Wiring Diagram		FUNCTION	
Diagnostic Procedure		Description	
DTC P1421 COLD START CONTROL	566	On Board Diagnosis Logic	
Description		DTC Confirmation Procedure	
On Board Diagnosis Logic		Wiring Diagram	
DTC Confirmation Procedure		Diagnostic Procedure	
Diagnostic Procedure		Component Inspection	
DTC P1564 ASCD STEERING SWITCH		Removal and Installation	
Component Description		DTC P2118 THROTTLE CONTROL MOTOR	
CONSULT-IIReference Value in Data Monitor I	Mode	Component Description	
	. 568	On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Wiring Diagram	
Wiring Diagram		Diagnostic Procedure	
Diagnostic Procedure		Component Inspection	
Component Inspection		Removal and Installation	
DTC P1572 ASCD BRAKE SWITCH		DTC P2119 ELECTRIC THROTTLE CONTROL	
Component Description		ACTUATOR	
CONSULT-IIReference Value in Data Monitor I		Component Description	
0.0.10	. 576	On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Diagnostic Procedure	616
Wiring Diagram		DTC P2122, P2123 APP SENSOR	
Diagnostic Procedure		Component Description	
Component Inspection		CONSULT-II Reference Value in Data Monitor M	
DTC P1574 ASCD VEHICLE SPEED SENSO		0.0.10	.617
Component Description		On Board Diagnosis Logic	
On Board Diagnosis Logic		DTC Confirmation Procedure	
DTC Confirmation Procedure		Wiring Diagram	
Diagnostic Procedure	585	Diagnostic Procedure	
DTC P1800 VIAS CONTROL SOLENOID VAI		Component Inspection	
Component Description		Removal and Installation	
CONSULT-IIReference Value in Data Monitor I		DTC P2127, P2128 APP SENSOR	
On Board Diagrapia Lagis	. 586	CONSULT Up for an act / Charles Deta Manites M	
On Board Diagnosis Logic	586	CONSULT-II Reference Value in Data Monitor M	oae

	. 624	CONSULT-II Reference Value in Data Monitor Mod	de
On Board Diagnosis Logic	624		. 673
DTC Confirmation Procedure	625	Wiring Diagram	674
Wiring Diagram	626	Diagnostic Procedure	
Diagnostic Procedure		FUEL INJECTOR	
Component Inspection		Component Description	
Removal and Installation		CONSULT-II Reference Value in Data Monitor Mod	
DTC P2135 TP SENSOR			. 678
Component Description		Wiring Diagram	
CONSULT-II Reference Value in Data Monitor Mo		Diagnostic Procedure	
CONCOLI III COLORO VALGO II BAICA IN CILILO	. 632	Component Inspection	
On Board Diagnosis Logic		Removal and Installation	
DTC Confirmation Procedure		FUEL PUMP	
Wiring Diagram		Description	
Diagnostic Procedure		CONSULT-II Reference Value in Data Monitor Mod	
Component Inspection		CONSOLT-IIN elefetice value ii Data worldon woo	. 685
Removal and Installation		Wiring Diagram	
DTC P2138 APP SENSOR		Wiring Diagram	
		Diagnostic Procedure	
Component Description		Component Inspection	
CONSULT-II Reference Value in Data Monitor Mo		Removal and Installation	
0 - 0 10: : 1 : -	. 640	IGNITION SIGNAL	
On Board Diagnosis Logic		Component Description	
DTC Confirmation Procedure		Wiring Diagram	
Wiring Diagram		Diagnostic Procedure	
Diagnostic Procedure		Component Inspection	
Component Inspection		Removal and Installation	
Removal and Installation		REFRIGERANT PRESSURE SENSOR	
DTC P2A00, P2A03 A/F SENSOR 1		Component Description	
Component Description		Wiring Diagram	
CONSULT-II Reference Value in Data Monitor Mo	ode	Diagnostic Procedure	
	. 648	Removal and Installation	
On Board Diagnosis Logic		VIAS	710
DTC Confirmation Procedure	649	Description	
Wiring Diagram	650	CONSULT-II Reference Value in Data Monitor Mod	et
Diagnostic Procedure	654		. 711
Removal and Installation	660	Wiring Diagram	
ASCD BRAKE SWITCH		Diagnostic Procedure	714
Component Description	661	Component Inspection	718
CONSULT-II Reference Value in Data Monitor Mo	ode	Removal and Installation	
	. 661	MIL AND DATA LINK CONNECTOR	719
Wiring Diagram	662	Wiring Diagram	719
Diagnostic Procedure		SERVICE DATA AND SPECIFICATIONS (SDS)	
Component Inspection		Fuel Pressure	
ASCD INDICATOR		Idle Speed and Ignition Timing	
Component Description		Calculated Load Value	
CONSULT-II Reference Value in Data Monitor Mo		Mass Air Flow Sensor	
	. 668	Intake Air Temperature Sensor	
Wiring Diagram	669	Engine Coolant Temperature Sensor	
Diagnostic Procedure		EGR Temperature Sensor	
ELECTRICAL LOAD SIGNAL		Air Fuel Ratio (A/F) Sensor 1 Heater	
Description		Heated Oxygen sensor 2 Heater	
CONSULT-II Reference Value in Data Monitor Mo		Crankshaft Position Sensor (POS)	
33113321 III CIGIOTO VALGOTI DALA MONITO INC	. 671	Camshaft Position Sensor (PHASE)	
Diagnostic Procedure	_	Throttle Control Motor	
ELECTRONIC CONTROLLED ENGINE MOUN		Fuel Injector	
System Description		Fuel Pump	
	0, 0	. ao: : aiiip	1

INDEX FOR DTC PFP:00024

DTC No. Index

NOTE:

- If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-159, "DTC U1000, U1001 CAN COMMUNICATION LINE".
- If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-162, "DTC U1010 CAN COMMUNICATION".

DT	C* ¹		
CONSULT-II GST* ²	ECM* ³	(CONSULT-II screen terms)	Reference page
U1000	1000* 4	CAN COMM CIRCUIT	EC-159
U1001	1001* ⁴	CAN COMM CIRCUIT	EC-159
U1010	1010	CONTROL UNIT (CAN)	EC-162
P0000	0000	NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	_
P0011	0011	INT/V TIM CONT-B1	EC-164
P0021	0021	INT/V TIM CONT-B2	<u>EC-164</u>
P0031	0031	A/F SEN1 HTR (B1)	EC-168
P0032	0032	A/F SEN1 HTR (B1)	EC-168
P0037	0037	HO2S2 HTR (B1)	EC-176
P0038	0038	HO2S2 HTR (B1)	EC-176
P0051	0051	A/F SEN1 HTR (B2)	EC-168
P0052	0052	A/F SEN1 HTR (B2)	EC-168
P0057	0057	HO2S2 HTR (B2)	EC-176
P0058	0058	HO2S2 HTR (B2)	EC-176
P0075	0075	INT/V TIM V/CIR-B1	EC-185
P0081	0081	INT/V TIM V/CIR-B2	EC-185
P0101	0101	MAF SEN/CIRCUIT	EC-192
P0102	0102	MAF SEN/CIRCUIT	EC-202
P0103	0103	MAF SEN/CIRCUIT	EC-202
P0112	0112	IAT SEN/CIRCUIT	EC-211
P0113	0113	IAT SEN/CIRCUIT	EC-211
P0117	0117	ECT SEN/CIRC	EC-216
P0118	0118	ECT SEN/CIRC	EC-216
P0122	0122	TP SEN 2/CIRC	EC-222
P0123	0123	TP SEN 2/CIRC	EC-222
P0125	0125	ECT SENSOR	EC-230
P0127	0127	IAT SENSOR	EC-234
P0128	0128	THERMSTAT FNCTN	EC-237
P0130	0130	A/F SENSOR1 (B1)	EC-239
P0131	0131	A/F SENSOR1 (B1)	EC-250
P0132	0132	A/F SENSOR1 (B1)	EC-260
P0133	0133	A/F SENSOR1 (B1)	EC-270
P0137	0137	HO2S2 (B1)	EC-283
P0138	0138	HO2S2 (B1)	EC-295

		Items	DTC* ¹	
	Reference page	(CONSULT-II screen terms)	ECM* ³	CONSULT-II GST* ²
	EC-310	HO2S2 (B1)	0139	P0139
-	EC-239	A/F SENSOR1 (B2)	0150	P0150
_	EC-250	A/F SENSOR1 (B2)	0151	P0151
	EC-260	A/F SENSOR1 (B2)	0152	P0152
_	EC-270	A/F SENSOR1 (B2)	0153	P0153
_	EC-283	HO2S2 (B2)	0157	P0157
	EC-295	HO2S2 (B2)	0158	P0158
	EC-310	HO2S2 (B2)	0159	P0159
_	EC-322	FUEL SYS-LEAN-B1	0171	P0171
_	EC-334	FUEL SYS-RICH-B1	0172	P0172
_	EC-322	FUEL SYS-LEAN-B2	0174	P0174
	EC-334	FUEL SYS-RICH-B2	0175	P0175
_	EC-346	FTT SENSOR	0181	P0181
_	EC-352	FTT SEN/CIRCUIT	0182	P0182
_	EC-352	FTT SEN/CIRCUIT	0183	P0183
—	EC-357	TP SEN 1/CIRC	0222	P0222
_	EC-357	TP SEN 1/CIRC	0223	P0223
	EC-365	MULTI CYL MISFIRE	0300	P0300
_	EC-365	CYL 1 MISFIRE	0301	P0301
_	EC-365	CYL 2 MISFIRE	0302	P0302
	EC-365	CYL 3 MISFIRE	0303	P0303
	EC-365	CYL 4 MISFIRE	0304	P0304
_	EC-365	CYL 5 MISFIRE	0305	P0305
_	EC-365	CYL 6 MISFIRE	0306	P0306
	EC-374	KNOCK SEN/CIRC-B1	0327	P0327
_	EC-374	KNOCK SEN/CIRC-B1	0328	P0328
_	EC-379	CKP SEN/CIRCUIT	0335	P0335
_	EC-387	CMP SEN/CIRC-B1	0340	P0340
	EC-387	CMP SEN/CIRC-B2	0345	P0345
_	EC-397	EGR SYSTEM	0400	P0400
	EC-405	EGR VOL CON/V CIR	0403	P0403
	EC-412	EGR TEMP SEN/CIRC	0405	P0405
_	EC-412	EGR TEMP SEN/CIRC	0406	P0406
_	EC-419	TW CATALYST SYS-B1	0420	P0420
	EC-419	TW CATALYST SYS-B2	0430	P0430
	EC-425	EVAP PURG FLOW/MON	0441	P0441
_	EC-431	EVAP SMALL LEAK	0442	P0442
_	EC-439	PURG VOLUME CONT/V	0443	P0443
_	EC-447	PURG VOLUME CONT/V	0444	P0444
	EC-447	PURG VOLUME CONT/V	0445	P0445
_	EC-454	VENT CONTROL VALVE	0447	P0447
_	EC-461	VENT CONTROL VALVE	0448	P0448

DTC	* 1	ltama	
CONSULT-II GST* ²	ECM* ³	ltems (CONSULT-II screen terms)	Reference page
P0451	0451	EVAP SYS PRES SEN	EC-468
P0452	0452	EVAP SYS PRES SEN	EC-472
P0453	0453	EVAP SYS PRES SEN	EC-479
P0455	0455	EVAP GROSS LEAK	EC-487
P0456	0456	EVAP VERY SML LEAK	EC-495
P0460	0460	FUEL LEV SEN SLOSH	EC-504
P0461	0461	FUEL LEVEL SENSOR	EC-506
P0462	0462	FUEL LEVL SEN/CIRC	EC-508
P0463	0463	FUEL LEVL SEN/CIRC	EC-508
P0500	0500	VEH SPEED SEN/CIRC	EC-510
P0506	0506	ISC SYSTEM	EC-512
P0507	0507	ISC SYSTEM	EC-514
P0550	0550	PW ST P SEN/CIRC	EC-516
P0603	0603	ECM BACK UP/CIRCUIT	EC-522
P0605	0605	ECM	EC-526
P0643	0643	SENSOR POWER/CIRC	EC-529
P0705	0705	PNP SW/CIRC	<u>AT-91</u>
P0710	0710	ATF TEMP SEN/CIRC	<u>AT-96</u>
P0711	0711	FLUID TEMP SEN	<u>AT-101</u>
P0717	0717	TURBINE SENSOR	<u>AT-106</u>
P0722	0722	VHCL SPEED SEN-AT	<u>AT-110</u>
P0731	0731	A/T 1ST GR FNCTN	<u>AT-116</u>
P0732	0732	A/T 2ND GR FNCTN	<u>AT-119</u>
P0733	0733	A/T 3RD GR FNCTN	<u>AT-124</u>
P0734	0734	A/T 4TH GR FNCTN	<u>AT-129</u>
P0735	0735	A/T 5TH GR FNCTN	<u>AT-133</u>
P0744	0744	A/T TCC S/V FNCTN	<u>AT-138</u>
P0745	0745	PC SOL A(L/PRESS)	<u>AT-141</u>
P0750	0750	SHIFT SOL A	<u>AT-146</u>
P0755	0755	SHIFT SOL B	<u>AT-151</u>
P0760	0760	SHIFT SOL C	<u>AT-156</u>
P0762	0762	SFT SOL C STUCK ON	<u>AT-161</u>
P0765	0765	SHIFT SOL D	<u>AT-166</u>
P0770	0770	SHIFT SOL E	<u>AT-171</u>
P0775	0775	PC SOL B(SFT/PRS)	<u>AT-176</u>
P0780	0780	SHIFT	<u>AT-181</u>
P0795	0795	PC SOL C(TCC&SFT)	<u>AT-185</u>
P0797	0797	PC SOL C STC ON	AT-190
P0850	0850	P-N POS SW/CIRCUIT	EC-535
P0882	0882	TCM POWER INPT SIG	<u>AT-199</u>
P1148	1148	CLOSED LOOP-B1	EC-541
P1168	1168	CLOSED LOOP-B2	EC-541

А		ltems	DTC*1	
/\	Reference page	(CONSULT-II screen terms)	ECM* ³	CONSULT-II GST* ²
EC	EC-542	TCS C/U FUNCTN	1211	P1211
	EC-543	TCS/CIRC	1212	P1212
	EC-544	ENG OVER TEMP	1217	P1217
С	<u>EC-555</u>	CTP LEARNING	1225	P1225
	EC-557	CTP LEARNING	1226	P1226
D	EC-559	EGR SYSTEM	1402	P1402
	EC-566	COLD START CONTROL	1421	P1421
	EC-568	ASCD SW	1564	P1564
Е	EC-576	ASCD BRAKE SW	1572	P1572
	EC-584	ASCD VHL SPD SEN	1574	P1574
F	BL-203	NATS MALFUNCTION	1610 - 1615	P1610 - P1615
Г	EC-586	VIAS S/V CIRC	1800	P1800
	EC-591	BRAKE SW/CIRCUIT	1805	P1805
G	EC-596	ETC MOT PWR	2100	P2100
	EC-602	ETC FUNCTION/CIRC	2101	P2101
	EC-596	ETC MOT PWR	2103	P2103
Н	EC-609	ETC MOT	2118	P2118
	EC-615	ETC ACTR	2119	P2119
	EC-617	APP SEN 1/CIRC	2122	P2122
	EC-617	APP SEN 1/CIRC	2123	P2123
	EC-624	APP SEN 2/CIRC	2127	P2127
J	EC-624	APP SEN 2/CIRC	2128	P2128
	EC-632	TP SENSOR	2135	P2135
K	EC-640	APP SENSOR	2138	P2138
	EC-648	A/F SENSOR 1 (B1)	2A00	P2A00
	EC-648	A/F SENSOR 1 (B2)	2A03	P2A03

^{*1: 1}st trip DTC No. is the same as DTC No.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} The troubleshooting for this DTC needs CONSULT-II.

Alphabetical Index

UBS00P0J

NOTE:

- If DTC U1000 or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-159, "DTC U1000, U1001 CAN COMMUNICATION LINE".
- If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-162, "DTC U1010 CAN COMMUNICATION".

	DTC	·*1	
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Reference page
A/F SENSOR1 (B1)	P0130	0130	EC-239
A/F SENSOR1 (B1)	P0131	0131	EC-250
A/F SENSOR1 (B1)	P0132	0132	EC-260
A/F SENSOR1 (B1)	P0133	0133	EC-270
A/F SENSOR1 (B2)	P0150	0150	EC-239
A/F SENSOR1 (B2)	P0151	0151	EC-250
A/F SENSOR1 (B2)	P0152	0152	EC-260
A/F SENSOR1 (B2)	P0153	0153	EC-270
A/F SENSOR1 (B1)	P2A00	2A00	EC-648
A/F SENSOR1 (B2)	P2A03	2A03	EC-648
A/F SEN1 HTR (B1)	P0031	0031	EC-168
A/F SEN1 HTR (B1)	P0032	0032	EC-168
A/F SEN1 HTR (B2)	P0051	0051	EC-168
A/F SEN1 HTR (B2)	P0052	0052	EC-168
A/T 1ST GR FNCTN	P0731	0731	<u>AT-116</u>
A/T 2ND GR FNCTN	P0732	0732	<u>AT-119</u>
A/T 3RD GR FNCTN	P0733	0733	<u>AT-124</u>
A/T 4TH GR FNCTN	P0734	0734	AT-129
A/T 5HT GR FNCTN	P0735	0735	<u>AT-133</u>
A/T TCC S/V FNCTN	P0744	0744	<u>AT-138</u>
APP SEN 1/CIRC	P2122	2122	EC-617
APP SEN 1/CIRC	P2123	2123	EC-617
APP SEN 2/CIRC	P2127	2127	EC-624
APP SEN 2/CIRC	P2128	2128	EC-624
APP SENSOR	P2138	2138	EC-640
ASCD BRAKE SW	P1572	1572	EC-576
ASCD SW	P1564	1564	EC-568
ASCD VHL SPD SEN	P1574	1574	EC-584
ATF TEMP SEN/CIRC	P0710	0710	<u>AT-96</u>
BRAKE SW/CIRCUIT	P1805	1805	EC-591
CAN COMM CIRCUIT	U1000	1000*4	EC-159
CAN COMM CIRCUIT	U1001	1001* ⁴	EC-159
CKP SEN/CIRCUIT	P0335	0335	EC-379
CLOSED LOOP-B1	P1148	1148	EC-541
CLOSED LOOP-B2	P1168	1168	EC-541
CMP SEN/CIRC-B1	P0340	0340	EC-387
CMP SEN/CIRC-B2	P0345	0345	EC-387

Items	DTC	DTC*1	
(CONSULT-II screen terms)	CONSULT-II GST* ²	ECM*3	Reference page
COLD START CONTROL	P1421	1421	EC-566
CONTROL UNIT (CAN)	U1010	1010	EC-162
CTP LEARNING	P1225	1225	<u>EC-555</u>
CTP LEARNING	P1226	1226	EC-557
CYL 1 MISFIRE	P0301	0301	EC-365
CYL 2 MISFIRE	P0302	0302	EC-365
CYL 3 MISFIRE	P0303	0303	EC-365
CYL 4 MISFIRE	P0304	0304	EC-365
CYL 5 MISFIRE	P0305	0305	EC-365
CYL 6 MISFIRE	P0306	0306	EC-365
ECM	P0605	0605	EC-526
ECM BACK UP/CIRCUIT	P0603	0603	EC-522
ECT SEN/CIRC	P0117	0117	EC-216
ECT SEN/CIRC	P0118	0118	EC-216
ECT SENSOR	P0125	0125	EC-230
EGR SYSTEM	P0400	0400	EC-397
EGR SYSTEM	P1402	1402	EC-559
EGR TEMP SEN/CIRC	P0405	0405	EC-412
EGR TEMP SEN/CIRC	P0406	0406	EC-412
EGR VOL CON/V CIR	P0403	0403	EC-405
ENG OVER TEMP	P1217	1217	EC-544
ETC ACTR	P2119	2119	EC-615
ETC FUNCTION/CIRC	P2101	2101	EC-602
ETC MOT	P2118	2118	EC-609
ETC MOT PWR	P2103	2103	EC-596
ETC MOT PWR	P2100	2100	EC-596
EVAP GROSS LEAK	P0455	0455	EC-487
EVAP PURG FLOW/MON	P0441	0441	EC-425
EVAP SMALL LEAK	P0442	0442	EC-431
EVAP SYS PRES SEN	P0451	0451	EC-468
EVAP SYS PRES SEN	P0452	0452	EC-472
EVAP SYS PRES SEN	P0453	0453	EC-479
EVAP VERY SML LEAK	P0456	0456	EC-495
FLUID TEMP SEN	P0711	0711	<u>AT-101</u>
FTT SEN/CIRCUIT	P0182	0182	EC-352
FTT SEN/CIRCUIT	P0183	0183	EC-352
FTT SENSOR	P0181	0181	EC-346
FUEL LEV SEN SLOSH	P0460	0460	EC-504
FUEL LEVEL SENSOR	P0461	0461	EC-506
FUEL LEVL SEN/CIRC	P0462	0462	EC-508
FUEL LEVL SEN/CIRC	P0463	0463	EC-508
FUEL SYS-LEAN-B1	P0171	0171	EC-322

	DTC	C* ¹	
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Reference page
FUEL SYS-LEAN-B2	P0174	0174	EC-322
FUEL SYS-RICH-B1	P0172	0172	EC-334
FUEL SYS-RICH-B2	P0175	0175	EC-334
HO2S2 (B1)	P0137	0137	EC-283
HO2S2 (B1)	P0138	0138	EC-295
HO2S2 (B1)	P0139	0139	EC-310
HO2S2 (B2)	P0157	0157	EC-283
HO2S2 (B2)	P0158	0158	EC-295
HO2S2 (B2)	P0159	0159	EC-310
HO2S2 HTR (B1)	P0037	0037	EC-176
HO2S2 HTR (B1)	P0038	0038	EC-176
HO2S2 HTR (B2)	P0057	0057	EC-176
HO2S2 HTR (B2)	P0058	0058	EC-176
IAT SEN/CIRCUIT	P0112	0112	EC-211
IAT SEN/CIRCUIT	P0113	0113	EC-211
IAT SENSOR	P0127	0127	EC-234
INT/V TIM CONT-B1	P0011	0011	EC-164
INT/V TIM CONT-B2	P0021	0021	EC-164
INT/V TIM V/CIR-B1	P0075	0075	EC-185
INT/V TIM V/CIR-B2	P0081	0081	EC-185
ISC SYSTEM	P0506	0506	EC-512
ISC SYSTEM	P0507	0507	EC-514
KNOCK SEN/CIRC-B1	P0327	0327	EC-374
KNOCK SEN/CIRC-B1	P0328	0328	EC-374
MAF SEN/CIRCUIT	P0101	0101	EC-192
MAF SEN/CIRCUIT	P0102	0102	EC-202
MAF SEN/CIRCUIT	P0103	0103	EC-202
MULTI CYL MISFIRE	P0300	0300	EC-365
NATS MALFUNCTION	P1610 - P1615	1610 - 1615	BL-203
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_
PC SOL A(L/PRESS)	P0745	0745	<u>AT-141</u>
PC SOL B(SFT/PRS)	P0775	0775	<u>AT-176</u>
PC SOL C(TCC&SFT)	P0795	0795	<u>AT-185</u>
PC SOL C STC ON	P0797	0797	<u>AT-190</u>
P-N POS SW/CIRCUIT	P0850	0850	EC-535
PNP SW/CIRC	P0705	0705	<u>AT-91</u>
PURG VOLUME CONT/V	P0443	0443	EC-439
PURG VOLUME CONT/V	P0444	0444	EC-447
PURG VOLUME CONT/V	P0445	0445	EC-447
PW ST P SEN/CIRC	P0550	0550	EC-516
SENSOR POWER/CIRC	P0643	0643	EC-529

Items	DT	C* ¹		
(CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	Reference page	
SFT SOL C STUCK ON	P0762	0762	<u>AT-161</u>	
SHIFT	P0780	0780	<u>AT-181</u>	
SHIFT SOL A	P0750	0750	<u>AT-146</u>	
SHIFT SOL B	P0755	0755	<u>AT-151</u>	
SHIFT SOL C	P0760	0760	<u>AT-156</u>	
SHIFT SOL D	P0765	0765	<u>AT-166</u>	
SHIFT SOL E	P0770	0770	<u>AT-171</u>	
TCM POWER INPT SIG	P0882	0882	<u>AT-199</u>	
TCS C/U FUNCTN	P1211	1211	EC-542	
TCS/CIRC	P1212	1212	EC-543	
THERMSTAT FNCTN	P0128	0128	EC-237	
TP SEN 1/CIRC	P0222	0222	EC-357	
TP SEN 1/CIRC	P0223	0223	EC-357	
TP SEN 2/CIRC	P0122	0122	EC-222	
TP SEN 2/CIRC	P0123	0123	EC-222	
TP SENSOR	P2135	2135	EC-632	
TURBINE SENSOR	P0717	0717	<u>AT-106</u>	
TW CATALYST SYS-B1	P0420	0420	EC-419	
TW CATALYST SYS-B2	P0430	0430	EC-419	
VEH SPEED SEN/CIRC	P0500	0500	EC-510	
VENT CONTROL VALVE	P0447	0447	EC-454	
VENT CONTROL VALVE	P0448	0448	EC-461	
VHCL SPEED SEN-AT	P0722	0722	<u>AT-110</u>	
VIAS S/V CIRC	P1800	1800	EC-586	

^{*1: 1}st trip DTC No. is the same as DTC No.

M

K

Α

С

D

Е

F

G

Н

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} The troubleshooting for this DTC needs CONSULT-II.

PRECAUTIONS PFP:00001

Precautions for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

UBS00P0K

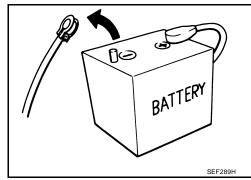
The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted. Information necessary to service the system safely is included in the SRS and SB section of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the SRS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.

On Board Diagnostic (OBD) System of Engine and A/T

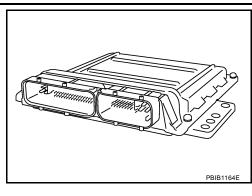
UBS00P0L


The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

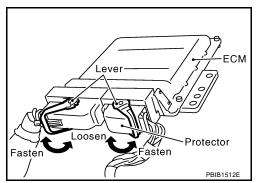
- Be sure to turn the ignition switch OFF and disconnect the negative battery cable before any repair or inspection work. The open/short circuit of related switches, sensors, solenoid valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease, dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slidelocking type harness connector. For description and how to disconnect, refer to <u>PG-76</u>, "HAR-<u>NESS CONNECTOR"</u>.
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube
 may cause the MIL to light up due to the malfunction of the EVAP system or fuel injection system,
 etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission control module) before returning the vehicle to the customer.

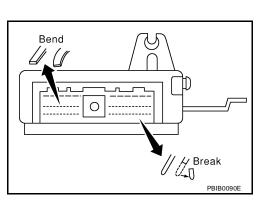
Precaution


- Always use a 12 volt battery as power source.
- Do not attempt to disconnect battery cables while engine is running.
- Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery cable. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned OFF.
- Before removing parts, turn ignition switch OFF and then disconnect negative battery cable.

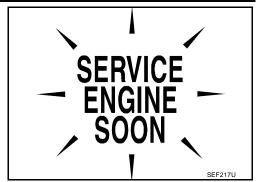
- Do not disassemble ECM.
- If a battery cable is disconnected, the memory will return to the ECM value.

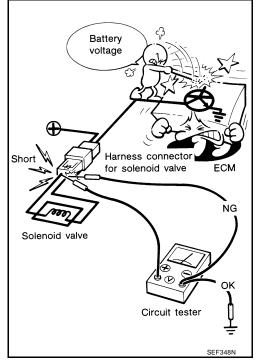
The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a malfunction. Do not replace parts because of a slight variation.

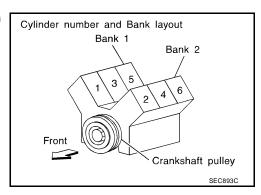

- If the battery is disconnected, the following emissionrelated diagnostic information will be lost within 24 hours.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
- When connecting ECM harness connector, fasten it securely with levers as far as they will go as shown in the figure.

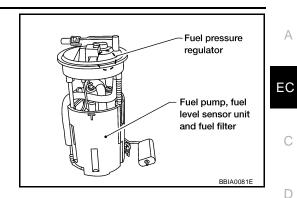

Α

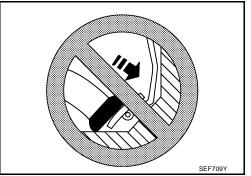
EC

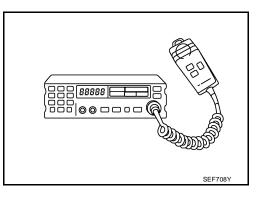

Е


- When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).
 - Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.
- Securely connect ECM harness connectors.
 A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep engine control system harness at least 10 cm (4 in) away from adjacent harness, to prevent engine control system malfunctions due to receiving external noise, degraded operation of ICs, etc.
- Keep engine control system parts and harness dry.
- Before replacing ECM, perform ECM Terminals and Reference Value inspection and make sure ECM functions properly. Refer to <u>EC-109, "ECM Terminals and Reference Value"
 </u>
- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble electric throttle control actuator.
- Even a slight leak in the air intake system can cause serious incidents.
- Do not shock or jar the camshaft position sensor (PHASE), crankshaft position sensor (POS).


After performing each TROUBLE DIAGNOSIS, perform DTC Confirmation Procedure or Overall Function Check. The DTC should not be displayed in the DTC Confirmation Procedure if the repair is completed. The Overall Function Check should be a good result if the repair is completed.


- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact.
 Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


 B1 indicates the bank 1, B2 indicates the bank 2 as shown in the figure.


- Do not operate fuel pump when there is no fuel in lines.
- Tighten fuel hose clamps to the specified torque.

- Do not depress accelerator pedal when starting.
- Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on installation location.
- Keep the antenna as far as possible from the electronic control units.
- Keep the antenna feeder line more than 20 cm (8 in) away from the harness of electronic controls. Do not let them run parallel for a long distance.
- Adjust the antenna and feeder line so that the standingwave radio can be kept smaller.
- Be sure to ground the radio to vehicle body.

Α

D

Е

Н

PREPARATION

PREPARATION PFP:00002

Special Service Tools

UBS00P0N

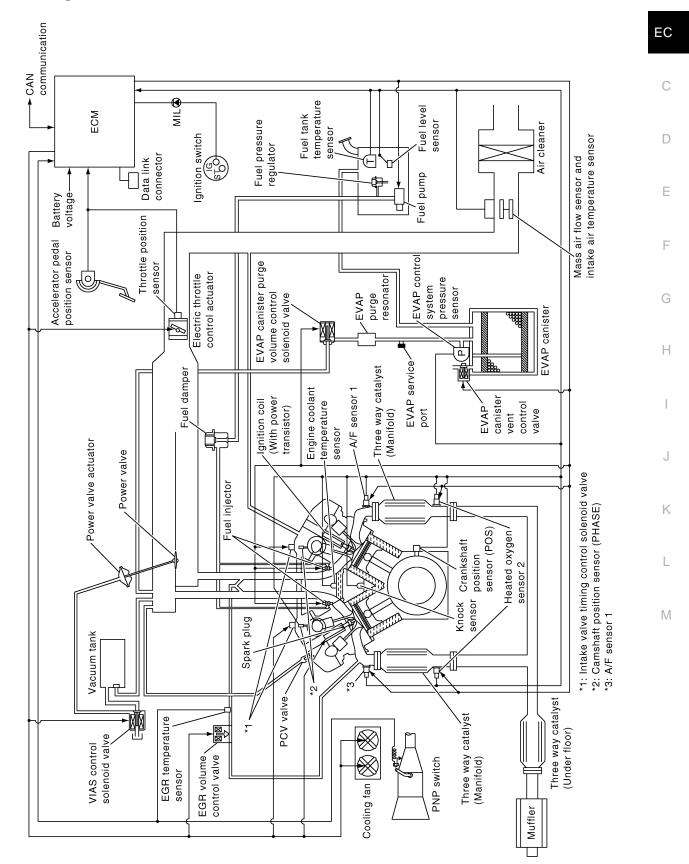
Tool number (Kent-Moore No.) Tool name	loore tools may differ from those of special service Description	
KV10117100 (J-36471-A) Heated oxygen sensor wrench	S-NT379	Loosening or tightening heated oxygen sensor with 22 mm (0.87 in) hexagon nut
KV10114400 (J-38365) Heated oxygen sensor wrench	3-NT636	Loosening or tightening heated oxygen sensor a: 22 mm (0.87 in)
(J-44626) Air fuel ratio (A/F) sensor wrench	LEM054	Loosening or tightening air fuel ratio (A/F) sensor 1
(J-44321) Fuel pressure gauge kit	LEC642	Checking fuel pressure
(J-44321-6) Fuel pressure adapter	LBIA0376E	Connecting fuel pressure gauge to quick connector type fuel lines.
(J-45488) Quick connector re- lease	PBIC0198E	Remove fuel tube quick connectors in engine room
EG17650301 (J-33984-A) Radiator cap tester adapter	c + + b a + a a S-NT564	Adapting radiator cap tester to radiator cap and radiator filler neck a: 28 (1.10) dia. b: 31.4 (1.236) dia. c: 41.3 (1.626) dia. Unit: mm (in)

PREPARATION

			-
Tool number (Kent-Moore No.) Tool name	Description		А
KV109E0010 (J-46209) Break-out box		Measuring the ECM signals with a circuit tester	EC C
KV109E0080 (J-45819) Y-cable adapter	S-NT826	Measuring the ECM signals with a circuit tester	D
(J-23688) Engine coolant refrac- tometer		Checking concentration of ethylene glycol in the engine coolant	F G
	WBIA0539E		Н

EC-21 Revision: March 2006 2007 Quest

PREPARATION


Tool name (Kent-Moore No.)	Description	
Leak detector i.e.: (J-41416)	S-NT703	Locating the EVAP leak
EVAP service port adapter i.e.: (J-41413-OBD)	S-NT704	Applying positive pressure through EVAP service port
Fuel filler cap adapter i.e.: (MLR-8382)		Checking fuel tank vacuum relief valve opening pressure
Socket wrench	S-NT815 19 mm (0.75 in) Nore than 32 mm (1.26 in) S-NT705	Removing and installing engine coolant temperature sensor
Oxygen sensor thread cleaner i.e.: (J-43897-18) (J-43897-12)	Mating surface shave cylinder	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with antiseize lubricant shown below. a: 18 mm diameter with pitch 1.5 mm for Zirconia Oxygen Sensor b: 12 mm diameter with pitch 1.25 mm for Titania Oxygen Sensor
Anti-seize lubricant i.e.: (Permatex TM 133AR or equivalent meeting MIL specifica- tion MIL-A-907)	S-NT779	Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.

ENGINE CONTROL SYSTEM System Diagram

PFP:23710

Α

UBS00P0P

PBIB2506E

Multiport Fuel Injection (MFI) System INPUT/OUTPUT SIGNAL CHART

UBS00P0Q

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	Engine speed*3		
Camshaft position sensor (PHASE)	Piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Air fuel ratio (A/F) sensor 1	Density of oxygen in exhaust gas		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position	Fuel injection	
Park/neutral position (PNP) switch	Gear position	& mixture ratio	Fuel injector
Knock sensor	Engine knocking condition	Control	
Battery	Battery voltage*3		
Power steering pressure sensor	Power steering operation		
Heated oxygen sensor 2*1	Density of oxygen in exhaust gas		
Air conditioner switch	Air conditioner operation*2		
Wheel sensor	Vehicle speed*2		

^{*1:} This sensor is not used to control the engine system. This is used only for the on board diagnosis.

SYSTEM DESCRIPTION

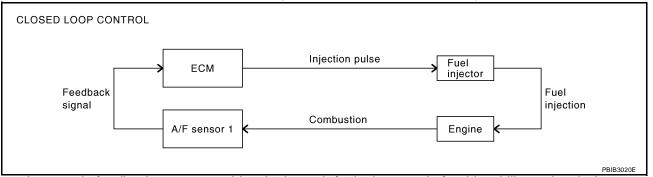
The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the crankshaft position sensor and the mass air flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.

<Fuel increase>

- During warm-up
- When starting the engine
- During acceleration
- Hot-engine operation
- When shift lever is changed from N to D
- High-load, high-speed operation


<Fuel decrease>

- During deceleration
- During high engine speed operation

^{*2:} This signal is sent to the ECM through CAN communication line.

^{*3:} ECM determines the start signal status by the signals of engine speed and battery voltage.

MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst (Manifold) can then better reduce CO, HC and NOx emissions. This system uses air fuel ratio (A/F) sensor 1 in the exhaust manifold to monitor whether the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about air fuel ratio (A/F) sensor 1, refer to EC-250, "DTC P0131, P0151 A/F SENSOR 1". This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture).

This stage is referred to as the closed loop control condition.

Heated oxygen sensor 2 is located downstream of the three way catalyst (Manifold). Even if the switching characteristics of air fuel ratio (A/F) sensor 1 shift, the air-fuel ratio is controlled to stoichiometric by the signal from heated oxygen sensor 2.

Open Loop Control

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of A/F sensor 1 or its circuit
- Insufficient activation of A/F sensor 1 at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- After shifting from N to D
- When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from A/F sensor 1. This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot wire) and characteristic changes during operation (i.e., fuel injector clogging) directly affect mixture ratio.

Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from A/F sensor 1 indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean.

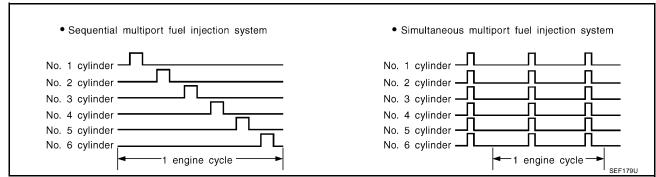
"Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

Revision: March 2006 EC-25 2007 Quest

EC

П

Е


F

G

Н

17

FUEL INJECTION TIMING

Two types of systems are used.

Sequential Multiport Fuel Injection System

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous Multiport Fuel Injection System

Fuel is injected simultaneously into all six cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The six fuel injectors will then receive the signals two times for each engine cycle.

This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration, operation of the engine at excessively high speeds or operation of the vehicle at excessively high speeds.

Electronic Ignition (EI) System INPUT/OUTPUT SIGNAL CHART

UBS00P0R

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS)	Engine speed*2		
Camshaft position sensor (PHASE)	Piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Throttle position sensor	Throttle position	Ignition timing	
Accelerator pedal position sensor	Accelerator pedal position	control	Power transistor
Knock sensor	Engine knocking		
Park/neutral position (PNP) switch	Gear position		
Battery	Battery voltage*2		
Wheel sensor	Vehicle speed*1		

^{*1:} This signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

Firing order: 1 - 2 - 3 - 4 - 5 - 6

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine. The ignition timing data is stored in the ECM.

The ECM receives information such as the injection pulse width and camshaft position sensor (PHASE) signal. Computing this information, ignition signals are transmitted to the power transistor.

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.

- At starting
- During warm-up
- At idle
- At low battery voltage

Revision: March 2006 EC-26 2007 Quest

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the anti-knocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions. If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Fuel Cut Control (at No Load and High Engine Speed) INPUT/OUTPUT SIGNAL CHART

IBS	OOF	0.5
$D_{\mathcal{O}}$	UUI	US

Sensor	Input Signal to ECM	ECM function	Actuator
Park/neutral position (PNP) switch	Neutral position		
Accelerator pedal position sensor	Accelerator pedal position		
Engine coolant temperature sensor	Engine coolant temperature	Fuel cut con-	Fuel injector
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	trol	, as injusted
Wheel sensor	Vehicle speed*		

^{*:} Signal is sent to the ECM through CAN communication line.

SYSTEM DESCRIPTION

If the engine speed is above 1,800 rpm under no load (for example, the shift position is neutral and engine speed is over 1,800 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed.

Fuel cut will be operated until the engine speed reaches 1,500 rpm, then fuel cut will be cancelled.

NOTE:

This function is different from deceleration control listed under Multiport Fuel Injection (MFI) System, EC-24.

EC

Е

1

G

Н

J

K

L

ь л

AIR CONDITIONING CUT CONTROL

AIR CONDITIONING CUT CONTROL

PFP:23710

Input/Output Signal Chart

OBSOUPO	1

Sensor	Input Signal to ECM	ECM function	Actuator
Air conditioner switch	Air conditioner ON signal*1		Air conditioner relay
Accelerator pedal position sensor	Accelerator pedal position		
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*2		
Engine coolant temperature sensor	Engine coolant temperature	Air conditioner	
Battery	Battery voltage*2	cut control	
Refrigerant pressure sensor	Refrigerant pressure		
Power steering pressure sensor	Power steering operation		
Wheel sensor	Vehicle speed*1		

^{*1:} This signal is sent to the ECM through CAN communication line.

System Description

UBSOOPOU

This system improves engine operation when the air conditioner is used. Under the following conditions, the air conditioner is turned OFF.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.
- When refrigerant pressure is excessively low or high.

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

PFP:18930

System Description INPUT/OUTPUT SIGNAL CHART

UBS00P0V

Sensor	Input signal to ECM	ECM function	Actuator
ASCD brake switch	Brake pedal operation	ASCD vehicle speed control	Electric throttle control actuator
Stop lamp switch	Brake pedal operation		
ASCD steering switch	ASCD steering switch operation		
Park/Neutral position (PNP) switch	Gear position		
Combination meter	Vehicle speed*		
ГСМ	Powertrain revolution*		

^{*:} This signal is sent to the ECM through CAN communication line.

BASIC ASCD SYSTEM

Refer to Owner's Manual for ASCD operating instructions.

Automatic Speed Control Device (ASCD) allows a driver to keep vehicle at predetermined constant speed without depressing accelerator pedal. Driver can set vehicle speed in advance between approximately 40 km/ h (25 MPH) and 144 km/h (89 MPH).

ECM controls throttle angle of electric throttle control actuator to regulate engine speed.

Operation status of ASCD is indicated by CRUISE indicator and SET indicator in combination meter. If any malfunction occurs in ASCD system, it automatically deactivates control.

NOTE:

Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws.

SET OPERATION

Press MAIN switch. (The CRUISE indicator in combination meter illuminates.)

When vehicle speed reaches a desired speed between approximately 40 km/h (25 MPH) and 144 km/h (89 MPH), press SET/COAST switch. (Then SET indicator in combination meter illuminates.)

ACCELERATOR OPERATION

If the RESUME/ACCELERATE switch is depressed during cruise control driving, increase the vehicle speed until the switch is released or vehicle speed reaches maximum speed controlled by the system. And then ASCD will keep the new set speed.

CANCEL OPERATION

When any of following conditions exist, cruise operation will be canceled.

- CANCEL switch is depressed
- More than 2 switches at ASCD steering switch are depressed at the same time (Set speed will be cleared)
- Brake pedal is depressed
- Shift lever is changed to N, P, R position
- Vehicle speed decreased to 13 km/h (8 MPH) lower than the set speed
- VDC/TCS system is operated

When the ECM detects any of the following conditions, the ECM will cancel the cruise operation and inform the driver by blinking indicator lamp.

- Engine coolant temperature is slightly higher than the normal operating temperature, CRUISE lamp may blink slowly.
 - When the engine coolant temperature decreases to the normal operating temperature, CRUISE lamp will stop blinking and the cruise operation will be able to work by depressing SET/COAST switch or RESUME/ ACCELERATE switch.
- Malfunction for some self-diagnoses regarding ASCD control: SET lamp will blink quickly.

If MAIN switch is turned to OFF during ASCD is activated, all of ASCD operations will be canceled and vehicle speed memory will be erased.

EC-29 Revision: March 2006 2007 Quest Е

Н

AUTOMATIC SPEED CONTROL DEVICE (ASCD)

COAST OPERATION

When the SET/COAST switch is depressed during cruise control driving, decrease vehicle set speed until the switch is released. And then ASCD will keep the new set speed.

RESUME OPERATION

When the RESUME/ACCELERATE switch is depressed after cancel operation other than depressing MAIN switch is performed, vehicle speed will return to last set speed. To resume vehicle set speed, vehicle condition must meet following conditions.

- Brake pedal is released
- A/T shift lever is in other than P and N positions
- Vehicle speed is greater than 40 km/h (25 MPH) and less than 144 km/h (89 MPH)

Component Description ASCD STEERING SWITCH

UBS00P0W

Refer to EC-568.

ASCD BRAKE SWITCH

Refer to EC-576 and EC-661.

STOP LAMP SWITCH

Refer to EC-576, EC-591 and EC-661.

ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to <u>EC-596</u>, <u>EC-602</u>, <u>EC-609</u> and <u>EC-615</u>.

ASCD INDICATOR

Refer to EC-668.

CAN COMMUNICATION

CAN COMMUNICATION

PFP:23710

System Description

UBS00P0X

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only. Refer to LAN-49, "CAN System Specification Chart", about CAN communication for detail.

D

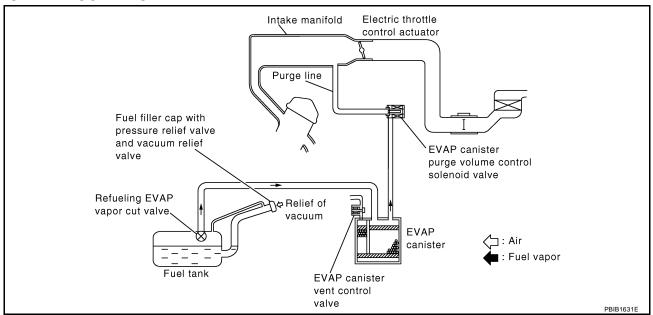
EC

Е

F

G

Н


ı

EVAPORATIVE EMISSION SYSTEM

PFP:14950

UBS00P0Y

Description SYSTEM DESCRIPTION

The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the fuel tank.

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by ECM. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow increases.

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

EVAPORATIVE EMISSION LINE DRAWING

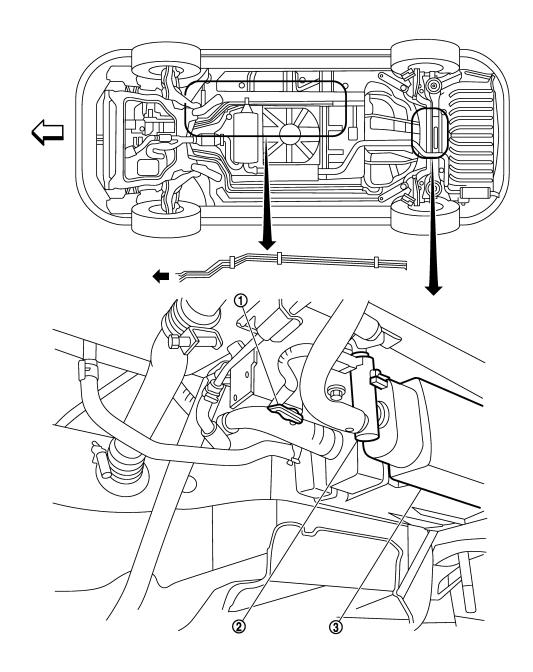
PBIB3073E

M

Α

EC

 D


From next page

- Intake manifold collector
- 2. EVAP service port
- EVAP purge resonator

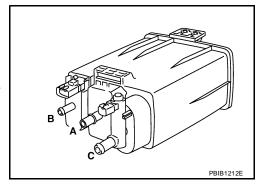
4. EVAP canister purge volume control solenoid valve

NOTE:

Do not use soapy water or any type of solvent while installing vacuum hose or purge hoses.

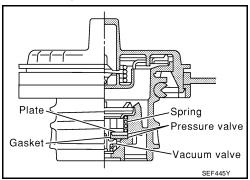
PBIB3069E

EVAP control system pressure sensor


To previous page

EVAP canister vent control valve 3. EVAP canister

Component Inspection EVAP CANISTER


Check EVAP canister as follows:

- 1. Block port B.
- 2. Blow air into port A and check that it flows freely out of port C.
- 3. Release blocked port B.
- 4. Apply vacuum pressure to port ${\bf B}$ and check that vacuum pressure exists at the ports ${\bf A}$ and ${\bf C}$.
- 5. Block port A and B.
- 6. Apply pressure to port C and check that there is no leakage.

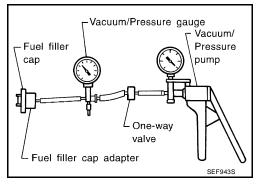
FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)

1. Wipe clean valve housing.

2. Check valve opening pressure and vacuum.

Pressure: 15.3 - 20.0 kPa (0.156 - 0.204 kg/cm², 2.22

- 2.90 psi)


Vacuum: $-6.0 \text{ to } -3.3 \text{ kPa} (-0.061 \text{ to } -0.034 \text{ kg/cm}^2$,

-0.87 to -0.48 psi)

3. If out of specification, replace fuel filler cap as an assembly.

CAUTION:

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-446.

FUEL TANK TEMPERATURE SENSOR

Refer to EC-351.

EVAP CANISTER VENT CONTROL VALVE

Refer to EC-459.

EVAP CONTROL SYSTEM PRESSURE SENSOR

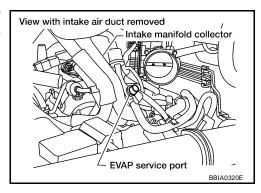
Refer to EC-471.

Н

UBS00P0Z

Α

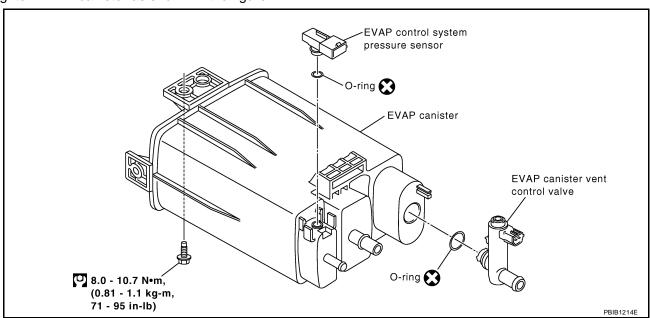
EC


Е

J

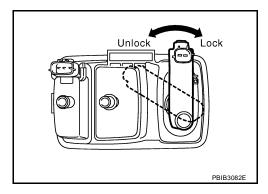
Κ

EVAP SERVICE PORT


Positive pressure is delivered to the EVAP system through the EVAP service port. If fuel vapor leakage in the EVAP system occurs, use a leak detector to locate the leak.

Removal and Installation EVAP CANISTER

UBS00P10


Tighten EVAP canister as shown in the figure.

EVAP CANISTER VENT CONTROL VALVE

- 1. Turn EVAP canister vent control valve counterclockwise.
- 2. Remove the EVAP canister vent control valve.

Always replace O-ring with a new one.

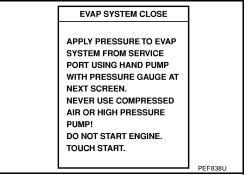
How to Detect Fuel Vapor Leakage

UBS00P11

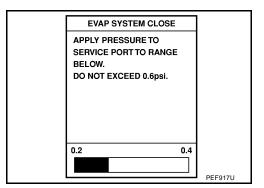
CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

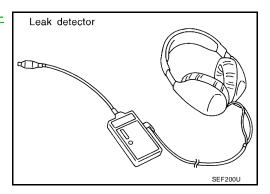
NOTE


- Do not start engine.
- Improper installation of EVAP service port adapter to the EVAP service port may cause a leak.

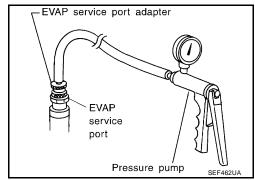
Revision: March 2006 EC-36 2007 Quest


EVAPORATIVE EMISSION SYSTEM

(P) WITH CONSULT-II


- 1. Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump and hose to the EVAP service port adapter.
- 3. Turn ignition switch ON.
- Select the "EVAP SYSTEM CLOSE" of "WORK SUPPORT MODE" with CONSULT-II.
- 5. Touch "START". A bar graph (Pressure indicating display) will appear on the screen.

- 6. Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- 7. Remove EVAP service port adapter and hose with pressure pump.



8. Locate the leak using a leak detector. Refer to EC-33, "EVAPO-RATIVE EMISSION LINE DRAWING".

WITHOUT CONSULT-II

- Attach the EVAP service port adapter securely to the EVAP service port.
- 2. Also attach the pressure pump with pressure gauge to the EVAP service port adapter.

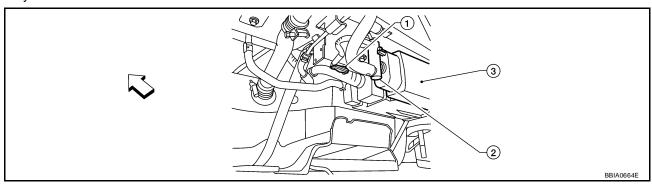
EC

Α

Е

0

Н

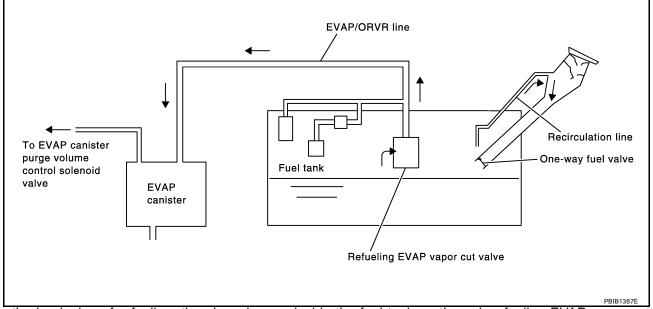

J

<

_

EVAPORATIVE EMISSION SYSTEM

3. Apply battery voltage between the terminals of EVAP canister vent control valve to make a closed EVAP system.


- ∀
 ∀
 Vehicle front
- 1. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister
- 4. To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).
- 5. Remove EVAP service port adapter and hose with pressure pump.
- 6. Locate the leak using a leak detector. Refer to EC-33, "EVAPORATIVE EMISSION LINE DRAWING" .

ON BOARD REFUELING VAPOR RECOVERY (ORVR)

PFP:00032

System Description

UBS00P12

From the beginning of refueling, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve and EVAP/ORVR line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

WARNING:

When conducting inspections below, be sure to observe the following:

- Put a "CAUTION: FLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- Put drained fuel in an explosion-proof container and put lid on securely.
- Release fuel pressure from fuel line. Refer to EC-82, "FUEL PRESSURE RELEASE".
- Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically. Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

EC

Α

С

Е

F

G

. J

1 \

L

Diagnostic Procedure SYMPTOM: FUEL ODOR FROM EVAP CANISTER IS STRONG.

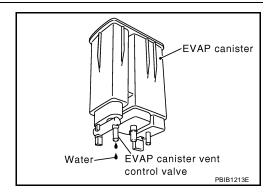
LIBSOOP13

1. CHECK EVAP CANISTER

- 1. Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Weigh the EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.1 kg (4.6 lb).

OK or NG


OK >> GO TO 2. NG >> GO TO 3.

2. CHECK IF EVAP CANISTER SATURATED WITH WATER

Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 3. No >> GO TO 5.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and vehicle frame for clogging or poor connection.

>> Repair or replace EVAP hose.

5. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-43, "Component Inspection".

OK or NG

OK >> INSPECTION END

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

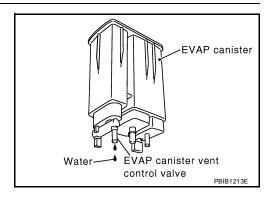
SYMPTOM: CANNOT REFUEL/FUEL ODOR FROM THE FUEL FILLER OPENING IS STRONG WHILE REFUELING.

1. CHECK EVAP CANISTER

- 1. Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- Weigh the EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.1 kg (4.6 lb).

OK or NG


OK >> GO TO 2. NG >> GO TO 3.

2. CHECK IF EVAP CANISTER SATURATED WITH WATER

Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 3. No >> GO TO 5.

3. REPLACE EVAP CANISTER

Replace EVAP canister with a new one.

>> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the EVAP hose between EVAP canister and vehicle frame for clogging or poor connection.

>> Repair or replace EVAP hose.

5. CHECK VENT HOSES AND VENT TUBES

Check hoses and tubes between EVAP canister and refueling EVAP vapor cut valve for clogging, kink, looseness and improper connection.

OK or NG

OK >> GO TO 6.

NG >> Repair or replace hoses and tubes.

6. CHECK FILLER NECK TUBE

Check recirculation line for clogging, dents and cracks.

OK or NG

OK >> GO TO 7.

NG >> Replace filler neck tube.

EC

Α

F

F

G

Н

ı

V

7. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-43, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

8. CHECK FUEL FILLER TUBE

Check filler neck tube and hose connected to the fuel tank for clogging, dents and cracks.

OK or NG

OK >> GO TO 9.

NG >> Replace fuel filler tube.

9. CHECK ONE-WAY FUEL VALVE-I

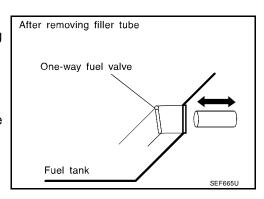
Check one-way valve for clogging.

OK or NG

OK >> GO TO 10.

NG >> Repair or replace one-way fuel valve with fuel tank.

10. CHECK ONE-WAY FUEL VALVE-II


- 1. Make sure that fuel is drained from the tank.
- 2. Remove fuel filler tube and hose.
- Check one-way fuel valve for operation as follows.
 When a stick is inserted, the valve should open, when removing stick it should close.

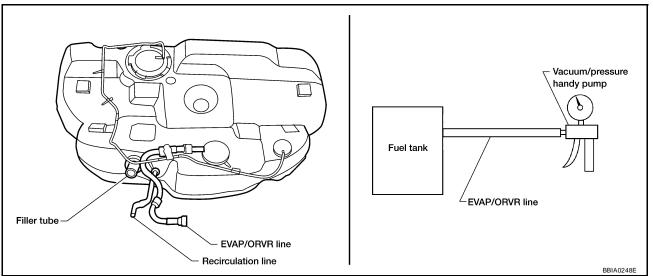
Do not drop any material into the tank.

OK or NG

OK >> INSPECTION END

NG >> Replace fuel filler tube or replace one-way fuel valve with fuel tank.

Component Inspection REFUELING EVAP VAPOR CUT VALVE


UBS00P14

(I) With CONSULT-II

- 1. Remove fuel tank. Refer to FL-9, "FUEL TANK".
- Drain fuel from the tank as follows:
- Remove fuel feed hose located on the fuel gauge retainer.
- b. Connect a spare fuel hose, one side to fuel gauge retainer where the hose was removed and the other side to a fuel container.
- c. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.
- Check refueling EVAP vapor cut valve for being stuck to close as follows.
 Blow air into the refueling EVAP vapor cut valve (from the end of EVAP/ORVR line hose), and check that the air flows freely into the tank.
- 4. Check refueling EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to hose end.
- b. Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel tank upside down.
- d. Apply vacuum pressure to hose end [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.

⋈ Without CONSULT-II

- Remove fuel tank. Refer to <u>FL-9</u>, "<u>FUEL TANK"</u>.
- Drain fuel from the tank as follows:
- Remove fuel gauge retainer.
- Drain fuel from the tank using a handy pump into a fuel container.
- Check refueling EVAP vapor cut valve for being stuck to close as follows.
 Blow air into the refueling EVAP vapor cut valve (from the end of EVAP/ORVR line hose), and check that the air flows freely into the tank.
- 4. Check refueling EVAP vapor cut valve for being stuck to open as follows.
- Connect vacuum pump to hose end.
- Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

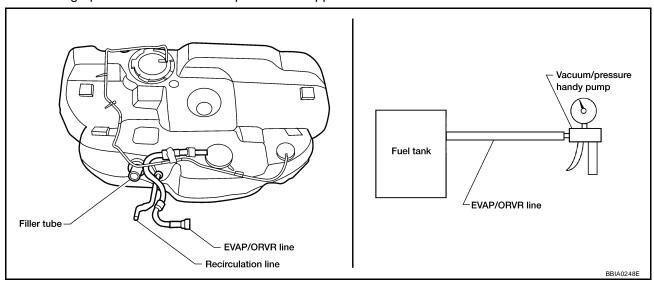
c. Put fuel tank upside down.

EC

Α

Ь

Е

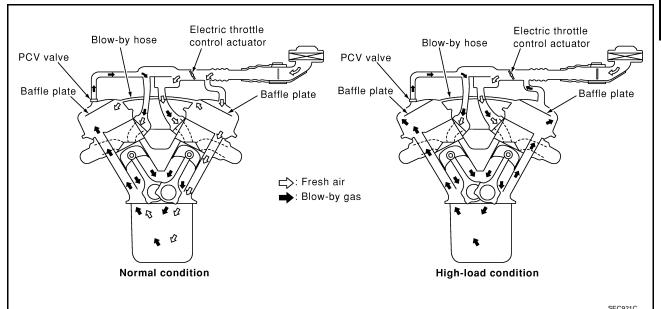

_

G

Н

I

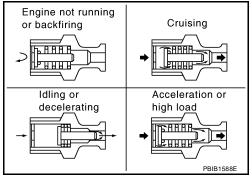
d. Apply vacuum pressure to hose end [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.



POSITIVE CRANKCASE VENTILATION

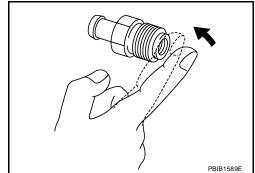
POSITIVE CRANKCASE VENTILATION

PFP:11810


Description SYSTEM DESCRIPTION UBS00P15

This system returns blow-by gas to the intake manifold.

The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold. During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve. Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air. The ventilating air is then drawn from the air inlet tubes into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover. Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.


On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the air inlet tubes under all conditions.

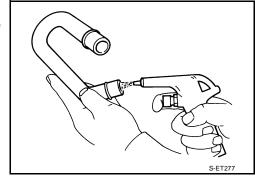
UBS00P16

Component Inspection PCV (POSITIVE CRANKCASE VENTILATION) VALVE

With engine running at idle, remove PCV valve from rocker cover. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over valve inlet.

EC-45 Revision: March 2006 2007 Quest

EC


Α

Е

POSITIVE CRANKCASE VENTILATION

PCV VALVE VENTILATION HOSE

- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM-NATS)

PFP:25386

Description

UBS00P17

Α

EC

If the security indicator lights up with the ignition switch in the ON position or "NATS MALFUNCTION" is displayed on "SELF-DIAG RESULTS" screen, perform self-diagnostic results mode with CONSULT-II using NATS program card. Refer to BL-203, "NVIS(NISSAN Vehicle Immobilizer System-NATS)".

•	Confirm no self-diagnostic results of NVIS (NATS) is dis-
	played before touching "ERASE" in "SELF-DIAG RESULTS"
	mode with CONSULT-II.

 When replacing ECM, initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs must be carried out with CONSULT-II using NATS program card.

		•
SELF DIAG RES	ULTS	
DTC RESULTS	TIME	
NATS MALFUNCTION [P1610]	0	
		SEF543X

Therefore, be sure to receive all keys from vehicle owner. Regarding the procedures of NVIS (NATS) initialization and all NVIS (NATS) ignition key ID registration, refer to CONSULT-II Operation Manual, IVIS/NVIS.

Е

F

G

Н

.1

K

ON BOARD DIAGNOSTIC (OBD) SYSTEM

PFP:00028

Introduction UBS00P18

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

Emission-related diagnostic information	SAE Mode
Diagnostic Trouble Code (DTC)	Service \$03 of SAE J1979
Freeze Frame data	Service \$02 of SAE J1979
System Readiness Test (SRT) code	Service \$01 of SAE J1979
1st Trip Diagnostic Trouble Code (1st Trip DTC)	Service \$07 of SAE J1979
1st Trip Freeze Frame data	
Test values and Test limits	Service \$06 of SAE J1979
Calibration ID	Service \$09 of SAE J1979

The above information can be checked using procedures listed in the table below.

×: Applicable —: Not applicable

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	SRT status	Test value
CONSULT-II	×	×	×	×	×	×	_
GST	×	×	×	_	×	×	×
ECM	×	×*	_	_	_	×	_

^{*:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode. (Refer to EC-94, <a href="Fail-Safe Chart".)

Two Trip Detection Logic

UBS00P19

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>

If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

 \times : Applicable —: Not applicable

		N	ЛIL		D.	ТС	1st trip DTC		
Items	1st trip		2nd trip		1st trip	2nd trip	1st trip	2nd trip	
	Blinking	Lighting up	Blinking	Lighting up	displaying	displaying	displaying	displaying	
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	×		_	_	_	_	×	_	
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0306 is being detected	_	_	×	_	_	×	_	_	
One trip detection diagnoses (Refer to <u>EC-49</u> , " <u>EMISSION-RELATED DIAGNOSTIC INFORMA-TION ITEMS</u> ".)	_	×	_	_	×	_	_	_	
Except above	_	_	_	×	_	×	×	_	

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting up MIL when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected, and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode

Engine speed will not rise more than 2,500 rpm due to the fuel cut

Emission-related Diagnostic Information EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

UBS00P1A

×: Applicable —: Not applicable

Items	DTC*1			Test value/		MII limbin -	Doforana
(CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	SRT code	Test limit (GST only)	Trip	MIL lighting up	Reference page
CAN COMM CIRCUIT	U1000	1000* ⁴	_	_	1	×	EC-159
CAN COMM CIRCUIT	U1001	1001*4	_	_	2	_	EC-159
CONTROL UNIT (CAN)	U1010	1010	_	_	1	×	EC-162
NO DTC IS DETECTED. FURTHER TESTING MAY BE REQUIRED.	P0000	0000	_	_	_	Flashing* ⁵	EC-58
INT/V TIM CONT-B1	P0011	0011	_	_	2	×	EC-164
INT/V TIM CONT-B2	P0021	0021	_	_	2	×	EC-164
A/F SEN1 HTR (B1)	P0031	0031	_	×	2	×	EC-168
A/F SEN1 HTR (B1)	P0032	0032	_	×	2	×	EC-168
HO2S2 HTR (B1)	P0037	0037	_	×	2	×	EC-176
HO2S2 HTR (B1)	P0038	0038	_	×	2	×	EC-176
A/F SEN1 HTR (B2)	P0051	0051	_	×	2	×	EC-168
A/F SEN1 HTR (B2)	P0052	0052	_	×	2	×	EC-168
HO2S2 HTR (B2)	P0057	0057	_	×	2	×	EC-176
HO2S2 HTR (B2)	P0058	0058	_	×	2	×	EC-176
INT/V TIM V/CIR-B1	P0075	0075	_	_	2	×	EC-185
INT/V TIM V/CIR-B2	P0081	0081	_	_	2	×	EC-185
MAF SEN/CIRCUIT	P0101	0101	_	_	2	×	EC-192
MAF SEN/CIRCUIT	P0102	0102	_	_	1	×	EC-202
MAF SEN/CIRCUIT	P0103	0103	_	_	1	×	EC-202
IAT SEN/CIRCUIT	P0112	0112	_	_	2	×	EC-211
IAT SEN/CIRCUIT	P0113	0113	_	_	2	×	EC-211
ECT SEN/CIRC	P0117	0117	_	_	1	×	EC-216
ECT SEN/CIRC	P0118	0118	_	_	1	×	EC-216
TP SEN 2/CIRC	P0122	0122	_	_	1	×	EC-222
TP SEN 2/CIRC	P0123	0123	_	_	1	×	EC-222
ECT SENSOR	P0125	0125	_	_	2	×	EC-230
IAT SENSOR	P0127	0127	_	_	2	×	EC-234
THERMSTAT FNCTN	P0128	0128	_	_	2	×	EC-237
A/F SENSOR1 (B1)	P0130	0130	_	×	2	×	EC-239
A/F SENSOR1 (B1)	P0131	0131	_	×	2	×	EC-250
A/F SENSOR1 (B1)	P0132	0132	_	×	2	×	EC-260
A/F SENSOR1 (B1)	P0133	0133	×	×	2	×	EC-270
HO2S2 (B1)	P0137	0137	×	×	2	×	EC-283

Revision: March 2006 EC-49 2007 Quest

EC

Е

F

0

ı

L

	DTC)* ¹		Test value/			
Items (CONSULT-II screen terms)	CONCLUTU		SRT code	Test limit (GST only)	Trip	MIL lighting up	Reference page
HO2S2 (B1)	P0138	0138	×	×	2	×	EC-295
HO2S2 (B1)	P0139	0139	×	×	2	×	EC-310
A/F SENSOR1 (B2)	P0150	0150	_	×	2	×	EC-239
A/F SENSOR1 (B2)	P0151	0151	_	×	2	×	EC-250
A/F SENSOR1 (B2)	P0152	0152	_	×	2	×	EC-260
A/F SENSOR1 (B2)	P0153	0153	×	×	2	×	EC-270
HO2S2 (B2)	P0157	0157	×	×	2	×	EC-283
HO2S2 (B2)	P0158	0158	×	×	2	×	EC-295
HO2S2 (B2)	P0159	0159	×	×	2	×	EC-310
FUEL SYS-LEAN-B1	P0171	0171	_	_	2	×	EC-322
FUEL SYS-RICH-B1	P0172	0172	_	_	2	×	EC-334
FUEL SYS-LEAN-B2	P0174	0174	_	_	2	×	EC-322
FUEL SYS-RICH-B2	P0175	0175	_	_	2	×	EC-334
FTT SENSOR	P0181	0181	_	_	2	×	EC-346
FTT SEN/CIRCUIT	P0182	0182	_	_	2	×	EC-352
FTT SEN/CIRCUIT	P0183	0183	_	_	2	×	EC-352
TP SEN 1/CIRC	P0222	0222	_	_	1	×	EC-357
TP SEN 1/CIRC	P0223	0223	_	_	1	×	EC-357
MULTI CYL MISFIRE	P0300	0300	_	_	2	×	EC-365
CYL 1 MISFIRE	P0301	0301	_	_	2	×	EC-365
CYL 2 MISFIRE	P0302	0302	_	_	2	×	EC-365
CYL 3 MISFIRE	P0303	0303	_	_	2	×	EC-365
CYL 4 MISFIRE	P0304	0304	_	_	2	×	EC-365
CYL 5 MISFIRE	P0305	0305	_	_	2	×	EC-365
CYL 6 MISFIRE	P0306	0306	_	_	2	×	EC-365
KNOCK SEN/CIRC-B1	P0327	0327	_	_	2	_	EC-374
KNOCK SEN/CIRC-B1	P0328	0328	_	_	2	_	EC-374
CKP SEN/CIRCUIT	P0335	0335	_	_	2	×	EC-379
CMP SEN/CIRC-B1	P0340	0340	_	_	2	×	EC-387
CMP SEN/CIRC-B2	P0345	0345	_	_	2	×	EC-387
EGR SYSTEM	P0400	0400	×	×	2	×	EC-397
EGR VOL CON/V CIR	P0403	0403	_	_	1	×	EC-405
EGR TEMP SEN/ CIRC	P0405	0405	_	_	2	×	EC-412
EGR TEMP SEN/ CIRC	P0406	0406	_	_	2	×	EC-412
TW CATALYST SYS-B1	P0420	0420	×	×	2	×	EC-419
TW CATALYST SYS-B2	P0430	0430	×	×	2	×	EC-419
EVAP PURG FLOW/MON	P0441	0441	×	×	2	×	EC-425
EVAP SMALL LEAK	P0442	0442	×	×	2	×	EC-431
PURG VOLUME CONT/V	P0443	0443	_	_	2	×	EC-439
PURG VOLUME CONT/V	P0444	0444	_	_	2	×	EC-447
PURG VOLUME CONT/V	P0445	0445	_	_	2	×	EC-447
VENT CONTROL VALVE	P0447	0447	_	_	2	×	EC-454

Items	DTO	C* ¹		Test value/		MIL lighting	Reference	Δ
(CONSULT-II screen terms)	CONSULT-II GST* ²	ECM*3	SRT code	Test limit (GST only)	Trip	up	page	-
VENT CONTROL VALVE	P0448	0448	_	_	2	×	EC-461	EC
EVAP SYS PRES SEN	P0451	0451	_	_	2	×	EC-468	
EVAP SYS PRES SEN	P0452	0452	_	_	2	×	EC-472	
EVAP SYS PRES SEN	P0453	0453	_	_	2	×	EC-479	C
EVAP GROSS LEAK	P0455	0455	_	_	2	×	EC-487	
EVAP VERY SML LEAK	P0456	0456	×*6	×	2	×	EC-495	
FUEL LEV SEN SLOSH	P0460	0460	_	_	2	×	EC-504	
FUEL LEVEL SENSOR	P0461	0461	_	_	2	×	EC-506	
FUEL LEVL SEN/CIRC	P0462	0462	_	_	2	×	EC-508	Е
FUEL LEVL SEN/CIRC	P0463	0463	_	_	2	×	EC-508	
VEH SPEED SEN/CIRC*5	P0500	0500	_	_	2	×	EC-510	F
ISC SYSTEM	P0506	0506	_	_	2	×	EC-512	
ISC SYSTEM	P0507	0507	_	_	2	×	EC-514	
PW ST P SEN/CIRC	P0550	0550	_	_	2	_	EC-516	G
ECM BACK UP/CIRCUIT	P0603	0603	_	_	2	×	EC-522	
ECM	P0605	0605	_	_	1 or 2	× or —	EC-526	Н
SENSOR POWER/CIRC	P0643	0643	_	_	1	×	EC-529	
PNP SW/CIRC	P0705	0705	_	_	1	×	<u>AT-91</u>	
ATF TEMP SEN/CIRC	P0710	0710	_	_	2	×	<u>AT-96</u>	
FLUID TEMP SEN	P0711	0711	_	_	2	×	<u>AT-101</u>	
TURBINE SENSOR	P0717	0717	_	_	1	×	<u>AT-106</u>	J
VHCL SPEED SEN-AT	P0722	0722	_	_	1	×	<u>AT-110</u>	
A/T 1ST GR FNCTN	P0731	0731	_	_	1	×	<u>AT-116</u>	
A/T 2ND GR FNCTN	P0732	0732	_	_	1	×	<u>AT-119</u>	K
A/T 3RD GR FNCTN	P0733	0733	_	_	1	×	<u>AT-124</u>	
A/T 4TH GR FNCTN	P0734	0734	_	_	1	×	<u>AT-129</u>	1
A/T 5TH GR FNCTN	P0735	0735	_	_	1	×	<u>AT-133</u>	
A/T TCC S/V FNCTN	P0744	0744	_	_	1	×	<u>AT-138</u>	
PC SOL A(L/PRESS)	P0745	0745	_	_	1	×	<u>AT-141</u>	N
SHIFT SOL A	P0750	0750	_	_	1	×	<u>AT-146</u>	
SHIFT SOL B	P0755	0755	_	_	1	×	<u>AT-151</u>	
SHIFT SOL C	P0760	0760	_	_	1	×	<u>AT-156</u>	
SFT SOL C STUCK ON	P0762	0762	_	_	1	×	<u>AT-161</u>	
SHIFT SOL D	P0765	0765	_	_	1	×	<u>AT-166</u>	
SHIFT SOL E	P0770	0770	_	_	1	×	<u>AT-171</u>	
PC SOL B(SFT/PRS)	P0775	0775	_	_	1	×	<u>AT-176</u>	
SHIFT	P0780	0780	_	_	1	×	<u>AT-181</u>	
PC SOL C(TCC&SFT)	P0795	0795	_	_	1	×	<u>AT-185</u>	
PC SOL C STC ON	P0797	0797	_	_	1	×	<u>AT-190</u>	
P-N POS SW/CIRCUIT	P0850	0850	_	_	2	×	EC-535	
TCM POWER INPT SIG	P0882	0882	_	_	1	×	<u>AT-199</u>	
CLOSED LOOP-B1	P1148	1148	_	_	1	×	EC-541	

Itomo	DTC*1			Test value/		MIL lighting	Reference
Items (CONSULT-II screen terms)	CONSULT-II GST* ²	ECM* ³	SRT code	Test limit (GST only)	Trip	MIL lighting up	page
CLOSED LOOP-B2	P1168	1168	_	_	1	×	EC-541
TCS C/U FUNCTN	P1211	1211	_	_	2	_	EC-542
TCS/CIRC	P1212	1212	_	_	2	_	EC-543
ENG OVER TEMP	P1217	1217	_	_	1	×	EC-544
CTP LEARNING	P1225	1225	_	_	2	_	EC-555
CTP LEARNING	P1226	1226	_	_	2	_	EC-557
EGR SYSTEM	P1402	1402	×	×	2	×	EC-559
COLD START CONTROL	P1421	1421	_	_	2	×	EC-566
ASCD SW	P1564	1564	_	_	1	_	EC-568
ASCD BRAKE SW	P1572	1572	_	_	1	_	EC-576
ASCD VHL SPD SEN	P1574	1574	_	_	1	_	EC-584
NATS MALFUNCTION	P1610 - P1615	1610 - 1615	_	_	2	_	BL-203
VIAS S/V CIRC	P1800	1800	_	_	2	_	EC-586
BRAKE SW/CIRCUIT	P1805	1805	_	_	2	_	EC-591
ETC MOT PWR	P2100	2100	_	_	1	×	EC-596
ETC FUNCTION/CIRC	P2101	2101	_	_	1	×	EC-602
ETC MOT PWR	P2103	2103	_	_	1	×	EC-596
ETC MOT	P2118	2118	_	_	1	×	EC-609
ETC ACTR	P2119	2119	_	_	1	×	EC-615
APP SEN 1/CIRC	P2122	2122	_	_	1	×	EC-617
APP SEN 1/CIRC	P2123	2123	_	_	1	×	EC-617
APP SEN 2/CIRC	P2127	2127	_	_	1	×	EC-624
APP SEN 2/CIRC	P2128	2128	_	_	1	×	EC-624
TP SENSOR	P2135	2135	_	_	1	×	EC-632
APP SENSOR	P2138	2138	_	_	1	×	EC-640
A/F SENSOR1 (B1)	P2A00	2A00	_	×	2	×	EC-648
A/F SENSOR1 (B2)	P2A03	2A03	_	×	2	×	EC-648

^{*1: 1}st trip DTC No. is the same as DTC No.

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed.

If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

^{*2:} This number is prescribed by SAE J2012.

^{*3:} In Diagnostic Test Mode II (Self-diagnostic results), this number is controlled by NISSAN.

^{*4:} The troubleshooting for this DTC needs CONSULT-II.

^{*5:} When the ECM is in the mode of displaying SRT status, MIL may flash. For the details, refer to EC-58, "How to Display SRT Status".

^{*6:} SRT code will not be set if the self-diagnostic result is NG.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in <u>EC-63</u>, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

For malfunctions in which 1st trip DTCs are displayed, refer to EC-49, "EMISSION-RELATED DIAGNOSTIC <a href="INFORMATION ITEMS". These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Service \$07 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a malfunction. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in Work Flow procedure Step 2, refer to EC-87, "WORK FLOW". Then perform DTC Confirmation Procedure or Overall Function Check to try to duplicate the malfunction. If the malfunction is duplicated, the item requires repair.

How to Read DTC and 1st Trip DTC

DTC and 1st trip DTC can be read by the following methods.

(P) With CONSULT-II

With GST

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P0850, P1148, etc.

These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

No Tools

The number of blinks of the MIL in the Diagnostic Test Mode II (Self-Diagnostic Results) indicates the DTC. Example: 0340, 0850, 1148, etc.

These DTCs are controlled by NISSAN.

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, GST or the Diagnostic Test Mode II do not indicate whether the malfunction is still occurring or has occurred in the past and has returned to normal. CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if available) is recommended.

A sample of CONSULT-II display for DTC and 1st trip DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be [0].

If a 1st trip DTC is stored in the ECM, the time data will be [1t].

	SELF DIAG RESU	JLTS		SELF DIAG RESU	LTS
	DTC RESULTS	TIME		DTC RESULTS	TIME
DTC	CKP SEN/CIRCUIT [P0335]	0	1st trip DTC display	CKP SEN/CIRCUIT [P0335]	1t
display					
			L		

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, absolute throttle position, base fuel schedule and intake air temperature at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CONSULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see <u>EC-122, "Freeze Frame Data and 1st Trip Freeze Frame Data".</u>

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

Revision: March 2006 EC-53 2007 Quest

EC

С

D

Е

_

Г

N

Priority	Items								
1	Freeze frame data	Misfire — DTC: P0300 - P0306 Fuel Injection System Function — DTC: P0171, P0172, P0174, P0175							
2		Except the above items (Includes A/T related items)							
3	1st trip freeze frame d	1st trip freeze frame data							

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in EC-63, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Service \$01 of SAE J1979.

As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the ECM has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT", the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern; the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE:

If MIL is ON during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

SRT Item

The table below shows required self-diagnostic items to set the SRT to "CMPLT".

SRT item (CONSULT-II indication)	Performance Priority*	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	3	Three way catalyst function	P0420, P0430
	3	EVAP control system purge flow monitoring	P0441
EVAP SYSTEM	2	EVAP control system	P0442
	3	EVAP control system	P0456
HO2S	3	A/F sensor 1	P0133, P0153
		Heated oxygen sensor 2	P0137, P0157
		Heated oxygen sensor 2	P0138, P0158
		Heated oxygen sensor 2	P0139, P0159
EGR SYSTEM	3	EGR function	P0400
	1	EGR function	P1402

*: If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-II.

EC

Α

С

D

Е

F

G

Н

1

J

K

SRT Set Timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

Self-diagnosis result		Example				
		Diagnosis				
All OK	Case 1	P0400	OK (1)	— (1)	OK (2)	— (2)
		P0402	OK (1)	— (1)	— (1)	OK (2)
		P1402	OK (1)	OK (2)	— (2)	— (2)
		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"
	Case 2	P0400	OK (1)	—(1)	— (1)	— (1)
		P0402	— (0)	— (0)	OK (1)	— (1)
		P1402	OK (1)	OK (2)	— (2)	— (2)
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"
NG exists	Case 3	P0400	OK	OK	_	_
		P0402	_	_	_	_
		P1402	NG	_	NG	NG (Consecutive NG)
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL "ON")
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"

OK: Self-diagnosis is carried out and the result is OK.

NG: Self-diagnosis is carried out and the result is NG.

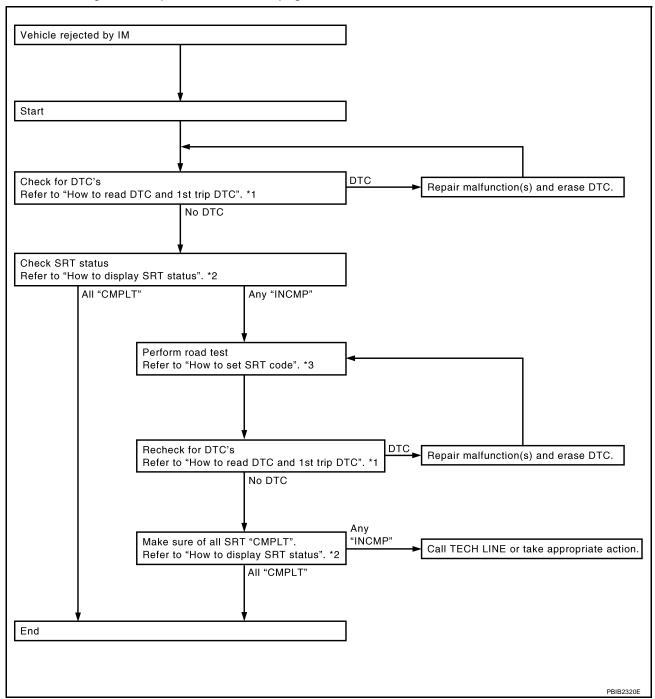
When all SRT related self-diagnoses showed OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". \rightarrow Case 1 above

When all SRT related self-diagnoses showed OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. \rightarrow Case 2 above

If one or more SRT related self-diagnoses showed NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". \rightarrow Case 3 above

The table above shows that the minimum number of cycles for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnoses (Case 3). However, in preparation for the state emissions inspection, it is unnecessary for each self-diagnosis to be executed twice (Case 3) for the following reasons:

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis results.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the self-diagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".


NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the state emission inspection even though the SRT indicates "CMPLT".

^{-:} Self-diagnosis is not carried out.

SRT Service Procedure

If a vehicle has failed the state emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

^{*1} EC-53, "How to Read DTC and 1st *2 EC-58, "How to Display SRT Status" *3 EC-58, "How to Set SRT Code" Trip DTC"

Revision: March 2006 EC-57 2007 Quest

EC

С

D

_

_

G

Н

|

1/

L

n л

How to Display SRT Status

(P) WITH CONSULT-II

Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II.

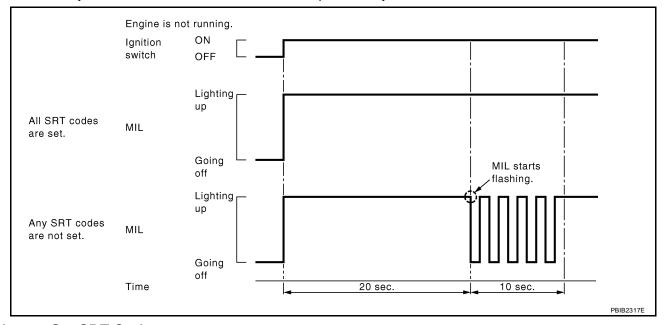
For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.

A sample of CONSULT-II display for SRT code is shown in the figure.

"INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.

NOTE

Though displayed on the CONSULT-II screen, "HO2S HTR" is not SRT item.


WITH GST

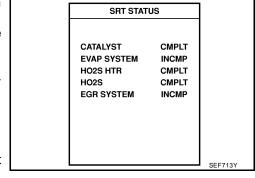
Selecting Service \$01 with GST (Generic Scan Tool)

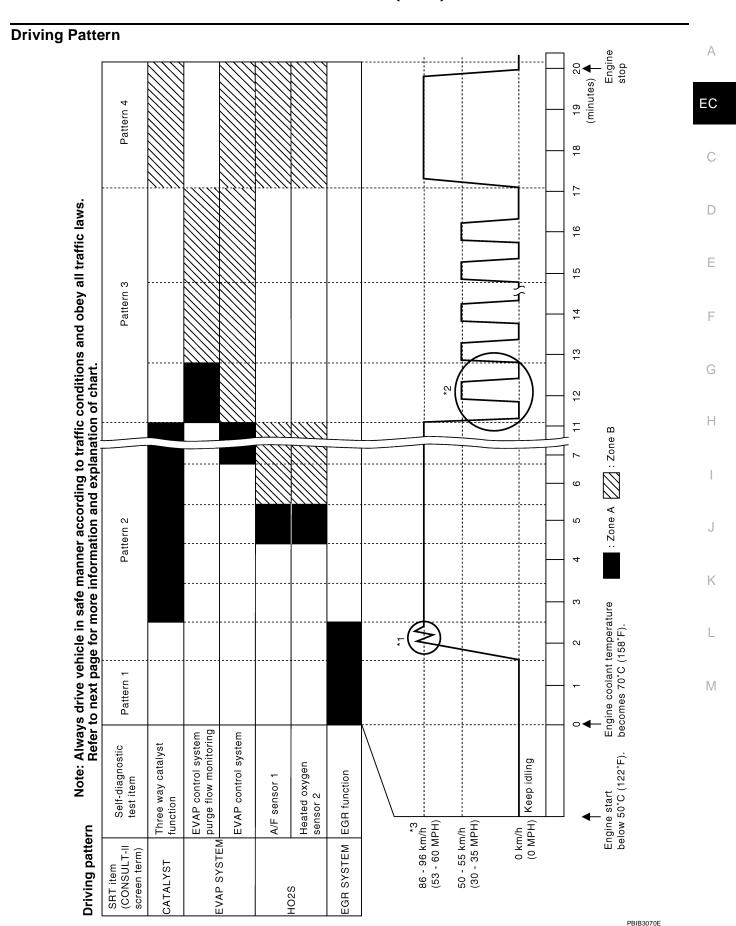
NO TOOLS

A SRT code itself can be displayed while only SRT status can be.

- 1. Turn ignition switch ON and wait 20 seconds.
- 2. SRT status is indicated as shown below.
- When all SRT codes are set, MIL lights up continuously.
- When any SRT codes are not set, MIL will flash periodically for 10 seconds.

How to Set SRT Code


To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.


(P) WITH CONSULT-II

Perform corresponding DTC Confirmation Procedure one by one based on Performance Priority in the table on <u>EC-54</u>, "SRT Item".

M WITHOUT CONSULT-II

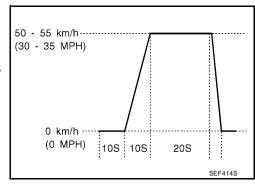
The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

- The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.
 - Zone A refers to the range where the time, required for the diagnosis under normal conditions*, is the shortest.
 - Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A.
- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.
 Under different conditions [For example: ambient air temperature other than 20 30°C (68 86°F)], diagnosis may also be performed.

Pattern 1:

- The engine is started at the engine coolant temperature of −10 to 35°C (14 to 95°F) (where the voltage between the ECM terminal 73 and ground is 3.0 - 4.3V).
- The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F) (where the voltage between the ECM terminal 73 and ground is lower than 1.4V).
- The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 107 and ground is less than 4.1V).

Pattern 2:


When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.

Pattern 3:

The driving pattern outlined in *2 must be repeated at least 3 times.

Pattern 4:

- Tests are performed after the engine has been operated for at least 17 minutes.
- The accelerator pedal must be held very steady during steady-state driving.
- If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
- 1. Decelerate vehicle to 0 km/h (0 MPH) and let engine idle.
- 2. Repeat driving pattern shown at right at least 10 times.
- During acceleration, hold the accelerator pedal as steady as possible.
- *3: Checking the vehicle speed with GST is advised.

Suggested Transmission Gear Position

Set the shift lever in the D position with the overdrive switch turned ON.

TEST VALUE AND TEST LIMIT (GST ONLY — NOT APPLICABLE TO CONSULT-II)

The following is the information specified in Service \$06 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is OK or NG while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored.

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

SRT item	Solf-diagnostic test item	DTC -	Test value (GST display)		Test limit	Unit
SKT ILEIII	Self-diagnostic test item		TID	CID	rest iiriit	
	Three way catalyst function (Bank 1)	P0420	01H	01H	Max.	1/128
CATALYST -	Three way catalyst function (Bank 1)	P0420	02H	81H	Min.	1
	Three way catalyst function (Bank 2)	P0430	03H	02H	Max.	1/128
	Three way catalyst function (Bank 2)	P0430	04H	82H	Min.	1
	EVAP control system (Small leak)	P0442	05H	03H	Max.	1/128 mm ²
EVAP SYSTEM	EVAP control system purge flow monitoring	P0441	06H	83H	Min.	20 mV
	EVAP control system (Very small leak)	P0456	07H	03H	Max.	1/128 mm ²
		P0131	41H	8EH	Min.	5 mV
		P0132	42H	0EH	Max.	5 mV
		P2A00	43H	0EH	Max.	0.002
	A/E consert (Penk 1)	P2A00	44H	8EH	Min.	0.002
	A/F sensor 1 (Bank 1)	P0133	45H	8EH	Min.	0.004
		P0130	46H	0EH	Max.	5 mV
		P0130	47H	8EH	Min.	5 mV
		P0133	48H	8EH	Min.	0.004
		P0151	4CH	8FH	Min.	5 mV
		P0152	4DH	0FH	Max.	5 mV
	A/F sensor 1 (Bank 2)	P2A03	4EH	0FH	Max.	0.002
HO2S		P2A03	4FH	8FH	Min.	0.002
11023	All Selison (Dalik 2)	P0153	50H	8FH	Min.	0.004
		P0150	51H	0FH	Max.	5 mV
		P0150	52H	8FH	Min.	5 mV
		P0153	53H	8FH	Min.	0.004
		P0139	19H	86H	Min.	10mV/500 ms
	Heated oxygen sensor 2 (Bank 1)	P0137	1AH	86H	Min.	10 mV
	Heated Oxygen Senson 2 (Bank 1)	P0138	1BH	06H	Max.	10 mV
		P0138	1CH	06H	Max.	10 mV
		P0159	21H	87H	Min.	10mV/500 ms
	Heated oxygen sensor 2 (Bank 2)	P0157	22H	87H	Min.	10 mV
	Tication oxygen sensor 2 (Dank 2)	P0158	23H	07H	Max.	10 mV
		P0158	24H	07H	Max.	10 mV

EC

Α

С

D

Е

G

Н

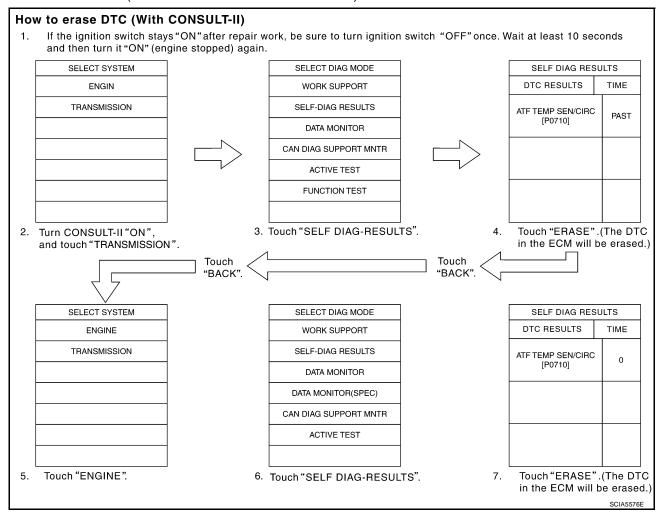
K

_

CDT itom	Calf diagnostic test item	DTC	Test value (GST display)		To at limit	l lait
SRT item	Self-diagnostic test item		TID	CID	Test limit	Unit
	A/F sensor 1 heater (Bank 1)	P0032	57H	10H	Max.	5 mV
	ANT Sellson Theater (Ballk 1)	P0031	58H	90H	Min.	5 mV
	A/F sensor 1 heater (Bank 2)	P0052	59H	11H	Max.	5 mV
HO2S HTR	A/I Selisor i lleater (Dalik 2)	P0051	5AH	91H	Min.	5 mV
110231111	Heated oxygen sensor 2 heater (Bank 1)	P0038	2DH	0AH	Max.	20 mV
	Treated Oxygen Sensor 2 heater (Bank 1)	P0037	2EH	8AH	Min.	20 mV
	Heated overgen concer 2 heater (Penk 2)	P0058	2FH	0BH	Max.	20 mV
	Heated oxygen sensor 2 heater (Bank 2)	P0057	30H	8BH	Min.	20 mV
EGR SYSTEM		P0400	31H	8CH	Min.	1°C
		P0400	32H	8CH	Min.	1°C
	EGR function	P0400	33H	8CH	Min.	1°C
		P0400	34H	8CH	Min.	1°C
		P1402	35H	0CH	Max.	1°C

HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION How to Erase DTC

(P) With CONSULT-II


The emission related diagnostic information in the ECM can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individually from the ECM and TCM (Transmission control module).

NOTE:

If the DTC is not for AT related items (see EC-8, "INDEX FOR DTC"), skip steps 2 through 4.

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- 2. Turn CONSULT-II ON and touch "TRANSMISSIION".
- 3. Touch "SELF-DIAG RESULTS".
- Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- 5. Touch "ENGINE".
- 6. Touch "SELF-DIAG RESULTS".
- 7. Touch "ERASE". (The DTC in the ECM will be erased.)

With GST

The emission related diagnostic information in the ECM can be erased by selecting Service \$04 with GST.

NOTE

If the DTC is not for AT related items (see EC-8, "INDEX FOR DTC"), skip step 2.

1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.

Revision: March 2006 EC-63 2007 Quest

EC

Α

D

Е

G

Н

1

12

M

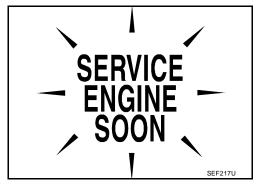
IV

- 2. Perform AT-42, "How to erase DTC (with GST)". (The DTC in the TCM will be erased.)
- 3. Select Service \$04 with GST (Generic Scan Tool).
- No Tools

NOTE:

If the DTC is not for AT related items (see <u>EC-8, "INDEX FOR DTC"</u>), skip step 2.

- 1. If the ignition switch stays ON after repair work, be sure to turn ignition switch OFF once. Wait at least 10 seconds and then turn it ON (engine stopped) again.
- 2. Perform AT-42, "How to erase DTC (no tools)" . (The DTC in the TCM will be erased.)
- 3. Change the diagnostic test mode from Mode II to Mode I by depressing the accelerator pedal. Refer to EC-65, "HOW TO SWITCH DIAGNOSTIC TEST MODE".
- If the battery is disconnected, the emission-related diagnostic information will be lost within 24 hours.
- The following data are cleared when the ECM memory is erased.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values


Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

Malfunction Indicator Lamp (MIL) DESCRIPTION

UBS00P1B

The MIL is located on the instrument panel.

- The MIL will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
 If the MIL does not light up, refer to DI-26, "WARNING LAMPS", or see EC-719, "MIL AND DATA LINK CONNECTOR".
- When the engine is started, the MIL should go off.
 If the MIL remains on, the on board diagnostic system has
 detected an engine system malfunction.

Α

Е

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following three functions.

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function
Mode I	Ignition switch in ON position Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit.
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip. • Misfire (Possible three way catalyst damage) • One trip detection diagnoses
Mode II	Ignition switch in ON position Engine stopped	SELF-DIAGNOSTIC RESULTS	This function allows DTCs and 1st trip DTCs to be read.

When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting up MIL when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected, and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode Engine speed will not rise more than 2,500 rpm due to the fuel cut

MIL Flashing Without DTC

When any SRT codes are not set, MIL may flash without DTC. For the details, refer to EC-58, "How to Display <a href="SRT Status".

HOW TO SWITCH DIAGNOSTIC TEST MODE

NOTE:

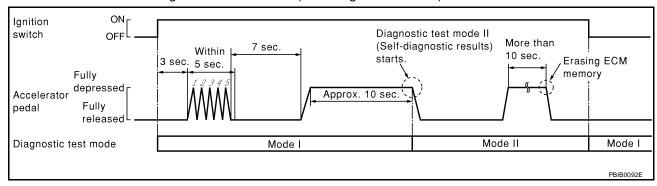
- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- Always ECM returns to Diagnostic Test Mode I after ignition switch is turned OFF.

How to Set Diagnostic Test Mode II (Self-diagnostic Results)

- 1. Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- 2. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 10 seconds until the MIL starts blinking.

Revision: March 2006 EC-65 2007 Quest

NOTE:


Do not release the accelerator pedal for 10 seconds if MIL may start blinking on the halfway of this 10 seconds. This blinking is displaying SRT status and is continued for another 10 seconds. For the details, refer to EC-58, "How to <a href="Display SRT Status".

4. Fully release the accelerator pedal.

NOTE:

Wait until the same DTC (or 1st trip DTC) appears to confirm all DTCs certainly.

ECM has entered to Diagnostic Test Mode II (Self-diagnostic results).

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

- 1. Set ECM in Diagnostic Test Mode II (Self-diagnostic results). Refer to EC-65, "How to Set Diagnostic Test Mode II (Self-diagnostic Results)".
- Fully depress the accelerator pedal and keep it for more than 10 seconds.The emission-related diagnostic information has been erased from the backup memory in the ECM.
- 3. Fully release the accelerator pedal, and confirm the DTC 0000 is displayed.

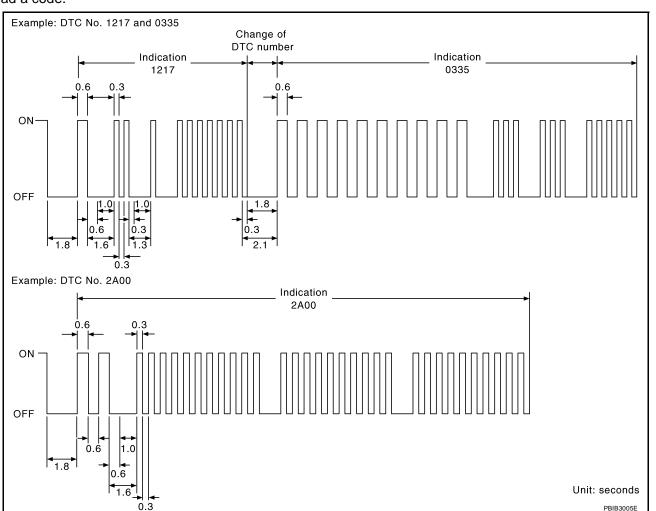
DIAGNOSTIC TEST MODE I — BULB CHECK

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to DI-26, "WARNING LAMPS" or see EC-719, "MIL AND DATA LINK CONNECTOR".

DIAGNOSTIC TEST MODE I — MALFUNCTION WARNING

MIL	Condition		
ON	When the malfunction is detected.		
OFF	No malfunction.		

These DTC numbers are clarified in Diagnostic Test Mode II (SELF-DIAGNOSTIC RESULTS)


DIAGNOSTIC TEST MODE II — SELF-DIAGNOSTIC RESULTS

In this mode, the DTC and 1st trip DTC are indicated by the number of blinks of the MIL as shown below. The DTC and 1st trip DTC are displayed at the same time. If the MIL does not illuminate in diagnostic test mode I (Malfunction warning), all displayed items are 1st trip DTCs. If only one code is displayed when the MIL illuminates in diagnostic test mode II (SELF-DIAGNOSTIC RESULTS), it is a DTC; if two or more codes are displayed, they may be either DTCs or 1st trip DTCs. DTC No. is same as that of 1st trip DTC. These unidentified codes can be identified by using the CONSULT-II or GST. A DTC will be used as an example for how to read a code.

Α

EC

Н

A particular trouble code can be identified by the number of four-digit numeral flashes. The "zero" is indicated by the number of ten flashes. The "A" is indicated by the number of eleven flash. The length of time the 1,000th-digit numeral flashes on and off is 1.2 seconds consisting of an ON (0.6-second) - OFF (0.6-second) cycle.

The 100th-digit numeral and lower digit numerals consist of a 0.3-second ON and 0.3-second OFF cycle.

A change from one digit numeral to another occurs at an interval of 1.0-second OFF. In other words, the later numeral appears on the display 1.3 seconds after the former numeral has disappeared.

A change from one trouble code to another occurs at an interval of 1.8-second OFF.

In this way, all the detected malfunctions are classified by their DTC numbers. The DTC 0000 refers to no malfunction. (See <u>EC-8</u>, "INDEX FOR DTC")

How to Erase Diagnostic Test Mode II (Self-diagnostic Results)

The DTC can be erased from the back up memory in the ECM by depressing accelerator pedal. Refer to EC-66, "How to Erase Diagnostic Test Mode II (Self-diagnostic Results)".

- If the battery is disconnected, the DTC will be lost from the backup memory within 24 hours.
- Be careful not to erase the stored memory before starting trouble diagnoses.

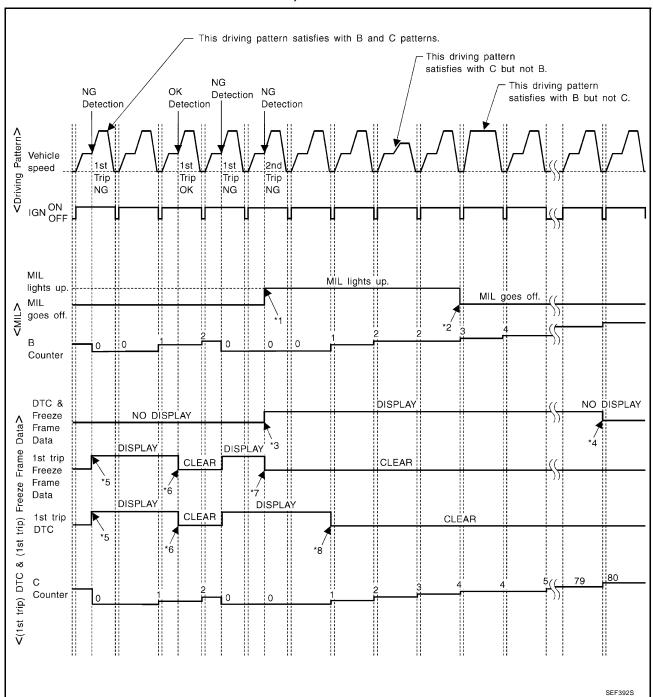
OBD System Operation Chart RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

UBS00P1C

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to <u>EC-48</u>, "Two Trip <u>Detection</u> <u>Logic"</u>.
- The MIL will go off after the vehicle is driven 3 times (driving pattern B) with no malfunction. The drive is counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while counting, the counter will reset.
- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in OK for the 2nd trip.

SUMMARY CHART

Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)


For details about patterns B and C under "Fuel Injection System" and "Misfire", see EC-70 .

For details about patterns A and B under "Other", see EC-72.

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE " <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.

Α

EC

Е

Н

M

*6: The 1st trip DTC and the 1st trip freeze frame data will be cleared at the moment OK is detected.

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in OBD SYSTEM OPERATION CHART)

<Driving Pattern C>

Driving pattern C means the vehicle operation as follows:

The following conditions should be satisfied at the same time:

Engine speed: (Engine speed in the freeze frame data) ±375 rpm

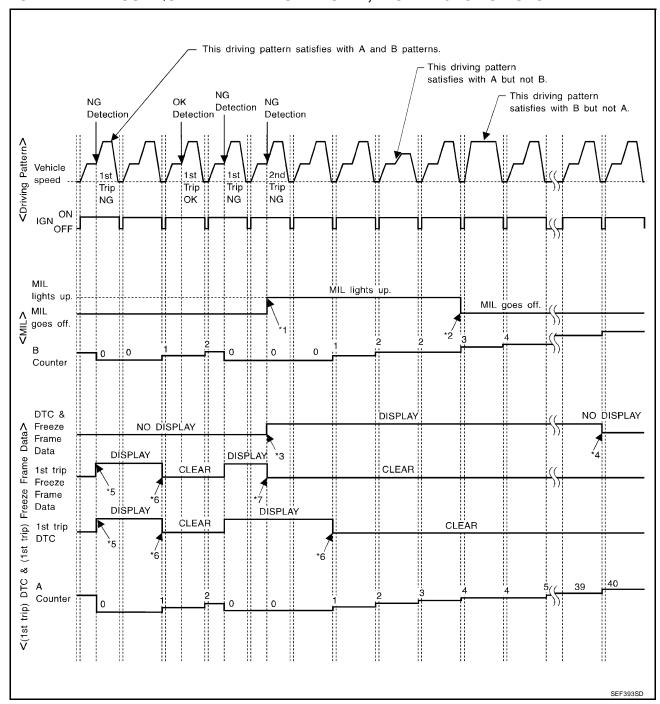
Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%]

Engine coolant temperature (T) condition:

- When the freeze frame data shows lower than 70°C (158°F), T should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), T should be higher than or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:


Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions:

Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of vehicle conditions above.
- The C counter will be counted up when vehicle conditions above is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction.

 (The DTC and the freeze frame data still remain in ECM.)
- When the same malfunction is

 *7: detected in the 2nd trip, the 1st trip
 freeze frame data will be cleared.

- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.

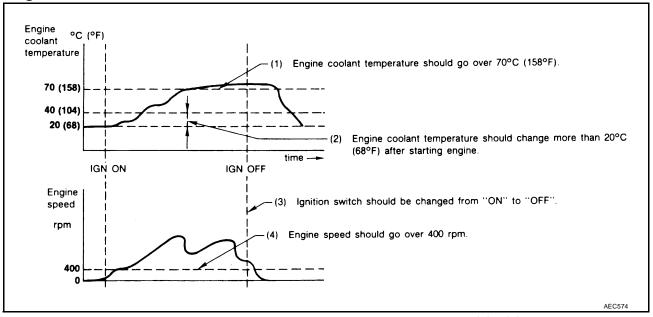
EC

Α

С

Е

F


G

Н

K

EXPLANATION FOR DRIVING PATTERNS <u>EXCEPT</u> FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving Pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving Pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in OBD SYSTEM OPERATION CHART).

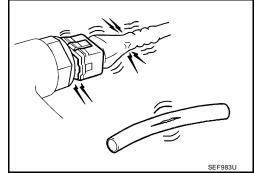
BASIC SERVICE PROCEDURE

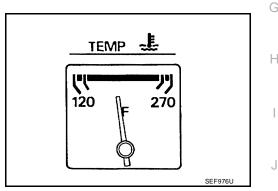
PFP:00018

UBS00P1D

EC

D

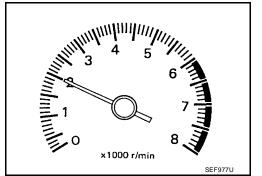

Е


Basic Inspection

1. INSPECTION START

1. Check service records for any recent repairs that may indicate a related malfunction, or a current need for scheduled maintenance.

- Open engine hood and check the following:
- Harness connectors for improper connections
- Wiring harness for improper connections, pinches and cut
- Vacuum hoses for splits, kinks and improper connections
- Hoses and ducts for leaks
- Air cleaner clogging
- Gasket
- Confirm that electrical or mechanical loads are not applied. 3.
- Headlamp switch is OFF.
- Air conditioner switch is OFF.
- Rear window defogger switch is OFF.
- Steering wheel is in the straight-ahead position, etc.
- Start engine and warm it up until engine coolant temperature indicator points the middle of gauge. Ensure engine stays below 1,000 rpm.



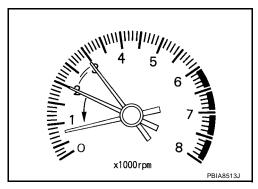
- 5. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 6. Make sure that no DTC is displayed with CONSULT-II or GST.

OK or NG

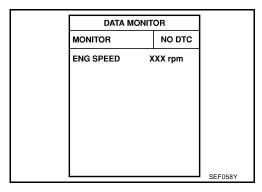
OK >> GO TO 3. NG >> GO TO 2.

2. REPAIR OR REPLACE

Repair or replace components as necessary according to corresponding Diagnostic Procedure.


>> GO TO 3.

3. CHECK TARGET IDLE SPEED


(II) With CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.

 Read idle speed in "DATA MONITOR" mode with CONSULT-II. Refer to EC-78, "IDLE SPEED".

 675 ± 50 rpm (in P or N position)

⋈ Without CONSULT-II

- 1. Run engine at about 2,000 rpm for about 2 minutes under no load.
- 2. Rev engine (2,000 to 3,000 rpm) two or three times under no load, then run engine at idle speed for about 1 minute.
- 3. Check idle speed. Refer to EC-78, "IDLE SPEED".

 675 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 4.

4. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-80, "Accelerator Pedal Released Position Learning".

>> GO TO 5.

5. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-80, "Throttle Valve Closed Position Learning".

>> GO TO 6.

6. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-80, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 7.

No >> 1. Follow the instruction of Idle Air Volume Learning.

2. GO TO 4.

7. CHECK TARGET IDLE SPEED AGAIN

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Read idle speed in "DATA MONITOR" mode with CONSULT-II. Refer to EC-78, "IDLE SPEED".

 675 ± 50 rpm (in P or N position)

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed. Refer to EC-78, "IDLE SPEED" .

 675 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 10. NG >> GO TO 8.

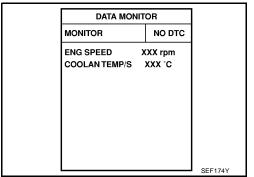
8. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to <u>EC-387</u>.
- Check crankshaft position sensor (POS) and circuit. Refer to <u>EC-379</u>.

OK or NG

OK >> GO TO 9.


NG >> 1. Repair or replace.

2. GO TO 4.

9. CHECK ECM FUNCTION

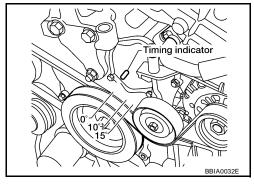
- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
- Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to <u>BL-203, "NVIS(NISSAN Vehicle Immobilizer System-NATS)"</u>

>> GO TO 4.

EC

Ŭ

ш


10. CHECK IGNITION TIMING

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light. Refer to EC-78, "IGNITION TIMING".

 $15 \pm 5^{\circ}$ BTDC (in P or N position)

OK or NG

OK >> GO TO 19. NG >> GO TO 11.

11. PERFORM ACCELERATOR PEDAL RELEASED POSITION LEARNING

- 1. Stop engine.
- 2. Perform EC-80, "Accelerator Pedal Released Position Learning".

>> GO TO 12.

12. PERFORM THROTTLE VALVE CLOSED POSITION LEARNING

Perform EC-80, "Throttle Valve Closed Position Learning".

>> GO TO 13.

13. PERFORM IDLE AIR VOLUME LEARNING

Refer to EC-80, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 14.

No >> 1. Follow t

>> 1. Follow the instruction of Idle Air Volume Learning.

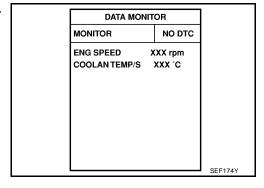
2. GO TO 4.

14. CHECK TARGET IDLE SPEED AGAIN

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Read idle speed in "DATA MONITOR" mode with CONSULT-II. Refer to <u>EC-78</u>, "IDLE SPEED".

 675 ± 50 rpm (in P or N position)

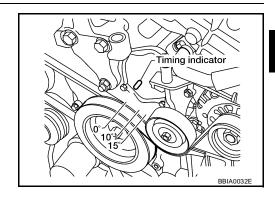

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check idle speed. Refer to EC-78, "IDLE SPEED".

 675 ± 50 rpm (in P or N position)

OK or NG

OK >> GO TO 15. NG >> GO TO 17.


15. CHECK IGNITION TIMING AGAIN

- 1. Run engine at idle.
- 2. Check ignition timing with a timing light. Refer to EC-78, "IGNITION TIMING".

15 \pm 5° BTDC (in P or N position)

OK or NG

OK >> GO TO 19. NG >> GO TO 16.

16. CHECK TIMING CHAIN INSTALLATION

Check timing chain installation. Refer to <a>EM-56, "TIMING CHAIN".

OK or NG

OK >> GO TO 17.

NG >> 1. Repair the timing chain installation.

2. GO TO 4.

17. DETECT MALFUNCTIONING PART

Check the following.

- Check camshaft position sensor (PHASE) and circuit. Refer to <u>EC-387</u>.
- Check crankshaft position sensor (POS) and circuit. Refer to <u>EC-379</u>.

OK or NG

OK >> GO TO 18.

NG >> 1. Repair or replace.

2. GO TO 4.

18. CHECK ECM FUNCTION

- 1. Substitute another known-good ECM to check ECM function. (ECM may be the cause of an incident, but this is a rare case.)
- 2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to BL-203, "NVIS(NISSAN Vehicle Immobilizer System-NATS)".

>> GO TO 4.

19. INSPECTION END

Did you replace the ECM, referring this Basic Inspection procedure? Yes or No

Yes >> 1. Perform EC-79, "VIN Registration".

2. INSPECTION END

No >> INSPECTION END

EC

С

D

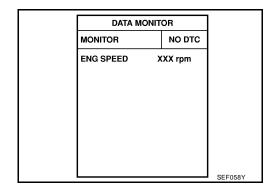
Е

Н

ı

J

. .


M

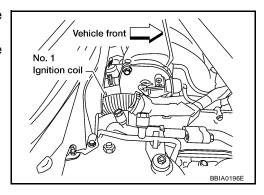
Idle Speed and Ignition Timing Check IDLE SPEED

UBS00P1E

(With CONSULT-II

Check idle speed in "DATA MONITOR" mode with CONSULT-II.

With GST

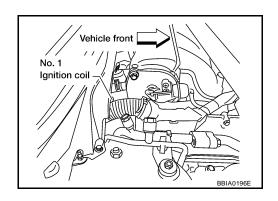

Check idle speed with GST.

IGNITION TIMING

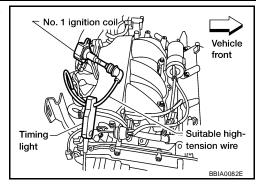

Any of following two methods may be used.

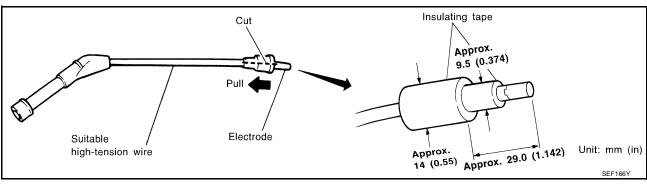
Method A

- 1. Slide the harness protector off ignition coil No.1 to clear the wires.
- 2. Attach timing light to the ignition coil No.1 wires as shown in the figure.

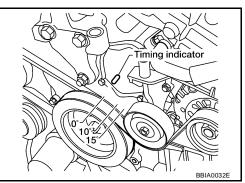


Check ignition timing.




Method B

Remove No.1 ignition coil.



2. Connect No.1 ignition coil and spark plug with suitable high-tension wire as shown, and attach timing light clamp to this wire.

Check ignition timing.

Procedure After Replacing ECM

When replacing ECM, the following procedure must be performed.

- Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to <u>BL-205, "ECM Re-communicating Function"</u>.
- 2. Perform EC-79, "VIN Registration".
- 3. Perform EC-80, "Accelerator Pedal Released Position Learning".
- 4. Perform EC-80, "Throttle Valve Closed Position Learning".
- 5. Perform EC-80, "Idle Air Volume Learning".

VIN Registration DESCRIPTION

UBS00P1F

VIN Registration is an operation to registering VIN in ECM. It must be performed each time ECM is replaced. **NOTE:**

Accurate VIN which is registered in ECM may be required for Inspection & Maintenance (I/M).

OPERATION PROCEDURE

(P) With CONSULT-II

- Check the VIN of the vehicle and note it. Refer to GI-47, "IDENTIFICATION INFORMATION".
- Turn ignition switch ON and engine stopped.

EC

Α

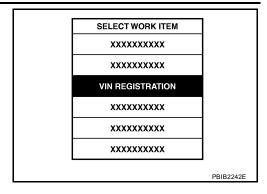
 \circ

Е

F

G

Н


I

J

UBS00QA8

M

- 3. Select "VIN REGISTRATION" in "WORK SUPPORT" mode.
- 4. Follow the instruction of CONSULT-II display.

Accelerator Pedal Released Position Learning DESCRIPTION

UBS00P1G

Accelerator Pedal Released Position Learning is an operation to learn the fully released position of the accelerator pedal by monitoring the accelerator pedal position sensor output signal. It must be performed each time harness connector of accelerator pedal position sensor or ECM is disconnected.

OPERATION PROCEDURE

- 1. Make sure that accelerator pedal is fully released.
- 2. Turn ignition switch ON and wait at least 2 seconds.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON and wait at least 2 seconds.
- 5. Turn ignition switch OFF and wait at least 10 seconds.

Throttle Valve Closed Position Learning DESCRIPTION

UBS00P1H

Throttle Valve Closed Position Learning is an operation to learn the fully closed position of the throttle valve by monitoring the throttle position sensor output signal. It must be performed each time harness connector of electric throttle control actuator or ECM is disconnected.

OPERATION PROCEDURE

- 1. Make sure that accelerator pedal is fully released.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.

 Make sure that throttle valve moves during above 10 seconds by confirming the operating sound.

Idle Air Volume Learning DESCRIPTION

UBS00P1I

Idle Air Volume Learning is an operation to learn the idle air volume that keeps each engine within the specific range. It must be performed under any of the following conditions:

- Each time electric throttle control actuator or ECM is replaced.
- Idle speed or ignition timing is out of specification.

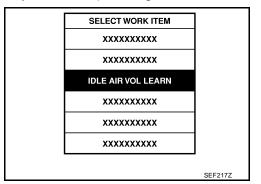
PREPARATION

Before performing Idle Air Volume Learning, make sure that all of the following conditions are satisfied. Learning will be cancelled if any of the following conditions are missed for even a moment.

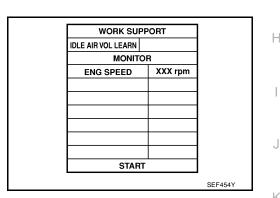
- Battery voltage: More than 12.9V (At idle)
- Engine coolant temperature: 70 100°C (158 212°F)
- PNP switch: ON
- Electric load switch: OFF

(Air conditioner, headlamp, rear window defogger)

On vehicles equipped with daytime light systems, if the parking brake is applied before the engine is start the headlamp will not be illuminated.


- Steering wheel: Neutral (Straight-ahead position)
- Vehicle speed: Stopped
- Transmission: Warmed-up

- With CONSULT-II: Drive vehicle until "FLUID TEMP SE" in "DATA MONITOR" mode of "A/T" system indicates less than 0.9V.
- Without CONSULT-II: Drive vehicle for 10 minutes.


OPERATION PROCEDURE

With CONSULT-II

- 1. Perform EC-80, "Accelerator Pedal Released Position Learning".
- Perform EC-80, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.
- 5. Select "IDLE AIR VOL LEARN" in "WORK SUPPORT" mode.

6. Touch "START" and wait 20 seconds.

- 7. Make sure that "CMPLT" is displayed on CONSULT-II screen. If "CMPLT" is not displayed, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the Diagnostic Procedure below.
- 8. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

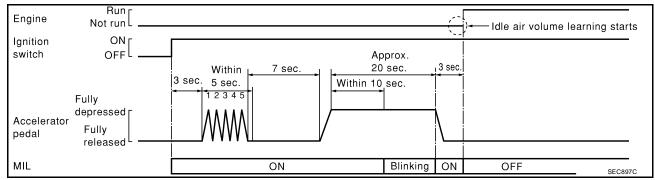
ITEM	SPECIFICATION
Idle speed	675 ± 50 rpm (in P or N position)
Ignition timing	15 ± 5° BTDC (in P or N position)

		1
WORK SUP		
IDLE AIR VOL LEARN	CMPLT	
MONITO	R	
ENG SPEED	XXX rpm	
START		
		MBIB0238E

⋈ Without CONSULT-II

NOTE:

- It is better to count the time accurately with a clock.
- It is impossible to switch the diagnostic mode when an accelerator pedal position sensor circuit has a malfunction.
- 1. Perform EC-80, "Accelerator Pedal Released Position Learning".
- 2. Perform EC-80, "Throttle Valve Closed Position Learning".
- 3. Start engine and warm it up to normal operating temperature.
- 4. Check that all items listed under the topic PREPARATION (previously mentioned) are in good order.
- Turn ignition switch OFF and wait at least 10 seconds.


M

Α

EC

Е

- 6. Confirm that accelerator pedal is fully released, turn ignition switch ON and wait 3 seconds.
- 7. Repeat the following procedure quickly five times within 5 seconds.
- a. Fully depress the accelerator pedal.
- b. Fully release the accelerator pedal.
- 8. Wait 7 seconds, fully depress the accelerator pedal and keep it for approx. 20 seconds until the MIL stops blinking and turned ON.
- 9. Fully release the accelerator pedal within 3 seconds after the MIL turned ON.
- 10. Start engine and let it idle.
- 11. Wait 20 seconds.

12. Rev up the engine two or three times and make sure that idle speed and ignition timing are within the specifications.

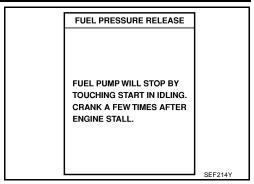
ITEM	SPECIFICATION
Idle speed	675 ± 50 rpm (in P or N position)
Ignition timing	15 ± 5° BTDC (in P or N position)

13. If idle speed and ignition timing are not within the specification, Idle Air Volume Learning will not be carried out successfully. In this case, find the cause of the incident by referring to the DIAGNOSTIC PROCEDURE below.

DIAGNOSTIC PROCEDURE

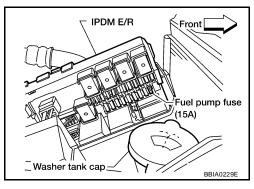
If idle air volume learning cannot be performed successfully, proceed as follows:

- 1. Check that throttle valve is fully closed.
- 2. Check PCV valve operation.
- 3. Check that downstream of throttle valve is free from air leakage.
- 4. When the above three items check out OK, engine component parts and their installation condition are questionable. Check and eliminate the cause of the incident.
 It is useful to perform EC-139, "TROUBLE DIAGNOSIS SPECIFICATION VALUE".
- 5. If any of the following conditions occur after the engine has started, eliminate the cause of the incident and perform Idle Air Volume Learning all over again:
 - Engine stalls.
 - Erroneous idle.


Fuel Pressure Check FUEL PRESSURE RELEASE

(P) With CONSULT-II

Turn ignition switch ON.


UBS00P1J

- Perform "FUEL PRESSURE RELEASE" in "WORK SUPPORT" mode with CONSULT-II.
- Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- 5. Turn ignition switch OFF.

⋈ Without CONSULT-II

- 1. Remove fuel pump fuse located in IPDM E/R.
- 2. Start engine.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch OFF.
- Reinstall fuel pump fuse after servicing fuel system.

FUEL PRESSURE CHECK

CAUTION:

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

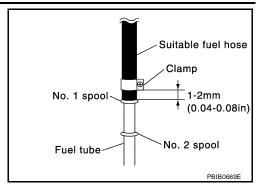
Prepare pans or saucers under the disconnected fuel line because the fuel may spill out. The fuel pressure cannot be completely released because V42 models do not have fuel return system.

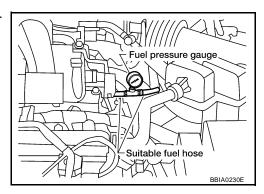
Method A

CAUTION:

- The fuel hose connection method used when taking fuel pressure check must not be used for other purposes.
- Be careful not to scratch or put debris around connection area when servicing, so that the quick connector maintains sealability with O-rings inside.
- Release fuel pressure to zero. Refer to EC-82, "FUEL PRESSURE RELEASE".
- 2. Prepare fuel hose for fuel pressure check, and connect fuel pressure gauge.
 - Use suitable fuel hose for fuel pressure check (genuine NISSAN fuel hose without quick connector).
 - To avoid unnecessary force or tension to hose, use moderately long fuel hose for fuel pressure check.
 - Do not use the fuel hose for checking fuel pressure with damage or cracks on it.
 - Use Pressure Gauge to check fuel pressure.
- Remove fuel hose. Refer to EM-24, "INTAKE MANIFOLD".
 - Do not twist or kink fuel hose because it is plastic hose.
 - Do not remove fuel hose from quick connector.
 - Keep the original fuel hose to be free from intrusion of dust or foreign substances with a suitable cover.

Α


Е


Н

L

- 4. Install the fuel pressure gauge as shown in the figure.
 - Wipe off oil or dirt from hose insertion part using cloth moistened with gasoline.
 - Apply proper amount of gasoline between top of the fuel tube and No.1 spool.
 - Insert fuel hose for fuel pressure check until it touches the No.1 spool on fuel tube.
 - Use NISSAN genuine hose clamp (part number: 16439 N4710 or 16439 40U00).
 - When reconnecting fuel line, always use new clamps.
 - When reconnecting fuel hose, check the original fuel hose for damage and abnormality.
 - Use a torque driver to tighten clamps.
 - Install hose clamp to the position within 1 2 mm (0.04 0.08in).

• Make sure that clamp screw does not contact adjacent parts.

- 5. After connecting fuel hose for fuel pressure check, pull the hose with a force of approximately 98 N (10 kg, 22lb) to confirm fuel tube does not come off.
- 6. Turn ignition switch ON and check for fuel leakage.
- 7. Start engine and check for fuel leakage.
- 8. Read the indication of fuel pressure gauge.
 - Do not perform fuel pressure check with system operating. Fuel pressure gauge may indicate false readings.
 - During fuel pressure check, confirm for fuel leakage from fuel connection every 3 minutes.

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

- 9. If result is unsatisfactory, go to next step.
- 10. Check the following.
 - Fuel hoses and fuel tubes for clogging
 - Fuel filter for clogging
 - Fuel pump
 - Fuel pressure regulator for clogging

If OK, replace fuel pressure regulator.

If NG, repair or replace.

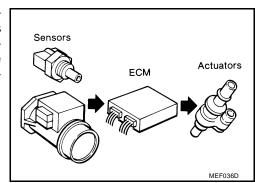
Method B

CAUTION:

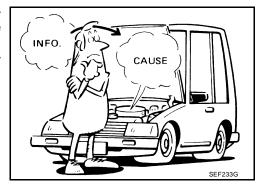
- Be careful not to scratch or get the fuel hose connection area dirty when servicing, so that the quick connector o-ring maintains sealability.
- Use Fuel Pressure Gauge Kit J-44321 and Fuel Pressure Adapter J-44321-6 to check fuel pressure.
- 1. Release fuel pressure to zero. Refer to EC-82, "FUEL PRESSURE RELEASE".
- Remove fuel hose using Quick Connector Release J-45488. Refer to <u>EM-40, "FUEL INJECTOR AND FUEL TUBE"</u>.
 - Do not twist or kink fuel hose because it is plastic hose.
 - Do not remove fuel hose from quick connector.

 Keep fuel hose connections clean. 3. Install Fuel Pressure Adapter J-44321-6 and Fuel Pressure Gauge (from kit J-44321) as shown in figure. Do not distort or bend fuel rail tube when installing fuel pressure gauge adapter. When reconnecting fuel hose, check the original fuel hose for damage and abnormality. EC Turn ignition switch ON (reactivate fuel pump), and check for fuel leakage. Start engine and check for fuel leakage. 6. Read the indication of fuel pressure gauge. • During fuel pressure check, check for fuel leakage from fuel connection every 3 minutes. At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi) 7. If result is unsatisfactory, go to next step. 8. Check the following. Е • Fuel hoses and fuel tubes for clogging Fuel filter for clogging Fuel pump Fuel pressure regulator for clogging If OK, replace fuel pressure regulator. If NG, repair or replace. 9. Before disconnecting Fuel Pressure Gauge and Fuel Pressure Adapter J-44321-6, release fuel pressure to zero. Refer to EC-82, "FUEL PRESSURE RELEASE" Н

M

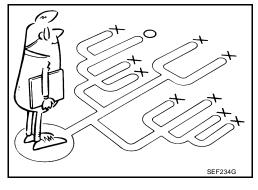

TROUBLE DIAGNOSIS

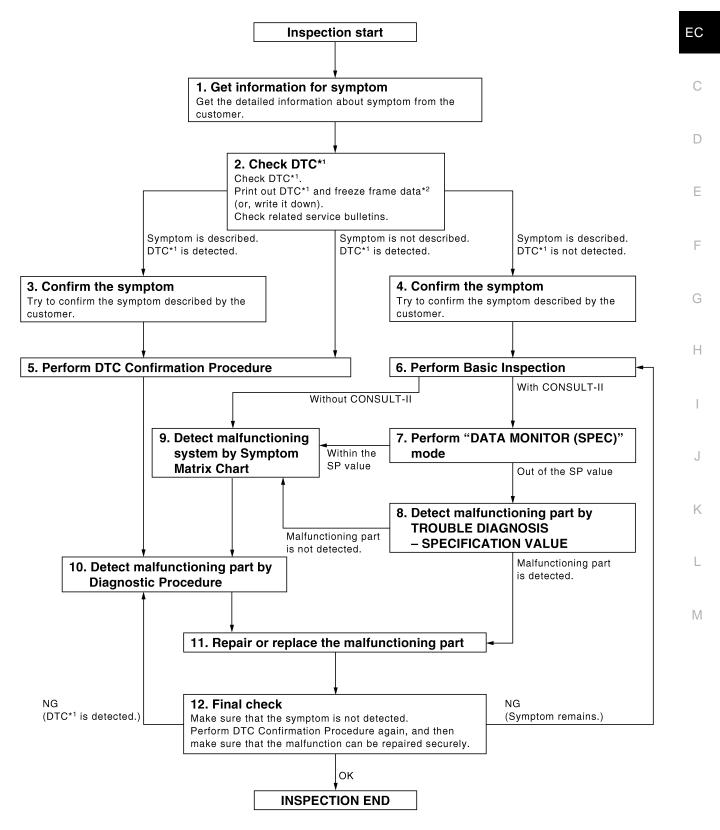
PFP:00004


UBS00P1K

Trouble Diagnosis Introduction INTRODUCTION

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no malfunctions such as vacuum leaks, fouled spark plugs, or other malfunctions with the engine.


It is much more difficult to diagnose an incident that occurs intermittently rather than continuously. Most intermittent incidents are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.


A visual check only may not find the cause of the incidents. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the Work Flow on $\underline{\text{EC-87}}$.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such incidents, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A Diagnostic Worksheet like the example on $\underline{\mathsf{EC-91}}$ should be used.

Start your diagnosis by looking for conventional malfunctions first. This will help troubleshoot driveability malfunctions on an electronically controlled engine vehicle.

WORK FLOW Overall Sequence

^{*1:} Include 1st trip DTC.

PBIB2267E

Α

^{*2:} Include 1st trip freeze frame data.

Detailed Flow

1. GET INFORMATION FOR SYMPTOM

Get the detailed information from the customer about the symptom (the condition and the environment when the incident/malfunction occurred) using the <u>EC-90, "DIAGNOSTIC WORKSHEET"</u>.

>> GO TO 2.

2. CHECK DTC*1

- 1. Check DTC*1.
- 2. Perform the following procedure if DTC*1 is displayed.
- Record DTC*¹ and freeze frame data*². (Print them out with CONSULT-II or GST.)
- Erase DTC*¹ . (Refer to <u>EC-63, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>
 .)
- Study the relationship between the cause detected by DTC*¹ and the symptom described by the customer. (Symptom Matrix Chart is useful. Refer to <u>EC-95</u>, "Symptom Matrix Chart".)
- 3. Check related service bulletins for information.

Is any symptom described and any DTC detected?

Symptom is described, DTC*1 is displayed>>GO TO 3.

Symptom is described, DTC*1 is not displayed>>GO TO 4.

Symptom is not described, DTC*1 is displayed>>GO TO 5.

3. CONFIRM THE SYMPTOM

Try to confirm the symptom described by the customer (except MIL ON).

DIAGNOSIS WORK SHEET is useful to verify the incident.

Connect CONSULT-II to the vehicle in "DATA MONITOR (AUTO TRIG)" mode and check real time diagnosis results.

Verify relation between the symptom and the condition when the symptom is detected.

>> GO TO 5.

4. CONFIRM THE SYMPTOM

Try to confirm the symptom described by the customer.

DIAGNOSIS WORK SHEET is useful to verify the incident.

Connect CONSULT-II to the vehicle in "DATA MONITOR (AUTO TRIG)" mode and check real time diagnosis results.

Verify relation between the symptom and the condition when the symptom is detected.

>> GO TO 6.

5. PERFORM DTC CONFIRMATION PROCEDURE

Perform DTC Confirmation Procedure for the displayed DTC*1, and then make sure that DTC*1 is detected again.

At this time, always connect CONSULT-II to the vehicle, and check diagnostic results in real time on "DATA MONITOR (AUTO TRIG)".

If two or more DTCs*¹ are detected, refer to <u>EC-92, "DTC Inspection Priority Chart"</u> and determine trouble diagnosis order.

NOTE:

- Freeze frame data*² is useful if the DTC*¹ is not detected.
- Perform Overall Function Check if DTC Confirmation Procedure is not included on Service Manual. This simplified check procedure is an effective alternative though DTC*¹ cannot be detected during this check.
 If the result of Overall Function Check is NG, it is the same as the detection of DTC*¹ by DTC Confirmation Procedure.

Is DTC*¹ detected?

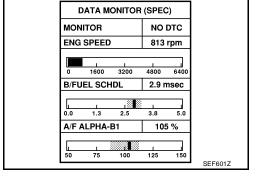
Yes >> GO TO 10.

No >> Check according to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

6. PERFORM BASIC INSPECTION

Perform EC-73, "Basic Inspection".

With CONSULT-II>>GO TO 7. Without CONSULT-II>>GO TO 9.


7. PERFORM DATA MONITOR (SPEC) MODE

(P) With CONSULT-II

Make sure that "MAS A/F SE-B1", "B/FUEL SCHDL", and "A/F ALPHA-B1", "A/F ALPHA-B2" are within the SP value using CON-SULT-II "DATA MONITOR (SPEC)" mode. Refer to <u>EC-139</u>, "TROU-BLE DIAGNOSIS - SPECIFICATION VALUE".

Are they within the SP value?

Yes >> GO TO 9. No >> GO TO 8.

8. DETECT MALFUNCTIONING PART BY TROUBLE DIAGNOSIS - SPECIFICATION VALUE

Detect malfunctioning part according to $\underline{\text{EC-140, "Diagnostic Procedure"}}$.

Is malfunctioning part detected?

Yes >> GO TO 11.

No >> GO TO 9.

9. DETECT MALFUNCTIONING SYSTEM BY SYMPTOM MATRIX CHART

Detect malfunctioning system according to <u>EC-95</u>, "Symptom Matrix Chart" based on the confirmed symptom in step 4, and determine the trouble diagnosis order based on possible causes and symptom.

>> GO TO 10.

EC

Е

G

Н

J

K

L

M

10. DETECT MALFUNCTIONING PART BY DIAGNOSTIC PROCEDURE

Inspect according to Diagnostic Procedure of the system.

NOTE:

The Diagnostic Procedure in EC section described based on open circuit inspection. A short circuit inspection is also required for the circuit check in the Diagnostic Procedure. For details, refer to Circuit Inspection in GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident".

Is malfunctioning part detected?

Yes No >> GO TO 11.

>> Monitor input data from related sensors or check voltage of related ECM terminals using CON-SULT-II. Refer to EC-134, "CONSULT-II Reference Value in Data Monitor", EC-109, "ECM Terminals and Reference Value".

11. REPAIR OR REPLACE THE MALFUNCTIONING PART

- 1. Repair or replace the malfunctioning part.
- Reconnect parts or connectors disconnected during Diagnostic Procedure again after repair and replacement.
- 3. Check DTC. If DTC is displayed, erase it, refer to EC-63, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".

>> GO TO 12.

12. FINAL CHECK

When DTC was detected in step 2, perform DTC Confirmation Procedure or Overall Function Check again, and then make sure that the malfunction have been repaired securely.

When symptom was described from the customer, refer to confirmed symptom in step 3 or 4, and make sure that the symptom is not detected.

OK or NG

NG (DTC*1 is detected)>>GO TO 10.

NG (Symptom remains)>>GO TO 6.

OK

- >> 1. Before returning the vehicle to the customer, make sure to erase unnecessary DTC*1 in ECM and TCM (Transmission Control Module). (Refer to EC-63, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" and AT-41, "HOW TO ERASE DTC".)
 - 2. If the completion of SRT is needed, drive vehicle under the specific driving pattern. Refer to EC-59, "Driving Pattern".
 - 3. INSPECTION END
- *1: Include 1st trip DTC.
- *2: Include 1st trip freeze frame data.

DIAGNOSTIC WORKSHEET

Description

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make troubleshooting faster and more accurate.

In general, each customer feels differently about an incident. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting.

Some conditions may cause the MIL to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere.

KEY POINTS

WHAT Vehicle & engine model
WHEN Date, Frequencies
WHERE..... Road conditions
HOW Operating conditions,
Weather conditions,
Symptoms

SEF907L

Revision: March 2006 EC-90 2007 Quest

Worksheet Sample

Customer na	me MR/MS	Model & Year	VIN							
Engine #		Trans.	Mileage							
Incident Date	9	Manuf. Date	In Service Date							
Fuel and fue	l filler cap	 □ Vehicle ran out of fuel causing misfire □ Fuel filler cap was left off or incorrectly screwed on. 								
	☐ Startability	☐ Impossible to start ☐ No combus ☐ Partial combustion affected by t ☐ Partial combustion NOT affected ☐ Possible but hard to start ☐ Other	hrottle position d by throttle position							
Symptoms	☐ Idling	☐ No fast idle ☐ Unstable ☐ ☐ Others [High idle							
eyp.ee	☐ Driveability	☐ Stumble ☐ Surge ☐ Knock☐ Intake backfire ☐ Exhaust backf☐ Others [
	☐ Engine stall	☐ At the time of start ☐ While idlin☐ While accelerating ☐ While dece	elerating							
Incident occu	urrence	☐ Just after delivery ☐ Recently ☐ In the morning ☐ At night ☐ In the daytime								
Frequency		☐ All the time ☐ Under certain conditions ☐ Sometimes								
Weather con	ditions	☐ Not affected								
	Weather	☐ Fine ☐ Raining ☐ Snowing	Others [
	Temperature	☐ Hot ☐ Warm ☐ Cool ☐	☐ Cold ☐ Humid °F							
		☐ Cold ☐ During warm-up ☐	After warm-up							
Engine cond	itions	Engine speed	4,000 6,000 8,000 rpm							
Road condition	ons	☐ In town ☐ In suburbs ☐ Hiç	ghway							
Driving cond	itions	 Not affected At starting While idling While accelerating While decelerating While turning (RH/LH) Vehicle speed								
		30 40 50 60 MPH								
Malfunction i	ndicator lamp	☐ Turned on ☐ Not turned on								

MTBL0017

А

EC

С

 \square

Е

G

Н

M

Revision: March 2006 EC-91 2007 Quest

DTC Inspection Priority Chart

UBS00P1

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

NOTE:

- If DTC U1000 and/or U1001 is displayed with other DTC, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-159, "DTC U1000, U1001 CAN COMMUNICATION LINE".
- If DTC U1010 is displayed with other DTC, first perform the trouble diagnosis for DTC U1010. Refer to EC-162, "DTC U1010 CAN COMMUNICATION".

Priority	Detected items (DTC)
1	U1000 U1001 CAN communication line
	U1010 CAN communication
	• P0101 P0102 P0103 Mass air flow sensor
	P0112 P0113 P0127 Intake air temperature sensor
	P0117 P0118 P0125 Engine coolant temperature sensor
	• P0122 P0123 P0222 P0223 P1225 P1226 P2135 Throttle position sensor
	P0128 Thermostat function
	P0181 P0182 P0183 Fuel tank temperature sensor
	P0327 P0328 Knock sensor
	P0335 Crankshaft position sensor (POS)
	P0340 P0345 Camshaft position sensor (PHASE)
	P0403 EGR volume control valve
	• P0460 P0461 P0462 P0463 Fuel level sensor
	P0500 Vehicle speed sensor
	● P0605 ECM
	P0643 Sensor power supply
	P0705 P0850 Park/Neutral position (PNP) switch
	• P1610 - P1615 NATS
	P2122 P2123 P2127 P2128 P2138 Accelerator pedal position sensor

Priority	Detected items (DTC)	
2	• P0031 P0032 P0051 P0052 Air fuel ratio (A/F) sensor 1 heater	- A
	• P0037 P0038 P0057 P0058 Heated oxygen sensor 2 heater	
	P0075 P0081 Intake valve timing control solenoid valve	F.C
	• P0130 P0131 P0132 P0133 P0150 P0151 P0152 P0153 P2A00 P2A03 Air fuel ratio (A/F) sensor 1	EC
	• P0137 P0138 P0139 P0157 P0158 P0159 Heated oxygen sensor 2	
	P0405 P0406 EGR temperature sensor	С
	P0441 EVAP control system purge flow monitoring	
	P0443 P0444 P0445 EVAP canister purge volume control solenoid valve	
	P0447 P0448 EVAP canister vent control valve	D
	P0451 P0452 P0453 EVAP control system pressure sensor	D
	P0550 Power steering pressure sensor	
	P0603 ECM power supply	Е
	P1217 Engine over temperature (OVERHEAT)	
	P1800 VIAS control solenoid valve	
	P1805 Brake switch	F
	P2100 P2103 Throttle control motor relay	'
	P2101 Electric throttle control function	
	P2118 Throttle control motor	G
3	P0011 P0021 Intake valve timing control	_
	P0171 P0172 P0174 P0175 Fuel injection system function	
	• P0300 - P0306 Misfire	Н
	• P0400 P1402 EGR system	
	P0420 P0430 Three way catalyst function	
	P0442 P0456 EVAP control system (SMALL LEAK, VERY SMALL LEAK)	
	P0455 EVAP control system (GROSS LEAK)	
	P0506 P0507 Idle speed control system	
	 P0710 P0711 P0717 P0722 P0731 P0732 P0733 P0734 P0735 P0744 P0745 P0750 P0755 P0760 P0762 P0765 P0770 P0775 P0780 P0795 P0797 P0882 A/T related sensors, solenoid valves and switches 	J
	P1148 P1168 Closed loop control	
	P1211 TCS control unit	K
	P1212 TCS communication line	
	P1421 Cold start control	
	P1564 ASCD steering switch	L
	P1572 ASCD brake switch	
	P1574 ASCD vehicle speed sensor	
	P2119 Electric throttle control actuator	M

Fail-Safe Chart

When the DTC listed below is detected, the ECM enters fail-safe mode and the MIL lights up.

DTC No.	Detected items	Engine opera	ating condition in fail-safe mode									
P0102 P0103	Mass air flow sensor circuit	Engine speed will not rise more that	n 2,400 rpm due to the fuel cut.									
P0117 P0118	Engine coolant temperature sensor circuit	ignition switch ON or START.	determined by ECM based on the time after turning polant temperature decided by ECM.									
		Condition	Engine coolant temperature decided (CONSULT-II display)									
		Just as ignition switch is turned ON or START	40°C (104°F)									
		More than approx. 4 minutes after ignition ON or START	80°C (176°F)									
		Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)									
		When the fail-safe system for engine coolant temperature sensor is activated, the coolin fan operates while engine is running.										
P0122 P0123 P0222 P0223 P2135	Throttle position sensor	The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees. The ECM regulates the opening speed of the throttle valve to be slower than the normal condition. So, the acceleration will be poor. ECM stops the electric throttle control actuator control, throttle valve is maintained at a										
P0643	Sensor power supply	ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.										
P2100 P2103	Throttle control motor relay	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) to	rol actuator control, throttle valve is maintained at a by the return spring.									
P2101	Electric throttle control function	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) to	rol actuator control, throttle valve is maintained at a by the return spring.									
P2118	Throttle control motor	ECM stops the electric throttle cont fixed opening (approx. 5 degrees) by	rol actuator control, throttle valve is maintained at a by the return spring.									
P2119	Electric throttle control actuator	malfunction:)	tor does not function properly due to the return spring ctuator by regulating the throttle opening around the not rise more than 2,000 rpm.									
		the engine stalls.	ve is stuck open:) down gradually by fuel cut. After the vehicle stops, sition, and engine speed will not exceed 1,000 rpm or									
			in fail-safe mode is not in specified range:) ontrol actuator by regulating the throttle opening to 20									
P2122 P2123 P2127 P2128 P2138	Accelerator pedal position sensor	order for the idle position to be with	le control actuator in regulating the throttle opening in +10 degrees. eed of the throttle valve to be slower than the norma									

• When there is an open circuit on MIL circuit, the ECM cannot warn the driver by lighting up MIL when there is malfunction on engine control system.

Therefore, when electrical controlled throttle and part of ECM related diagnoses are continuously detected as NG for 5 trips, ECM warns the driver that engine control system malfunctions and MIL circuit is open by means of operating fail-safe function.

The fail-safe function also operates when above diagnoses except MIL circuit are detected, and demands the driver to repair the malfunction.

Engine operating condition in fail-safe mode	Engine speed will not rise more than 2,500 rpm due to the fuel cut
	EQ 04

Revision: March 2006 EC-94 2007 Quest

Symptom Matrix Chart SYSTEM — BASIC ENGINE CONTROL SYSTEM

UBS00P1N

							SY	MPT(MC							
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page	C D E
Warrant	y symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-685	G
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-83	
	Fuel injector circuit	1	1	2	3	2		2	2			2			EC-678	
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-32	Н
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-45	
	Incorrect idle speed adjustment						1	1	1	1		1			EC-73	- 1
	Electric throttle control actuator	1	1	2	3	3	2	2	2	2		2		2	EC-602, EC-615	
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-73	J
	Ignition circuit	1	1	2	2	2		2	2			2			EC-691	
EGR	EGR volume control valve circuit		2												EC-405	K
	EGR system	2	1	2	3	3	3	2	2	3		3			EC-397, EC-559	
Main po	wer supply and ground circuit	2	2	3	3	3		3	3		2	3			EC-150	L
Mass air	r flow sensor circuit	1			2										EC-192, EC-202	
Engine	coolant temperature sensor circuit	- I					3			3					EC-216, EC-230	M
	sor 1 circuit position sensor circuit		1	2	3	2		2	2			2			EC-168, EC-239, EC-250, EC-260, EC-270, EC-648 EC-222, EC-357, EC-555,	
A 0.55!-:	nter podel position access since						2			2					EC-557, EC-632	
Accelera	ator pedal position sensor circuit			3	2	1									EC-529, EC-617, EC-624, EC-640	
Knock s	ensor circuit			2								3			EC-374	

						SY	MPTO	OM						
	HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА	
Crankshaft position sensor (POS) circuit	2	2												EC-379
Camshaft position sensor (PHASE) circuit	3	2												EC-387
Vehicle speed signal circuit		2	3		3						3			EC-510
Power steering pressure sensor circuit		2					3	3						EC-516
ECM	2	2	3	3	3	3	3	3	3	3	3			EC-522, EC-526
Intake valve timing control solenoid valve circuit		3	2		1	3	2	2	3		3			EC-185
PNP switch circuit			3		3		3	3			3			EC-535
VIAS control solenoid valve circuit					1									EC-586
Refrigerant pressure sensor circuit		2				3			3		4			EC-704
Electrical load signal circuit							3							EC-671
Air conditioner circuit	2	2	3	3	3	3	3	3	3		3		2	ATC-32 or MTC-32
ABS actuator and electric unit (control unit)			4											BRC-10 or BRC-55

^{1 - 6:} The numbers refer to the order of inspection. (continued on next page)

		TR	OU	BLE	E DI	AG	NO:	SIS								
SYSTEM	I — ENGINE MECHANICA	\L &	ОТ	HER												-
							S'	MPT	OM							Α
		P. HA)		F		RATION					JRE HIGH	7		E)		EC
		HARD/NO START/RESTART (EXCP. HA)		HESITATION/SURGING/FLAT SPOT	NATION	LACK OF POWER/POOR ACCELERATION		(J)) IDLE	OVERHEATS/WATER TEMPERATURE	CONSUMPTION	SUMPTION	ER CHARGE)	Reference	С
		TART/RES	STALL	J/SURGING	CK/DETO!	OWER/POC	OW IDLE	E/HUNTIN	RATION	ETURN TO	S/WATER 7		OIL CONS	EAD (UND	page	D
		HARD/NO S	ENGINE ST	HESITATION	SPARK KNOCK/DETONATION	ACK OF PO	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEAT	EXCESSIVE FUEL	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER		Е
Warranty s	symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА		F
Fuel	Fuel tank	_													FL-9	-
	Fuel piping	5		5	5	5		5	5			5			<u>EM-40</u>	G
	Vapor lock		5												_	
	Valve deposit														_	-
	Poor fuel (Heavy weight gaso- line, Low octane)	5		5	5	5		5	5			5			_	Н
Air	Air duct														EM-16	-
	Air cleaner														EM-16	- 1
	Air leakage from air duct (Mass air flow sensor — electric throttle control actuator)		5	5		5		5	5			5			EM-16	J
	Electric throttle control actuator	5			5		5			5					EM-18	-
	Air leakage from intake manifold/ Collector/Gasket														EM-18, EM-24	K
Cranking	Battery	1	1	1		1		1	1					1	<u>SC-4</u>	_
		7 1	1 1	1 1	1		1			I	1	1	1			-

3

6

SC-18

SC-10

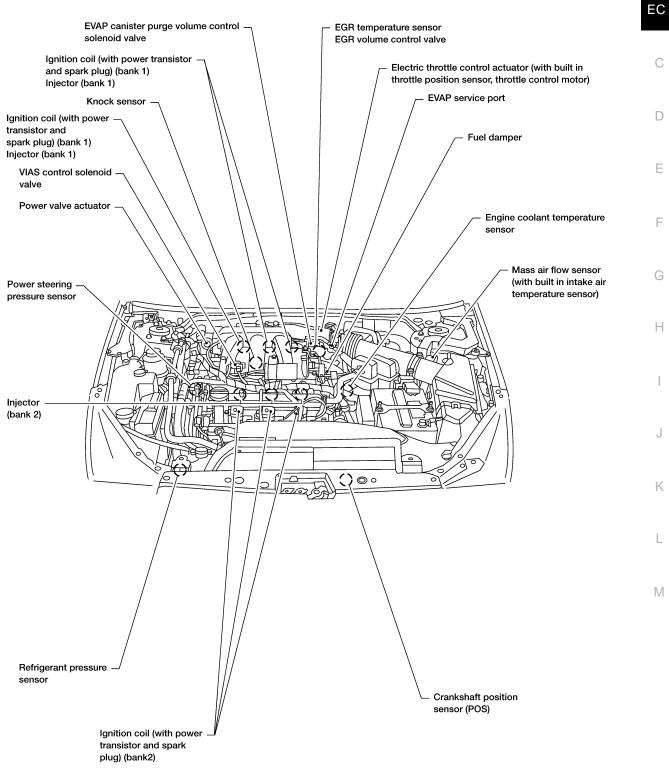
EM-118

1

L

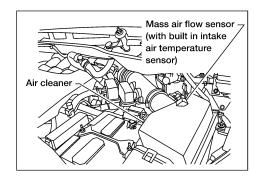
Generator circuit

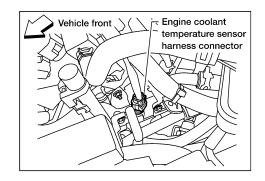
Starter circuit

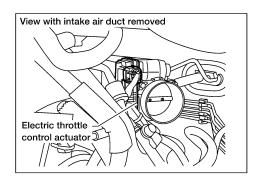

Signal plate

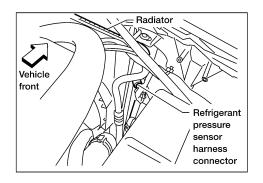
							S١	/MPT	ОМ						
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty s	symptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	
Exhaust	Exhaust manifold/Tube/Muffler/ Gasket	5	5	5	5	5		5	5			5			EM-26, EX- 3
	Three way catalyst														
Lubrica- tion	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery/Oil cooler	5	5	5	5	5		5	5			5			EM-30, LU- 11, LU-12, LU-16
	Oil level (Low)/Filthy oil														<u>LU-8</u>
Cooling	Radiator/Hose/Radiator filler cap														<u>CO-15</u>
	Thermostat									5					CO-23
	Water pump														<u>CO-18</u>
	Water gallery	5	5	5	5	5		5	5		4	5			<u>CO-25</u>
	Cooling fan	-													EC-544
	Coolant level (Low)/Contami- nated coolant									5					<u>CO-9</u>
NVIS (NIS NATS)	SAN Vehicle Immobilizer System —	1	1												<u>BL-203</u>

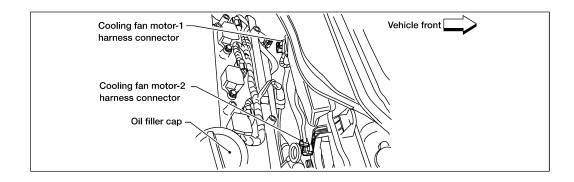
^{1 - 6:} The numbers refer to the order of inspection.

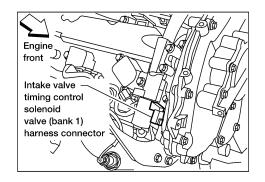

Engine Control Component Parts Location

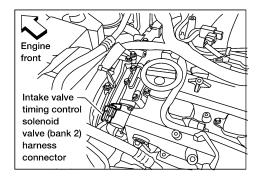

UBS00P10

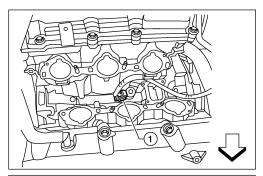


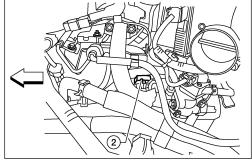

BBIA0314E

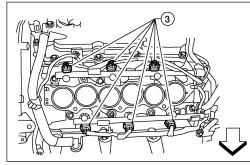

Α

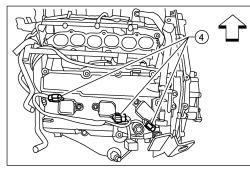


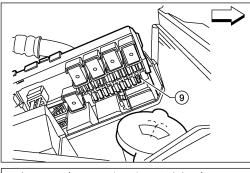






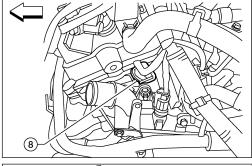


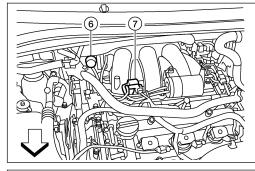


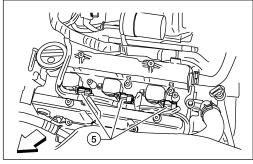

BBIA0321E

Α

EC

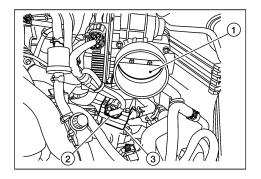

C


D

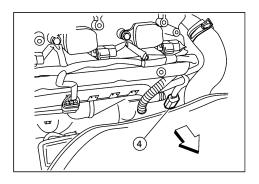

Е

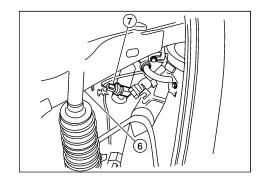
Н

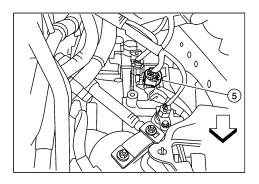
M

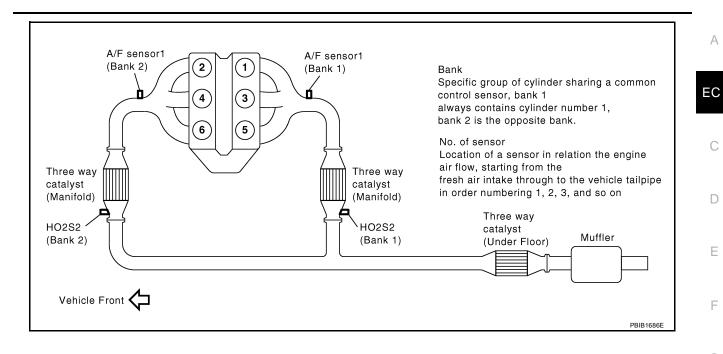


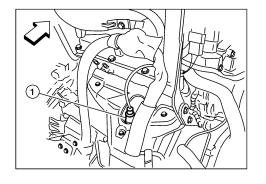


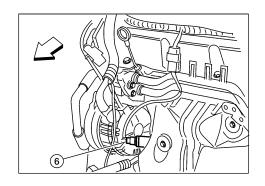

BBIA0652E

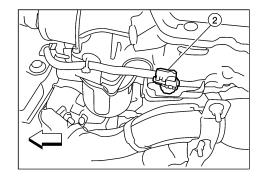

Vehicle front

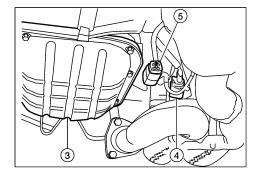

- Knock sensor harness connector
- 4. Ignition coil harness connector (bank 1)
- 7. VIAS control solenoid valve
- Camshaft position sensor (PHASE) 3. (bank 1) harness connector
- Ignition coil harness connector (bank 2)
- Camshaft position sensor (PHASE) 9. Fuel pump fuse (15A) (bank 2) harness connector
- Fuel injector harness connector
- Power valve actuator






BBIA0682E



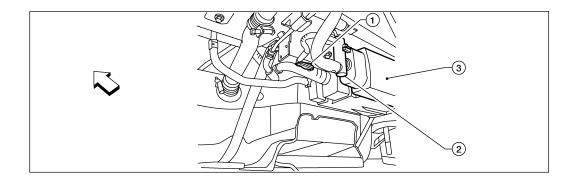

- Throttle valve (view with intake air duct removed)
- 4. Electronic controlled engine mount- 5. 1 harness connector
- 7. Power steering pressure sensor harness connector
- EGR volume control valve harness connector
- Park/neutral position switch harness connector (view with battery tray removed)
- 8. EGR temperature sensor harness connector (view with engine cover removed)
- 3. EGR volume control valve
- Tie rod RH (view from under vehicle)
- 9. Intake manifold collector

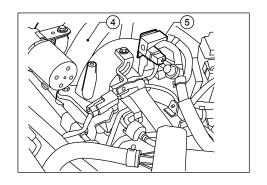
BBIA0683E

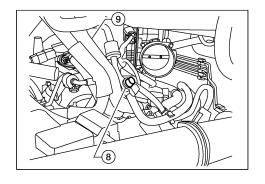
Vehicle front

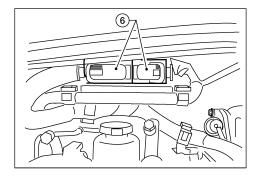
- Air fuel ratio sensor 1 (bank 1) 1.
- 4. Heated oxygen sensor 2 (bank 2) harness connector
- 2. Crankshaft position sensor (POS) (view from under the vehicle)
- Heated oxygen sensor 2 (bank 1) harness connector
- Oil pan (view from under the vehicle)
- 6. Air fuel ratio sensor 1 (bank 2)

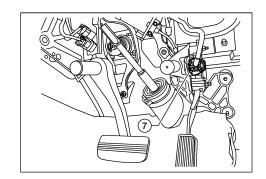
EC-103 Revision: March 2006 2007 Quest

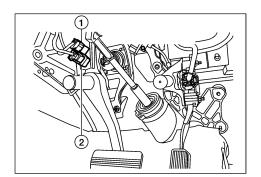

Α

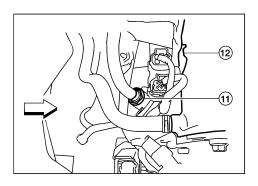

D

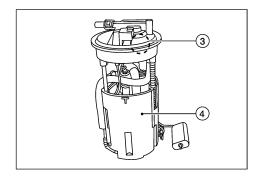

Е

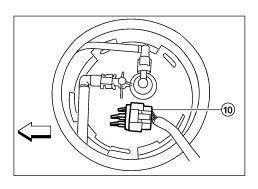

Н

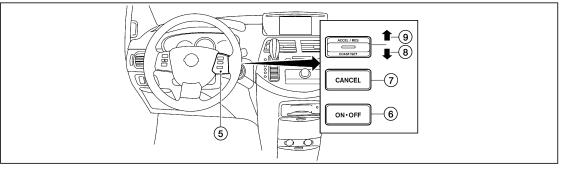

M




BBIA0665E


< > ∨ehicle front


- sor
- 4. Intake manifold collector
- 7. Accelerator pedal position (APP) sensor harness connector
- EVAP control system pressure sen- 2. EVAP canister vent control valve
 - 5. EVAP canister purge volume control solenoid valve
 - 8. EVAP service port


- EVAP canister
- 6. ECM harness connector
- 9. Intake manifold collector

BBIA0684E

- 1. ASCD brake switch
- 4. Fuel pump, fuel level sensor unit and fuel filler
- 7. CANCEL switch
- Fuel level sensor unit and fuel pump harness connector (view with fuel tank removed)
- 2. Stop lamp switch
- 5. ASCD steering switch
- 8. SET/COAST switch
- 11. PCV valve (view with cowl removed)
- 3. Fuel pressure regulator
- 6. MAIN switch
- 9. RESUME/ACCELERATE switch
- 12. Intake manifold collector

EC

Α

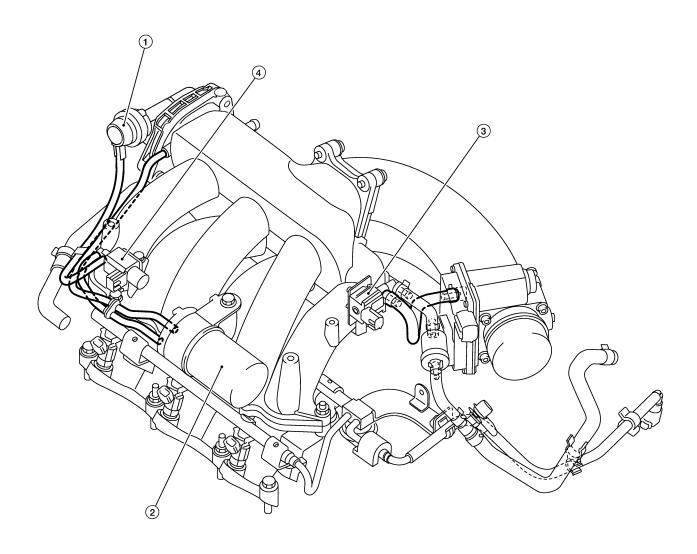
С

D

Е

Г

G


Н

K

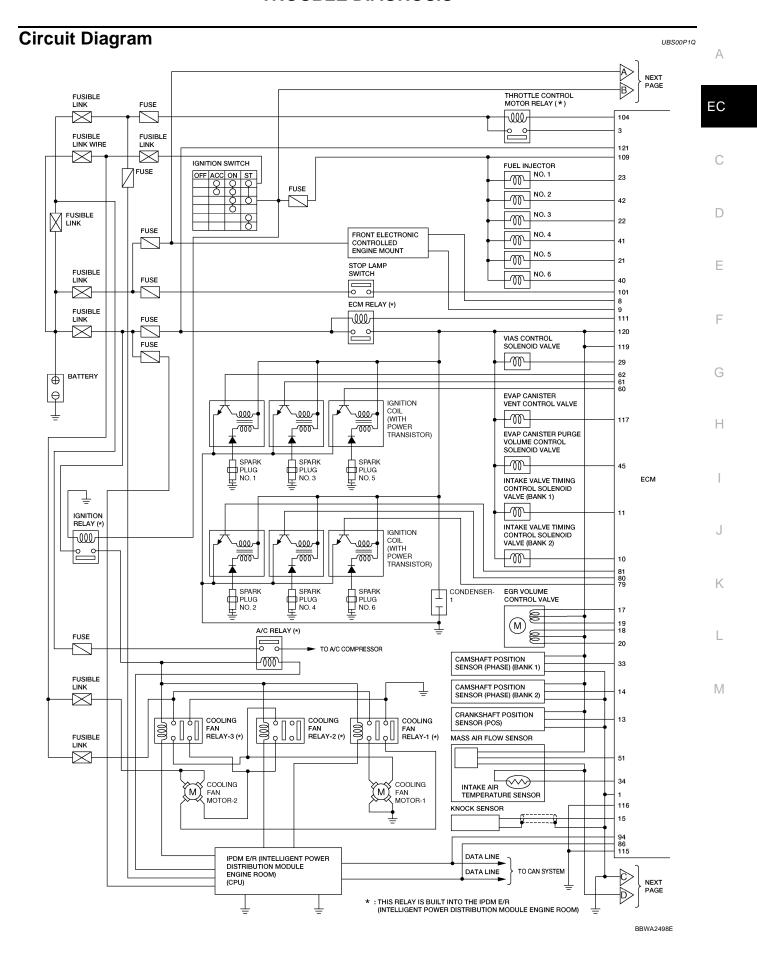
M

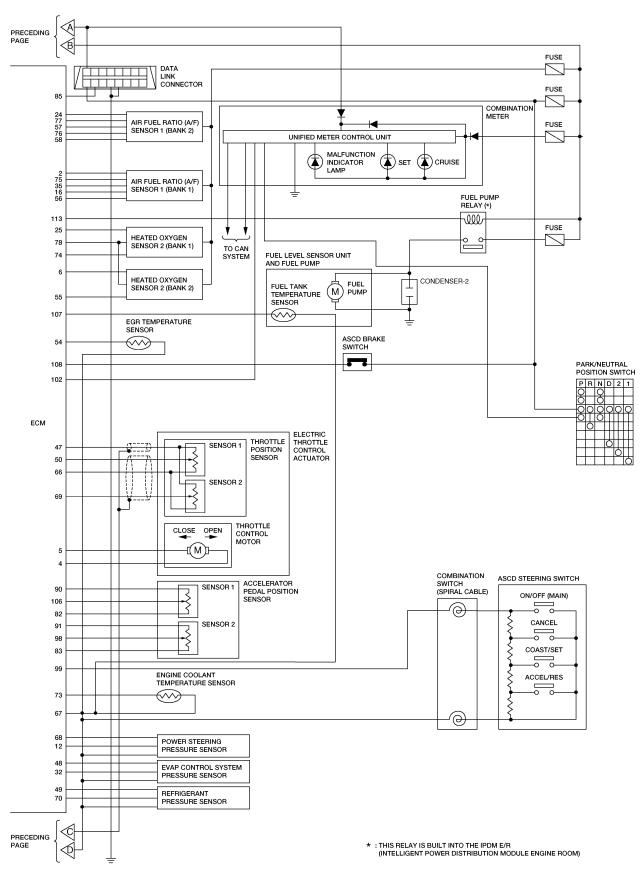
Vacuum Hose Drawing

UBS00P1P

BBIA0663E

- 1. Power valve actuator
- 2. Vacuum tank


3. EVAP canister purge volume control solenoid valve


4. VIAS control solenoid valve

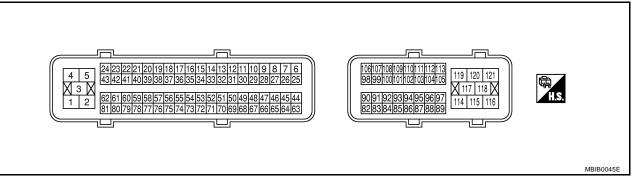
NOTE:

Do not use soapy water or any type of solvent while installing vacuum hose or purge hoses.

Refer to EC-23, "System Diagram" for Vacuum Control System.

BBWA2499E

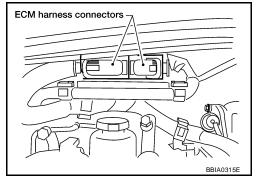
ECM Harness Connector Terminal Layout

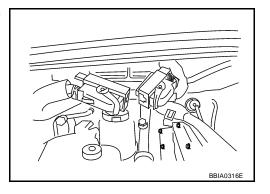

JBS00P1

EC

Е

Н


M


ECM Terminals and Reference Value PREPARATION

UBS00P1S

- 1. ECM is located in the right side of the cowl top (behind the strut tower).
- 2. Remove ECM harness connector.

- 3. When disconnecting ECM harness connector, loosen it with levers as far as they will go as shown in the figure.
- 4. Connect a break-out box (SST) and Y-cable adapter (SST) between the ECM and ECM harness connector.
 - Use extreme care not to touch 2 pins at one time.
 - Data is for comparison and may not be exact.

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECMs transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	В	ECM ground	[Engine is running] ● Idle speed	Body ground
2	R/G	A/F sensor 1 heater (Bank 1)	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 5V★ >>> 10.0V/Div 10 ms/Div T PBIB1584E

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3	R	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
-		power suppry		
4	O/L	Throttle control motor (Close)	 [Ignition switch: ON] Engine stopped Shift lever: D Accelerator pedal: Fully released 	0 - 14V★ >>> 5 V/Div 1 ms/Div T PBIB1104E
5	W/L	Throttle control motor (Open)	 [Ignition switch: ON] Engine stopped Shift lever: D Accelerator pedal: Fully depressed 	0 - 14 V★ >> 5 V/Div 1 ms/Div 1 PBIB1105E
6	GR	Heated oxygen sensor 2 heater (Bank 2)	 Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - 1.0V
			 [Ignition switch: ON] Engine stopped [Engine is running] Engine speed: Above 3,600 rpm 	BATTERY VOLTAGE (11 - 14V)
			[Engine is running] • Engine speed: Above 950 rpm	BATTERY VOLTAGE (11 - 14V)
8	w	Electronic controlled engine mount-1	[Engine is running] ● For 2 seconds after engine speed: 950 rpm or less	0 - 1.0V
			[Engine is running] ■ 2 seconds after engine speed: 950 rpm or less	2.0 - 3.0V
			[Engine is running] • Engine speed: Below 950 rpm	BATTERY VOLTAGE (11 - 14V)
9	W/R	W/R Electronic controlled engine mount-2	[Engine is running] For 2 seconds after engine speed: 950 rpm or more	0 - 1.0V
			[Engine is running] ■ 2 seconds after engine speed: 950 rpm or more	2.0 - 3.0V

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)	EC
10 Y/L	Y/L	Intake valve timing control solenoid valve (Bank 2)	[Engine is running] • Warm-up condition • Engine speed: 2,000 rpm	7 - 12V★ → 10.0 V/Div PBIB1790E	C D
			[Engine is running] • Warm-up condition • Idle speed	BATTERY VOLTAGE (11 - 14V)	F
11	R/L	Intake valve timing control solenoid valve (Bank 1)	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	7 - 12V★ 10.0 V/Div PBIB1790E	G
12	w	Power steering pressure sensor	[Engine is running]Steering wheel: Being turned[Engine is running]	0.5 - 4.5V	I
			Steering wheel: Not being turned	0.4 - 0.8V	1
12	VA/	Crankshaft position sensor	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	Approximately 10V★ → 5.0 V/Div 1 ms/Div T PBIB1041E	K
13	W	(POS)	[Engine is running] ● Engine speed: 2,000 rpm	Approximately 10V★ → 5.0V/Div 1 ms/Div T PBIB1042E	M

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)		
14		Camshaft position sensor (PHASE) (Bank 2)	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle			
17	W		[Engine is running] ● Engine speed: 2,000 rpm	1.0 - 4.0V★		
15	W	Knock sensor	[Engine is running] • Idle speed	Approximately 2.5V		
16	BR			Approximately 3.1V		
35	O/B	A/F concer 1 (Book 1)	[Engine is running]	Approximately 2.6V		
56	V	A/F sensor 1 (Bank 1)	Warm-up condition Idle speed	Approximately 2.3V		
75	Р		Time speed	Approximately 2.3V		
17 18 19 20	P/B G L L/W	EGR volume control valve	[Engine is running] • Idle speed	0.1 - 14V		
21	L/W	Fuel injector No. 5	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	BATTERY VOLTAGE (11 - 14V)★		
22 23	R/Y R/B	Fuel injector No. 3 Fuel injector No. 1	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★		
24	w	A/F sensor 1 heater (Bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E		

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А
25	Р	Heated oxygen sensor 2 heater (Bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - 1.0V	EC C
			[Ignition switch: ON] • Engine stopped [Engine is running] • Engine speed: Above 3,600 rpm		D E
29	Y/G	VIAS control solenoid valve	 [Engine is running] Idle speed [Engine is running] Engine speed: Between 1,800 and 3,600 	BATTERY VOLTAGE (11 - 14V) 0 - 1.0V	F
32	BR	EVAP control system pressure sensor	rpm [Ignition switch: ON]	Approximately 1.8 - 4.8V	G
		Camshaft position sensor	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	1.0 - 4.0 √★ >> 5.0 V/Div 20 ma/Div T PBIB1039E	Н
33	Y	(PHASE) (Bank 1)	[Engine is running] • Engine speed: 2,000 rpm	1.0 - 4.0 √★ >> 5.0 V/Div 20 ms/Div PBIB1040E	J K L
34	Y/G	Intake air temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with intake air temperature.	M

TER- MINAL	WIRE	ITEM	CONDITION	DATA (DC Voltage)	
NO.	COLOR			(= = = = = = = = = = = = = = = = = = =	
40	V/W R/L	Fuel injector No. 6 Fuel injector No. 4 Fuel injector No. 2	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	BATTERY VOLTAGE (11 - 14V)★	
41 42	R/W		[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)*	
45	V/R	/R EVAP canister purge volume control solenoid valve	 [Engine is running] Idle speed Accelerator pedal: Not depressed even slightly, after engine starting. 	BATTERY VOLTAGE (11 - 14V)★ 10.0 V/Div 50 ms/Div SEC990C	
45			[Engine is running] ● Engine speed: About 2,000 rpm (More than 100 seconds after starting engine)	BATTERY VOLTAGE (11 - 14V)★ 10.0 V/Div 50 ms/Div I SEC991C	
47	R	Throttle position sensor power supply	[Ignition switch: ON]	Approximately 5V	
48	G/O	EVAP control system pressure sensor power supply	[Ignition switch: ON]	Approximately 5V	
49	BR/Y	Refrigerant pressure sensor power supply	[Ignition switch: ON]	Approximately 5V	
50	Y	Throttle position sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D Accelerator pedal: Fully released 	More than 0.36V	
	Y		 [Ignition switch: ON] Engine stopped Shift lever: D Accelerator pedal: Fully depressed 	Less than 4.75V	

					•
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А
)A//I		[Engine is running] • Warm-up condition • Idle speed	1.0 - 1.3V	EC
51	W/L	Mass air flow sensor	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	1.6 - 2.0V	С
			[Ignition switch: ON]	Less than 4.5V	D
54	P/L	EGR temperature sensor	[Engine is running]Warm-up conditionEGR system: Operating	0 - 1.5V	E
55	w	Heated oxygen sensor 2 (Bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V	F
57	W/R		F	Approximately 2.6V	
58	LG/R	Heated oxygen sensor 2 (Bank 2) A/F sensor 1 (Bank 2)	[Engine is running] ■ Warm-up condition	Approximately 2.3V	Н
76	0		• Idle speed	Approximately 3.1V	
77	LG			Approximately 2.3V	
60 61	P/L L/R	Ignition signal No. 5 Ignition signal No. 3 Ignition signal No. 1	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	0 - 0.4V★	J K
62	Y/R		[Engine is running] • Warm-up condition • Engine speed: 2,500 rpm	0.1 - 0.6V★	L
66	G	Throttle position sensor ground	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 0V	
67	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	
68	BR/W	PSP sensor power supply	[Ignition switch: ON]	Approximately 5V	

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
69	L	Throttle position sensor 2	[Ignition switch: ON] • Engine stopped • Shift lever: D • Accelerator pedal: Fully released [Ignition switch: ON] • Engine stopped • Shift lever: D • Accelerator pedal: Fully depressed	Less than 4.75V More than 0.36V
70	W	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower fan switch: ON (Compressor operates.) 	1.0 - 4.0V
73	Y/B	Engine coolant temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.
74	w	Heated oxygen sensor 2 (Bank 1)	 Engine is running Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Heated oxygen sensor 2 ground	[Engine is running]● Warm-up condition● Idle speed	Approximately 0V
79 80	GR/R GR	Ignition signal No. 6 Ignition signal No. 4	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	0 - 0.4V★
81	G/R	-	[Engine is running] ■ Warm-up condition ■ Engine speed: 2,500 rpm	0.1 - 0.6V★
82	В	APP sensor 1 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
83	G	APP sensor 2 ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
85	SB	Data link connector	[Ignition switch: ON] • CONSULT-II or GST: Disconnected	Approximately 5V - Battery voltage (11 - 14V)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	А		
86	Р	CAN communication line	[Ignition switch: ON]	Approximately 1.1 - 2.3V Output voltage varies with the communication status.	EC		
90	R/V	APP sensor 1 power supply	[Ignition switch: ON]	Approximately 5V	-		
91	0	APP sensor 2 power supply	[Ignition switch: ON]	Approximately 5V	С		
94	L	CAN communication line	[Ignition switch: ON]	Approximately 2.5 - 3.2V Output voltage varies with the communication status.	D		
98	W/B	Accelerator pedal position	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully released	0.25 - 0.5V	Е		
	.,,,,,	sensor 2	[Ignition switch: ON]Engine stoppedAccelerator pedal: Fully depressed	2.0 - 2.5V	F		
			[Ignition switch: ON] • ASCD steering switch: OFF	Approximately 4V	0		
		ASCD steering switch	[Ignition switch: ON] • MAIN switch: Pressed	Approximately 0V	G		
99	G/Y		ASCD steering switch	Y ASCD steering switch	[Ignition switch: ON] • CANCEL switch: Pressed	Approximately 1V	Н
				[Ignition switch: ON] • RESUME/ACCELERATE switch: Pressed	Approximately 3V		
			[Ignition switch: ON] • SET/COAST switch: Pressed	Approximately 2V			
101	R/G	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V	J		
	100	Stop tump switch	[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)	K		
102	O/B	PNP switch	[Ignition switch: ON] • Shift lever: P or N	BATTERY VOLTAGE (11 - 14V)	L		
			[Ignition switch: ON] • Except the above gear position	Approximately 0V	-		
104	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)	M		
			[Ignition switch: ON]	0 - 1.0V			
106	10/	Accelerator pedal position	[Ignition switch: ON]Engine stoppedAccelerator pedal: Fully released	0.5 - 1.0V			
106	W	sensor 1	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully depressed	4.2 - 4.8V	-		
107	R/L	Fuel tank temperature sensor	[Engine is running]	Approximately 0 - 4.8V Output voltage varies with fuel tank temperature.	-		
	0/5	4000	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)	-		
108	G/B	ASCD brake switch	[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V	-		

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
			[Ignition switch: OFF]	0V	
109	R	Ignition switch	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	
			[Engine is running] [Ignition switch: OFF]	0 - 1.5V	
111	W/B	ECM relay (Self shut-off)	For a few seconds after turning ignition switch OFF	0 - 1.5 v	
			[Ignition switch: OFF]	BATTERY VOLTAGE	
			More than a few seconds after turning ignition switch OFF	(11 - 14V)	
	B/O	Fuel pump relay	[Ignition switch: ON]		
			For 1 second after turning ignition switch ON		0 - 1.5V
113			[Engine is running]		
			[Ignition switch: ON]	BATTERY VOLTAGE	
			More than 1 second after turning ignition switch ON	(11 - 14V)	
115	В	ECM ground	[Engine is running]	Body ground	
116	В	ECIVI ground	Idle speed	Body ground	
117	LG/B	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	
121	G	Power supply for ECM (Back-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

CONSULT-II Function (ENGINE) FUNCTION

UBS00P1T

Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*
Data monitor	Input/Output data in the ECM can be read.
Data monitor (SPEC)	Input/Output of the specification for Basic fuel schedule, AFM, A/F feedback control value and the other data monitor items can be read.
CAN diagnostic support monitor	The results of transmit/receive diagnosis of CAN communication can be read.
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
DTC & SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
Function test	This mode is used to inform customers when their vehicle condition requires periodic maintenance.
ECM part number	ECM part number can be read.

^{*:} The following emission-related diagnostic information is cleared when the ECM memory is erased.

- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values

EC

Α

D

С

Е

G

Н

. .

K

M

ENGINE CONTROL COMPONENT PARTS/CONTROL SYSTEMS APPLICATION

		DIAGNOSTIC TEST MODE							
		SELF-DIAGNOSTIC RESULTS		DATA DATA			DTC & SRT CONFIRMATIO		
	Item	SUP- PORT	DTC*1	FREEZE FRAME DATA* ²	MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT
	Crankshaft position sensor (POS)		×	×	×	×			
	Camshaft position sensor (PHASE)		×	×	×	×			
	Mass air flow sensor		×		×	×			
	Engine coolant temperature sensor		×	×	×	×	×		
	A/F sensor 1		×		×	×		×	×
	Heated oxygen sensor 2		×		×	×		×	×
	Wheel sensor		×	×	×	×			
	Accelerator pedal position sensor		×		×	×			
2	Throttle position sensor		×	×	×	×			
	Fuel tank temperature sensor		×		×	×	×		
	EVAP control system pressure sensor		×		×	×			
<u></u>	Intake air temperature sensor		×	×	×	×			
INPUT	EGR temperature sensor		×		×	×			
<u>ا</u> ≥	Knock sensor		×						
<u> </u>	Refrigerant pressure sensor				×	×			
INPUT	Closed throttle position switch (accelerator pedal position sensor signal)				×	×			
	Air conditioner switch				×	×			
	Park/neutral position (PNP) switch		×		×	×			
	Stop lamp switch		×		×	×			
	Power steering pressure sensor		×		×	×			
	Battery voltage				×	×			
	Load signal				×	×			
	Fuel level sensor		×		×	×			
	ASCD steering switch		×		×	×			
	ASCD brake switch		×		×	×			

		DIAGNOSTIC TEST MODE							
			_	AGNOSTIC SULTS	DATA	DATA		DTC 8	
ltem		WORK SUP- PORT	DTC*1	FREEZE FRAME DATA* ²	MONI- TOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT
	Fuel injector				×	×	×		
	Power transistor (Ignition timing)				×	×	×		
	Throttle control motor relay		×		×	×			
n	Throttle control motor		×						
OUTPUT	EVAP canister purge volume control solenoid valve		×		×	×	×		×
	Air conditioner relay				×	×			
5	Fuel pump relay	×			×	×	×		
5 5	Cooling fan relay		×		×	×	×		
OUTPUT	EGR volume control valve		×		×	×	×		
	A/F sensor 1 heater		×		×	×		×* ³	
5	Heated oxygen sensor 2 heater		×		×	×		×* ³	
	EVAP canister vent control valve	×	×		×	×	×		
	Intake valve timing control solenoid valve		×		×	×	×		
	VIAS control solenoid valve		×		×	×	×		
	Electronic controlled engine mount				×	×	×		
	Calculated load value			×	×	×			

Е

M

INSPECTION PROCEDURE

Refer to GI-39, "CONSULT-II Data Link Connector (DLC) Circuit".

WORK SUPPORT MODE

Work Item

WORK ITEM CONDITION **USAGE FUEL PRESSURE RELEASE** • FUEL PUMP WILL STOP BY TOUCHING "START" DUR-When releasing fuel pressure ING IDLING. from fuel line CRANK A FEW TIMES AFTER ENGINE STALLS. IDLE AIR VOL LEARN • THE IDLE AIR VOLUME THAT KEEPS THE ENGINE When learning the idle air volume WITHIN THE SPECIFIED RANGE IS MEMORIZED IN **SELF-LEARNING CONT** • THE COEFFICIENT OF SELF-LEARNING CONTROL When clearing the coefficient of MIXTURE RATIO RETURNS TO THE ORIGINAL COEFself-learning control value FICIENT.

X: Applicable

^{*1:} This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-53.

^{*3:} Always "COMPLT" is displayed.

WORK ITEM	CONDITION	USAGE
EVAP SYSTEM CLOSE	CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS.	When detecting EVAP vapor leak point of EVAP system
	• IGN SW "ON"	
	ENGINE NOT RUNNING	
	● AMBIENT TEMPERATURE IS ABOVE 0°C (32°F).	
	NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM	
	● FUEL TANK TEMP. IS MORE THAN 0°C (32°F).	
	WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE"	
	WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT- II WILL DISCONTINUE IT AND DISPLAY APPROPRI- ATE INSTRUCTION.	
	NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed
TARGET IGN TIM ADJ*	IDLE CONDITION	When adjusting target ignition timing
VIN REGISTRATION	IN THIS MODE, VIN IS REGISTERED IN ECM.	When registering VIN in ECM

^{*:} This function is not necessary in the usual service procedure.

SELF-DIAG RESULTS MODE

Self Diagnostic Item

Regarding items of DTC and 1st trip DTC, refer to $\underline{\text{EC-49}}$, "EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS".)

Freeze Frame Data and 1st Trip Freeze Frame Data

Freeze frame data item*	Description
DIAG TROUBLE CODE [PXXXX]	The engine control component part/control system has a trouble code, it is displayed as PXXXX. (Refer to EC-8, "INDEX FOR DTC" .)
FUEL SYS-B1	"Fuel injection system status" at the moment a malfunction is detected is displayed.
FUEL SYS-B2	One mode in the following is displayed. Mode2: Open loop due to detected system malfunction Mode3: Open loop due to driving conditions (power enrichment, deceleration enleanment) Mode4: Closed loop - using oxygen sensor(s) as feedback for fuel control Mode5: Open loop - has not yet satisfied condition to go to closed loop
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.
L-FUEL TRM-B1 [%]	"Long-term fuel trim" at the moment a malfunction is detected is displayed.
L-FUEL TRM-B2 [%]	The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim.
S-FUEL TRM-B1 [%]	"Short-term fuel trim" at the moment a malfunction is detected is displayed.
S-FUEL TRM-B2 [%]	The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule.
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.
VEHICL SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.

Freeze frame data item*	Description
ABSOL TH-P/S [%]	The throttle valve opening angle at the moment a malfunction is detected is displayed.
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.

^{*:} The items are the same as those of 1st trip freeze frame data.

DATA MONITOR MODE Monitored Item

x: Applicable

Α

EC

D

Е

Н

M

	r			x. Applicable
Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
ENG SPEED [rpm]	×	×	Indicates the engine speed computed from the signal of the crankshaft position sensor (POS) and camshaft position sensor (PHASE).	 Accuracy becomes poor if engine speed drops below the idle rpm. If the signal is interrupted while the engine is running, an abnormal value may be indicated.
MAS A/F SE-B1 [V]	×	×	The signal voltage of the mass air flow sensor is displayed.	When the engine is stopped, a certain value is indicated.
B/FUEL SCHDL [msec]		×	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	
A/F ALPHA-B1 [%]		×	The mean value of the air-fuel ratio	When the engine is stopped, a certain value
A/F ALPHA-B2 [%]		×	feedback correction factor per cycle is indicated.	is indicated.This data also includes the data for the airfuel ratio learning control.
COOLAN TEMP/S [°C] or [°F]	×	×	The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sensor) is displayed.	When the engine coolant temperature sensor is open or short-circuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
A/F SEN1 (B1) [V]	×	×	The A/F signal computed from the input	
A/F SEN1 (B2) [V]	×		signal of the A/F sensor 1 is displayed.	
HO2S2 (B1) [V]	×		The signal voltage of the heated oxygen	
HO2S2 (B2) [V]	×		sensor 2 is displayed.	
HO2S2 MNTR (B1) [RICH/LEAN]	×		Display of heated oxygen sensor 2 signal:	
HO2S2 MNTR (B2) [RICH/LEAN]	×		RICH: means the amount of oxygen after three way catalyst is relatively small. LEAN: means the amount of oxygen after three way catalyst is relatively large.	When the engine is stopped, a certain value is indicated.
VHCL SPEED SE [km/h] or [mph]	×	×	The vehicle speed computed from the vehicle speed signal sent from combina- tion meter is displayed.	
BATTERY VOLT [V]	×	×	The power supply voltage of ECM is displayed.	
ACCEL SEN 1 [V]	×	×	The accelerator pedal position sensor	ACCEL SEN 2 signal is converted by ECM
ACCEL SEN 2 [V]	×		signal voltage is displayed.	internally. Thus, it differs from ECM terminal voltage signal.

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description Remarks	
THRTL SEN 1 [V]	×	×	The throttle position sensor signal volt-	THRTL SEN 2 signal is converted by ECM intermelly. Thus, it differs from ECM terminal.
THRTL SEN 2 [V]	×		age is displayed.	internally. Thus, it differs from ECM terminal voltage signal.
FUEL T/TMP SE [°C] or [°F]	×		The fuel temperature (determined by the signal voltage of the fuel tank temperature sensor) is displayed.	
INT/A TEMP SE [°C] or [°F]	×	×	The intake air temperature (determined by the signal voltage of the intake air temperature sensor) is indicated.	
EGR TEMP SEN [V]	×	×	The signal voltage of EGR temperature sensor is displayed.	
EVAP SYS PRES [V]	×		The signal voltage of EVAP control system pressure sensor is displayed.	
FUEL LEVEL SE [V]	×		The signal voltage of the fuel level sensor is displayed.	
START SIGNAL [ON/OFF]	×	×	 Indicates start signal status [ON/OFF] computed by the ECM according to the signals of engine speed and battery volt- age. 	After starting the engine, [OFF] is displayed regardless of the starter signal.
CLSD THL POS [ON/OFF]	×	×	 Indicates idle position [ON/OFF] computed by ECM according to the accelerator pedal position sensor signal. 	
AIR COND SIG [ON/OFF]	×	×	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal. 	
P/N POSI SW [ON/OFF]	×	×	 Indicates [ON/OFF] condition from the park/neutral position (PNP) switch sig- nal. 	
PW/ST SIGNAL [ON/OFF]	×	×	 [ON/OFF] condition of the power steer- ing system (determined by the signal voltage of the power steering pressure sensor signal) is indicated. 	
LOAD SIGNAL [ON/OFF]	×	×	 Indicates [ON/OFF] condition from the electrical load signal. ON: Rear window defogger switch is ON and/or lighting switch is in 2nd position. OFF: Both rear window defogger switch and lighting switch are OFF. 	
IGNITION SW [ON/OFF]	×		• Indicates [ON/OFF] condition from ignition switch signal.	
HEATER FAN SW [ON/OFF]	×		 Indicates [ON/OFF] condition from heater fan switch signal. 	
BRAKE SW [ON/OFF]	×		Indicates [ON/OFF] condition from the stop lamp switch signal.	
INJ PULSE-B1 [msec]		×	Indicates the actual fuel injection pulse width compensated by ECM according	When the engine is stopped, a certain com-
INJ PULSE-B2 [msec]			to the input signals.	puted value is indicated.
IGN TIMING [BTDC]		×	 Indicates the ignition timing computed by ECM according to the input signals. 	When the engine is stopped, a certain value is indicated.
CAL/LD VALUE [%]			 "Calculated load value" indicates the value of the current air flow divided by peak air flow. 	

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks	А
MASS AIRFLOW [g·m/s]			Indicates the mass air flow computed by ECM according to the signal voltage of the mass air flow sensor.		EC
PURG VOL C/V [%]			 Indicates the EVAP canister purge volume control solenoid valve control value computed by the ECM according to the input signals. The opening becomes larger as the 		C
EGR VOL CON/V		×	value increases. Indicates the EGR volume control value computed by the ECM according to the input signals.		Е
[0.06]			The opening becomes larger as the value increases.		_
INT/V TIM (B1) [°CA]			Indicates [°CA] of intake camshaft		Г
INT/V TIM (B2) [°CA]			advanced angle.		G
INT/V SOL (B1) [%]			The control value of the intake valve tim-		
INT/V SOL (B2) [%]			ing control solenoid valve (determined by ECM according to the input signals) is indicated.The advance angle becomes larger as		Н
			the value increases.		-
VIAS S/V [ON/OFF]			 The control condition of the VIAS control solenoid valve (determined by ECM according to the input signals) is indi- cated. ON: VIAS control solenoid valve is oper- ating. OFF: VIAS control solenoid valve is not operating. 		J
AIR COND RLY [ON/OFF]		×	The air conditioner relay control condition (determined by ECM according to the input signals) is indicated.		L
ENGINE MOUNT [IDLE/TRVL]			The control condition of the electronic controlled engine mount (determined by ECM according to the input signals) is indicated. IDLE: Engine speed is below 950 rpm TRVL: Engine speed is above 950 rpm		M
FUEL PUMP RLY [ON/OFF]		×	Indicates the fuel pump relay control condition determined by ECM according to the input signals.		
VENT CONT/V [ON/OFF]			The control condition of the EVAP canister vent control valve (determined by ECM according to the input signals) is indicated. ON: Closed OFF: Open		
THRTL RELAY [ON/OFF]		×	Indicates the throttle control motor relay control condition determined by the ECM according to the input signals.		

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
COOLING FAN [HI/MID/LOW/OFF]			 The control condition of the cooling fan (determined by ECM according to the input signals) is indicated. HI: High speed operation MID: Middle speed operation LOW: Low speed operation OFF: Stop 	
HO2S2 HTR (B1) [ON/OFF]			Indicates [ON/OFF] condition of heated	
HO2S2 HTR (B2) [ON/OFF]			oxygen sensor 2 heater determined by ECM according to the input signals.	
I/P PULLY SPD [rpm]			 Indicates the engine speed computed from the turbine revolution sensor sig- nal. 	
VEHICLE SPEED [km/h] or [MPH]			Indicates the vehicle speed computed from the revolution sensor signal.	
IDL A/V LEARN [YET/CMPLT]			Display the condition of idle air volume learning YET: Idle air volume learning has not been performed yet. CMPLT: Idle air volume learning has already been performed successfully.	
TRVL AFTER MIL [km] or [mile]			Distance traveled while MIL is activated.	
A/F S1 HTR (B1) [%]			Indicates A/F sensor 1 heater control value computed by ECM according to	
A/F S1 HTR (B2) [%]			the input signals.The current flow to the heater becomes larger as the value increases.	
AC PRESS SEN [V]			The signal voltage from the refrigerant pressure sensor is displayed.	
VHCL SPEED SE [km/h] or [mph]			 The vehicle speed computed from the vehicle speed signal sent from TCM is displayed. 	
SET VHCL SPD [km/h] or [m.p.h.]			The preset vehicle speed is displayed.	
MAIN SW [ON/OFF]			Indicates [ON/OFF] condition from MAIN switch signal.	
CANCEL SW [ON/OFF]			Indicates [ON/OFF] condition from CAN- CEL switch signal.	
RESUME/ACC SW [ON/OFF]			Indicates [ON/OFF] condition from RESUME/ACCELERATE switch signal.	
SET SW [ON/OFF]			Indicates [ON/OFF] condition from SET/COAST switch signal.	
BRAKE SW1 [ON/OFF]			Indicates [ON/OFF] condition from ASCD brake switch signal.	
BRAKE SW2 [ON/OFF]			Indicates [ON/OFF] condition of stop lamp switch signal.	
VHCL SPD CUT [NON/CUT]			 Indicates the vehicle cruise condition. NON: Vehicle speed is maintained at the ASCD set speed. CUT: Vehicle speed increased to excessively high compared with the ASCD set speed, and ASCD operation is cut off. 	

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks	
LO SPEED CUT [NON/CUT]			Indicates the vehicle cruise condition. NON: Vehicle speed is maintained at the ASCD set speed. CUT: Vehicle speed decreased to excessively low compared with the ASCD set speed, and ASCD operation is cut off.		
AT OD MONITOR [ON/OFF]			 Indicates [ON/OFF] condition of A/T O/D according to the input signal from the TCM. 		
AT OD CANCEL [ON/OFF]			Indicates [ON/OFF] condition of A/T O/D cancel signal sent from the TCM.		
CRUISE LAMP [ON/OFF]			Indicates [ON/OFF] condition of CRUISE lamp determined by the ECM according to the input signals.		
SET LAMP [ON/OFF]			 Indicates [ON/OFF] condition of SET lamp determined by the ECM according to the input signals. 		
A/F ADJ-B1			Indicates the correction factor stored in		
A/F ADJ-B2			ECM. The factor is calculated from the difference between the target air-fuel ratio stored in ECM and the air-fuel ratio calculated from A/F sensor 1 signal.		
Voltage [V]					
Frequency [msec], [Hz] or [%]				Only "#" is displayed if item is unable to be measured.	
DUTY-HI			Voltage, frequency, duty cycle or pulse width measured by the probe	Figures with "#"s are temporary ones. They	
DUTY-LOW			width measured by the probe.	are the same figures as an actual piece of	
PLS WIDTH-HI				data which was just previously measured.	
PLS WIDTH-LOW					

D

Е

M

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

DATA MONITOR (SPEC) MODE

Monitored Item

Monitored item [Unit]	ECM INPUT SIG- NALS	MAIN SIG- NALS	Description	Remarks
ENG SPEED [rpm]	×	×	 Indicates the engine speed computed from the signal of the crankshaft position sensor (POS) and camshaft position sensor (PHASE). 	
MAS A/F SE-B1 [V]	×	×	The signal voltage of the mass air flow sensor specification is displayed.	When engine is running specification range is indicated.
B/FUEL SCHDL [msec]		×	"Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction.	When engine is running specification range is indicated.
A/F ALPHA-B1 [%] A/F ALPHA-B2 [%]		×	The mean value of the air-fuel ratio feed-back correction factor per cycle is indicated.	 When engine is running specification range is indicated. This data also includes the data for the air-fuel ratio learning control.

Revision: March 2006 EC-127 2007 Quest

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

ACTIVE TEST MODE

Test Item

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
FUEL INJEC- TION	 Engine: Return to the original trouble condition Change the amount of fuel injection using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorsFuel injectorA/F sensor 1
IGNITION TIM- ING	 Engine: Return to the original trouble condition Timing light: Set Retard the ignition timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Perform Idle Air Volume Learning
POWER BAL- ANCE	 Engine: After warming up, idle the engine. A/C switch: OFF Shift lever: P or N Cut off each fuel injector signal one at a time using CONSULT-II. 	Engine runs rough or dies.	 Harness and connectors Compression Fuel injector Power transistor Spark plug Ignition coil
COOLING FAN*	 Ignition switch: ON Turn the cooling fan "HI", "MID", "LOW" and "OFF" using CON- SULT-II. 	Cooling fan moves and stops.	Harness and connectors Cooling fan motor IPDM E/R
ENG COOLANT TEMP	 Engine: Return to the original trouble condition Change the engine coolant temperature using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorsEngine coolant temperature sensorFuel injector
FUEL PUMP RELAY	 Ignition switch: ON (Engine stopped) Turn the fuel pump relay "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Fuel pump relay makes the operating sound.	Harness and connectors Fuel pump relay
EGR VOL CONT/V	 Ignition switch: ON (Engine stopped) Change the EGR volume control valve opening step using CON- SULT-II. 	EGR volume control valve makes an operating sound.	Harness and connectors EGR volume control valve
VIAS SOL VALVE	 Ignition switch: ON Turn solenoid valve "ON" and "OFF" using CONSULT-II and listen to operating sound. 	Solenoid valve makes the operating sound.	Harness and connectors Solenoid valve
ENGINE MOUNTING	 Ignition switch: ON Turn electronic controlled engine mount "IDLE" and "TRVL" with the CONSULT-II. 	Electronic controlled engine mount makes the operating sound.	Harness and connectors Electronic controlled engine mount
PURG VOL CONT/V	 Engine: After warming up, run engine at 1,500 rpm. Change the EVAP canister purge volume control solenoid valve opening percent using CONSULT-II. 	Engine speed changes according to the opening percent.	Harness and connectors Solenoid valve
FUEL/T TEMP SEN	Change the fuel tank temperature	using CONSULT-II.	

TEST ITEM	CONDITION	JUDGEMENT	CHECK ITEM (REMEDY)
VENT CON- TROL/V	Ignition switch: ON (Engine stopped) Turn solenoid valve "ON" and "OFF" with the CONSULT-II and listen to operating sound.	Solenoid valve makes an operating sound.	Harness and connectors Solenoid valve
V/T ASSIGN ANGLE	 Engine: Return to the original trouble condition Change intake valve timing using CONSULT-II. 	If trouble symptom disappears, see CHECK ITEM.	Harness and connectors Intake valve timing control solenoid valve

EC

D

Е

DTC & SRT CONFIRMATION MODE SRT STATUS Mode

For details, refer to EC-54, "SYSTEM READINESS TEST (SRT) CODE" .

SRT WORK SUPPORT Mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

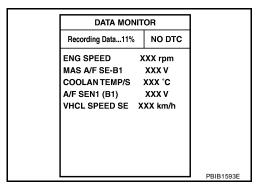
DTC WORK SUPPORT Mode

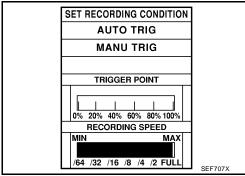
Test mode	Test item	Corresponding DTC No.	Reference page
	PURG FLOW P0441	P0441	EC-425
	EVD CML LEAK DO442/D4442*	P0442	EC-431
EVAPORATIVE SYS- TEM	EVP SML LEAK P0442/P1442*	P0455	EC-487
	EVP V/S LEAK P0456/P1456*	P0456	EC-495
	PURG VOL CN/V P1444	P0443	EC-439
	A/F SEN1 (B1) P1276	P0130	EC-239
A/F SEN1	A/F SEN1 (B1) P1278/P1279	P0133	EC-270
A/F SEINT	A/F SEN1 (B2) P1286	P0150	EC-239
	A/F SEN1 (B2) P1288/P1289	P0153	EC-270
	HO2S2 (B1) P0139	P0139	EC-310
	HO2S2 (B1) P1146	P0138	EC-295
HO2S2	HO2S2 (B1) P1147	P0137	EC-283
	HO2S2 (B2) P0159	P0159	EC-310
	HO2S2 (B2) P1166	P0158	EC-295
	HO2S2 (B2) P1167	P0157	EC-283
ECD SYSTEM	EGR SYSTEM P0400	P0400	EC-397
EGR SYSTEM	EGR SYSTEM P1402	P1402	EC-559

^{*:} DTC P1442 and P1456 does not apply to V42 models but appears in DTC Work Support Mode screens.

^{*:} Leaving cooling fan "OFF" with CONSULT-II while engine is running may cause the engine to overheat.

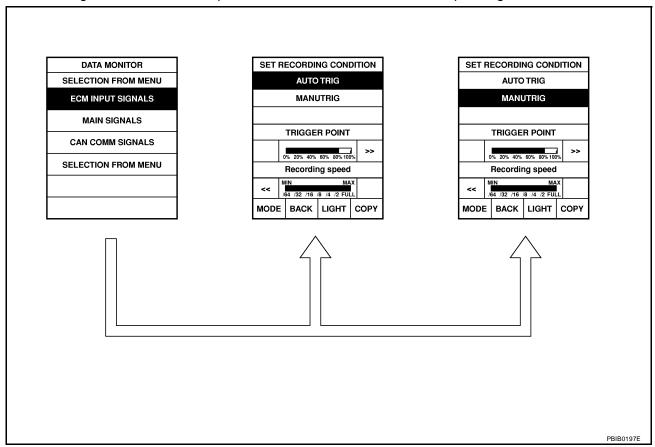
REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA) Description


CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.


- "AUTO TRIG" (Automatic trigger):
 - The malfunction will be identified on the CONSULT-II screen in real time.
 - In other words, DTC/1st trip DTC and malfunction item will be displayed if the malfunction is detected by ECM.

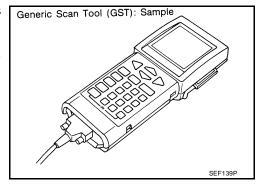
At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown in the figure, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MANUAL.


- 2. "MANU TRIG" (Manual trigger):
 - DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.
 - DATA MONITOR can be performed continuously even though a malfunction is detected.

Operation

- 1. "AUTO TRIG"
 - While trying to detect the DTC/1st trip DTC by performing the DTC Confirmation Procedure, be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.
 - While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.
 When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DTC Confirmation Procedure", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to "INCIDENT SIMULATION TESTS" in GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident".)
- "MANU TRIG"
 - If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG". By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.



Generic Scan Tool (GST) Function DESCRIPTION

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 8 different functions explained below.

ISO9141 is used as the protocol.

The name "GST" or "Generic Scan Tool" is used in this service manual.

EC

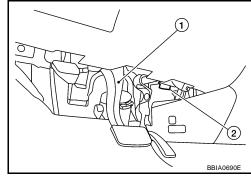
Α

_

G

Н

K


M

UBS00P1U

Diagnostic test mode		Function		
Service \$01	READINESS TESTS	This diagnostic service gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.		
Service \$02	(FREEZE DATA)	This diagnostic service gains access to emission-related data value which were stored by ECM during the freeze frame. For details, refer to EC-122 , "Freeze Frame Data and 1st <a <="" a="" href="Trip Freeze Frame Data">.		
Service \$03	DTCs	This diagnostic service gains access to emission-related power train trouble codes which were stored by ECM.		
Service \$04	CLEAR DIAG INFO	This diagnostic service can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (Service \$01) Clear diagnostic trouble codes (Service \$03) Clear trouble code for freeze frame data (Service \$01) Clear freeze frame data (Service \$02) Reset status of system monitoring test (Service \$01) Clear on board monitoring test results (Service \$06 and \$07)		
Service \$06	(ON BOARD TESTS)	This diagnostic service accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.		
Service \$07	(ON BOARD TESTS)	This diagnostic service enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.		
Service \$08	_	This diagnostic service can close EVAP system in ignition switch ON position (Engine stopped). When this diagnostic service is performed, EVAP canister vent control valve can be closed. In the following conditions, this diagnostic service cannot function. Low ambient temperature Low battery voltage Engine running Ignition switch OFF Low fuel temperature Too much pressure is applied to EVAP system		
Service \$09	(CALIBRATION ID)	This diagnostic service enables the off-board test device to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.		

INSPECTION PROCEDURE

- 1. Turn ignition switch OFF.
- 2. Connect GST to data link connector (2), which is located under LH dash panel near the hood opener handle.
 - Brake pedal (1)
- 3. Turn ignition switch ON.

4. Enter the program according to instruction on the screen or in the operation manual.

(*: Regarding GST screens in this section, sample screens are shown.)

VTX GENERIC OBD II
PROGRAM CARD

Press [ENTER]

Sample screen* SEF398S

5. Perform each diagnostic service according to each service procedure.

For further information, see the GST Operation Manual of the tool maker.

OBD II FUNCTIONS

F0: DATA LIST

F1: FREEZE DATA

F2: DTCs

F3: SNAPSHOT

F4: CLEAR DIAG INFO F5: O2 TEST RESULTS

F6: READINESS TESTS

F7: ON BOARD TESTS

F8: EXPAND DIAG PROT

F9: UNIT CONVERSION

Sample screen*

SEF416S

Н

Α

EC

С

D

Е

/

L

M

CONSULT-II Reference Value in Data Monitor

UBS00P1V

Remarks:

Specification data are reference values.

 Specification data are reference values.
 Specification data are output/input values which are detected or supplied by the ECM at the connector.
 * Specification data may not be directly related to their components signals/values/operations.
 i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor and other ignition timing related sensors.

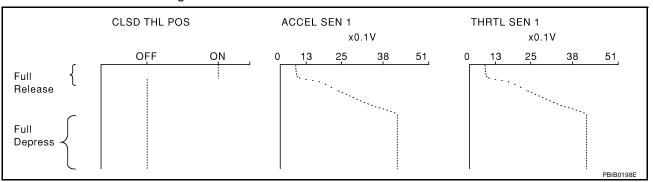
MONITOR ITEM	input from the camshaπ position sensor and other ignition timing related sens CONDITION		SPECIFICATION	
ENG SPEED	Run engine and compare CONSULT-II value with the tachometer indication.		Almost the same speed as the tachometer indication.	
MAS A/F SE-B1	See <u>EC-139</u> , "TROUBLE DIAGN	IOSIS - SPECIFICATION VALUE" .		
B/FUEL SCHDL	See <u>EC-139</u> , "TROUBLE DIAGNOSIS - SPECIFICATION VALUE" .			
A/F ALPHA-B1 A/F ALPHA-B2	• See <u>EC-139</u> , "TROUBLE DIAGN	NOSIS - SPECIFICATION VALUE" .		
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)	
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V	
HO2S2 (B1) HO2S2 (B2)	Revving engine from idle to 3,00 tions are met	Revving engine from idle to 3,000 rpm quickly after the following conditions are met		
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	, , ,	 Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 		
VHCL SPEED SE	Turn drive wheels and compare indication.	Turn drive wheels and compare CONSULT-II value with the speedometer indication.		
BATTERY VOLT	Ignition switch: ON (Engine stop)	ped)	11 - 14V	
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	0.5 - 1.0V	
ACCEL SEN 2*	(Engine stopped)	Accelerator pedal: Fully depressed	4.2 - 4.8V	
THRTL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V	
THRTL SEN 2*	(Engine stopped) ● Shift lever: D	Accelerator pedal: Fully depressed	Less than 4.75V	
EGR TEMP SEN	Engine: After warming up		Less than 4.5V	
EVAP SYS PRES	Ignition switch: ON	• Ignition switch: ON		
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow ON$		$OFF \to ON \to OFF$	
CLSD THL POS	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	ON	
CLSD THE POS		Accelerator pedal: Slightly depressed	OFF	
	• Engine: After warming up	Air conditioner switch: OFF	OFF	
AIR COND SIG	Engine: After warming up, idle the engine	Air conditioner switch: ON (Compressor operates.)	ON	
P/N POSI SW	Ignition switch: ON	Shift lever: P or N	ON	
P/N POSI SW		Shift lever: Except above	OFF	
DW/CT CLONIAL	Engine: After warming up,	Steering wheel: Not being turned	OFF	
PW/ST SIGNAL	idle the engine	Steering wheel: Being turned	ON	
LOAD SIGNAL	Ignition switch: ON	Rear window defogger switch is ON and/or lighting switch is in 2nd.	ON	
		Rear window defogger switch is OFF and lighting switch is OFF.	OFF	
IGNITION SW	Ignition switch: ON → OFF → ON		$ON \to OFF \to ON$	
HEATED FAN OW	Engine: After warming up,	Heater fan: Operating	ON	
HEATER FAN SW	idle the engine	Heater fan: Not operating	OFF	
DDAKE CW	a Ignition quitable ON	Brake pedal: Fully released	OFF	
BRAKE SW	Ignition switch: ON	Brake pedal: Slightly depressed	ON	

MONITOR ITEM	CONDITION		SPECIFICATION	
	Engine: After warming up	Idle	2.0 - 3.0 msec	F
INJ PULSE-B1 INJ PULSE-B2	Shift lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	1.9 - 2.9 msec	E
	Engine: After warming up	Idle	13° - 18° BTDC	
IGN TIMING	Shift lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	25° - 45° BTDC	(
	Engine: After warming up	Idle	5% - 35%	[
CAL/LD VALUE	Shift lever: P or NAir conditioner switch: OFFNo load	2,500 rpm	5% - 35%	ı
	Engine: After warming up	Idle	2.0 - 6.0 g·m/s	
MASS AIRFLOW	Shift lever: P or NAir conditioner switch: OFFNo load	2,500 rpm	7.0 - 20.0 g·m/s	F
PURG VOL C/V	Engine: After warming upShift lever: P or NAir conditioner switch: OFF	Idle (Accelerator pedal is not depressed even slightly, after engine starting)	0%	(
	No load	2,000 rpm	_	ŀ
	Engine: After warming up	Idle	0 step	Г
EGR VOL CON/V	Shift lever: P or NAir conditioner switch: OFFNo load	Revving engine from idle up to 3,000 rpm quickly	10 - 55 step	
	Engine: After warming up	Idle	−5° - 5°CA	
INT/V TIM (B1) INT/V TIM (B2)	Shift lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	Approx. 0° - 30°CA	,
	Engine: After warming up	Idle	0% - 2%	
INT/V SOL (B1) INT/V SOL (B2)	Shift lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	Approx. 0% - 50%	
		1,800 - 3,600 rpm	ON	
VIAS S/V	Engine: After warming up	Except above conditions	OFF	
	Fusing Aff	Air conditioner switch: OFF	OFF	ľ
AIR COND RLY	Engine: After warming up idle the engine	Air conditioner switch: ON (Compressor operates)	ON	
ENGINE MOUNT	Engine: Running	Engine speed: Below 950 rpm	IDLE	
	g	Engine speed: Above 950 rpm	TRVL	
FUEL PUMP RLY	For 1 second after turning ignition switch ONEngine running or cranking		ON	
	Except above conditions		OFF	
VENT CONT/V	Ignition switch: ON		OFF	
THRTL RELAY	Ignition switch: ON		ON	

MONITOR ITEM	CONDITION		SPECIFICATION
		Engine coolant temperature: 94°C (201°F) or less	OFF
COOLING FAN	 Engine: After warming up, idle the engine Air conditioner switch: OFF 	Engine coolant temperature: Between 95°C (203°F) and 99°C (210°F)	LOW
		Engine coolant temperature: Between 100°C (212°F) and 104°C (219°F)	MID
		Engine coolant temperature: 105°C (221°F) or more	н
	Engine speed: Below 3,600 rpm after the following conditions are met.		
HO2S2 HTR (B1) HO2S2 HTR (B2)	 Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 		ON
	• Engine speed: Above 3,600 rpm		OFF
I/P PULLY SPD	Vehicle speed: More than 20 km/h (12 MPH)		Almost the same speed as the tachometer indication
VEHICLE SPEED	Turn drive wheels and compare CONSULT-II value with the speedometer indication.		Almost the same speed as the speedometer indication
TRVL AFTER MIL	Ignition switch: ON	Vehicle has traveled after MIL has turned ON.	0 - 65,535 km (0 - 40,723 mile)
A/F S1 HTR (B1) A/F S1 HTR (B2)	Engine: After warming up, idle the engine		0 - 100%
AC PRESS SEN	 Engine: Idle Both A/C switch and blower fan switch: ON (Compressor operates) 		1.0 - 4.0V
VHCL SPEED SE	Turn drive wheels and compare speedometer indication with the CON- SULT-II value.		Almost the same speed as the speedometer indication
SET VHCL SPD	Engine: Running	ASCD: Operating.	The preset vehicle speed is displayed.
MAIN SW	Ignition switch: ON	MAIN switch: Pressed	ON
WINTER OW		MAIN switch: Released	OFF
CANCEL SW	Ignition switch: ON	CANCEL switch: Pressed	ON
CANCLL SW	• Igrittori switch. On	CANCEL switch: Released	OFF
PESLIME/ACC SW	• Ignition switch: ON	RESUME/ACCELERATE switch: Pressed	ON
RESUME/ACC SW		RESUME/ACCELERATE switch: Released	OFF
SET SW	Ignition switch: ON	SET/COAST switch: Pressed	ON
SL1 SW		SET/COAST switch: Released	OFF
BRAKE SW1	Ignition switch: ON	Brake pedal: Fully released	ON
DUAVE OM I		Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
		Brake pedal: Slightly depressed	ON
CRUISE LAMP	Ignition switch: ON	MAIN switch: Pressed at the 1st time → at the 2nd time	$ON \to OFF$
	MAIN switch: ON	ACSD: Operating	ON
SET LAMP	When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH)	ASCD: Not operating	OFF

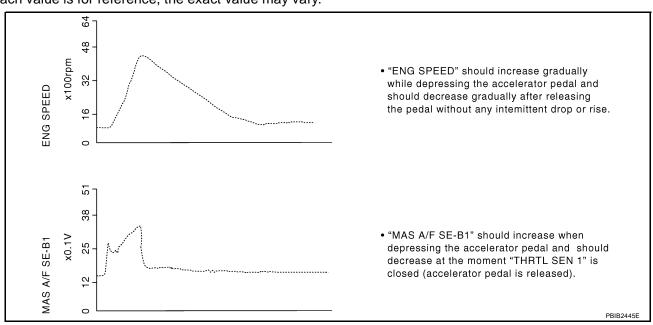
^{*:} Accelerator pedal position sensor 2 signal and throttle position sensor 2 signal are converted by ECM internally. Thus, they differ from ECM terminals voltage signal.

Major Sensor Reference Graph in Data Monitor Mode


UBS00P1W

The following are the major sensor reference graphs in "DATA MONITOR" mode.

CLSD THL POS, ACCEL SEN 1, THRTL SEN 1


Below is the data for "CLSD THL POS", "ACCEL SEN 1" and "THRTL SEN 1" when depressing the accelerator pedal with the ignition switch ON and with shift lever in D position.

The signal of "ACCEL SEN 1" and "THRTL SEN 1" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from ON to OFF.

ENG SPEED, MAS A/F SE-B1, THRTL SEN 1, HO2S2 (B1), INJ PULSE-B1

Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL SEN 1", "HO2S2 (B1)" and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine sufficiently. Each value is for reference, the exact value may vary.

Revision: March 2006 EC-137 2007 Quest

EC

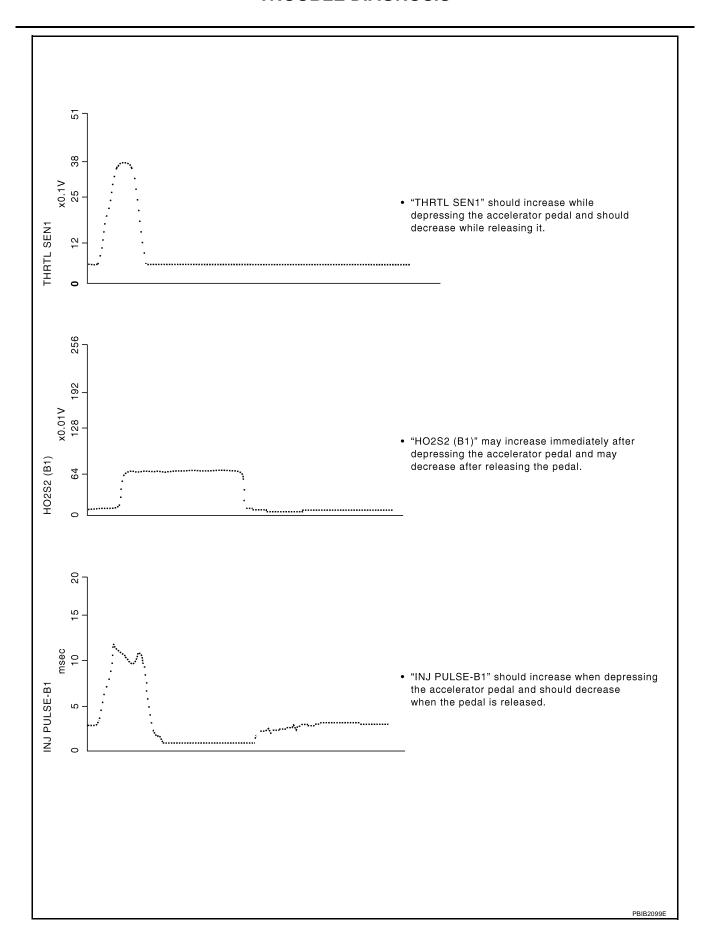
Α

С

D

Е

F


Н

1

K

L

M

TROUBLE DIAGNOSIS - SPECIFICATION VALUE

PFP:00031

Description

UBS00P1

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC)" mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONITOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

EC

Е

Α

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

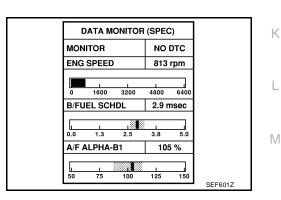
The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

Testing Condition

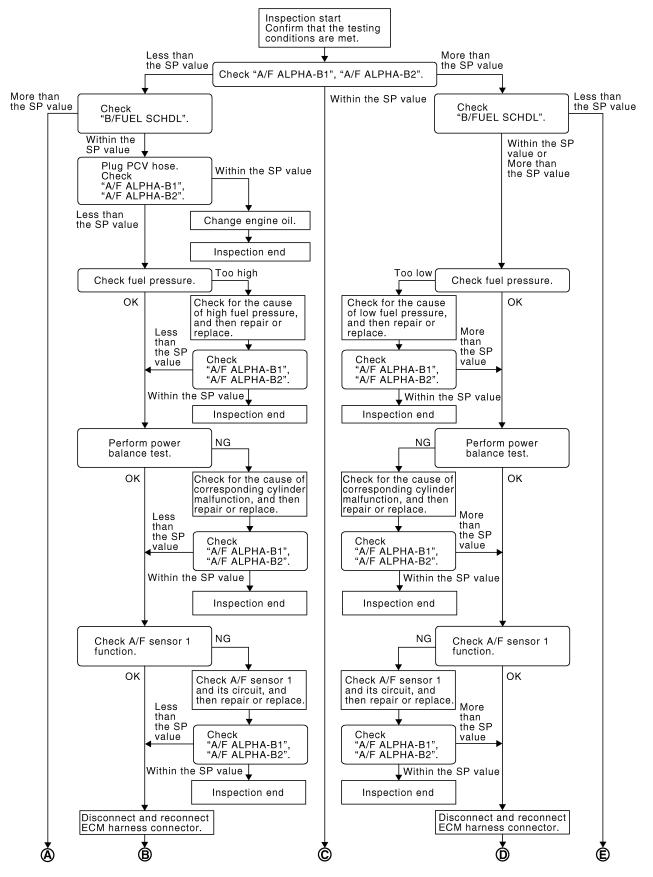
UBS00P1Y

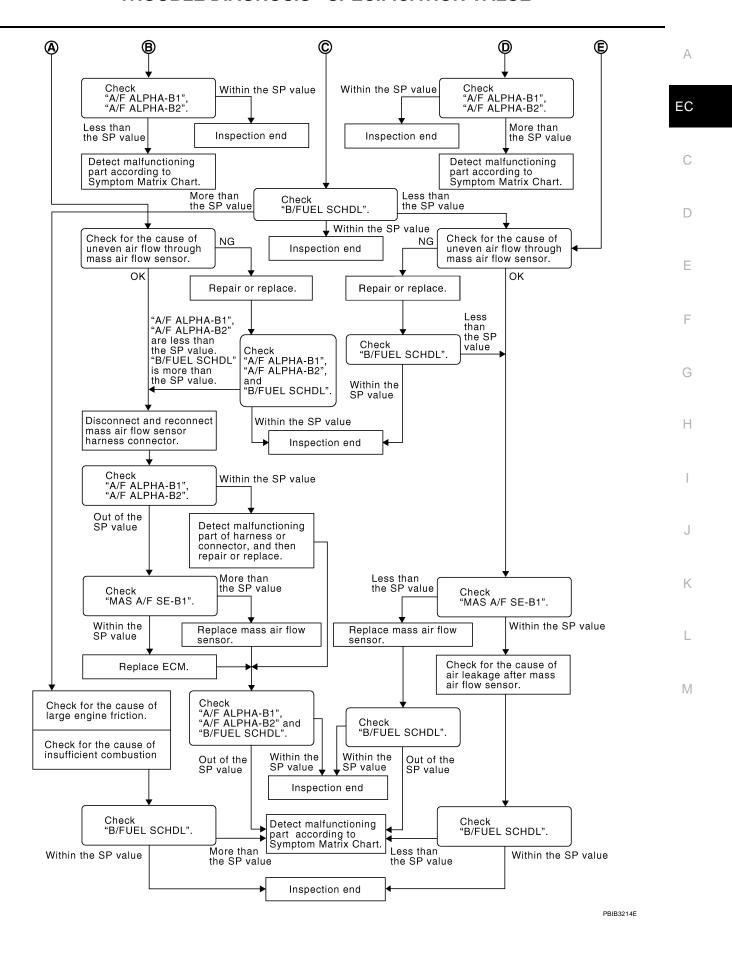
- Vehicle driven distance: More than 5,000 km (3,107 miles)
- Barometric pressure: 98.3 104.3 kPa (1.003 1.064 kg/cm², 14.25 15.12 psi)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up
- After the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T fluid temperature sensor signal) indicates more than 60°C (140°F).
- Electrical load: Not applied
- Rear window defogger switch, air conditioner switch, lighting switch are OFF. Steering wheel is straight ahead.
- Engine speed: Idle


Inspection Procedure

UBS00P1Z

NOTE:


Perform "DATA MONITOR (SPEC)" mode in maximum scale display.


- Perform <u>EC-73, "Basic Inspection"</u>.
- 2. Confirm that the testing conditions indicated above are met.
- Select "B/FUEL SCHDL", "A/F ALPHA-B1", "A/F ALPHA-B2" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.
- 4. Make sure that monitor items are within the SP value.
- 5. If NG, go to EC-140, "Diagnostic Procedure".

Diagnostic Procedure OVERALL SEQUENCE

UBS00P20

DETAILED PROCEDURE

1. CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- 1. Start engine.
- 2. Confirm that the testing conditions are met. Refer to <a>EC-139, "Testing Condition".
- 3. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "DATA MONITOR (SPEC)" mode, and make sure that the each indication is within the SP value.

NOTE:

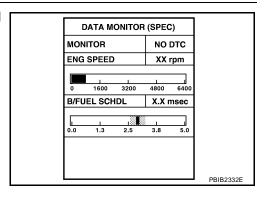
Check "A/F ALPHA-B1", "A/F ALPHA-B2" for approximately 1 minute because they may fluctuate. It is NG if the indication is out of the SP value even a little.

OK or NG

OK >> GO TO 17.

NG (Less than the SP value)>>GO TO 2.

NG (More than the SP value)>>GO TO 3.


2. CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "DATA MONITOR (SPEC)" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> GO TO 4.

NG (More than the SP value)>>GO TO 19.

DATA MONITOR (SPEC)

3200

NO DTC

XXX rpm

XX %

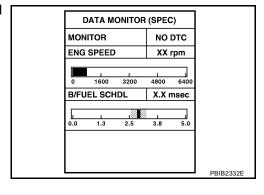
PBIB2369B

MONITOR

ENG SPEED

A/F ALPHA-B1

3. CHECK "B/FUEL SCHDL"


Select "B/FUEL SCHDL" in "DATA MONITOR (SPEC)" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> GO TO 6.

NG (More than the SP value)>>GO TO 6.

NG (Less than the SP value)>>GO TO 25.

4. CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- 1. Stop the engine.
- 2. Disconnect PCV hose, and then plug it.
- 3. Start engine.
- 4. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "DATA MONITOR (SPEC)" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> GO TO 5.

NG >> GO TO 6.

5. CHANGE ENGINE OIL

- 1. Stop the engine.
- 2. Change engine oil.

NOTE:

This symptom may occur when a large amount of gasoline is mixed with engine oil because of driving conditions (such as when engine oil temperature does not rise enough since a journey distance is too short during winter). The symptom will not be detected after changing engine oil or changing driving condition.

>> INSPECTION END

6. CHECK FUEL PRESSURE

Check fuel pressure. (Refer to EC-82, "Fuel Pressure Check".)

OK or NG

OK >> GO TO 9.

NG (Fuel pressure is too high)>>Replace fuel pressure regulator, refer to <u>EC-83, "FUEL PRESSURE CHECK"</u>. GO TO 8.

NG (Fuel pressure is too low)>>GO TO 7.

7. DETECT MALFUNCTIONING PART

- Check the following.
- Clogged and bent fuel hose and fuel tube
- Clogged fuel filter
- Fuel pump and its circuit (Refer to <u>EC-685</u>, "FUEL PUMP"
- If NG, repair or replace the malfunctioning part. (Refer to <u>EC-82, "Fuel Pressure Check"</u>.)
 If OK, replace fuel pressure regulator.

>> GO TO 8.

8. CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- 1. Start engine.
- 2. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "DATA MONITOR (SPEC)" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> GO TO 9.

9. PERFORM POWER BALANCE TEST

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode.
- 2. Make sure that the each cylinder produces a momentary engine speed drop.

OK or NG

OK >> GO TO 12.

NG >> GO TO 10.

ACTIVE TES	ACTIVE TEST	
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

EC

Е

Н

- 1

J

IZ

L

M

10. DETECT MALFUNCTIONING PART

- 1. Check the following.
- Ignition coil and its circuit (Refer to <u>EC-691, "IGNITION SIGNAL"</u>.)
- Fuel injector and its circuit (Refer to <u>EC-678</u>, "FUEL INJECTOR".)
- Intake air leakage
- Low compression pressure (Refer to <u>EM-96</u>, "<u>CHECKING COMPRESSION PRESSURE</u>".)
- 2. If NG, repair or replace the malfunctioning part.

 If OK, replace fuel injector. (It may be caused by leakage from fuel injector or clogging.)

>> GO TO 11.

11. CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- Start engine.
- 2. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "DATA MONITOR (SPEC)" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> GO TO 12.

12. CHECK A/F SENSOR 1 FUNCTION

Perform all DTC Confirmation Procedure related with A/F sensor 1.

- For DTC P0130, P0150, refer to <u>EC-239, "DTC Confirmation Procedure"</u>.
- For DTC P0131, P0151, refer to EC-250, "DTC Confirmation Procedure".
- For DTC P0132, P0152, refer to EC-260, "DTC Confirmation Procedure".
- For DTC P0133, P0153, refer to EC-271, "DTC Confirmation Procedure".
- For DTC P2A00, P2A03, refer to EC-649, "DTC Confirmation Procedure".

OK or NG

OK >> GO TO 15. NG >> GO TO 13.

13. CHECK A/F SENSOR 1 CIRCUIT

Perform Diagnostic Procedure according to corresponding DTC.

>> GO TO 14.

14. CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

- 1. Start engine.
- 2. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "DATA MONITOR (SPEC)" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> GO TO 15.

15. DISCONNECT AND RECONNECT ECM HARNESS CONNECTOR

- 1. Stop the engine.
- 2. Disconnect ECM harness connector. Check pin terminal and connector for damage, and then reconnect it.

>> GO TO 16.

16. CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

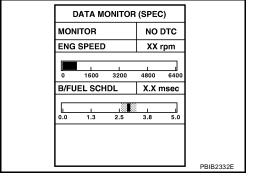
- 1. Start engine.
- 2. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "DATA MONITOR (SPEC)" mode, and make sure that the each indication is within the SP value.

OK or NG

>> INSPECTION END OK

NG >> Detect malfunctioning part according to <a>EC-95, "Symptom Matrix Chart".

17. CHECK "B/FUEL SCHDL"


Select "B/FUEL SCHDL" in "DATA MONITOR (SPEC)" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG (More than the SP value)>>GO TO 18.

NG (Less than the SP value)>>GO TO 25.

18. DETECT MALFUNCTIONING PART

- 1. Check for the cause of large engine friction. Refer to the following.
- Engine oil level is too high
- Engine oil viscosity
- Belt tension of power steering, alternator, A/C compressor, etc. is excessive
- Noise from engine
- Noise from transmission, etc.
- Check for the cause of insufficient combustion. Refer to the following.
- EGR valve stuck
- Valve clearance malfunction
- Intake valve timing control function malfunction
- Camshaft sprocket installation malfunction, etc.

>> Repair or replace malfunctioning part, and then GO TO 30.

19. CHECK INTAKE SYSTEM

Check for the cause of uneven air flow through mass air flow sensor. Refer to the following.

- Crushed air ducts
- Malfunctioning seal of air cleaner element
- Uneven dirt of air cleaner element
- Improper specification of intake air system

OK or NG

OK >> GO TO 21.

NG >> Repair or replace malfunctioning part, and then GO TO 20.

EC

Е

$20.\ \mathsf{CHECK}\ \texttt{``A/F}\ \mathsf{ALPHA-B1"},\ \texttt{``A/F}\ \mathsf{ALPHA-B2"},\ \mathsf{AND}\ \texttt{``B/FUEL}\ \mathsf{SCHDL"}$

Select "A/F ALPHA-B1", "A/F ALPHA-B2", and "B/FUEL SCHDL" in "DATA MONITOR (SPEC)" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG ("B/FUEL SCHDL" is more, "A/F ALPHA-B1", "A/F ALPHA-B2" are less than the SP value)>>GO TO 21.

21. DISCONNECT AND RECONNECT MASS AIR FLOW SENSOR HARNESS CONNECTOR

- 1. Stop the engine.
- 2. Disconnect mass air flow sensor harness connector. Check pin terminal and connector for damage and then reconnect it again.

>> GO TO 22.

22. CHECK "A/F ALPHA-B1", "A/F ALPHA-B2"

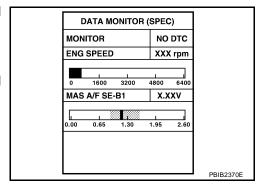
- Start engine.
- 2. Select "A/F ALPHA-B1", "A/F ALPHA-B2" in "DATA MONITOR (SPEC)" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> 1. Detect malfunctioning part of mass air flow sensor circuit and repair it. Refer to <u>EC-202, "DTC P0102, P0103 MAF SENSOR"</u>.

2. GO TO 29.

NG >> GO TO 23.


23. CHECK "MAS A/F SE-B1"

Select "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> GO TO 24.

NG (More than the SP value)>>Replace mass air flow sensor, and then GO TO 29.

24. REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of NVIS(NATS) system and registration of all NVIS(NATS) ignition key IDs. Refer to BL-203, "NVIS(NISSAN Vehicle Immobilizer System-NATS)".
- 3. Perform EC-79, "VIN Registration".
- 4. Perform EC-80, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-80, "Throttle Valve Closed Position Learning".
- 6. Perform EC-80, "Idle Air Volume Learning".

>> GO TO 29.

25. CHECK INTAKE SYSTEM

Check for the cause of uneven air flow through mass air flow sensor. Refer to the following.

- Crushed air ducts
- Malfunctioning seal of air cleaner element
- Uneven dirt of air cleaner element
- Improper specification of intake air system

OK or NG

OK >> GO TO 27.

NG >> Repair or replace malfunctioning part, and then GO TO 26.

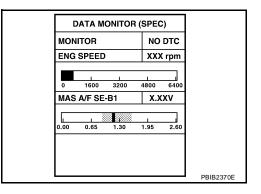
26. CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "DATA MONITOR (SPEC)" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG (Less than the SP value)>>GO TO 27.


27. CHECK "MAS A/F SE-B1"

Select "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode, and make sure that the indication is within the SP value.

OK or NG

OK >> GO TO 28.

NG (Less than the SP value)>>Replace mass air flow sensor, and then GO TO 30.

28. CHECK INTAKE SYSTEM

Check for the cause of air leak after the mass air flow sensor. Refer to the following.

- Disconnection, looseness, and cracks in air duct
- Looseness of oil filler cap
- Disconnection of oil level gauge
- Open stuck, breakage, hose disconnection, or cracks of PCV valve
- Disconnection or cracks of EVAP purge hose, open stuck of EVAP canister purge volume control solenoid valve
- Malfunctioning seal of rocker cover gasket
- Disconnection, looseness, or cracks of hoses, such as vacuum hose, connecting to intake air system parts
- Malfunctioning seal of intake air system, etc.

>> GO TO 30.

$29.\,$ check "a/f alpha-b1", "a/f alpha-b2", and "b/fuel schdl"

Select "A/F ALPHA-B1", "A/F ALPHA-B2", and "B/FUEL SCHDL" in "DATA MONITOR (SPEC)" mode, and make sure that the each indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> Detect malfunctioning part according to EC-95, "Symptom Matrix Chart".

EC-147 Revision: March 2006 2007 Quest

EC

Н

30. CHECK "B/FUEL SCHDL"

Select "B/FUEL SCHDL" in "DATA MONITOR (SPEC)" mode, and then make sure that the indication is within the SP value.

OK or NG

OK >> INSPECTION END

NG >> Detect malfunctioning part according to EC-95, "Symptom Matrix Chart".

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT

PFP:00006

Description

I IRSOOP21

Intermittent incidents may occur. In many cases, the malfunction resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on (1st trip) DTC visits. Realize also that the most frequent cause of intermittent incidents occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific malfunctioning area.

EC

Е

Α

Common Intermittent Incidents Report Situations

STEP in Work Flow	Situation
2	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than [0] or [1t].
3 or 4	The symptom described by the customer does not recur.
5	(1st trip) DTC does not appear during the DTC Confirmation Procedure.
10	The Diagnostic Procedure for PXXXX does not indicate the malfunctioning area.

Diagnostic Procedure

D000D00

1. INSPECTION START

Erase (1st trip) DTCs. Refer to EC-63, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" .

Н

>> GO TO 2.

2. CHECK GROUND TERMINALS

Check ground terminals for corroding or loose connection.

Refer to EC-158, "Ground Inspection"

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. SEARCH FOR ELECTRICAL INCIDENT

K

Perform GI-26, "How to Perform Efficient Diagnosis for an Electrical Incident", "INCIDENT SIMULATION TESTS".

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

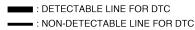
M

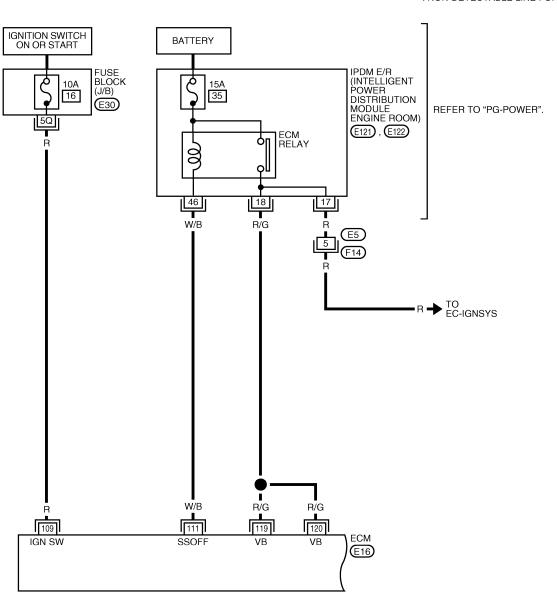
4. CHECK CONNECTOR TERMINALS

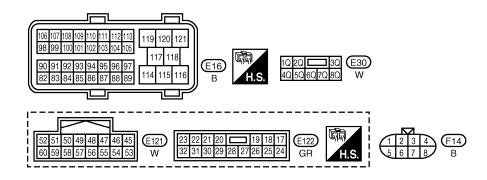
Refer to GI-23, "How to Check Terminal", "HOW TO PROBE CONNECTORS", "How to Check Enlarged Contact Spring of Terminal".

OK or NG

OK >> INSPECTION END


NG >> Repair or replace connector.


POWER SUPPLY AND GROUND CIRCUIT Wiring Diagram


PFP:24110

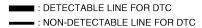
UBS00P23

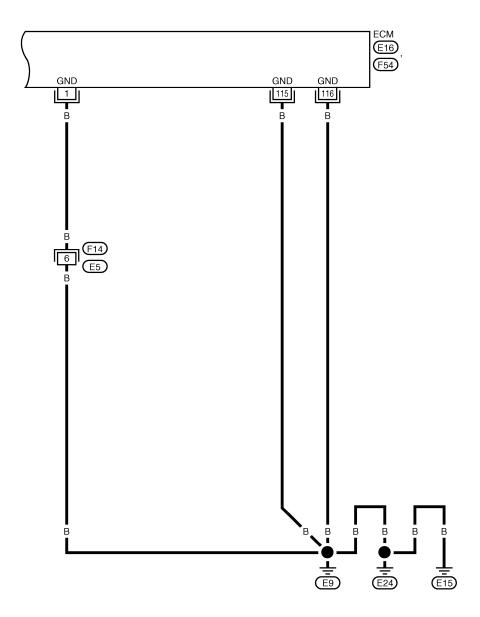
EC-MAIN-01

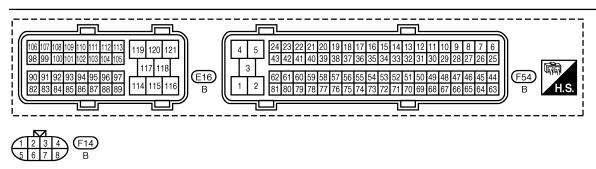
BBWA2500E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


				-
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
	_		[Ignition switch: OFF]	OV
109	109 R Ignition switch		[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
111	W/B	ECM relay	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.5V
	(Self shut-off)	[Ignition switch: OFF]More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)


C D E F G H I J K

Α

EC-MAIN-02

BBWA2501E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
1	В	ECM ground	[Engine is running] ● Idle speed	Body ground
115 116	B B	ECM ground	[Engine is running] • Idle speed	Body ground

EC-153

Diagnostic Procedure

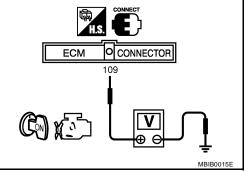
1. INSPECTION START

Start engine.

Is engine running?

Yes or No

Yes >> GO TO 8. No >> GO TO 2.


2. CHECK ECM POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF and then ON.
- 2. Check voltage between ECM terminal 109 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. >> GO TO 3. NG

3. DETECT MALFUNCTIONING PART

Check the following.

Revision: March 2006

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between ECM and fuse
 - >> Repair harness or connectors.

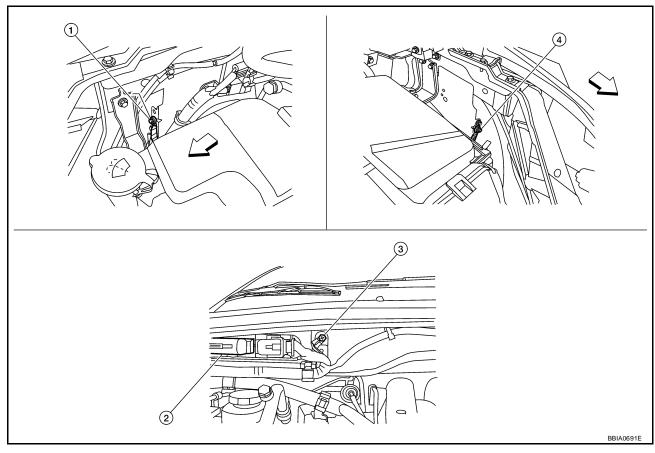
Α

EC

D

Е

Н


M

LIBSOOP24

2007 Quest

4. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- Vehicle front
- 1. Body ground E24
- 2. ECM

3. Body ground E9

4. Body ground E15

OK or NG

OK >> GO TO 5.

NG >> Repair or replace ground connections.

5. CHECK ECM GROUND CIRCUIT FOR OPEN AND SHORT-I

- 1. Disconnect ECM harness connector.
- 2. Check harness continuity between ECM terminals 1, 115, 116 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

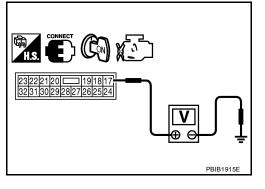
6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F14, E5
- Harness for open or short between ECM and ground

>> Repair open circuit or short to power in harness or connectors.

7. CHECK ECM POWER SUPPLY CIRCUIT-II


- 1. Reconnect ECM harness connector.
- 2. Turn ignition switch ON.
- Check voltage between IPDM E/R terminal 17 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> Go to <u>EC-691, "IGNITION SIGNAL"</u>.

NG >> GO TO 8.

8. CHECK ECM POWER SUPPLY CIRCUIT-III

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON and then OFF.
- 3. Check voltage between ECM terminals 119, 120 and ground with CONSULT-II or tester.

Voltage: After turning ignition switch OFF, battery voltage will exist for a few seconds, then drop approximately 0V.

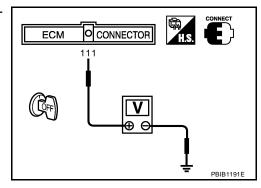
OK or NG

OK >> GO TO 13.

NG (Battery voltage does not exist.)>>GO TO 9.

NG (Battery voltage exists for more than a few seconds.)>>GO TO 11.

ECM O CONNECTOR 119, 120 PBIB1630E


9. CHECK ECM POWER SUPPLY CIRCUIT-IV

Check voltage between ECM terminal 111 and ground with CON-SULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 10. NG >> GO TO 11.

EC

D

F

Е

Н

1

K

L

10. CHECK ECM POWER SUPPLY CIRCUIT-V

- Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E122.
- Check harness continuity between ECM terminals 119, 120 and IPDM E/R terminal 18. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 16.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

11. CHECK ECM POWER SUPPLY CIRCUIT-VI

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E121.
- 3. Check harness continuity between ECM terminal 111 and IPDM E/R terminal 46. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

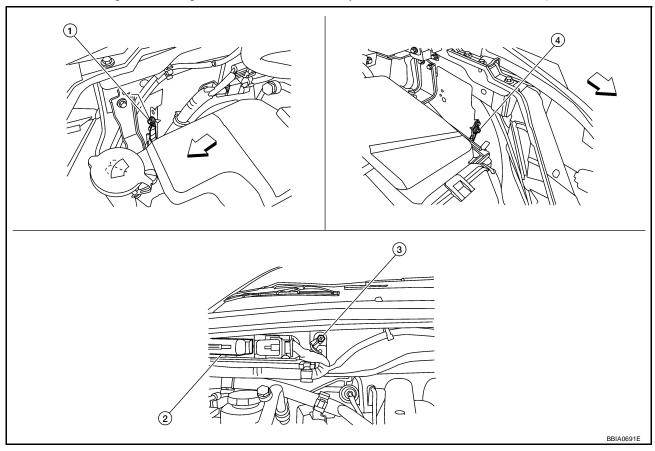
OK or NG

OK >> GO TO 12.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

12. CHECK 15A FUSE

- Disconnect 15A fuse from IPDM E/R.
- 2. Check 15A fuse.


OK or NG

OK >> GO TO 16.

NG >> Replace 15A fuse.

13. CHECK GROUND CONNECTIONS

1. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- < >
 → Vehicle front
- Body ground E24
- 2. ECM

3. Body ground E9

4. Body ground E15

OK or NG

OK >> GO TO 14.

NG >> Repair or replace ground connections.

$14.\,$ check ecm ground circuit for open and short-ii

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminals 1, 115, 116 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 16.

NG >> GO TO 15.

EC

С

D

Е

F

G

Н

|

12

L

15. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F14, E5
- Harness for open or short between ECM and ground
 - >> Repair open circuit or short to power in harness or connectors.

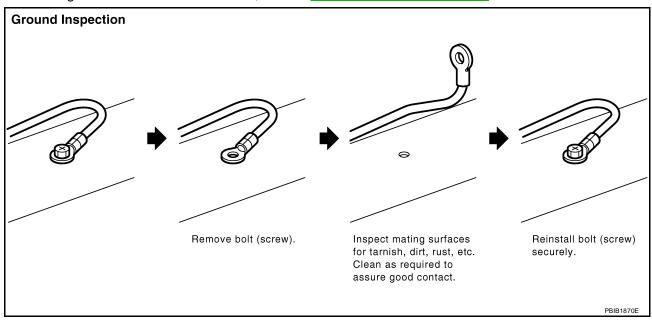
16. CHECK INTERMITTENT INCIDENT

Refer to $\underline{\mathsf{EC-}149}$, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" . OK or NG

- OK >> Replace IPDM E/R. Refer to PG-18, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-ULE ENGINE ROOM)" .
- NG >> Repair open circuit or short to power in harness or connectors.

Ground Inspection

UBS00P25


Ground connections are very important to the proper operation of electrical and electronic circuits. Ground connections are often exposed to moisture, dirt and other corrosive elements. The corrosion (rust) can become an unwanted resistance. This unwanted resistance can change the way a circuit works.

Electronically controlled circuits are very sensitive to proper grounding. A loose or corroded ground can drastically affect an electronically controlled circuit. A poor or corroded ground can easily affect the circuit. Even when the ground connection looks clean, there can be a thin film of rust on the surface.

When inspecting a ground connection follow these rules:

- Remove the ground bolt or screw.
- Inspect all mating surfaces for tarnish, dirt, rust, etc.
- Clean as required to assure good contact.
- Reinstall bolt or screw securely.
- Inspect for "add-on" accessories which may be interfering with the ground circuit.
- If several wires are crimped into one ground eyelet terminal, check for proper crimps. Make sure all of the wires are clean, securely fastened and providing a good ground path. If multiple wires are cased in one eyelet make sure no ground wires have excess wire insulation.

For detailed ground distribution information, refer to PG-34, "Ground Distribution".

DTC U1000, U1001 CAN COMMUNICATION LINE

DTC U1000, U1001 CAN COMMUNICATION LINE

PFP:23710

Description

Α

EC

Е

CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

UBS00P27

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1000* ¹ 1000* ¹	CAN communication line	When ECM is not transmitting or receiving CAN communication signal of OBD (emission-related diagnosis) for 2 seconds or more.	Harness or connectors
U1001* ² 1001* ²		When ECM is not transmitting or receiving CAN communication signal other than OBD (emission-related diagnosis) for 2 seconds or more.	(CAN communication line is open or shorted)

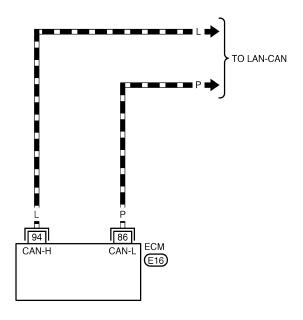
^{*1:} This self-diagnosis has the one trip detection logic.

DTC Confirmation Procedure

UBS00P28

- Turn ignition switch ON and wait at least 3 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- If 1st trip DTC is detected, go to EC-161, "Diagnostic Procedure".

Н


^{*2:} The MIL will not light up for this diagnosis.


DTC U1000, U1001 CAN COMMUNICATION LINE

Wiring Diagram

EC-CAN-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC
: DATA LINE

BBWA2502E

DTC U1000, U1001 CAN COMMUNICATION LINE

Diagnostic Procedure

UBS00P2A

Go to LAN-44, "CAN Diagnostic Support Monitor" .

EC

Α

С

D

Е

Н

DTC U1010 CAN COMMUNICATION

DTC U1010 CAN COMMUNICATION

PFP:23710

Description

UBS00P2B

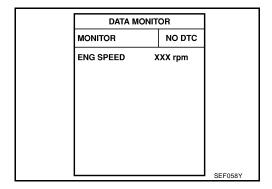
CAN (Controller Area Network) is a serial communication line for real time application. It is an on-vehicle multiplex communication line with high data communication speed and excellent error detection ability. Many electronic control units are equipped onto a vehicle, and each control unit shares information and links with other control units during operation (not independent). In CAN communication, control units are connected with 2 communication lines (CAN H line, CAN L line) allowing a high rate of information transmission with less wiring. Each control unit transmits/receives data but selectively reads required data only.

On Board Diagnosis Logic

UBS00P2C

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
U1010 1010	CAN communication bus	When detecting error during the initial diagnosis for CAN controller of each control unit.	• ECM


DTC Confirmation Procedure

UBS00P2D

WITH CONSULT-II

Turn ignition switch ON.

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. If DTC is detected, go to EC-163, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

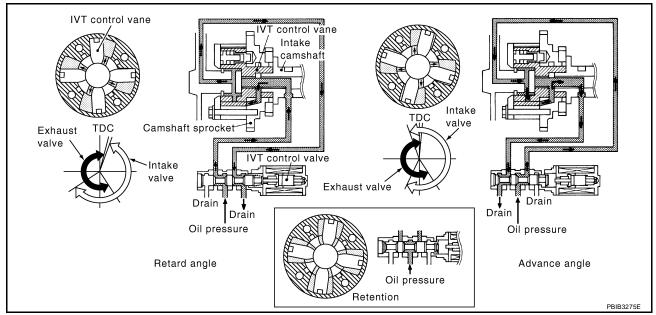
DTC U1010 CAN COMMUNICATION

Diagnostic Procedure UBS00P2E Α 1. INSPECTION START (P) With CONSULT-II EC 1. Turn ignition switch ON. 2. Select "SELF-DIAG RESULTS" mode with CONSULT-II. 3. Touch "ERASE". 4. Perform DTC Confirmation Procedure. See EC-162, "DTC Confirmation Procedure". 5. Is the DTC U1010 displayed again? With GST 1. Turn ignition switch ON. 2. Select Service \$04 with GST. Е 3. Perform DTC Confirmation Procedure. See EC-162, "DTC Confirmation Procedure". 4. Is the DTC U1010 displayed again? Yes or No Yes >> GO TO 2. No >> INSPECTION END 2. REPLACE ECM Replace ECM. 2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to BL-203, "NVIS(NISSAN Vehicle Immobilizer System-NATS)". 3. Perform EC-79, "VIN Registration". 4. Perform EC-80, "Accelerator Pedal Released Position Learning". 5. Perform EC-80, "Throttle Valve Closed Position Learning". 6. Perform EC-80, "Idle Air Volume Learning". >> INSPECTION END

M

Revision: March 2006 EC-163 2007 Quest

DTC P0011, P0021 IVT CONTROL


PFP:23796

UBS00P2F

Description SYSTEM DESCRIPTION

Sensor	Input signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS)	Engine speed and piston position	Intake valve		
Camshaft position sensor (PHASE)	Engine speed and piston position		Intake valve timing control	
Engine coolant temperature sensor	Engine coolant temperature	timing control	solenoid valve	
Wheel sensor	Vehicle speed*			

^{*:} Signal is sent to the ECM through CAN communication line.

This mechanism hydraulically controls cam phases continuously with the fixed operating angle of the intake valve.

The ECM receives signals such as crankshaft position, camshaft position, engine speed, and engine coolant temperature. Then, the ECM sends ON/OFF pulse duty signals to the intake valve timing control solenoid valve depending on driving status. This makes it possible to control the shut/open timing of the intake valve to increase engine torque in low/mid speed range and output in high-speed range.

CONSULT-II Reference Value in Data Monitor Mode

UBS00P2G

Specification data are reference values.

MONITOR ITEM	C	ONDITION	SPECIFICATION
INT/V TIM (B1) INT/V TIM (B2)	Engine: After warming up	Idle	–5° - 5°CA
	Shift lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	Approx. 0° - 30°CA
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1) INT/V SOL (B2)	Shift lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	Approx. 0% - 50%

On Board Diagnosis Logic

UBS00P2H

EC

Е

DTC No.	Trouble diagnosis name	Detecting condition	Possible cause
P0011 0011 (Bank 1)			Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Intake valve control solenoid valve
P0021 0021 (Bank 2)	Intake valve timing control performance	There is a gap between angle of target and phase-control angle degree.	 Accumulation of debris to the signal pick-up portion of the camshaft Timing chain installation Foreign matter caught in the oil groove for intake valve timing control

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Detected items	Engine operating condition in fail-safe mode
Intake valve timing control	The signal is not energized to the solenoid valve and the valve control does not function.

DTC Confirmation Procedure

UBS00P21

NOTE

- If DTC P0011 or P0021 is displayed with DTC P0075 or P0081, first perform trouble diagnosis for DTC P0075 or P0081. Refer to EC-185, "DTC P0075, P0081 IVT CONTROL SOLENOID VALVE".
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10V and 16V at idle.

(A) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to the normal operating temperature.
- Maintain the following conditions for at least 6 consecutive seconds.

Hold the accelerator pedal as steady as possible.

ENG SPEED	1,200 - 2,000 rpm
COOLAN TEMP/S	More than 60°C (140°F)
B/FUEL SCHDL	More than 3.4 msec
Shift lever	P or N position

	ror	
MONITOR	NO DTC	
ENG SPEED COOLAN TEMP/S VHCL SPEED SE B/FUEL SCHDL		

- 4. Let engine idle for 10 seconds.
- 5. If 1st trip DTC is detected, go to EC-166, "Diagnostic Procedure".

 If 1st trip DTC is not detected, go to next step.
- 6. Maintain the following conditions for at least 20 consecutive seconds.

ENG SPEED	1,700 - 3,175 rpm (A constant rotation is maintained.)
COOLAN TEMP/S	70 - 105°C (158 - 221°F)
Shift lever	1st or 2nd position
Driving location uphill	Driving vehicle uphill (Increased engine load will help maintain the driving conditions required for this test.)

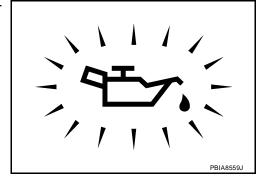
7. If 1st trip DTC is detected, go to <u>EC-166, "Diagnostic Procedure"</u>.

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

UBS00P2J


1. CHECK OIL PRESSURE WARNING LAMP

- 1. Start engine.
- Check oil pressure warning lamp and confirm it is not illuminated.

OK or NG

OK >> GO TO 2.

KG >> Go to LU-8, "ENGINE OIL PRESSURE CHECK".

2. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EC-167, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace intake valve timing control solenoid valve.

3. CHECK CRANKSHAFT POSITION SENSOR (POS)

Refer to EC-386, "Component Inspection".

OK or NG

OK >> GO TO 4.

NG >> Replace crankshaft position sensor (POS).

4. CHECK CAMSHAFT POSITION SENSOR (PHASE)

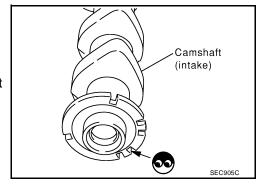
Refer to EC-396, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace camshaft position sensor (PHASE).

5. CHECK CAMSHAFT (INTAKE)


Check the following.

- Accumulation of debris to the signal plate of camshaft rear end
- Chipping signal plate of camshaft rear end

OK or NG

OK >> GO TO 6.

NG >> Remove debris and clean the signal plate of camshaft rear end or replace camshaft.

6. CHECK TIMING CHAIN INSTALLATION

Check service records for any recent repairs that may cause timing chain misaligned.

Are there any service records that may cause timing chain misaligned?

Yes or No

Yes >> Check timing chain installation. Refer to EM-56, "TIMING CHAIN".

No >> GO TO 7.

7. CHECK LUBRICATION CIRCUIT

Refer to EM-87, "Inspection After Installation".

OK or NG

OK >> GO TO 8.

NG >> Clean lubrication line.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

For Wiring Diagram, refer to EC-381 for CKP sensor (POS) and EC-389 for CMP sensor (PHASE).

>> INSPECTION END

Component Inspection INTAKE VALVE TIMING CONTROL SOLENOID VALVE

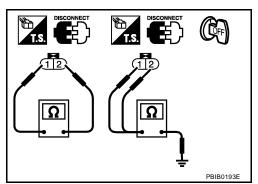
1. Disconnect intake valve timing control solenoid valve harness connector.

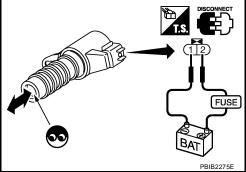
Check resistance between intake valve timing control solenoid valve as follows.

Terminal	Resistance
1 and 2	7.0 - 7.5Ω [at 20°C (68°F)]
1 or 2 and ground	${}^{\infty\Omega}$ (Continuity should not exist.)

If NG, replace intake valve timing control solenoid valve. If OK, go to next step.

- 3. Remove intake valve timing control solenoid valve.
- 4. Provide 12V DC between intake valve timing control solenoid valve terminals and then interrupt it. Make sure that the plunger moves as shown in the figure.


Do not apply 12V DC continuously for 5 seconds or more. Doing so may result in damage to the coil in intake valve timing control solenoid valve.


If NG, replace intake valve timing control solenoid valve.

Always replace O-ring when intake valve timing control solenoid valve is removed.

Removal and Installation INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EM-56, "TIMING CHAIN".

UBS00P21

EC-167 Revision: March 2006 2007 Quest

EC

Е

UBS00P2K

Н

PFP:22693

Description SYSTEM DESCRIPTION

UBS00P2M

Sensor	Input Signal to ECM	ECM function	Actuator
Camshaft position sensor (PHASE) Crankshaft position sensor (POS)	Engine speed	Air fuel ratio (A/F) sensor 1 heater	Air fuel ratio (A/F) sensor 1 heater
Mass air flow sensor	Amount of intake air	control	

The ECM performs ON/OFF duty control of the A/F sensor 1 heater corresponding to the engine operating condition to keep the temperature of A/F sensor 1 element at the specified range.

CONSULT-II Reference Value in Data Monitor Mode

UBS00P2N

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
A/F S1 HTR (B1) A/F S1 HTR (B2)	Engine: After warming up, idle the engine	0 - 100%

On Board Diagnosis Logic

UBS00P20

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0031 0031 (Bank 1)	Air fuel ratio (A/F) sensor	The current amperage in the air fuel ratio (A/F) sensor 1 heater circuit is out of the normal range.	Harness or connectors (The A/F sensor 1 heater circuit is
P0051 0051 (Bank 2)	low	(An excessively low voltage signal is sent to ECM through the air fuel ratio (A/F) sensor 1 heater.)	open or shorted.) • A/F sensor 1 heater
P0032 0032 (Bank 1)	Air fuel ratio (A/F) sensor 1 heater control circuit	The current amperage in the air fuel ratio (A/F) sensor 1 heater circuit is out of the normal range.	Harness or connectors (The A/F sensor 1 heater circuit is)
P0052 0052 (Bank 2)	high	(An excessively high voltage signal is sent to ECM through the air fuel ratio (A/F) sensor 1 heater.)	shorted.) • A/F sensor 1 heater

DTC Confirmation Procedure

UBS00P2P

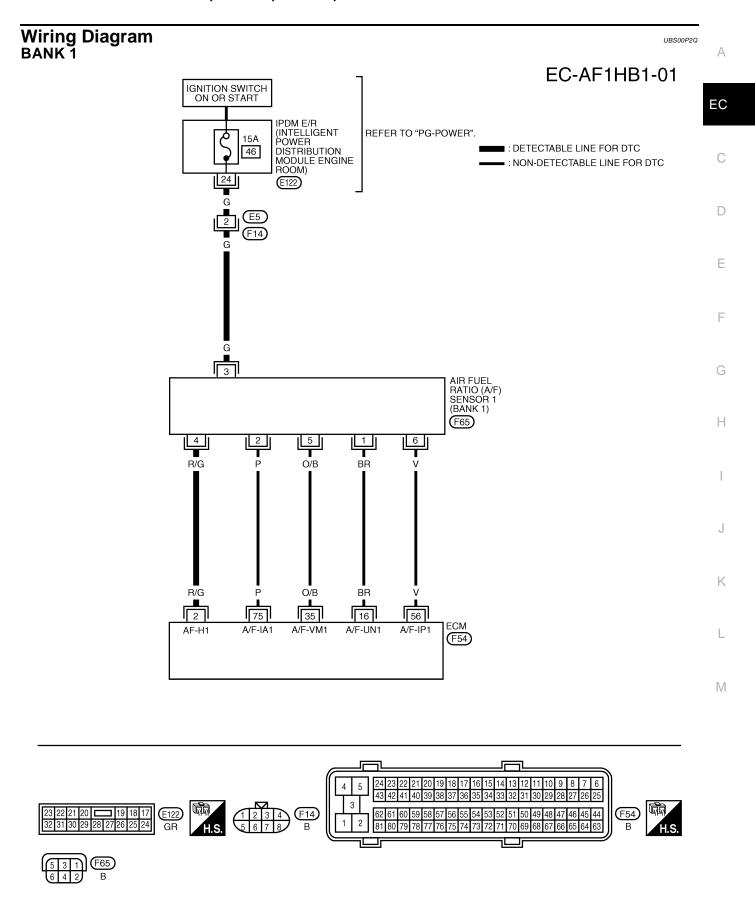
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

With CONSULT-II


WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for at least 10 seconds.
- 3. If 1st trip DTC is detected, go to EC-173, "Diagnostic Procedure"

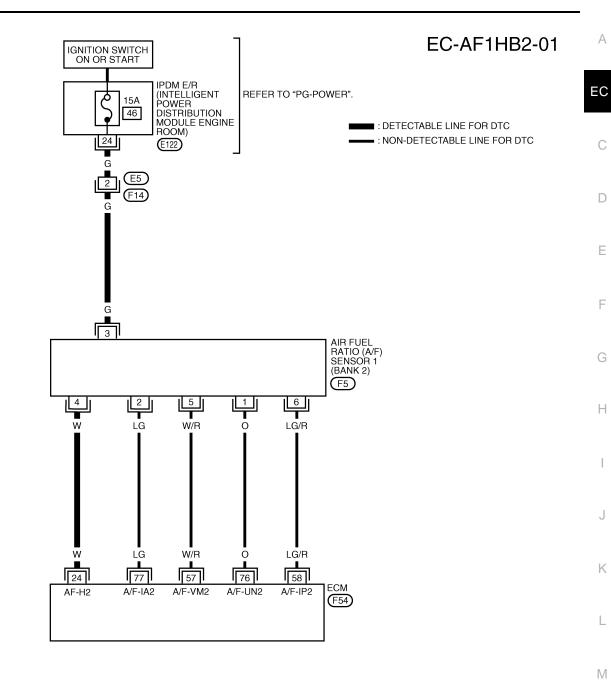
DATA MONIT	OR	
MONITOR	NO DTC	
ENG SPEED >	XX rpm	
		SEF058Y

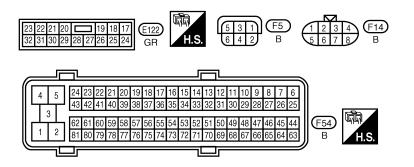
WITH GST

Follow the procedure "WITH CONSULT-II" above.

BBWA2505E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.


CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)		
2	R/G	A/F sensor 1 heater (Bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E		
16	BR			Approximately 3.1V		
35		A/F sensor 1 (Bank 1)	[Engine is running]	Approximately 2.6V		
56	V	A/I SCIISOI I (DAIIK I)	Warm-up condition Idle speed	Approximately 2.3V		
75	Р			Approximately 2.3V		

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

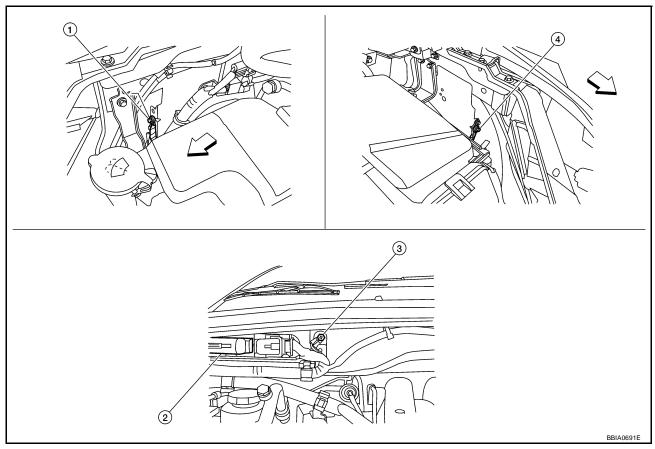
BANK 2

BBWA2506E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	W	A/F sensor 1 heater (Bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V* 30 10.0V/Div 10 ms/Div T PBIB1584E
57	W/R			Approximately 2.6V
58	LG/R		Approximately 2.3V	
76	0	A/F sensor 1 (Bank 2)	Warm-up condition Idle speed	Approximately 3.1V
77	LG		3 .3.3 3,533	Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

Α

UBS00P2R

С

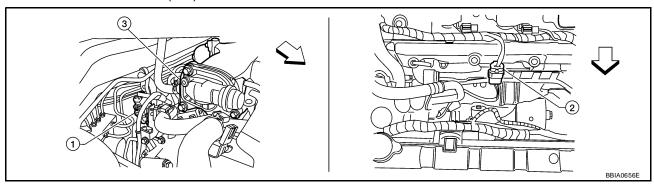
D

Е

F

G

Н

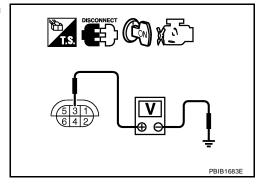

|

K

L

$2. \ \mathsf{CHECK} \ \mathsf{AIR} \ \mathsf{FUEL} \ \mathsf{RATIO} \ \mathsf{(A/F)} \ \mathsf{SENSOR} \ \mathsf{1} \ \mathsf{POWER} \ \mathsf{SUPPLY} \ \mathsf{CIRCUIT}$

Disconnect air fuel ratio (A/F) sensor 1 harness connector.



- Vehicle front
- Air fuel ratio (A/F) sensor 1 (bank 1)
 Air fuel ratio (A/F) sensor 1 (bank 2)
 Intake manifold collector harness connector
- Turn ignition switch ON.
- 3. Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- IPDM E/R harness connector E122
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse
 - >> Repair or replace harness or connectors.

4. CHECK A/F SENSOR 1 HEATER OUTPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 2 (bank 1) or 24 (bank 2) and A/F sensor 1 terminal 4. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK A/F SENSOR 1 HEATER

Refer to EC-175, "Component Inspection".

OK or NG

OK >> GO TO 6. NG >> GO TO 7.

6. CHECK INTERMITTENT INCIDENT

Perform EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> GO TO 7.

NG >> Repair or replace.

/. REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace malfunctioning air fuel ratio (A/F) sensor 1.

CAUTION:

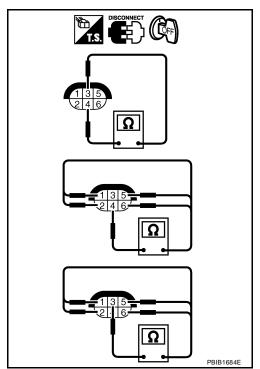
- Discard any air fuel ratio (A/F) sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new air fuel ratio (A/F) sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

Component Inspection AIR FUEL RATIO (A/F) SENSOR 1 HEATER

Check resistance between terminals 3 and 4.

Resistance: 2.3 - 4.3 Ω [at 25°C (77°F)]


Check continuity between terminals 3 and 1, 2, 5, 6, terminals 4 and 1, 2, 5, 6.

Continuity should not exist.

If NG, replace the A/F sensor 1.

CAUTION:

- Discard any A/F sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new A/F sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation AIR FUEL RATIO (A/F) SENSOR 1

Refer to EM-26, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

UBS00P2T

EC-175 Revision: March 2006 2007 Quest

EC

Е

UBS00P2S

Н

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

PFP:226A0

Description SYSTEM DESCRIPTION

UBS00P2U

Sensor	Input signal to ECM	ECM function	Actuator
Camshaft position sensor (PHASE)	Engine speed		
Crankshaft position sensor (POS)	Lingine speed	Heated oxygen sensor 2	Heated oxygen sensor 2 heater
Engine coolant temperature sensor	Engine coolant temperature	heater control	Treated Oxygen Sensor 2 heater
Mass air flow sensor	Amount of intake air		

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater corresponding to the engine speed, amount of intake air and engine coolant temperature.

OPERATION

Engine speed rpm	Heated oxygen sensor 2 heater
Above 3,600	OFF
Below 3,600 rpm after the following conditions are met.	
Engine: After warming up	ON
 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	

CONSULT-II Reference Value in Data Monitor Mode

UBS00P2V

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
	• Engine speed: Above 3,600 rpm	OFF
HO2S2 HTR (B1)	Engine speed: Below 3,600 rpm after the following conditions are met	
HO2S2 HTR (B2)	Engine: After warming up	ON
	 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	

On Board Diagnosis Logic

UBS00P2W

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0037 0037 (Bank 1)	Heated oxygen sensor 2	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range.	Harness or connectors (The heated oxygen sensor 2 heater
P0057 0057 (Bank 2)	heater control circuit low	(An excessively low voltage signal is sent to ECM through the heated oxygen sensor 2 heater.)	circuit is open or shorted.) • Heated oxygen sensor 2 heater
P0038 0038 (Bank 1)	Heated oxygen sensor 2	The current amperage in the heated oxygen sensor 2 heater circuit is out of the normal range. (An excessively high voltage signal is sent to	Harness or connectors (The heated oxygen sensor 2 heater)
P0058 0058 (Bank 2)	heater control circuit high	ECM through the heated oxygen sensor 2 heater.)	circuit is shorted.) • Heated oxygen sensor 2 heater

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

DTC Confirmation Procedure

UBS00P2X

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 10.5V and 16V at idle.

(II) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start the engine and keep the engine speed between 3,500 rpm and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- 6. If 1st trip DTC is detected, go to EC-182, "Diagnostic Procedure"

DATA MON	IITOR	
MONITOR	NO DTC	
ENG SPEED COOLAN TEMP/S	XXX rpm XXX °C	
		,

WITH GST

Follow the procedure "WITH CONSULT-II" above.

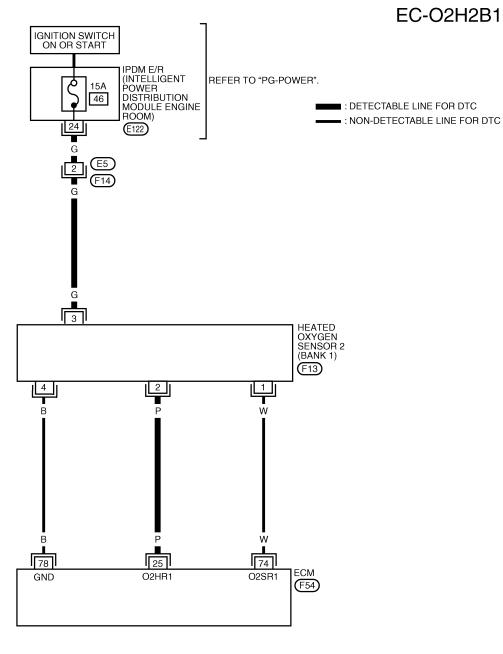
EC

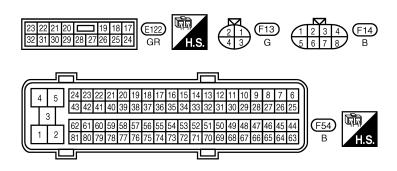
Α

D

Е

G


Н


K

Wiring Diagram BANK 1

UBS00P2Y

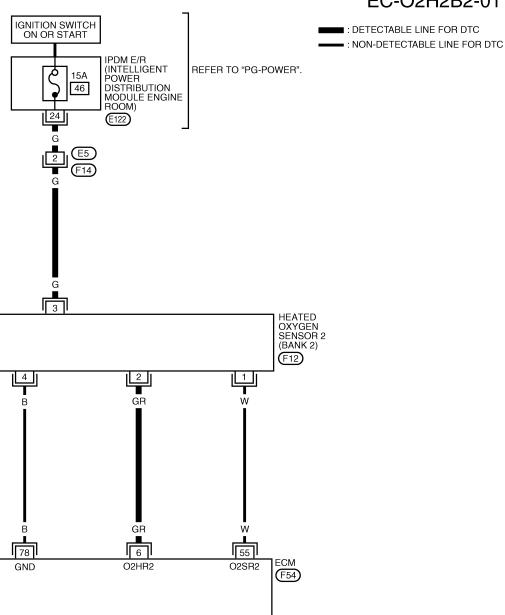
EC-O2H2B1-01

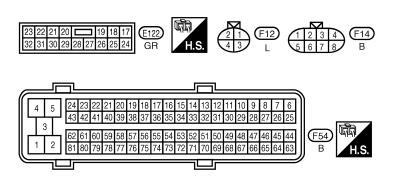
BBWA2507E

DTC P0037, P0038, P0057, P0058 HO2S2 HEATER

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


_				_	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
25	Р	Heated oxygen sensor 2 heater (bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - 1.0V	C
			[Ignition switch: ON] • Engine stopped [Engine is running] • Engine speed: Above 3,600 rpm.	BATTERY VOLTAGE (11 - 14V)	F
74	w	Heated oxygen sensor 2 (Bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V	G H
78	В	Heated oxygen sensor 2 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	l

Α

BANK 2

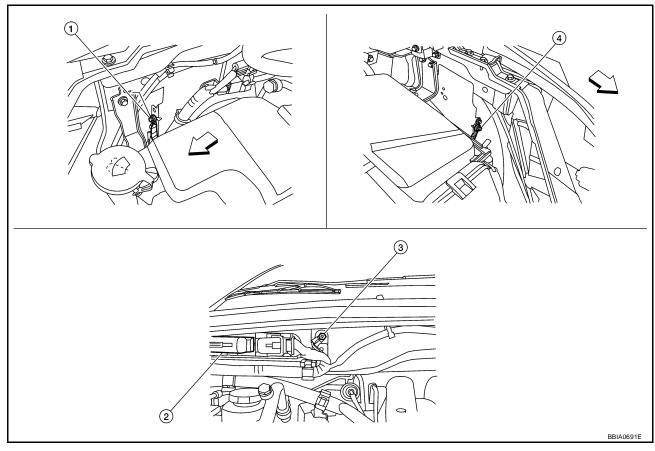
EC-O2H2B2-01

BBWA2508E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


_		_		-	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
6	GR	Heated oxygen sensor 2 heater (bank 2)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met. Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - 1.0V	C D
			[Ignition switch: ON] • Engine stopped [Engine is running] • Engine speed: Above 3,600 rpm.	DATA (DC Voltage) 0 - 1.0V BATTERY VOLTAGE (11 - 14V) 0 - Approximately 1.0V	F
55	w	Heated oxygen sensor 2 (Bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 		G H
78	В	Heated oxygen sensor 2 ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	I

Α

Diagnostic Procedure

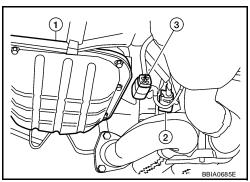
1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24
 - Body ground E15
- 2. ECM

3. Body ground E9

UBS00P2Z


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

$\overline{2}$. Check ho2s2 heater power supply circuit

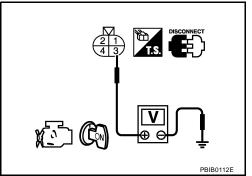
- 1. Disconnect heated oxygen sensor 2 harness connector.
- Oil pan (1)
- Heated oxygen sensor 2 (bank 2) harness connector (2)
- Heated oxygen sensor 2 (bank 1) harness connector (3)
- 2. Turn ignition switch ON.

EC

D

Е

Н


M

3. Check voltage between HO2S2 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

>> GO TO 4. OK NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- IPDM E/R connector E122
- 15A fuse
- Harness for open or short between heated oxygen sensor 2 and fuse

>> Repair harness or connectors.

4. CHECK HO2S2 HEATER OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank		
ыс	ECM	Sensor	Dalik	
P0037, P0038	25	2	1	
P0057, P0058	6	2	2	

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

Revision: March 2006

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

2007 Quest

5. CHECK HEATED OXYGEN SENSOR 2 HEATER

Refer to EC-184, "Component Inspection".

OK or NG

OK >> GO TO 6.

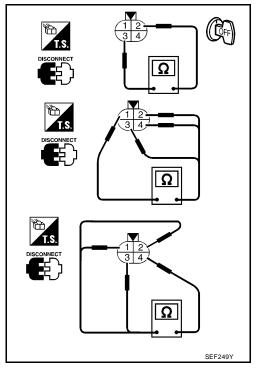
NG >> Replace malfunctioning heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2 HEATER


Check resistance between HO2S2 terminals as follows.

Terminal No.	Resistance
2 and 3	5.0 - 7.0 Ω [at 25°C (77°F)]
1 and 2, 3, 4	∞ Ω
4 and 1, 2, 3	(Continuity should not exist)

2. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

Refer to EM-26, "EXHAUST MANIFOLD AND THREE WAY CATALYST".

UBS00P31

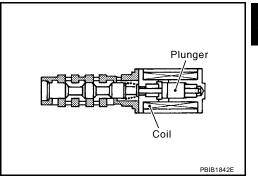
UBS00P30

DTC P0075, P0081 IVT CONTROL SOLENOID VALVE

Component Description

PFP:23796

UBS00P32


Intake valve timing control solenoid valve is activated by ON/OFF pulse duty (ratio) signals from the ECM.

The intake valve timing control solenoid valve changes the oil amount and direction of flow through intake valve timing control unit or stops oil flow.

The longer pulse width advances valve angle.

The shorter pulse width retards valve angle.

When ON and OFF pulse widths become equal, the solenoid valve stops oil pressure flow to fix the intake valve angle at the control position.

EC

Α

D

Е

Н

LIBSOOP33

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0% - 2%
INT/V SOL (B1)	Shift lever: P or N		
INT/V SOL (B2)	Air conditioner switch: OFF	2,000 rpm	Approx. 0% - 50%
	No load		

On Board Diagnosis Logic

UBS00P34

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0075 0075 (Bank 1)	Intake valve timing control solenoid valve circuit	An improper voltage is sent to the ECM through intake valve timing control solenoid	Harness or connectors (Intake valve timing control solenoid valve)
P0081 0081 (Bank 2)		valve.	circuit is open or shorted.) • Intake valve timing control solenoid valve

DTC Confirmation Procedure

IBS00P35

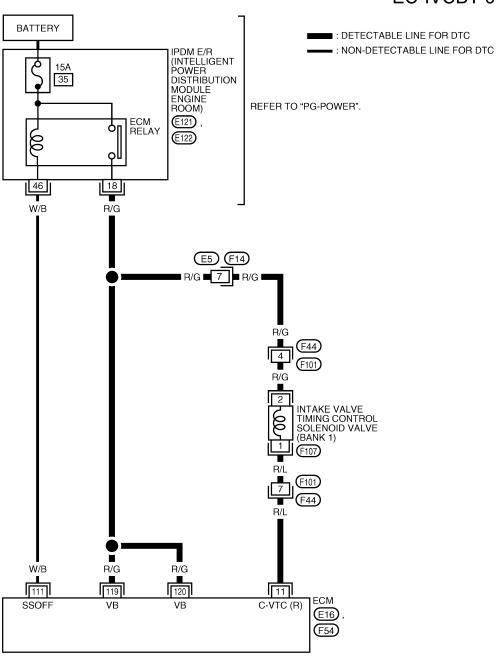
NOTE:

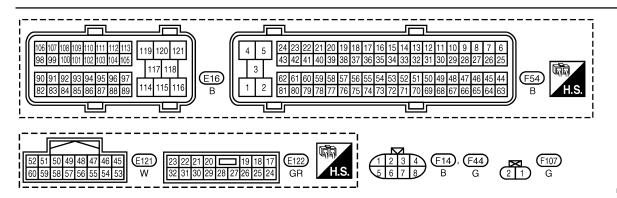
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- If 1st trip DTC is detected, go to <u>EC-190</u>, "<u>Diagnostic Procedure</u>"

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
		SEF058Y


WITH GST


Following the procedure "WITH CONSULT-II" above.

Wiring Diagram BANK 1

UBS00P36

EC-IVCB1-01

BBWA2548E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

				=
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
11 R		Intake valve timing control solenoid valve (Bank 1)	[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)
	R/L		[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	7 - 12V★
111	W/B	ECM relay (Self shut-off)	 [Engine is running] [Ignition switch: OFF] For a few seconds after turning ignition switch OFF [Ignition switch: OFF] More than a few seconds after turning ignition switch OFF 	0 - 1.5V BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

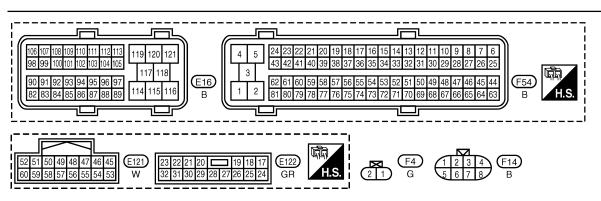
Α

 D

Е

0


Н


K

L

BANK 2

EC-IVCB2-01

BBWA2549E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		Intake valve timing control solenoid valve (Bank 2)	[Engine is running]Warm-up conditionIdle speed	BATTERY VOLTAGE (11 - 14V)
10	Y/L		[Engine is running] • Warm-up condition • Engine speed: 2,000 rpm	7 - 12V★ → 10.0 V/Div PBIB1790E
111	W/B	ECM relay (Self shut-off)	 [Engine is running] [Ignition switch: OFF] For a few seconds after turning ignition switch OFF [Ignition switch: OFF] More than a few seconds after turning igni- 	0 - 1.5V BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	tion switch OFF [Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

Α

С

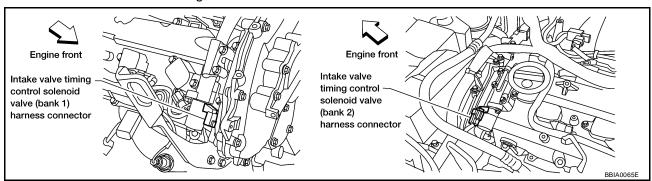
D

Е

G

Н

K

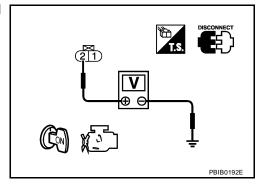

L

Diagnostic Procedure

UBS00P37

1. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect intake valve timing control solenoid valve harness connector.



- 3. Turn ignition switch ON.
- 4. Check voltage between intake valve timing control solenoid valve terminal 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness connectors F44, F101 (bank 1)
- Harness for open or short between intake valve timing control solenoid valve and IPDM E/R
- Harness for open or short between intake valve timing control solenoid valve and ECM
 - >> Repair harness or connectors.

3. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 11 (bank 1) or 10 (bank 2) and intake valve timing control solenoid valve terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F44, F101 (bank 1)
- Harness for open and short between intake valve timing control solenoid valve and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EC-191, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace intake valve timing control solenoid valve.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection INTAKE VALVE TIMING CONTROL SOLENOID VALVE

- 1. Disconnect intake valve timing control solenoid valve harness connector.
- Check resistance between intake valve timing control solenoid valve terminals as follows.

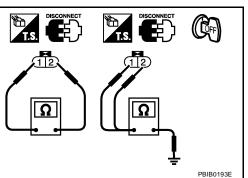
Terminals	Resistance	
1 and 2	7.0 - 7.5Ω [at 20°C (68°F)]	
1 or 2 and ground	${}^{\infty\Omega}$ (Continuity should not exist)	

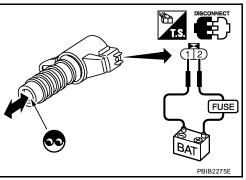
If NG, replace intake valve timing control solenoid valve. If OK, go to next step.

- 3. Remove intake valve timing control solenoid valve.
- 4. Provide 12V DC between intake valve timing control solenoid valve terminals and then interrupt it. Make sure that the plunger moves as shown in the figure.

CAUTION:

Do not apply 12V DC continuously for 5 seconds or more. Doing so may result in damage to the coil in intake valve timing control solenoid valve.


If NG, replace intake valve timing control solenoid valve.


NOTE:

Always replace O-ring when intake valve timing control solenoid valve is removed.

Removal and Installation INTAKE VALVE TIMING CONTROL SOLENOID VALVE

Refer to EM-56, "TIMING CHAIN".

LIBSOOPS

Revision: March 2006 EC-191 2007 Quest

EC

D

Е

G

UBS00P38

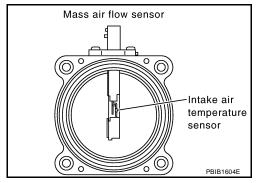
Н

12

L

DTC P0101 MAF SENSOR

PFP:22680


UBS00P3A

Component Description

the heat loss.

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. The mass air flow sensor controls the temperature of the hot wire to a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater

Therefore, the electric current supplied to hot wire is changed to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

UBS00P3B

Specification data are reference values.

MONITOR ITEM	CONDITION SPECIFICATION		
MAS A/F SE-B1	See <u>EC-139</u> , "TROUBLE DIAGNOSIS - SPECIFICATION VALUE" .		
	Engine: After warming up	Idle	5% - 35%
CAL/LD VALUE	Shift lever: P or NAir conditioner switch: OFFNo load	2,500 rpm	5% - 35%
	Engine: After warming up	Idle	2.0 - 6.0 g·m/s
 Shift lever: P or N Air conditioner switch: OFF No load 	2,500 rpm	7.0 - 20.0 g·m/s	

On Board Diagnosis Logic

UBS00P3C

DTC No.	Trouble diagnosis name		DTC detecting condition	Possible cause
				Harness or connectors (The sensor circuit is open or shorted.)
		A)	A high voltage from the sensor is sent to ECM under light load driving condition.	Mass air flow sensor
		,		Harness or connectors (The sensor circuit is open or shorted.)
50404				
P0101 0101	Mass air flow sensor circuit range/performance		A low voltage from the sensor is sent to ECM	
		B)	under heavy load driving condition.	Mass air flow sensor
		' '		
				Intake air temperature sensor

DTC Confirmation Procedure

UBS00P3D

Perform PROCEDURE FOR MALFUNCTION A first.

If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

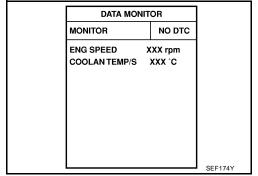
EC

Α

PROCEDURE FOR MALFUNCTION A

NOTE:

If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch ON) instead of running engine at idle speed.


Е

Н

M

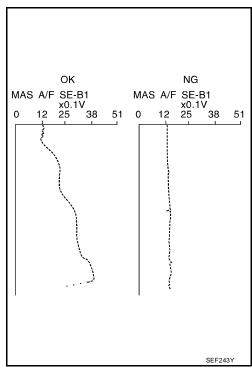
(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and warm it up to normal operating temperature.
- 4. Run engine for at least 10 seconds at idle speed.
- 5. If 1st trip DTC is detected, go to EC-196, "Diagnostic Procedure"

With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION B


CAUTION:

Always drive vehicle at a safe speed.

(With CONSULT-II

- 1. Turn ignition switch ON.
- Start engine and warm it up to normal operating temperature.
 If engine cannot be started, go to <u>EC-196</u>, "<u>Diagnostic Procedure</u>".
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- Check the voltage of "MAS A/F SE-B1" with "DATA MONITOR".
- 5. Increases engine speed to about 4,000 rpm.
- Monitor the linear voltage rise in response to engine speed increases.

If NG, go to <u>EC-196, "Diagnostic Procedure"</u>. If OK, go to following step.

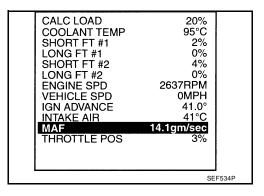
Revision: March 2006 EC-193 2007 Quest

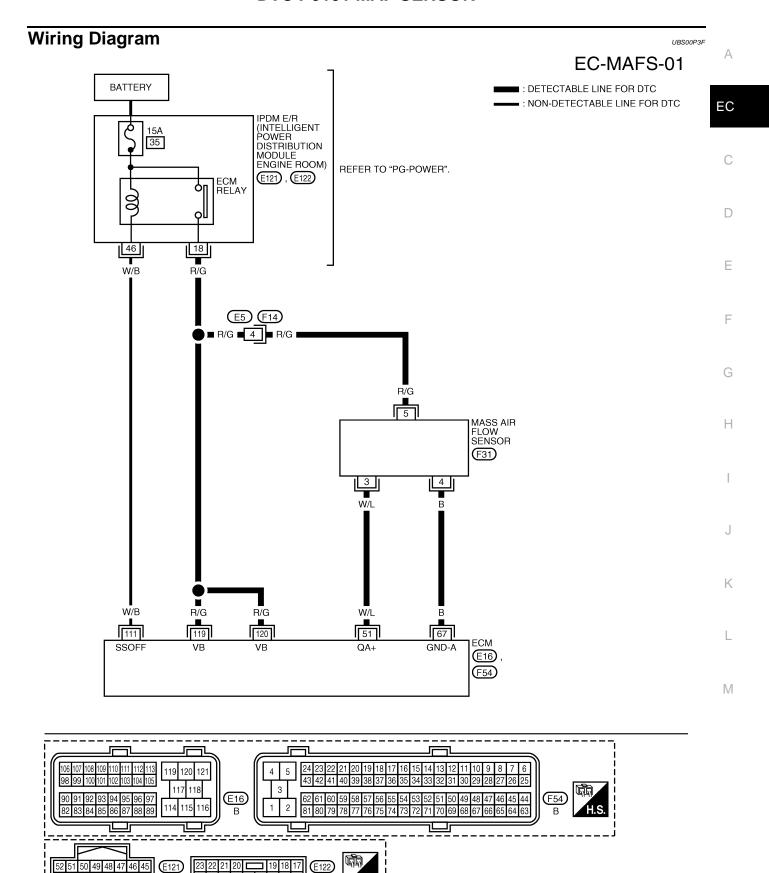
Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED	More than 2,000 rpm
THRTL SEN 1	More than 3V
THRTL SEN 2	More than 3V
Shift lever	Suitable position
Driving location	Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

8.	If 1st trip DTC is detected, go to	EC-196, "Diagnostic Procedure"

DATA MONITOR	
MONITOR	NO DTC
ENG SPEED VHCL SPEED SE THRTL SEN 1 THRTL SEN 2	XXX rpm XXX km/h XXX V XXX V


UBS00P3E


Overall Function Check PROCEDURE FOR MALFUNCTION B

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.

With GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select Service \$01 with GST.
- 3. Check the mass air flow sensor signal with Service \$01.
- 4. Check for linear mass air flow sensor signal value rise in response to increases to about 4,000 rpm in engine speed.
- 5. If NG, go to EC-196, "Diagnostic Procedure".

BBWA2511E

6 5 4 3 2 1 B

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
51	W/L	Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed	1.0 - 1.3V
31	VV/L	IVIASS AII IIUW SCIISUI	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	1.6 - 2.0V
67	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
111	W/B	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] ● For a few seconds after turning ignition switch OFF	0 - 1.5V
		(oeii siiut-oii)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

iliostic i i ocedure

UBS00P3G

1. INSPECTION START

Which malfunction (A or B) is duplicated?

A or B

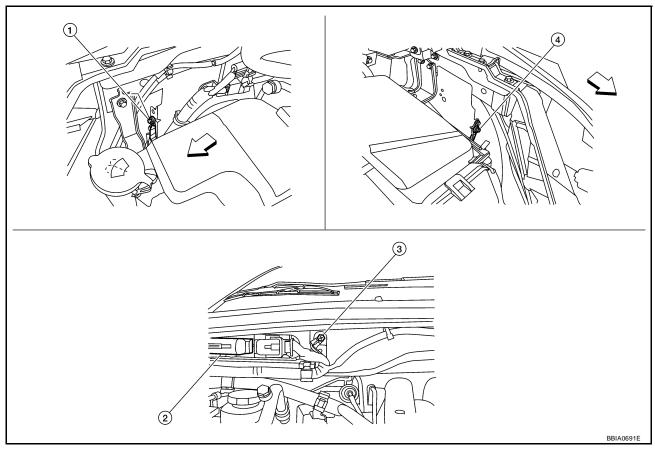
A >> GO TO 3.

B >> GO TO 2.

2. CHECK INTAKE SYSTEM

Check the following for connection.

- Air duct
- Vacuum hoses
- Intake air passage between air duct and intake manifold


OK or NG

OK >> GO TO 3.

NG >> Reconnect the parts.

3. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24
- 2. ECM

3. Body ground E9

4. Body ground E15

OK or NG

OK >> GO TO 4.

NG >> Repair or replace ground connections.

Revision: March 2006 EC-197 2007 Quest

EC

С

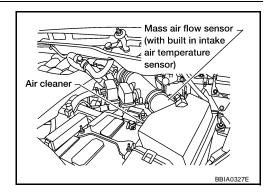
D

Е

F

G

Н

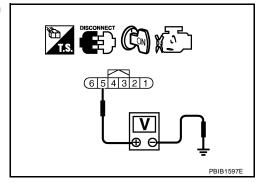

1

K

L

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow (MAF) sensor harness connector.
- 2. Turn ignition switch ON.



Check voltage between MAF sensor terminal 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness for open or short between mass air flow sensor and IPDM E/R
- Harness for open or short between mass air flow sensor and ECM
 - >> Repair harness or connectors.

6. CHECK MAF SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between MAF sensor terminal 4 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

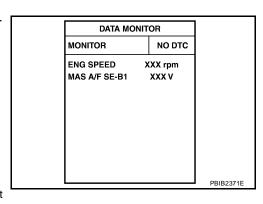
4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

 Check harness continuity between MAF sensor terminal 3 and ECM terminal 51. Refer to Wiring Diagram. 	
Continuity should exist.	E
Also check harness for short to ground and short to power.	
OK or NG	(
OK >> GO TO 8. NG >> Repair open circuit or short to ground or short to power in harness or connectors.	
8. CHECK INTAKE AIR TEMPERATURE SENSOR	ا
Refer to EC-215, "Component Inspection" .	
OK or NG	
OK >> GO TO 9. NG >> Replace intake air temperature sensor.	
9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR	
Refer to EC-471, "Component Inspection" .	
OK or NG	
OK >> GO TO 10. NG >> Replace EVAP control system pressure sensor.	
10. CHECK MASS AIR FLOW SENSOR	
Refer to EC-200, "Component Inspection" .	
<u>OK or NG</u> OK >> GO TO 11.	
NG >> Replace mass air flow sensor.	
11. CHECK INTERMITTENT INCIDENT	
Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	
>> INSPECTION END	
>> IIIOI EOIIOII EIID	

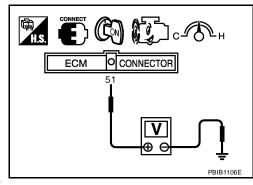

Component Inspection MASS AIR FLOW SENSOR

UBS00P3H

(With CONSULT-II

- Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Connect CONSULT-II and select "DATA MONITOR" mode.
- Select "MAS A/F SE-B1" and check indication under the following conditions.

Condition	MAS A/F SE-B1 (V)
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.3
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 2.0
Idle to about 4,000 rpm	1.0 - 1.3 to Approx. 2.4*


^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

- 5. If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - Crushed air ducts
 - Malfunctioning seal of air cleaner element
 - Uneven dirt of air cleaner element
 - Improper specification of intake air system parts
- b. If NG, repair or replace malfunctioning part and perform step 2 to 4 again. If OK, go to next step.
- 6. Turn ignition switch OFF.
- 7. Disconnect mass air flow sensor harness connector and reconnect it again.
- 8. Perform step 2 to 4 again.
- 9. If NG, clean or replace mass air flow sensor.

⋈ Without CONSULT-II

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.3
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 2.0
Idle to about 4,000 rpm	1.0 - 1.3 to Approx. 2.4*

- *: Check for linear voltage rise in response to engine being increased to about 4,000 rpm.
- 4. If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - Crushed air ducts
 - Malfunctioning seal of air cleaner element
 - Uneven dirt of air cleaner element
 - Improper specification of intake air system parts

- b. If NG, repair or replace malfunctioning part and perform step 2 to 3 again. If OK, go to next step.
- 5. Turn ignition switch OFF.
- 6. Disconnect mass air flow sensor harness connector and reconnect it again.
- 7. Perform step 2 and 3 again.
- 8. If NG, clean or replace mass air flow sensor.

Removal and Installation MASS AIR FLOW SENSOR

Refer to EM-16, "AIR CLEANER AND AIR DUCT" .

EC

Α

UBS00P3I

D

Ε

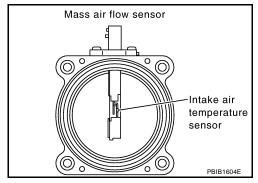
F

Н

ı,

ī

DTC P0102, P0103 MAF SENSOR


PFP:22680

UBS00P3J

Component Description

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. The mass air flow sensor controls the temperature of the hot wire to a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the electric current supplied to hot wire is changed to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II Reference Value in Data Monitor Mode

UBS00P3K

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAS A/F SE-B1	See EC-139, "TROUBLE DIAGNOSIS - SPECIFICATION VALUE".		
	Engine: After warming up	Idle	5% - 35%
CAL/LD VALUE	Shift lever: P or NAir conditioner switch: OFFNo load	2,500 rpm	5% - 35%
	Engine: After warming up	Idle	2.0 - 6.0 g·m/s
MASS AIRFLOW	Shift lever: P or NAir conditioner switch: OFFNo load	2,500 rpm	7.0 - 20.0 g·m/s

On Board Diagnosis Logic

UBS00P3L

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0102 0102	Mass air flow sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor
P0103 0103	Mass air flow sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DTC Confirmation Procedure

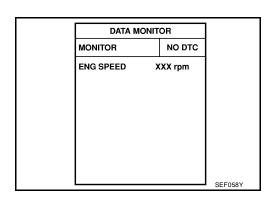
UBS00P3M

Α

EC

Е

Н

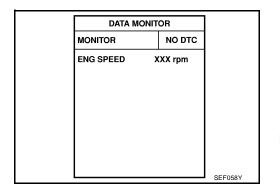

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR DTC P0102

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 5 seconds.
- 4. If DTC is detected, go to EC-205, "Diagnostic Procedure".


With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR DTC P0103

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If DTC is detected, go to <u>EC-205</u>, "<u>Diagnostic Procedure</u>". If DTC is not detected, go to next step.
- 5. Start engine and wait at least 5 seconds.
- If DTC is detected, go to EC-205, "Diagnostic Procedure".

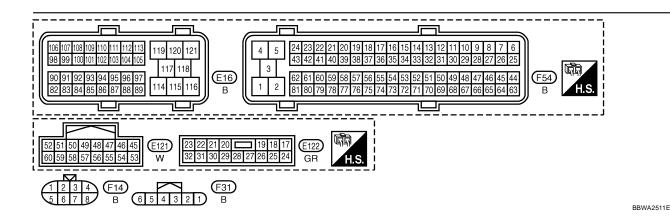
With GST

Follow the procedure "With CONSULT-II" above.

M

Revision: March 2006 EC-203 2007 Quest

Wiring Diagram EC-MAFS-01 **BATTERY** ■: DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE ROOM) 15A 35 REFER TO "PG-POWER". (E121), (E122) ECM RELAY الم 18 w/B R/G E5 F14 ■ R/G ■ 4 ■ R/G R/G 5 MASS AIR FLOW SENSOR (F31) 3 W/L


W/L 51

67

GND-A

ECM

E16 (F54)

R/G

119

111

R/G

120

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
51	W/L	Mass air flow sensor	[Engine is running]Warm-up conditionIdle speed	1.0 - 1.3V	С
31	VV/L	IVIASS All HOW SCHSOI	[Engine is running]Warm-up conditionEngine speed: 2,500 rpm	1.6 - 2.0V	D
67	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V	E
111	W/B	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V	G
		(Ocii Silut-Oii)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)	Н
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	

Diagnostic Procedure

1. INSPECTION START

Which malfunction (P0102 or P0103) is duplicated?

P0102 or P0103

P0102 >> GO TO 2.

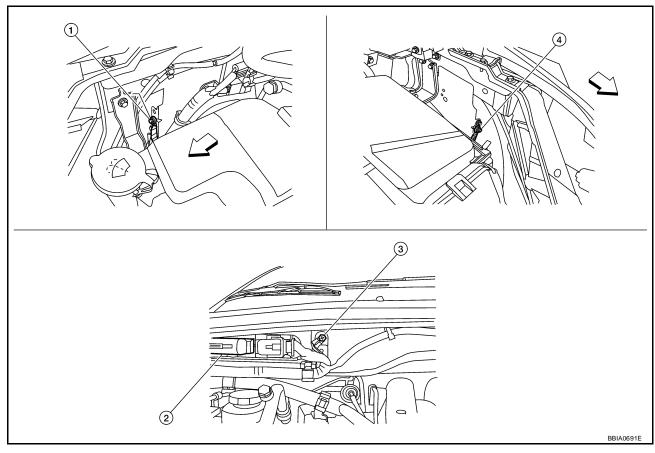
P0103 >> GO TO 3.

2. CHECK INTAKE SYSTEM

Check the following for connection.

- Air duct
- Vacuum hoses
- Intake air passage between air duct and intake manifold

OK or NG


OK >> GO TO 3.

NG >> Reconnect the parts. UBS00P30

Α

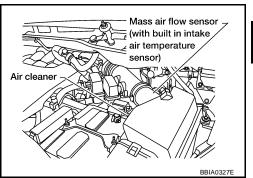
3. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection" .

- 1. Body ground E24
- 2. ECM

3. Body ground E9

4. Body ground E15

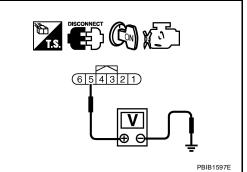

OK or NG

OK >> GO TO 4.

NG >> Repair or replace ground connections.

4. CHECK MAF SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect mass air flow (MAF) sensor harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between MAF sensor terminal 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

>> GO TO 6. OK NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness for open or short between mass air flow sensor and IPDM E/R
- Harness for open or short between mass air flow sensor and ECM

>> Repair harness or connectors.

$6.\,$ check maf sensor ground circuit for open and short

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between MAF sensor terminal 4 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

D

Α

EC

$7.\,$ CHECK MAF SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between MAF sensor terminal 3 and ECM terminal 51. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK MASS AIR FLOW SENSOR

Refer to EC-209, "Component Inspection".

OK or NG

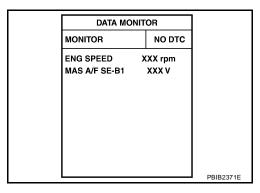
OK >> GO TO 9.

NG >> Replace mass air flow sensor.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection MASS AIR FLOW SENSOR

UBS00P3F

(P) With CONSULT-II

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Connect CONSULT-II and select "DATA MONITOR" mode.
- 4. Select "MAS A/F SE-B1" and check indication under the following conditions.

Condition	MAS A/F SE-B1 (V)
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.3
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 2.0
Idle to about 4,000 rpm	1.0 - 1.3 to Approx. 2.4*

^{*:} Check for linear voltage rise in response to engine being increased to about

- 5. If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.
 - Crushed air ducts
 - Malfunctioning seal of air cleaner element
 - Uneven dirt of air cleaner element
 - Improper specification of intake air system parts
- b. If NG, repair or replace malfunctioning part and perform step 2 to 4 again. If OK, go to next step.
- Turn ignition switch OFF.
- 7. Disconnect mass air flow sensor harness connector and reconnect it again.
- 8. Perform step 2 to 4 again.
- 9. If NG, clean or replace mass air flow sensor.

⋈ Without CONSULT-II

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 51 (Mass air flow sensor signal) and ground.

Condition	Voltage V
Ignition switch ON (Engine stopped.)	Approx. 0.4
Idle (Engine is warmed-up to normal operating temperature.)	1.0 - 1.3
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.6 - 2.0
Idle to about 4,000 rpm	1.0 - 1.3 to Approx. 2.4*

- 4. If the voltage is out of specification, proceed the following.
- a. Check for the cause of uneven air flow through mass air flow sensor. Refer to following.

EC-209

Crushed air ducts

Revision: March 2006

- Malfunctioning seal of air cleaner element
- Uneven dirt of air cleaner element
- Improper specification of intake air system parts

EC

Α

Е

Н

2007 Quest

CONNECTOR **ECM** PBIB1106E

^{*:} Check for linear voltage rise in response to engine being increased to about 4,000 rpm.

- b. If NG, repair or replace malfunctioning part and perform step 2 to 3 again. If OK, go to next step.
- 5. Turn ignition switch OFF.
- 6. Disconnect mass air flow sensor harness connector and reconnect it again.
- 7. Perform step 2 and 3 again.
- 8. If NG, clean or replace mass air flow sensor.

Removal and Installation MASS AIR FLOW SENSOR

UBS00P3Q

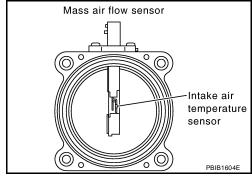
Refer to EM-16, "AIR CLEANER AND AIR DUCT" .

PFP:22630

Component Description

UBS00P3R

Α


EC

Е

Н

The intake air temperature sensor is built-into mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.32	1.800 - 2.200
80 (176)	1.23	0.283 - 0.359

^{*:} This data is reference value and is measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS00P3S

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0112 0112	Intake air temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0113 0113	Intake air temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Intake air temperature sensor

DTC Confirmation Procedure

UBS00P3T

M

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- If 1st trip DTC is detected, go to <u>EC-213</u>, "<u>Diagnostic Procedure</u>"

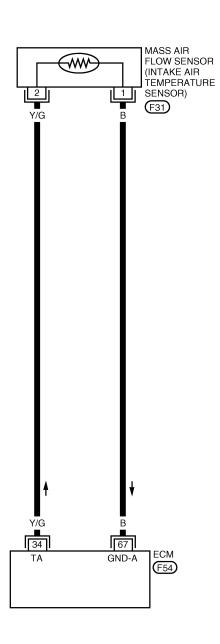
DATA MONITOR

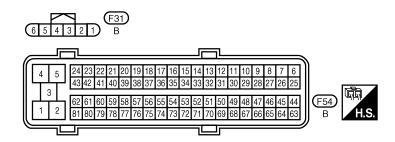
MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

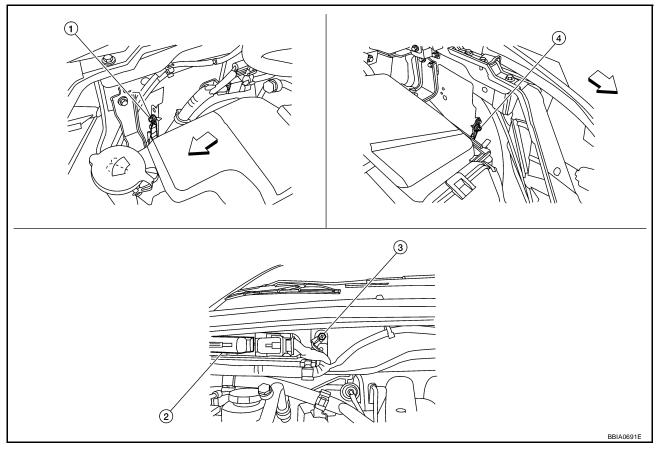

Follow the procedure "WITH CONSULT-II" above.


Wiring Diagram

UBS00P3U

EC-IATS-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC



BBWA2512E

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

Α

UBS00P3V

С

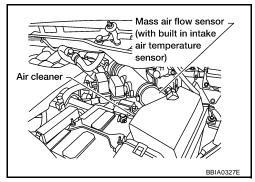
D

Е

1

G

Н

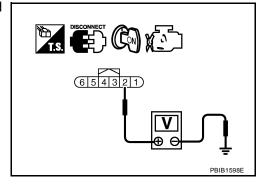

1

K

L

2. CHECK INTAKE AIR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Disconnect mass air flow sensor (intake air temperature sensor is built-into) harness connector.
- 2. Turn ignition switch ON.


Check voltage between mass air flow sensor terminal 2 and ground.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair harness or connectors.

3. Check intake air temperature sensor ground circuit for open and short

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between mass air flow sensor terminal 1 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-215, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace mass air flow sensor (with intake air temperature sensor).

5. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

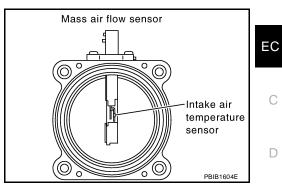
>> INSPECTION END

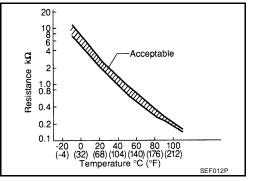
Component Inspection INTAKE AIR TEMPERATURE SENSOR

UBS00P3W

Α

C


 D


Е

1. Check resistance between mass air flow sensor terminals 1 and 2 under the following conditions.

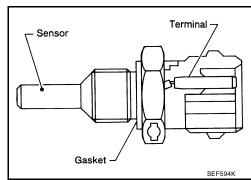
Intake air temperature °C (°F)	Resistance $k\Omega$
25 (77)	1.800 - 2.200

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

Removal and Installation MASS AIR FLOW SENSOR

UBS00P3X

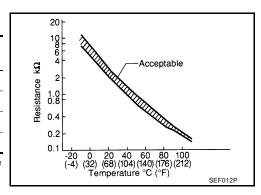
Refer to EM-16, "AIR CLEANER AND AIR DUCT" .


DTC P0117, P0118 ECT SENSOR

PFP:22630

UBS00P3Y

Component Description


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference value and is measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS00P3Z

These self-diagnoses have the one trip detection logic.

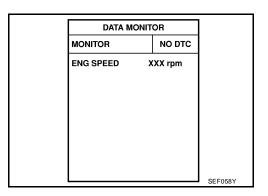
DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P0117 0117	Engine coolant temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0118 0118	Engine coolant temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Engine coolant temperature sensor

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode		
	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch ON or START. CONSULT-II displays the engine coolant temperature decided by ECM.		
Engine coolant temper- ature sensor circuit	Condition	Engine coolant temperature decided (CONSULT-II display)	
	Just as ignition switch is turned ON or START	40°C (104°F)	
	More than approx. 4 minutes after ignition ON or START	80°C (176°F)	
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)	
	When the fail-safe system for engine coolant tempera while engine is running.	ature sensor is activated, the cooling fan operates	

DTC Confirmation Procedure


UBS00P40

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- 4. If DTC is detected, go to EC-219, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

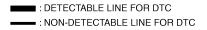
Α

C

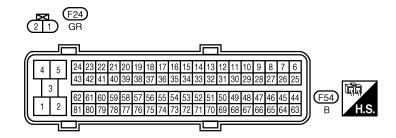
D

Е

G

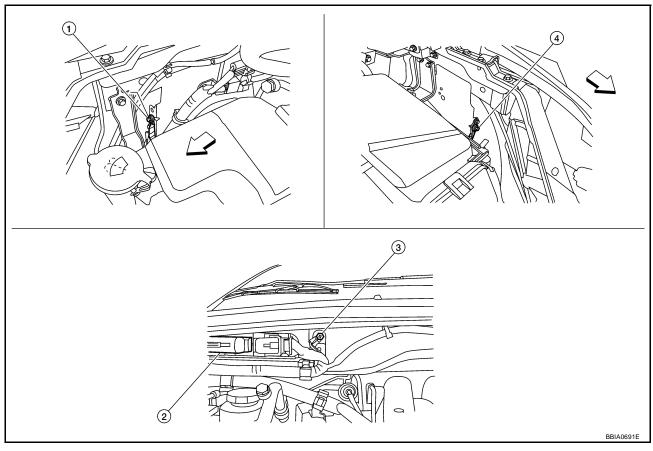

Н

L


Wiring Diagram

JBS00P41

EC-ECTS-01



BBWA2513E

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

Α

UBS00P42

С

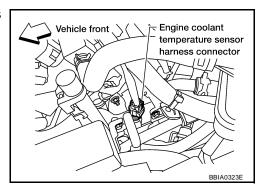
D

Е

F

G

Н


1

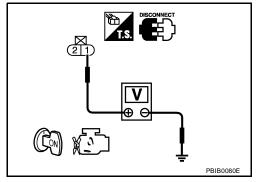
K

L

2. CHECK ECT SENSOR POWER SUPPLY CIRCUIT

- Disconnect engine coolant temperature (ECT) sensor harness connector.
- 2. Turn ignition switch ON.

Check voltage between ECT sensor terminal 1 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK ECT SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECT sensor terminal 2 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-221, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace engine coolant temperature sensor.

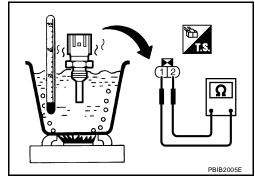
5. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

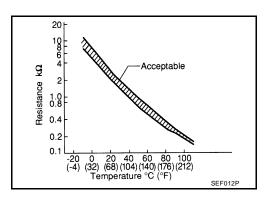
UBS00P43


Α

EC

D

Е


1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

Engine coolant temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

2. If NG, replace engine coolant temperature sensor.

UBS00P44

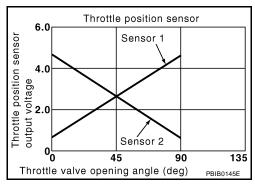
Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to CO-23, "THERMOSTAT AND THERMOSTAT HOUSING".

Н

V

DTC P0122, P0123 TP SENSOR


PFP:16119

UBS00P45

Component Description

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS00P46

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN 2*	(Engine stopped) ● Shift lever: D	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00P47

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0122 0122	Throttle position sensor 2 circuit low input	An excessively low voltage from the TP sensor 2 is sent to ECM.	Harness or connectors (TP sensor 2 circuit is open or shorted.)
P0123 0123	Throttle position sensor 2 circuit high input	An excessively high voltage from the TP sensor 2 is sent to ECM.	 (APP sensor 2 circuit is shorted.) Electric throttle control actuator (TP sensor 2) Accelerator pedal position sensor. (APP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

So, the acceleration will be poor.

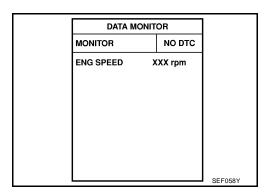
The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

DTC Confirmation Procedure

UBS00P48

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-226, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

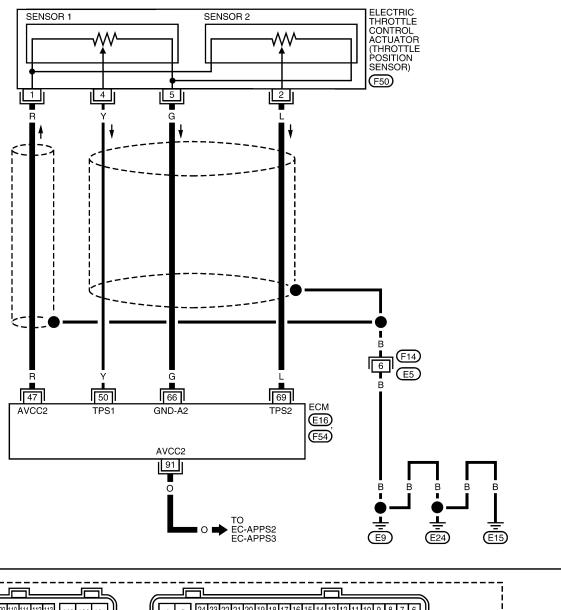
Α

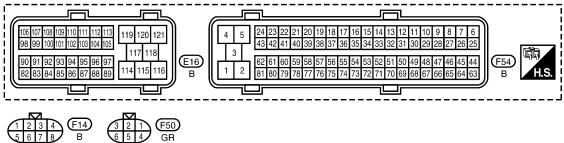
D

Е

0

Н


1


K

Wiring Diagram UBS00P49

EC-TPS2-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

BBWA1604E

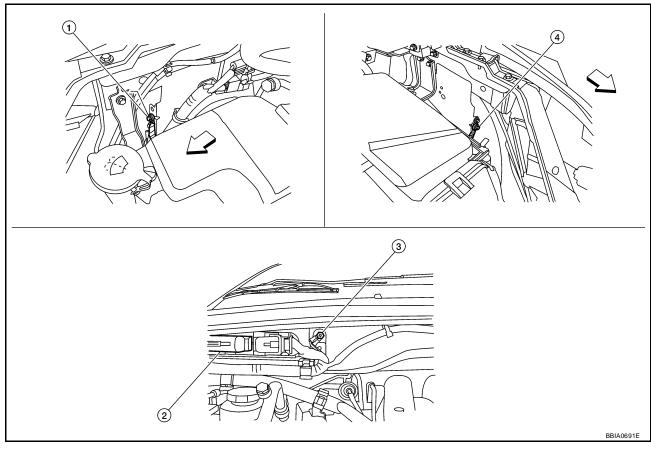
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
47	R	Throttle position sensor power supply	[Ignition switch: ON]	Approximately 5V	С
50	Y	Throttle position concer 1	[Ignition switch: ON]Engine stoppedShift lever: DAccelerator pedal: Fully released	More than 0.36V	D
50	Y	Throttle position sensor 1	[Ignition switch: ON]Engine stoppedShift lever: DAccelerator pedal: Fully depressed	Less than 4.75V	E F
66	G	Throttle position sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	G
		Through position concer 2	[Ignition switch: ON]Engine stoppedShift lever: DAccelerator pedal: Fully released	Less than 4.75V	Н
69	L	Throttle position sensor 2	[Ignition switch: ON]Engine stoppedShift lever: DAccelerator pedal: Fully depressed	More than 0.36V	J
91	0	APP sensor 2 power supply	[Ignition switch: ON]	Approximately 5V	

L


N.

Diagnostic Procedure

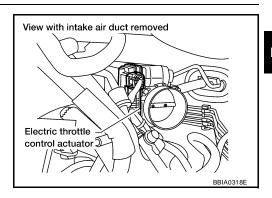
UBS00P4A

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection" .

- 1. Body ground E24
- 4. Body ground E15
- 2. ECM

3. Body ground E9

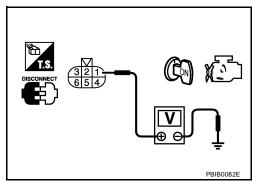

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

$\overline{2}$. CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT-I

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.



Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

>> GO TO 7. OK NG >> GO TO 3.

3. CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 1 and ECM terminal 47. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK THROTTLE POSITION SENSOR 2 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
47	Electric throttle control actuator terminal 1	EC-224
91	APP sensor terminal 6	EC-626

OK or NG

OK >> GO TO 5.

NG >> Repair short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR

Refer to EC-631, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 6.

EC-227 2007 Quest Revision: March 2006

EC

D

Е

Н

6. REPLACE ACCELERATOR PEDAL ASSEMBLY

- 1. Replace accelerator pedal assembly.
- 2. Perform EC-80, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-80, "Throttle Valve Closed Position Learning".
- 4. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK THROTTLE POSITION SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 66 and electric throttle control actuator terminal 5. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$8.\,$ check throttle position sensor 2 input signal circuit for open and short

 Check harness continuity between ECM terminal 69 and electric throttle control actuator terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK THROTTLE POSITION SENSOR

Refer to EC-229, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 10.

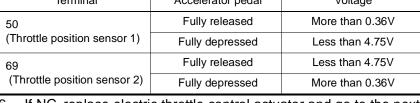
10. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

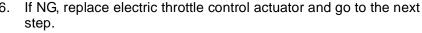
- 1. Replace the electric throttle control actuator.
- 2. Perform EC-80, "Throttle Valve Closed Position Learning".
- 3. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

11. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

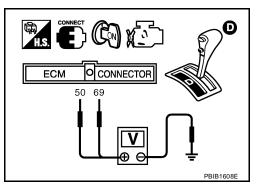

>> INSPECTION END


Component Inspection THROTTLE POSITION SENSOR

UBS00P4B

- Reconnect all harness connectors disconnected.
- 2. Perform EC-80, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- 4. Set shift lever to D position.
- Check voltage between ECM terminals 50 (TP sensor 1 signal), 69 (TP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V



- Perform EC-80, "Throttle Valve Closed Position Learning".
- 8. Perform EC-80, "Idle Air Volume Learning".

Removal and Installation **ELECTRIC THROTTLE CONTROL ACTUATOR**

Refer to EM-18, "INTAKE MANIFOLD COLLECTOR".

EC

Α

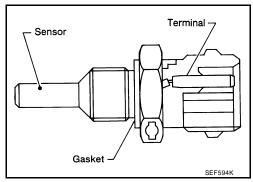
D

Е

LIBSOOP4C

Н

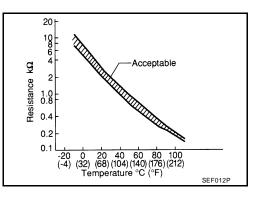
PFP:22630


UBS00P4D

Component Description

NOTE:

If DTC P0125 is displayed with P0117 or P0118, first perform the trouble diagnosis for DTC P0117 or P0118. Refer to EC-216, "DTC P0117, P0118 ECT SENSOR".


The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance kΩ
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} This data is reference value and is measured between ECM terminal 73 (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS00P4E

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0125 0125	Insufficient engine coolant temperature for closed loop fuel control	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	 Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

DTC Confirmation Procedure

UBS00P4F

CAUTION:

Be careful not to overheat engine.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Check that "COOLAN TEMP/S" is above 10°C (50°F). If it is above 10°C (50°F), the test result will be OK. If it is below 10°C (50°F), go to following step.
- Start engine and run it for 65 minutes at idle speed.
 If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.
- 5. If 1st trip DTC is detected, go to <u>EC-232, "Diagnostic Procedure"</u>

DATA MON	ITOR]
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	XXX °C	
		SEF174

WITH GST

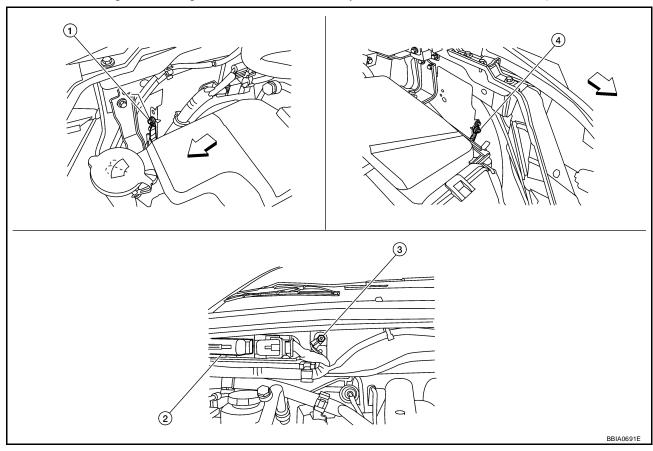
Follow the procedure "WITH CONSULT-II" above.

EC

Α

D

Е


G

Diagnostic Procedure

UBS00P4G

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- Vehicle front
- 1. Body ground E24
- 2. ECM

3. Body ground E9

4. Body ground E15

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK ENGINE COOLANT TEMPERATURE SENSOR

Refer to EC-233, "Component Inspection".

OK or NG

OK >> GO TO 3.

NG >> Replace engine coolant temperature sensor.

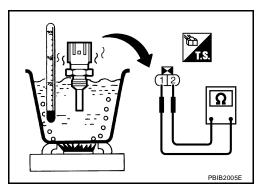
3. CHECK THERMOSTAT OPERATION

When the engine is cold [lower than 70°C (158°F)] condition, grasp lower radiator hose and confirm the engine coolant does not flow.

OK or NG

OK >> GO TO 4.

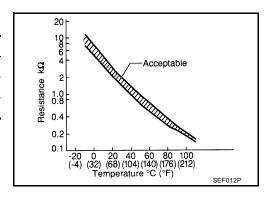
NG >> Repair or replace thermostat. Refer to CO-23, "THERMOSTAT AND THERMOSTAT HOUSING".


4. CHECK INTERMITTENT INCIDENT

Refer to $\underline{\text{EC-}149}$, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" . Refer to $\underline{\text{EC-}218}$, "Wiring Diagram" .

>> INSPECTION END

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR


1. Check resistance between engine coolant temperature sensor terminals 1 and 2 as shown in the figure.

<Reference data>

Engine coolant temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

2. If NG, replace engine coolant temperature sensor.

UBS00P4I

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to CO-23, "THERMOSTAT AND THERMOSTAT HOUSING" .

M

EC

D

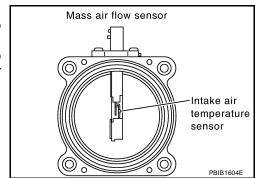
Е

Н

UBS00P4H

Revision: March 2006 EC-233 2007 Quest

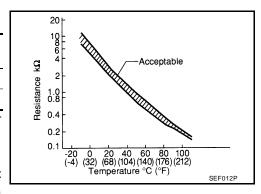
DTC P0127 IAT SENSOR


PFP:22630

UBS00P4J

Component Description

The intake air temperature sensor is built into mass air flow sensor. The sensor detects intake air temperature and transmits a signal to the ECM.


The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

Intake air temperature °C (°F)	Voltage* V	Resistance kΩ
25 (77)	3.32	1.800 - 2.200
80 (176)	1.23	0.283 - 0.359

^{*:} This data is reference value and is measured between ECM terminal 34 (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS00P4K

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0127 0127	Intake air temperature too high	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	Harness or connectors (The sensor circuit is open or shorted)Intake air temperature sensor

DTC Confirmation Procedure

UBS00P4L

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

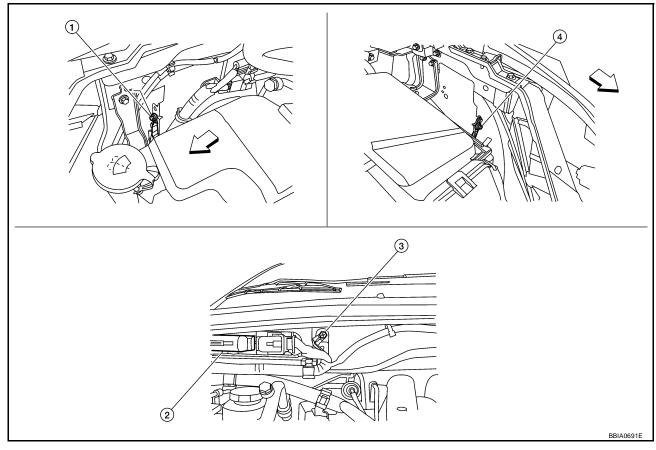
This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-II

- 1. Wait until engine coolant temperature is less than 90°C (194°F)
- a. Turn ignition switch ON.

DTC P0127 IAT SENSOR

- Select "DATA MONITOR" mode with CONSULT-II.
- Check the engine coolant temperature. C.
- If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch OFF and cool down engine.
 - Perform the following steps before engine coolant temperature is above 90°C (194°F).
- 2. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II. 3.
- 4. Start engine.
- 5. Hold vehicle speed at more than 70 km/h (43 MPH) for 100 consecutive seconds.
- If 1st trip DTC is detected, go to EC-235, "Diagnostic Procedure".


WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- Vehicle front <⊅:
- Body ground E24 1.
- **ECM** 2.

Body ground E9

4. Body ground E15

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC-235 2007 Quest Revision: March 2006

EC

Α

DATA MONITOR

VHCL SPEED SE XXX km/h

XXX rpm

XXX °C

XXX msec

MONITOR

ENG SPEED

COOLAN TEMP/S

B/FUEL SCHDL

Е

UBS00P4M

Н

DTC P0127 IAT SENSOR

2. CHECK INTAKE AIR TEMPERATURE SENSOR

Refer to EC-236, "Component Inspection".

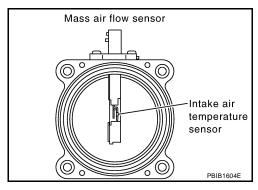
OK or NG

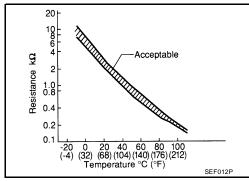
OK >> GO TO 3.

NG >> Replace mass air flow sensor (with intake air temperature sensor).

3. CHECK INTERMITTENT INCIDENT

Refer to <u>EC-149</u>, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" . Refer to <u>EC-212</u>, "Wiring Diagram" .


>> INSPECTION END


Component Inspection INTAKE AIR TEMPERATURE SENSOR

1. Check resistance between intake air temperature sensor terminals 5 and 6 under the following conditions.

Intake air temperature °C (°F)	Resistance $k\Omega$
25 (77)	1.800 - 2.200

2. If NG, replace mass air flow sensor (with intake air temperature sensor).

Removal and Installation MASS AIR FLOW SENSOR

Refer to EM-16, "AIR CLEANER AND AIR DUCT" .

UBS00P40

UBS00P4N

DTC P0128 THERMOSTAT FUNCTION

DTC P0128 THERMOSTAT FUNCTION

PFP:21200

On Board Diagnosis Logic

UBS00P4P

Α

EC

Engine coolant temperature has not risen enough to open the thermostat even though the engine has run long enough.

DTC detecting condition

The engine coolant temperature does not

the engine has run long enough.

reach to specified temperature even though

This is due to a leak in the seal or the thermostat stuck open.

Possible cause	
Thermostat	
Leakage from sealing portion of thermo-	
stat	

Engine coolant temperature sensor

•

DTC Confirmation Procedure

Thermostat function

Trouble diagnosis name

UBS00P4Q

NOTE:

P0128

0128

DTC No.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform at ambient temperature of -10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of -10°C (14°F) to 60°C (140°F).

(A) WITH CONSULT-II

Н

Е

F

- 1. Replace thermostat with new one. Refer to CO-23, "THERMOSTAT AND THERMOSTAT HOUSING". Use only a genuine NISSAN thermostat as a replacement. If an incorrect thermostat is used, the MIL may come on.
- 2. Turn ignition switch ON.
- Select "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.
- Check that the "COOLAN TEMP/S" is above 60°C (140°F). If it is below 60°C (140°F), go to following step. If it is above 60°C (140°F), cool down the engine to less than 60°C (140°F), then retry from step 1.
- Drive vehicle for 10 consecutive minutes under the following conditions.

VHCL SPEED SE	80 - 120 km/h (50 - 75 MPH)

If 1st trip DTC is detected, go to EC-237, "Diagnostic Procedure".

WITH GST

1. Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

M

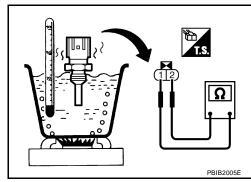
CHECK ENGINE COOLANT TEMPERATURE SENSOR

UBS00P4R

Refer to EC-238, "Component Inspection".

OK or NG

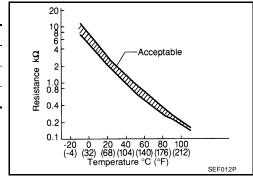
OK >> INSPECTION END


NG >> Replace engine coolant temperature sensor.

DTC P0128 THERMOSTAT FUNCTION

Component Inspection ENGINE COOLANT TEMPERATURE SENSOR

UBS00P4S


1. Check resistance between engine coolant temperature sensor terminals 1 and 2.

<Reference data>

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.0
90 (194)	0.236 - 0.260

2. If NG, replace engine coolant temperature sensor.

Removal and Installation ENGINE COOLANT TEMPERATURE SENSOR

Refer to CO-23, "THERMOSTAT AND THERMOSTAT HOUSING".

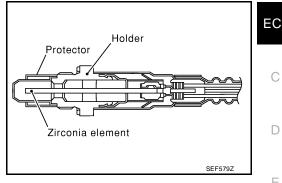
UBS00P4T

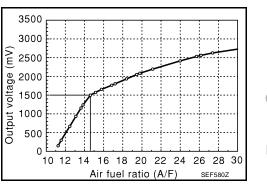
PFP:22693

Component Description

UBS00P4U

Α


Е


The A/F sensor is a planar dual-cell limit current sensor. The sensor element of the A/F sensor is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement $\lambda = 1$, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 <

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygenpump cell so that the composition of the exhaust gas in the diffusion gap remains constant at $\lambda = 1$. Therefore, the A/F sensor is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00P4V

Specification data are reference values.

MONITOR ITEM	CONI	SPECIFICATION	
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/ F) sensor 1 signal fluctuates according to fuel feedback control.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible Cause
P0130 0130 (Bank 1)	Air fuel ratio (A/F) sensor 1	A)	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly in the range other than approx. 1.5V.	Harness or connectors (The A/F sensor 1 circuit is open
P0150 0150 (Bank 2)	circuit	B)	The A/F signal computed by ECM from the A/F sensor 1 signal is constantly approx. 1.5V.	or shorted.) • Air fuel ratio (A/F) sensor 1

DTC Confirmation Procedure

LIBSOOP4X

M

Perform PROCEDURE FOR MALFUNCTION A first.

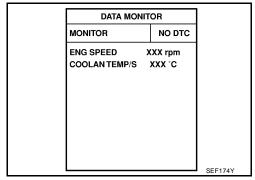
If the DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

PROCEDURE FOR MALFUNCTION A


With CONSULT-II

Start engine and warm it up to normal operating temperature.

EC-239 Revision: March 2006 2007 Quest

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Let engine idle for 2 minutes.
- 4. If 1st trip DTD is detected, go to EC-246, "Diagnostic Procedure"

"

With GST

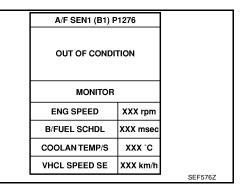
Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION B

CAUTION:

Always drive vehicle at a safe speed.

(P) With CONSULT-II

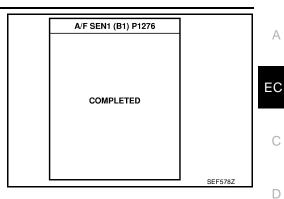

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "A/F SEN1 (B1)" or "A/F SEN1 (B2)" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check "A/F SEN1 (B1)" or "A/F SEN1 (B2)" indication.

 If the indication is constantly approx. 1.5V and does not fluctuates, go to EC-246, "Diagnostic Procedure".

 If the indication fluctuates around 1.5V, go to next step.
- 4. Select "A/F SEN1 (B1) P1276" (for DTC P0130) or "A/F SEN1 (B2) P1286" (for DTC P0150) of "A/F SEN1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5. Touch "START".
- When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen.

ENG SPEED	1,100 - 3,200 rpm
VHCL SPEED SE	More than 64 km/h (40 MPH)
B/FUEL SCHDL	1.0 - 8.0 msec
Shift lever	D position with "OD" OFF

If "TESTING" is not displayed after 20 seconds, retry from step 2.


7. Release accelerator pedal fully.

NOTE:

Never apply brake during releasing the accelerator pedal.

A/F SEN1 (B1) P		
TESTING		
SELECT 3RD GEAR A		
MONITOR		
ENG SPEED		
B/FUEL SCHDL		
COOLAN TEMP/S		
VHCL SPEED SE		
		SEF577Z

- Make sure that "TESTING" changes to "COMPLETED". If "TESTING" changed to "OUT OF CONDITION", retry from step 6.
- 9. Make sure that "OK" is displayed after touching "SELF-DIAG RESULT".
 - If "NG" is displayed, go to EC-246, "Diagnostic Procedure".

Overall Function Check

Use this procedure to check the overall function of the A/F sensor 1 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Drive the vehicle at a speed of 80 km/h (50 MPH) for a few minutes in the suitable gear position.
- 3. Set D position with "OD" OFF, then release the accelerator pedal fully until the vehicle speed decreases to 50 km/h (30 MPH).

NOTE:

Never apply brake during releasing the accelerator pedal.

- 4. Repeat steps 2 to 3 five times.
- 5. Stop the vehicle and turn ignition switch OFF.
- 6. Wait at least 10 seconds and restart engine.
- 7. Repeat steps 2 to 3 five times.
- Stop the vehicle and connect GST to the vehicle. 8.
- Make sure that no DTC is displayed. If 1st trip DTC is displayed, go to EC-246, "Diagnostic Procedure".

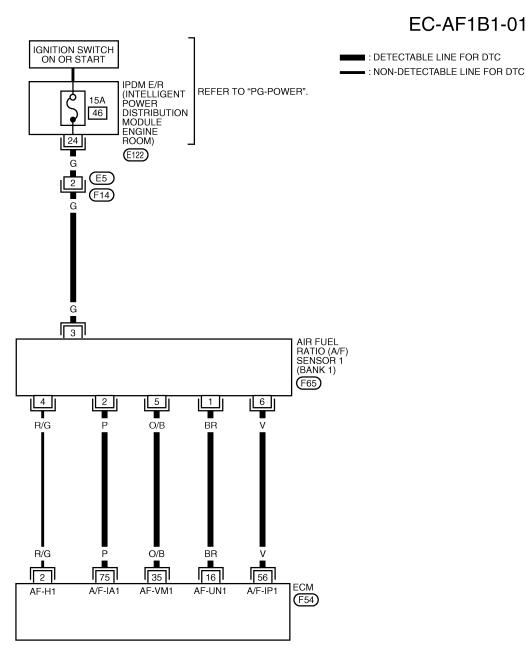
D

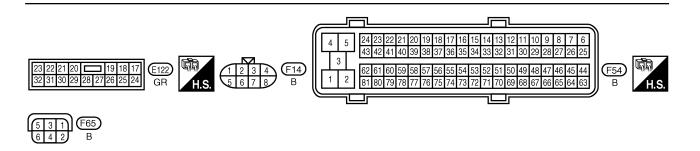
Е

F

Н

Α


M


EC-241 Revision: March 2006 2007 Quest

Wiring Diagram BANK 1

UBS00P4Z

EC-AF1B1-01

BBWA2503E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

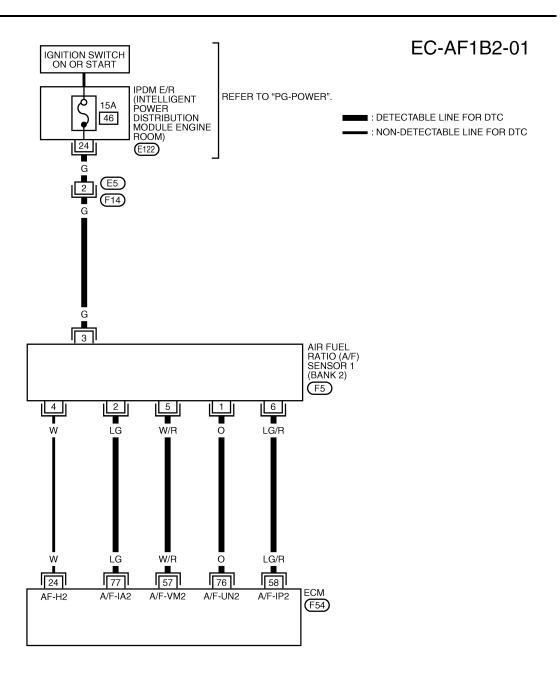
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

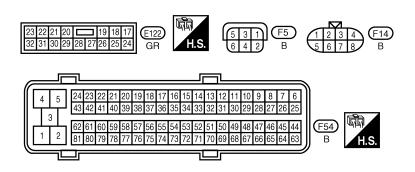
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	R/G	A/F sensor 1 heater (Bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ 2010.0V/Div 10 ms/Div T PBIB1584E
16	BR		re	Approximately 3.1V
35	O/B	A/F sensor 1 (Bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V
56	V	AN SCHOOL (DOUK I)	Idle speed	Approximately 2.3V
75	Р			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

Α


D


Е

Н

|

BANK 2

BBWA2504E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	W	A/F sensor 1 heater (Bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
57	W/R			Approximately 2.6V
58	LG/R	A/F sensor 1 (Bank 2)	[Engine is running] • Warm-up condition	Approximately 2.3V
76	0	TVI SCHSULL (Dallik 2)	Idle speed	Approximately 3.1V
77	LG			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

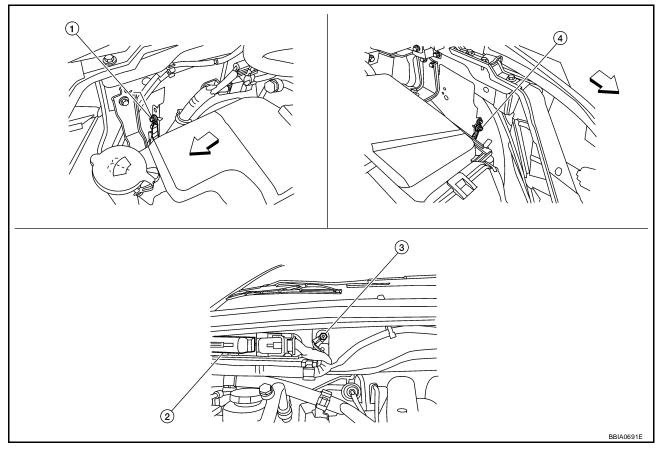
Α

C

D

Е

Н


1

L

Diagnostic Procedure

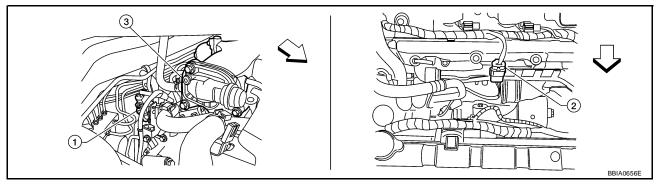
1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- Body ground E24
 - 2. ECM Body ground E15

Body ground E9

UBS00P50

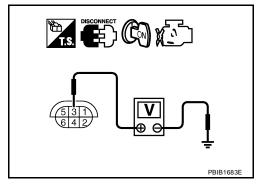

OK or NG

>> GO TO 2. OK

NG >> Repair or replace ground connections.

$2. \ \, \text{CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT}$

1. Disconnect air fuel ratio (A/F) sensor 1 harness connector.



- Vehicle front
- Air fuel ratio (A/F) sensor 1 (bank 1)
 Air fuel ratio (A/F) sensor 1 (bank 2)
 Intake manifold collector harness connector
- Turn ignition switch ON.
- Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- IPDM E/R harness connector E122
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse
 - >> Repair or replace harness or connectors.

EC

С

D

Е

F

G

Н

<

L

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal	
	1	16	
Bank1	2	75	
Danki	5	35	
	6	56	
Bank 2	1	76	
	2	77	
	5	57	
	6	58	

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bai	nk 1	Bai	nk 2
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK INTERMITTENT INCIDENT

Perform EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> GO TO 6.

NG >> Repair or replace.

6. REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace malfunctioning air fuel ratio (A/F) sensor 1.

CALITION:

- Discard any air fuel ratio (A/F) sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new air fuel ratio (A/F) sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

Removal and Installation AIR FUEL RATIO (A/F) SENSOR 1

UBS00P51

Refer to EM-26, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

EC

Α

С

D

Е

F

G

Н

1

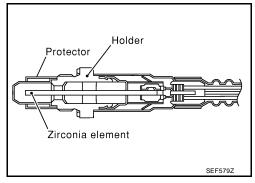
J

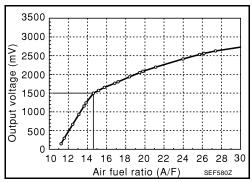
K

L

PFP:22693

Component Description


UBS00P52


The A/F sensor is a planar dual-cell limit current sensor. The sensor element of the A/F sensor is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00P53

Specification data are reference values.

MONITOR ITEM	CONI	DITION	SPECIFICATION
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

UBS00P54

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal is not inordinately low.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P0131 0131 (Bank 1)	Air fuel ratio (A/F) sensor 1	The A/F signal computed by ECM from the	 Harness or connectors (The A/F sensor 1 circuit is open or shorted.) Air fuel ratio (A/F) sensor 1
P0151 0151 (Bank 2)	circuit low voltage	A/F sensor 1 signal is constantly approx. 0V.	

DTC Confirmation Procedure

UBS00P55

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

WITH CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Select "A/F SEN1 (B1)" or "A/F SEN1 (B2)" in "DATA MONITOR" mode with CONSULT-II.

Check "A/F SEN1 (B1)" or "A/F SEN1 (B2)" indication.
 If the indication is constantly approx. 0V, go to <u>EC-256</u>, "Diagnostic Procedure".

If the indication is not constantly approx. 0V, go to next step.

- 4. Turn ignition switch OFF, wait at least 10 seconds and then restart engine.
- 5. Drive and accelerate vehicle to more than 40 km/h (25 MPH) within 20 seconds after restarting engine.
- Maintain the following conditions for about 20 consecutive seconds.

ENG SPEED	1,000 - 3,200 rpm
VHCL SPEED SE	More than 40 km/h (25 MPH)
B/FUEL SCHDL	1.5 - 9.0 msec
Gear position	Suitable position

DATA MONITOR	
MONITOR	NO DTC
COOLAN TEMP/S	CXX rpm XXX °C XXX V

D

Α

EC

Е

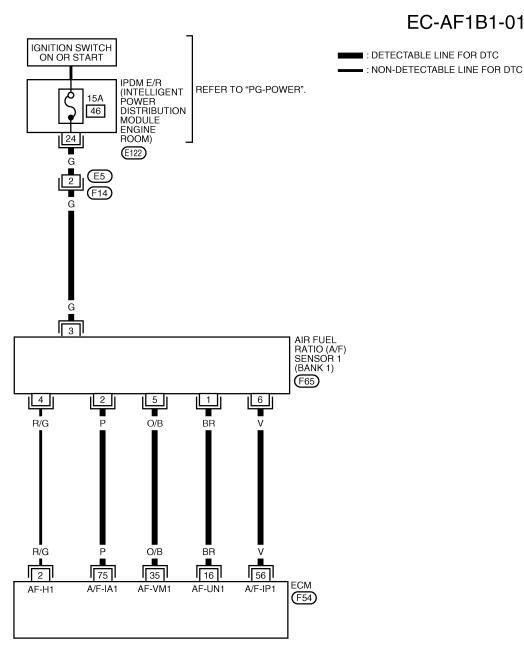
NOTE:

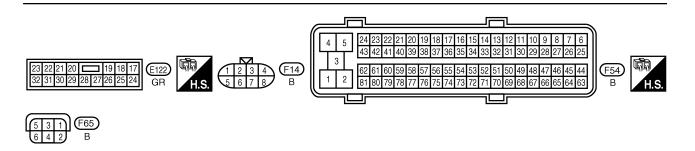
- Keep the accelerator pedal as steady as possible during the cruising.
- If this procedure is not completed within 1 minute after restarting engine at step 4, return to step 4.
- 7. If 1st trip DTC is displayed, go to <u>EC-256</u>, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Н


K


L

Wiring Diagram BANK 1

UBS00P56

EC-AF1B1-01

BBWA2503E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

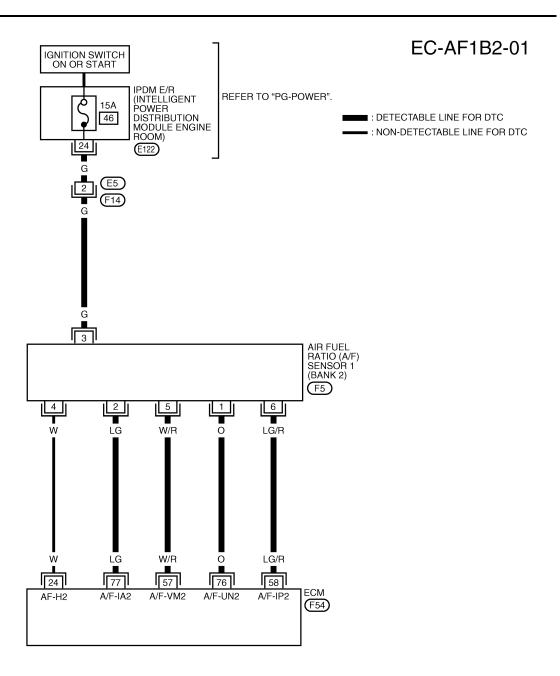
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	R/G	A/F sensor 1 heater (Bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	BR		[Engine is running] • Warm-up condition • Idle speed	Approximately 3.1V
35	O/B	A/F sensor 1 (Bank 1)		Approximately 2.6V
56	V			Approximately 2.3V
75	Р			Approximately 2.3V

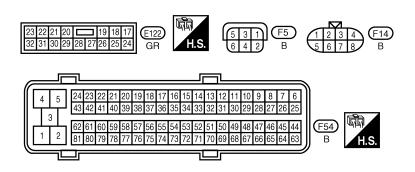
^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

D E

Α

EC


G


Н

J

K

BANK 2

BBWA2504E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	W	A/F sensor 1 heater (Bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
57	W/R			Approximately 2.6V
58	LG/R	A/F sensor 1 (Rank 2)	[Engine is running] • Warm-up condition	Approximately 2.3V
76	0	A/F sensor 1 (Bank 2)	Idle speed	Approximately 3.1V
77	LG			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

D E

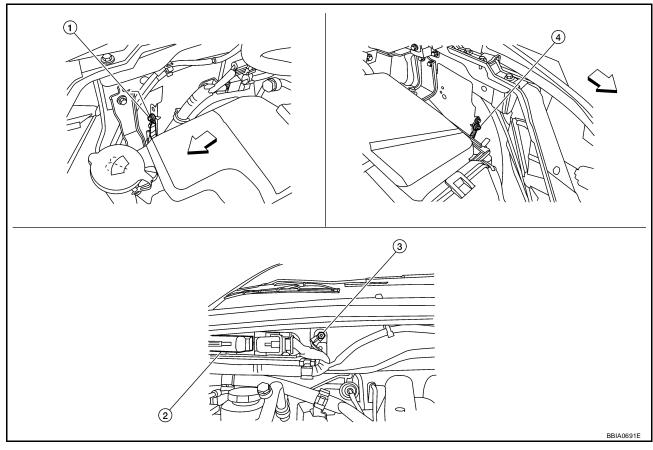
Α

EC

G

Н

J


K

Diagnostic Procedure

UBS00P57

1. CHECK GROUND CONNECTIONS

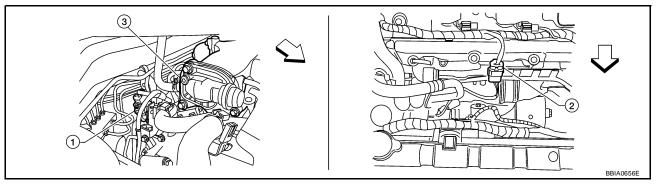
- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

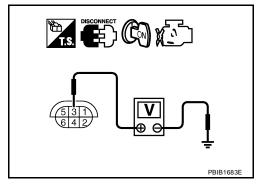

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect air fuel ratio (A/F) sensor 1 harness connector.



- Vehicle front
- Air fuel ratio (A/F) sensor 1 (bank 1)
 Air fuel ratio (A/F) sensor 1 (bank 2)
 Intake manifold collector harness connector
- Turn ignition switch ON.
- 3. Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- IPDM E/R harness connector E122
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse
 - >> Repair or replace harness or connectors.

EC

С

D

Е

F

G

Н

1

K

L

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal	
	1	16	
Bank1	2	75	
Daliki	5	35	
	6	56	
	1	76	
Bank 2	2	77	
Dalik 2	5	57	
	6	58	

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bai	nk 1	Bank 2		
A/F sensor 1 terminal ECM terminal		A/F sensor 1 terminal	ECM terminal	
1	16	1	76	
2	75	2	77	
5	35	5	57	
6	56	6	58	

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK INTERMITTENT INCIDENT

Perform EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> GO TO 6.

NG >> Repair or replace.

6. REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace malfunctioning air fuel ratio (A/F) sensor 1.

CALITION:

- Discard any air fuel ratio (A/F) sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new air fuel ratio (A/F) sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

Removal and Installation AIR FUEL RATIO (A/F) SENSOR 1

UBS00P58

Refer to EM-26, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

EC

Α

С

D

Е

F

G

Н

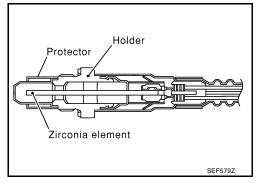
J

K

L

PFP:22693

Component Description


UBS00P59

The A/F sensor is a planar dual-cell limit current sensor. The sensor element of the A/F sensor is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00P5A

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

UBS00P5E

To judge the malfunction, the diagnosis checks that the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal is not inordinately high.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P0132 0132 (Bank 1)	Air fuel ratio (A/F) sensor 1	The A/F signal computed by ECM from the A/F	Harness or connectors (The A/F sensor 1 circuit is open or
P0152 0152 (Bank 2)	circuit high voltage	sensor 1 signal is constantly approx. 5V.	shorted.) • Air fuel ratio (A/F) sensor 1

DTC Confirmation Procedure

LIBSOOP5C

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

WITH CONSULT-II

- Start engine and warm it up to normal operating temperature.
- 2. Select "A/F SEN1 (B1)" or "A/F SEN1 (B2)" in "DATA MONITOR" mode with CONSULT-II.

Check "A/F SEN1 (B1)" or "A/F SEN1 (B2)" indication. If the indication is constantly approx. 5V, go to EC-266, "Diagnostic Procedure".

If the indication is not constantly approx. 5V, go to next step.

- 4. Turn ignition switch OFF, wait at least 10 seconds and then restart engine.
- 5. Drive and accelerate vehicle to more than 40 km/h (25 MPH) within 20 seconds after restarting engine.
- 6. Maintain the following conditions for about 20 consecutive seconds.

ENG SPEED	1,000 - 3,200 rpm
VHCL SPEED SE	More than 40 km/h (25 MPH)
B/FUEL SCHDL	1.5 - 9.0 msec
Gear position	Suitable position

DATA MON	ITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm
COOLAN TEMP/S	XXX °C
A/F SEN1 (B1)	XXX V

EC

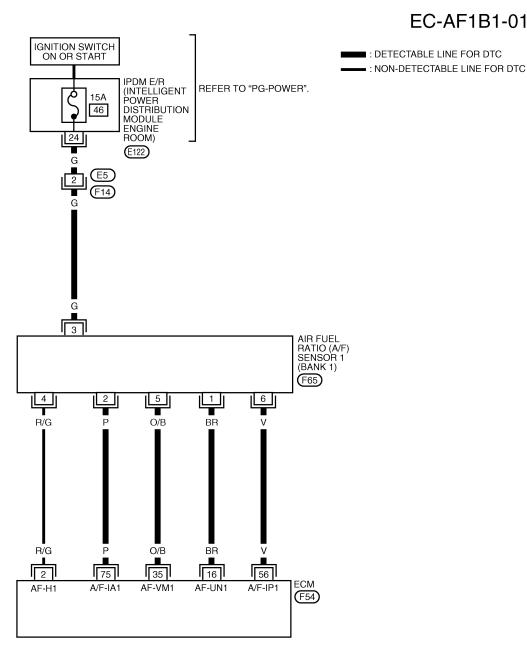
Α

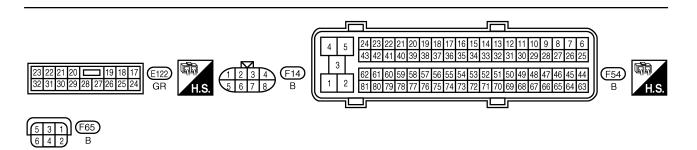
Е

NOTE:

- Keep the accelerator pedal as steady as possible during the cruising.
- If this procedure is not completed within 1 minute after restarting engine at step 4, return to step
- 7. If 1st trip DTC is displayed, go to <u>EC-266, "Diagnostic Procedure"</u>.

WITH GST


Follow the procedure "WITH CONSULT-II" above.


Н

Wiring Diagram BANK 1

UBS00P5D

EC-AF1B1-01

BBWA2503E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

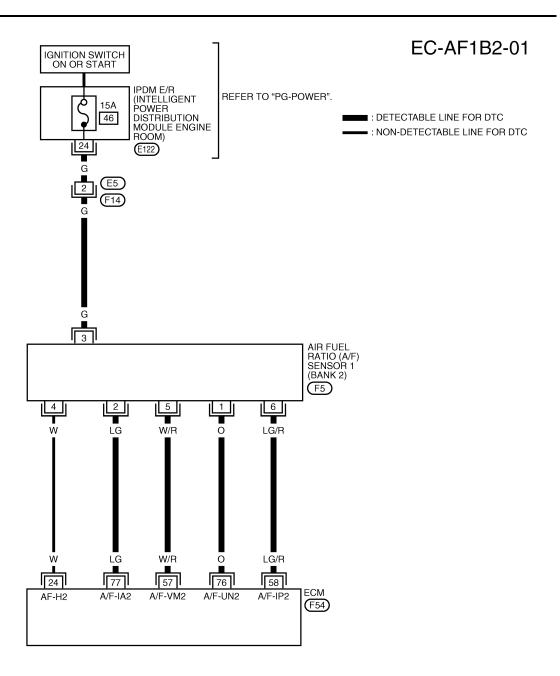
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

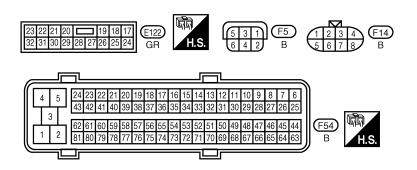
TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	R/G	A/F sensor 1 heater (Bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	BR		[Engine is running] • Warm-up condition • Idle speed	Approximately 3.1V
35	O/B	A/F sensor 1 (Bank 1)		Approximately 2.6V
56	V			Approximately 2.3V
75	Р			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

D E

Α


EC


G

Н

L

BANK 2

BBWA2504E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	W	A/F sensor 1 heater (Bank 2)	[Engine is running] ■ Warm-up condition ■ Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
57	W/R			Approximately 2.6V
58	LG/R	A/F sensor 1 (Bank 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 2.3V
76	0	AVI SCIISUI I (Dalik 2)		Approximately 3.1V
77	LG		2 .3.3 3,334	Approximately 2.3V

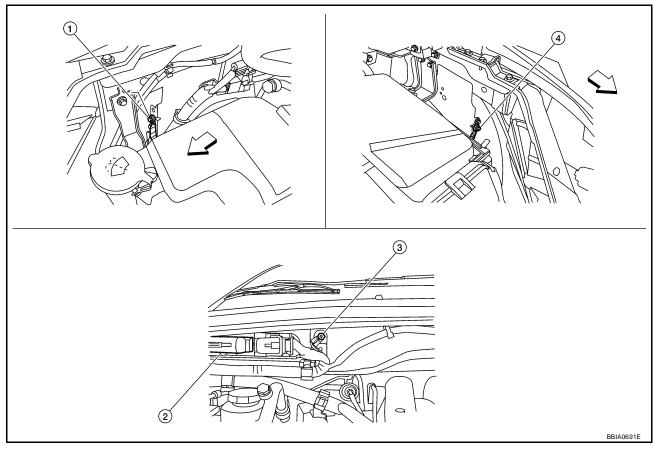
^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

Α

 D

Е


Н

Diagnostic Procedure

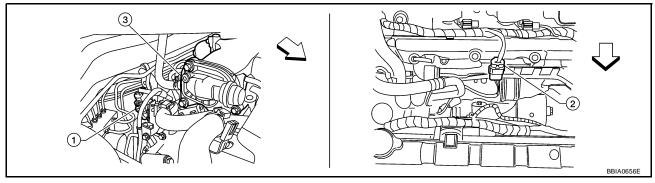
UBS00P5E

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- Body ground E24 1.
 - 2. ECM Body ground E15

Body ground E9

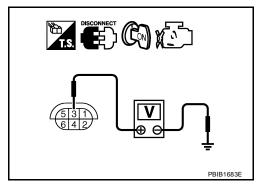

OK or NG

>> GO TO 2. OK

NG >> Repair or replace ground connections.

2. CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

1. Disconnect air fuel ratio (A/F) sensor 1 harness connector.



- Vehicle front
- Air fuel ratio (A/F) sensor 1 (bank 1)
 Air fuel ratio (A/F) sensor 1 (bank 2)
 Intake manifold collector harness connector
- Turn ignition switch ON.
- Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- IPDM E/R harness connector E122
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse
 - >> Repair or replace harness or connectors.

EC

С

D

Е

F

G

Н

K

L

4. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank1	2	75
Daliki	5	35
	6	56
	1	76
Bank 2	2	77
Dailk 2	5	57
	6	58

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Ba	nk 1	Bank 2		
A/F sensor 1 terminal ECM terminal		A/F sensor 1 terminal	ECM terminal	
1	16	1	76	
2	75	2	77	
5	35	5	57	
6	56	6	58	

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK INTERMITTENT INCIDENT

Perform EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> GO TO 6.

NG >> Repair or replace.

6. REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace malfunctioning air fuel ratio (A/F) sensor 1.

CAUTION:

- Discard any air fuel ratio (A/F) sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new air fuel ratio (A/F) sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

Removal and Installation AIR FUEL RATIO (A/F) SENSOR 1

UBS00P5F

Refer to EM-26, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

EC

Α

С

D

Е

F

G

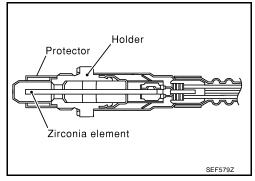
Н

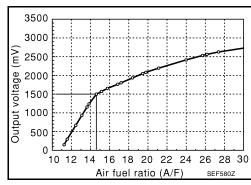
K

L

PFP:22693

Component Description


UBS00P5G


The A/F sensor is a planar dual-cell limit current sensor. The sensor element of the A/F sensor is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00P5H

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

UBS00P5

To judge the malfunction of air fuel ratio (A/F) sensor 1, this diagnosis measures response time of the A/F signal computed by ECM from the air fuel ration (A/F) sensor 1 signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and the air fuel ration (A/F) sensor 1 temperature index. Judgment is based on whether the compensated time (the A/F signal cycling time index) is inordinately long or not.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P0133 0133 (Bank 1) P0153 0153 (Bank 2)	Air fuel ratio (A/F) sensor 1 circuit slow response	The response of the A/F signal computed by ECM from A/F sensor 1 signal takes more than the specified time.	 Harness or connectors (The A/F sensor 1 circuit is open or shorted.) Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) sensor 1 heater Fuel pressure Fuel injector Intake air leaks Exhaust gas leaks PCV

DTC Confirmation Procedure

RS00P5.I

Α

EC

D

Е

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

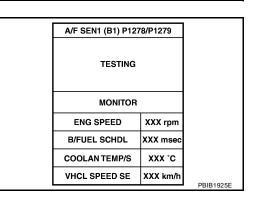
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(A) WITH CONSULT-II

Touch "START".

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1minute under no load.
- 4. Let engine idle for 1 minute.
- Select "A/F SEN1(B1) P1278/P1279" (for DTC P0133) or "A/F SEN1(B1) P1288/P1289" (for DTC P0153) of "A/F SEN1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- If "COMPLETED" appears on CONSULT-II screen, go to step 10.
 If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.


A/F SEN1 (B1) P12	78/P1279	
OUT OF CONDI		
MONITOR		
ENG SPEED XXX rpm		
B/FUEL SCHDL XXX msec		
COOLAN TEMP/S XXX °C		
VHCL SPEED SE	XXX km/h	DD1D07555
ENG SPEED B/FUEL SCHDL COOLAN TEMP/S	XXX msec	PBIB0756E

- 7. After perform the following procedure, "TESTING" will be displayed on the CONSULT-II screen.
- a. Increase the engine speed up to 4,000 to 5,000 rpm and keep it for 10 seconds.
- b. Fully release accelerator pedal and then let engine idle for about 10 seconds.
 - If "TESTING" is not displayed after 10 seconds, refer to <u>EC-139</u>, "TROUBLE DIAGNOSIS SPECIFICATION VALUE".
- 8. Wait for about 20 seconds at idle at under the condition that "TESTING" is displayed on the CONSULT-II screen.

9.	Make sure that "TESTING" changes to "COMPLETED".
	If "TESTING" changed to "OUT OF CONDITION", refer to
	EC-139, "TROUBLE DIAGNOSIS - SPECIFICATION VALUE"

10. Make sure that "OK" is displayed after touching "SELF-DIAG RESULT".

If "NG" is displayed, go to EC-277, "Diagnostic Procedure".

A/F SEN1 (B1) P1278/P1279

COMPLETED

PBIB0758E

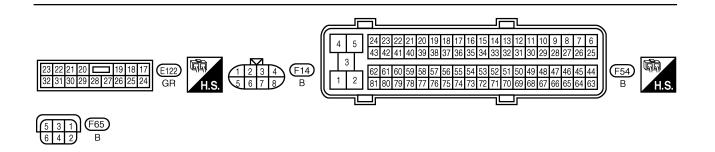
Н

M

Revision: March 2006 EC-271 2007 Quest

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select Service \$01 with GST.
- 3. Calculate the total value of "Short term fuel trim" and "Long term fuel trim" indications. Make sure that the total percentage should be within $\pm 15\%$.


If OK, go to the following step.

If NG, check the following.

- Intake air leaks
- Exhaust gas leaks
- Incorrect fuel pressure
- Lack of fuel
- Fuel injectors
- Incorrect PCV hose connection
- PCV valve
- Mass air flow sensor
- 4. Turn ignition switch OFF and wait at least 10 seconds.
- 5. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1minute under no load.
- 6. Let engine idle for 1 minute.
- 7. Increase the engine speed up to 4,000 to 5,000 rpm and keep it for 10 seconds.
- 8. Fully release accelerator pedal and then let engine idle for about 1 minute.
- 9. Select Service \$07 with GST.

If 1st trip DTC is detected, go to EC-277, "Diagnostic Procedure".

DTC P0133, P0153 A/F SENSOR 1 Wiring Diagram BANK 1 UBS00P5K Α EC-AF1B1-01 IGNITION SWITCH ON OR START EC ■: DETECTABLE LINE FOR DTC ■ : NON-DETECTABLE LINE FOR DTC IPDM E/R (INTELLIGENT POWER DISTRIBUTION REFER TO "PG-POWER". 15A C 46 MODULE ENGINE ROOM) (E122) D Е 3 AIR FUEL RATIO (A/F) SENSOR 1 (BANK 1) Н (F65) 4 R/G 6 O/B BR R/G O/B BR

16

AF-UN1

56

A/F-IP1

(F54)

2

AF-H1

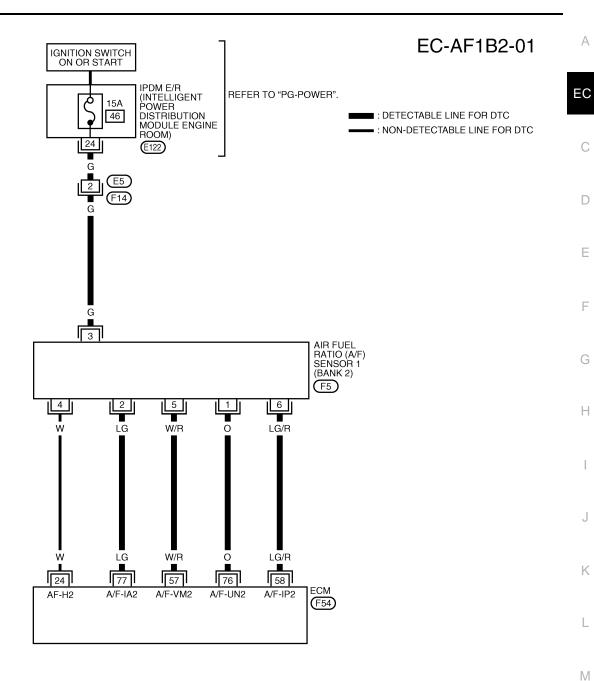
75

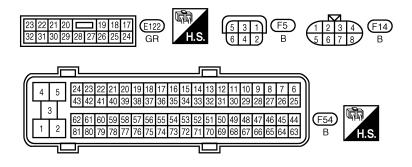
35

AF-VM1

BBWA2503E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.


CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	R/G	A/F sensor 1 heater (Bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	BR			Approximately 3.1V
35		A/F sensor 1 (Bank 1)	[Engine is running]Warm-up conditionIdle speed	Approximately 2.6V
56	V	AN SCHSOL LOBIN I)		Approximately 2.3V
75	Р			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

BANK 2

BBWA2504E

Α

C

D

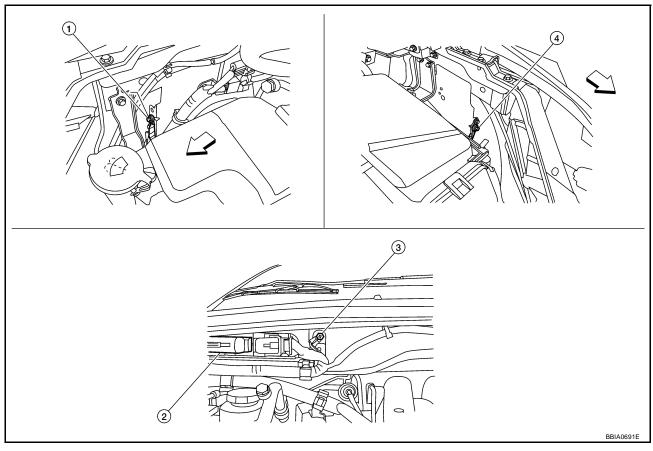
Е

Н

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
24	W	A/F sensor 1 heater (Bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
57	W/R			Approximately 2.6V
58		A/F sensor 1 (Bank 2)	[Engine is running]Warm-up conditionIdle speed	Approximately 2.3V
76	0	A/I SCIISUI I (Dalik 2)		Approximately 3.1V
77	LG		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

Α

UBS00P5L

С

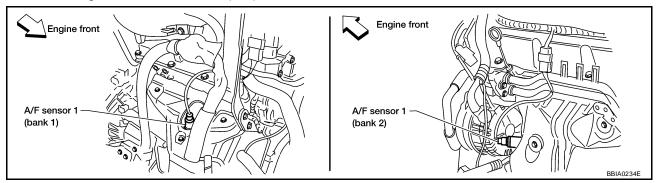
D

Е

F

G

Н

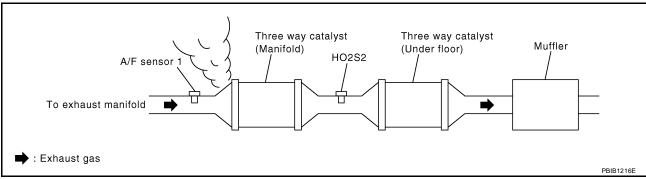

1

K

L

2. RETIGHTEN AIR FUEL RATIO (A/F) SENSOR 1

Loosen and retighten the air fuel ratio (A/F) sensor 1.



Tightening torque: 50 N-m (5.1 kg-m, 37 ft-lb)

>> GO TO 3.

3. CHECK EXHAUST GAS LEAK

- Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before three way catalyst (manifold).

OK or NG

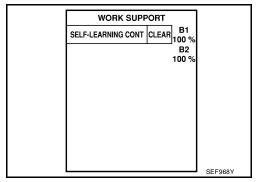
OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK FOR INTAKE AIR LEAK

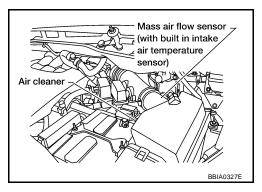
Listen for an intake air leak after the mass air flow sensor.

OK or NG


OK >> GO TO 5.

NG >> Repair or replace.

5. CLEAR THE SELF-LEARNING DATA


(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- Clear the self-learning control coefficient by touching "CLEAR" or "START".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P172, P0174 or P0175 detected? Is it difficult to start engine?

⊗ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector.
- 4. Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- 6. Make sure DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to <u>EC-63</u>, "HOW TO ERASE <u>EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 8. Make sure DTC P0000 is displayed.
- Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected?
 Is it difficult to start engine?

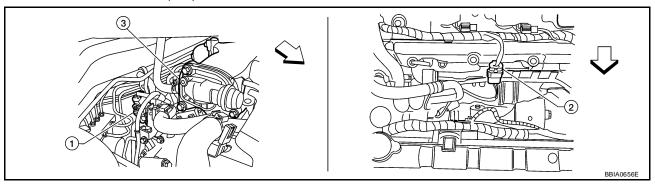
Yes or No

Yes \rightarrow Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to <u>EC-322</u> or <u>EC-334</u>. No \rightarrow GO TO 6.

M

EC

Е

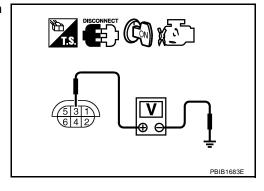

F

Н

Revision: March 2006 EC-279 2007 Quest

6. CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect air fuel ratio (A/F) sensor 1 harness connector.



- Vehicle front
- 1. Air fuel ratio (A/F) sensor 1 (bank 1) 2. Air fuel ratio (A/F) sensor 1 (bank 2) 3. Intake manifold collector harness connector
- 3. Turn ignition switch ON.
- Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- IPDM E/R harness connector E122
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse
 - >> Repair or replace harness or connectors.

8. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank1	2	75
Danki	5	35
	6	56
	1	76
Bank 2	2	77
Dalik 2	5	57
	6	58

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal ECM terminal		A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK AIR FUEL RATIO (A/F) SENSOR 1 HEATER

Refer to EC-175, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> GO TO 13.

10. CHECK MASS AIR FLOW SENSOR

Refer to $\underline{\text{EC-200, "Component Inspection"}}$.

OK or NG

OK >> GO TO 11.

NG >> Replace mass air flow sensor.

EC

П

Е

Г

Н

N

11. CHECK PCV VALVE

Refer to EC-45, "POSITIVE CRANKCASE VENTILATION" .

OK or NG

OK >> GO TO 12.

NG >> Repair or replace PCV valve.

12. CHECK INTERMITTENT INCIDENT

Perform EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> GO TO 13.

NG >> Repair or replace.

13. REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace malfunctioning air fuel ratio (A/F) sensor 1.

CAUTION:

- Discard any air fuel ratio (A/F) sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new air fuel ratio (A/F) sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> INSPECTION END

Removal and Installation AIR FUEL RATIO (A/F) SENSOR 1

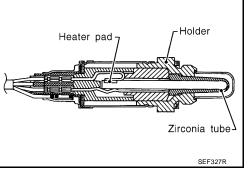
Refer to EM-26, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

UBS00P5M

DTC P0137, P0157 HO2S2

PFP:226A0

Component Description


UBS00P5N

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the A/F sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

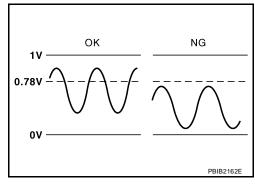
This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

UBS00P50

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.


MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Revving engine from idle to 3,000 rpm quickly after the following conditions are met	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	LEAN ←→ RICH

On Board Diagnosis Logic

Revision: March 2006

UBS00P5P

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the heated oxygen sensor 1. The oxygen storage capacity of the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0137 0137 (Bank 1)	H-4-d		 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2
P0157 0157 (Bank 2)	Heated oxygen sensor 2 circuit low voltage	The maximum voltage from the sensor is not reached to the specified voltage.	Fuel pressure Fuel injector Intake air leaks

EC-283 2007 Quest

EC

Α

Е

P5U

٠,

. .

I

J

K

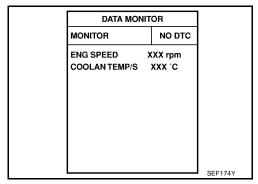
ь л

DTC Confirmation Procedure

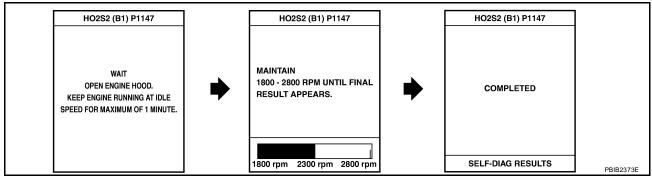
UBS00P5Q

NOTF:

If DTC confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


(P) WITH CONSULT-II

TESTING CONDITION:


For better results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30 °C (32 to 86 °F).

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).

If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).

- 7. Open engine hood.
- 8. Select "HO2S2 (B1) P1147" (for DTC P0137) or "HO2S2 (B2) P1167" (for DTC P0157) of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 9. Start engine and following the instruction of CONSULT-II.

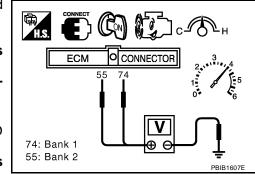
NOTE:

It will take at most 10 minutes until "COMPLETED" is displayed.

- Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, refer to EC-290, "Diagnostic Procedure".
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.

Overall Function Check

UBS00P5


Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 74 [HO2S2 (B1) signal] or 55 [HO2S2 (B2) signal] and ground.

DTC P0137, P0157 HO2S2

- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.78V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- 7. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.
 - The voltage should be above 0.78V at least once during this procedure.
- 8. If NG, go to EC-290, "Diagnostic Procedure".

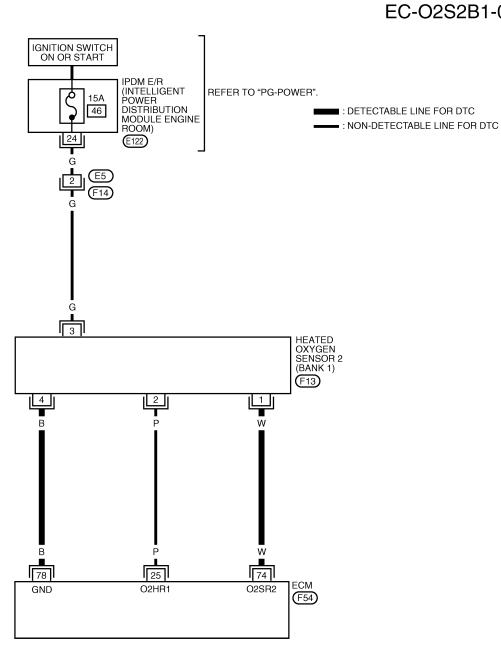
Α

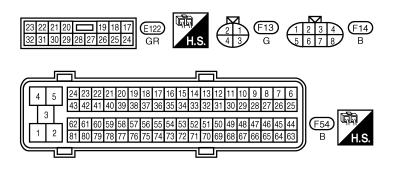
EC

С

D

Е


F


Н

Wiring Diagram BANK 1

UBS00P5S

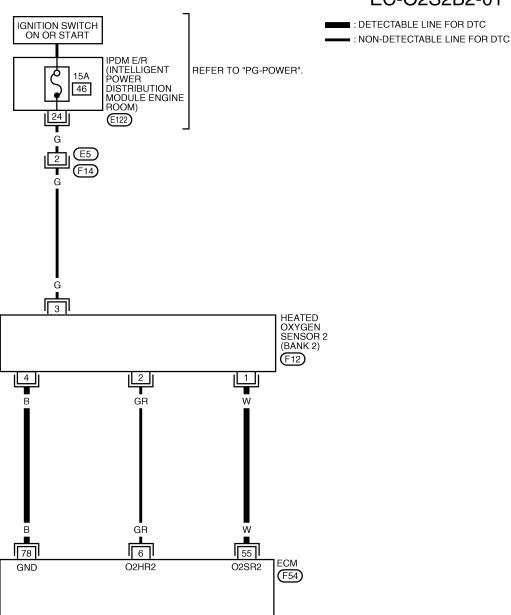
EC-O2S2B1-01

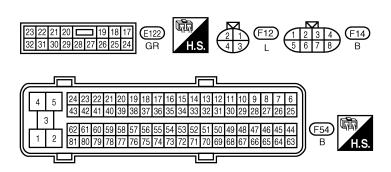
BBWA2509E

DTC P0137, P0157 HO2S2

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


_		_			
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
		Heated oxygen sensor 2 heater (Bank 1)	 Engine is running Engine speed: Below 3,600 rpm after the following conditions are met 	0.40	С
25	Р		Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load.	0 - 1.0V	D
			[Ignition switch: ON] • Engine stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)	F
74	w	Heated oxygen sensor 2 (Bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V	G H
78	В	Heated oxygen sensor 2 ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V	-

Α

BANK 2

EC-O2S2B2-01

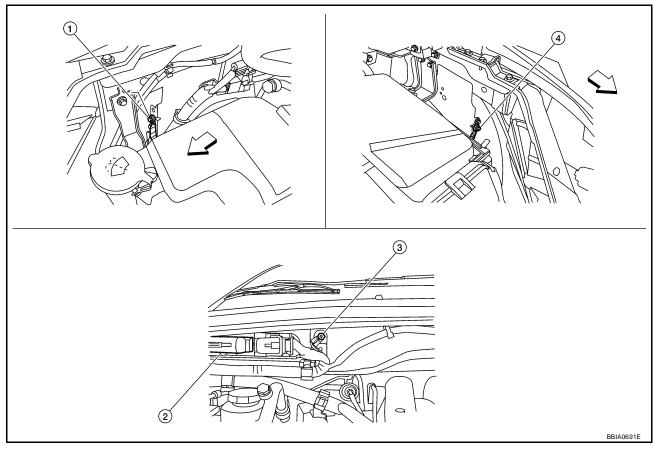
BBWA2510E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running]● Engine speed: Below 3,600 rpm after the following conditions are met	
6	GR	Heated oxygen sensor 2 heater (Bank 2)	 Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - 1.0V
			[Ignition switch: ON] • Engine stopped [Engine is running] • Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
55	w	Heated oxygen sensor 2 (Bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Heated oxygen sensor 2 ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V


M

Diagnostic Procedure

UBS00P5T

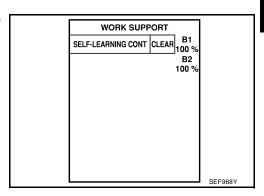
1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- Body ground E24 1.
 - 2. ECM Body ground E15

Body ground E9

OK or NG


>> GO TO 2. OK

NG >> Repair or replace ground connections.

2. CLEAR THE SELF-LEARNING DATA

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

₩ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector.
- 4. Restart and let it idle for at least 5 seconds.
- 5. Stop engine and reconnect mass air flow sensor harness connector.
- 6. Make sure DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to EC-63, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION".
- 8. Make sure DTC P0000 is displayed.
- 9. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or P0174 detected? Is it difficult to start engine?

Yes or No

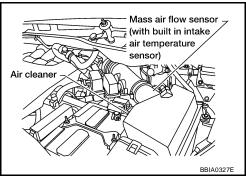
Yes >> Perform trouble diagnosis for DTC P0171, P0174. Refer to EC-322.

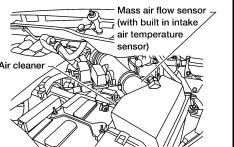
No >> GO TO 3.

$3.\,$ check ho2s2 ground circuit for open and short

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect heated oxygen sensor 2 harness connector.
- Oil pan (1)
- Heated oxygen sensor 2 (bank 2) harness connector (2)
- Heated oxygen sensor 2 (bank 1) harness connector (3)
- Check harness continuity between ECM terminal 78 and HO2S2 terminal 4.

Refer to Wiring Diagram.


Continuity should exist.


5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

Е

Н

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal and HO2S2 terminal as follows.
 Refer to Wiring Diagram.

DTC	Tern	Bank	
DIO	ECM	Sensor	Dank
P0137	74	1	1
P0157	55	1	2

Continuity should exist.

2. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dank
P0137	74	1	1
P0157	55	1	2

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

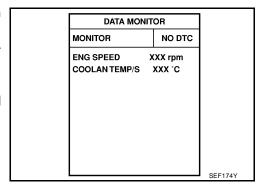
Refer to EC-292, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT


Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

(With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.

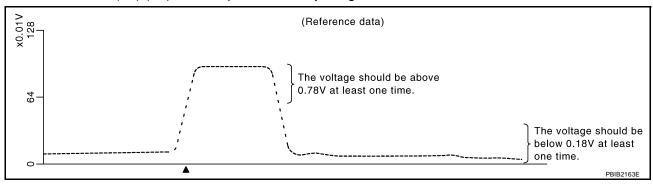
UBS00P5U

Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.

ACTIVE TE	ACTIVE TEST			
FUEL INJECTION	FUEL INJECTION 25 %			
MONITO	R			
ENG SPEED	XXX rpm			
HO2S2 (B1)	xxx v			
HO2S2 (B2)	xxx v			
		PBIB1672E		

Α

EC


Е

Н

K

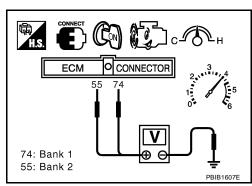
M

Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.78V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7) in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


₩ithout CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 74 [HO2S2 (B1) signal] or 55 [HO2S2 (B2) signal] and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.78V at least once during this procedure.
 - If the voltage is above 0.78V at step 6, step 7 is not neces-
- 7. Keep vehicle at idling for 10 minutes, then check voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.

The voltage should be below 0.18V at least once during this procedure.

8. If NG, replace heated oxygen sensor 2.

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

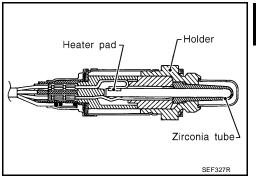
UBS00P5V

Refer to EM-26, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

DTC P0138, P0158 HO2S2

PFP:226A0

Component Description


UBS00P5W

The heated oxygen sensor 2, after three way catalyst (manifold), monitors the oxygen level in the exhaust gas on each bank.

Even if switching characteristics of the air fuel ratio (A/F) sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

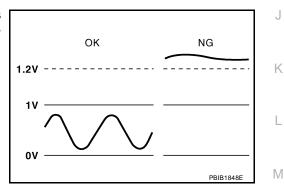
Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

UBS00P5X

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	Revving engine from idle to 3,000 rpm quickly after the following conditions are met	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	- Engine: After warming up - Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load	LEAN ←→ RICH


On Board Diagnosis Logic

S00P5Y

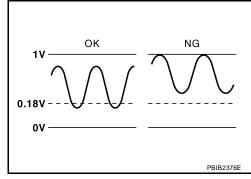
The heated oxygen sensor 2 has a much longer switching time between rich and lean than the air fuel ratio (A/F) sensor 1. The oxygen storage capacity of the three way catalyst (manifold) causes the longer switching time.

MALFUNCTION A

To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the voltage is unusually high during the various driving condition such as fuel-cut.

EC

Α


Е

2007 Quest

Revision: March 2006 EC-295

MALFUNCTION B

To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the minimum voltage of sensor is sufficiently low during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
P0138 0138 (Bank 1)		(A)	An excessively high voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted)
(Dalik I)	Heated oxygen sensor 2 circuit high voltage			Heated oxygen sensor 2
P0158 0158 (Bank 2)		sensor 2 circuit	B) The minimum voltage from the sensor is not reached to the specified voltage.	Harness or connectors (The sensor circuit is open or shorted)
				Heated oxygen sensor 2
				Fuel pressure
				Fuel injector

DTC Confirmation Procedure

UBS00P5Z

Perform PROCEDURE FOR MALFUNCTION A first. If DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

(II) With CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 2 minutes.
- If 1st trip DTC is detected, go to <u>EC-303</u>, "<u>PROCEDURE FOR MALFUNCTION A"</u>.

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm COOLAN TEMP/S XXX C

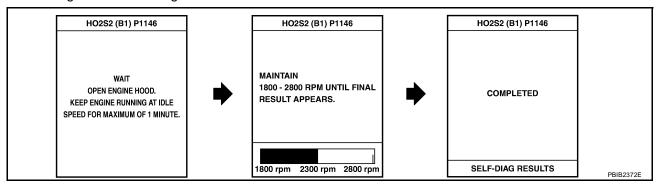
With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

TESTING CONDITION:


For better results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30 °C (32 to 86 °F).

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).

If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).

- Select "HO2S2 (B1) P1146" (for DTC P0138) or "HO2S2 (B2) P1166" (for DTC P0158) of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Start engine and following the instruction of CONSULT-II.

NOTE:

It will take at most 10 minutes until "COMPLETED" is displayed.

- 10. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-305, "PROCEDURE FOR MALFUNCTION B". If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- Return to step 1.

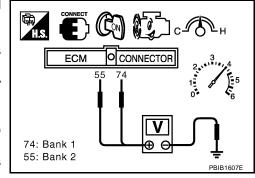
Overall Function Check PROCEDURE MALFUNCTION B

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 74 [HO2S2 (B1) signal] or 55 [HO2S2 (B2) signal] and ground.

DATA MONITOR MONITOR NO DTC **ENG SPEED** XXX rpm COOLAN TEMP/S XXX °C SEF174Y EC

Α


Е

Н

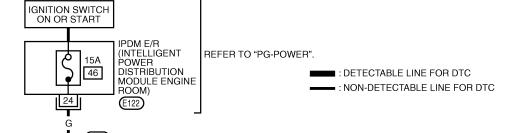
M

UBS00P60

- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be below 0.18V at least once during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- 7. Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.
 - The voltage should be below 0.18V at least once during this procedure.
- 8. If NG, go to EC-305, "PROCEDURE FOR MALFUNCTION B".

Wiring Diagram BANK 1

UBS00P61


EC-O2S2B1-01

C

D

Α

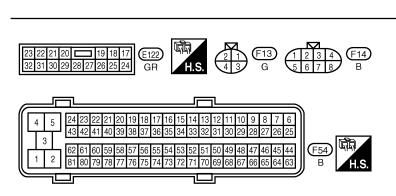
HEATED OXYGEN SENSOR 2 (BANK 1)

(F13)

74

O2SR2

(F54)


Е

Н

J

L

M

4

78

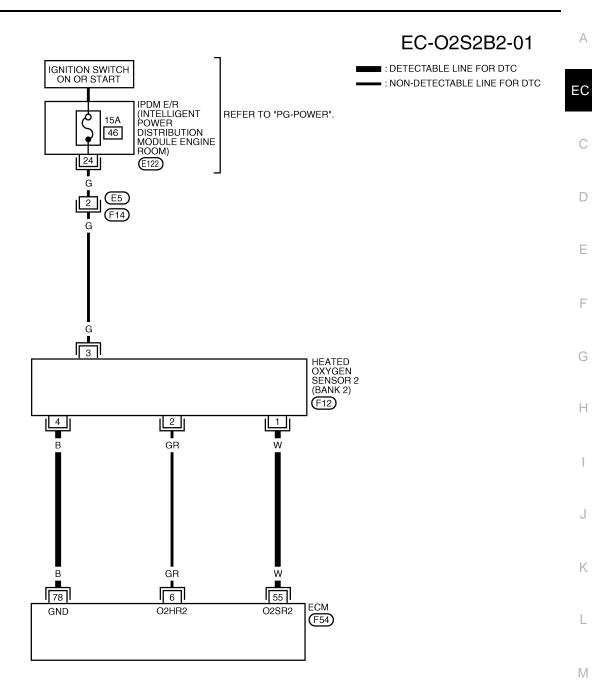
GND

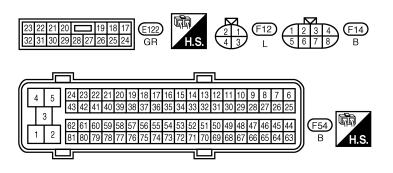
2

25

O2HR1

BBWA2509E


Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	Р	Heated oxygen sensor 2 heater (Bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - 1.0V
			[Ignition switch: ON]● Engine stopped[Engine is running]● Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
74	w	Heated oxygen sensor 2 (Bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Heated oxygen sensor 2 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

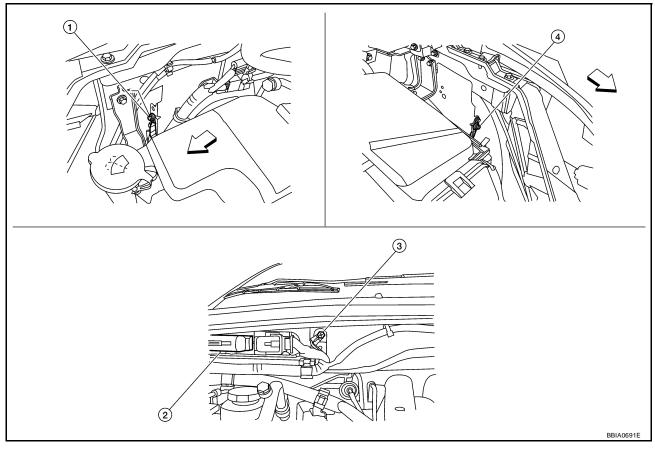
BANK 2

BBWA2510E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
6	GR	Heated oxygen sensor 2 heater (Bank 2)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - 1.0V
			[Ignition switch: ON] ■ Engine stopped [Engine is running] ■ Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
55	w	Heated oxygen sensor 2 (Bank 2)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Heated oxygen sensor 2 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

Diagnostic Procedure PROCEDURE FOR MALFUNCTION A

UBS00P62

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- Body ground E24
- 2. ECM

3. Body ground E9

4. Body ground E15

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

Α

С

D

Е

F

G

Н

1

K

L

M

$2. \ \mathsf{CHECK} \ \mathsf{Ho2S2} \ \mathsf{GROUND} \ \mathsf{CIRCUIT} \ \mathsf{FOR} \ \mathsf{OPEN} \ \mathsf{AND} \ \mathsf{SHORT}$

- Disconnect ECM harness connector.
- 2. Disconnect heated oxygen sensor 2 harness connector.
- Oil pan (1)
- Heated oxygen sensor 2 (bank 2) harness connector (2)
- Heated oxygen sensor 2 (bank 1) harness connector (3)
- 3. Check harness continuity between ECM terminal 78 and HO2S2 terminal 4.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dank
P0138	74	1	1
P0158	55	1	2

Continuity should exist.

2. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dank
P0138	74	1	1
P0158	55	1	2

Continuity should not exist.

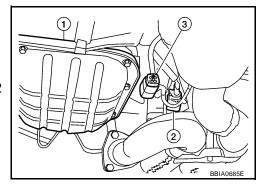
3. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HO2S2 CONNECTOR FOR WATER


Check HO2S2 connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 5.

NG >> Repair or replace harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

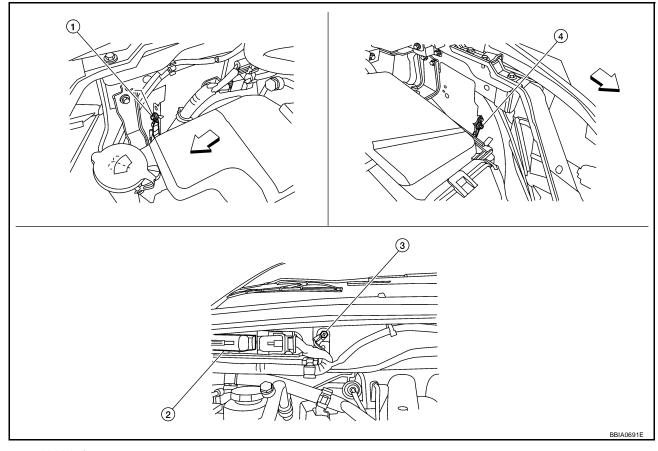
Refer to EC-307, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT


Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

PROCEDURE FOR MALFUNCTION B

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24
- 2. ECM

3. Body ground E9

EC

D

Е

Н

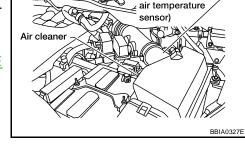
Body ground E15OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

Revision: March 2006 EC-305 2007 Quest

2. CLEAR THE SELF-LEARNING DATA


(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 or P0175 detected? Is it difficult to start engine?

⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector.
- 4. Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- 6. Make sure DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to <u>EC-63</u>, "HOW TO ERASE <u>EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 8. Make sure DTC P0000 is displayed.
- Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0172 or P0175 detected?
 Is it difficult to start engine?

Mass air flow sensor

(with built in intake

Yes or No

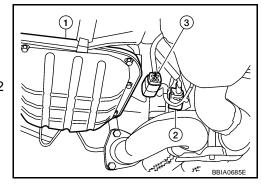
Yes >> Perform trouble diagnosis for DTC P0172, P0175. Refer to EC-334.

No >> GO TO 3.

3. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect heated oxygen sensor 2 harness connector.
- Oil pan (1)
- Heated oxygen sensor 2 (bank 2) harness connector (2)
- Heated oxygen sensor 2 (bank 1) harness connector (3)
- 4. Check harness continuity between ECM terminal 78 and HO2S2 terminal 4.

Refer to Wiring Diagram.


Continuity should exist.

5. Also check harness for short to ground and short to power.

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	Bank	
ы	ECM	Sensor	Dank
P0138	74	1	1
P0158	55	1	2

Continuity should exist.

2. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Tern	Bank	
ыс	ECM	Sensor	Dank
P0138	74	1	1
P0158	55	1	2

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

Refer to EC-307, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

(P) With CONSULT-II

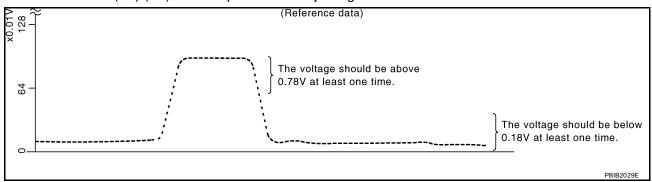
- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.

EC

П

Е

Н


n

UBS00P63

5. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.

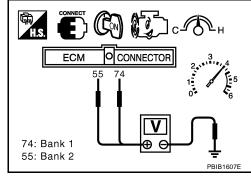
ACTIVE TES	T	
FUEL INJECTION	25 %	
MONITOR	}	
ENG SPEED	XXX rpm	
HO2S2 (B1)	xxx v	
HO2S2 (B2)	xxx v	
		PBIB1672E

6. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.78V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

7. If NG, replace heated oxygen sensor 2.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 [HO2S2 (B1) signal] or 55 [HO2S2 (B2) signal] and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.)
 The voltage should be above 0.78V at least once during this
 procedure.
 - If the voltage is above 0.78V at step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check voltage.
 Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.
 - The voltage should be below 0.18V at least once during this procedure.
- 8. If NG, replace heated oxygen sensor 2.

• Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

• Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

UBS00P64

Refer to EM-26, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

EC

Α

С

D

Е

Н

G

Н

J

K

M

PFP:226A0

UBS00P65

Component Description


The heated oxygen sensor 2, after three way catalyst (manifold),

monitors the oxygen level in the exhaust gas on each bank.

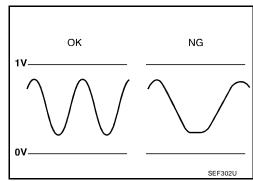
Even if switching characteristics of the A/F sensor 1 are shifted, the air-fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2.

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 is not used for engine control operation.

CONSULT-II Reference Value in Data Monitor Mode

UBS00P66


Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S2 (B1) HO2S2 (B2)	 Revving engine from idle to 3,000 rpm quickly after the following conditions are met 	0 - 0.3V ←→ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1) HO2S2 MNTR (B2)	 Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	LEAN ←→ RICH

On Board Diagnosis Logic

UBS00P67

The heated oxygen sensor 2 has a much longer switching time between rich and lean than the A/F sensor 1. The oxygen storage capacity of the three way catalyst (manifold) causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2, ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0139 0139 (Bank 1) P0159 0159 (Bank 2)	Heated oxygen sensor 2 circuit slow response	It takes more time for the sensor to respond between rich and lean than the specified time.	 Harness or connectors (The sensor circuit is open or shorted) Heated oxygen sensor 2 Fuel pressure Fuel injector Intake air leaks

DTC Confirmation Procedure

UBS00P68

Α

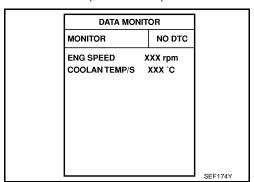
EC

Е

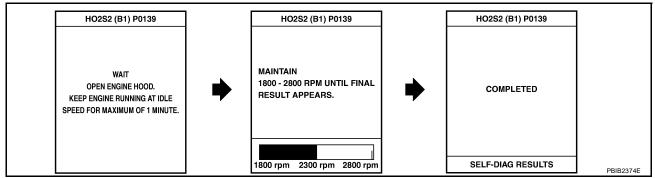
Н

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.


WITH CONSULT-II

TESTING CONDITION:


For better results, perform "DTC WORK SUPPORT" at a temperature of 0 to 30 °C (32 to 86 °F).

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- 6. Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).

If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).

- Select "HO2S2 (B1) P0139" or "HO2S2 (B2) P0159" of "HO2S2" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Start engine and following the instruction of CONSULT-II.

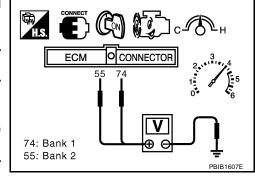
NOTE:

It will take at most 10 minutes until "COMPLETED" is displayed.

- 9. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If "NG" is displayed, refer to EC-317, "Diagnostic Procedure".
 - If "CAN NOT BE DIAGNOSED" is displayed, perform the following.
- a. Turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle).
- b. Return to step 1.

Overall Function Check

UBS00P69


M

Use this procedure to check the overall function of the heated oxygen sensor 2 circuit. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- Let engine idle for 1 minute.
- Set voltmeter probes between ECM terminal 74 [HO2S2 (B1) signal] or 55 [HO2S2 (B2) signal] and ground.

- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) A change of voltage should be more than 0.06V for 1 second during this procedure.
 - If the voltage can be confirmed in step 6, step 7 is not necessary.
- Keep vehicle at idling for 10 minutes, then check the voltage.
 Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.
 - A change of voltage should be more than 0.06V for 1 second during this procedure.
- 8. If NG, go to EC-317, "Diagnostic Procedure".

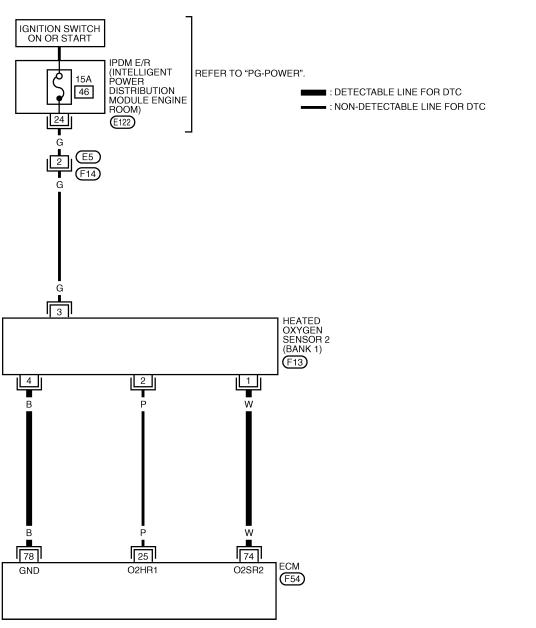
Wiring Diagram BANK 1

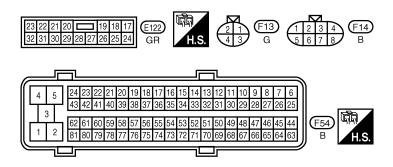
UBS00P6A

Α

EC

C


D

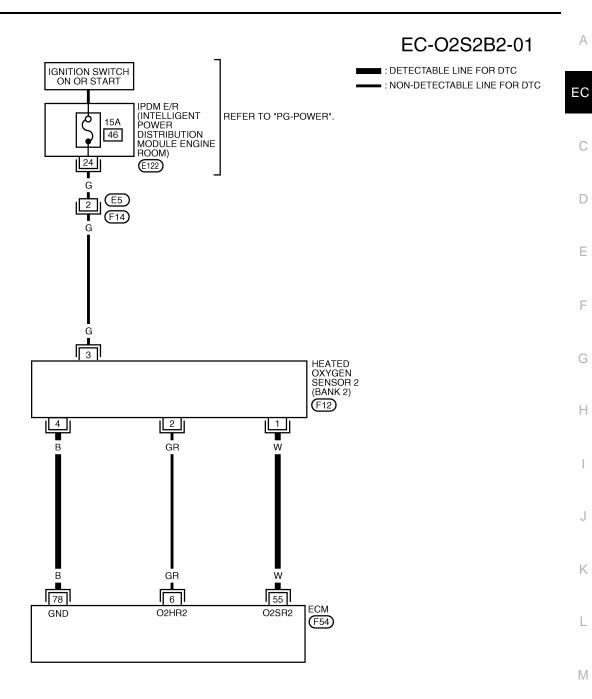

Е

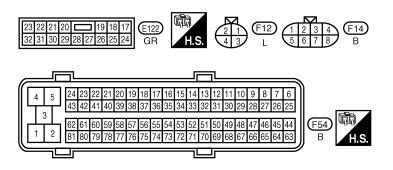
Н

M

EC-O2S2B1-01

BBWA2509E


Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

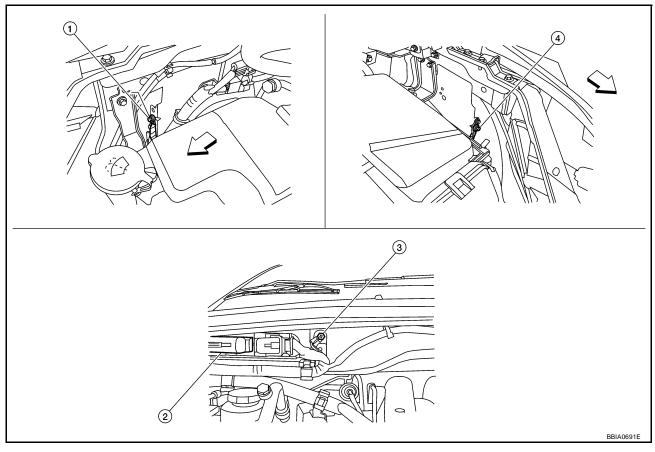
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	25 P	Heated oxygen sensor 2 heater (Bank 1)	 [Engine is running] Engine speed: Below 3,600 rpm after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	0 - 1.0V
			[Ignition switch: ON]● Engine stopped[Engine is running]● Engine speed: Above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
74	w	Heated oxygen sensor 2 (Bank 1)	 [Engine is running] Revving engine from idle to 3,000 rpm quickly after the following conditions are met Engine: After warming up Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 	0 - Approximately 1.0V
78	В	Heated oxygen sensor 2 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V

BANK 2

BBWA2510E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running]	
			 Engine speed: Below 3,600 rpm after the following conditions are met 	
			- Engine: After warming up	0 - 1.0V
6	GR	Heated oxygen sensor 2 heater (Bank 2)	 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load. 	
			[Ignition switch: ON]	
			Engine stopped	BATTERY VOLTAGE
			[Engine is running]	(11 - 14V)
			Engine speed: Above 3,600 rpm	
			[Engine is running]	
			Revving engine from idle to 3,000 rpm quickly after the following conditions are met	
55	W	Heated oxygen sensor 2 (Bank 2)	Engine: After warming up	0 - Approximately 1.0V
		 Keeping the engine speed between 3,500 and 4,000 rpm for 1 minute and at idle for 1 minute under no load 		
		Heated average cones = 0	[Engine is running]	
78	78 B	Heated oxygen sensor 2 ground	Warm-up condition	Approximately 0V
			Idle speed	

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

Α

UBS00P6B

С

D

Е

F

G

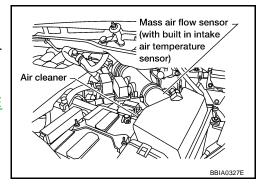
Н

K

L

M

2. CLEAR THE SELF-LEARNING DATA


(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected? Is it difficult to start engine?

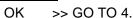
⋈ Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector.
- 4. Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- 6. Make sure DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to <u>EC-63, "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 8. Make sure DTC P0000 is displayed.
- Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0171, P0172, P0174 or P0175 detected?
 Is it difficult to start engine?

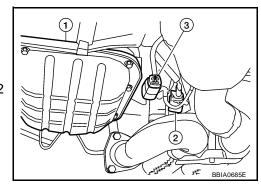
Yes or No

Yes >> Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to <u>EC-322, "DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION"</u> or <u>EC-334, "DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION"</u>.

No >> GO TO 3.


3. CHECK HO2S2 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Disconnect heated oxygen sensor 2 harness connector.
- Oil pan (1)
- Heated oxygen sensor 2 (bank 2) harness connector (2)
- Heated oxygen sensor 2 (bank 1) harness connector (3)
- 4. Check harness continuity between ECM terminal 78 and HO2S2 terminal 4.


Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.OK or NG

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

2007 Quest

4. CHECK HO2S2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal and HO2S2 terminal as follows. Refer to Wiring Diagram.

DTC	Tern	ninals	Bank
ы	ECM	Sensor	Dank
P0139	74	1	1
P0159	55	1	2

Continuity should exist.

2. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

DTC	Term	ninals	Bank
ыс	ECM	Sensor	Dank
P0139	74	1	1
P0159	55	1	2

Continuity should not exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK HEATED OXYGEN SENSOR 2

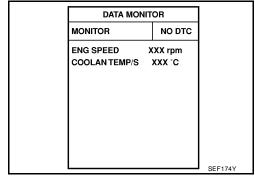
Refer to EC-319, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace malfunctioning heated oxygen sensor 2.

6. CHECK INTERMITTENT INCIDENT


Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection HEATED OXYGEN SENSOR 2

(P) With CONSULT-II

- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.

EC

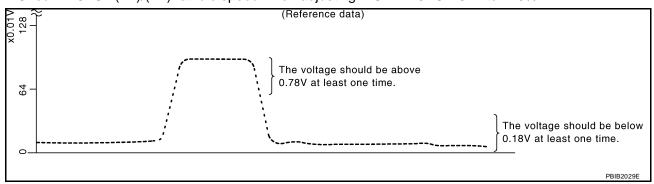
Е

.

G

Н

.1


. .

UBS00P6C

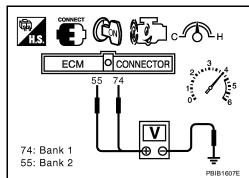
6. Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)/(B2)" as the monitor item with CONSULT-II.

ACTIVE TE	ST	
FUEL INJECTION	25 %	
MONITOR	₹	
ENG SPEED	XXX rpm	
HO2S2 (B1)	xxx v	
HO2S2 (B2)	xxx v	
		PBIB1672E

7. Check "HO2S2 (B1)/(B2)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)/(B2)" should be above 0.78V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)/(B2)" should be below 0.18V at least once when the "FUEL INJECTION" is -25%.

CAUTION:


- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

⋈ Without CONSULT-II

- 1. Start engine and warm it up to the normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Set voltmeter probes between ECM terminal 74 [HO2S2 (B1) signal] or 55 [HO2S2 (B2) signal] and ground.
- 6. Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 - (Depress and release accelerator pedal as soon as possible.) The voltage should be above 0.78V at least once during this procedure.
 - If the voltage is above 0.78V at step 6, step 7 is not necessarv.
- Keep vehicle at idling for 10 minutes, then check voltage.
 Or check the voltage when coasting from 80 km/h (50 MPH) in D position with "OD" OFF.
 - The voltage should be below 0.18V at least once during this procedure.
- 8. If NG, replace heated oxygen sensor 2.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Removal and Installation HEATED OXYGEN SENSOR 2

UBS00P6D

Refer to EM-26, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

EC

Α

С

 D

Е

F

G

Н

1

J

K

M

DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

PFP:16600

On Board Diagnosis Logic

UBS00P6F

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the A/F sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input signal to ECM	ECM function	Actuator
A/F sensors 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Fuel injector

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0171 0171			Intake air leaks A/F sensor 1
(Bank 1)			Fuel injector
	Fuel injection system too	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too lean.) 	Exhaust gas leaks
P0174 lean	lean		Incorrect fuel pressure
0174			Lack of fuel
(Bank 2)			Mass air flow sensor
			Incorrect PCV hose connection

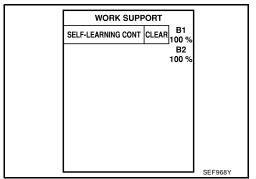
DTC Confirmation Procedure

UBS00P6F

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

MITH CONSULT-II


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes.
 The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to <u>EC-328</u>, "<u>Diagnostic Procedure</u>".

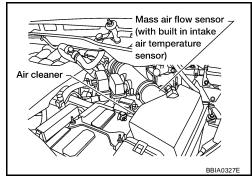
NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- a. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.


Engine speed	Engine speed in the freeze frame data \pm 400 rpm
Vehicle speed in the freeze frame data ± 10 km/h (6 MPH)	
Engine coolant temperature (T) condition	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

- If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- Crank engine while depressing accelerator pedal. If engine starts, go to EC-328, "Diagnostic Procedure". If engine does not start, check exhaust and intake air leak visually.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds. 2.
- 3. Disconnect mass air flow sensor harness connector.
- Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness con-
- 6. Select Service \$03 with GST. Make sure DTC P0102 is detected.
- 7. Select Service \$04 with GST and erase the DTC P0102.
- 8. Start engine again and let it idle for at least 10 minutes.
- Select Service \$07 with GST. The 1st trip DTC P0171 or P0174 should be detected at this stage, if a malfunction exists. If so, go to EC-328, "Diagnostic Procedure".

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

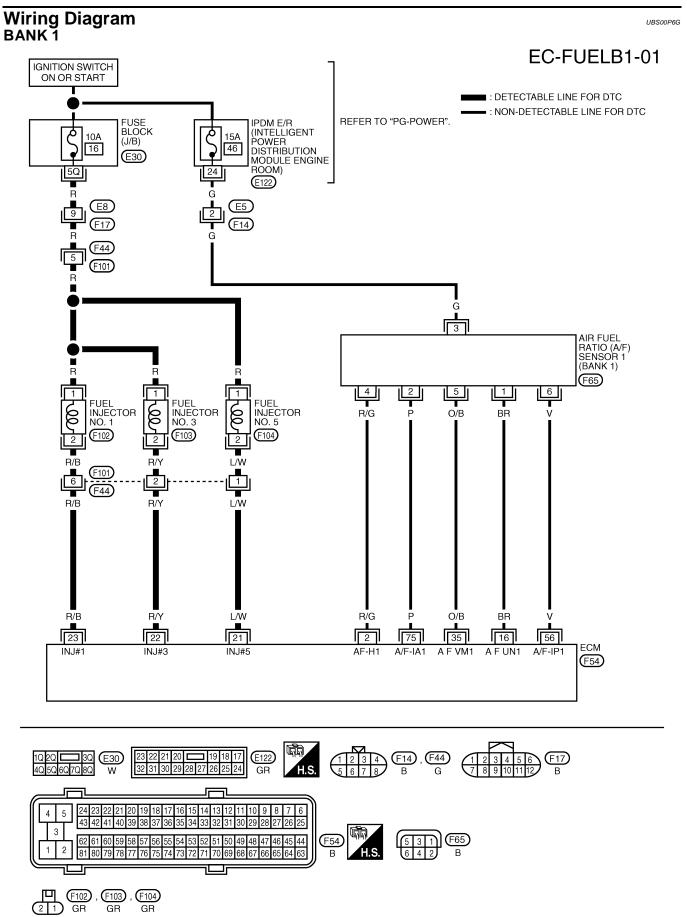
- Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data ± 400 rpm
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)
Engine coolant temperature	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).
(T) condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).

- 10. If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 11. Crank engine while depressing accelerator pedal. If engine starts, go to EC-328, "Diagnostic Procedure". If engine does not start, check exhaust and intake air leak visually.


Е

EC

Н

M

DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION

BBWA2514E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	С
2	R/G	A/F sensor 1 heater (Bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E	D
16	BR			Approximately 3.1V	
35	O/B	A/E concer 1 (Ponk 1)	[Engine is running] • Warm-up condition	Approximately 2.6V	F
56	V	A/F sensor 1 (Bank 1)	Idle speed	Approximately 2.3V	
75	Р		• rule speed	Approximately 2.3V	G
21	L/W	Fuel injector No. 5	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	BATTERY VOLTAGE (11 - 14V) SEC984C BATTERY VOLTAGE (11 - 14V) SEC985C	Н
22 23	R/Y R/B	Fuel injector No. 3 Fuel injector No. 1	[Engine is running] • Warm-up condition • Engine speed: 2,000 rpm		J K

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

M

Α

EC

BANK 2 EC-FUELB2-01 IGNITION SWITCH ON OR START : DETECTABLE LINE FOR DTC • : NON-DETECTABLE LINE FOR DTC REFER TO "PG-POWER". FUSE BLOCK IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE (J/B) 16 46 **E30** 5Q ROOM) (E122) 3_ AIR FUEL RATIO (A/F) SENSOR 1 (BANK 2) (F5) FUEL INJECTOR NO. 6 5 6 **FUEL FUEL** 4 2 INJECTOR NO. 2 INJECTOR NO. 4 W/R LG/R (F22) (F18) (F20) R/W R/L V/W R/W R/L LG W/R LG/R V/W 58 42 41 77 57 76 40 24 **ECM** INJ#2 INJ#4 A/F-VM2 (F54) E122 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 3 , **(**F20**)** (F22 (F54) 2

BBWA2515E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

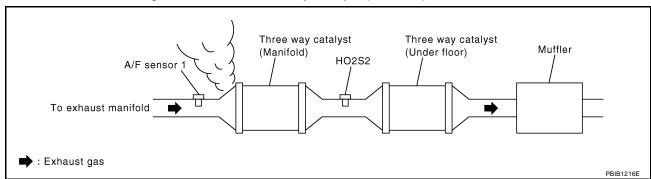
Α

EC

M

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	С
24	W	A/F sensor 1 heater (Bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ Discrete 10.00//Div 10 ms/Div T PBIB1584E	D
40	V/W	NO Th at Fuel injector No. 6	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	BATTERY VOLTAGE (11 - 14V)*	F G
41 42	R/L R/W	Fuel injector No. 4 Fuel injector No. 2	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	-	J
57	W/R		[Engine is running]	Approximately 2.6V	K
58	LG/R	A/F sensor 1 (Bank 2)	[Engine is running] • Warm-up condition	Approximately 2.3V	
76	0	(=	• Idle speed	Approximately 3.1V	L
77	LG			Approximately 2.3V	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)


Revision: March 2006 EC-327 2007 Quest

Diagnostic Procedure

UBS00P6H

1. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before three way catalyst (manifold).

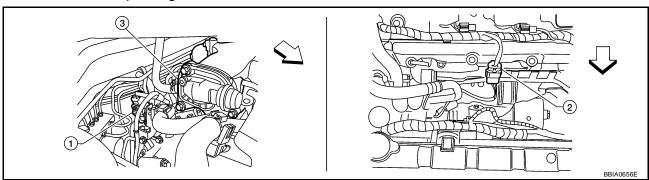
OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK

- 1. Listen for an intake air leak after the mass air flow sensor.
- 2. Check PCV hose connection.


OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect corresponding A/F sensor 1 harness connector.

- Vehicle front
- Air fuel ratio (A/F) sensor 1 (bank 1)
 Air fuel ratio (A/F) sensor 1 (bank 2)
 Intake manifold collector harness connector
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank 1	2	75
Dalik i	5	35
	6	56
	1	76
Bank 2	2	77
Dailk Z	5	57
	6	58

Continuity should exist.

5. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Ва	nk 1	Bank 2		
A/F sensor 1 terminal ECM terminal		A/F sensor 1 terminal	ECM terminal	
1	16	1	76	
2	75	2	77	
5	35	5	57	
6	56	6	58	

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

D

Ε

F

G

Н

4. CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to EC-82, "FUEL PRESSURE RELEASE" .
- 2. Install fuel pressure gauge and check fuel pressure. Refer to EC-83, "FUEL PRESSURE CHECK".

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK (With CONSULT-II)>>GO TO 6.
OK (Without CONSULT-II)>>GO TO 7.
NG >> GO TO 5.

$5.\,$ detect malfunctioning part

Check the following.

- Fuel pump and circuit (Refer to <u>EC-685</u>, "<u>FUEL PUMP</u>".)
- Fuel pressure regulator (Refer to EC-83, "FUEL PRESSURE CHECK".)
- Fuel lines
- Fuel filter for clogging

>> Repair or replace.

6. CHECK MASS AIR FLOW SENSOR

(II) With CONSULT-II

- 1. Install all removed parts.
- 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

OK >> GO TO 8.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-192, "DTC P0101 MAF SENSOR".

7. CHECK MASS AIR FLOW SENSOR

With GST

- 1. Install all removed parts.
- 2. Check mass air flow sensor signal in Service \$01 with GST.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

OK (P0171)>>GO TO 9. OK (P0174)>>GO TO 11.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-192, "DTC P0101 MAF SENSOR".

8. CHECK FUNCTION OF FUEL INJECTOR

(II) With CONSULT-II

- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACTIVE TE	ST	
POWER BALANCE		
MONITOR	}	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

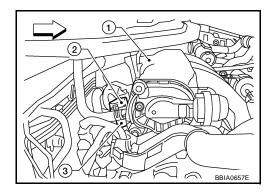
OK or NG

OK >> GO TO 12.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to EC-678, "FUEL INJECTOR" . EC

С

 D

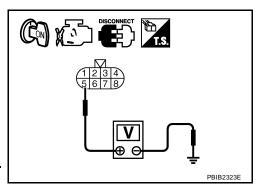

Е

Н

9. CHECK FUNCTION OF FUEL INJECTOR-I

W Without CONSULT-II

- 1. Stop engine.
- 2. Disconnect harness connector F44 (2), F101 (3)
- 3. Turn ignition switch ON.
- <⇒:Vehicle front</p>
- Intake manifold collector (1)



4. Check voltage between harness connector F44 terminal 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

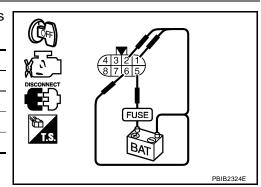
- 5. Turn ignition switch OFF.
- 6. Disconnect ECM harness connector.
- Check harness continuity between harness connector F44 terminal and ECM terminal as follows.
 Refer to Wiring Diagram.

Cylinder	Harness connector F44 terminal	ECM terminal	
1	6	23	
3	2	22	
5	1	21	

Continuity should exist.

8. Also check harness for short to ground and short to power.

OK or NG


OK >> GO TO 10.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-678, "FUEL INJECTOR"</u>.

10. CHECK FUNCTION OF FUEL INJECTOR-II

Provide battery voltage between harness connector F101 as follows and then interrupt it. Listen to each fuel injector operating sound.

Cylinder	Harness connector F101 terminal		
Cymraci	(+)	(-)	
1	5	6	
3	5	2	
5	5	1	

Operating sound should exist.

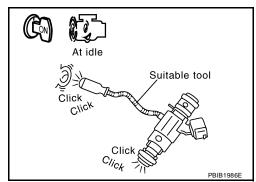
OK or NG

OK >> GO TO 12.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-678</u>, "FUEL INJECTOR".

11. CHECK FUNCTION OF FUEL INJECTOR

- 1. Start engine.
- 2. Listen to fuel injectors No.2, No.4, No.6 operating sound.


Clicking noise should exist.

OK or NG

OK >> GO TO 12.

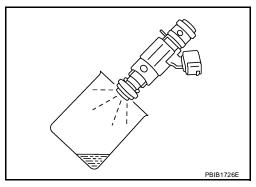
NG

>> Perform trouble diagnosis for FUEL INJECTOR, refer to EC-678, "FUEL INJECTOR".

12. CHECK FUEL INJECTOR

- Confirm that the engine is cooled down and there are no fire hazards near the vehicle. 1.
- 2. Turn ignition switch OFF.
- 3. Reconnect all harness connectors disconnected.
- 4. Disconnect all fuel injector harness connectors.
- 5. Remove fuel tube assembly. Refer to EM-40, "FUEL INJECTOR AND FUEL TUBE". Keep fuel hose and all fuel injectors connected to fuel tube.
- 6. For DTC P0171, reconnect fuel injector harness connectors on bank 1. For DTC P0174, reconnect fuel injector harness connectors on bank 2.
- 7. Disconnect all ignition coil harness connectors.
- 8. Prepare pans or saucers under each fuel injector.
- 9. Crank engine for about 3 seconds. For DTC P0171, make sure that fuel sprays out from fuel injectors on bank 1.

For DTC P0174, make sure that fuel sprays out from fuel injectors on bank 2.



OK or NG

OK >> GO TO 13.

NG >> Replace fuel injectors from which fuel does not spray

out. Always replace O-ring with new ones.

13. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

Е

Н

DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION

PFP:16600

On Board Diagnosis Logic

UBS00P6I

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the A/F sensors 1. The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios. In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and lights up the MIL (2 trip detection logic).

Sensor	Input signal to ECM	ECM function	Actuator
A/F sensors 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)	Fuel injection control	Fuel injector

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0172 0172 (Bank 1) P0175 0175 (Bank 2)	Fuel injection system too rich	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.) 	 A/F sensor 1 Fuel injector Exhaust gas leaks Incorrect fuel pressure Mass air flow sensor

DTC Confirmation Procedure

UBS00P6J

NOTE:

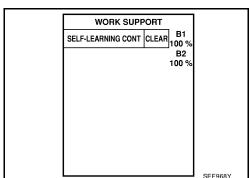
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(III) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- 4. Clear the self-learning control coefficient by touching "CLEAR".
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes.
 The 1st trip DTC P0172, P0175 should be detected at this stage, if a malfunction exists. If so, go to <u>EC-340, "Diagnostic Procedure"</u>.

NOTE:

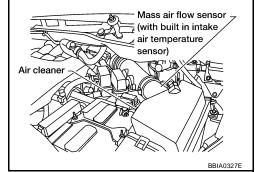
If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.


- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data $\pm400~\text{rpm}$	
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)	
Engine coolant temperature	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
(T) condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	


- 7. If it is difficult to start engine at step 6, the fuel injection system has a malfunction, too.
- 8. Crank engine while depressing accelerator pedal.

If engine starts, go to <u>EC-340, "Diagnostic Procedure"</u>. If engine does not start, remove spark plugs and check for fouling, etc.

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 5 seconds at idle speed.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select Service \$03 with GST. Make sure DTC P0102 is detected.
- 6. Select Service \$04 with GST and erase the DTC P0102.
- 7. Start engine again and let it idle for at least 10 minutes.
- 8. Select Service \$07 with GST. The 1st trip DTC P0172 or P0175 should be detected at this stage, if a malfunction exists. If so, go to EC-340, "Diagnostic Procedure".

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- a. Turn ignition switch OFF and wait at least 10 seconds.
- Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for 10 minutes. Refer to the table below.

Hold the accelerator pedal as steady as possible.

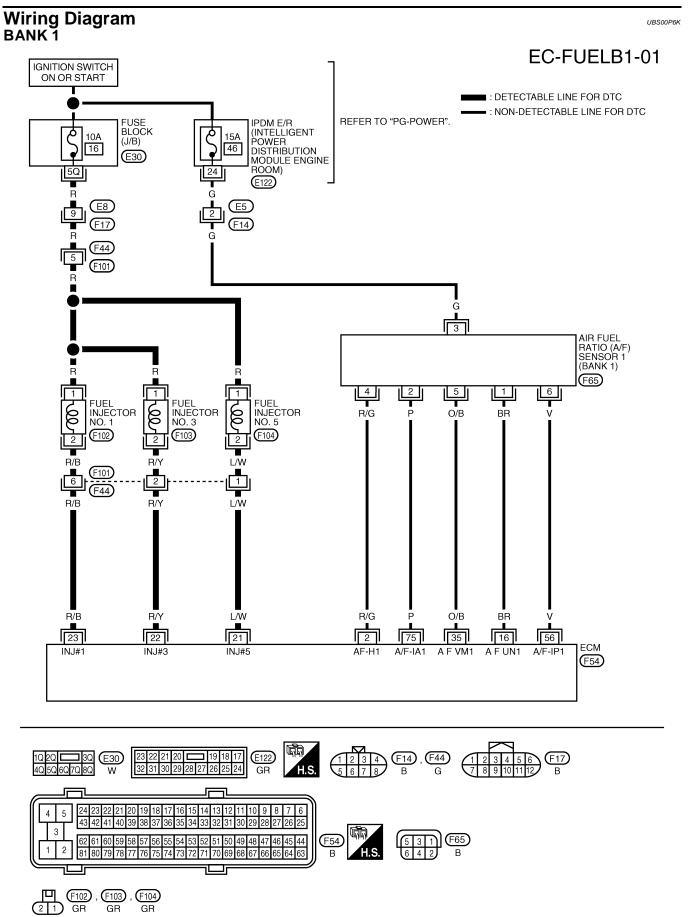
The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data $\pm400~\text{rpm}$	
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)	
Engine coolant temperature	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
(T) condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

- 9. If it is difficult to start engine at step 7, the fuel injection system has a malfunction.
- Crank engine while depressing accelerator pedal.
 If engine starts, go to <u>EC-340</u>, "<u>Diagnostic Procedure</u>". If engine does not start, remove spark plugs and check for fouling, etc.

EC

Α


D

Е

F

Н

K

BBWA2514E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

1	ERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	С
	2	R/G	A/F sensor 1 heater (Bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ 2010.0V/Div 10 ms/Div T PBIB1584E	D
	16	BR		F	Approximately 3.1V	
	35	O/B	A/F sensor 1 (Bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V	F
	56	V	A/I Selisoi I (Balik I)	• Idle speed	Approximately 2.3V	
	75	Р			Approximately 2.3V	G
	21	L/W	Fuel injector No. 5	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle		Н
22 23	R/Y R/B	Fuel injector No. 3 Fuel injector No. 1	[Engine is running] • Warm-up condition • Engine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★	J K L	
					SEC985C	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

M

Α

EC

BANK 2 EC-FUELB2-01 IGNITION SWITCH ON OR START : DETECTABLE LINE FOR DTC • : NON-DETECTABLE LINE FOR DTC REFER TO "PG-POWER". FUSE BLOCK IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE (J/B) 16 46 **E30** 5Q ROOM) (E122) 3_ AIR FUEL RATIO (A/F) SENSOR 1 (BANK 2) (F5) FUEL INJECTOR NO. 6 5 6 **FUEL FUEL** 4 2 INJECTOR NO. 2 INJECTOR NO. 4 W/R LG/R (F22) (F18) (F20) R/W R/L V/W R/W R/L LG W/R LG/R V/W 58 42 41 77 57 76 40 24 **ECM** INJ#2 INJ#4 A/F-VM2 (F54) E122 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 3 , **(**F20**)** (F22 (F54) 2

BBWA2515E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

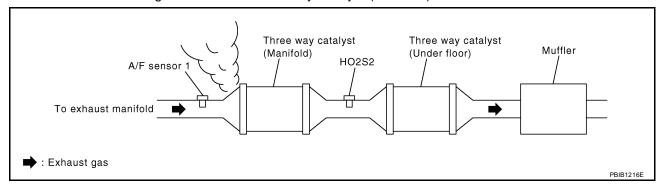
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	С
24	W	A/F sensor 1 heater (Bank 2)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ Discrete 10.00//Div 10 ms/Div T PBIB1584E	D
40	V/W	Fuel injector No. 6	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	BATTERY VOLTAGE (11 - 14V)*	F G
41 42	R/L R/W	Fuel injector No. 4 Fuel injector No. 2	[Engine is running]Warm-up conditionEngine speed: 2,000 rpm	BATTERY VOLTAGE (11 - 14V)★ I I I I I I I I I I I I I I I I I I I	J
57	W/R		[Engine is running]	Approximately 2.6V	K
58	LG/R	A/F sensor 1 (Bank 2)	[Engine is running] • Warm-up condition	Approximately 2.3V	
76	0		• Idle speed	Approximately 3.1V	L
77	LG			Approximately 2.3V	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

M

Α


EC

Diagnostic Procedure

UBS00P6L

1. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before three way catalyst (manifold).

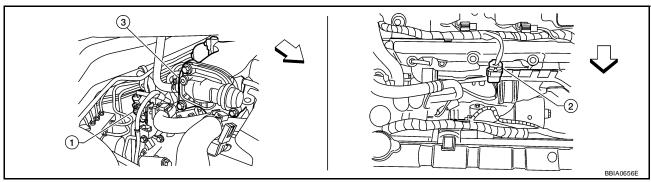
OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK FOR INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.


OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK A/F SENSOR 1 INPUT SIGNAL CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect corresponding A/F sensor 1 harness connector.

- Vehicle front
- Air fuel ratio (A/F) sensor 1 (bank 1)
 Air fuel ratio (A/F) sensor 1 (bank 2)
 Intake manifold collector harness connector
- 3. Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank 1	2	75
	5	35
	6	56
	1	76
Bank 2	2	77
Bank 2	5	57
	6	58

Continuity should exist.

5. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Ва	nk 1	Bank 2		
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal	
1	16	1	76	
2	75	2	77	
5	35	5	57	
6	56	6	58	

Continuity should not exist.

6. Also check harness for short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

0

D

Е

F

G

Н

4. CHECK FUEL PRESSURE

- 1. Release fuel pressure to zero. Refer to EC-82, "FUEL PRESSURE RELEASE" .
- 2. Install fuel pressure gauge and check fuel pressure. Refer to EC-83, "FUEL PRESSURE CHECK".

```
At idling: Approximately 350 kPa (3.57 kg/cm<sup>2</sup>, 51 psi)
```

OK or NG

```
OK (With CONSULT-II)>>GO TO 6.
OK (Without CONSULT-II)>>GO TO 7.
NG >> GO TO 5.
```

5. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to, <u>EC-685</u>, "<u>FUEL PUMP</u>"
- Fuel pressure regulator (Refer to EC-83, "FUEL PRESSURE CHECK".)

>> Repair or replace.

6. CHECK MASS AIR FLOW SENSOR

(II) With CONSULT-II

- 1. Install all removed parts.
- 2. Check "MASS AIR FLOW" in "DATA MONITOR" mode with CONSULT-II.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

OK >> GO TO 8.

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-192, "DTC P0101 MAF SENSOR".

7. CHECK MASS AIR FLOW SENSOR

With GST

- 1. Install all removed parts.
- 2. Check mass air flow sensor signal in Service \$01 with GST.

2.0 - 6.0 g·m/sec: at idling 7.0 - 20.0 g·m/sec: at 2,500 rpm

OK or NG

```
OK (P0172)>>GO TO 9.
OK (P0175)>>GO TO 11.
```

NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-192, "DTC P0101 MAF SENSOR".

8. CHECK FUNCTION OF FUEL INJECTOR

(II) With CONSULT-II

- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

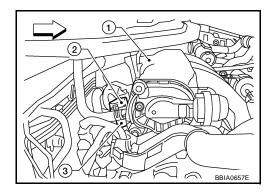
ACTIVE TE	ACTIVE TEST	
POWER BALANCE		
MONITO	٦ _	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	

OK or NG

OK >> GO TO 12.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to EC-678, "FUEL INJECTOR" . EC

 D

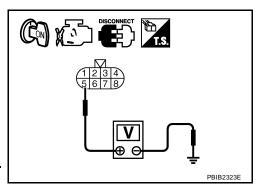

Е

Н

9. CHECK FUNCTION OF FUEL INJECTOR-I

W Without CONSULT-II

- 1. Stop engine.
- 2. Disconnect harness connector F44 (2), F101 (3)
- 3. Turn ignition switch ON.
- <□: Vehicle front</p>
- Intake manifold collector (1)



4. Check voltage between harness connector F44 terminal 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

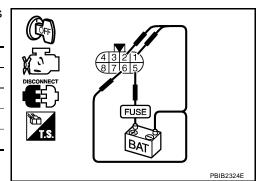
- 5. Turn ignition switch OFF.
- 6. Disconnect ECM harness connector.
- Check harness continuity between harness connector F44 terminal and ECM terminal as follows.
 Refer to Wiring Diagram.

Cylinder	Harness connector F44 terminal	ECM terminal
1	6	23
3	2	22
5	1	21

Continuity should exist.

8. Also check harness for short to ground and short to power.

OK or NG


OK >> GO TO 10.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-678, "FUEL INJECTOR"</u>.

10. CHECK FUNCTION OF FUEL INJECTOR-II

Provide battery voltage between harness connector F101 as follows and then interrupt it. Listen to each fuel injector operating sound.

Cylinder	Harness connector F101 terminal		
Cylindei	(+)	(-)	
1	5	6	
3	5	2	
5	5	1	

Operating sound should exist.

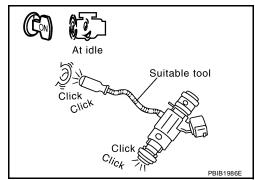
OK or NG

OK >> GO TO 12.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-678, "FUEL INJECTOR"</u>.

11. CHECK FUNCTION OF FUEL INJECTOR

- 1. Start engine.
- 2. Listen to fuel injectors No.2, No.4, No.6 operating sound.


Clicking noise should exist.

OK or NG

OK >> GO TO 12.

NG

>> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-678</u>, "FUEL INJECTOR".

12. CHECK FUEL INJECTOR

- Remove fuel injector assembly. Refer to <u>EM-40</u>, "<u>FUEL INJECTOR AND FUEL TUBE</u>". Keep fuel hose and all fuel injectors connected to fuel tube.
- 2. Confirm that the engine is cooled down and there are no fire hazards near the vehicle.
- 3. Reconnect all harness connectors disconnected
- 4. Disconnect all fuel injector harness connectors.
- 5. Disconnect all ignition coil harness connectors.
- 6. Prepare pans or saucers under each fuel injectors.
- Crank engine for about 3 seconds.
 Make sure fuel does not drip from fuel injector.

OK or NG

OK (Does not drip.)>>GO TO 13.

NG (Drips.)>>Replace the fuel injectors from which fuel is dripping. Always replace O-ring with new one.

13. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

C

D

Е

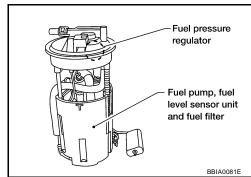
F

G

. .

Н

-


L

PFP:22630

UBS00P6M

Component Description

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} This data is reference value and is measured between ECM terminal 107 (Fuel tank temperature sensor) and ground.

Acceptable 9 20 10 86 4 9 2 1.0 10 10 86 4 0.2 0.1 20 0 20 40 60 80 100 (-4) (32) (68) (104) (140) (176) (212) Temperature °C (°F) SEF012P

CAUTION:

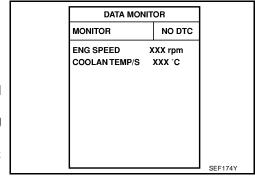
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS00P6N

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0181 0181	Fuel tank temperature sensor circuit range/ performance	Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor.	 Harness or connectors (The sensor circuit is open or shorted) Fuel tank temperature sensor

DTC Confirmation Procedure


UBS00P60

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
 If the result is NG, go to <u>EC-349</u>, "<u>Diagnostic Procedure</u>".
 If the result is OK, go to following step.
- Check "COOLAN TEMP/S" value.
 If "COOLAN TEMP/S" is less than 60°C (140°F), the result will be OK.
 - If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.
- 5. Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).
- Wait at least 10 seconds.
- 7. If 1st trip DTC is detected, go to EC-349, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

А

EC

С

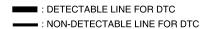
D

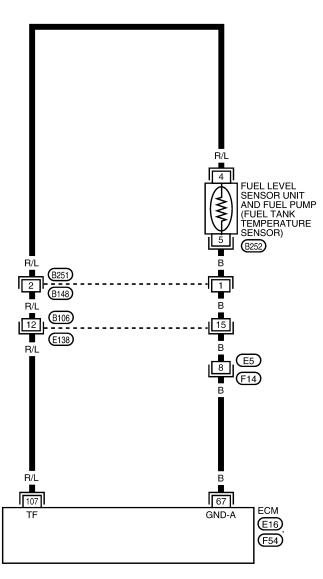
Е

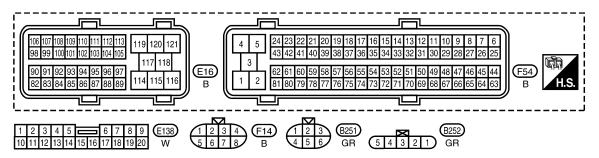
F

G

Н

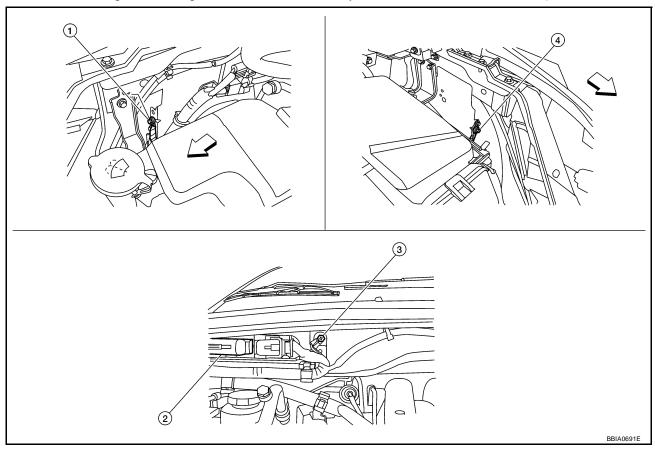

J


K


ī

Wiring Diagram UBSOOPEP

EC-FTTS-01


BBWA2516E

Diagnostic Procedure

UBS00P6Q

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

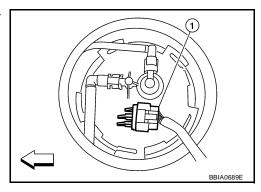
Α

С

D

Е

F

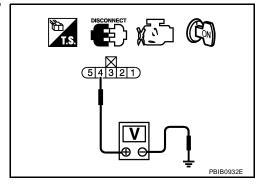

G

Н

K

2. CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- Disconnect "fuel level sensor unit and fuel pump" harness connector (1).
- <→: Vehicle front</p>
- 2. Turn ignition switch ON.



3. Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B106, E138
- Harness connectors B148, B251
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"
 - >> Repair harness or connector.

4. CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between "fuel level sensor unit and fuel pump" terminal 5 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness connectors B106, E138
- Harness connectors B148, B251
- Harness for open or short between "fuel level sensor unit and fuel pump" and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connector.

6. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-351, "Component Inspection".

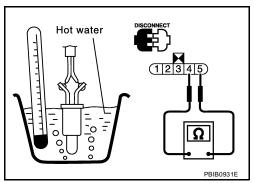
OK or NG

OK >> GO TO 7.

NG >> Replace "fuel level sensor unit and fuel pump".

7. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection FUEL TANK TEMPERATURE SENSOR

1. Remove "fuel level sensor unit and fuel pump".

2. Check resistance between "fuel level sensor unit and fuel pump" terminals 4 and 5 by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance $k\Omega$
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

Removal and Installation **FUEL TANK TEMPERATURE SENSOR**

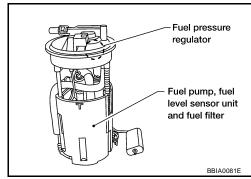
Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY" .

EC

Е

UBS00P6R

Н


UBS00P6S

PFP:22630

UBS00P6T

Component Description

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance kΩ
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90

^{*:} This data is reference value and is measured between ECM terminal 107 (Fuel tank temperature sensor) and ground.

Acceptable 2 - Very 10.8 - V

CAUTION:

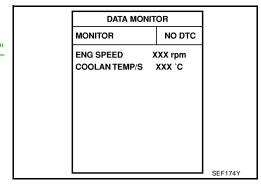
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

On Board Diagnosis Logic

UBS00P6U

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0182 0182	Fuel tank temperature sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0183 0183	Fuel tank temperature sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Fuel tank temperature sensor

DTC Confirmation Procedure


UBS00P6V

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Wait at least 5 seconds.
- If 1st trip DTC is detected, go to <u>EC-354, "Diagnostic Procedure"</u>

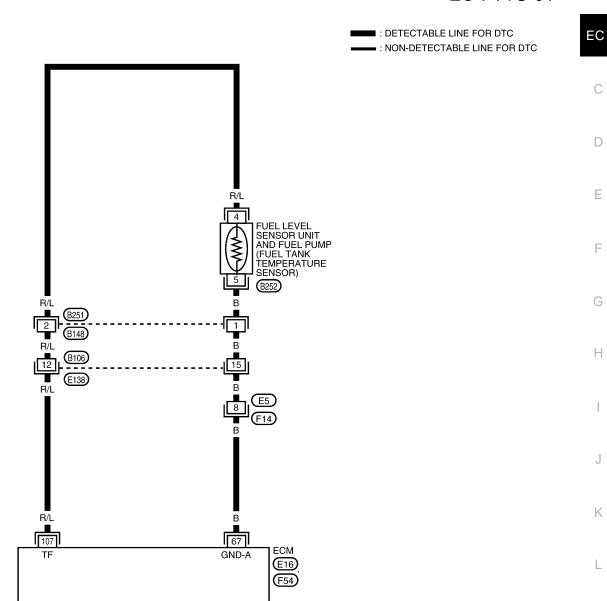
WITH GST

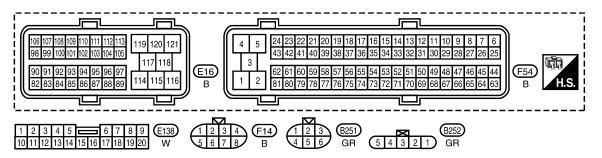
Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

EC-FTTS-01

Α

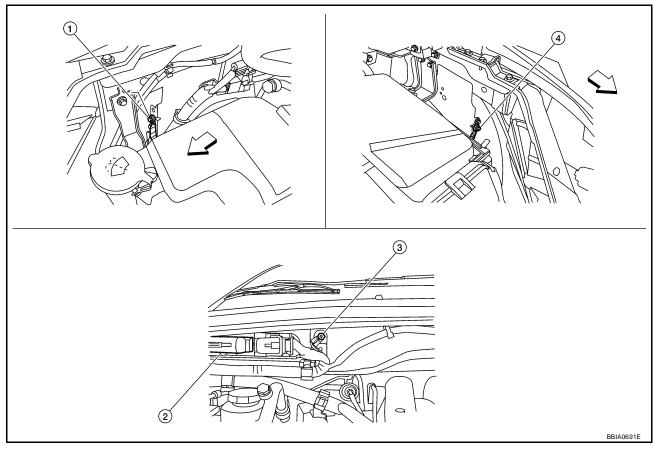

C


D

Е

Н

M



BBWA2516E

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

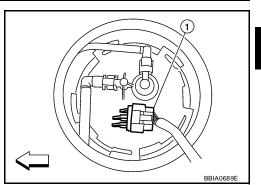
- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24
 - body ground L24 2. Lt
- 4. Body ground E15

2. ECM

3. Body ground E9

UBS00P6X

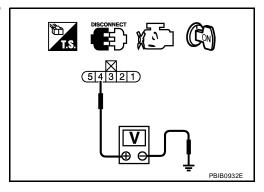

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK FUEL TANK TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect "fuel level sensor unit and fuel pump" harness connector (1).
- < □: Vehicle front</p>
- 2. Turn ignition switch ON.



3. Check voltage between "fuel level sensor unit and fuel pump" terminal 4 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B106, E138
- Harness connectors B148, B251
- Harness for open or short between ECM and "fuel level sensor unit and fuel pump"
 - >> Repair harness or connector.

4. CHECK FUEL TANK TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between "fuel level sensor unit and fuel pump" terminal 5 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5. EC

D

Е

F

G

Н

K

L

5. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness connectors B106, E138
- Harness connectors B148, B251
- Harness for open or short between "fuel level sensor unit and fuel pump" and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connector.

6. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-356, "Component Inspection".

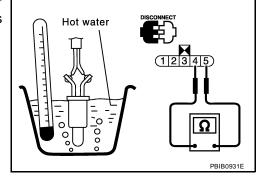
OK or NG

OK >> GO TO 7.

NG >> Replace "fuel level sensor unit and fuel pump".

7. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection FUEL TANK TEMPERATURE SENSOR

UBS00P6Y

- 1. Remove "fuel level sensor unit and fuel pump".
- 2. Check resistance between "fuel level sensor unit and fuel pump" terminals 4 and 5 by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

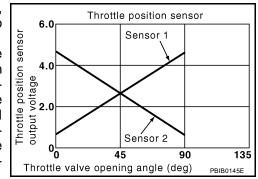
Removal and Installation FUEL TANK TEMPERATURE SENSOR

UBS00P6Z

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

DTC P0222, P0223 TP SENSOR

DTC P0222, P0223 TP SENSOR


PFP:16119

Component Description

UBS00P70

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS00P71

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN 1	Ignition switch: ON (Engine stopped)Shift lever: D	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN 2*		Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00P72

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0222 0222	Throttle position sensor 1 circuit low input	An excessively low voltage from the TP sensor 1 is sent to ECM.	Harness or connectors (TP sensor 1 circuit is open or	
	Throttle position sensor 1 circuit high input		shorted.) (APP sensor 2 circuit is shorted.)	
P0223 0223		An excessively high voltage from the TP sensor 1 is sent to ECM.	Electric throttle control actuator (TP sensor 1)	
			Accelerator pedal position sensor (APP sensor 2)	

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode an the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

EC

Α

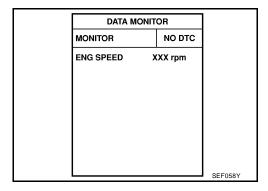
Е

DTC P0222, P0223 TP SENSOR

DTC Confirmation Procedure

UBS00P73

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select DATA MONITOR mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-361, "Diagnostic Procedure".

WITH GST

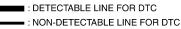
Follow the procedure "WITH CONSULT-II" above.

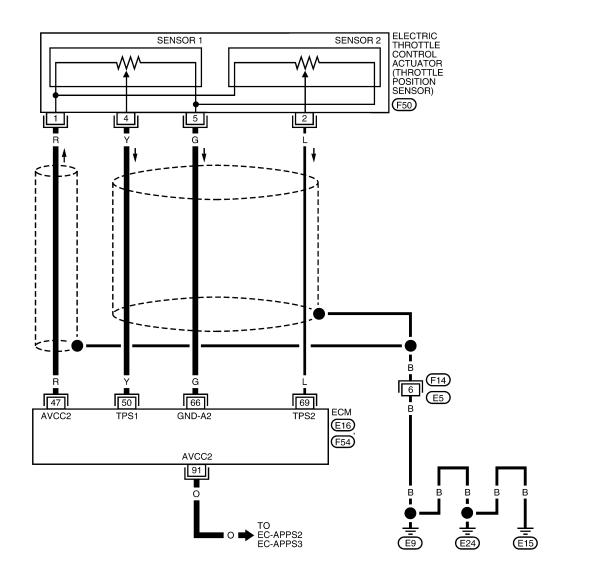
Wiring Diagram

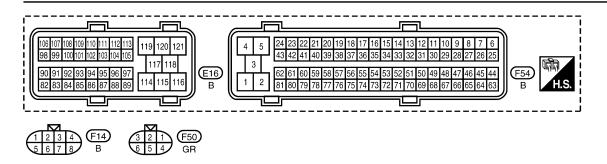
EC-TPS1-01

EC

C


D


Е


Н

M

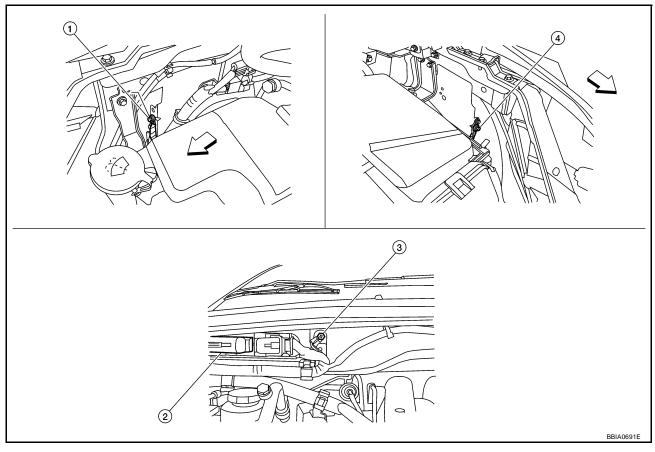
Α

BBWA1610E

DTC P0222, P0223 TP SENSOR

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	R	Throttle position sensor power supply	[Ignition switch: ON]	Approximately 5V
50	Y	Throttle position sensor 1	 [Ignition switch: ON] Engine stopped Shift lever: D Accelerator pedal: Fully released 	More than 0.36V
			 [Ignition switch: ON] Engine stopped Shift lever: D Accelerator pedal: Fully depressed 	Less than 4.75V
66	G	Throttle position sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
69	L	Throttle position sensor 2	 [Ignition switch: ON] Engine stopped Shift lever: D Accelerator pedal: Fully released 	Less than 4.75V
			 [Ignition switch: ON] Engine stopped Shift lever: D Accelerator pedal: Fully depressed 	More than 0.36V
91	0	APP sensor 2 power supply	[Ignition switch: ON]	Approximately 5V

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

Α

UBS00P75

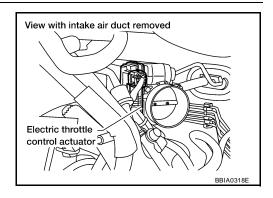
С

D

Е

F

G


Н

K

L

$\overline{2}$. CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT-I

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.



 Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

3. CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 1 and ECM terminal 47. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK THROTTLE POSITION SENSOR 1 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
47	Electric throttle control actuator terminal 1	EC-359
91	APP sensor terminal 6	<u>EC-626</u>

OK or NG

OK >> GO TO 5.

NG >> Repair short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR

Refer to EC-631, "Component Inspection".

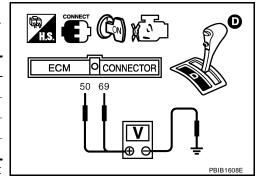
OK or NG

OK >> GO TO 11. NG >> GO TO 6.

6. REPLACE ACCELERATOR PEDAL ASSEMBLY 1. Replace accelerator pedal assembly. 2. Perform EC-80, "Accelerator Pedal Released Position Learning". EC 3. Perform EC-80, "Throttle Valve Closed Position Learning". 4. Perform EC-80, "Idle Air Volume Learning". >> INSPECTION END 7. CHECK THROTTLE POSITION SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT Turn ignition switch OFF. Disconnect ECM harness connector. 3. Check harness continuity between ECM terminal 66 and electric throttle control actuator terminal 5. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 8. NG >> Repair open circuit or short to ground or short to power in harness or connectors. $8.\,$ check throttle position sensor 1 input signal circuit for open and short Н Check harness continuity between ECM terminal 50 and electric throttle control actuator terminal 4. Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 9. NG >> Repair open circuit or short to ground or short to power in harness or connectors. 9. CHECK THROTTLE POSITION SENSOR Refer to EC-364, "Component Inspection". OK or NG OK >> GO TO 11. NG >> GO TO 10. M 10. replace electric throttle control actuator 1. Replace the electric throttle control actuator. 2. Perform EC-80, "Throttle Valve Closed Position Learning". 3. Perform EC-80, "Idle Air Volume Learning". >> INSPECTION END 11. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Revision: March 2006 EC-363 2007 Quest

Component Inspection THROTTLE POSITION SENSOR

UBS00P76

- 1. Reconnect all harness connectors disconnected.
- 2. Perform EC-80, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- 4. Set shift lever to D position.
- Check voltage between ECM terminals 50 (TP sensor 1 signal),
 (TP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-80, "Throttle Valve Closed Position Learning".
- 8. Perform EC-80, "Idle Air Volume Learning".

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-18, "INTAKE MANIFOLD COLLECTOR".

LIBS00P77

DTC P0300 - P0306 MULTIPLE CYLINDER MISFIRE, NO. 1 - 6 CYLINDER MISFIRE PFP:00000

On Board Diagnosis Logic

UBS00P78

When a misfire occurs, engine speed will fluctuate. If the engine speed fluctuates enough to cause the crank-shaft position (CKP) sensor (POS) signal to vary, ECM can determine that a misfire is occurring.

EC

Е

Sensor	Input Signal to ECM	ECM function
Crankshaft position sensor (POS)	Engine speed	On board diagnosis of misfire

The misfire detection logic consists of the following two conditions.

1. One Trip Detection Logic (Three Way Catalyst Damage)

On the first trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.

When a misfire condition occurs, the ECM monitors the CKP sensor signal every 200 engine revolutions for a change.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will turn off. If another misfire condition occurs that can damage the TWC on a second trip, the MIL will blink.

When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on. If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.

2. Two Trip Detection Logic (Exhaust quality deterioration)

For misfire conditions that will not damage the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the CKP sensor signal every 1,000 engine revolutions.

A misfire malfunction can be detected on any one cylinder or on multiple cylinders.

Н

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0300 0300	Multiple cylinder misfire detected	Multiple cylinder misfire.	Improper spark plug Insufficient compression	I
P0301 0301	No.1 cylinder misfire detected	No. 1 cylinder misfires.	Incorrect fuel pressure The fuel injector circuit is open or	
P0302 0302	No. 2 cylinder misfire detected	No. 2 cylinder misfires.	shorted • Fuel injector	J
P0303 0303	No. 3 cylinder misfire detected	No. 3 cylinder misfires.	Intake air leak The ignition signal circuit is open or	K
P0304 0304	No. 4 cylinder misfire detected	No. 4 cylinder misfires.	shorted • Lack of fuel	
P0305 0305	No. 5 cylinder misfire detected	No. 5 cylinder misfires.	Signal plate Air fuel ratio (A/F) sensor 1	L
P0306 0306	No. 6 cylinder misfire detected	No. 6 cylinder misfires.	Incorrect PCV hose connection	M

DTC Confirmation Procedure

UBS00P79

CAUTION:

Always drive vehicle in safe manner according to traffic conditions and obey all traffic laws when driving.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

DATA MONITOR

VHCL SPEED SE XXX km/h

B/FUEL SCHDL XXX msec

NO DTC

XXX rpm

XXX °C

MONITOR

ENG SPEED

COOLAN TEMP/S

(P) WITH CONSULT-II

- Turn ignition switch ON, and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Restart engine and let it idle for about 15 minutes.
- 5. If 1st trip DTC is detected, go to EC-366, "Diagnostic Procedure"

NOTE:

If 1st trip DTC is not detected during above procedure, performing the following procedure is advised.

- a. Turn ignition switch OFF and wait at least 10 seconds.
- b. Start engine and drive the vehicle under the similar conditions to (1st trip) Freeze Frame Data for a certain time. Refer to the table below.

Hold the accelerator pedal as steady as possible.

The similar conditions to (1st trip) Freeze Frame Data means the vehicle operation that the following conditions should be satisfied at the same time.

Engine speed	Engine speed in the freeze frame data \pm 400 rpm	
Vehicle speed	Vehicle speed in the freeze frame data \pm 10 km/h (6 MPH)	
Engine coolant temperature	When the freeze frame data shows lower than 70 °C (158 °F), T should be lower than 70 °C (158 °F).	
(T) condition	When the freeze frame data shows higher than or equal to 70 °C (158 °F), T should be higher than or equal to 70 °C (158 °F).	

The time to driving varies according to the engine speed in the freeze frame data.

Engine speed	Time
Around 1,000 rpm	Approximately 10 minutes
Around 2,000 rpm	Approximately 5 minutes
More than 3,000 rpm	Approximately 3.5 minutes

® WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

1. CHECK FOR INTAKE AIR LEAK AND PCV HOSE

1. Start engine and run it at idle speed.

- 2. Listen for the sound of the intake air leak.
- 3. Check PCV hose connection.

OK or NG

OK >> GO TO 2.

NG >> Discover air leak location and repair.

2. CHECK FOR EXHAUST SYSTEM CLOGGING

Stop engine and visually check exhaust tube, three way catalyst and muffler for dents.

OK or NG

OK (With CONSULT-II)>>GO TO 3.

OK (Without CONSULT-II)>>GO TO 4.

NG >> Repair or replace it.

LIBSOOP7A

PBIB0164F

Revision: March 2006 EC-366 2007 Quest

3. PERFORM POWER BALANCE TEST

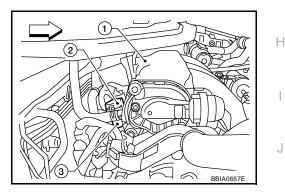
(II) With CONSULT-II

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode.
- 2. Is there any cylinder which does not produce a momentary engine speed drop?

ACTIVE TEST		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

EC

Е

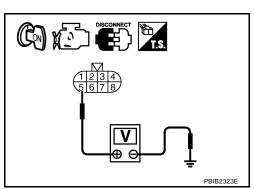

M

Yes or No

Yes >> GO TO 4. No >> GO TO 11.

4. CHECK FUNCTION OF FUEL INJECTOR-I

- 1. Stop engine.
- 2. Disconnect harness connector F44 (2), F101 (3).
- 3. Turn ignition switch ON.
- <□: Vehicle front</p>
- Intake manifold collector (1)



4. Check voltage between harness connector F44 terminal 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

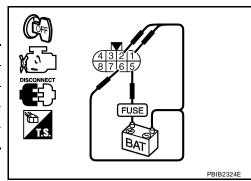
- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between harness connector F44 terminal and ECM terminal as follows.
 Refer to Wiring Diagram.

Cylinder	Harness connector F44 terminal	ECM terminal
1	6	23
3	2	22
5	1	21

Continuity should exist.

8. Also check harness for short to ground and short to power.

OK or NG


OK >> GO TO 5.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-678, "FUEL INJECTOR"</u>.

5. CHECK FUNCTION OF FUEL INJECTOR-II

Provide battery voltage between harness connector F101 as follows and then interrupt it. Listen to each fuel injector operating sound.

Cylinder	Harness connector F101 terminal		
Cymidei	(+)	(–)	
1	5	6	
3	5	2	
5	5	1	

Operating sound should exist.

OK or NG

OK >> GO TO 6.

NG >> Perform trouble diagnosis for FUEL INJECTOR, refer to <u>EC-678</u>, "FUEL INJECTOR".

6. CHECK FUNCTION OF FUEL INJECTOR-III

- 1. Reconnect all harness connector disconnected.
- 2. Start engine.
- 3. Listen to fuel injectors No. 2, No. 4, No.6 operating sound.

Clicking noise should exist.

OK or NG

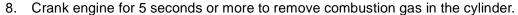
OK >> GO TO 7.

NG >> Perform

>> Perform trouble diagnosis for FUEL INJECTOR, refer to EC-678, "FUEL INJECTOR".

$7.\,$ check function of ignition coil-i

CAUTION:


Do the following procedure in the place where ventilation is good without the combustible.

- 1. Turn ignition switch OFF.
- 2. Remove fuel pump fuse in IPDM E/R to release fuel pressure.

NOTF:

Do not use CONSULT-II to release fuel pressure, or fuel pressure applies again during the following procedure.

- 3. Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- 5. Turn ignition switch OFF.
- 6. Remove all ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
- 7. Remove ignition coil and spark plug of the cylinder to be checked.

- 9. Connect spark plug and harness connector to ignition coil.
- 10. Fix ignition coil using a rope etc. with gap of 13 17 mm between the edge of the spark plug and grounded metal portion as shown in the figure.
- 11. Crank engine for about 3 seconds, and check whether spark is generated between the spark plug and the grounded metal portion

Spark should be generated.

CAUTION:

 Do not approach to the spark plug and the ignition coil within 50cm. Be careful not to get an electrical shock while checking, because the electrical discharge voltage becomes 20kV or more.

It might cause to damage the ignition coil if the gap of more than 17 mm is taken.

NOTE:

When the gap is less than 13 mm, the spark might be generated even if the coil is malfunctioning. OK or NG

OK >> GO TO 11.

NG >> GO TO 8.

8. CHECK FUNCTION OF IGNITION COIL-II

- 1. Turn ignition switch OFF.
- Disconnect spark plug and connect a known-good spark plug.
- 3. Crank engine for about 3 seconds, and recheck whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.

OK or NG

OK >> GO TO 9.

NG >> Check ignition coil, power transistor and their circuits. Refer to <u>EC-691, "IGNITION SIGNAL"</u>.

Fuel pump fuse (15A)

Washer tank cap

BBIA0229E

113 - 17 mm

Grounded metal portion

(Cylinder head, cylinder block, etc.)

Н

EC

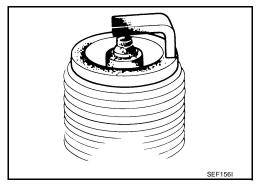
Е

F

K

9. CHECK SPARK PLUG

Check the initial spark plug for fouling, etc.


OK or NG

OK

>> Replace spark plug(s) with standard type one(s). For spark plug type, refer to MA-20, "Changing Spark Plugs (Platinum - Tipped Type)".

NG

- >> 1. Repair or clean spark plug.
 - 2. GO TO 10.

10. CHECK FUNCTION OF IGNITION COIL-III

- Reconnect the initial spark plugs.
- 2. Crank engine for about three seconds, and recheck whether spark is generated between the spark plug and the grounded portion.

Spark should be generated.

OK or NG

OK

NG

>> INSPECTION END

>> Replace spark plug(s) with standard type one(s). For spark plug type, refer to MA-20, "Changing Spark Plugs (Platinum - Tipped Type)".

11. CHECK COMPRESSION PRESSURE

Check compression pressure. Refer to EM-96, "CHECKING COMPRESSION PRESSURE" .

OK or NG

OK >> GO TO 12.

NG >> Check pistons, piston rings, valves, valve seats and cylinder head gaskets.

12. CHECK FUEL PRESSURE

- 1. Install all removed parts.
- 2. Release fuel pressure to zero. Refer to EC-82, "FUEL PRESSURE RELEASE".
- Install fuel pressure gauge and check fuel pressure. Refer to <u>EC-83, "FUEL PRESSURE CHECK"</u>.

At idling: Approximately 350 kPa (3.57 kg/cm², 51 psi)

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

13. DETECT MALFUNCTIONING PART

Check the following.

- Fuel pump and circuit (Refer to <u>EC-685, "FUEL PUMP"</u>.)
- Fuel pressure regulator (Refer to EC-83, "FUEL PRESSURE CHECK" .)
- Fuel lines
- Fuel filter for clogging

>> Repair or replace.

14. CHECK IGNITION TIMING

Check the following items. Refer to $\underline{\text{EC-73, "Basic Inspection"}}$.

Items	Specifications
Target idle speed	675 ± 50 rpm (in P or N position)
Ignition timing	15 ± 5° BTDC (in P or N position)

OK or NG

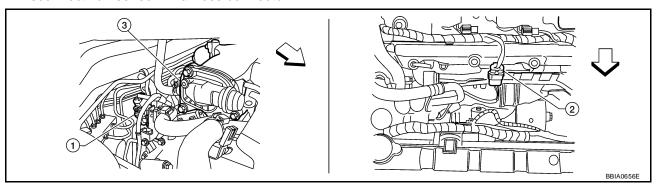
OK >> GO TO 15.

NG >> Follow the <u>EC-73</u>, "Basic Inspection".

EC

C

D


Е

Н

L

15. CHECK A/F SENSOR 1 INPUT SIGNAL

- 1. Turn ignition switch OFF.
- 2. Disconnect A/F sensor 1 harness connector.

-

 Vehicle front
- Air fuel ratio (A/F) sensor 1 (bank 1)
 Air fuel ratio (A/F) sensor 1 (bank 2)
 Intake manifold collector harness connector
- Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank 1	2	75
Dalik i	5	35
-	6	56
	1	76
Bank 2	2	77
	5	57
	6	58

Continuity should exist.

5. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Bank 1		Bank 2	
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal
1	16	1	76
2	75	2	77
5	35	5	57
6	56	6	58

Continuity should not exist.

6. Also check harness for short to power.

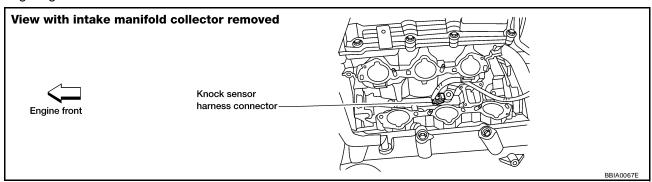
OK or NG

OK >> GO TO 16.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

16. CHECK A/F SENSOR 1 HEATER	А
Refer to EC-175, "Component Inspection".	
OK or NG OK >> GO TO 17. NG >> Replace (malfunctioning) A/F sensor 1.	EC
17. CHECK MASS AIR FLOW SENSOR	С
With CONSULT-II Check mass air flow sensor signal in "DATA MONITOR" mode with CONSULT-II.	D
2.0 - 6.0 g·m/sec: at idling	D
7.0 - 20.0 g·m/sec: at 2,500 rpm	
With GST Check mass air flow sensor signal in Service \$01 with GST.	Е
2.0 - 6.0 g·m/sec: at idling	F
7.0 - 20.0 g·m/sec: at 2,500 rpm	
OK or NG OK >> GO TO 18. NG >> Check connectors for rusted terminals or loose connections in the mass air flow sensor circuit or ground. Refer to EC-192 , "DTC P0101 MAF SENSOR".	G
18. CHECK SYMPTOM MATRIX CHART	Н
Check items on the rough idle symptom in <u>EC-95</u> , "Symptom Matrix Chart". OK or NG OK >> GO TO 19. NG >> Repair or replace.	I
19. erase the 1st trip dtc	J
Some tests may cause a 1st trip DTC to be set. Erase the 1st trip DTC from the ECM memory after performing the tests. Refer to EC-63 , "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION" .	K
>> GO TO 20.	L
20. CHECK INTERMITTENT INCIDENT	M
Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	IVI

>> INSPECTION END


DTC P0327, P0328 KS

PFP:22060

Component Description

UBS00P7B

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

On Board Diagnosis Logic

UBS00P7C

The MIL will not light up for these diagnoses.

DTC No.	Trouble diagnosis name	DTC detected condition	Possible cause
P0327 0327	Knock sensor circuit low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.)
P0328 0328	Knock sensor circuit high input	An excessively high voltage from the sensor is sent to ECM.	Knock sensor

DTC Confirmation Procedure

UBS00P7D

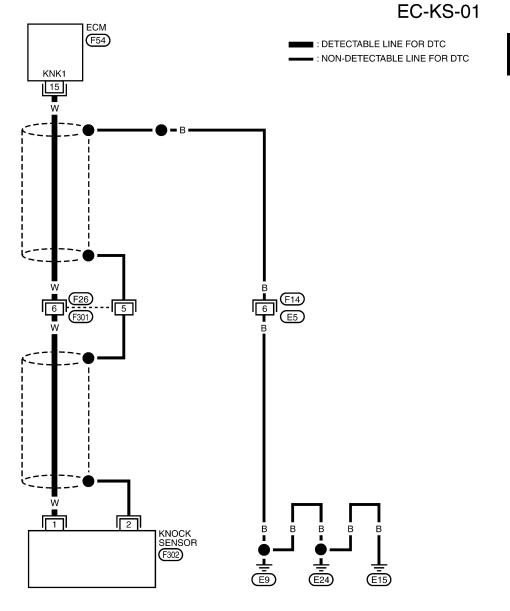
NOTE:

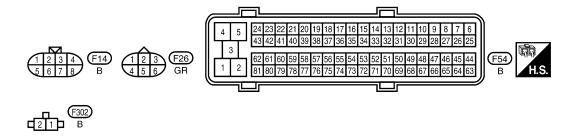
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II


- 1. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and run it for at least 5 seconds at idle speed.
- If 1st trip DTC is detected, go to <u>EC-376</u>, "<u>Diagnostic Procedure</u>"


DA	DATA MONITOR		
MONITOR		NO DTC	
ENG SPEE	D X	XX rpm	
			SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

BBWA1611E

EC

С

D

Е

G

Н

DTC P0327, P0328 KS

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
15	W	Knock sensor	[Engine is running] ● Idle speed	Approximately 2.5V

Diagnostic Procedure

UBS00P7F

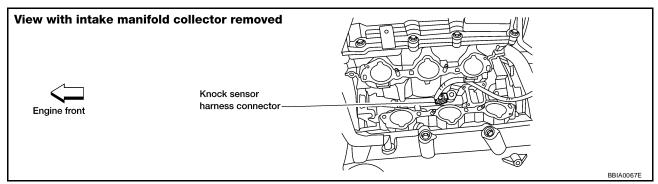
1. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check resistance between ECM terminal 15 and ground. Refer to Wiring Diagram.

NOTE:

It is necessary to use an ohmmeter which can measure more than 10 M Ω .

Resistance: Approximately 532 - 588 k Ω [at 20°C (68°F)]


4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 2.

2. CHECK KNOCK SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

1. Disconnect knock sensor harness connector.

Check harness continuity between ECM terminal 15 and knock sensor terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

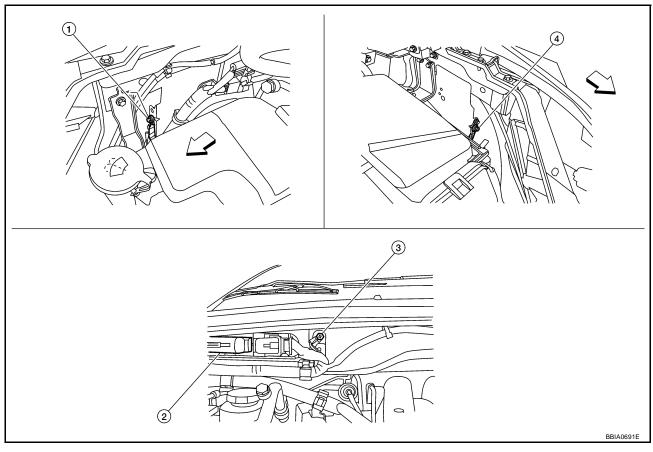
3. detect malfunctioning part

Check the following.

- Harness connectors F26, F301
- Harness for open or short between ECM and knock sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK KNOCK SENSOR

Refer to EC-378, "Component Inspection".


OK or NG

OK >> GO TO 5.

NG >> Replace knock sensor.

5. CHECK GROUND CONNECTIONS

1. Loosen and retighten three ground screws on the body. Refer to <a>EC-158, "Ground Inspection".

- Vehicle front
- 1. Body ground E24
- 2. ECM

3. Body ground E9

4. Body ground E15

OK or NG

OK >> GO TO 6.

NG >> Repair or replace ground connections.

6. CHECK KNOCK SENSOR SHIELD CIRCUIT FOR OPEN AND SHORT

- Disconnect knock sensor harness connector.
- 2. Check harness continuity between knock sensor terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 8.

NG >> GO TO 7.

Revision: March 2006 EC-377 2007 Quest

EC

D

Е

F

G

Н

1

K

L

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F26, F301
- Harness connectors E5, F14
- Harness for open or short between knock sensor and ground
 - >> Repair open circuit or short to power in harness or connectors.

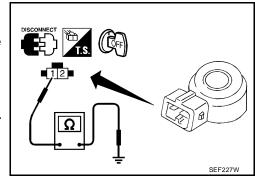
8. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection KNOCK SENSOR

Check resistance between knock sensor terminal 1 and ground.


NOTE:

It is necessary to use an ohmmeter which can measure more than 10 $\mbox{M}\Omega.$

Resistance: Approximately 532 - 588 kΩ [at 20°C (68°F)]

CAUTION:

Do not use any knock sensors that have been dropped or physically damaged. Use only new ones.

UBS00P7H

UBS00P7G

Removal and Installation KNOCK SENSOR

Refer to EM-118, "CYLINDER BLOCK" .

DTC P0335 CKP SENSOR (POS)

PFP:23731

Component Description

UBS00P7I

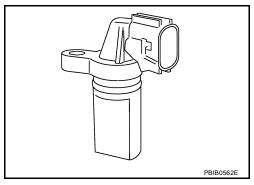
Α

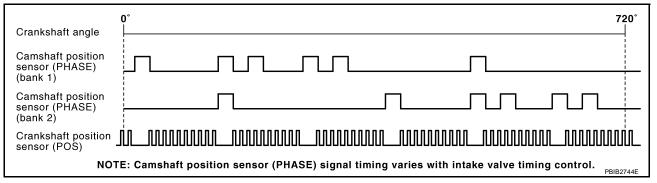
EC

Е

The crankshaft position sensor (POS) is located on the oil pan facing the gear teeth (cogs) of the signal plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet and Hall IC.


When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.


The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

ECM receives the signals as shown in the figure.

CONSULT-II Reference Value in Data Monitor Mode

UBS00P7J

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
ENG SPEED	Run engine and compare CONSULT-II value with the tachometer indication.	Almost the same speed as the tachometer indication

On Board Diagnosis Logic

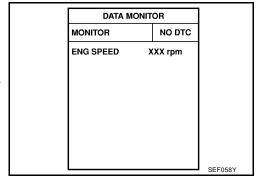
UBS00P7K

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0335 0335	Crankshaft position sensor (POS) circuit	 The crankshaft position sensor (POS) signal is not detected by the ECM during the first few seconds of engine cranking. The proper pulse signal from the crankshaft position sensor (POS) is not sent to ECM while the engine is running. The crankshaft position sensor (POS) signal is not in the normal pattern during engine running. 	 Harness or connectors (The sensor circuit is open or shorted) Crankshaft position sensor (POS) Signal plate 	M

DTC Confirmation Procedure

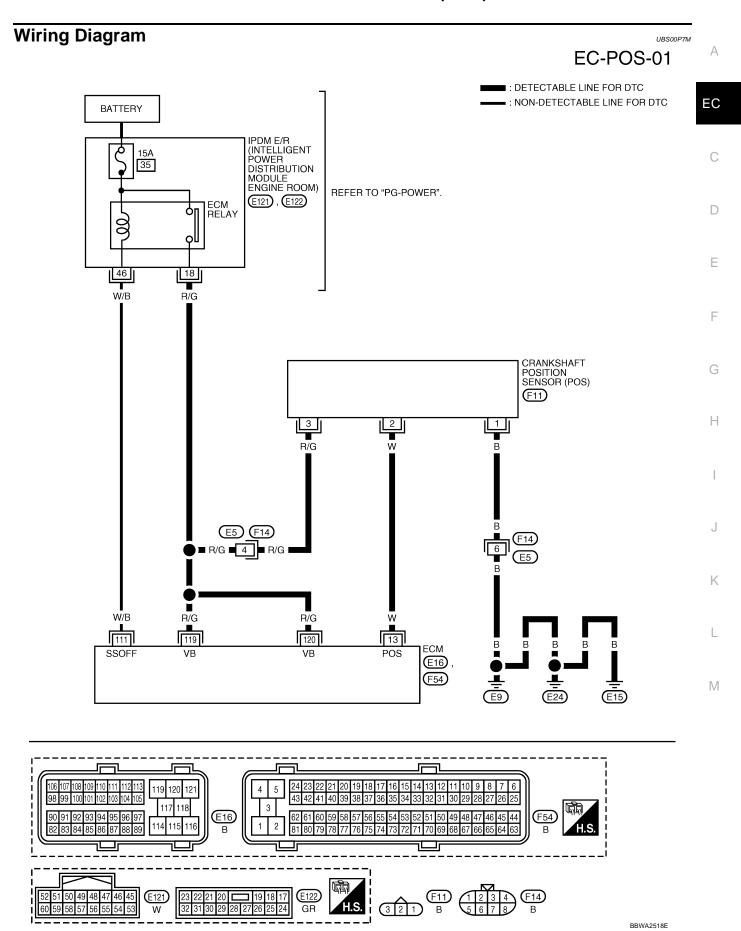
UBS00P7L

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch ON.


(P) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 3. If 1st trip DTC is detected, go to EC-383, "Diagnostic Procedure"

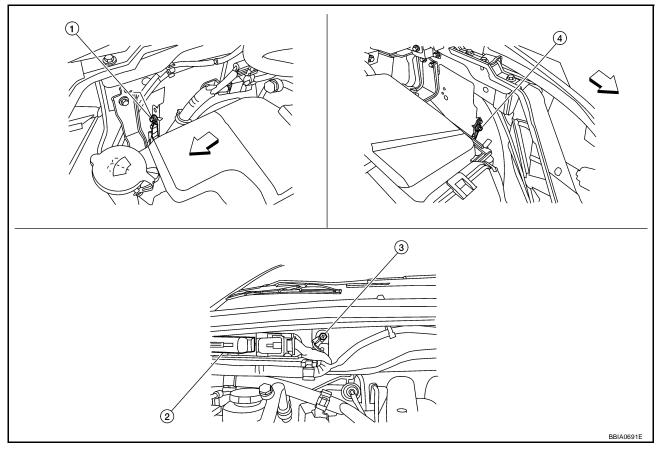
WITH GST

Follow the procedure "WITH CONSULT-II" above.

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
13	w	Crankshaft position sensor (POS)	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	Approximately 10V★ → 5.0 V/Div 1 ms/Div T PBIB1041E
13			[Engine is running] ● Engine speed: 2,000 rpm	Approximately 10V★ → 5.0 V/Div 1 ms/Div T PBIB1042E
111	W/B	W/B ECM relay (Self shut-off)	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

Α

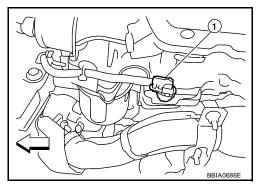
UBS00P7N

С

D

Е

F

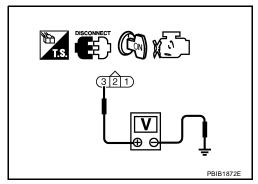

G

Н

K

$2.\,$ check crankshaft position (ckp) sensor (pos) power supply circuit

- Disconnect crankshaft position (CKP) sensor (POS) harness connector.
- <□: Vehicle front</p>
- Crankshaft position sensor (POS) (1)
 (View from under the vehicle)
- 2. Turn ignition switch ON.



Check voltage between CKP sensor (POS) terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness for open or short between crankshaft position sensor (POS) and ECM
- Harness for open or short between crankshaft position sensor (POS) and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK CKP SENSOR (POS) GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Check harness continuity between CKP sensor (POS) terminal 1 and ground. Refer to Wiring Diagram.

Continuity should exist.

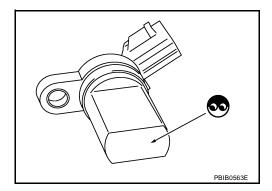
3. Also check harness for short to power.

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

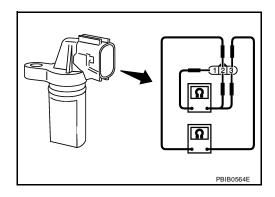
5. DETECT MALFUNCTIONING PART

Check the following.


- Harness connectors E5, F14
- Harness for open or short between crankshaft position sensor (POS) and ground
 - >> Repair open circuit or short to power in harness or connectors.

1. Dis	sconnect ECM harness connector.	
2. Ch	neck harness continuity between ECM terminal 13 and CKP sensor (POS) terminal 2. Ifer to Wiring Diagram.	EC
	Continuity should exist.	
OK or I	>> GO TO 7.	С
NG	>> Repair open circuit or short to ground or short to power in harness or connectors.	D
7. c⊦	IECK CRANKSHAFT POSITION SENSOR (POS)	
	o EC-386, "Component Inspection" .	E
OK or OK NG	NG >> GO TO 8. >> Replace crankshaft position sensor (POS).	F
8. cr	IECK GEAR TOOTH	
Visuall OK or	y check for chipping signal plate gear tooth.	G
OK OK NG	>> GO TO 9. >> Replace the signal plate.	Н
9. cr	IECK INTERMITTENT INCIDENT	
Refer t	o EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	
	>> INSPECTION END	J
		K

Component Inspection CRANKSHAFT POSITION SENSOR (POS)


UBS00P70

- 1. Loosen the fixing bolt of the sensor.
- 2. Disconnect crankshaft position sensor (POS) harness connector.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	

UBS00P7P

Removal and Installation CRANKSHAFT POSITION SENSOR (POS)

Refer to EM-30, "OIL PAN AND OIL STRAINER" .

DTC P0340, P0345 CMP SENSOR (PHASE)

PFP:23731

Component Description

UBS00P7Q

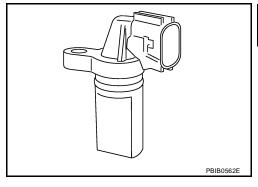
Α

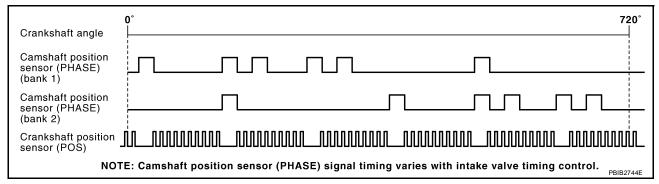
EC

Е

The camshaft position sensor (PHASE) senses the retraction of camshaft (INT) to identify a particular cylinder. The camshaft position sensor (PHASE) senses the piston position.

When the crankshaft position sensor (POS) system becomes inoperative, the camshaft position sensor (PHASE) provides various controls of engine parts instead, utilizing timing of cylinder identification signals.


The sensor consists of a permanent magnet and Hall IC.


When engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

ECM receives the signals as shown in the figure.

On Board Diagnosis Logic

UBS00P7R

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0340 0340	0340 (Bank 1) Camshaft position sensor	The cylinder No. signal is not sent to ECM	Harness or connectors (The sensor circuit is open or shorted)
(Bank 1)		for the first few seconds during engine	Camshaft position sensor (PHASE)
		cranking.	Camshaft (Intake)
P0345		. The cylinder No. signal is not sent to EU.M.	Starter motor (Refer to <u>SC-10, "START-ING SYSTEM"</u> .)
		│ ▲ The cylinder No. signal is not in the normal │	Starting system circuit (Refer to <u>SC-10,</u> "STARTING SYSTEM" .)
			Dead (Weak) battery

DTC Confirmation Procedure

UBS00P7S

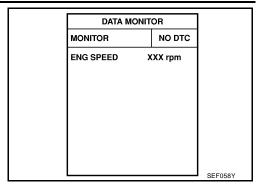
M

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V with ignition switch ON.


WITH CONSULT-II

1. Turn ignition switch ON.

- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Crank engine for at least 2 seconds and run it for at least 5 seconds at idle speed.
- 4. If 1st trip DTC is detected, go to EC-392, "Diagnostic Procedure"

If 1st trip DTC is not detected, go to next step.

- 5. Maintaining engine speed at more than 800 rpm for at least 5 seconds.
- 6. If 1st trip DTC is detected, go to EC-392, "Diagnostic Procedure"

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram BANK 1 UBS00P7T Α EC-PHSB1-01 ■ : DETECTABLE LINE FOR DTC EC : NON-DETECTABLE LINE FOR DTC BATTERY IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE ROOM) C 15A 35 REFER TO "PG-POWER". D (E121), (E122) ECM RELAY Е 46 18 W/B R/G E5 F14 F26 F301 R/G ■ 4 ■ R/G 3 CAMSHAFT POSITION SENSOR (PHASE) (BANK 1) Н (F303) R/G W/B R/G 111 120 119 33 ECM SSOFF VΒ PHASE RH **E**16 M (F54) 119 120 121 5 3 (E16) (F54) (E122)

BBWA2519E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
33	Y	Camshaft position sensor (PHASE) (Bank 1)	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	1.0 - 4.0V★ >> 5.0 V/Div 20 ms/Div T PBIB1039E
33	Y		[Engine is running] ● Engine speed: 2,000 rpm	1.0 - 4.0V★ >> 5.0V/Div 20 ms/Div PBIB1040E
111	111 W/B	W/B ECM relay (Self shut-off)	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

BANK 2 Α EC-PHSB2-01 : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC EC **BATTERY** IPDM E/R (INTELLIGENT POWER DISTRIBUTION MODULE ENGINE ROOM) 15A 35 C REFER TO "PG-POWER". E121), E122 ECM RELAY D Е 46 W/B R/G E5 F14 ■ R/G ■ 4 ■ R/G R/G POSITION SENSOR (PHASE) Н (BANK 2) (F23) 2 6 W/B R/G R/G 111 119 120 14 SSOFF PHASE LH **E**16 (F54) (E9) (E15) M 119 120 121 (E16) (F54) (E121)

BBWA2520E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
14	W	Camshaft position sensor (PHASE) (Bank 2)	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	1.0 - 4.0V★ 2.5.0 V/Div 20 ms/Div T PBIB1039E
14	VV		[Engine is running] ● Engine speed: 2,000 rpm	1.0 - 4.0V★ >> 5.0 V/Div 20 ms/Div PBIB1040E
111	W/B	W/B ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

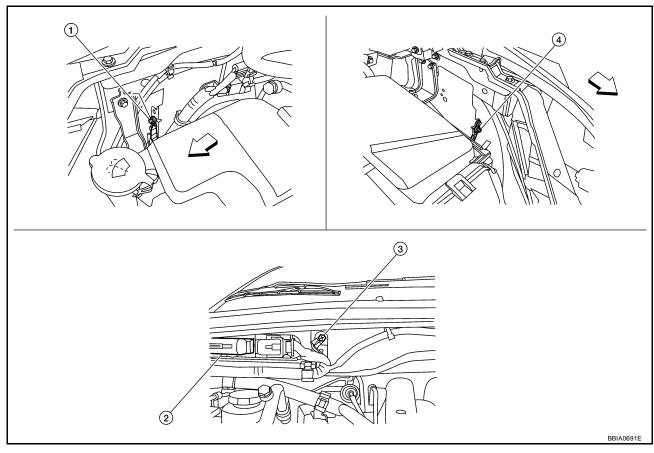
UBS00P7U

1. CHECK STARTING SYSTEM

Turn ignition switch to START position.

Does the engine turn over?

Does the starter motor operate?


Yes or No

Yes >> GO TO 2.

No >> Check starting system. (Refer to <u>SC-10, "STARTING SYSTEM"</u>.)

2. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24
- 2. ECM

3. Body ground E9

4. Body ground E15

OK or NG

OK >> GO TO 3.

NG >> Repair or replace ground connections.

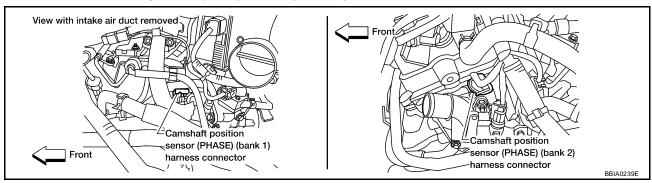
EC

С

D

Е

F

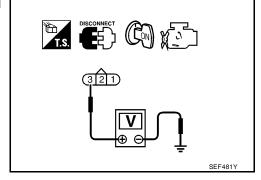

G

Н

K

3. CHECK CAMSHAFT POSITION (CMP) SENSOR (PHASE) POWER SUPPLY CIRCUIT

1. Disconnect camshaft position (CMP) sensor (PHASE) harness connector.



- 2. Turn ignition switch ON.
- 3. Check voltage between CMP sensor (PHASE) terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness connectors F26, F301 (bank 1)
- Harness for open or short between camshaft position sensor (PHASE) and ECM
- Harness for open or short between camshaft position sensor (PHASE) and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK CMP SENSOR (PHASE) GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Check harness continuity between CMP sensor (PHASE) terminal 1 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness connectors F26, F301 (bank 1)
- Harness for open or short between CMP sensor (PHASE) and ground
 - >> Repair open circuit or short to power in harness or connectors.

$7.\,$ CHECK CMP SENSOR (PHASE) INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 33 (bank 1) or 14 (bank2) and CMP sensor (PHASE) terminal 2.

Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F26, F301 (bank 1)
- Harness for open or short between camshaft position sensor (PHASE) and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

CHECK CAMSHAFT POSITION SENSOR (PHASE)

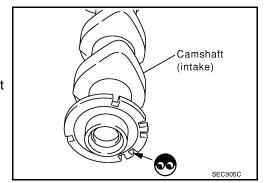
Refer to EC-396, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace camshaft position sensor (PHASE).

10. CHECK CAMSHAFT (INT)


Check the following.

- Accumulation of debris to the signal plate of camshaft rear end
- Chipping signal plate of camshaft rear end

OK or NG

OK >> GO TO 11.

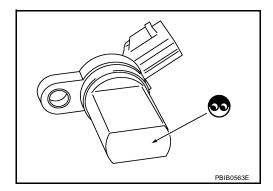
NG >> Remove debris and clean the signal plate of camshaft rear end or replace camshaft.

11. CHECK INTERMITTENT INCIDENT

>> INSPECTION END

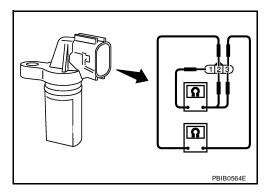
EC-395 Revision: March 2006 2007 Quest

EC


Е

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

Component Inspection CAMSHAFT POSITION SENSOR (PHASE)


UBS00P7V

- 1. Loosen the fixing bolt of the sensor.
- 2. Disconnect camshaft position sensor (PHASE) harness connector.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.

5. Check resistance as shown in the figure.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 (+) - 2 (-)	
1 (+) - 3 (-)	Except 0 or ∞
2 (+) - 3 (-)	

UBS00P7W

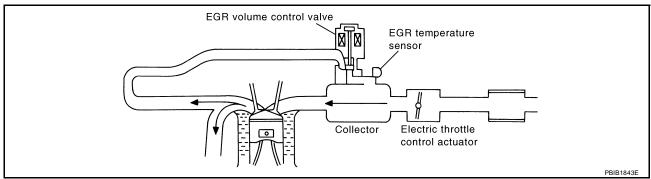
Removal and Installation CAMSHAFT POSITION SENSOR (PHASE)

Refer to EM-78, "CAMSHAFT".

DTC P0400 EGR FUNCTION

PFP:14710

Description SYSTEM DESCRIPTION


UBS00P7X

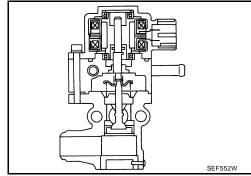
Sensor	Input Signal to ECM	ECM function	Actuator	
Camshaft position sensor (PHASE)	Engine speed*2			_
Crankshaft position sensor (POS)	Piston position			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Throttle position sensor	Throttle position			
Accelerator pedal position sensor	Accelerator pedal position			
Park/neutral position (PNP) switch	Gear position	EGR volume	EGR volume control valve	
Battery	Battery voltage*2	control		
Air conditioner switch	Air conditioner operation *1			
Power steering pressure sensor	Power steering operation			
Electrical load	Electrical load signal *1			
Wheel sensor	Vehicle speed *1			
TCM	Gear position, shifting signal *1			

^{*1:} This signal is sent to the ECM through CAN communication line.

This system controls flow rate of EGR led from exhaust manifold to intake manifold. The opening of the EGR by-pass passage in the EGR volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. The EGR volume control valve remains closed under the following conditions.

- Engine stopped
- Engine starting
- Engine idling
- Low engine coolant temperature
- Excessively high engine coolant temperature
- High engine speed
- Wide open throttle
- Low battery voltage

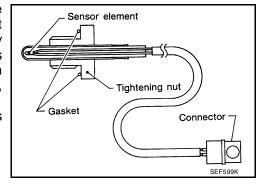
Н


Е

Revision: March 2006 EC-397 2007 Quest

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

COMPONENT DESCRIPTION EGR Volume Control Valve


The EGR volume control valve uses a step motor to control the flow rate of EGR from exhaust manifold. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

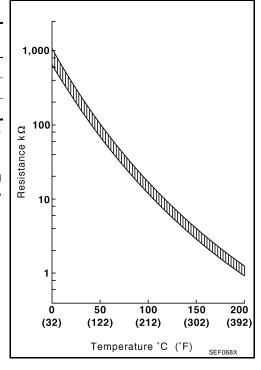
EGR Temperature Sensor

The EGR temperature sensor detects temperature changes in the EGR passageway. When the EGR volume control valve opens, hot exhaust gases flow, and the temperature in the passageway changes. The EGR temperature sensor is a thermistor that modifies a voltage signal sent from the ECM. This modified signal then returns to the ECM as an input signal. As the temperature increases, EGR temperature sensor resistance decreases.

This sensor is not directly used to control the engine system. It is used only for the on board diagnosis.

<Reference data>

EGR temperature °C (°F)	Voltage* V	Resistance $M\Omega$
0 (32)	4.59	0.73 - 0.88
50 (122)	2.32	0.074 - 0.082
100 (212)	0.62	0.011 - 0.014


^{*:} This data is reference value and is measured between ECM terminal 54 (EGR temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may damage the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

When EGR system is operating.

Voltage: 0 - 1.5V

CONSULT-II Reference Value in Data Monitor Mode

UBS00P7Y

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
EGR TEMP SEN	Engine: After warming up		Less than 4.5V
	Engine: After warming up	Idle	0 step
EGR VOL CON/V	Air conditioner switch: OFFShift lever: P or N	Revving engine up to 3,000 rpm	10 - 55 step
	No load	quickly	·

EC

Α

On Board Diagnosis Logic

If the absence of EGR flow is detected by EGR temperature sensor under the condition that calls for EGR, a low-flow malfunction is diagnosed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	Е
			Harness or connectors (The EGR volume control valve circuit is open or shorted.)	F
P0400	EGR function (Close)	Close) No EGR flow is defected under the condition that calls for EGR.	EGR volume control valve stuck closed	
0400			Dead (Weak) battery	
			EGR passage clogged	G
			EGR temperature sensor and circuit	
			Exhaust gas leaks	

DTC Confirmation Procedure

UBS00P80

K

L

M

CAUTION:

Always drive vehicle at a safe speed.

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 5 seconds before conducting the next test.
- P0400 will not be displayed at "SELF-DIAG RESULTS" mode with CONSULT-II even though DTC work support test result is NG.

TESTING CONDITION:

- Before performing the following procedure, confirm battery voltage is more than 10V at idle, then stop engine immediately.
- For best results, perform the test at a temperature of 5°C (41°F) or higher.

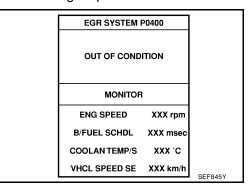
(P) WITH CONSULT-II

- Turn ignition switch OFF, wait at least 10 seconds and then turn ON. 1.
- Check "COOLAN TEMP/S" in "DATA MONITOR" mode with CONSULT-II.

Confirm "COOLAN TEMP/S" value is within the range listed

COOLAN TEMP/S: Less than 40°C (104°F)

If the value is out of range, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to lower the engine coolant temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.


DATA MONITOR MONITOR NO DTC COOLAN TEMP/S XXX °C

- 3. Start engine and let it idle monitoring "COOLAN TEMP/S" value. When the "COOLAN TEMP/S" value reaches 70°C (158°F), immediately go to the next step.
- 4. Select "EGR SYSTEM P0400" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- Accelerate vehicle to a speed of 40 km/h (25 MPH) once and then stop vehicle with engine running. If "COMPLETED" appears on CONSULT-II screen, go to step 8.

If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.

7. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions until "TESTING" changes to "COMPLETED". (It will take approximately 30 seconds or more.)

ENG SPEED	1,200 - 2,800 rpm
VHCL SPEED SE	More than 10 km/h (6 MPH)
B/FUEL SCHDL	4 - 9 msec
Shift lever	Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2.

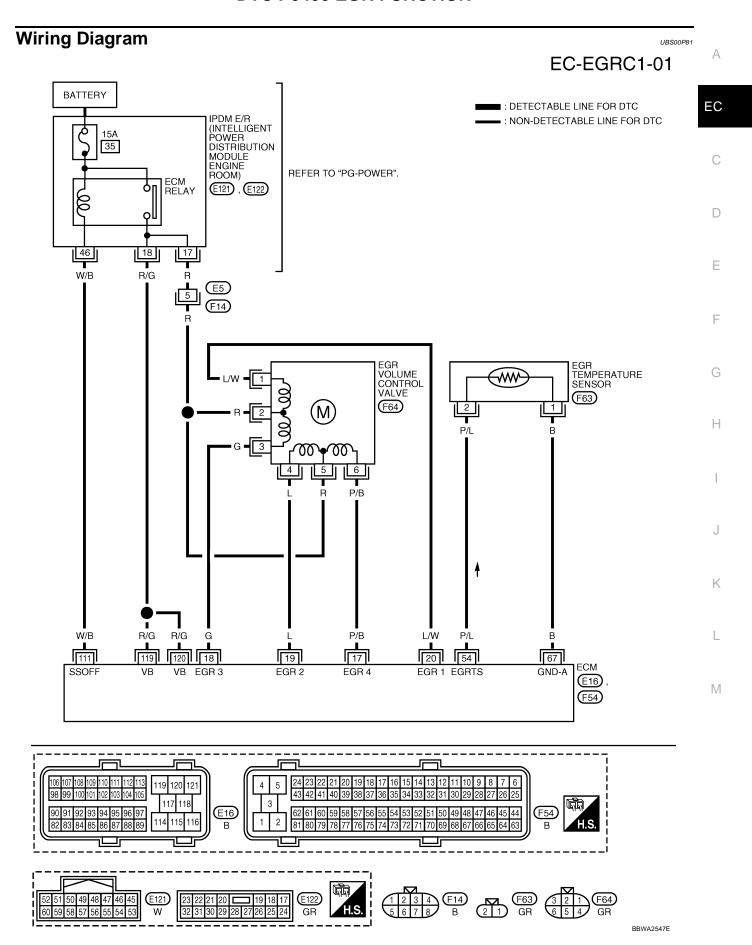
8. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-402, "Diagnostic Procedure".

WITH GST

- 1. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 2. Check engine coolant temperature in Service \$01 with GST.

Engine coolant temperature: Less than 40°C (104°F)

If the value is out of range, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to lower the coolant temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.


- 3. Start engine and let it idle monitoring the engine coolant temperature value. When the engine coolant temperature reaches 70°C (158°F), immediately go to the next step.
- 4. Maintain the following conditions for at least 1 minute.

Engine speed: 1,200 - 2,800 rpm

Vehicle speed: More than 10 km/h (6 MPH)

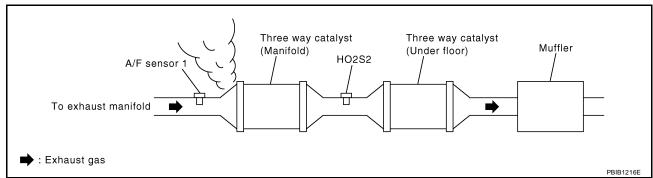
Shift lever: Suitable position

- 5. Stop vehicle.
- 6. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- Select Service \$07 with GST.
- 8. If 1st trip DTC is detected, go to EC-402, "Diagnostic Procedure".

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

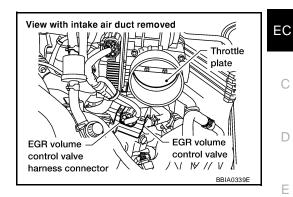

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
17 18 19 20	P/B G L L/W	EGR volume control valve	[Engine is running] • Idle speed	0.1 - 14V
			[Ignition switch: ON]	Less than 4.5V
54	P/L	EGR temperature sensor	[Engine is running]Warm-up conditionEGR system: Operating	0 - 1.5V
67	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
111	W/B	ECM relay	[Engine is running][Ignition switch: OFF]For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Self shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00P82

1. CHECK EXHAUST SYSTEM

- 1. Start engine.
- Check exhaust pipes and muffler for leaks.


OK or NG

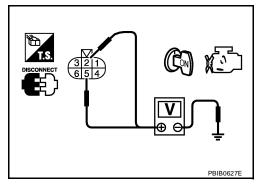
OK >> GO TO 2.

NG >> Repair or replace exhaust system.

$\overline{2}$. CHECK EGR VOLUME CONTROL VALVE POWER SUPPLY CIRCUIT

- Turn ignition switch OFF. 1.
- 2. Disconnect EGR volume control valve harness connector.
- Turn ignition switch ON.

Е


Н

4. Check voltage between EGR volume control valve terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. detect malfunctioning part

Check the following.

- Harness connectors E5, F14
- Harness for open or short between EGR volume control valve and IPDM E/R
 - >> Repair harness or connectors.

4. CHECK EGR VOLUME CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals and EGR volume control valve terminals as follows. Refer to Wiring Diagram.

ECM terminal	EGR volume control valve
17	6
18	3
19	4
20	1

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

EC-403 Revision: March 2006 2007 Quest

5. CHECK EGR PASSAGE

Check EGR passage for clogging and cracks.

OK or NG

OK >> GO TO 6.

NG >> Repair or replace EGR passage.

6. CHECK EGR VOLUME CONTROL VALVE

Refer to EC-409, "Component Inspection".

OK or NG

OK >> GO TO 7.

NG >> Replace EGR volume control valve.

7. CHECK EGR TEMPERATURE SENSOR AND CIRCUIT

Perform DTC Confirmation Procedure for DTC P0405, P0406. Refer to <u>EC-413, "DTC Confirmation Procedure"</u>.

OK or NG

OK >> GO TO 8.

NG >> Repair or replace malfunctioning part.

8. CHECK INTERMITTENT INCIDENT

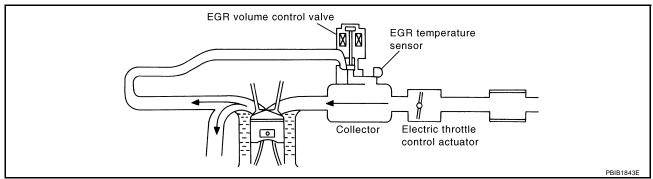
Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0403 EGR VOLUME CONTROL VALVE

PFP:14710

Description SYSTEM DESCRIPTION


UBS00P83

Sensor	Input Signal to ECM	ECM function	Actuator
Camshaft position sensor (PHASE)	Engine speed*2		
Crankshaft position sensor (POS)	Piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position		
Park/neutral position (PNP) switch	Gear position	EGR volume	EGR volume control valve
Battery	Battery voltage*2	control	2011 Volumo control Valvo
Air conditioner switch	Air conditioner operation *1		
Power steering pressure sensor	Power steering operation		
Electrical load	Electrical load signal *1		
Wheel sensor	Vehicle speed *1		
ТСМ	Gear position, shifting signal *1		

^{*1:} This signal is sent to the ECM through CAN communication line.

This system controls flow rate of EGR led from exhaust manifold to intake manifold. The opening of the EGR by-pass passage in the EGR volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. The EGR volume control valve remains close under the following conditions.

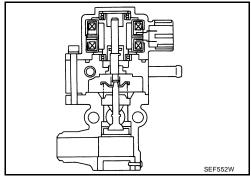
- Engine stopped
- Engine starting
- Engine idling
- Low engine coolant temperature
- Excessively high engine coolant temperature
- High engine speed
- Wide open throttle
- Low battery voltage

Revision: March 2006 EC-405 2007 Quest

Н

Е

J


K

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

COMPONENT DESCRIPTION

EGR Volume Control Valve

The EGR volume control valve uses a step motor to control the flow rate of EGR from exhaust manifold. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

CONSULT-II Reference Value in Data Monitor Mode

UBS00P84

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0 step
EGR VOL CON/V	 Air conditioner switch: OFF 	D	
LGR VOLCON/V	Shift lever: P or N	Revving engine up to 3,000 rpm quickly	10 - 55 step
	No load	quickly	

On Board Diagnosis Logic

UBS00P85

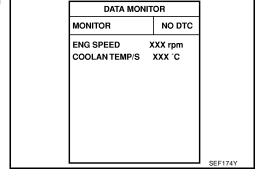
This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0403 0403	EGR volume control valve circuit	An improper voltage signal is sent to ECM through the valve	 Harness or connectors (The EGR volume control valve circuit is open or shorted.) EGR volume control valve

DTC Confirmation Procedure

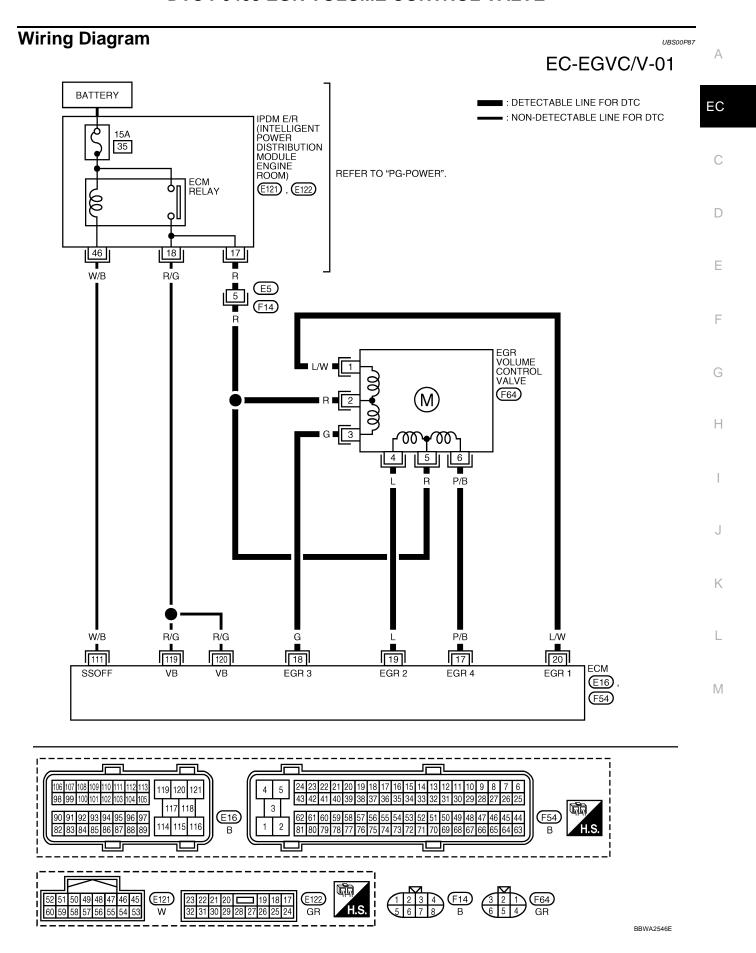
UBS00P86

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.


(P) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Rev engine from idle to 2,000 rpm for 10 times.
- 4. If DTC is detected, go to EC-408, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

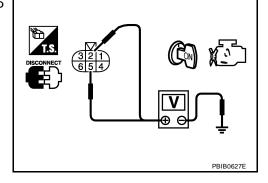
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
17 18 19 20	P/B G L L/W	EGR volume control valve	[Engine is running] • Idle speed	0.1 - 14V
111	W/B	ECM relay	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Self shut-off)	[Ignition switch: OFF] • More than a few seconds passed after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00P88

1. CHECK EGR VOLUME CONTROL VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EGR volume control valve harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between EGR volume control valve terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness for open or short between EGR volume control valve and IPDM E/R

>> Repair harness or connectors.

3. CHECK EGR VOLUME CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminals and EGR volume control valve terminals as follows. Refer to Wiring Diagram.

ECM terminal	EGR volume control valve
17	6
18	3
19	4
20	1

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK EGR VOLUME CONTROL VALVE

Refer to EC-409, "Component Inspection" .

OK or NG

OK >> GO TO 5.

NG >> Replace EGR volume control valve.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EGR VOLUME CONTROL VALVE

(P) With CONSULT-II

- Turn ignition switch OFF.
- Disconnect EGR volume control valve harness connector.

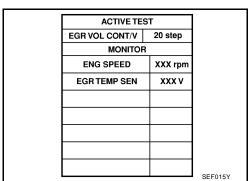
EC

Е

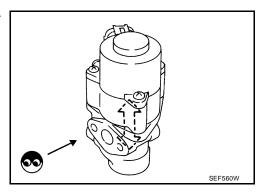
Н

UBS00P89

3. Check resistance between EGR volume control valve terminal 2 and terminals 1, 3, terminal 5 and terminals 4, 6.


Resistance: 20 - 24 Ω [at 20°C (68F°)]

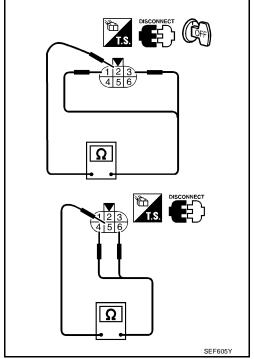
If NG, replace EGR volume control valve. If OK, go to next step.


- 4. Remove EGR volume control valve.
- 5. Reconnect ECM harness connector and EGR volume control valve harness connector.
- 6. Turn ignition switch ON.

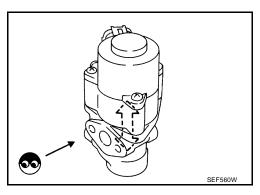
7. Perform "EGR VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.

 Check that EGR volume control valve shaft moves smoothly forward and backward according to the valve opening steps. If NG, replace EGR volume control valve.

⋈ Without CONSULT-II


- 1. Turn ignition switch OFF.
- Disconnect EGR volume control valve harness connector.

3. Check resistance between EGR volume control valve terminal 2 and terminals 1, 3, terminal 5 and terminals 4, 6.


Resistance: 20 - 24 Ω [at 20°C (68F°)]

If NG, replace EGR volume control valve. If OK, go to next step.

- 4. Remove EGR volume control valve.
- 5. Reconnect ECM harness connector and EGR volume control valve harness connector.
- 6. Turn ignition switch ON and OFF.

7. Check that EGR volume control valve shaft moves smoothly forward and backward according to the ignition switch position.

LIBSOOPRA

Removal and Installation EGR VOLUME CONTROL VALVE

Refer to EM-22, "EGR VOLUME CONTROL VALVE" .

L

M

Α

EC

D

Е

Н


Component Description

PFP:14710

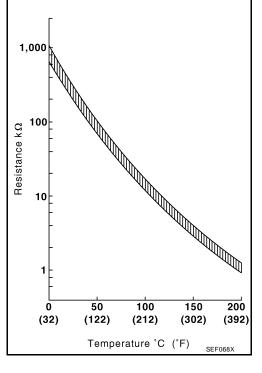
UBS00P8B

The EGR temperature sensor detects temperature changes in the EGR passageway. When the EGR volume control valve opens, hot exhaust gases flow, and the temperature in the passageway changes. The EGR temperature sensor is a thermistor that modifies a voltage signal sent from the ECM. This modified signal then returns to the ECM as an input signal. As the temperature increases, EGR temperature sensor resistance decreases.

This sensor is not directly used to control the engine system. It is used only for the on board diagnosis.

<Reference data>

EGR temperature °C (°F)	Voltage* V	Resistance $M\Omega$
0 (32)	4.59	0.73 - 0.88
50 (122)	2.32	0.074 - 0.082
100 (212)	0.62	0.011 - 0.014


^{*:} This data is reference value and is measured between ECM terminal 54 (EGR temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may damage the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

When EGR system is operating.

Voltage: 0 - 1.5V

On Board Diagnosis Logic

UBS00P8C

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause	
P0405 EGR temperature sensor		An excessively low voltage from the EGR temperature sensor is sent to ECM even	 Harness or connectors (The EGR temperature sensor circuit is shorted.) 	
0405 circuit low input	when engine coolant temperature is low.	EGR temperature sensor		
		Malfunction of EGR function		
P0406 0406	EGR temperature sensor circuit high input	An excessively high voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is high.	Harness or connectors (The EGR temperature sensor circuit is open.) EGR temperature sensor	
			Malfunction of EGR function	

DTC Confirmation Procedure

UBS00P8D

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR DTC P0405

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Verify that "COOLAN TEMP/S" indicates less than 50°C (122°F).

If the engine coolant temperature is above the range, cool the engine down.

- 4. Start engine and let it idle for at least 8 seconds.
- 5. If 1st trip DTC is detected, go to EC-416, "Diagnostic Procedure"

MONITOR **ENG SPEED** XXX rpm COOLAN TEMP/S XXX °C SEF174Y

DATA MONITOR

NO DTC

With GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR DTC P0406

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

Always perform the test at a temperature above -10° C (14°F).

(P) With CONSULT-II

- Start engine and warm it up to normal operating temperature.
- 2. Select "EGR VOL CONT/V" in "ACTIVE TEST" mode with CON-SULT-II.
- 3. Hold engine speed at 1,500 rpm.
- 4. Touch "Qu" and set the EGR volume control valve opening to 50 step and check "EGR TEMP SEN" indication. "EGR TEMP SEN" indication should decrease to less than 1.0V. If the check result is NG, go to EC-416, "Diagnostic Procedure". If the check result is OK, go to the following step.
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 7. Start engine and maintain the following conditions for at least 5 consecutive seconds.

ENG SPEED	1,200 - 2,800 rpm
VHCL SPEED SE	10 km/h (6 MPH) or more
B/FUEL SCHDL	4 - 9 msec
Shift lever	Suitable position

If 1st trip DTC is detected, go to EC-416, "Diagnostic Procedure"

T	ACTIVE TES
20 step	EGR VOL CONT/V
	MONITOR
XXX rpm	ENG SPEED
xxx v	EGR TEMP SEN

DATA MOI	NITOR	
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	XXX °C	
VHCL SPEED SE	XXX km/h	
B/FUEL SCHDL	XXX msec	

EC

Α

Е

F

Н

With GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 3. Select Service \$01 with GST and maintain the following conditions for at least 5 consecutive seconds.

Engine speed	1,200 - 2,800 rpm
Vehicle speed	10 km/h (6 MPH) or more
Shift lever	Suitable position

- 4. Select Service \$07 with GST.
- 5. If 1st trip DTC is detected, go to EC-416, "Diagnostic Procedure".

EGR TEMPERATURE SENSOR

(F63)

Wiring Diagram

3S00P8E

EC-EGR/TS-01

: DETECTABLE LINE FOR DTC: NON-DETECTABLE LINE FOR DTC

EC

Α

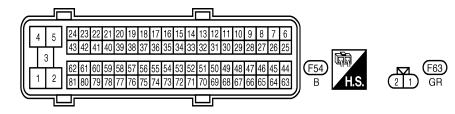
С

D

Е

F

G

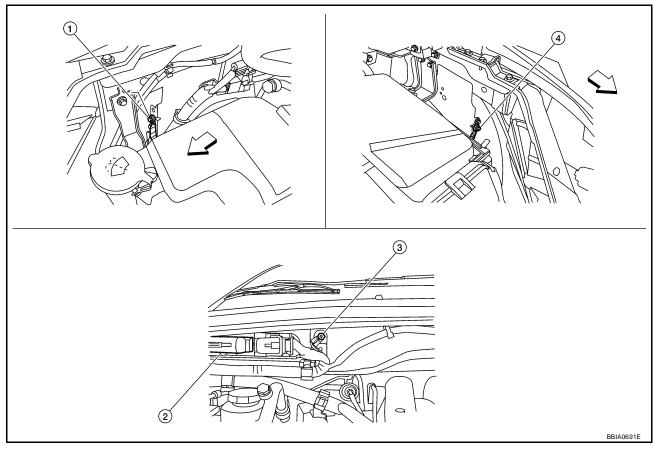

Н

.

L

M

†	
P/L	B
EGRTS	GND-A ECM (F54)


BBWA2545E

Diagnostic Procedure

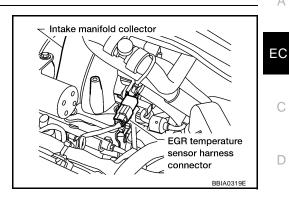
UBS00P8F

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection" .

- 1. Body ground E24
- . Body ground E15
- 2. ECM

3. Body ground E9

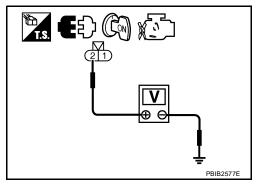

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK EGR TEMPERATURE SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect EGR temperature sensor harness connector.
- 2. Turn ignition switch ON.


3. Check voltage between EGR temperature sensor terminal 2 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness or connectors.

Е

Н

3. CHECK EGR TEMPERATURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between EGR temperature sensor terminal 1 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connector.

4. CHECK EGR TEMPERATURE SENSOR

Refer to EC-418, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace EGR temperature sensor.

5. CHECK EGR VOLUME CONTROL VALVE

Refer to EC-409, "Component Inspection".

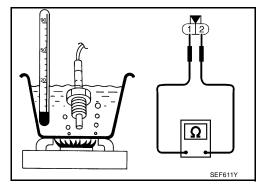
OK or NG

OK >> GO TO 6.

NG >> Replace EGR volume control valve.

Revision: March 2006 EC-417 2007 Quest

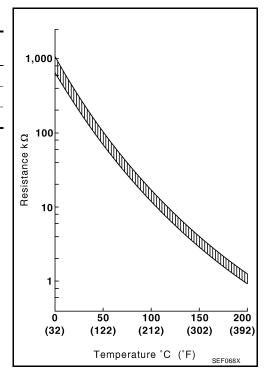
6. CHECK INTERMITTENT INCIDENT


Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

Component Inspection EGR TEMPERATURE SENSOR

UBS00P8G


- 1. Turn ignition switch OFF.
- 2. Disconnect EGR temperature sensor harness connector.
- 3. Check resistance between EGR temperature sensor terminals 1 and 2 as shown in the figure.

< Reference data>

EGR temperature °C (°F)	Resistance $M\Omega$
0 (32)	0.73 - 0.88
50 (122)	0.074 - 0.082
100 (212)	0.011 - 0.014

4. If NG, replace EGR temperature sensor.

Removal and Installation EGR TEMPERATURE SENSOR

Refer to EM-22, "EGR VOLUME CONTROL VALVE".

UBS00P8H

DTC P0420, P0430 THREE WAY CATALYST FUNCTION

PFP:20905

On Board Diagnosis Logic

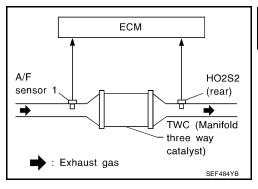
UBS00P8I

Α

EC

Е

F


Н

M

The ECM monitors the switching frequency ratio of air fuel ratio (A/F) sensor 1 and heated oxygen sensor 2.

A three way catalyst (manifold) with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2. As oxygen storage capacity decreases, the heated oxygen sensor 2 switching frequency will increase.

When the frequency ratio of air fuel ratio (A/F) sensor 1 and heated oxygen sensor 2 approaches a specified limit value, the three way catalyst (manifold) malfunction is diagnosed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0420 0420 (Bank 1)		Three way catalyst (manifold) does not oper-	Three way catalyst (manifold) Exhaust tube Intake air leaks
P0430 0430 (Bank 2)	Catalyst system effi- ciency below threshold	 ate properly. Three way catalyst (manifold) does not have enough oxygen storage capacity. 	Fuel injectorFuel injector leaksSpark plugImproper ignition timing

DTC Confirmation Procedure

LIBSOOPR.I

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(A) WITH CONSULT-II

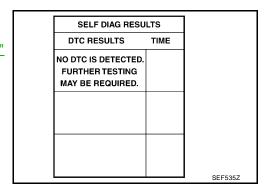
TESTING CONDITION:

Do not hold engine speed for more than the specified minutes below.

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and warm it up to the normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 5. Let engine idle for 1 minute.
- 6. Make sure that "COOLAN TEMP/S" indicates more than 70°C (158°F).
 - If not, warm up engine and go to next step when "COOLAN TEMP/S" indication reaches to 70°C (158°F).
- 7. Open engine hood.

MONITOR NO DTC ENG SPEED XXX rpm COOLAN TEMP/S XXX 'C VHCL SPEED SE XXX km/h B/FUEL SCHDL XXX msec
COOLAN TEMP/S XXX °C VHCL SPEED SE XXX km/h

- Select "DTC & SRT CONFIRMATION" then "SRT WORK SUP-PORT" mode with CONSULT-II.
- Rev engine up to 2,000 to 3,000 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely.
 If "INCMP" of "CATALYST" changed to "CMPLT", go to step 12.
- 10. Wait 5 seconds at idle.


SRT WORK SU	PPORT
CATALYST	INCMP
EVAP SYSTEM	INCMP
HO2S HTR	CMPLT
HO2S	INCMP
EGR SYSTEM	INCMP
MONITO	R
ENG SPEED	XXX rpm
MAS A/F SE-B1	XXX V
B/FUEL SCHDL	XXX msec
A/F ALPHA-B1	XXX V
COOLAN TEMP/S	XX °C
A/F SEN1 (B1)	XXX V

11. Rev engine up to 2,000 to 3,000 rpm and maintain it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take approximately 5 minutes).

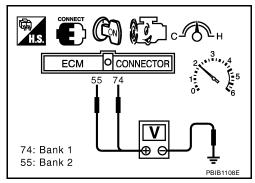
If not "CMPLT", stop engine and cool it down to less than 70°C (158°F) and then retest from step 1.

SRT WORK SU	IPPORT	
CATALYST	CMPLT	
EVAP SYSTEM	INCMP	
HO2S HTR	CMPLT	
HO2S	INCMP	
EGR SYSTEM	INCMP	
MONITO	R	
ENG SPEED	XXX rpm	1
MAS A/F SE-B1	XXX V	
B/FUEL SCHDL	XXX msec	
A/F ALPHA-B1	XXX V	
COOLAN TEMP/S	XX °C	
A/F SEN1 (B1)	XXX V	
		SEF534Z

- 12. Select "SELF-DIAG RESULTS" mode with CONSULT-II.
- Confirm that the 1st trip DTC is not detected.
 If 1st trip DTC is detected, go to <u>EC-421</u>, "<u>Diagnostic Procedure</u>"

Overall Function Check

UBS00P8


Use this procedure to check the overall function of the three way catalyst (manifold). During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and keep the engine speed between 3,500 and 4,000 rpm for at least 1 minute under no load.
- 4. Let engine idle for 1 minute.
- 5. Open engine hood.
- 6. Set voltmeter probe between ECM terminals 74 [HO2S2 (bank 1) signal], 55 [HO2S2 (bank 2) signal] and ground.
- 7. Keep engine speed at 2,500 rpm constant under no load.
- Make sure that the voltage does not vary for more than 5 seconds.

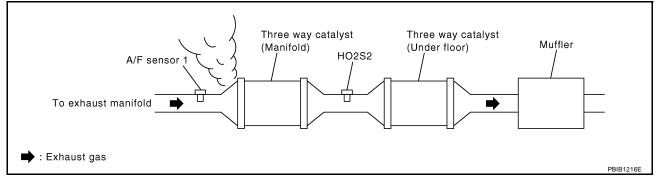
If the voltage fluctuation cycle takes less than 5 seconds, go to EC-421, "Diagnostic Procedure".

• 1 cycle: $0.6 - 1.0 \rightarrow 0 - 0.3 \rightarrow 0.6 - 1.0$

Diagnostic Procedure

1. CHECK EXHAUST SYSTEM

Visually check exhaust tubes and muffler for dent.


OK or NG

OK >> GO TO 2.

NG >> Repair or replace.

2. CHECK EXHAUST GAS LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an exhaust gas leak before the three way catalyst (manifold).

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK INTAKE AIR LEAK

Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

NG >> Repair or replace.

4. CHECK IGNITION TIMING

Check the following items. Refer to EC-73, "Basic Inspection".

Items	Specifications
Target idle speed	675 ± 50 rpm (in P or N position)
Ignition timing	15 ± 5° BTDC (in P or N position)

OK or NG

OK >> GO TO 5.

NG >> Follow the <u>EC-73</u>, "Basic Inspection".

EC

Α

UBS00P8L

D

Е

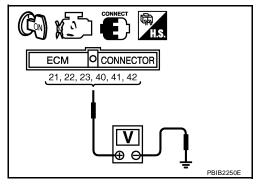
F

Н

K

L

5. CHECK FUEL INJECTORS


- 1. Stop engine and then turn ignition switch ON.
- Check voltage between ECM terminals 21, 22, 23, 40, 41, 42 and ground with CONSULT-II or tester. Refer to Wiring Diagram for FUEL INJECTOR, <u>EC-679</u>.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6.

NG >> Perform EC-680, "Diagnostic Procedure".

IPDM E/R

Washer tank cap.

Front

Fuel pump fuse (15A)

BBIA0229

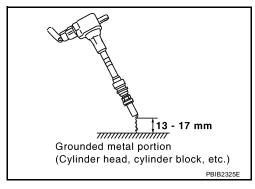
6. CHECK FUNCTION OF IGNITION COIL-I

CAUTION:

Do the following procedure in the place where ventilation is good without the combustible.

- Turn ignition switch OFF.
- 2. Remove fuel pump fuse in IPDM E/R to release fuel pressure.

NOTE:


Do not use CONSULT-II to release fuel pressure, or fuel pressure applies again during the following procedure.

- 3. Start engine.
- 4. After engine stalls, crank it two or three times to release all fuel pressure.
- 5. Turn ignition switch OFF.
- 6. Remove all ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
- 7. Remove ignition coil and spark plug of the cylinder to be checked.
- 8. Crank engine for 5 seconds or more to remove combustion gas in the cylinder.
- 9. Connect spark plug and harness connector to ignition coil.
- 10. Fix ignition coil using a rope etc. with gap of 13 17 mm between the edge of the spark plug and grounded metal portion as shown in the figure.
- 11. Crank engine for about 3 seconds, and check whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.

CAUTION:

 Do not approach to the spark plug and the ignition coil within 50cm. Be careful not to get an electrical shock while checking, because the electrical discharge voltage becomes 20kV or more.

It might cause to damage the ignition coil if the gap of more than 17 mm is taken.

NOTE:

When the gap is less than 13 mm, the spark might be generated even if the coil is malfunctioning.

OK or NG

OK >> GO TO 10. NG >> GO TO 7.

7. CHECK FUNCTION OF IGNITION COIL-II

- 1. Turn ignition switch OFF.
- 2. Disconnect spark plug and connect a known-good spark plug.
- 3. Crank engine for about 3 seconds, and recheck whether spark is generated between the spark plug and the grounded metal portion.

Spark should be generated.

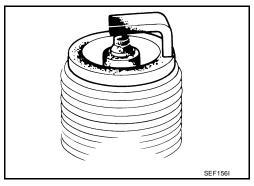
OK or NG

OK >> GO TO 8.

NG >> Check ignition coil, power transistor and their circuits. Refer to <u>EC-678</u>, "FUEL INJECTOR".

8. CHECK SPARK PLUG

Check the initial spark plug for fouling, etc.


OK or NG

OK

>> Replace spark plug(s) with standard type one(s). For spark plug type, refer to MA-20, "Changing Spark Plugs (Platinum - Tipped Type)".

NG >> 1. Repair or clean spark plug.

2. GO TO 9.

9. CHECK FUNCTION OF IGNITION COIL-III

- 1. Reconnect the initial spark plugs.
- 2. Crank engine for about 3 seconds, and recheck whether spark is generated between the spark plug and the grounded portion.

Spark should be generated.

OK or NG

OK >> INSPECTION END

NG >> Replace spark plug(s) with standard type one(s). For spark plug type, refer to MA-20, "Changing Spark Plugs (Platinum - Tipped Type)".

10. CHECK FUEL INJECTOR

- 1. Turn ignition switch OFF.
- Remove fuel injector assembly.

Refer to EM-40, "FUEL INJECTOR AND FUEL TUBE"

Keep fuel hose and all fuel injectors connected to fuel tube.

- 3. Reconnect all fuel injector harness connectors.
- 4. Disconnect all ignition coil harness connectors.
- Turn ignition switch ON.
 Make sure fuel does not drip from fuel injector.

OK or NG

OK (Does not drip.)>>GO TO 11.

NG (Drips.)>>Replace the fuel injector(s) from which fuel is dripping.

EC

Е

_

G

Н

1

K

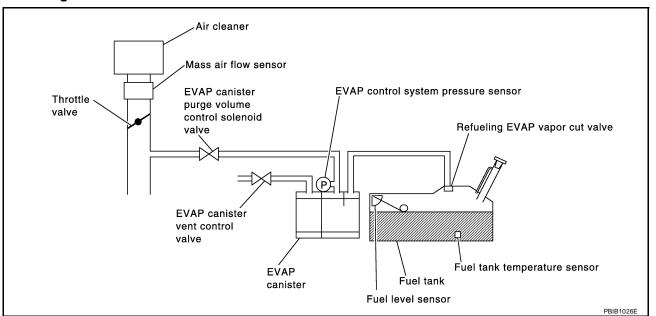
11. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

Trouble is fixed.>>INSPECTION END

Trouble is not fixed.>>Replace three way catalyst (manifold).

DTC P0441 EVAP CONTROL SYSTEM


PFP:14950

UBS00P8M

System Description

NOTE:

If DTC P0441 is displayed with other DTC such as P2122, P2123, P2127, P2128 or P2138, first perform trouble diagnosis for other DTC.

In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open to admit purge flow. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.

On Board Diagnosis Logic

UBS00P8N

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a malfunction is determined.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
			EVAP canister purge volume control solenoid valve stuck closed	
			EVAP control system pressure sensor and the circuit	
		EVAP control system does not operate prop-	Loose, disconnected or improper con- nection of rubber tube	
P0441	EVAP control system incorrect purge flow	1 3.	intake manifold and EVAP control system pres-	Blocked rubber tube
0441				Cracked EVAP canister
		Sure sensor.	EVAP canister purge volume control solenoid valve circuit	
			Accelerator pedal position sensor	
			Blocked purge port	
			EVAP canister vent control valve	

EC-425 2007 Quest Revision: March 2006

EC

Α

Е

Н

DTC Confirmation Procedure

UBS00P80

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 70 seconds.
- 4. Select "PURG FLOW P0441" of "EVAPORATIVE SYSTEM" in "DTC CONFIRMATION" mode with CON-SULT-II.
- 5. Touch "START".

 If "COMPLETED" is displayed, go to step 7.
- 6. When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

Shift lever	Suitable position
VHCL SPEED SE	32 - 120 km/h (20 - 75 MPH)
ENG SPEED	500 - 3,000 rpm
B/FUEL SCHDL	1.3 - 9.0 msec
COOLAN TEMP/S	70 - 100°C (158 - 212°F)

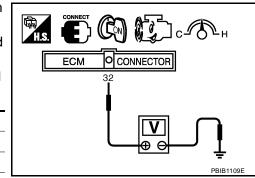
PURG FLOW P	PURG FLOW P0441		PURG FLOW P0441			PURG FLOW P0441	
OUT OF CONDITION			TESTING				
MONITOR		•	MONITOR		•	COMPLETED	
ENG SPEED	XXX rpm	,	ENG SPEED	XXX rpm	•		
B/FUEL SCHDL	XXX msec		B/FUEL SCHDL	XXX msec			
COOLAN TEMP/S	xxx .c		COOLAN TEMP/S	xxx °c			
VHCL SPEED SE	XXX km/h		VHCL SPEED SE	XXX km/h			PBIB0

If "TESTING" is not changed for a long time, retry from step 2.

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-427. "Diagnostic Procedure".

Overall Function Check

UBS00P8P


Use this procedure to check the overall monitoring function of the EVAP control system purge flow monitoring. During this check, a 1st trip DTC might not be confirmed.

WITH GST

- 1. Lift up drive wheels.
- 2. Start engine (TCS switch or VDC switch OFF) and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF, wait at least 10 seconds.
- 4. Start engine and wait at least 70 seconds.

- Set voltmeter probes to ECM terminals 32 (EVAP control system pressure sensor signal) and ground.
- Check EVAP control system pressure sensor value at idle speed and note it.
- Establish and maintain the following conditions for at least 1 minute.

Air conditioner switch	ON
Headlamp switch	ON
Rear window defogger switch	ON
Engine speed	Approx. 3,000 rpm
Gear position	Any position other than P, N or R

- Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed (measured at step 6) for at least 1 second.
- 9. If NG, go to EC-427, "Diagnostic Procedure".

Diagnostic Procedure

1. CHECK EVAP CANISTER

- 1. Turn ignition switch OFF.
- 2. Check EVAP canister for cracks.

OK or NG

OK (With CONSULT-II)>>GO TO 2.

OK (Without CONSULT-II)>>GO TO 3.

NG >> Replace EVAP canister.

2. CHECK PURGE FLOW

(P) With CONSULT-II

- 1. Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge. For the location of EVAP service port, refer to EC-33, "EVAPORATIVE <a href="EMISSION LINE DRAWING".
- Start engine and let it idle.
- 3. Select "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II.
- 4. Rev engine up to 2,000 rpm.
- 5. Touch "Qd" and "Qu" on CONSULT-II screen to adjust "PURG VOL CONT/V" opening and check vacuum existence.

PURG VOL CONT/V	Vacuum
100%	Should exist
0%	Should not exist

OK or NG

OK >> GO TO 7.

NG >> GO TO 4.

ACTIVE TES	ST	
PURG VOL CONT/V	XXX %	
MONITOF	1	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
A/F ALPHA-B2	XX %	
		PBIB1678E

Α

EC

D

Е

UBS00P8Q

Н

Κ

L

3. CHECK PURGE FLOW

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- Disconnect vacuum hose connected to EVAP canister purge volume control solenoid valve at EVAP service port and install vacuum gauge. For the location of EVAP service port, refer to EC-33, "EVAPORATIVE <a href="EMISSION LINE DRAWING".
- 4. Start engine and let it idle.

Do not depress accelerator pedal even slightly.

5. Check vacuum gauge indication before 60 seconds passed after engine starting engine.

Vacuum should not exist.

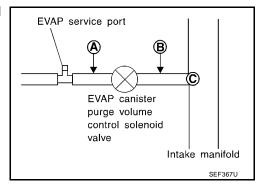
6. Revving engine up to 2,000 rpm after 100 seconds passed after starting engine.

Vacuum should exist.

OK or NG

OK >> GO TO 7. NG >> GO TO 4.

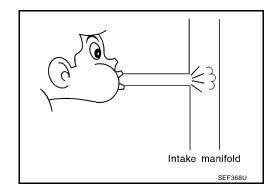
4. CHECK EVAP PURGE LINE


- 1. Turn ignition switch OFF.
- 2. Check EVAP purge line for improper connection or disconnection. Refer to EC-33, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 5. NG >> Repair it.

5. CHECK EVAP PURGE HOSE AND PURGE PORT


- Disconnect purge hoses connected to EVAP service port A and EVAP canister purge volume control solenoid valve B.
- 2. Blow air into each hose and EVAP purge port C.

3. Check that air flows freely.

OK or NG

OK (With CONSULT-II)>>GO TO 6.
OK (Without CONSULT-II)>>GO TO 7.
NG >> Repair or clean hoses and/or purge port.

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

ACTIVE TES	ST	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
A/F ALPHA-B2	XX %	
		PBIB1678E

7. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-452, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP canister purge volume control solenoid valve.

8. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- Disconnect EVAP control system pressure sensor harness connector.
- 2. Check connectors for water.

Water should not exist.

OK or NG

>> GO TO 9. OK

NG >> Replace EVAP control system pressure sensor.

9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR FUNCTION

Refer to DTC Confirmation Procedure for DTC P0452 EC-473, P0453 EC-480.

OK or NG

OK >> GO TO 10.

NG >> Replace EVAP control system pressure sensor.

10. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 11.

NG >> Clean the rubber tube using an air blower.

11. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-459, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> Replace EVAP canister vent control valve.

EC-429 Revision: March 2006 2007 Quest

EC

12. CHECK EVAP PURGE LINE

Inspect EVAP purge line (pipe and rubber tube). Check for evidence of leaks. Refer to $\underline{\text{EC-33}}$, $\underline{\text{"EVAPORATIVE EMISSION LINE DRAWING"}}$.

OK or NG

OK >> GO TO 13. NG >> Replace it.

13. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 14.

14. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0442 EVAP CONTROL SYSTEM

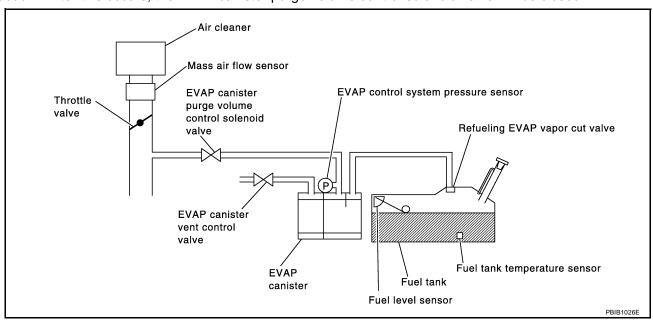
PFP:14950

On Board Diagnosis Logic

UBS00P8R

Α

EC


Е

Н

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum.

If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve, under the following "Vacuum test" conditions.

The EVAP canister vent control valve is closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve will then be opened to depressurize the EVAP purge line using intake manifold vacuum. After this occurs, the EVAP canister purge volume control solenoid valve will be closed.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
DTC No.	Trouble diagnosis name	DTC detecting condition	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid
			valve. • Foreign matter caught in EVAP canister vent control valve. • EVAP canister or fuel tank leaks
		EVAP purge line (pipe and rubber tube) leaks	
0442	EVAP control system	/AP control system has a leak, EVAP control system has a leak, EVAP control system does not operate properly.	EVAP purge line rubber tube bent
)442			Loose or disconnected rubber tube
	(negative pressure)		EVAP canister vent control valve and the circuit
			EVAP canister purge volume control solenoid valve and the circuit
		Fuel tank temperature sensor	
			O-ring of EVAP canister vent control valve is missing or damaged
			EVAP canister is saturated with water
			EVAP control system pressure sensor
			Fuel level sensor and the circuit
			Refueling EVAP vapor cut valve
			ORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

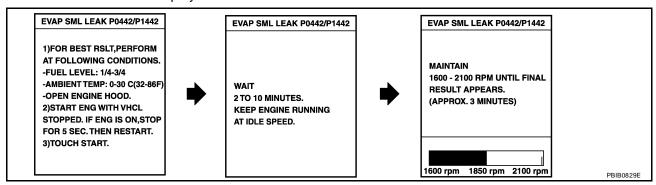
UBS00P8S

NOTE:

 If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Always perform test at a temperature of 0 to 30°C (32 to 86°F).


(WITH CONSULT-II

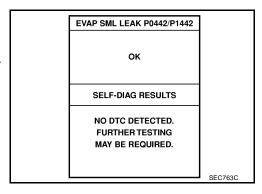
- 1. Turn ignition switch ON.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4. Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 30°C (32 - 86°F)

5. Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

NOTE:


If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to EC-73, "Basic Inspection".

6. Make sure that "OK" is displayed.

If "NG" is displayed, refer to EC-433, "Diagnostic Procedure".

NOTE:

Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

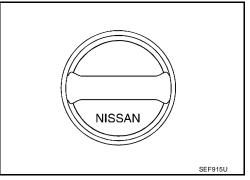
WITH GST

NOTE:

Be sure to read the explanation of Driving Pattern on EC-59, "Driving Pattern" before driving vehicle.

- 1. Start engine.
- 2. Drive vehicle according to Driving Pattern, <u>EC-59</u>, "<u>Driving Pattern</u>".
- 3. Stop vehicle.
- 4. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 5. Select Service \$07 with GST.
 - If P0442 is displayed on the screen, go to EC-433, "Diagnostic Procedure".
 - If P0441 is displayed on the screen, go to Diagnostic Procedure for DTC P0441, EC-427.

Diagnostic Procedure


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-35, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)".

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

Α

.

UBS00P8T

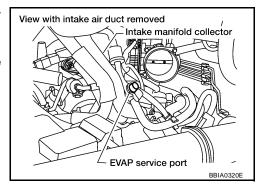
Ī

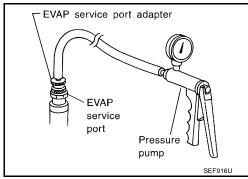
.

Е

G

Н


. .

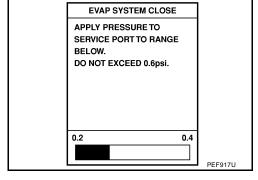

5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-II>>GO TO 6. Without CONSULT-II>>GO TO 7.

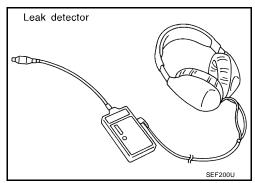

6. CHECK FOR EVAP LEAK

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

CAUTION:

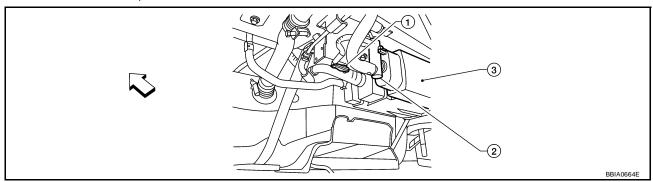
- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.



4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-33, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

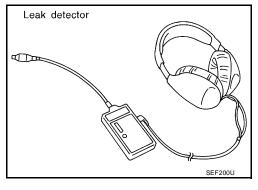

NG >> Repair or replace.

7. CHECK FOR EVAP LEAK

W Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

- ∀
 ∀ehicle front
- 1. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister
- 3. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-33, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following.

- EVAP canister vent control valve is installed properly. Refer to EC-36, "Removal and Installation".
- EVAP canister vent control valve.
 Refer to <u>EC-459</u>, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Repair or replace EVAP canister vent control valve and O-ring.

EC

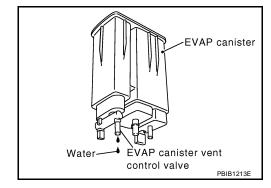
С

D

Е

Н

J.


Κ

9. CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 10. No (With CONSULT-II)>>GO TO 12. No (Without CONSULT-II)>>GO TO 13.

10. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.1 kg (4.6 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 12.
OK (Without CONSULT-II)>>GO TO 13.
NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection

>> Repair hose or replace EVAP canister.

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

ACTIVE TES	ST T	
PURG VOL CONT/V	XXX %	
MONITOR	1	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
A/F ALPHA-B2	XX %	
		DDID4670F
		PBIB1678E

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION Without CONSULT-II 1. Start engine and warm it up to normal operating temperature. EC 2. Stop engine. 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port. 4. Start engine and let it idle for at least 80 seconds. C 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm. Vacuum should exist. OK or NG >> GO TO 16. OK NG >> GO TO 14. Е 14. CHECK VACUUM HOSE Check vacuum hoses for clogging or disconnection. Refer to EC-106, "Vacuum Hose Drawing". OK or NG OK >> GO TO 15. NG >> Repair or reconnect the hose. 15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE Refer to EC-452, "Component Inspection". OK or NG OK >> GO TO 16. NG >> Replace EVAP canister purge volume control solenoid valve. 16. CHECK FUEL TANK TEMPERATURE SENSOR Refer to EC-351, "Component Inspection". OK or NG OK >> GO TO 17. NG >> Replace fuel level sensor unit. 17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR Refer to EC-478, "Component Inspection". OK or NG M OK >> GO TO 18. NG >> Replace EVAP control system pressure sensor. 18. CHECK EVAP PURGE LINE Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-33, "EVAPORATIVE EMISSION LINE DRAWING". OK or NG OK >> GO TO 19. NG >> Repair or reconnect the hose. 19. CLEAN EVAP PURGE LINE Clean EVAP purge line (pipe and rubber tube) using air blower.

Revision: March 2006 EC-437 2007 Quest

>> GO TO 20.

20. CHECK EVAP/ORVR LINE

Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to EC-39, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)".

OK or NG

OK >> GO TO 21.

NG >> Repair or replace hoses and tubes.

21. CHECK RECIRCULATION LINE

Check recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 22.

NG >> Repair or replace hose, tube or filler neck tube.

22. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-43, "Component Inspection".

OK or NG

OK >> GO TO 23.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

23. CHECK FUEL LEVEL SENSOR

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

OK or NG

OK >> GO TO 24.

NG >> Replace fuel level sensor unit.

24. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

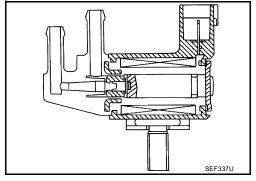
>> INSPECTION END

DTC P0443 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

PFP:14920

Description SYSTEM DESCRIPTION

UBS00P8U


				EC
Sensor	Input Signal to ECM	ECM function	Actuator	EC
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1			
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			
Battery	Battery voltage*1	Ī		D
Throttle position sensor	Throttle position	EVAP canister purge flow control	EVAP canister purge vol- ume control solenoid valve	
Accelerator pedal position sensor	Accelerator pedal position			F
Air fuel ratio (A/F) sensors 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			_
Fuel tank temperature sensor	Fuel temperature in fuel tank			F
Wheel sensor	Vehicle speed* ²			,

^{*1:} ECM determines the start signal status by the signals of engine speed and battery voltage.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

UBS00P8V

M

Specification data are reference values.

MONITOR ITEM	CON	NDITION	SPECIFICATION
PURG VOL C/V	 Engine: After warming up Shift lever: P or N Air conditioner switch: OFF 	Idle (Accelerator pedal is not depressed even slightly, after engine starting)	0%
	No load	2,000 rpm	_

^{*2:} This signal is sent to the ECM through CAN communication line.

On Board Diagnosis Logic

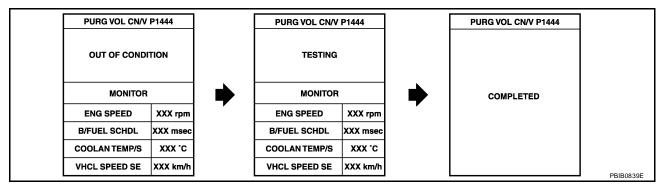
UBS00P8W

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			EVAP control system pressure sensor
P0443 0443	EVAP canister purge volume control solenoid valve	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is	 EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister
		completely closed.	Hoses (Hoses are connected incorrectly or clogged.)

DTC Confirmation Procedure

UBS00P8X

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- Select "PURG VOL CN/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5. Touch "START".

6. Start engine and let it idle until "TESTING" on CONSULT-II changes to "COMPLETED". (It will take approximately 10 seconds.)

If "TESTING" is not displayed after 5 minutes, retry from step 2.

7. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-443, "Diagnostic Procedure".

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Start engine and let it idle for at least 20 seconds.
- 4. Select Service \$07 with GST.
- 5. If 1st trip DTC is detected, go to EC-443, "Diagnostic Procedure".

Wiring Diagram Α EC-PGC/V-01 BATTERY : DETECTABLE LINE FOR DTC ■ : NON-DETECTABLE LINE FOR DTC EC IPDM E/R (INTELLIGENT POWER 15A 35 DISTRIBUTION MODULE C ENGINE ROOM) REFER TO "PG-POWER". (E121), (E122) ECM RELAY ÓП 8 D ρIJ 18 46 Е W/B R/G (E5) (F14) ■ R/G ■ 7 ■ R/G R/G (F44) 4 R/G Н EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE 2 P/R 3 (F105) (F101) (F44) V/R W/B R/G R/G 111 45 119 120 ECM SSOFF VB EVAP **E**16), (F54) M 119 120 121 117 118 3 (E16) (F54) 2 В E122

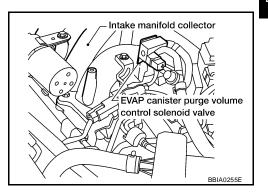
W

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
45	W/D	EVAP canister purge vol-	 [Engine is running] Idle speed Accelerator pedal: Not depressed even slightly, after engine starting 	BATTERY VOLTAGE (11 - 14V)*
45	V/R	ume control solenoid valve	[Engine is running] ● Engine speed: About 2,000 rpm (More than 100 seconds after starting engine)	BATTERY VOLTAGE (11 - 14V)* I I I I I I I I I I I I I I I I I I I
111	W/B	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Seii Silut-Oii)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

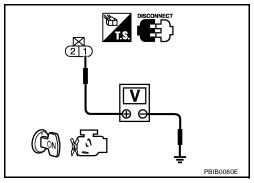

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIR-**CUIT**

1. Turn ignition switch OFF.

- Disconnect EVAP canister purge volume control solenoid valve harness connector.
- Turn ignition switch ON.



4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness connectors F44, F101
- Harness for open or short between EVAP canister purge volume control solenoid valve and IPDM E/R
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM

>> Repair harness or connectors.

$3.\,$ check evap canister purge volume control solenoid valve output signal cir-**CUIT FOR OPEN AND SHORT**

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

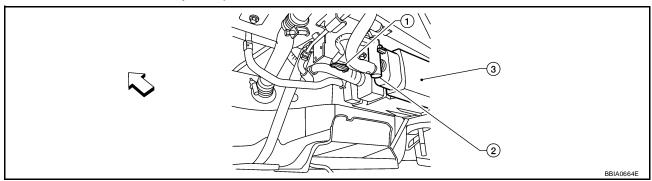
EC-443 Revision: March 2006 2007 Quest

EC

Α

Е

Н


4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F44, F101
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

1. Disconnect EVAP control system pressure sensor harness connector.

- Vehicle front
- 1. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister
- 2. Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 6.

NG >> Replace EVAP control system pressure sensor.

6. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-478, "Component Inspection".

OK or NG

OK (With CONSULT-II)>>GO TO 7.

OK (Without CONSULT-II)>>GO TO 8.

NG >> Replace EVAP control system pressure sensor.

7. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(II) With CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Reconnect all harness connectors disconnected.
- Start engine.
- 4. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

		1
ACTIVE TES	т	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
A/F ALPHA-B2	XX %	
		PBIB1678E

8. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-446, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Replace EVAP canister purge volume control solenoid valve.

9. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 10.

NG >> Clean the rubber tube using an air blower.

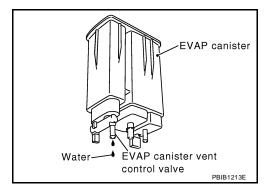
10. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-459, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> Replace EVAP canister vent control valve.


11. CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Does water drain from the EVAP canister?.

Yes or No

Yes >> GO TO 12.

No >> GO TO 14.

EC

D

Н

12. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached

The weight should be less than 2.1 kg (4.6 lb).

OK or NG

OK >> GO TO 14. NG >> GO TO 13.

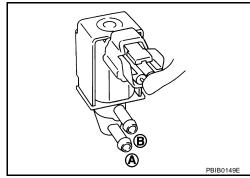
13. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

14. CHECK INTERMITTENT INCIDENT

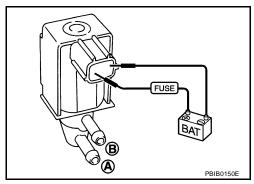
Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(A) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve using "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B
100%	Yes
0%	No

⋈ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

UBS00P91

UBS00P90

Removal and Installation EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

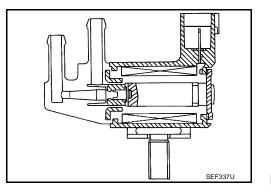
Refer to EM-18, "INTAKE MANIFOLD COLLECTOR".

Revision: March 2006 EC-446 2007 Quest

DTC P0444, P0445 EVAP CANISTER PURGE VOLUME CONTROL SOLENOID **VALVE** PFP:14920

Description SYSTEM DESCRIPTION

UBS00P92


SYSTEM DESCRIPTION	STEM DESCRIPTION		EC	
Sensor	Input Signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1			С
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature			_
Battery	Battery voltage*1			D
Throttle position sensor	Throttle position	EVAP canister purge flow control	EVAP canister purge volume control solenoid valve	
Accelerator pedal position sensor	Accelerator pedal position			Е
Air fuel ratio (A/F) sensors 1	Density of oxygen in exhaust gas (Mixture ratio feedback signal)			
Fuel tank temperature sensor	Fuel temperature in fuel tank			F
Wheel sensor	Vehicle speed*2			

^{*1:} ECM determines the start signal status by the signals of engine speed and battery voltage.

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/ OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

CONSULT-II Reference Value in Data Monitor Mode

UBS00P93

Specification data are reference values.

MONITOR ITEM	COI	NDITION	SPECIFICATION
PURG VOL C/V	 Engine: After warming up Shift lever: P or N Air conditioner switch: OFF 	Idle (Accelerator pedal is not depressed even slightly, after engine starting)	0%
	No load	2,000 rpm	_

EC-447 Revision: March 2006 2007 Quest

^{*2:} This signal is sent to the ECM through CAN communication line.

On Board Diagnosis Logic

UBS00P94

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0444 0444	EVAP canister purge volume control solenoid valve circuit	An excessively low voltage signal is sent to ECM through the valve	Harness or connectors (The solenoid valve circuit is open or shorted.)
0444	open	to ECM through the valve	EVAP canister purge volume control solenoid valve
P0445	EVAP canister purge volume control solenoid valve circuit	An excessively high voltage signal is sent	Harness or connectors (The solenoid valve circuit is shorted.)
0445	shorted	to ECM through the valve	EVAP canister purge volume control solenoid valve

DTC Confirmation Procedure

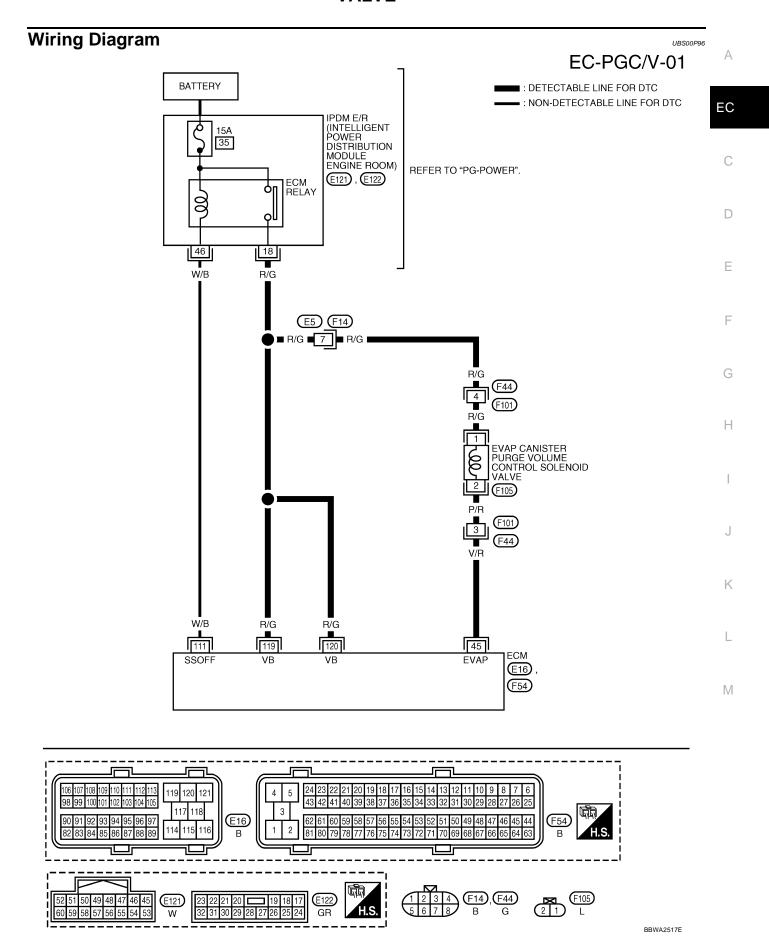
LIBSOOPOR

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.


(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 13 seconds.
- 4. If 1st trip DTC is detected, go to EC-451, "Diagnostic Procedure"

DATA M	ONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Revision: March 2006 EC-449 2007 Quest

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
45	V/R	EVAP canister purge volume control solenoid valve	 [Engine is running] Idle speed Accelerator pedal: Not depressed even slightly, after engine starting 	BATTERY VOLTAGE (11 - 14V)* 10.0 V/Dlv 50 ms/Dlv SEC990C
45			[Engine is running] ● Engine speed: About 2,000 rpm (More than 100 seconds after starting engine)	BATTERY VOLTAGE (11 - 14V)* I I I I I I I I I I I I I I I I I I I
111	W/B	ECM relay	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Self shut-off)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

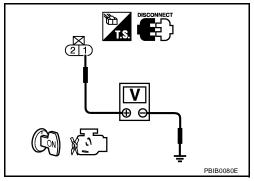
Diagnostic Procedure

Α

EC

1. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE POWER SUPPLY CIR-**CUIT**

- 1. Turn ignition switch OFF.
- Disconnect EVAP canister purge volume control solenoid valve harness connector.
- Turn ignition switch ON.



4. Check voltage between EVAP canister purge volume control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness connectors F44, F101
- Harness for open or short between EVAP canister purge volume control solenoid valve and IPDM E/R
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM

>> Repair harness or connectors.

$3.\,$ check evap canister purge volume control solenoid valve output signal cir-**CUIT FOR OPEN AND SHORT**

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 45 and EVAP canister purge volume control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK (With CONSULT-II)>>GO TO 5.

OK (Without CONSULT-II)>>GO TO 6.

NG >> GO TO 4.

Е

Н

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F44, F101
- Harness for open or short between EVAP canister purge volume control solenoid valve and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(II) With CONSULT-II

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 7. NG >> GO TO 6.

ACTIVE TES	ST T	
PURG VOL CONT/V	XXX %	
MONITOF	1	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
A/F ALPHA-B2	XX %	
		PBIB1678E

6. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-452, "Component Inspection".

OK or NG

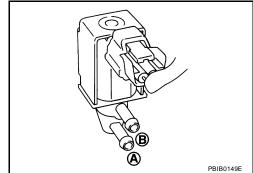
OK >> GO TO 7.

NG >> Replace EVAP canister purge volume control solenoid valve.

/. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

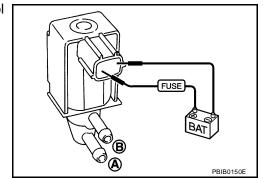
>> INSPECTION END


Component Inspection EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

UBS00P98

(P) With CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve using "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II under the following conditions.


Condition (PURG VOL CONT/V value)	Air passage continuity between A and B	
100%	Yes	
0%	No	

⋈ Without CONSULT-II

Check air passage continuity of EVAP canister purge volume control solenoid valve under the following conditions.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	Yes
No supply	No

Removal and Installation EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EM-18, "INTAKE MANIFOLD COLLECTOR"

UBS00P99

F

EC

C

D

Е

Н

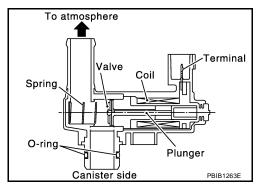
J

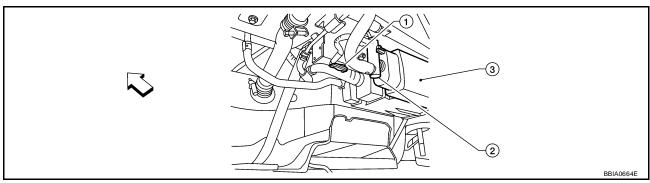
K

DTC P0447 EVAP CANISTER VENT CONTROL VALVE

PFP:14935

UBS00P9A


Component Description


The EVAP canister vent control valve is located on the EVAP canis-

ter and is used to seal the canister vent. This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows EVAP Control System diagnosis.

- ∠

 → Vehicle front
- 1. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister

CONSULT-II Reference Value in Data Monitor Mode

UBS00P9B

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

On Board Diagnosis Logic

UBS00P9C

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0447 0447	EVAP canister vent control valve circuit open	An improper voltage signal is sent to ECM through EVAP canister vent control valve.	 Harness or connectors (The valve circuit is open or shorted.) EVAP canister vent control valve

DTC Confirmation Procedure

UBS00P9D

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 8 seconds.
- 4. If 1st trip DTC is detected, go to EC-457, "Diagnostic Procedure"

DATA MONITOR
MONITOR NO DTC
ENG SPEED XXX rpm

WITH GST

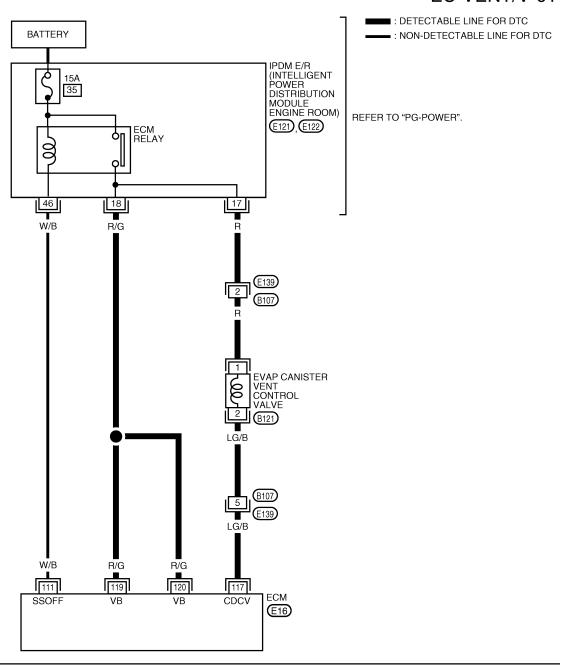
Follow the procedure "WITH CONSULT-II" above.

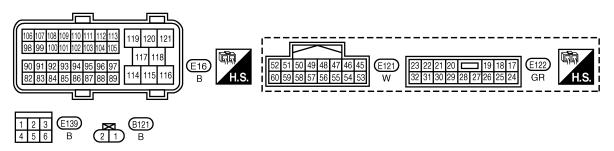
EC

Α

D

Е


Н


/

L

Wiring Diagram

EC-VENT/V-01

BBWA2521E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC	
			[Engine is running] [Ignition switch: OFF]	0 - 1.5V	С	
111	W/B	ECM relay (Self shut-off)	For a few seconds after turning ignition switch OFF	0 - 1.50	D	
		(Sell Shut-on)	[Ignition switch: OFF]	BATTERY VOLTAGE		
			More than a few seconds after turnition switch OFF	More than a few seconds after turning ignition switch OFF	(11 - 14V)	F
117	LG/B	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	_	
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	F	

Diagnostic Procedure

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2. >> GO TO 3. No

2. CHECK EVAP CANISTER VENT CONTROL VALVE CIRCUIT

(II) With CONSULT-II

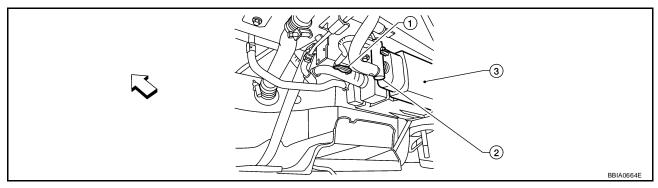
- 1. Turn ignition switch OFF and then turn ON.
- 2. Select "VENT CONTROL/V" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Touch "ON/OFF" on CONSULT-II screen.
- 4. Check for operating sound of the valve.

Clicking noise should be heard.

OK or NG

OK >> GO TO 7. NG >> GO TO 3.

ACTIVE TES		
VENT CONTROL/V	OFF	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
		PBIB1679E

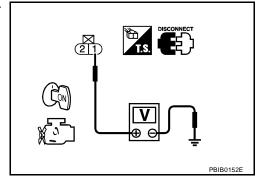

Α

UBS00P9F

Н

3. CHECK EVAP CANISTER VENT CONTROL VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EVAP canister vent control valve harness connector.



- 1. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister
- 3. Turn ignition switch ON.
- 4. Check voltage between EVAP canister vent control valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B107, E139
- Harness for open or short between EVAP canister vent control valve and IPDM E/R
 - >> Repair harness or connectors.

5. CHECK EVAP CANISTER VENT CONTROL VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 117 and EVAP canister vent control valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B107, E139
- Harness for open or short between EVAP canister vent control valve and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK RUBBER TUBE FOR CLOGGING

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 8.

NG >> Clean the rubber tube using an air blower.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-459, "Component Inspection".

OK or NG

OK >> GO TO 9.

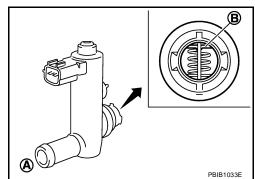
NG >> Replace EVAP canister vent control valve.

9. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection EVAP CANISTER VENT CONTROL VALVE


(P) With CONSULT-II

- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion **B** of EVAP canister vent control valve for being rusted.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

- 3. Reconnect all harness connectors disconnected.
- 4. Turn ignition switch ON.

EC

Е

Н

M

UBS00P9G

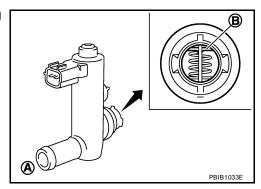
- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 6. Check air passage continuity and operation delay time.

 Make sure new O-ring is installed properly.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.

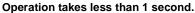
If NG, replace EVAP canister vent control valve.


If OK, go to next step.

ACTIVE TE		
VENT CONTROL/V	OFF	
MONITOR	}	
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
A/F ALPHA-B2	XXX %	
<u> </u>	1	PBIB1679E

- 7. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 8. Perform step 6 again.

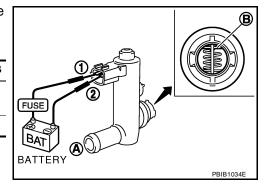
⋈ Without CONSULT-II


- 1. Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion **B** of EVAP canister vent control valve for being rusted.

3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.

Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes



If NG, replace EVAP canister vent control valve.

If OK, go to next step.

5. Perform step 3 again.

DTC P0448 EVAP CANISTER VENT CONTROL VALVE

PFP:16935

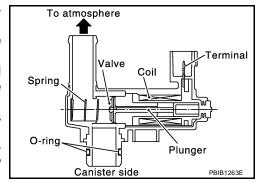
Component Description

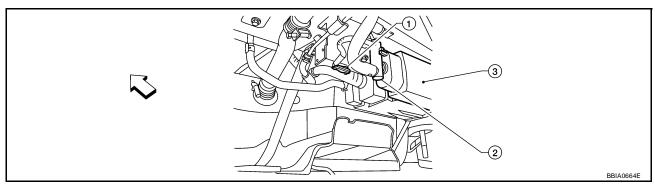
UBS00P9H

Α

EC

Е


Н


The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid valve responds to signals from the ECM. When the ECM sends an ON signal, the coil in the solenoid valve is energized. A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows EVAP Control System diagnosis.

Vehicle front

EVAP control system pressure sensor 2. EVAP canister vent control valve

EVAP canister

CONSULT-II Reference Value in Data Monitor Mode

UBS00P9I

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	• Ignition switch: ON	OFF

On Board Diagnosis Logic

UBS00P9J

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
			EVAP canister vent control valve	=
P0448 0448	EVAP canister vent control valve close	EVAP canister vent control valve remains closed under specified driving conditions.	EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister	N
0440	tioi vaivo ologo		vent control valve	
			EVAP canister is saturated with water	_

DTC Confirmation Procedure

UBS00P9K

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 5 seconds.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 4. Start engine and let it idle for at least 1 minute.
- 5. Repeat next procedures three times.
- a. Increase the engine speed up to 3,000 to 3,500 rpm and keep it for 2 minutes and 50 seconds to 3 minutes.

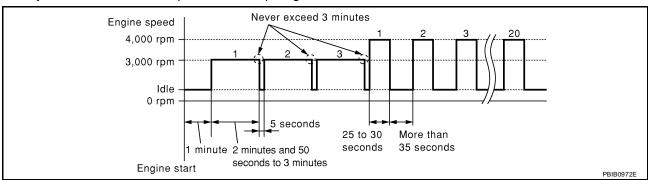
Never exceed 3 minutes.

- Fully released accelerator pedal and keep engine idle for about 5 seconds.
- If 1st trip DTC is detected, go to <u>EC-464, "Diagnostic Procedure"</u>

DATA MONITOR

MONITOR

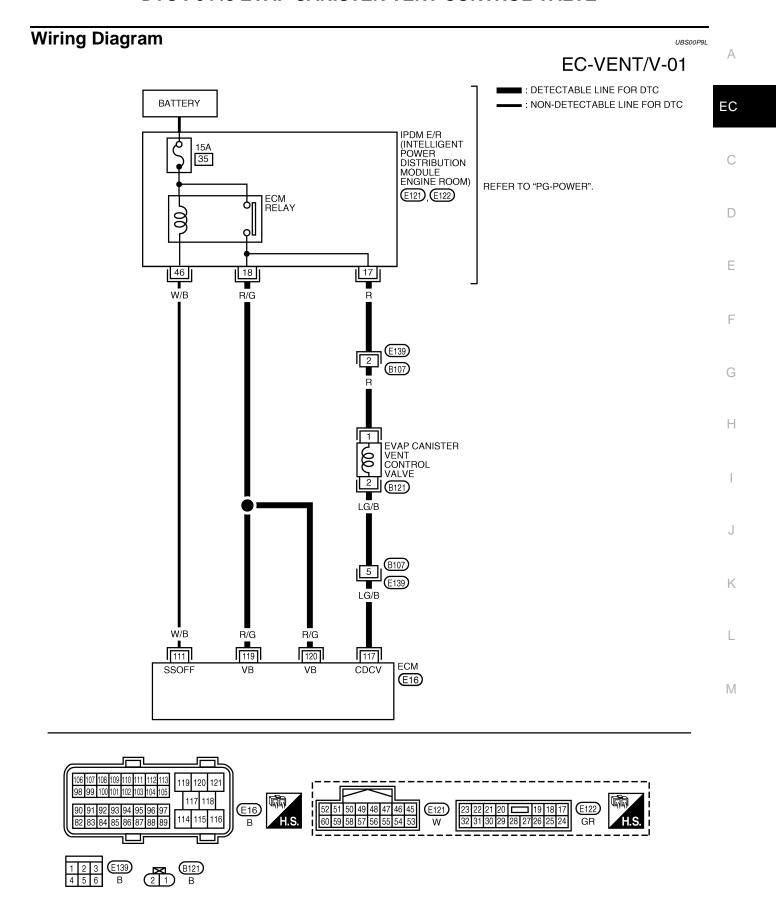
NO DTC


ENG SPEED

XXX rpm

SEF058Y

If 1st trip DTC is not detected, go to the next step.


- 7. Repeat next procedure 20 times.
- a. Quickly increase the engine speed up to 4,000 to 4,500 rpm or more and keep it for 25 to 30 seconds.
- b. Fully released accelerator pedal and keep engine idle for at least 35 seconds.

If 1st trip DTC is detected, go to EC-464, "Diagnostic Procedure".

WITH GST

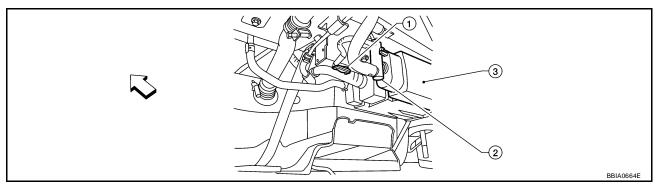
Follow the procedure "WITH CONSULT-II" above.

BBWA2521E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V	
		(Sell Silut-Oil)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
117	LG/B	EVAP canister vent control valve	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00P9M

1. CHECK RUBBER TUBE

- 1. Turn ignition switch OFF.
- 2. Disconnect rubber tube connected to EVAP canister vent control valve.

-

 Vehicle front
- 1. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister
- 3. Check the rubber tube for clogging.

OK or NG

OK >> GO TO 2.

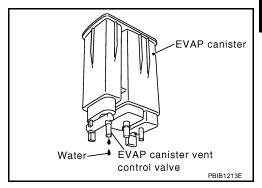
NG >> Clean rubber tube using an air blower.

2. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-466, "Component Inspection".

OK or NG

OK >> GO TO 3.


NG >> Replace EVAP canister vent control valve.

3. CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Does water drain from the EVAP canister?.

Yes or No

Yes >> GO TO 4. No >> GO TO 6.

4. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor

The weight should be less than 2.1 kg (4.6 lb).

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

6. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR CONNECTOR

- 1. Disconnect EVAP control system pressure sensor harness connector.
- Check connectors for water.

Water should not exist.

OK or NG

OK >> GO TO 7.

NG >> Replace EVAP control system pressure sensor.

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-478, "Component Inspection".

OK or NG

OK >> GO TO 8.

NG >> Replace EVAP control system pressure sensor.

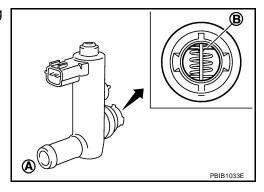
8. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

Е


Н

Component Inspection EVAP CANISTER VENT CONTROL VALVE

UBS00P9N

(With CONSULT-II

- Remove EVAP canister vent control valve from EVAP canister.
- Check portion **B** of EVAP canister vent control valve for being rusted.
 - If NG, replace EVAP canister vent control valve. If OK, go to next step.
- 3. Reconnect harness connectors disconnected.
- 4. Turn ignition switch ON.

ACTIVE TEST

MONITOR ENG SPEED OFF

XXX rpm XXX %

XXX %

PBIB1679E

VENT CONTROL/V

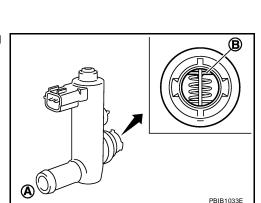
A/F ALPHA-B1

- 5. Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.
- 6. Check air passage continuity and operation delay time.

 Make sure new O-ring is installed properly.

Condition VENT CONTROL/V	Air passage continuity between A and B
ON	No
OFF	Yes

Operation takes less than 1 second.


If NG, replace EVAP canister vent control valve.

If OK, go to next step.

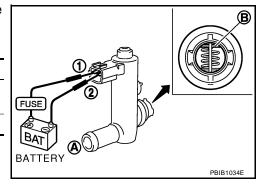
- 7. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.
- 8. Perform step 6 again.

Without CONSULT-II

- Remove EVAP canister vent control valve from EVAP canister.
- 2. Check portion **B** of EVAP canister vent control valve for being rusted.

3. Check air passage continuity and operation delay time under the following conditions.

Make sure new O-ring is installed properly.


Condition	Air passage continuity between A and B
12V direct current supply between terminals 1 and 2	No
OFF	Yes

Operation takes less than 1 second.

If NG, replace EVAP canister vent control valve.

If OK, go to next step.

4. Clean the air passage (Portion A to B) of EVAP canister vent control valve using an air blower.

5. Perform step 3 again.

EC

А

С

 D

Е

F

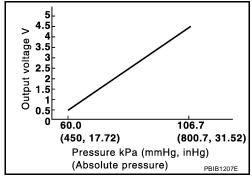
G

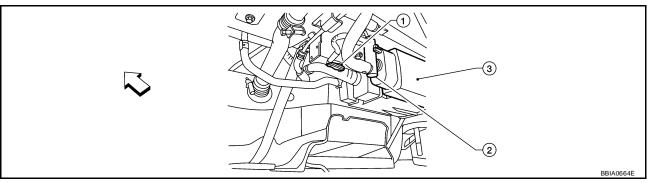
Н

J

K

DTC P0451 EVAP CONTROL SYSTEM PRESSURE SENSOR


DTC P0451 EVAP CONTROL SYSTEM PRESSURE SENSOR


PFP:22365

Component Description

UBS00P90

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

- Vehicle front
- 1. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister

CONSULT-II Reference Value in Data Monitor Mode

UBS00P9P

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

UBS00P9C

NOTE

If DTC P0451 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-529, "DTC P0643 SENSOR POWER SUPPLY".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0451 0451	EVAP control system pressure sensor performance	ECM detects a sloshing signal from the EVAP control system pressure sensor	Harness or connectors EVAP control system pressure sensor

DTC Confirmation Procedure

UBS00P9R

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(II) WITH CONSULT-II

- 1. Turn ignition switch OFF and wait at least 10 seconds.
- 2. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait at least 40 seconds.

NOTE:

Do not depress accelerator pedal even slightly.

If 1st trip DTC is detected, go to EC-470, "Diagnostic Procedure"

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm

COOLAN TEMP/S XXX 'C

FUEL T/TMP SE XXX 'C

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

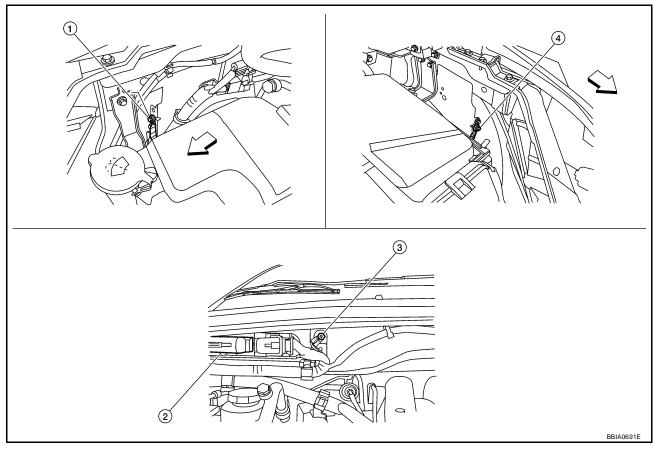
Α

D

Е

Н

ı


K

Diagnostic Procedure

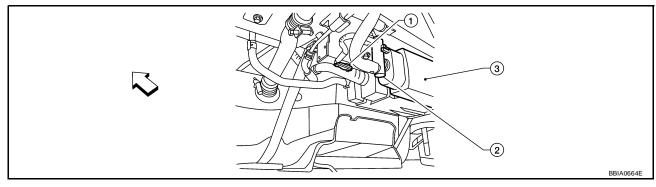
UBS00P9S

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- Body ground E24 1.
 - 2. ECM Body ground E15

Body ground E9


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

$2.\,$ check evpa control system pressure sensor connector for water

Disconnect EVAP control system pressure sensor harness connector.

- Vehicle front
- EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister
- Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.

3. Check evap control system pressure sensor

Refer to EC-471, "Component Inspection".

OK or NG

OK >> GO TO 4.

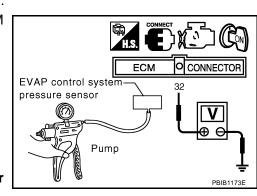
NG >> Replace EVAP control system pressure sensor.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". For Wiring Diagram, refer to EC-474.

>> INSPECTION END

Component Inspection **EVAP CONTROL SYSTEM PRESSURE SENSOR**


Remove EVAP control system pressure sensor with its harness connector connected from EVAP canister. Always replace O-ring with a new one.

- 2. Install a vacuum pump to EVAP control system pressure sensor.
- Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

CAUTION:

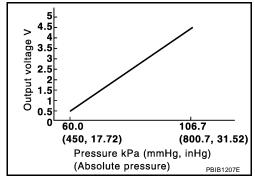
- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- If NG, replace EVAP control system pressure sensor.

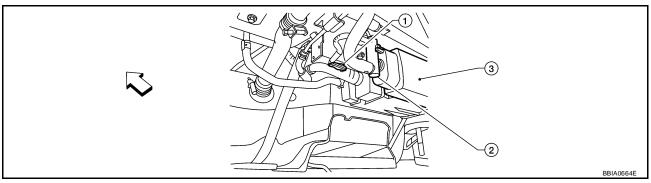
EC

Е

Н

UBS00P9T


DTC P0452 EVAP CONTROL SYSTEM PRESSURE SENSOR


PFP:25085

Component Description

UBS00P9U

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

- Vehicle front
- 1. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister

CONSULT-II Reference Value in Data Monitor Mode

UBS00P9V

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

UBS00P9W

NOTE

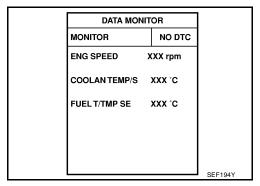
If DTC P0452 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to <u>EC-529, "DTC P0643 SENSOR POWER SUPPLY"</u>.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0452 0452	EVAP control system pressure sensor low input	An excessively low voltage from the sensor is sent to ECM.	Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor

DTC Confirmation Procedure

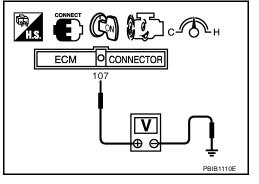
JBS00P9X

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.


WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that "FUEL T/TMP SE" is more than 0°C (32°F).
- Start engine and wait at least 20 seconds.
 If 1st trip DTC is detected, go to <u>EC-475</u>, "<u>Diagnostic Procedure</u>"

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine and wait at least 20 seconds.
- Select Service \$07 with GST.
 If 1st trip DTC is detected, go to <u>EC-475</u>, "<u>Diagnostic Procedure</u>"

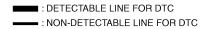
EC

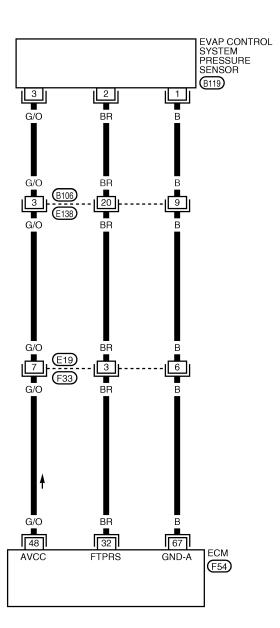
Α

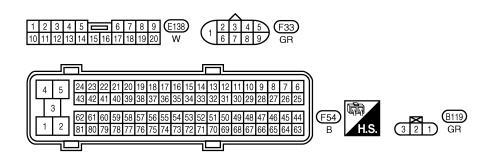
D

Е

G


Н


J


K

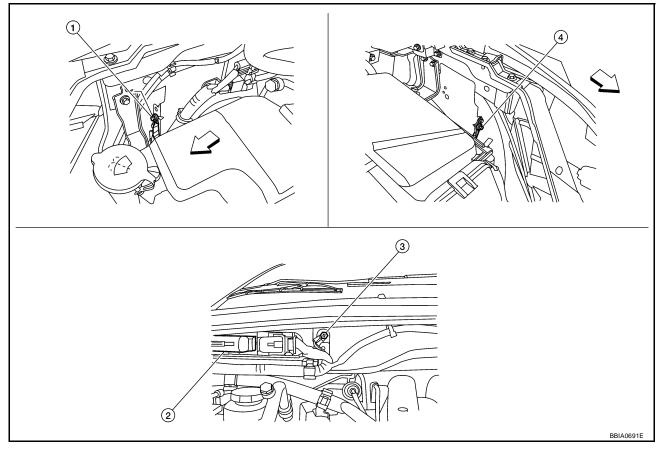
Wiring Diagram

EC-PRE/SE-01

BBWA2522E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
32	BR	EVAP control system pressure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
48	G/O	EVAP control system pressure sensor power supply	[Ignition switch: ON]	Approximately 5V
67	В	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to <u>EC-158</u>, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

Α

EC

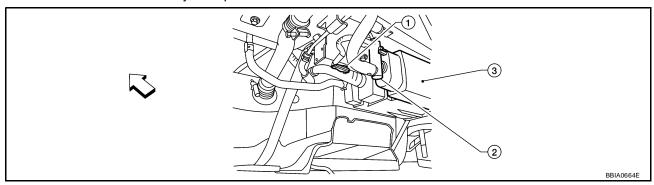
D

Е

Н

UBS00P9Z

OK or NG


OK >> GO TO 2.

NG >> Repair or replace ground connections.

Revision: March 2006 EC-475 2007 Quest

2. CHECK CONNECTOR

1. Disconnect EVAP control system pressure sensor harness connector.

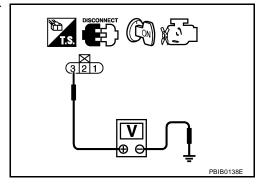
- Vehicle front
- 1. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister
- Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.


3. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch ON.
- 2. Check voltage between EVAP control system pressure sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E19, F33
- Harness connectors B106, E138
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

$5.\,$ CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND **SHORT** 1. Turn ignition switch OFF. EC Disconnect ECM harness connector. 3. Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal 67. Refer to Wiring Diagram. Continuity should exist. 4. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 7. NG >> GO TO 6. Е 6. DETECT MALFUNCTIONING PART Check the following. Harness connectors E19, F33 Harness connectors B106, E138 Harness for open or short between EVAP control system pressure sensor and ECM >> Repair open circuit or short to ground or short to power in harness or connectors. $\overline{7}$. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND **SHORT** Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal Refer to Wiring Diagram. Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 9. NG >> GO TO 8. 8. DETECT MALFUNCTIONING PART Check the following. Harness connectors E19, F33 M Harness connectors B106, E138 Harness for open or short between EVAP control system pressure sensor and ECM >> Repair open circuit or short to ground or short to power in harness or connectors. 9. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR Refer to EC-478, "Component Inspection". OK or NG OK >> GO TO 10. NG >> Replace EVAP control system pressure sensor.

>> INSPECTION END

10. CHECK INTERMITTENT INCIDENT

Revision: March 2006 EC-477 2007 Quest

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

Component Inspection EVAP CONTROL SYSTEM PRESSURE SENSOR

UBS00PA

- Remove EVAP control system pressure sensor with its harness connector connected from EVAP canister.
 Always replace O-ring with a new one.
- 2. Install a vacuum pump to EVAP control system pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V	
Not applied	1.8 - 4.8	
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value	

EVAP control system pressure sensor Pump Pump PBIB1173E

CAUTION:

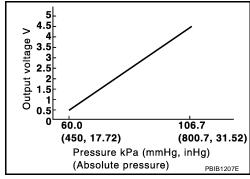
- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- 4. If NG, replace EVAP control system pressure sensor.

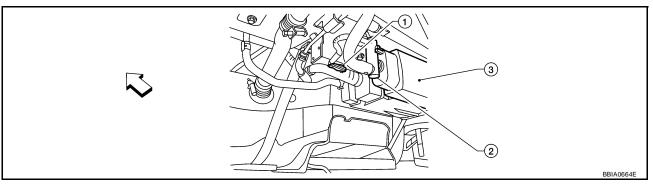
DTC P0453 EVAP CONTROL SYSTEM PRESSURE SENSOR

PFP:25085

UBS00PA1

Α


EC


Е

Н

Component Description

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases.

< > ∨ehicle front

. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister

CONSULT-II Reference Value in Data Monitor Mode

UBS00PA2

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	Ignition switch: ON	Approx. 1.8 - 4.8V

On Board Diagnosis Logic

BS00PA3

M

NOTE:

If DTC P0453 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-529, "DTC P0643 SENSOR POWER SUPPLY".

DTC No.	Trouble diagnosis name DTC detecting condition Possible cause		Possible cause
P0453 0453	EVAP control system pressure sensor high input	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) EVAP control system pressure sensor EVAP canister vent control valve EVAP canister Rubber hose from EVAP canister vent control valve to vehicle frame

DTC Confirmation Procedure

UBS00PA4

NOTF.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Always perform test at a temperature of 5°C (41°F) or more.

(P) WITH CONSULT-II

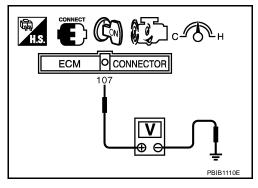
- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that "FUEL T/TMP SE" is more than 0°C (32°F).
- 6. Start engine and wait at least 10 seconds.
- 7. If 1st trip DTC is detected, go to EC-482, "Diagnostic Procedure"

DATA MONITOR

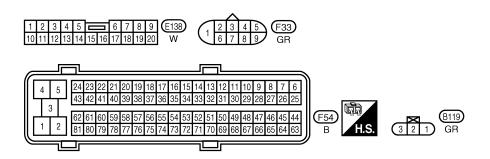
MONITOR

NO DTC

ENG SPEED XXX rpm


COOLAN TEMP/S XXX °C

FUEL T/TMP SE XXX °C


SEF194Y

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- Check that voltage between ECM terminal 107 (Fuel tank temperature sensor signal) and ground is less than 4.2V.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Start engine wait at least 10 seconds.
- Select Service \$07 with GST.
 If 1st trip DTC is detected, go to <u>EC-482</u>, "<u>Diagnostic Procedure</u>"

Wiring Diagram Α EC-PRE/SE-01 ■ : DETECTABLE LINE FOR DTC EC : NON-DETECTABLE LINE FOR DTC EVAP CONTROL SYSTEM PRESSURE SENSOR C (B119) G/O 2 BR В D Е G/O BR Н BR 3

BR

32

FTPRS

67

GND-A

ECM

(F54)

G/O

48

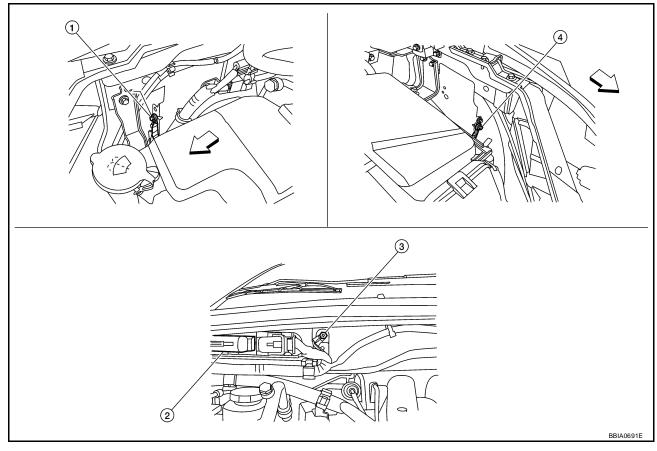
AVCC

BBWA2522E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
32	BR	EVAP control system pres- sure sensor	[Ignition switch: ON]	Approximately 1.8 - 4.8V
48	G/O	EVAP control system pres- sure sensor power supply	[Ignition switch: ON]	Approximately 5V
67	В	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V

Diagnostic Procedure

UBS00PA6

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- Loosen and retighten three ground screws on the body. Refer to <u>EC-158, "Ground Inspection"</u>.

- Vehicle front
- 1. Body ground E24

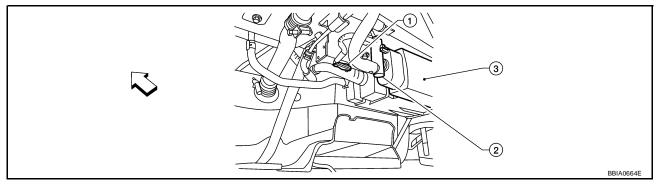
Body ground E15

2. ECM

3. Body ground E9

OK or NG

4.


OK >> GO TO 2.

NG >> Repair or replace ground connections.

Revision: March 2006 EC-482 2007 Quest

2. CHECK CONNECTOR

1. Disconnect EVAP control system pressure sensor harness connector.

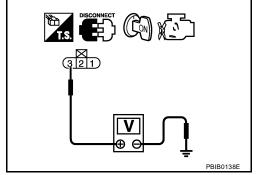
- Vehicle front
- 1. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister
- 2. Check sensor harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace harness connector.


3. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch ON.
- Check voltage between EVAP control system pressure sensor terminal 3 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors B106, E138
- Harness connectors E19, F33
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

С

D

Е

F

G

Н

K

n л

5. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between EVAP control system pressure sensor terminal 1 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

```
OK >> GO TO 7.
NG >> GO TO 6.
```

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E19, F33
- Harness connectors B106, E138
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 32 and EVAP control system pressure sensor terminal
 Refer to Wiring Diagram.

Continuity should exist.

Also check harness for short to ground and short to power.

OK or NG

```
OK >> GO TO 9.
NG >> GO TO 8.
```

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E19, F33
- Harness connectors B106, E138
- Harness for open or short between EVAP control system pressure sensor and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK RUBBER TUBE

- 1. Disconnect rubber tube connected to EVAP canister vent control valve.
- 2. Check the rubber tube for clogging, vent and kinked.

OK or NG

```
OK >> GO TO 10.
```

NG >> Clean the rubber tube using an air blower, repair or replace rubber tube.

10. CHECK EVAP CANISTER VENT CONTROL VALVE

Refer to EC-459, "Component Inspection".

OK or NG

OK >> GO TO 11.

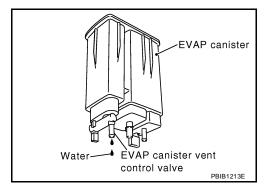
NG >> Replace EVAP canister vent control valve.

11. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-486, "Component Inspection".

OK or NG

OK >> GO TO 12.


NG >> Replace EVAP control system pressure sensor.

12. CHECK IF EVAP CANISTER SATURATED WITH WATER

- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Does water drain from the EVAP canister?.

Yes or No

Yes >> GO TO 13. No >> GO TO 15.

13. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.1 kg (4.6 lb).

OK or NG

OK >> GO TO 15. NG >> GO TO 14.

14. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection
 - >> Repair hose or replace EVAP canister.

15. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

D

Е

G

Н

Κ

. .

Component Inspection EVAP CONTROL SYSTEM PRESSURE SENSOR

UBS00PA

- 1. Remove EVAP control system pressure sensor with its harness connector connected from EVAP canister. Always replace O-ring, replace it with a new one.
- Install a vacuum pump to EVAP control system pressure sensor.
- 3. Turn ignition switch ON and check output voltage between ECM terminal 32 and ground under the following conditions.

Applied vacuum kPa (mmHg, inHg)	Voltage V
Not applied	1.8 - 4.8
-26.7 (-200, -7.87)	2.1 to 2.5V lower than above value

EVAP control system pressure sensor Pump Pump PBIB1173E

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply below -93.3 kPa (-700 mmHg, -27.56 inHg) or pressure over 101.3 kPa (760 mmHg, 29.92 inHg).
- 4. If NG, replace EVAP control system pressure sensor.

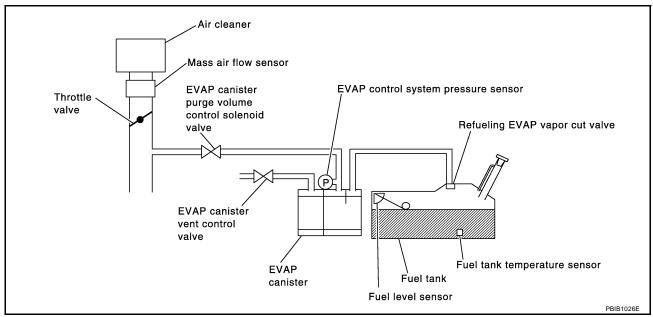
DTC P0455 EVAP CONTROL SYSTEM

PFP:14950

On Board Diagnosis Logic

UBS00PA8

Α


EC

D

Е

Н

This diagnosis detects a very large leak (fuel filler cap fell off etc.) in EVAP system between the fuel tank and EVAP canister purge volume control solenoid valve.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			Fuel filler cap remains open or fails to close.
			Incorrect fuel tank vacuum relief valve
			Incorrect fuel filler cap used
			Foreign matter caught in fuel filler cap.
			Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve.
			Foreign matter caught in EVAP canister vent control valve.
			EVAP canister or fuel tank leaks
P0455	EVAP control system	EVAP control system has a very large leak such as fuel filler cap fell off, EVAP control system	EVAP purge line (pipe and rubber tube) leaks
1455	gross leak detected	does not operate properly.	EVAP purge line rubber tube bent.
			Loose or disconnected rubber tube
			EVAP canister vent control valve and the circuit
			EVAP canister purge volume control solenoid valve and the circuit
			Fuel tank temperature sensor
			O-ring of EVAP canister vent control valve is missing or damaged.
			EVAP control system pressure sensor
			Refueling EVAP vapor cut valve
			ORVR system leaks

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

UBS00PA9

CAUTION:

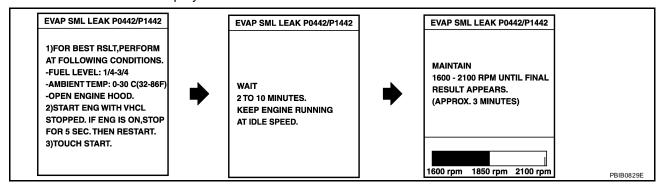
Never remove fuel filler cap during the DTC Confirmation Procedure.

NOTE:

- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 and 3/4 full, and vehicle is placed on flat level surface.
- Open engine hood before conducting the following procedures.

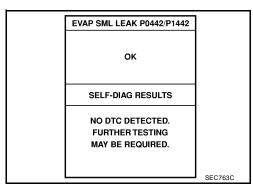

(P) WITH CONSULT-II

- 1. Tighten fuel filler cap securely until ratcheting sound is heard.
- 2. Turn ignition switch ON.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 5. Make sure that the following conditions are met.

COOLAN TEMP/S: 0 - 70°C (32 - 158°F) INT/A TEMP SE: 0 - 60°C (32 - 140°F)

Select "EVAP SML LEAK P0442/P1442" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.


NOTE:

If the engine speed cannot be maintained within the range displayed on the CONSULT-II screen, go to EC-73, "Basic Inspection".

7. Make sure that "OK" is displayed.

If "NG" is displayed, select "SELF-DIAG RESULTS" mode and make sure that "EVAP GROSS LEAK [P0455]" is displayed. If it is displayed, refer to EC-489, "Diagnostic Procedure".

If P0442 is displayed, perform Diagnostic Procedure for DTC P0442, <u>EC-433</u>, "<u>Diagnostic Procedure</u>".

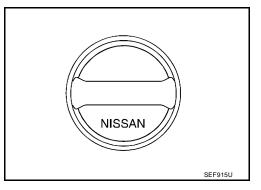
WITH GST

NOTE:

Be sure to read the explanation of Driving Pattern on EC-59, "Driving Pattern" before driving vehicle.

- 1. Start engine.
- 2. Drive vehicle according to Driving Pattern, <u>EC-59</u>, "<u>Driving Pattern</u>".
- 3. Stop vehicle.
- 4. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 5. Select Service \$07 with GST.
 - If P0441 is displayed on the screen, go to EC-427, "Diagnostic Procedure".
 - If P0442 is displayed on the screen, go to EC-433, "Diagnostic Procedure".
 - If P0455 is displayed on the screen, go to <u>EC-489</u>, "<u>Diagnostic Procedure</u>".

Diagnostic Procedure


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

NG >> GO TO 4.

4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-35, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)" .

OK or NG

OK >> GO TO 5.

NG >> Replace fuel filler cap with a genuine one.

EC

Α

С

D

Е

UBS00PAA

Н

K

L

5. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks, improper connection or disconnection.

Refer to EC-33, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 6.

NG >> Repair or reconnect the hose.

6. CLEAN EVAP PURGE LINE

Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 7.

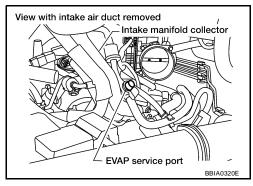
7. CHECK EVAP CANISTER VENT CONTROL VALVE

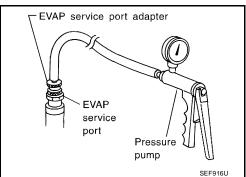
Check the following.

- EVAP canister vent control valve is installed properly.
 Refer to <u>EC-36</u>, "Removal and Installation".
- EVAP canister vent control valve.
 Refer to <u>EC-459</u>, "Component Inspection".

OK or NG

OK >> GO TO 8.


NG >> Repair or replace EVAP canister vent control valve and O-ring.


8. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

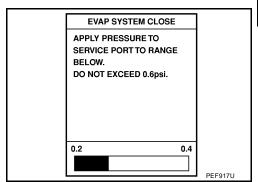
With CONSULT-II >> GO TO 9. Without CONSULT-II>> GO TO 10.

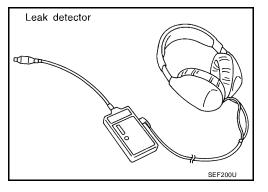
9. CHECK FOR EVAP LEAK

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

CAUTION:


- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details.


 Refer to EC-33, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.

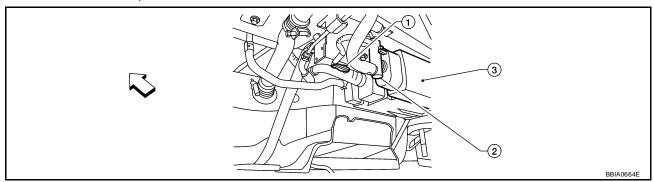
EC

Е

G

Н

J


K

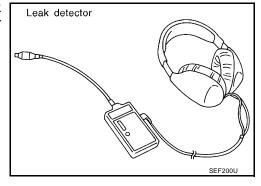
_

10. CHECK FOR EVAP LEAK

W Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

- Vehicle front
- 1. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister
- 3. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- 4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-33, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 12.

NG >> Repair or replace.

11. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(II) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 14.

NG >> GO TO 13.

		•	
ACTIVE TES	ACTIVE TEST		
PURG VOL CONT/V	XXX %		
MONITOR			
ENG SPEED	XXX rpm		
A/F ALPHA-B1	XX %		
A/F ALPHA-B2	XX %		
	1	PBIB1678E	

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 15. NG >> GO TO 13.

13. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-106, "Vacuum Hose Drawing" .

OK or NG

OK (With CONSULT-II)>>GO TO 14.

OK (Without CONSULT-II)>>GO TO 15.

NG >> Repair or reconnect the hose.

14. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

(P) With CONSULT-II

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.

OK or NG

OK >> GO TO 16. NG >> GO TO 15.

ACTIVE TES	т	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
A/F ALPHA-B2	XX %	
		PBIB1678E

EC

Е

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-452, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-351, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

Revision: March 2006 EC-493 2007 Quest

17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-478, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace EVAP control system pressure sensor.

18. CHECK EVAP/ORVR LINE

Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper connection. For location, refer to $\underline{\text{EC-39}}$, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)".

OK or NG

OK >> GO TO 19.

NG >> Repair or replace hoses and tubes.

19. CHECK RECIRCULATION LINE

Check recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness and improper connection.

OK or NG

OK >> GO TO 20.

NG >> Repair or replace hose, tube or filler neck tube.

20. CHECK REFUELING EVAP VAPOR CUT VALVE

Refer to EC-43, "Component Inspection".

OK or NG

OK >> GO TO 21.

NG >> Replace refueling EVAP vapor cut valve with fuel tank.

21. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P0456 EVAP CONTROL SYSTEM

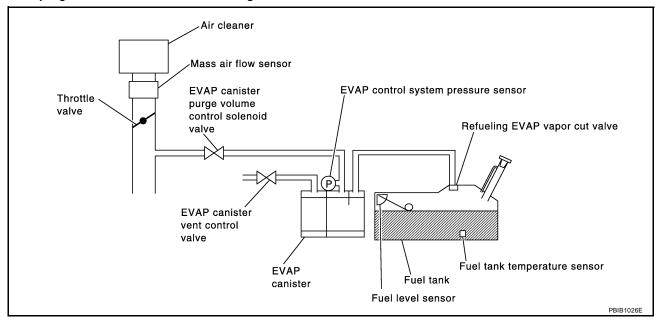
PFP:14950

On Board Diagnosis Logic

UBS00PAB

Α

EC


Е

This diagnosis detects very small leaks in the EVAP line between fuel tank and EVAP canister purge volume control solenoid valve, using the intake manifold vacuum in the same way as conventional EVAP small leak diagnosis.

If ECM judges a leak which corresponds to a very small leak, the very small leak P0456 will be detected.

If ECM judges a leak equivalent to a small leak, EVAP small leak P0442 will be detected.

If ECM judges there are no leaks, the diagnosis will be OK.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0456 0456	Evaporative emission control system very small leak (negative pressure check)	EVAP system has a very small leak. EVAP system does not operate properly.	Possible cause Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Loose or disconnected rubber tube EVAP canister vent control valve and the circuit EVAP canister purge volume control solenoid valve and the circuit	J K L
	small leak (negative	EVAP system does not operate	EVAP canister vent control valve and the circuitEVAP canister purge volume control solenoid valve	

Revision: March 2006 EC-495 2007 Quest

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

DTC Confirmation Procedure

UBS00PAC

NOTE:

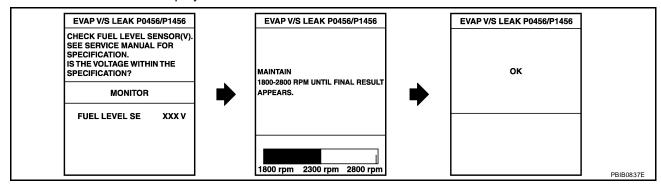
- If DTC P0456 is displayed with P0442, first perform trouble diagnosis for DTC P0456.
- After repair, make sure that the hoses and clips are installed properly.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following conditions are met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
- Fuel filler cap is removed.
- Refilled or drained the fuel.
- EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- Make sure the following conditions are met.


FUEL LEVEL SE: 0.25 - 1.4V

COOLAN TEMP/S: 0 - 32°C (32 - 90°F) FUEL T/TMP SE: 0 - 35°C (32 - 95°F) INT/A TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch OFF and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step 1).

- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 5. Select "EVAP V/S LEAK P0456/P1456" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

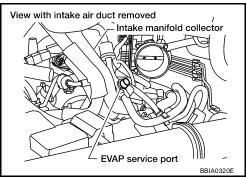
Follow the instruction displayed.

Make sure that "OK" is displayed.

If "NG" is displayed, refer to EC-498, "Diagnostic Procedure".

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to <u>EC-73</u>, "<u>Basic Inspection</u>".
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.


Overall Function Check

WITH GST

Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

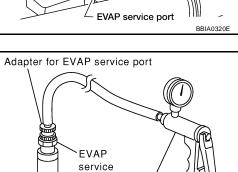
CAUTION:

- Never use compressed air, doing so may damage the EVAP system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP service port.

- 2. Set the pressure pump and a hose.
- 3. Also set a vacuum gauge via 3-way connector and a hose.
- 4. Turn ignition switch ON.
- 5. Connect GST and select Service \$08.
- 6. Using Service \$08 control the EVAP canister vent control valve (close).
- 7. Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and

the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg).


If NG, go to EC-498, "Diagnostic Procedure".

If OK, go to next step.

- 8. Disconnect GST.
- 9. Start engine and warm it up to normal operating temperature.
- 10. Turn ignition switch OFF and wait at least 10 seconds.
- 11. Restart engine and let it idle for 90 seconds.
- 12. Keep engine speed at 2,000 rpm for 30 seconds.
- 13. Turn ignition switch OFF.

NOTE:

For more information, refer to GST instruction manual.

Pressure pump

port

0

Е

EC

G

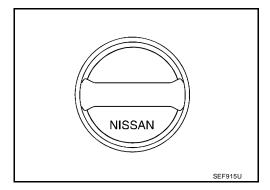
Н

SFF462U

K

Diagnostic Procedure

UBS00PAE


1. CHECK FUEL FILLER CAP DESIGN

- 1. Turn ignition switch OFF.
- 2. Check for genuine NISSAN fuel filler cap design.

OK or NG

OK >> GO TO 2.

NG >> Replace with genuine NISSAN fuel filler cap.

2. CHECK FUEL FILLER CAP INSTALLATION

Check that the cap is tightened properly by rotating the cap clockwise.

OK or NG

OK >> GO TO 3.

NG >> 1. Open fuel filler cap, then clean cap and fuel filler neck threads using air blower.

2. Retighten until ratcheting sound is heard.

3. CHECK FUEL FILLER CAP FUNCTION

Check for air releasing sound while opening the fuel filler cap.

OK or NG

OK >> GO TO 5.

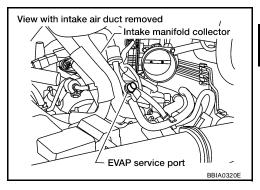
NG >> GO TO 4.

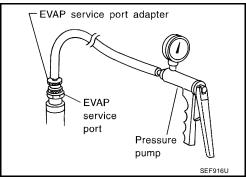
4. CHECK FUEL TANK VACUUM RELIEF VALVE

Refer to EC-35, "FUEL TANK VACUUM RELIEF VALVE (BUILT INTO FUEL FILLER CAP)".

OK or NG

OK >> GO TO 5.


NG >> Replace fuel filler cap with a genuine one.

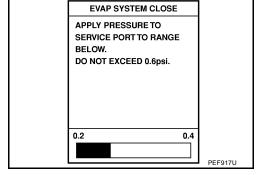

5. INSTALL THE PRESSURE PUMP

To locate the EVAP leak, install EVAP service port adapter and pressure pump to EVAP service port securely.

NOTE:

Improper installation of the EVAP service port adapter to the EVAP service port may cause leaking.

With CONSULT-II>>GO TO 6. Without CONSULT-II>>GO TO 7.

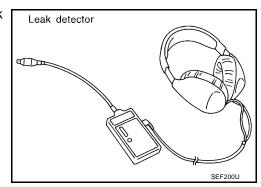

6. CHECK FOR EVAP LEAK

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply pressure into the EVAP line until the pressure indicator reaches the middle of the bar graph.

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.


4. Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details.

Refer to EC-33, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

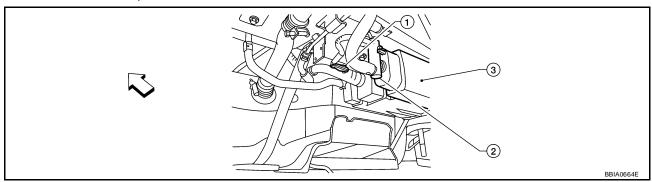
Α

EC

П

_

Е


K

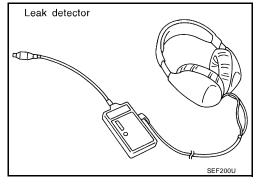
L

7. CHECK FOR EVAP LEAK

W Without CONSULT-II

- 1. Turn ignition switch OFF.
- 2. Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

- Vehicle front
- 1. EVAP control system pressure sensor 2. EVAP canister vent control valve 3. EVAP canister
- 3. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg), then remove pump and EVAP service port adapter.


CAUTION:

- Never use compressed air or a high pressure pump.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system.
- Using EVAP leak detector, locate the EVAP leak. For the leak detector, refer to the instruction manual for more details. Refer to EC-33, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 8.

NG >> Repair or replace.

8. CHECK EVAP CANISTER VENT CONTROL VALVE

Check the following.

- EVAP canister vent control valve is installed properly. Refer to <u>EC-36</u>, "Removal and Installation".
- EVAP canister vent control valve.
 Refer to <u>EC-459</u>, "Component Inspection".

OK or NG

OK >> GO TO 9.

NG >> Repair or replace EVAP canister vent control valve and O-ring.

9. CHECK IF EVAP CANISTER SATURATED WITH WATER


- Remove EVAP canister with EVAP canister vent control valve and EVAP control system pressure sensor attached.
- 2. Does water drain from the EVAP canister?

Yes or No

Yes >> GO TO 10.

No (With CONSULT-II)>>GO TO 12.

No (Without CONSULT-II)>>GO TO 13.

10. CHECK EVAP CANISTER

Weigh the EVAP canister with the EVAP canister vent control valve and EVAP control system pressure sensor attached.

The weight should be less than 2.1 kg (4.6 lb).

OK or NG

OK (With CONSULT-II)>>GO TO 12.

OK (Without CONSULT-II)>>GO TO 13.

>> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- EVAP canister for damage
- EVAP hose between EVAP canister and vehicle frame for clogging or poor connection

>> Repair hose or replace EVAP canister.

12. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

(P) With CONSULT-II

- 1. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 2. Start engine.
- 3. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode.
- 4. Touch "Qu" on CONSULT-II screen to increase "PURG VOL CONT/V" opening to 100%.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

OK or NG

OK >> GO TO 15.

NG >> GO TO 14.

ACTIVE TES		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XX %	
A/F ALPHA-B2	XX %	
	1	PBIB1678E

EC

Е

Н

13. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE OPERATION

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine.
- 3. Disconnect vacuum hose to EVAP canister purge volume control solenoid valve at EVAP service port.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Check vacuum hose for vacuum when revving engine up to 2,000 rpm.

Vacuum should exist.

OK or NG

OK >> GO TO 16. NG >> GO TO 14.

14. CHECK VACUUM HOSE

Check vacuum hoses for clogging or disconnection. Refer to EC-106, "Vacuum Hose Drawing" .

OK or NG

OK >> GO TO 15.

NG >> Repair or reconnect the hose.

15. CHECK EVAP CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-452, "Component Inspection".

OK or NG

OK >> GO TO 16.

NG >> Replace EVAP canister purge volume control solenoid valve.

16. CHECK FUEL TANK TEMPERATURE SENSOR

Refer to EC-351, "Component Inspection".

OK or NG

OK >> GO TO 17.

NG >> Replace fuel level sensor unit.

17. CHECK EVAP CONTROL SYSTEM PRESSURE SENSOR

Refer to EC-478, "Component Inspection".

OK or NG

OK >> GO TO 18.

NG >> Replace EVAP control system pressure sensor.

18. CHECK EVAP PURGE LINE

Check EVAP purge line (pipe, rubber tube, fuel tank and EVAP canister) for cracks or improper connection. Refer to EC-33, "EVAPORATIVE EMISSION LINE DRAWING".

OK or NG

OK >> GO TO 19.

NG >> Repair or reconnect the hose.

19. CLEAN EVAP PURGE LINE

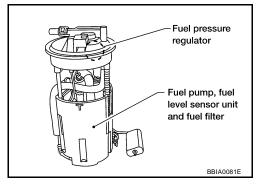
Clean EVAP purge line (pipe and rubber tube) using air blower.

>> GO TO 20.

Check EVAP/ORVR line between EVAP canister and fuel tank for clogging, kink, looseness and improper co	_ A
nection. For location, refer to $\underline{EC-39}$, "ON BOARD REFUELING VAPOR RECOVERY (ORVR)".	1-
OK or NG	EC
OK >> GO TO 21. NG >> Repair or replace hoses and tubes.	
21. CHECK RECIRCULATION LINE	C
Check recirculation line between filler neck tube and fuel tank for clogging, kink, cracks, looseness ar improper connection. OK or NG	id D
OK >> GO TO 22. NG >> Repair or replace hose, tube or filler neck tube.	Е
22. check refueling evap vapor cut valve	
Refer to EC-43, "Component Inspection".	_ F
OK or NG OK >> GO TO 23. NG >> Replace refueling EVAP vapor cut valve with fuel tank.	G
23. CHECK FUEL LEVEL SENSOR	Н
Refer to DI-22, "Fuel Level Sensor Unit Inspection".	_ '
OK or NG OK >> GO TO 24. NG >> Replace fuel level sensor unit.	I
24. CHECK INTERMITTENT INCIDENT	J
Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	_
>> INSPECTION END	K

Revision: March 2006 EC-503 2007 Quest

DTC P0460 FUEL LEVEL SENSOR


PFP:25060

Component Description

UBS00PAF

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the combination meter. The combination meter sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

UBS00PAG

NOTE:

- If DTC P0460 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-159, "DTC U1000, U1001 CAN COMMUNICATION LINE".
- If DTC P0460 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010.
 Refer to <u>EC-162</u>, "<u>DTC U1010 CAN COMMUNICATION</u>".

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is detected.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause	
P0460 0460	Fuel level sensor circuit noise	Even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.	 Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The sensor circuit is open or shorted) Combination meter Fuel level sensor 	

DTC Confirmation Procedure

UBS00PAH

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and wait maximum of 2 consecutive minutes.
- 4. If 1st trip DTC is detected, go to EC-505, "Diagnostic Procedure"

DATA MONITOR		
MONITOR	NO DTC	
FUEL T/TMP SE FUEL LEVEL SE	XXX °C	
		SEF195Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

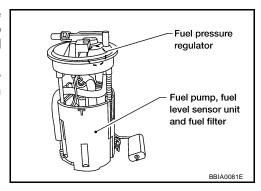
DTC P0460 FUEL LEVEL SENSOR

Diagnostic Procedure	OPAI
1. CHECK FUEL GAUGE OPERATION	А
Refer to DI-14, "Self-Diagnosis Mode of Combination Meter" .	_
OK or NG	EC
OK >> GO TO 2. NG >> Follow the instruction of <u>DI-14</u> , " <u>Self-Diagnosis Mode of Combination Meter</u> ".	
2. CHECK FUEL LEVEL SENSOR AND CIRCUIT	C
Refer to DI-22, "Fuel Level Sensor Unit Inspection".	D
OK or NG OK >> GO TO 3.	
NG >> Repair or replace malfunctioning parts.	Е
3. CHECK INTERMITTENT INCIDENT	
Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".	F
>> INSPECTION END	
Removal and Installation FUEL LEVEL SENSOR	G DPAJ
Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".	Н
	J
	K
	L
	L
	M

DTC P0461 FUEL LEVEL SENSOR

DTC P0461 FUEL LEVEL SENSOR

PFP:25060


UBS00PAK

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to

the combination meter. The combination meter sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

UBS00PAL

NOTE:

- If DTC P0461 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-159, "DTC U1000, U1001 CAN COMMUNICATION LINE".
- If DTC P0461 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-162, "DTC U1010 CAN COMMUNICATION".

Driving long distances naturally affect fuel gauge level.

This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0461 0461	Fuel level sensor circuit range/performance	The output signal of the fuel level sensor does not change within the specified range even though the vehicle has been driven a long distance.	 Harness or connectors (The CAN communication line is open or shorted) Harness or connectors (The sensor circuit is open or shorted) Combination meter Fuel level sensor

Overall Function Check

UBS00PAM

Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

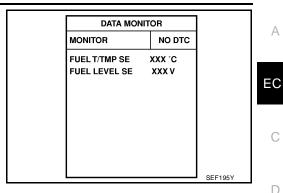
When performing following procedure, be sure to observe the handling of the fuel. Refer to <u>FL-9.</u> <u>"FUEL TANK"</u>.

TESTING CONDITION:

Before starting overall function check, preparation of draining fuel and refilling fuel is required.

(A) WITH CONSULT-II

NOTE:


Start from step 10, if it is possible to confirm that the fuel cannot be drained by 30 $\,\ell$ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- 2. Release fuel pressure from fuel line, refer to EC-82, "FUEL PRESSURE RELEASE".
- 3. Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.
- 5. Turn ignition switch OFF and wait at least 10 seconds then turn ON.
- 6. Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-II.

DTC P0461 FUEL LEVEL SENSOR

- Check "FUEL LEVEL SE" output voltage and note it.
- Select "FUEL PUMP" in "ACTIVE TEST" mode with CONSULT-
- 9. Touch "ON" and drain fuel approximately 30 $\,\ell\,$ (7-7/8 US gal, 6-5/8 Imp gal) and stop it.
- 10. Check "FUEL LEVEL SE" output voltage and note it.
- 11. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 12. Check "FUEL LEVEL SE" output voltage and note it.
- 13. Confirm whether the voltage changes more than 0.03V during step 7 to 10 and 10 to 12.

If NG, go to EC-507, "Diagnostic Procedure".

F

Н

M

Α

® WITH GST

NOTE:

Start from step 8, if it is possible to confirm that the fuel cannot be drained by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) in advance.

- 1. Prepare a fuel container and a spare hose.
- 2. Release fuel pressure from fuel line. Refer to EC-82, "FUEL PRESSURE RELEASE".
- 3. Remove the fuel feed hose on the fuel level sensor unit.
- 4. Connect a spare fuel hose where the fuel feed hose was removed.
- Turn ignition switch ON.
- 6. Drain fuel by 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
- 7. Confirm that the fuel gauge indication varies.
- 8. Fill fuel into the fuel tank for 30 ℓ (7-7/8 US gal, 6-5/8 Imp gal).
- 9. Confirm that the fuel gauge indication varies.
- 10. If NG, go to EC-507, "Diagnostic Procedure".

Diagnostic Procedure

UBS00PAN

1. CHECK FUEL GAUGE OPERATION

Refer to DI-14. "Self-Diagnosis Mode of Combination Meter".

OK or NG

OK >> GO TO 2.

NG >> Follow the instruction of DI-14, "Self-Diagnosis Mode of Combination Meter".

$2.\,$ check fuel level sensor and circuit

Refer to DI-22, "Fuel Level Sensor Unit Inspection".

OK or NG

OK >> GO TO 3.

NG >> Repair or replace malfunctioning parts.

$3.\,$ check intermittent incident

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

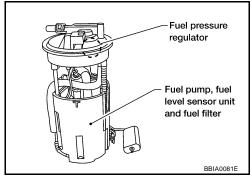
Removal and Installation **FUEL LEVEL SENSOR**

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".

UBS00PA0

EC-507 Revision: March 2006 2007 Quest

DTC P0462, P0463 FUEL LEVEL SENSOR


PFP:25060

UBS00PAP

Component Description

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the combination meter. The combination meter sends the fuel level sensor signal to the ECM through CAN communication line.

It consists of two parts, one is mechanical float and the other is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

On Board Diagnosis Logic

UBS00PAQ

NOTE:

- If DTC P0462 or P0463 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-159, "DTC U1000, U1001 CAN COMMUNICATION LINE".
- If DTC P0462 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-162, "DTC U1010 CAN COMMUNICATION".

This diagnosis indicates the former, to detect open or short circuit malfunction.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0462 0462	Fuel level sensor circuit low input	An excessively low voltage is sent from the sensor is sent to ECM.	Harness or connectors (The CAN communication line is open or
P0463 0463	Fuel level sensor circuit high input	An excessively high voltage is sent from the sensor is sent to ECM.	shorted) Harness or connectors (The sensor circuit is open or shorted) Combination meter Fuel level sensor

DTC Confirmation Procedure

UBS00PAR

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch ON.

WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- If 1st trip DTC is detected, go to EC-509, "Diagnostic Procedure"

DATA MONITOR		
MONITOR	NO DTC	
FUEL T/TMP SE FUEL LEVEL SE	XXX °C XXX V	
		SEF195Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0462, P0463 FUEL LEVEL SENSOR

Diagnostic Procedure 1. CHECK FUEL GAUGE OPERATION	JBS00PAS	А
Refer to DI-14, "Self-Diagnosis Mode of Combination Meter" . OK or NG OK >> GO TO 2.		EC
NG >> Follow the instruction of <u>DI-14</u> , " <u>Self-Diagnosis Mode of Combination Meter</u> ". 2. CHECK FUEL LEVEL SENSOR AND CIRCUIT		С
Refer to DI-22, "Fuel Level Sensor Unit Inspection".		D
<u>OK or NG</u> OK >> GO TO 3.		
NG >> Repair or replace malfunctioning parts.		Е
3. CHECK INTERMITTENT INCIDENT Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".		F
>> INSPECTION END		
Damaval and Installation	UBS00PAT	G
Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".		Н
		ı
		J
		K
		L
		N

DTC P0500 VSS

Description

UBS00PAU

NOTE:

- If DTC P0500 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to <u>EC-159</u>, "<u>DTC U1000</u>, <u>U1001 CAN COMMUNICATION LINE</u>".
- If DTC P0500 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-162, "DTC U1010 CAN COMMUNICATION".

The vehicle speed signal is sent to the combination meter from the "ABS actuator and electric unit (control unit)" by CAN communication line. The combination meter then sends the signal to the ECM by CAN communication line.

On Board Diagnosis Logic

UBS00PAV

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
			Harness or connectors (The CAN communication line is open or shorted)
P0500 0500	Vehicle speed sensor	The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	Harness or connectors (The vehicle speed signal circuit is open or shorted)
			Wheel sensor
			Combination meter
			ABS actuator and electric unit (control unit)

DTC Confirmation Procedure

LIBSOOPAN

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Steps 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-II

- Start engine (TCS switch or VDC switch OFF).
- Read "VHCL SPEED SE" in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

If NG, go to EC-511, "Diagnostic Procedure".

- If OK, go to following step.
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- 4. Warm engine up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	1,600 - 6,000 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	4.4 - 31.8 msec
Shift lever	Except P or N position
PW/ST SIGNAL	OFF

If 1st trip DTC is detected, go to <u>EC-511, "Diagnostic Procedure"</u>

DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	xxx °c	
B/FUEL SCHDL)	(XX msec	
PW/ST SIGNAL	OFF	
VHCL SPEED SE	XXX km/h	
		SEF196Y

Revision: March 2006 EC-510 2007 Quest

DTC P0500 VSS

Overall Function Check Α Use this procedure to check the overall function of the vehicle speed sensor circuit. During this check, a 1st trip DTC might not be confirmed. **WITH GST** EC 1. Lift up drive wheels. Start engine. Read vehicle speed sensor signal in Service \$01 with GST. The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position. 4. If NG, go to EC-511, "Diagnostic Procedure". D **Diagnostic Procedure** LIBSOOPAY 1. CHECK DTC WITH "ABS ACTUATOR AND ELECTRIC UNIT (CONTROL UNIT)" Е Refer to BRC-55, "TROUBLE DIAGNOSIS" (models with VDC) or BRC-10, "TROUBLE DIAGNOSIS" (models without VDC). F OK or NG OK >> GO TO 2. NG >> Repair or replace. 2. COMBINATION METER Check combination meter function. Н Refer to DI-5, "COMBINATION METERS". >> INSPECTION END

M

DTC P0506 ISC SYSTEM

PFP:23781

Description

NOTE:

If DTC P0506 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The ECM calculates the actual engine speed from signals of crankshaft position sensor (POS) and camshaft position sensor (PHASE).

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

UBS00PB0

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0506 0506	Idle speed control system RPM lower than expected	The idle speed is less than the target idle speed by 100 rpm or more.	Electric throttle control actuator Intake air leak

DTC Confirmation Procedure

UBS00PB1

NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform Idle Air Volume Learning, <u>EC-80</u>, before conducting DTC Confirmation Procedure. For the target idle speed, refer to the Service Data and Specifications (SDS), <u>EC-721</u>.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above –10°C (14°F).

(P) WITH CONSULT-II

- 1. Open engine hood.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- 5. Start engine and run it for at least 1 minute at idle speed.
- 6. If 1st trip DTC is detected, go to EC-513, "Diagnostic Procedure"

DATA MONITOR

MONITOR

NO DTC

ENG SPEED XXX rpm
COOLAN TEMP/S XXX °C

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0506 ISC SYSTEM

Diagnostic Procedure Α 1. CHECK INTAKE AIR LEAK Start engine and let it idle. EC 2. Listen for an intake air leak after the mass air flow sensor. OK or NG OK >> GO TO 2. NG >> Discover air leak location and repair. 2. REPLACE ECM D 1. Stop engine. 2. Replace ECM. 3. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to BL-203, "NVIS(NISSAN Vehicle Immobilizer System-NATS)" . 4. Perform EC-79, "VIN Registration". 5. Perform EC-80, "Accelerator Pedal Released Position Learning". F 6. Perform EC-80, "Throttle Valve Closed Position Learning". 7. Perform EC-80, "Idle Air Volume Learning". >> INSPECTION END Н

M

DTC P0507 ISC SYSTEM

PFP:23781

Description

NOTE:

If DTC P0507 is displayed with other DTC, first perform the trouble diagnosis for the other DTC.

The ECM controls the engine idle speed to a specified level through the fine adjustment of the air, which is let into the intake manifold, by operating the electric throttle control actuator. The operating of the throttle valve is varied to allow for optimum control of the engine idling speed. The ECM calculates the actual engine speed from signals of crankshaft position sensor (POS) and camshaft position sensor (PHASE).

The ECM controls the electric throttle control actuator so that the engine speed coincides with the target value memorized in the ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warming up, deceleration, and engine load (air conditioner, power steering and cooling fan operation, etc.).

On Board Diagnosis Logic

UBS00PB4

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0507 0507	Idle speed control system RPM higher than expected	The idle speed is more than the target idle speed by 200 rpm or more.	 Electric throttle control actuator Intake air leak PCV system

DTC Confirmation Procedure

UBS00PB5

NOTE

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If the target idle speed is out of the specified value, perform Idle Air Volume Learning, <u>EC-80</u>, before conducting DTC Confirmation Procedure. For the target idle speed, refer to the "Service Data and Specifications (SDS)", <u>EC-721</u>.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Always perform the test at a temperature above –10°C (14°F).

(P) WITH CONSULT-II

- 1. Open engine hood.
- 2. Start engine and warm it up to normal operating temperature.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON again and select "DATA MONITOR" mode with CONSULT-II.
- 5. Start engine and run it for at least 1 minute at idle speed.
- If 1st trip DTC is detected, go to <u>EC-515</u>, "<u>Diagnostic Procedure</u>"

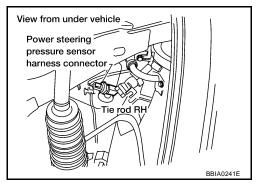
DATA MONITOR		
MONITOR NO DTC		
	(XX rpm XXX °C	
		SEF174Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P0507 ISC SYSTEM

Diagnostic Procedure Α 1. CHECK PCV HOSE CONNECTION Confirm that PCV hose is connected correctly. EC OK or NG OK >> GO TO 2. NG >> Repair or replace. 2. CHECK INTAKE AIR LEAK Start engine and let it idle. D 2. Listen for an intake air leak after the mass air flow sensor. OK or NG OK >> GO TO 3. Е NG >> Discover air leak location and repair. 3. REPLACE ECM Stop engine. 2. Replace ECM. 3. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to BL-203, "NVIS(NISSAN Vehicle Immobilizer System-NATS)" . 4. Perform EC-79, "VIN Registration". Н 5. Perform EC-80, "Accelerator Pedal Released Position Learning". 6. Perform EC-80, "Throttle Valve Closed Position Learning". 7. Perform EC-80, "Idle Air Volume Learning". >> INSPECTION END


M

PFP:49763

Component Description

UBS00PB7

Power steering pressure (PSP) sensor is installed to the power steering high-pressure tube and detects a power steering load. This sensor is a potentiometer which transforms the power steering load into output voltage, and emits the voltage signal to the ECM. The ECM controls the electric throttle control actuator and adjusts the throttle valve opening angle to increase the engine speed and adjusts the idle speed for the increased load.

CONSULT-II Reference Value in Data Monitor Mode

UBS00PB8

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
PW/ST SIGNAL	Engine: After warming up, idle	Steering wheel: Not being turned.	OFF
1 W/ST SIGNAL	the engine	Steering wheel: Being turned.	ON

On Board Diagnosis Logic

UBS00PB9

The MIL will not light up for this diagnosis.

NOTE:

If DTC P0550 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-529, "DTC P0643 SENSOR POWER SUPPLY".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0550 0550	Power steering pressure sensor circuit	An excessively low or high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted) Power steering pressure sensor

DTC Confirmation Procedure

UBS00PBA

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-519, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

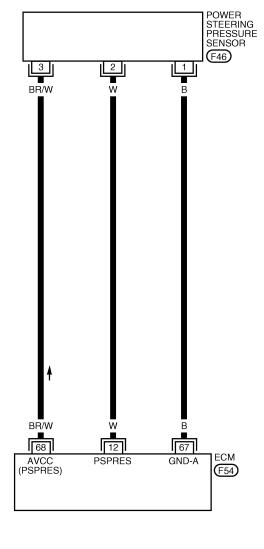
Wiring Diagram

EC-PS/SEN-01

Α

■ : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC

EC


C

D

Е

Н

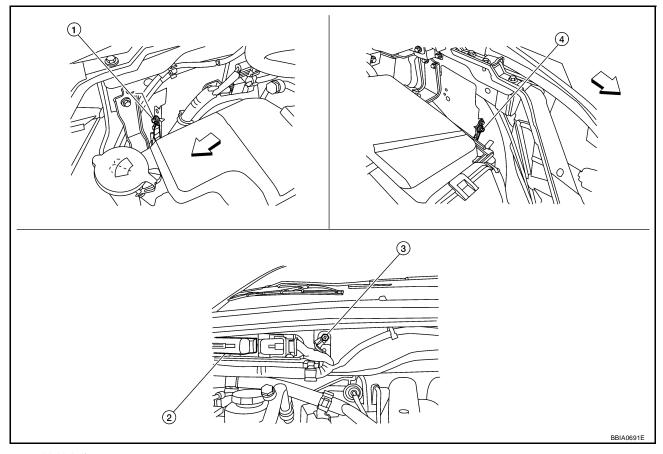
M

F46 B F54 B

BBWA2523E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
12	W	Power steering pressure sensor	[Engine is running] ■ Steering wheel: Being turned	0.5 - 4.5V
12	VV		[Engine is running]Steering wheel: Not being turned	0.4 - 0.8V
67	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
68	BR/W	Power steering pressure sensor power supply	[Ignition switch ON]	Approximately 5V

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

Α

UBS00PBC

С

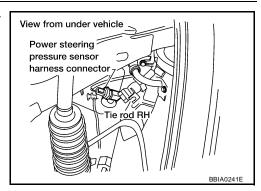
D

Е

F

G

Н


1

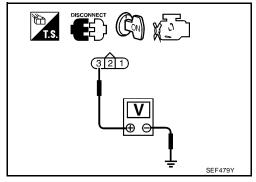
K

M

2. CHECK PSP SENSOR POWER SUPPLY CIRCUIT

- Disconnect power steering pressure (PSP) sensor harness connector.
- 2. Turn ignition switch ON.

Check voltage between PSP sensor terminal 3 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Re

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK PSP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between PSP sensor terminal 1 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK PSP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 12 and PSP sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK PSP SENSOR

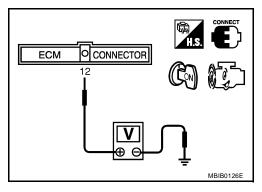
Refer to EC-521, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace PSP sensor.

6. CHECK INTERMITTENT INCIDENT


Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection POWER STEERING PRESSURE SENSOR

- 1. Reconnect all harness connectors disconnected.
- 2. Start engine and let it idle.
- 3. Check voltage between ECM terminal 12 and ground under the following conditions.

Condition	Voltage
Steering wheel: Being turned	0.5 - 4.5V
Steering wheel: Not being turned	0.4 - 0.8V

UBS00QAH

Removal and Installation POWER STEERING PRESSURE SENSOR

Refer to PS-24, "HYDRAULIC LINE".

Н

EC

D

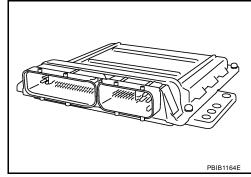
Е

UBS00PBD

K

L

M


DTC P0603 ECM POWER SUPPLY

PFP:23710

Component Description

UBS00PBE

Battery voltage is supplied to the ECM even when the ignition switch is turned OFF for the ECM memory function of the DTC memory, the air-fuel ratio feedback compensation value memory, the idle air volume learning value memory, etc.

On Board Diagnosis Logic

UBS00PBF

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0603 0603	ECM power supply circuit	ECM back-up RAM system does not function properly.	Harness or connectors [ECM power supply (back-up) circuit is open or shorted.]ECM

DTC Confirmation Procedure

UBS00PBG

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- Turn ignition switch ON and select "DATA MONITOR" mode with CONSULT-II.
- 2. Start engine and let it idle for 1 second.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON and wait at least 1 second.
- 5. Repeat step 2 to 4 for 4 times.
- 6. If 1st trip DTC is detected, go to EC-524, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

EC-ECM/PW-01

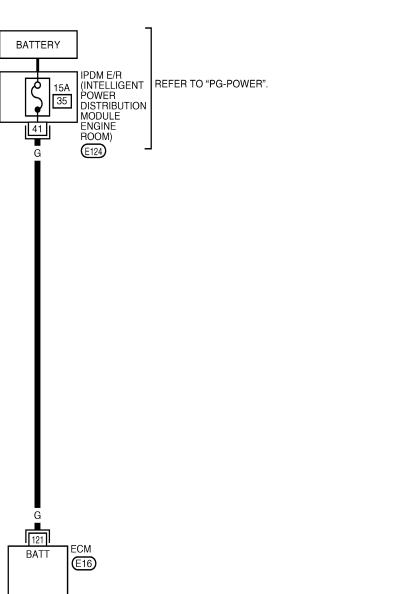
■ : DETECTABLE LINE FOR DTC

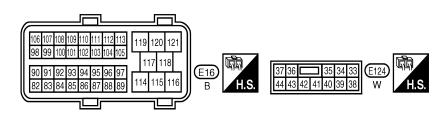
EC

C

D


Е


G


Н

M

Α

BBWA2524E

Specification data are reference values and are measured between each terminal and ground.

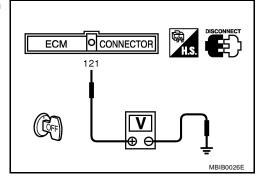
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
121	G	Power supply for ECM (Back-up)	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00PBI


1. CHECK ECM POWER SUPPLY

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check voltage between ECM terminal 121 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- IPDM E/R harness connector E124
- 15A fuse
- Harness for open or short between ECM and battery
 - >> Repair or replace harness or connectors.

3. CHECK INTERMITTENT INCIDENT

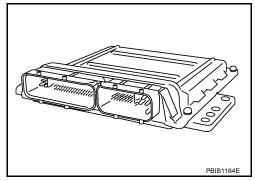
Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> GO TO 4.

NG >> Repair or replace harness or connectors.

4. PERFORM DTC CONFIRMATION PROCEDURE (P) With CONSULT-II Turn ignition switch ON. EC 2. Select "SELF DIAG RESULTS" mode with CONSULT-II. Touch "ERASE". 4. Perform DTC Confirmation Procedure. See <u>EC-522</u>, "DTC Confirmation Procedure". 5. Is the 1st trip DTC P0603 displayed again? With GST 1. Turn ignition switch ON. 2. Select Service \$04 with GST. 3. Perform DTC Confirmation Procedure. Е See EC-522, "DTC Confirmation Procedure". 4. Is the 1st trip DTC P0603 displayed again? Yes or No Yes >> GO TO 5. No >> INSPECTION END 5. REPLACE ECM 1. Replace ECM. 2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to BL-203, "NVIS(NISSAN Vehicle Immobilizer System-NATS)". 3. Perform EC-79, "VIN Registration". 4. Perform EC-80, "Accelerator Pedal Released Position Learning". 5. Perform EC-80, "Throttle Valve Closed Position Learning". 6. Perform EC-80, "Idle Air Volume Learning". >> INSPECTION END


M

DTC P0605 ECM PFP:23710

Component Description

UBS00PBJ

The ECM consists of a microcomputer and connectors for signal input and output and for power supply. The ECM controls the engine.

On Board Diagnosis Logic

UBS00PBK

This self-diagnosis has one or two trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
	Engine control module	A)	ECM calculation function is malfunctioning.	• ECM
P0605 0605		B)	ECM EEP-ROM system is malfunctioning.	
		C)	ECM self shut-off function is malfunctioning.	

FAIL-SAFE MODE

ECM enters fail-safe mode when the malfunction A is detected.

Detected items	Engine operation condition in fail-safe mode	
Malfunction A	 ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring. ECM deactivates ASCD operation. 	

DTC Confirmation Procedure

UBS00PB

Perform PROCEDURE FOR MALFUNCTION A first. If the 1st trip DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION B. If there is no malfunction on PROCEDURE FOR MALFUNCTION B, perform PROCEDURE FOR MALFUNCTION C.

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

PROCEDURE FOR MALFUNCTION A

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- If 1st trip DTC is detected, go to <u>EC-527</u>, "Diagnostic Procedure"

DATA MONIT		
MONITOR	NO DTC	
ENG SPEED >	(XX rpm	
		SEF058Y

With GST

Follow the procedure "With CONSULT-II" above.

DTC P0605 ECM

PROCEDURE FOR MALFUNCTION B

(P) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 4. If 1st trip DTC is detected, go to EC-527, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

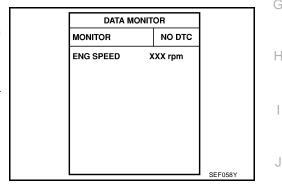
Α

EC

Е

UBS00PBM

M


₩ith GST

Follow the procedure "With CONSULT-II" above.

PROCEDURE FOR MALFUNCTION C

(P) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 4. Repeat step 3 for 32 times
- If 1st trip DTC is detected, go to <u>EC-527, "Diagnostic Procedure"</u>

With GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure

1. INSPECTION START

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "SELF DIAG RESULTS" mode with CONSULT-II.
- 3. Touch "ERASE".
- 4. Perform DTC Confirmation Procedure.

See EC-526, "DTC Confirmation Procedure".

5. Is the 1st trip DTC P0605 displayed again?

With GST

- 1. Turn ignition switch ON.
- 2. Select Service \$04 with GST.
- 3. Perform DTC Confirmation Procedure.

See EC-526, "DTC Confirmation Procedure".

4. Is the 1st trip DTC P0605 displayed again?

Yes or No

Yes >> GO TO 2.

No >> INSPECTION END

Revision: March 2006 EC-527 2007 Quest

DTC P0605 ECM

2. REPLACE ECM

- 1. Replace ECM.
- 2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to <u>BL-203, "NVIS(NISSAN Vehicle Immobilizer System-NATS)"</u>.
- 3. Perform EC-79, "VIN Registration".
- 4. Perform EC-80, "Accelerator Pedal Released Position Learning".
- 5. Perform EC-80, "Throttle Valve Closed Position Learning".
- 6. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

DTC P0643 SENSOR POWER SUPPLY

PFP:18919

On Board Diagnosis Logic

UBS00PBN

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0643 0643	Sensor power supply circuit short	ECM detects a voltage of power source for sensor is excessively low or high.	Harness or connectors (APP sensor 1 circuit is shorted.) (PSP sensor circuit is shorted.) (EVAP control system pressure sensor is shorted.) (Refrigerant pressure sensor circuit is shorted.) Accelerator pedal position sensor (APP sensor 1) Power steering pressure sensor EVAP control system pressure sensor Refrigerant pressure sensor

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

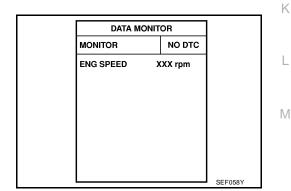
Engine operation condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

UBS00PB0

NOTE:

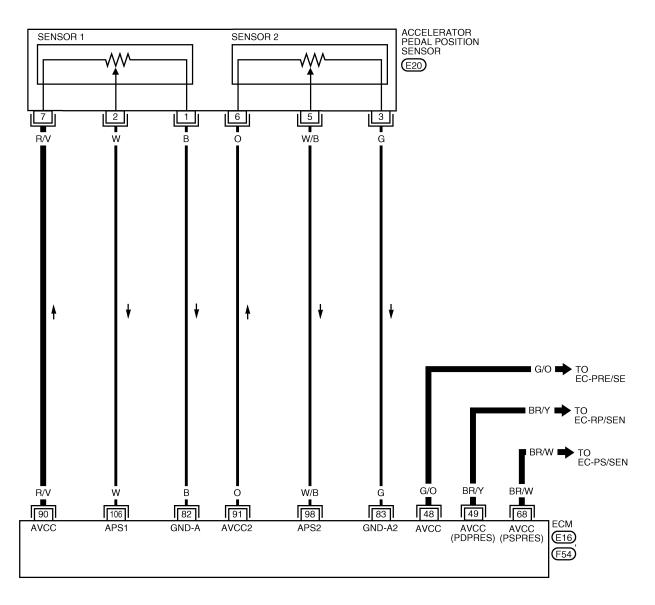

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

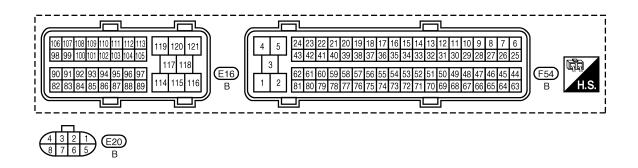
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-532, "Diagnostic Procedure".


WITH GST


Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram UBSOOPBR

EC-SEN/PW-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

BBWA2008E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

	$\overline{}$		·	+
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
48	G/O	EVAP control system pressure sensor power supply	[Ignition switch: ON]	Approximately 5V
49	BR/Y	Refrigerant pressure sensor power supply	[Ignition switch: ON]	Approximately 5V
68	BR/W	PSP sensor power supply	[Ignition switch: ON]	Approximately 5V
82	В	APP sensor 1 ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
83	G	APP sensor 2 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
90	R/V	APP sensor 1 power supply	[Ignition switch: ON]	Approximately 5V
91	0	APP sensor 2 power supply	[Ignition switch: ON]	Approximately 5V
98	W/B	Accelerator pedal position sensor 2	[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully released [Ignition switch: ON] • Engine stopped	0.25 - 0.5V 2.0 - 2.5V
100) NA	Accelerator pedal position sensor 1	 Accelerator pedal: Fully depressed [Ignition switch: ON] Engine stopped Accelerator pedal: Fully released 	0.5 - 1.0V
106	W		[Ignition switch: ON] • Engine stopped • Accelerator pedal: Fully depressed	4.2 - 4.8V

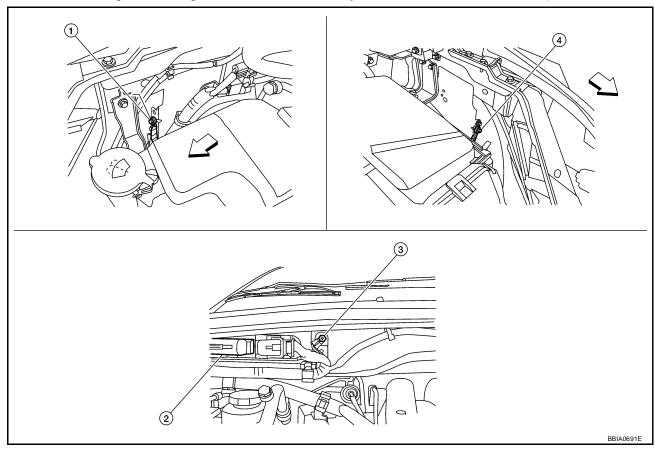
N

Α

EC

C

 D


Е

Diagnostic Procedure

UBS00PBQ

1. CHECK GROUND CONNECTIONS

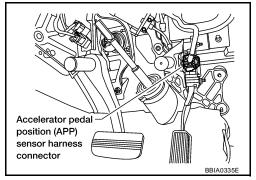
- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

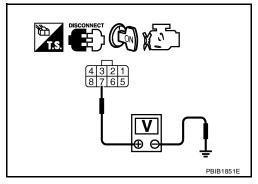

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK ACCELERATOR PEDAL POSITION SENSOR 1 POWER SUPPLY CIRCUIT-I

- 1. Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch ON.



3. Check voltage between APP sensor terminal 7 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 6. NG >> GO TO 3.

3. CHECK ACCELERATOR PEDAL POSITION SENSOR 1 POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between APP sensor terminal 7 and ECM terminal 90. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK SENSOR POWER SUPPLY CIRCUITS

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	ECM terminal Sensor terminal	
90	APP sensor terminal 7	EC-530
48	EVAP control system pressure sensor terminal 3	EC-474
49	Refrigerant pressure sensor terminal 1	EC-705
68	PSP sensor terminal 3	EC-517

OK or NG

OK >> GO TO 5.

NG >> Repair short to ground or short to power in harness or connectors.

D

Α

EC

Е

F

G

Н

K

L

M

5. CHECK COMPONENTS

Check the following.

- EVAP control system pressure sensor (Refer to <u>EC-478</u>, "Component Inspection".)
- Refrigerant pressure sensor (Refer to MTC-32, "TROUBLE DIAGNOSIS").
- Power steering pressure sensor (Refer to <u>EC-521, "Component Inspection"</u>.)

OK or NG

```
OK >> GO TO 8.
```

NG >> Replace malfunctioning component.

6. CHECK APP SENSOR

Refer to EC-623, "Component Inspection" .

OK or NG

```
OK >> GO TO 8.
```

NG >> GO TO 7.

7. REPLACE ACCELERATOR PEDAL ASSEMBLY

- 1. Replace accelerator pedal assembly.
- 2. Perform EC-80, "Accelerator Pedal Released Position Learning" .
- 3. Perform EC-80, "Throttle Valve Closed Position Learning".
- 4. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

8. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

DTC P0850 PNP SWITCH

PFP:23006

Component Description

UBS00PBR

When the shift position is P or N, park/neutral position (PNP) switch is turned ON.

ECM detects the position because the continuity of the line (the ON signal) exists.

The park/neutral position (PNP) switch assembly also indicates a transmission range switch to detect shift lever position.

CONSULT-II Reference Value in Data Monitor Mode

UBS00PBS

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW	Ignition switch: ON	Shift lever: P or N	ON
F/IN FOSI SW	• ignition switch. ON	Shift lever: Except above	OFF

On Board Diagnosis Logic

UBS00PBT

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P0850 0850	Park/neutral position switch	The signal of the park/neutral position (PNP) switch is not changed in the process of engine starting and driving.	 Harness or connectors [The park/neutral position (PNP) switch circuit is open or shorted.] Park/neutral position (PNP) switch

DTC Confirmation Procedure

UBS00PBU

CAUTION:

Always drive vehicle at a safe speed.

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(A) WITH CONSULT-II

- Turn ignition switch ON.
- Select "P/N POSI SW" in "DATA MONITOR" mode with CON-SULT-II. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known-good signal	
P or N position	ON	
Except above position	OFF	

If NG, go to EC-538, "Diagnostic Procedure".

If OK, go to following step.

- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED	1,200 - 6,375 rpm
COOLAN TEMP/S	More than 70°C (158°F)
B/FUEL SCHDL	2.0 - 31.8 msec
VHCL SPEED SE	More than 64 km/h (40 MPH)
Shift lever	Suitable position

If 1st trip DTC is detected, go to EC-538, "Diagnostic Procedure"

DATA MOI	NITOR	
MONITOR	NO DTC	
P/N POSI SW	ON	

DATA MON		
MONITOR	NO DTC	
ENG SPEED	XXX rpm	
COOLAN TEMP/S	xxx °c	
VHCL SPEED SE	XXX km/h	
P/N POSI SW	OFF	
B/FUEL SCHDL	XXX msec	SEF213Y

EC-535 Revision: March 2006 2007 Quest

EC

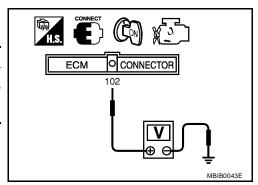
Α

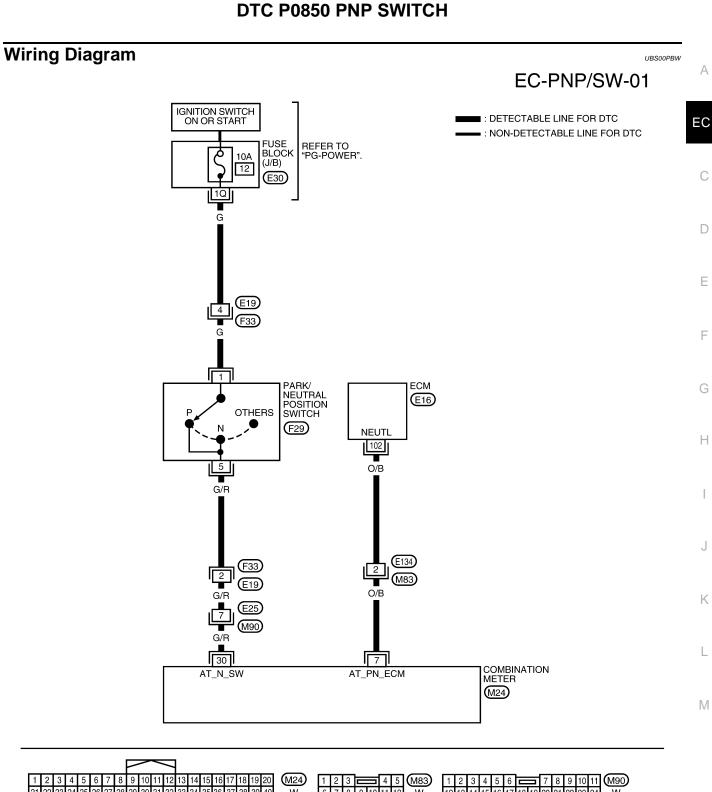
Е

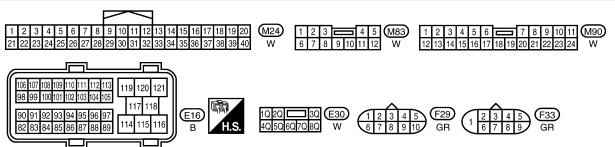
Н

Overall Function Check

IBSOOPR\


Use this procedure to check the overall function of the park/neutral position (PNP) switch circuit. During this check, a 1st trip DTC might not be confirmed.


WITH GST


- 1. Turn ignition switch ON.
- 2. Check voltage between ECM terminal 102 (PNP switch signal) and ground under the following conditions.

Condition (Gear position)	Voltage V (Known-good data)	
P or N position	Approx. 0	
Except above position	BATTERY VOLTAGE (11 - 14V)	

3. If NG, go to EC-538, "Diagnostic Procedure".

BBWA2532E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
102	O/B)/B PNP switch	[Ignition switch: ON] • Shift lever: P or N	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON] • Except above position	Approximately 0V

Diagnostic Procedure

UBSOOPRX

1. CHECK STARTING SYSTEM

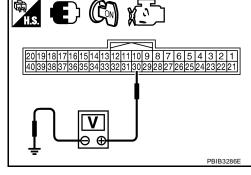
Turn ignition switch OFF, then turn it to START.

Does starter motor operate?

Yes or No

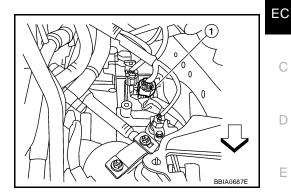
Yes >> GO TO 2.

No >> Refer to <u>SC-10, "STARTING SYSTEM"</u>.


2. CHECK PNP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

- 1. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- Check voltage between combination meter terminal 30 and ground with CONSULT-II or tester under the following conditions.

Condition (Shift position)	Voltage	
P or N position	BATTERY VOLTAGE (11 - 14V)	
Except above position	Approximately 0 V	


OK or NG

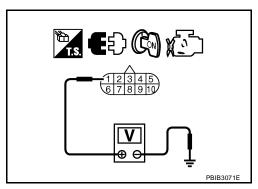
OK >> GO TO 9. NG >> GO TO 3.

3. CHECK PNP SWITCH POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect PNP switch harness connector (1).
- : Vehicle front
- 3. Turn ignition switch ON.

D

Е


Н

4. Check voltage between PNP switch terminal 1 and ground with CONSULT-II or tester. Refer to Wiring Diagram.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E19, F33
- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between PNP switch and fuse

>> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK PNP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-I

Check harness continuity between PNP switch terminal 5 and combination meter terminal 30. Refer to Wiring Diagram.

EC-539

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

>> GO TO 7. OK NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F33, E19
- Harness connectors E25, M90
- Harness for open or short between PNP switch and combination meter
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK PNP SWITCH

Refer to AT-91, "DTC P0705 PARK/NEUTRAL POSITION SWITCH".

OK or NG

OK >> GO TO 8.

NG >> Replace PNP switch.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

9. CHECK PNP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 102 and combination meter terminal 7. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 11. NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E134, M83
- Harness for open or short between ECM and combination meter
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

11. CHECK CONBINATION METER

Refer to DI-5, "COMBINATION METERS".

OK or NG

OK >> GO TO 12.

NG >> Replace combination meter

12. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

DTC P1148, P1168 CLOSED LOOP CONTROL

DTC P1148, P1168 CLOSED LOOP CONTROL

PFP:22690

UBS00PBY

On Board Diagnosis Logic

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1148 1148 (Bank 1)	Closed loop control function	The closed loop control function for bank 1 does not operate even when vehicle is driving in the specified condition.	Harness or connectors [The air fuel ratio (A/F) sensor 1 circuit is open or shorted.]
P1168 1168 (Bank 2)		The closed loop control function for bank 2 does not operate even when vehicle is driving in the specified condition.	 Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) sensor 1 heater

NOTE:

DTC P1148 or P1168 is displayed with another DTC for air fuel ratio (A/F) sensor 1. Perform the trouble diagnosis for the corresponding DTC.

F

 D

Е

G

Н

K

DTC P1211 TCS CONTROL UNIT

DTC P1211 TCS CONTROL UNIT

PFP:47850

Description

UBS00PBZ

The malfunction information related to TCS is transferred through the CAN communication line from "ABS actuator and electric unit (control unit)" to ECM.

Be sure to erase the malfunction information such as DTC not only for "ABS actuator and electric unit (control unit)" but also for ECM after TCS related repair.

On Board Diagnosis Logic

UBS00PC0

Freeze frame data is not stored in the ECM for this self-diagnosis. The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1211 1211	TCS control unit	ECM receives a malfunction information from "ABS actuator and electric unit (control unit)".	ABS actuator and electric unit (control unit) TCS related parts

DTC Confirmation Procedure

UBS00PC1

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(III) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 60 seconds.
- 4. If 1st trip DTC is detected, go to EC-542, "Diagnostic Procedure"

DATA MONITOR		
MONITOR NO DTC		
ENG SPEED	XXX rpm	

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

UBS00PC2

Go to BRC-10, "TROUBLE DIAGNOSIS" or BRC-55, "TROUBLE DIAGNOSIS".

DTC P1212 TCS COMMUNICATION LINE

DTC P1212 TCS COMMUNICATION LINE

PFP:47850

Description

UBS00PC3

NOTE:

- If DTC P1212 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-159, "DTC U1000, U1001 CAN COMMUNICATION LINE".
- If DTC P1212 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010. Refer to EC-162, "DTC U1010 CAN COMMUNICATION".

This CAN communication line is used to control the smooth engine operation during the TCS operation. Pulse signals are exchanged between ECM and "ABS actuator and electric unit (control unit)".

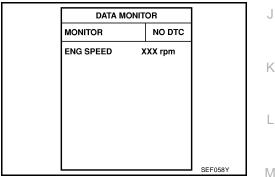
Be sure to erase the malfunction information such as DTC not only for "ABS actuator and electric unit (control unit)" but also for ECM after TCS related repair.

On Board Diagnosis Logic

UBS00PC4

The MIL will not light up for this self-diagnosis. Freeze frame data is not stored in the ECM for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1212 1212	TCS communication line	ECM can not receive the information from "ABS actuator and electric unit (control unit)" continuously.	 Harness or connectors (The CAN communication line is open or shorted.) ABS actuator and electric unit (control unit). Dead (Weak) battery


DTC Confirmation Procedure

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for at least 10 seconds.
- If 1st trip DTC is detected, go to EC-543, "Diagnostic Procedure"

® WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

LIBSOOPCE

Go to BRC-10, "TROUBLE DIAGNOSIS" or BRC-55, "TROUBLE DIAGNOSIS".

EC-543 Revision: March 2006 2007 Quest

EC

Α

Е

Н

DTC P1217 ENGINE OVER TEMPERATURE

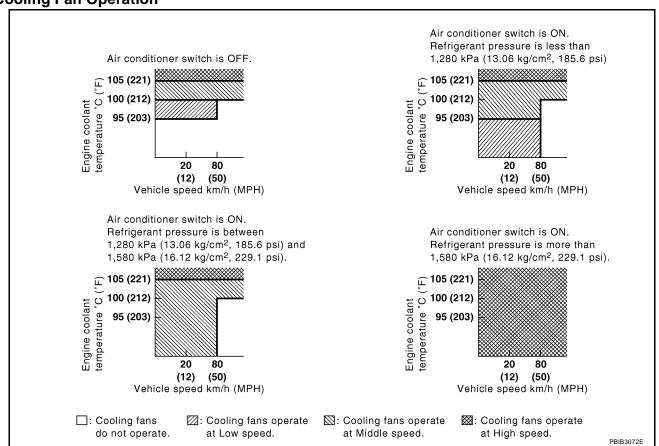
PFP:00000

UBS00PC7

Description SYSTEM DESCRIPTION

NOTE:

- If DTC P1217 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-159, "DTC U1000, U1001 CAN COMMUNICATION LINE".
- If DTC P1217 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010.
 Refer to EC-162, "DTC U1010 CAN COMMUNICATION".


Cooling Fan Control

Sensor	Input Signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*1			
Battery	Battery voltage*1			
Wheel sensor	Vehicle speed*2	Cooling fan	IPDM E/R (Cooling fan relay)	
Engine coolant temperature sensor	Engine coolant temperature		(Sooming fair folloy)	
Air conditioner switch	Air conditioner ON signal*2			
Refrigerant pressure sensor	Refrigerant pressure			

^{*1:} The ECM determines the start signal status by the signals of engine speed and battery voltage.

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, refrigerant pressure, and air conditioner ON signal. The control system has 4-step control [HIGH/MIDDLE/LOW/OFF].

Cooling Fan Operation

^{*2:} This signal is sent to ECM through CAN communication line.

Α

EC

 D

Е

UBS00PC8

Cooling Fan Relay Operation

The ECM controls cooling fan relays in the IPDM E/R through CAN communication line.

Cooling for speed	Cooling fan relay			
Cooling fan speed	1	2	3	
Stop (OFF)	OFF	OFF	OFF	
Low (LOW)	OFF	ON	OFF	
Middle (MID)	ON	OFF	OFF	
High (HI)	ON	OFF	ON	

COMPONENT DESCRIPTION

Cooling Fan Motor

The cooling fan operates at each speed when the current flows in the cooling fan motor as follows.

Cooling fan speed	Cooling fan motor terminals		
Cooling rail speed	(+)	(-)	
	1	3 and 4	
Middle (MID)	2	3 and 4	
Middle (MID)	1 and 2	3	
	1 and 2	4	
High (HI)	1 and 2	3 and 4	

The cooling fan operates at low (LOW) speed when cooling fan motors-1 and -2 are circuited in series under middle speed condition.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CC	SPECIFICATION	_	
	- Francisco Affan warming we idle	Air conditioner switch: OFF	OFF	_
AIR COND SIG	Engine: After warming up, idle the engine	Air conditioner switch: ON (Compressor operates.)	ON	_
	 Engine: After warming up, idle the engine Air conditioner switch: OFF 	Engine coolant temperature: 94°C (201°F) or less	OFF	_
COOLING FAN		Engine coolant temperature: Between 95°C (203°F) and 99°C (210°F)	LOW	_
COOLING FAN		Engine coolant temperature: Between 100°C (212°F) and 104°C (219°F)	MID	=
		Engine coolant temperature: 105°C (221°F) or more	н	_

On Board Diagnosis Logic

UBSOOPCO

If the cooling fan or another component in the cooling system malfunctions, engine coolant temperature will rise.

When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1217 1217	Engine over temperature (Overheat)	 Cooling fan does not operate properly (Overheat). Cooling fan system does not operate properly (Overheat). Engine coolant was not added to the system using the proper filling method. Engine coolant is not within the specified range. 	 Harness or connectors (The cooling fan circuit is open or shorted.) IPDM E/R (Cooling fan relay) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to EC-553, "Main 12 Causes of Overheating"

CAUTION:

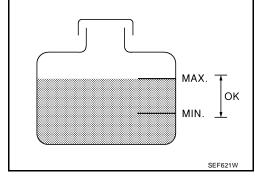
When a malfunction is indicated, be sure to replace the coolant. Refer to CO-10, "Changing Engine Coolant" . Also, replace the engine oil. Refer to LU-9, "Changing Engine Oil" .

- 1. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute. Be sure to use coolant with the proper mixture ratio. Refer to MA-10, "ANTI-FREEZE COOLANT MIXTURE RATIO".
- 2. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

Overall Function Check

IBS00PC

Use this procedure to check the overall function of the cooling fan. During this check, a DTC might not be confirmed.

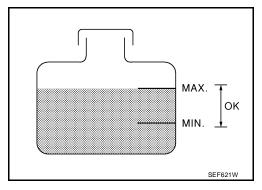

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

(P) WITH CONSULT-II

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to <u>EC-550</u>, "Diagnostic Procedure".
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-550, "Diagnostic Procedure".
- 3. Turn ignition switch ON.



- Perform "COOLING FAN" in "ACTIVE TEST" mode with CON-SULT-II.
- If the results are NG, go to <u>EC-550</u>, "<u>Diagnostic Procedure</u>".

ACTIVE TES		
COOLING FAN	OFF	
MONITOR		
COOLAN TEMP/S	XXX °C	
		SEF646X

WITH GST

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to <u>EC-550</u>, "Diagnostic Procedure".
- 2. Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to EC-550, <a href=""Diagnostic Procedure".
- 3. Perform IPDM E/R auto active test and check cooling fan motors operation, refer to <u>PG-23</u>, "Auto Active Test".
- 4. If NG, go to EC-550, "Diagnostic Procedure".

EC

Α

Г

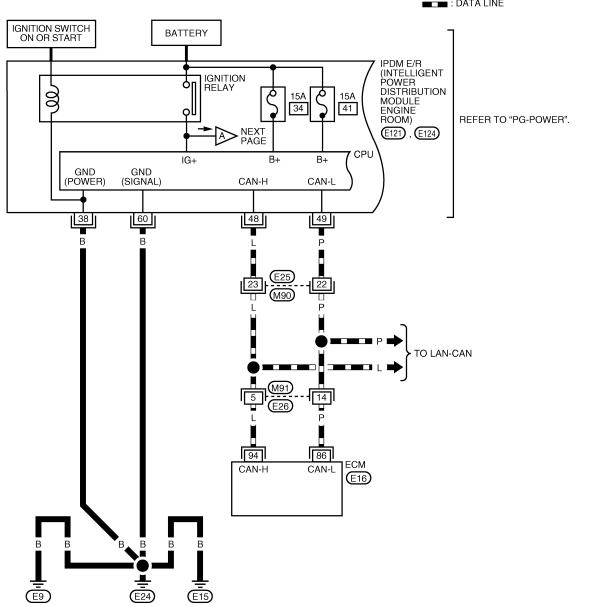
Е

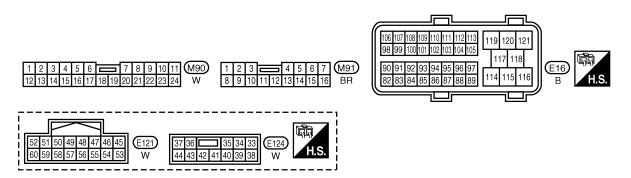
_

Н

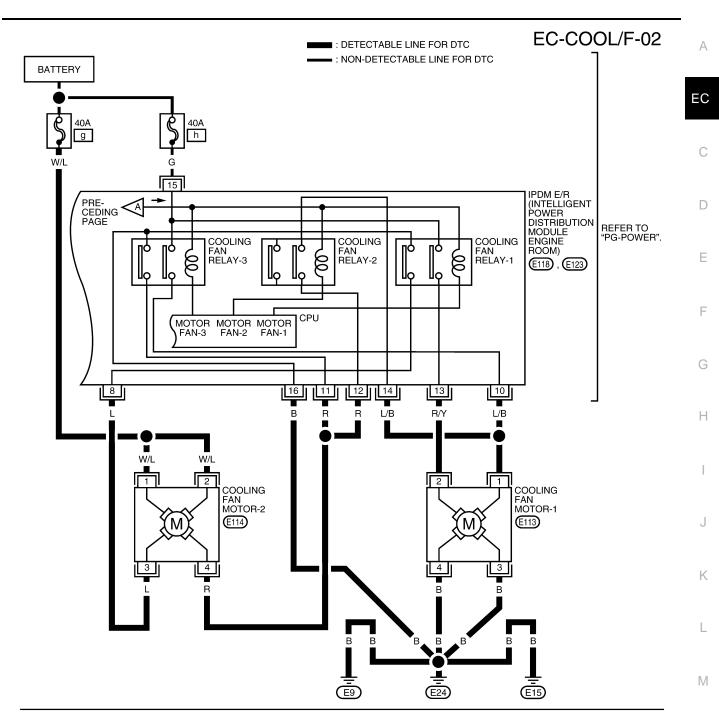
J

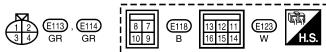
K


L


Wiring Diagram

EC-COOL/F-01


■: DETECTABLE LINE FOR DTC ■ : NON-DETECTABLE LINE FOR DTC


■■■: DATA LINE

BBWA2528E

BBWA2529E

Diagnostic Procedure

UBS00PCC

1. INSPECTION START

Do you have CONSULT-II?

Yes or No

Yes >> GO TO 2.

No >> GO TO 3.

2. CHECK COOLING FAN OPERATION

With CONSULT-II

- 1. Start engine and let it idle.
- 2. Select "COOLING FAN" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that cooling fans-1 and -2 operate at each speed (LOW/MID/HI).

OK or NG

OK >> GO TO 4.

NG >> Check cooling fan control circuit. (Go to <u>EC-551,</u> <u>"COOLING FAN CONTROL CIRCUIT"</u>.)

		1	
ACTIVE TES	ACTIVE TEST		
COOLING FAN	LOW		
MONITOR			
COOLAN TEMP/S	xxx °c		
	1	SEF784Z	

3. CHECK COOLING FAN OPERATION

Without CONSULT-II

- 1. Perform IPDM E/R auto active test and check cooling fan motors operation, refer to PG-23, "Auto Active Test".
- 2. Make sure that cooling fans-1 and -2 operate at each speed (Low/Middle/High).

OK or NG

OK >> GO TO 4.

NG >> Check cooling fan control circuit. (Go to EC-551, "COOLING FAN CONTROL CIRCUIT" .)

4. CHECK COOLING SYSTEM FOR LEAK

CO-9, "CHECKING COOLING SYSTEM FOR LEAKS"

OK or NG

OK >> GO TO 5.

NG >> Check the following for leak. Refer to CO-9, "CHECKING COOLING SYSTEM FOR LEAKS" .

- Hose
- Radiator
- Water pump

5. CHECK RADIATOR CAP

CO-9, "CHECKING RADIATOR CAP"

OK or NG

OK >> GO TO 6.

NG >> Replace radiator cap.

6. CHECK COMPONENT PARTS

Check the following.

Thermostat. Refer to CO-23, "THERMOSTAT AND THERMOSTAT HOUSING".

Engine coolant temperature sensor. Refer to EC-233, "Component Inspection".

OK or NG

OK >> GO TO 7.

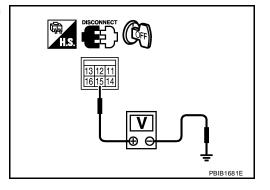
NG >> Replace engine coolant temperature sensor.

7. CHECK MAIN 12 CAUSES

If the cause cannot be isolated, go to EC-553, "Main 12 Causes of Overheating".

>> INSPECTION END

COOLING FAN CONTROL CIRCUIT


1. CHECK IPDM E/R POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect IPDM E/R harness connector E123.
- 3. Check voltage between IPDM E/R terminal 15 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- 40A fusible link
- Harness for open or short between IPDM E/R and battery

>> Repair open circuit or short to ground or short to power in harness or connectors.

EC-551

3. CHECK IPDM E/R GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect IPDM E/R harness connector E121, E123 and E124.
- 2. Check harness continuity between IPDM E/R terminal 16, 38, 60 and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

OK or NG

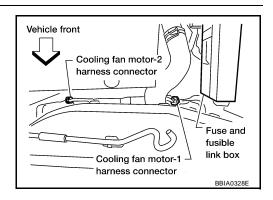
OK >> GO TO 4.

NG >> Repair open circuit or short to power in harness or connectors.

EC

Е

G

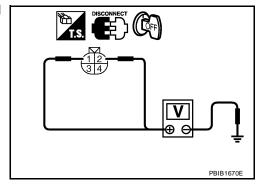

I

Н

K

4. CHECK COOLING FAN MOTOR-2 CIRCUIT FOR OPEN AND SHORT-I

Disconnect cooling fan motor-2 harness connector.



2. Check voltage between cooling fan motor-2 terminals 1, 2 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 5.

5. DETECT MALFUNCTIONING PART

Check the following.

- 40A fusible link
- Harness for open or short between cooling fan motor-2 and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK COOLING FAN MOTOR-2 CIRCUIT FOR OPEN AND SHORT-II

- 1. Disconnect IPDM E/R harness connector E118.
- Check harness continuity between the following terminals. Cooling fan motor-2 terminal 3 and IPDM E/R terminal 8, Cooling fan motor-2 terminal 4 and IPDM E/R terminals 11, 12. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

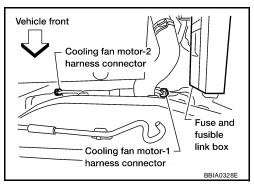
NG >> Repair open circuit or short to ground or short to power in harness or connectors.

$7.\,$ CHECK COOLING FAN MOTOR-1 CIRCUIT FOR OPEN AND SHORT-I

- 1. Disconnect cooling fan motor-1 harness connector.
- 2. Check harness continuity between cooling fan motor-1 terminals 3, 4 and ground.

Refer to Wiring diagram.

Continuity should exist.


3. Also check harness for short to power.

OK or NG

OK >> GO TO 8.

NG

>> Repair open circuit or short to power in harness or connectors.

$8.\,$ check cooling fan motor-1 circuit for open and short-ii

1. Check harness continuity between the following terminals. Cooling fan motor-1 terminal 1 and IPDM E/R terminal 10, 14, Cooling fan motor-1 terminal 2 and IPDM E/R terminal 13. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK COOLING FAN MOTORS

Refer to EC-554, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> Replace cooling fan motors.

10. CHECK INTERMITTENT INCIDENT

Perform EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace IPDM E/R. Refer to PG-18, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-<u>ULE ENGINE ROOM)"</u>.

NG >> Repair or replace harness or connector.

Main 12 Causes of Overheating

UBS00PCD

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	Blocked radiatorBlocked condenser	Visual	No blocking	_
		Blocked radiator grilleBlocked bumper			
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	MA-10
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	<u>CO-9</u>
	4	Radiator cap	Pressure tester	59 - 98 kPa (0.6 - 1.0 kg/cm ² , 9 - 14 psi) (Limit)	<u>CO-15</u>
ON* ²	5	Coolant leaks	Visual	No leaks	<u>CO-9</u>

EC-553 Revision: March 2006 2007 Quest

EC

Е

Н

Engine	Step	Inspection item	Equipment	Standard	Reference page
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	<u>CO-23</u>
ON* ¹	7	Cooling fan	CONSULT-II	Operating	See trouble diagnosis for DTC P1217 (EC-544).
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_
ON* ³	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	<u>CO-9</u>
OFF* ⁴	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	<u>CO-9</u>
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	<u>EM-96</u>
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	EM-118

^{*1:} Turn the ignition switch ON.

For more information, refer to CO-6, "OVERHEATING CAUSE ANALYSIS".

Component Inspection COOLING FAN MOTORS-1 AND -2

UBS00PCE

- 1. Disconnect cooling fan motor harness connectors.
- 2. Supply cooling fan motor terminals with battery voltage and check operation.

Cooling fan speed	Cooling fan motor terminals		
Cooling rail speed	(+)	(-)	
	1	3 and 4	
Middle (MID)	2	3 and 4	
ivildate (iviib)	1 and 2	3	
	1 and 2	4	
High (HI)	1 and 2	3 and 4	

Cooling fan motor should operate.

If NG, replace cooling fan motor.

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

DTC P1225 TP SENSOR

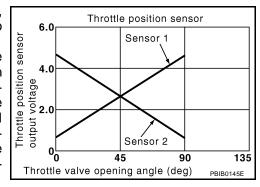
DTC P1225 TP SENSOR

PFP:16119

Component Description

UBS00PCF

Α


EC

Е

M

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS00PCG

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1225 1225	Closed throttle position learning performance	Closed throttle position learning value is excessively low.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

UBS00PCH

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON.
- 5. If 1st trip DTC is detected, go to EC-556, "Diagnostic Procedure"

DATA M	DATA MONITOR	
MONITOR	MONITOR NO DTC	
ENG SPEED	XXX rpm	
		SEF058Y

WITH GST

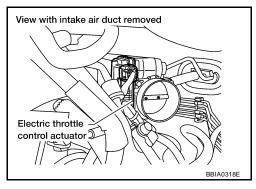
Follow the procedure "WITH CONSULT-II" above.

DTC P1225 TP SENSOR

Diagnostic Procedure

UBS00PCI

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- 1. Turn ignition switch OFF.
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-80, "Throttle Valve Closed Position Learning".
- 3. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

UBS00PCJ

Refer to EM-18, "INTAKE MANIFOLD COLLECTOR".

DTC P1226 TP SENSOR

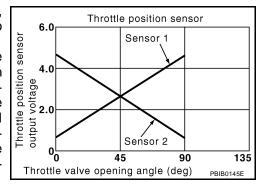
DTC P1226 TP SENSOR

PFP:16119

Component Description

UBS00PCK

Α


EC

Е

M

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS00PCL

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1226 1226	Closed throttle position learning performance	Closed throttle position learning is not performed successfully, repeatedly.	Electric throttle control actuator (TP sensor 1 and 2)

DTC Confirmation Procedure

UBS00PCM

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(III) WITH CONSULT-II

- 1. Turn ignition switch ON.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Turn ignition switch OFF and wait at least 10 seconds.
- 4. Turn ignition switch ON.
- Repeat step 3 to 4 for 32 times.
- 6. If 1st trip DTC is detected, go to EC-558, "Diagnostic Procedure"

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

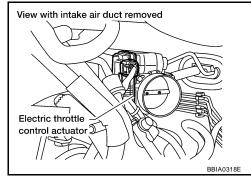
Revision: March 2006 EC-557 2007 Quest

DTC P1226 TP SENSOR

Diagnostic Procedure

UBS00PCN

1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- 1. Turn ignition switch OFF.
- 2. Remove the intake air duct.
- 3. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

NG

>> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-80, "Throttle Valve Closed Position Learning".
- 3. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

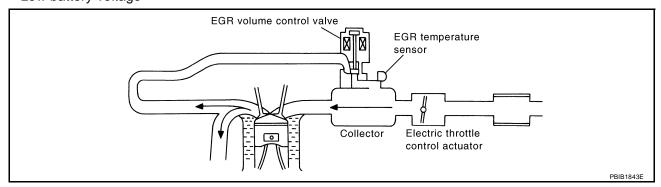
UBS00PCO

Refer to EM-18, "INTAKE MANIFOLD COLLECTOR".

DTC P1402 EGR FUNCTION

PFP:14710

DescriptionSYSTEM DESCRIPTION


UBS00PCP

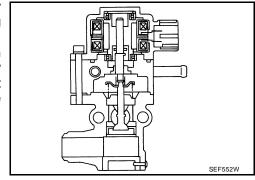
Sensor	Input Signal to ECM	ECM function	Actuator
Camshaft position sensor (PHASE)	Engine speed*2		
Crankshaft position sensor (POS)	Piston position		
Mass air flow sensor	Amount of intake air		
Engine coolant temperature sensor	Engine coolant temperature		
Throttle position sensor	Throttle position		
Accelerator pedal position sensor	Accelerator pedal position		
Park/neutral position (PNP) switch	Gear position	EGR volume	EGR volume control valve
Battery	Battery voltage*2	control	Zort volume control valve
Air conditioner switch	Air conditioner operation *1		
Power steering pressure sensor	Power steering operation		
Electrical load	Electrical load signal *1		
Wheel sensor	Vehicle speed *1		
ТСМ	Gear position, shifting signal *1		

^{*1:} This signal is sent to the ECM through CAN communication line.

This system controls flow rate of EGR led from exhaust manifold to intake manifold. The opening of the EGR by-pass passage in the EGR volume control valve changes to control the flow rate. A built-in step motor moves the valve in steps corresponding to the ECM output pulses. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. The EGR volume control valve remains closed under the following conditions.

- Engine stopped
- Engine starting
- Engine idling
- Low engine coolant temperature
- Excessively high engine coolant temperature
- High engine speed
- Wide open throttle
- Low battery voltage

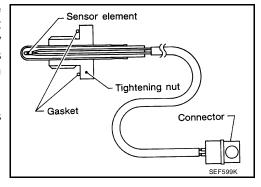
Н


Е

Revision: March 2006 EC-559 2007 Quest

^{*2:} ECM determines the start signal status by the signals of engine speed and battery voltage.

COMPONENT DESCRIPTION EGR Volume Control Valve


The EGR volume control valve uses a step motor to control the flow rate of EGR from exhaust manifold. This motor has four winding phases. It operates according to the output pulse signal of the ECM. Two windings are turned ON and OFF in sequence. Each time an ON pulse is issued, the valve opens or closes, changing the flow rate. When no change in the flow rate is needed, the ECM does not issue the pulse signal. A certain voltage signal is issued so that the valve remains at that particular opening.

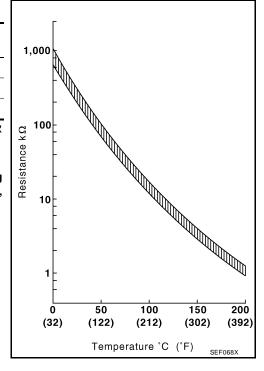
EGR Temperature Sensor

The EGR temperature sensor detects temperature changes in the EGR passageway. When the EGR volume control valve opens, hot exhaust gases flow, and the temperature in the passageway changes. The EGR temperature sensor is a thermistor that modifies a voltage signal sent from the ECM. This modified signal then returns to the ECM as an input signal. As the temperature increases, EGR temperature sensor resistance decreases.

This sensor is not directly used to control the engine system. It is used only for the on board diagnosis.

<Reference data>

EGR temperature °C (°F)	Voltage* V	Resistance $M\Omega$
0 (32)	4.59	0.73 - 0.88
50 (122)	2.32	0.074 - 0.082
100 (212)	0.62	0.011 - 0.014


^{*:} This data is reference value and is measured between ECM terminal 54 (EGR temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may damage the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

When EGR system is operating.

Voltage: 0 - 1.5V

CONSULT-II Reference Value in Data Monitor Mode

UBS00PCQ

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
EGR TEMP SEN	Engine: After warming up		Less than 4.5V
	Engine: After warming up	Idle	0 step
EGR VOL CON/V	Air conditioner switch: OFFShift lever: P or NNo load	Revving engine up to 3,000 rpm quickly	10 - 55 step

EC

Е

Α

On Board Diagnosis Logic

UBS00PCR

If the EGR temperature sensor detects EGR flow under the condition that does not call for EGR, a high-flow malfunction is diagnosed.

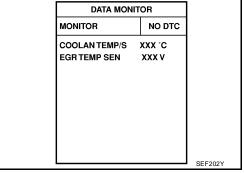
DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1402 1402	EGR function (Open)	EGR flow is detected under the condition that does not call for EGR.	 Harness or connectors (The EGR volume control valve circuit is open or shorted.) EGR volume control valve leaking or stuck open EGR temperature sensor

DTC Confirmation Procedure

UBS00PCS

NOTE:

- Diagnosis for this DTC will occur when engine coolant temperature is below 50 to 60°C (122 to 140°F).
 Therefore, it will be better to turn ignition switch ON (start engine) at the engine coolant temperature below 30°C (86°F) when starting DTC confirmation procedure.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

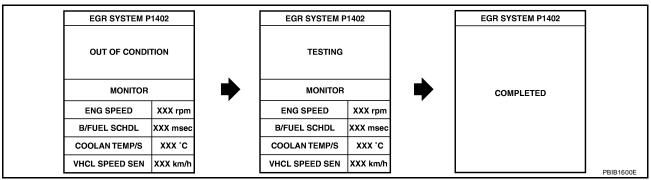

TESTING CONDITION:

- Always perform the test at a temperature above −10°C (14°F).
- Engine coolant temperature and EGR temperature must be verified in "DATA MONITOR" mode with CONSULT-II before starting DTC WORK SUPPORT test. If it is out of range below, the test cannot be conducted.

COOLAN TEMP/S : -10 to 50°C (14 to 122°F)*

EGR TEMP SEN : Less than 4.8V

If the values are out of the ranges indicated above, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to reduce the engine coolant temperature or EGR temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.

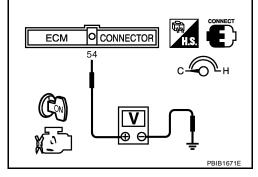

^{*:} Although CONSULT-II screen displays "-10 to 40°C (14 to 104°F)" as a range of engine coolant temperature, ignore it.

WITH CONSULT-II

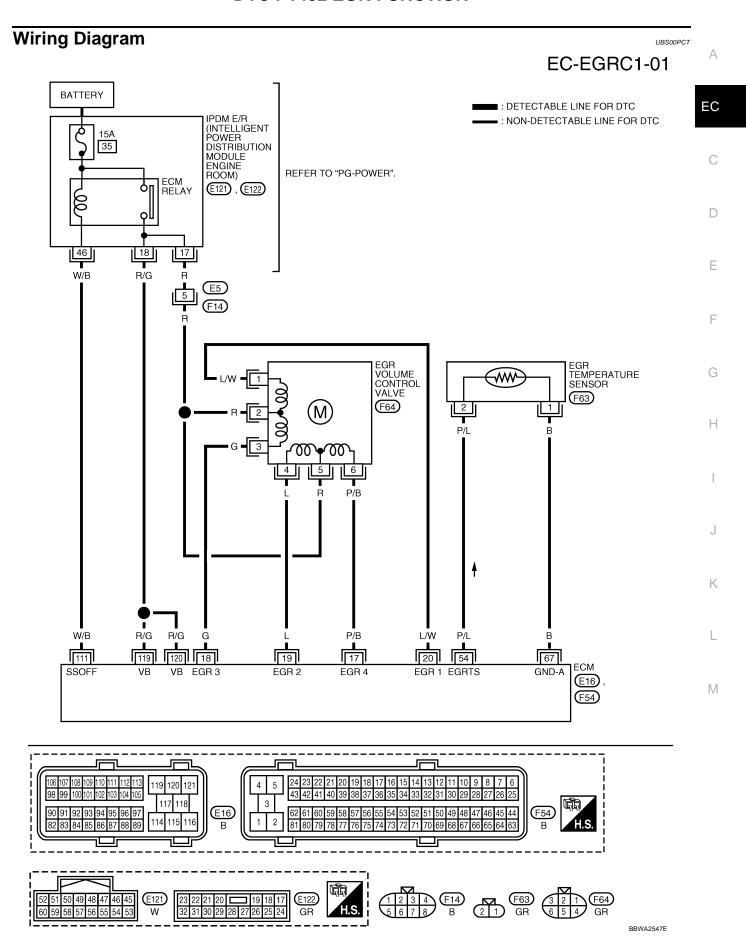
- 1. Turn ignition switch OFF, and wait at least 10 seconds, and then turn ON.
- 2. Select "EGR SYSTEM P1402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START".

K L M

4. Start engine and let it idle until "TESTING" on CONSULT-II screen is turned to "COMPLETED". (It will take 80 seconds or more.)



If "TESTING" is not displayed after 5 minutes, turn ignition OFF and cool the engine coolant temperature to the range of -10 to 50° C (14 to 122° F). Retry from step 1.


5. Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to EC-564, "Diagnostic Procedure".

WITH GST

- 1. Turn ignition switch ON and select Service \$01 with GST.
- 2. Check that engine coolant temperature is within the range of -10 to 50°C (14 to 122°F).
- 3. Check that voltage between ECM terminal 54 (EGR temperature sensor signal) and ground is less than 4.8V.
- 4. Start engine and let it idle for at least 80 seconds.
- 5. Stop engine.
- Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 7. Select Service \$07 with GST.
- 8. If 1st trip DTC is detected, go to EC-564, "Diagnostic Procedure"

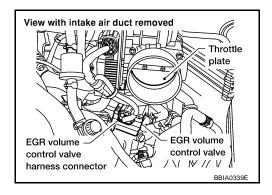
Revision: March 2006 EC-562 2007 Quest

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
17 18 19 20	P/B G L L/W	EGR volume control valve	[Engine is running] • Idle speed	0.1 - 14V
			[Ignition switch: ON]	Less than 4.5V
54	P/L	EGR temperature sensor	[Engine is running]Warm-up conditionEGR system: Operating	0 - 1.5V
67	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
111		ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
			[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

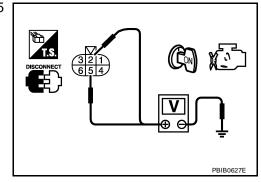

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

UBS00PCU

1. CHECK EGR VOLUME CONTROL VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect EGR volume control valve harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between EGR volume control valve terminals 2, 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART Check the following. Harness connectors E5, F14

- Harness for open or short between EGR volume control valve and IPDM E/R
- Harness for open or short between EGR volume control valve and ECM
 - >> Repair harness or connectors.

$3.\,$ check egr volume control valve output signal circuit for open and short

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals and EGR volume control valve terminals as follows. Refer to Wiring Diagram.

ECM terminal	EGR volume control valve
17	6
18	3
19	4
20	1

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK EGR VOLUME CONTROL VALVE

Refer to EC-409, "Component Inspection".

OK or NG

OK >> GO TO 5.

NG >> Replace EGR volume control valve.

5. CHECK EGR TEMPERATURE SENSOR

Refer to EC-418, "Component Inspection".

OK or NG

OK >> GO TO 6.

NG >> Replace EGR temperature sensor.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

EC

Е

Н

M

2007 Quest

DTC P1421 COLD START CONTROL

DTC P1421 COLD START CONTROL

PFP:23710

Description

UBS00QAI

ECM controls ignition timing and engine idle speed when engine is started with prewarming up condition. This control promotes the activation of three way catalyst by heating the catalyst and reduces emissions.

On Board Diagnosis Logic

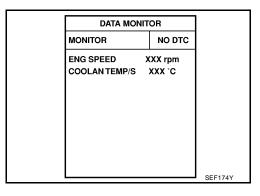
UBS00QAJ

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1421 1421	Cold start emission reduction strategy monitoring	ECM does not control ignition timing and engine idle speed properly when engine is started with prewarming up condition.	Lack of intake air volumeFuel injection systemECM

DTC Confirmation Procedure

UBSOOQAK

NOTE:


- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- If DTC P1421 is displayed with other DTC, first perform the trouble diagnosis for other DTC.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

(P) WITH CONSULT-II

- Turn ignition switch OFF and wait at least 10 seconds.
- Turn ignition switch ON.
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- Check that the "COOLAN TEMP/S" indication is between 4°C (39°F) and 36°C (97°F).
 - If "COOLAN TEMP/S" indication is within the specified value, go to the following step.
 - If "COOLANT TEMP/S" indication is out of the specified value, cool engine down or warm engine up and go to step 1.
- 5. Start engine and let it idle for 5 minutes.
- If 1st trip DTC is detected, go to <u>EC-566, "Diagnostic Procedure"</u>

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Diagnostic Procedure

UBS00QAL

1. PERFORM IDLE AIR VOLUME LEARNING

Perform EC-80, "Idle Air Volume Learning".

Is Idle Air Volume Learning carried out successfully?

Yes or No

Yes >> GO TO 2.

No >> Follow the instruction of Idle Air Volume Learning.

2. CHECK INTAKE SYSTEM

Check for the cause of intake air volume lacking. Refer to the following.

- Crushed intake air passage
- Intake air passage clogging

OK or NG

OK >> GO TO 3.

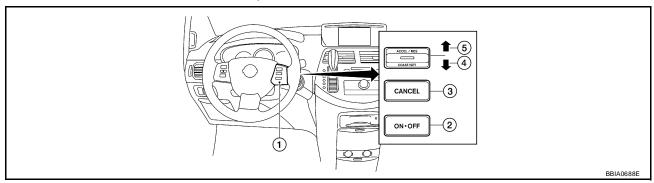
NG >> Repair or replace malfunctioning part

DTC P1421 COLD START CONTROL

3. CHECK FUEL INJECTION SYSTEM FUNCTION Perform EC-322, "DTC Confirmation Procedure" in DTC P0171, P0174 FUEL INJECTION SYSTEM FUNC-TION. EC OK or NG >> GO TO 4. OK NG >> Go to EC-328, "Diagnostic Procedure". 4. PERFORM DTC CONFIRMATION PROCEDURE (P) With CONSULT-II 1. Turn ignition switch ON. 2. Select "SELF DIAG RESULTS" mode with CONSULT-II. 3. Touch "ERASE". Е 4. Perform DTC Confirmation Procedure. See EC-566, "DTC Confirmation Procedure". 5. Is the 1st trip DTC P1421 displayed again? **With GST** 1. Turn ignition switch ON. Select Service \$04 with GST. 3. Perform DTC Confirmation Procedure. See EC-566, "DTC Confirmation Procedure". Н 4. Is the 1st trip DTC P1421 displayed again? Yes or No Yes >> GO TO 5. >> INSPECTION END No 5. REPLACE ECM 1. Replace ECM. 2. Perform initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs. Refer to BL-205, "ECM Re-communicating Function". 3. Perform EC-79, "VIN Registration". 4. Perform EC-80, "Accelerator Pedal Released Position Learning". 5. Perform EC-80, "Throttle Valve Closed Position Learning". 6. Perform EC-80, "Idle Air Volume Learning".

M

>> INSPECTION END


DTC P1564 ASCD STEERING SWITCH

PFP:25551

Component Description

UBS00PCV

ASCD steering switch has variant values of electrical resistance for each button. ECM reads voltage variation of switch, and determines which button is operated.

- 1. ASCD steering switch
- 2. MAIN switch

3. CANCEL switch

- 4 SET/COAST switch
- 5. RESUME/ACCELERATE switch

Refer to EC-29, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBS00PCW

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
MAIN OVA	Ignition switch: ON	MAIN switch: Pressed	ON
MAIN SW		MAIN switch: Released	OFF
CANCEL SW	Ignition switch: ON	CANCEL switch: Pressed	ON
		CANCEL switch: Released	OFF
RESUME/ACC SW	Ignition switch: ON	RESUME/ACCELERATE switch: Pressed	ON
		RESUME/ACCELERATE switch: Released	OFF
SET SW	Ignition switch: ON	SET/COAST switch: Pressed	ON
		SET/COAST switch: Released	OFF

On Board Diagnosis Logic

UBS00PCX

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

If DTC P1564 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605. Refer to EC-526, "DTC P0605 ECM".

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1564 1564	ASCD steering switch	 An excessively high voltage signal from the ASCD steering switch is sent to ECM. ECM detects that input signal from the ASCD steering switch is out of the specified range. ECM detects that the ASCD steering switch is stuck ON. 	 Harness or connectors (The switch circuit is open or shorted.) ASCD steering switch ECM

DTC Confirmation Procedure

UBS00PCY

NOTE

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(P) WITH CONSULT-II

- Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 10 seconds.
- Press MAIN switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 5. Press CANCEL switch for at least 10 seconds, then release it and wait at least 10 seconds.
- Press RESUME/ACCELERATE switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 7. Press SET/COAST switch for at least 10 seconds, then release it and wait at least 10 seconds.
- 8. If DTC is detected, go to EC-572, "Diagnostic Procedure".

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm SEF058Y

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

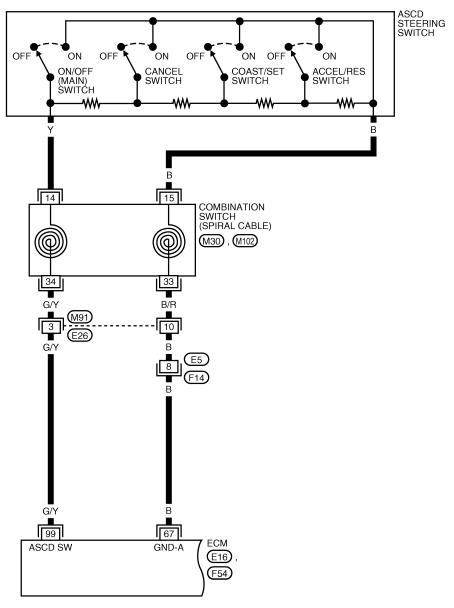
(

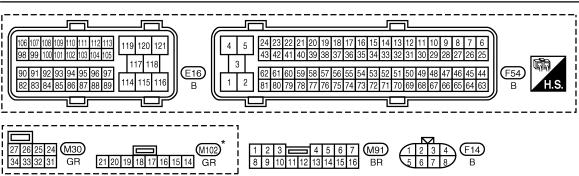
Е

F

G

Н


K


L

Wiring Diagram

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

EC-ASC/SW-01

^{*:} THIS CONNECTOR IS NOT SHOWN IN "HARNESS LAYOUT" OF PG SECTION.

BBWA2530E

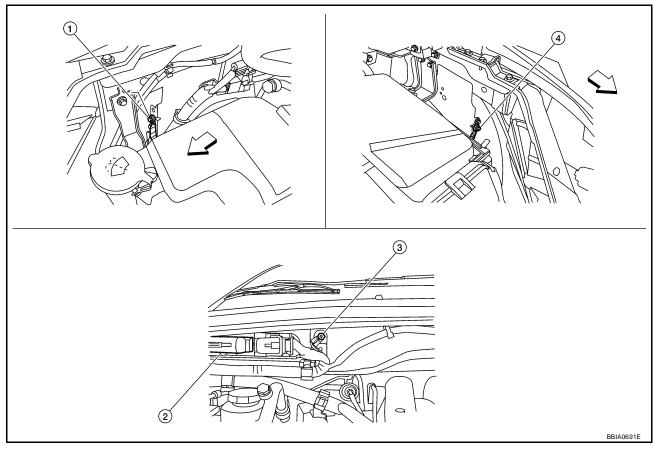
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
67	В	Sensor ground	[Engine is running] • Warm-up condition • Idle speed	Approximately 0V
99 G/Y	ASCD steering switch	[Ignition switch: ON] • ASCD steering switch: OFF	Approximately 4V	
		[Ignition switch: ON] • MAIN switch: Pressed	Approximately 0V	
		[Ignition switch: ON] • CANCEL switch: Pressed	Approximately 1V	
			[Ignition switch: ON] • RESUME/ACCELERATE switch: Pressed	Approximately 3V
		[Ignition switch: ON] • SET/COAST switch: Pressed	Approximately 2V	

EC D Е Н


Α

Diagnostic Procedure

UBS00PD0

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection" .

- 1. Body ground E24
- 2. ECM

3. Body ground E9

4. Body ground E15

OK or NG

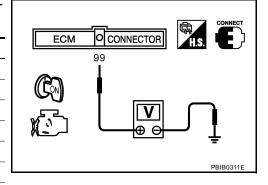
OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK ASCD STEERING SWITCH CIRCUIT

(II) With CONSULT-II

- 1. Turn ignition switch ON.
- Select "MAIN SW", "CANCEL SW", "RESUME/ACC SW" and "SET/COAST SW" in "DATA MONITOR" mode with CONSULT-II.
- 3. Check each item indication under the following conditions.


Switch	Monitor item	Condition	Indication
MAIN switch	MAIN SW	Pressed	ON
WAIN SWILCH	WAIN SW	Released OFF	
CANCEL switch	CANCEL SW	Pressed	ON
CANCEL SWILLI	CANCEL SW	Released OFF	
RESUME/ACCEL-	RESUME/ACC SW	Pressed ON Released OFF	
ERATE switch	RESONIE/ACC SW		
SET/COAST switch	SET SW	Pressed	ON
SET/COAST SWILLI	SLI SVV	Released	OFF

DATA MONI		
MONITOR	NO DTC	
MAIN SW	OFF	
CANCEL SW	OFF	
RESUME/ACC SW	OFF	
SET SW	OFF	
		SEC006I

W Without CONSULT-II

- Turn ignition switch ON.
- Check voltage between ECM terminal 99 and ground with pressing each button.

Switch	Condition	Voltage [V]
MAIN switch	Pressed	Approx. 0
WAIN SWILCH	Released	Approx. 4
CANCEL switch	Pressed	Approx. 1
CANCLE SWILCH	Released	Approx. 4
RESUME/ACCELERATE	Pressed	Approx. 3
switch	Released	Approx. 4
SET/COAST switch	Pressed	Approx. 2
	Released	Approx. 4

OK or NG

OK >> GO TO 8. NG >> GO TO 3.

3. CHECK ASCD STEERING SWITCH GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect combination switch harness connector M102.
- 3. Disconnect ECM harness connector.
- Check harness continuity between combination switch terminal 15 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

Revision: March 2006 EC-573 2007 Quest

EC

С

D

Е

G

Н

-

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness connectors E26, M91
- Combination switch (spiral cable)
- Harness for open and short between ECM and combination switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK ASCD STEERING SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 99 and combination switch terminal 14. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

```
OK >> GO TO 7.
NG >> GO TO 6.
```

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E26, M91
- Combination switch (spiral cable)
- Harness for open and short between ECM and combination switch
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK ASCD STEERING SWITCH

Refer to EC-575, "Component Inspection".

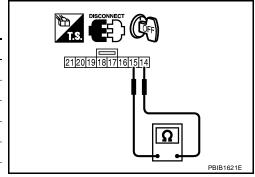
OK or NG

OK >> GO TO 8.

NG >> Replace ASCD steering switch.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection ASCD STEERING SWITCH

UBS00PD1

- 1. Disconnect combination switch (spiral cable).
- 2. Check continuity between combination switch (spiral cable) terminals 14 and 15 with pushing each switch.

Switch	Condition	Resistance $[\Omega]$
MAIN switch	Pressed	Approx. 0
WAIN SWILCTI	Released	Approx. 4,000
CANCEL switch	Pressed	Approx. 250
CANCLE SWILCH	Released	Approx. 4,000
RESUME/ACCELERATE	Pressed	Approx. 1,480
switch	Released	Approx. 4,000
SET/COAST switch	Pressed	Approx. 660
SE1/OOAS1 SWILCH	Released	Approx. 4,000

EC

Α

С

D

Ε

F

Н

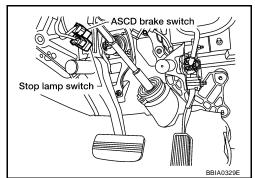
.

L

DTC P1572 ASCD BRAKE SWITCH

DTC P1572 ASCD BRAKE SWITCH

PFP:25320


UBS00PD2

Component Description

When the brake pedal is depressed, ASCD brake switch is turned OFF and stop lamp switch is turned ON. ECM detects the state of

Refer to <u>EC-29</u>, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

the brake pedal by this input of two kinds (ON/OFF signal).

CONSULT-II Reference Value in Data Monitor Mode

UBS00PD3

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1 (ASSELLA IIII) • Ignition switch: ON		Brake pedal: Fully released	ON
(ASCD brake switch)	• Ighillon switch. ON	Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)	• Igrillion switch. ON	Brake pedal: Slightly depressed	ON

On Board Diagnosis Logic

UBS00PD4

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1572 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605.
 Refer to <u>EC-526</u>, "<u>DTC P0605 ECM"</u>.
- This self-diagnosis has the one trip detection logic. When malfunction A is detected, DTC is not stored in ECM memory. And in that case, 1st trip DTC and 1st trip freeze frame data are displayed.
 1st trip DTC is erased when ignition switch OFF. And even when malfunction A is detected in two consecutive trips, DTC is not stored in ECM memory.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition		Possible Cause
		A)	When the vehicle speed is above 30 km/h (19 MPH), ON signals from the stop lamp switch and the ASCD brake switch are sent to the ECM at the same time.	 Harness or connectors (The stop lamp switch circuit is shorted. Harness or connectors (The ASCD brake switch circuit is
P1572 1572	ASCD brake switch	В)	ASCD brake switch signal is not sent to ECM for extremely long time while the vehicle is driving	 shorted.) Stop lamp switch ASCD brake switch Incorrect stop lamp switch installation Incorrect ASCD brake switch installation ECM

DTC Confirmation Procedure

UBS00PD5

Α

EC

D

Е

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.
- Procedure for malfunction B is not described here. It takes extremely long time to complete procedure for malfunction B. By performing procedure for malfunction A, the incident that causes malfunction B can be detected.

an be

(P) WITH CONSULT-II

TESTING CONDITION:

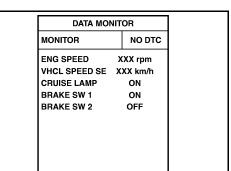
Steps 4 and 5 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

- 1. Start engine (TCS switch or VDC switch OFF).
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Press MAIN switch and make sure that CRUISE indictor lights up.
- 4. Drive the vehicle for at least 5 consecutive seconds under the following condition.

VHCL SPEED SE	More than 30 km/h (19 MPH)
Shift lever	Suitable position

If 1st trip DTC is detected, go to EC-579, "Diagnostic Procedure"

If 1st trip DTC is not detected, go to the following step.


5. Drive the vehicle for at least 5 consecutive seconds under the following condition.

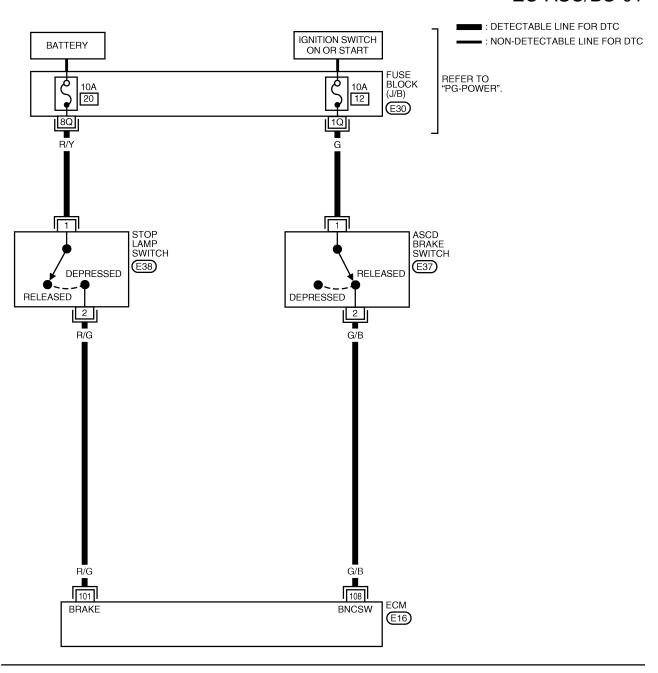
VHCL SPEED SE	More than 30 km/h (19 MPH)
Shift lever	Suitable position
Driving location	Depress the brake pedal for more than 5 seconds so as not to come off from the above-mentioned vehicle speed.

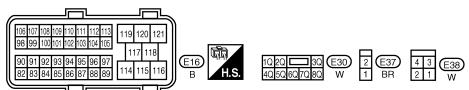
6. If 1st trip DTC is detected, go to EC-579, "Diagnostic Procedure"

WITH GST

Follow the procedure "WITH CONSULT-II" above.

PBIB2386E


J


Н

Κ

Wiring Diagram

EC-ASC/BS-01

BBWA2531E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101	R/G	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
101 R/G Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)		
108	G/B	ASCD brake switch	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)
100	G/B	ASOD DIANE SWILLII	[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V

Diagnostic Procedure

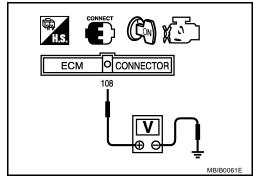
1. CHECK OVERALL FUNCTION-I

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-II.
- Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Brake pedal: Slightly depressed	OFF
Brake pedal: Fully released	ON

DATA MONITOR		
MONITOR	NO DTC	
BRAKE SW1	OFF	
		SEC011E


⋈ Without CONSULT-II

- Turn ignition switch ON.
- Check voltage between ECM terminal 108 and ground under the following conditions.

CONDITION	VOLTAGE	
Brake pedal: Slightly depressed	Approximately 0V	
Brake pedal: Fully released	Battery voltage	

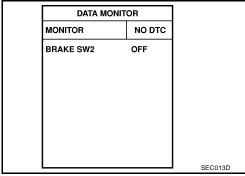
OK or NG

OK >> GO TO 2. NG >> GO TO 3.

Α

EC

Е

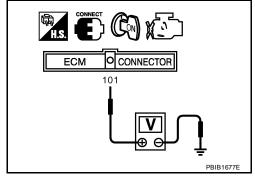

UBS00PD7

2. CHECK OVERALL FUNCTION-II

(II) With CONSULT-II

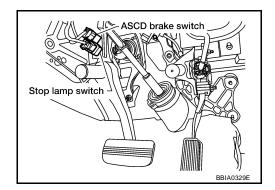
Check "BRAKE SW2" indication in "DATA MONITOR" mode.

CONDITION	INDICATION
Brake pedal: Fully released	OFF
Brake pedal: Slightly depressed	ON


⋈ Without CONSULT-II

Check voltage between ECM terminal 101 and ground under the following conditions.

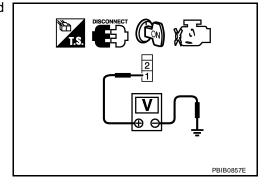
CONDITION	VOLTAGE
Brake pedal: Fully released	Approximately 0V
Brake pedal: Slightly depressed	Battery voltage


OK or NG

OK >> GO TO 11. NG >> GO TO 7.

3. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

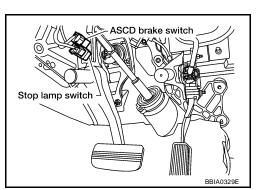
OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ASCD BRAKE SWITCH

Refer to EC-582, "Component Inspection"

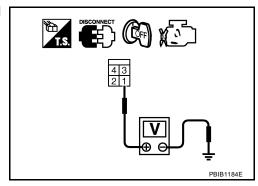

OK or NG

OK >> GO TO 11.

NG >> Replace ASCD brake switch.

7. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.



3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT -II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

EC

_

Н

J

Κ

L

M

IVI

8. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between stop lamp switch and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 10.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

10. CHECK STOP LAMP SWITCH

Refer to EC-582, "Component Inspection"

OK or NG

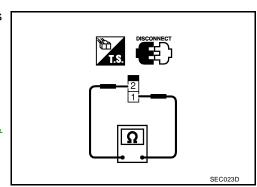
OK >> GO TO 11.

NG >> Replace stop lamp switch.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

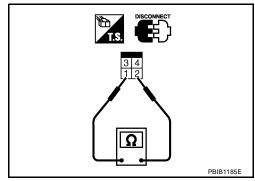

Component Inspection ASCD BRAKE SWITCH

UBS00PD8

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Check harness continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released	Should exist
Brake pedal: Slightly depressed	Should not exist

If NG, adjust ASCD brake switch installation, refer to <u>BR-6</u>, "BRAKE PEDAL", and perform step 3 again.



STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.
- 3. Check harness continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released	Should not exist
Brake pedal: Slightly depressed	Should exist

If NG, adjust stop lamp switch installation, refer to BR-6, "BRAKE PEDAL", and perform step 3 again.

EC

Α

C

 D

Е

F

Н

DTC P1574 ASCD VEHICLE SPEED SENSOR

DTC P1574 ASCD VEHICLE SPEED SENSOR

PFP:31036

Component Description

UBS00PD9

The ECM receives two vehicle speed sensor signals via CAN communication line. One is sent from combination meter and the other is from TCM (Transmission control module). The ECM uses these signals for ASCD control. Refer to EC-29, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for ASCD functions.

On Board Diagnosis Logic

UBS00PDA

This self-diagnosis has the one trip detection logic.

The MIL will not light up for this diagnosis.

NOTE:

- If DTC P1574 is displayed with DTC U1000 or U1001, first perform the trouble diagnosis for DTC U1000, U1001. Refer to EC-159, "DTC U1000, U1001 CAN COMMUNICATION LINE".
- If DTC P1574 is displayed with DTC U1010, first perform the trouble diagnosis for DTC U1010.
 Refer to EC-162, "DTC U1010 CAN COMMUNICATION".
- If DTC P1574 is displayed with DTC P0500, first perform the trouble diagnosis for DTC P0500.
 Refer to <u>EC-510</u>, "<u>DTC P0500 VSS"</u>.
- If DTC P1574 is displayed with DTC P0605, first perform the trouble diagnosis for DTC P0605.
 Refer to <u>EC-526</u>, "<u>DTC P0605 ECM"</u>.

DTC No.	Trouble Diagnosis Name	DTC Detecting Condition	Possible Cause
P1574 1574	ASCD vehicle speed sensor	ECM detects a difference between two vehicle speed signals is out of the specified range.	 Harness or connectors (The CAN communication line is open or shorted.) ABS actuator and electric unit (control unit) Wheel sensor TCM ECM

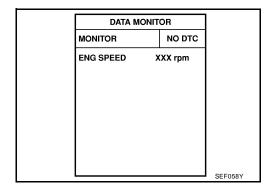
DTC Confirmation Procedure

UBS00PDB

CAUTION:

Always drive vehicle at a safe speed.

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Step 3 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

(P) WITH CONSULT-II

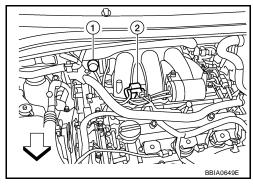
- 1. Start engine (TCS switch or VDC switch OFF).
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Drive the vehicle at more than 40 km/h (25 MPH).
- 4. If DTC is detected, go to EC-585, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

DTC P1574 ASCD VEHICLE SPEED SENSOR

Diagnostic Procedure 1. check dtc with tcm	UBS00PDC
Check DTC with TCM. Refer to AT-40, "OBD-II Diagnostic Trouble Code (DTC)".	
OK or NG	
OK >> GO TO 2. NG >> Perform trouble shooting relevant to DTC indicated.	
2. CHECK DTC WITH "ABS ACTUATOR AND ELECTRIC UNIT (CONTROL UNIT)"	
Refer to BRC-10, "TROUBLE DIAGNOSIS" or BRC-55, "TROUBLE DIAGNOSIS".	
OK or NG OK >> INSPECTION END	
NG >> Repair or replace.	


DTC P1800 VIAS CONTROL SOLENOID VALVE

PFP:14955

Component Description

UBSOOPDD

The VIAS control solenoid valve (2) cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator (1).

CONSULT-II Reference Value in Data Monitor Mode

UBS00PDE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
VIAS S/V	Engine: After warming up	1,800 - 3,600 rpm	ON
	Lingine. After warming up	Except above conditions	OFF

On Board Diagnosis Logic

UBS00PDF

The MIL will not light up for this self-diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1800 1800	VIAS control solenoid valve circuit	An excessively low or high voltage signal is sent to ECM through the valve	 Harness or connectors (The solenoid valve circuit is open or shorted.) VIAS control solenoid valve

DTC Confirmation Procedure

UBS00PDG

NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is between 11V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for at least 5 seconds.
- 4. If 1st trip DTC is detected, go to EC-588, "Diagnostic Procedure"

DATA M	IONITOR
MONITOR	NO DTC
ENG SPEED	XXX rpm

WITH GST

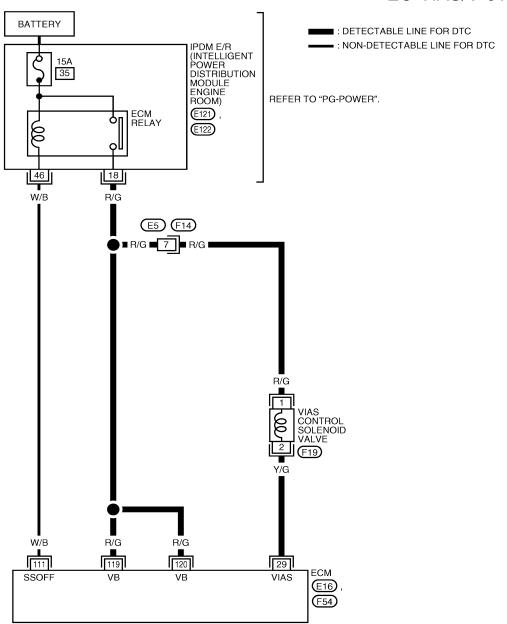
Follow the procedure "WITH CONSULT-II" above.

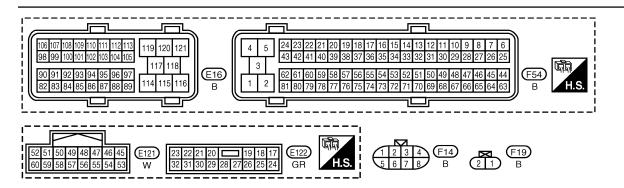
Wiring Diagram

EC-VIAS/V-01

Α

EC


C


D

Е

Н

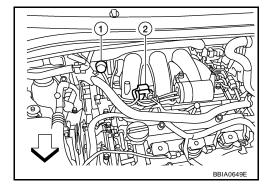
M

BBWA2533E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

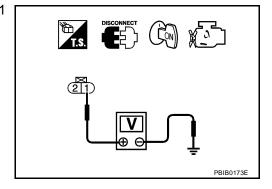

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
			[Engine is running] • Idle speed	BATTERY VOLTAGE (11 - 14V)
29	Y/G	VIAS control solenoid valve	[Engine is running]	0.401/
			Engine speed: Between 1,800 and 3,600 rpm.	0 - 1.0V
		ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF]	0 - 1.5V
111	111 W/B		For a few seconds after turning ignition switch OFF	0-1.50
			[Ignition switch: OFF]	BATTERY VOLTAGE
		More than a few seconds after turning ignition switch OFF	(11 - 14V)	
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

UBS00PDI

1. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect VIAS control solenoid valve harness connector (2).
- 3. Turn ignition switch ON.
- <□: Vehicle front</p>
- Power valve actuator (1)



4. Check voltage between VIAS control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 3. NG >> GO TO 2.

2. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness for open or short between VIAS control solenoid valve and IPDM E/R
- Harness for open or short between VIAS control solenoid valve and ECM

>> Repair harness or connectors.

3. CHECK VIAS CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 29 and VIAS control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK VIAS CONTROL SOLENOID VALVE

Refer to EC-589, "Component Inspection".

OK or NG

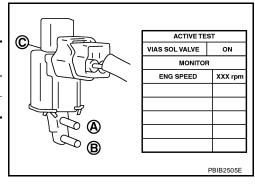
OK >> GO TO 5.

NG >> Replace VIAS control solenoid valve.

5. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END


Component Inspection VIAS CONTROL SOLENOID VALVE

(P) With CONSULT-II

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode.
- 4. Check air passage continuity and operation delay time under the following conditions.

Condition VIAS SOL VALVE	Air passage continuity between A and B	Air passage continuity between A and C
ON	Yes	No
OFF	No	Yes

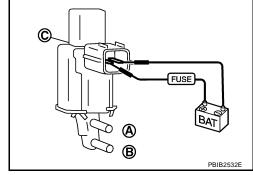
Operation takes less than 1 second.

EC

Е

Н

J


UBS00PDJ

⊗ Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.

Condition	Air passage continuity between A and B	Air passage continuity between A and C
12V direct current supply between terminals 1 and 2	Yes	No
No supply	No	Yes

Operation takes less than 1 second.

UBS00PDK

Removal and Installation VIAS CONTROL SOLENOID VALVE

Refer to EM-24, "INTAKE MANIFOLD".

DTC P1805 BRAKE SWITCH

PFP:25320

Description

UBS00PDI

Brake switch signal is applied to the ECM through the stop lamp switch when the brake pedal is depressed. This signal is used mainly to decrease the engine speed when the vehicle is driving.

EC

CONSULT-II Reference Value in Data Monitor Mode

UBS00PDM

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW • I	Ignition switch: ON	Brake pedal: Fully released	OFF
	• ignition switch. Oil	Brake pedal: Slightly depressed	ON

UBS00PDN

On Board Diagnosis Logic

The MIL will not light up for this diagnosis.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P1805 1805	Brake switch	A brake switch signal is not sent to ECM for extremely long time while the vehicle is driving.	 Harness or connectors (Stop lamp switch circuit is open or shorted.) Stop lamp switch

Е

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode.

Engine operating	condition in	fail-safe mode
------------------	--------------	----------------

ECM controls the electric throttle control actuator by regulating the throttle opening to a small range. Therefore, acceleration will be poor

Thorstore, added and will be pool.		
Vehicle condition	Driving condition	
When engine is idling	Normal	
When accelerating	Poor acceleration	

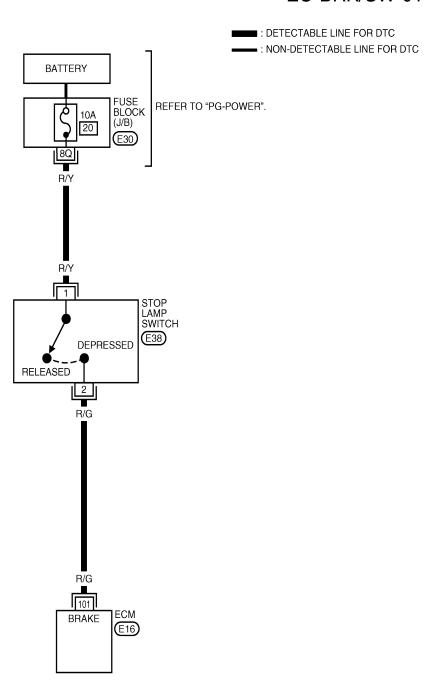
M

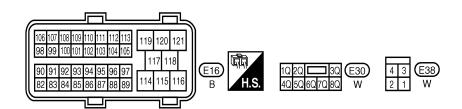
DTC Confirmation Procedure

(P) WITH CONSULT-II

UBS00PD0

- 1. Turn ignition switch ON.
- 2. Fully depress the brake pedal for at least 5 seconds.
- 3. Erase the DTC with CONSULT-II.
- 4. Select "DATA MONITOR" mode with CONSULT-II.
- If 1st trip DTC is detected, go to EC-593, "Diagnostic Procedure"


DATA MONITOR		
MONITOR	NO DTC	
ENG SPEED	(XX rpm	
		SEF058Y


WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram UBSOOPDR

EC-BRK/SW-01

BBWA2534E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

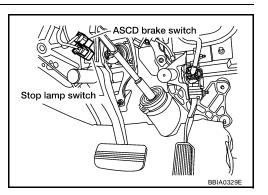
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 R/G	R/G	Stan Jama quitab	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)	

Diagnostic Procedure

UBS00PDQ

1. CHECK STOP LAMP SWITCH CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Check the stop lamp when depressing and releasing the brake pedal.

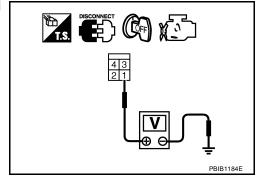

Brake pedal	Stop lamp
Fully released	Not illuminated
Slightly depressed	Illuminated

OK or NG

OK >> GO TO 4. NG >> GO TO 2.

2. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

1. Disconnect stop lamp switch harness connector.



2. Check voltage between stop lamp switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

Α

EC

D

Е

_

G

Н

K

3. DETECT MALFUNCTIONING PART

Check the following.

- 10A fuse
- Fuse block (J/B) connector E30
- Harness for open and short between stop lamp switch and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK STOP LAMP SWITCH

Refer to EC-595, "Component Inspection".

OK or NG

OK >> GO TO 6.

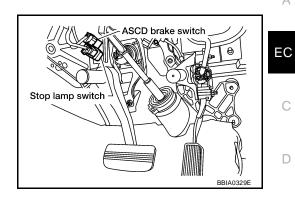
NG >> Replace stop lamp switch.

6. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

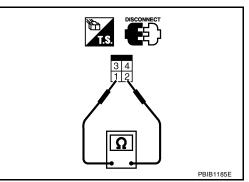
Component Inspection STOP LAMP SWITCH


UBS00PDR

Α

С

D


1. Disconnect stop lamp switch harness connector.

Check continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Conditions	Continuity
Brake pedal: Fully released	Should not exist
Brake pedal: Slightly depressed	Should exist

If NG, adjust stop lamp switch installation, refer to BR-6, "BRAKE PEDAL", and perform step 2 again.

Е

Н

DTC P2100, P2103 THROTTLE CONTROL MOTOR RELAY

PFP:16119

Component Description

UBS00PDS

Power supply for the throttle control motor is provided to the ECM via throttle control motor relay. The throttle control motor relay is ON/OFF controlled by the ECM. When the ignition switch is turned ON, the ECM sends an ON signal to throttle control motor relay and battery voltage is provided to the ECM. When the ignition switch is turned OFF, the ECM sends an OFF signal to throttle control motor relay and battery voltage is not provided to the ECM.

CONSULT-II Reference Value in Data Monitor Mode

UBS00PDT

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION
THRTL RELAY	Ignition switch: ON	ON

On Board Diagnosis Logic

UBS00PDU

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2100 2100	Throttle control motor relay circuit open	ECM detects a voltage of power source for throttle control motor is excessively low.	Harness or connectors (Throttle control motor relay circuit is open) Throttle control motor relay
P2103 2103	Throttle control motor relay circuit short	ECM detects the throttle control motor relay is stuck ON.	Harness or connectors (Throttle control motor relay circuit is shorted) Throttle control motor relay

FAIL-SAFE MODE

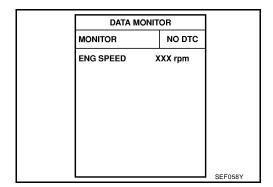
When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

UBS00PDV


NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

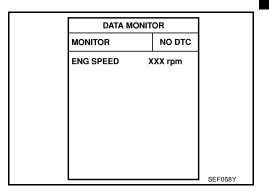
PROCEDURE FOR DTC P2100

(II) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-599, "Diagnostic Procedure".

With GST

Follow the procedure "With CONSULT-II" above.


PROCEDURE FOR DTC P2103

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 8V.

(P) With CONSULT-II

- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. If DTC is detected, go to EC-599, "Diagnostic Procedure".

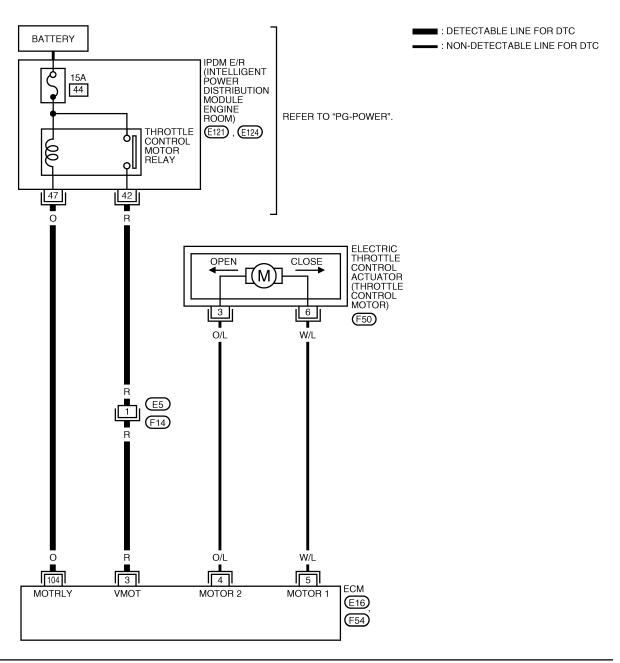
With GST

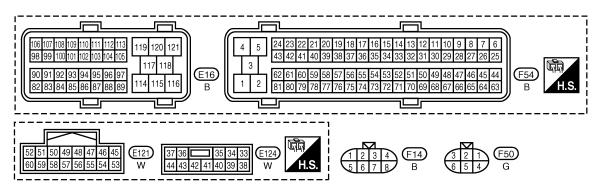
Follow the procedure "With CONSULT-II" above.

EC

Α

D


Е


F

Н

Wiring Diagram

EC-ETC2-01

BBWA2526E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

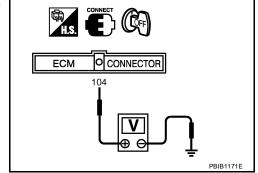
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

_		<u>-</u>		_	LO
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	С
3	R	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	
4	O/L	Throttle control motor (Close)	[Ignition switch: ON] • Engine stopped • Shift lever: D • Accelerator pedal: Fully released	0 - 14V★	D E
5	W/L	Throttle control motor (Open)	[Ignition switch: ON] • Engine stopped • Shift lever: D • Accelerator pedal: Fully depressed	0 - 14V★ → 5√/Div 1 ms/Div T PBIB1105E	G
104	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)	I
			[Ignition switch: ON]	0 - 1.0V	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-1


Turn ignition switch OFF.

2. Check voltage between ECM terminal 104 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 2.

EC

Α

UBS00PDX

$2. \ \mathsf{check} \ \mathsf{throttle} \ \mathsf{control} \ \mathsf{motor} \ \mathsf{relay} \ \mathsf{power} \ \mathsf{supply} \ \mathsf{circuit-ii}$

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E121.
- Check continuity between ECM terminal 104 and IPDM E/R terminal 47. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

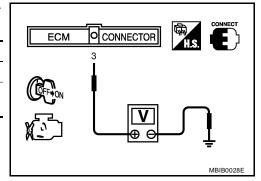
OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK FUSE

- 1. Disconnect 15A fuse.
- 2. Check 15A fuse for blown.

OK or NG


OK >> GO TO 7.

NG >> Replace 15A fuse.

4. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-I

Check voltage between ECM terminal 3 and ground under the following conditions with CONSULT-II or tester.

Ignition switch	Voltage
OFF	Approximately 0V
ON	Battery voltage (11 - 14V)

OK or NG

OK >> GO TO 7. NG >> GO TO 5.

5. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-II

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Disconnect IPDM E/R harness connector E124.
- Check continuity between ECM terminal 3 and IPDM E/R terminal 42. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 7.

NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness for open or short between ECM and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

7. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

OK >> Replace IPDM E/R. Refer to PG-18, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-ULE ENGINE ROOM)".

NG >> Repair or replace harness or connectors.

EC

С

 D

Е

F

G

Н

i

DTC P2101 ELECTRIC THROTTLE CONTROL FUNCTION

PFP:16119

Description

UBS00PDY

NOTE:

If DTC P2101 is displayed with DTC P2100 or P2119, first perform the trouble diagnosis for DTC P2100 or P2119. Refer to EC-596, "DTC P2100, P2103 THROTTLE CONTROL MOTOR RELAY" or EC-615, "DTC P2119 ELECTRIC THROTTLE CONTROL ACTUATOR".

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feed-back to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS00PDZ

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2101 2101	Electric throttle control performance	Electric throttle control function does not operate properly.	 Harness or connectors (Throttle control motor circuit is open or shorted) Electric throttle control actuator

FAIL-SAFE MODE

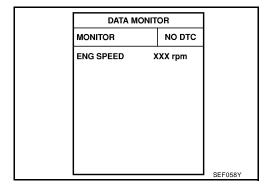
When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

UBS00PE0


TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
 NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

(WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-605, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram Α EC-ETC1-01 ■ : DETECTABLE LINE FOR DTC EC **BATTERY** ■ : NON-DETECTABLE LINE FOR DTC IPDM E/R (INTELLIGENT 15A POWER DISTRIBUTION 44 MODULE ENGINE ROOM) REFER TO "PG-POWER". THROTTLE CONTROL MOTOR RELAY E121), E124) D Е 47 42 0 **ELECTRIC** THROTTLE **CLOSE** CONTROL ACTUATOR -[(M) (THROTTLE CONTROL MOTOR) 6 3 (F50) O/L W/L Н W/L 5 104 4 3 ECM MOTRLY VMOT MOTOR 2 MOTOR 1 **E**16 M (F54) 107 108 109 110 111 112 113 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 121 120 117 118 3 (E16) (F54) 82 83 84 85 86 87 88 89 В

BBWA2525E

H.S.

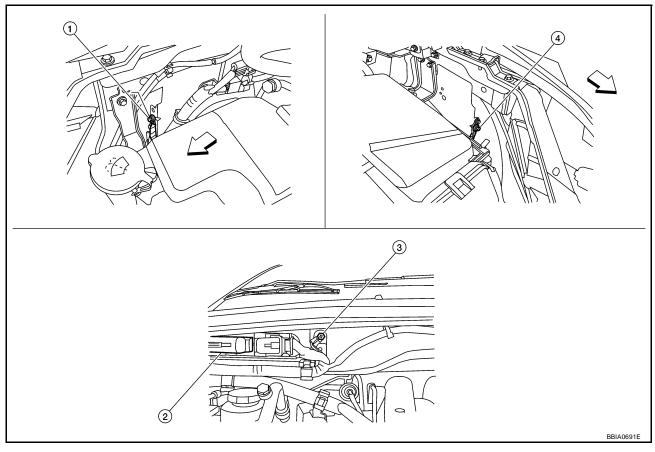
(E121)

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3	R	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
4	O/L	Throttle control motor (Close)	[Ignition switch: ON] • Engine stopped • Shift lever: D • Accelerator pedal: Fully released	0 - 14V★ >> 5 V/Div 1 ms/Div 1 PBIB1104E
5	W/L	Throttle control motor (Open)	[Ignition switch: ON] • Engine stopped • Shift lever: D • Accelerator pedal: Fully depressed	0 - 14V★ ≥ 5 V/Div 1 ms/Div T PBIB1105E
104	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V


^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

Turn ignition switch OFF.

2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

Vehicle front

1. Body ground E24

Body ground E15

3. Body ground E9

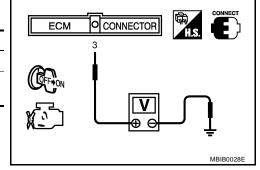
OK or NG

4.

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-I


2. ECM

Check voltage between ECM terminal 3 and ground under the following conditions with CONSULT-II or tester.

Ignition switch	Voltage	
OFF	Approximately 0V	
ON	Battery voltage (11 - 14V)	

OK or NG

OK >> GO TO 9. NG >> GO TO 3.

EC

Α

С

D

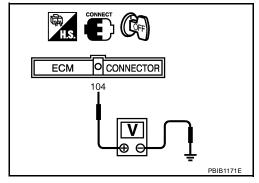
Е

F

G

Н

IZ


3. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF.
- Check voltage between ECM terminal 104 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 6. NG >> GO TO 4.

4. CHECK THROTTLE CONTROL MOTOR RELAY POWER SUPPLY CIRCUIT-II

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E121.
- Check continuity between ECM terminal 104 and IPDM E/R terminal 47. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK FUSE

- 1. Disconnect 15A fuse.
- Check 15A fuse for blown.

OK or NG

OK >> GO TO 8.

NG >> Replace 15A fuse.

6. CHECK THROTTLE CONTROL MOTOR RELAY INPUT SIGNAL CIRCUIT-II

- 1. Disconnect ECM harness connector.
- 2. Disconnect IPDM E/R harness connector E124.
- Check continuity between ECM terminal 3 and IPDM E/R terminal 42. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

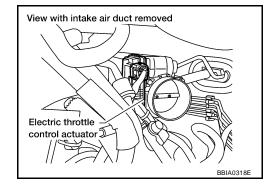
Check the following.

- Harness connectors E5, F14
- Harness for open or short between ECM and IPDM E/R
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG


OK >> Replace IPDM E/R. Refer to PG-18, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-ULE ENGINE ROOM)" .

NG >> Repair or replace harness or connectors.

9. CHECK THROTTLE CONTROL MOTOR OUTPUT SIGNAL CIRCUIT FOR OPEN OR SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect electric throttle control actuator harness connector.
- Disconnect ECM harness connector.
- 4. Check harness continuity between the following terminals. Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
3	5	Should not exist
	4	Should exist
6	5	Should exist
	4	Should not exist

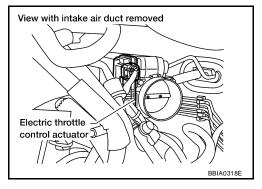
5. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 10.

NG >> Repair or replace.

10. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY


- 1. Remove the intake air duct.
- 2. Check if foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 11.

NG >> Remove the foreign matter and clean the electric throttle

control actuator inside.

11. CHECK THROTTLE CONTROL MOTOR

Refer to EC-608, "Component Inspection".

OK or NG

OK >> GO TO 12.

NG >> GO TO 13.

12. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> GO TO 13.

NG >> Repair or replace harness or connectors.

EC

С

D

Ε

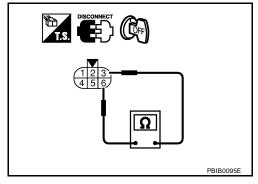
G

Н

13. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-80, "Throttle Valve Closed Position Learning".
- 3. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END


Component Inspection THROTTLE CONTROL MOTOR

UBS00PE3

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-80, "Throttle Valve Closed Position Learning".
- 5. Perform EC-80, "Idle Air Volume Learning".

UBS00PE4

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

Refer to EM-24, "INTAKE MANIFOLD".

DTC P2118 THROTTLE CONTROL MOTOR

DTC P2118 THROTTLE CONTROL MOTOR

PFP:16119

Component Description

UBS00PF5

UBS00PF6

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The current opening angle of the throttle valve is detected by the throttle position sensor and it provides feedback to the ECM to control the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

EC

Е

Н

Α

On Board Diagnosis Logic

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2118 2118	Throttle control motor circuit short	ECM detects short in both circuits between ECM and throttle control motor.	Harness or connectors (Throttle control motor circuit is shorted.) Electric throttle control actuator (Throttle control motor)

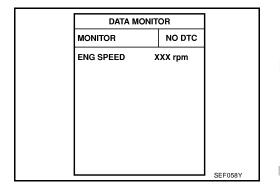
FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

ECM stops the electric throttle control actuator control, throttle valve is maintained at a fixed opening (approx. 5 degrees) by the return spring.

DTC Confirmation Procedure

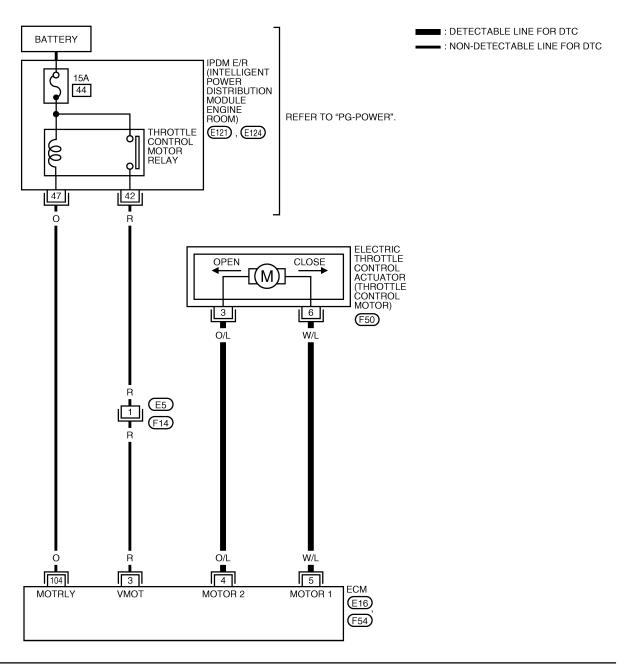

UBS00PE7

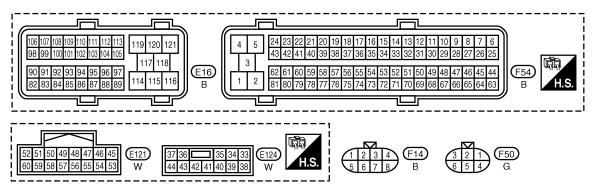
NOTE:

If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

WITH CONSULT-II

- 1. Turn ignition switch ON and wait at least 2 seconds.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and let it idle for 5 seconds.
- 4. If DTC is detected, go to EC-612, "Diagnostic Procedure".




WITH GST

Follow the procedure "WITH CONSULT-II" above.

Wiring Diagram

EC-ETC3-01

BBWA2527E

DTC P2118 THROTTLE CONTROL MOTOR

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TED	1			
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
3	R	Throttle control motor relay power supply	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)
4	O/L	Throttle control motor (Close)	 [Ignition switch: ON] Engine stopped Shift lever: D Accelerator pedal: Fully released 	0 - 14V★ >> 5V/Div 1 ms/Div T PBIB1104E
5	W/L	Throttle control motor (Open)	 [Ignition switch: ON] Engine stopped Shift lever: D Accelerator pedal: Fully depressed 	0 - 14V★ >> 5V/Div 1 ms/Div T PBIB1105E
104	0	Throttle control motor relay	[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch: ON]	0 - 1.0V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

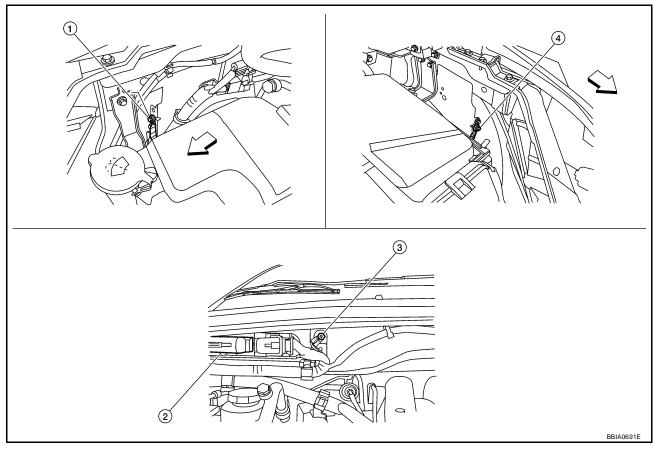
EC

Α

 D

Е

Н


DTC P2118 THROTTLE CONTROL MOTOR

Diagnostic Procedure

UBS00PE9

1. CHECK GROUND CONNECTIONS

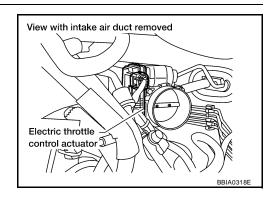
- Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- Body ground E24 1.
 - 2. ECM Body ground E15

Body ground E9

OK or NG

OK >> GO TO 2.


NG >> Repair or replace ground connections.

DTC P2118 THROTTLE CONTROL MOTOR

$2.\,$ check throttle control motor output signal circuit for open or short

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Disconnect ECM harness connector.
- Check harness continuity between the following terminals.
 Refer to Wiring Diagram.

Electric throttle control actuator terminal	ECM terminal	Continuity
3	5	Should not exist
	4	Should exist
6	5	Should exist
	4	Should not exist

EC

Е

Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 3.

NG >> Repair or replace.

3. CHECK THROTTLE CONTROL MOTOR

Refer to EC-613, "Component Inspection".

OK or NG

OK >> GO TO 4. NG >> GO TO 5.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> GO TO 5.

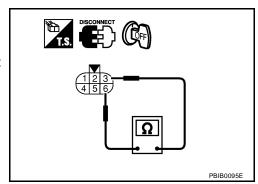
NG >> Repair or replace harness or connectors.

5. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-80, "Throttle Valve Closed Position Learning".
- 3. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

Component Inspection THROTTLE CONTROL MOTOR


- Disconnect electric throttle control actuator harness connector.
- Check resistance between terminals 3 and 6.

Resistance: Approximately 1 - 15 Ω [at 25 °C (77°F)]

- 3. If NG, replace electric throttle control actuator and go to next step.
- 4. Perform EC-80, "Throttle Valve Closed Position Learning".
- 5. Perform EC-80, "Idle Air Volume Learning".

G
H
CIDENT".

J
K
L
UBSOOPEA

DTC P2118 THROTTLE CONTROL MOTOR

Removal and Installation ELECTRIC THROTTLE CONTROL ACTUATOR

UBS00PEB

Refer to EM-18, "INTAKE MANIFOLD COLLECTOR" .

DTC P2119 ELECTRIC THROTTLE CONTROL ACTUATOR

DTC P2119 ELECTRIC THROTTLE CONTROL ACTUATOR

PFP:16119

Component Description

UBS00PEC

EC

Е

Н

M

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc.

The throttle control motor is operated by the ECM and it opens and closes the throttle valve.

The throttle position sensor detects the throttle valve position, and the opening and closing speed of the throttle valve and feeds the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

On Board Diagnosis Logic

UBS00PED

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition		Possible cause
P2119	Electric throttle control	A)	Electric throttle control actuator does not function properly due to the return spring malfunction.	
2119	actuator	B)	Throttle valve opening angle in fail-safe mode is not in specified range.	Electric throttle control actuator
		C)	ECM detect the throttle valve is stuck open.	

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

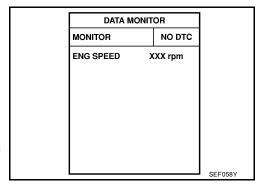
Detected items	Engine operating condition in fail-safe mode
Malfunction A	The ECM controls the electric throttle actuator by regulating the throttle opening around the idle position. The engine speed will not rise more than 2,000 rpm.
Malfunction B	ECM controls the electric throttle control actuator by regulating the throttle opening to 20 degrees or less.
Malfunction C	While the vehicle is driving, it slows down gradually by fuel cut. After the vehicle stops, the engine stalls. The engine can restart in N or P position, and engine speed will not exceed 1,000 rpm or more.

DTC Confirmation Procedure

UBS00PEE

NOTE:

- Perform PROCEDURE FOR MALFUNCTION A AND B first. If the 1st trip DTC cannot be confirmed, perform PROCEDURE FOR MALFUNCTION C.
- If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

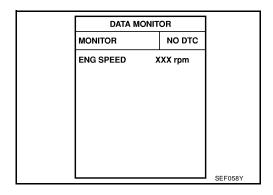

PROCEDURE FOR MALFUNCTION A AND B

(P) With CONSULT-II

- 1. Turn ignition witch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Set shift lever to D position and wait at least 3 seconds.
- 4. Set shift lever to N or P position.
- 5. Turn ignition witch OFF and wait at least 10 second.
- 6. Turn ignition witch ON and wait at least 1 second.
- 7. Set shift lever to D position and wait at least 3 seconds.
- 8. Set shift lever to N or P position.
- Turn ignition switch OFF, wait at least 10 seconds, and then turn ON.
- 10. If DTC is detected, go to EC-616, "Diagnostic Procedure".

₩ith GST

Follow the procedure "With CONSULT-II" above.



DTC P2119 ELECTRIC THROTTLE CONTROL ACTUATOR

PROCEDURE FOR MALFUNCTION C

(P) With CONSULT-II

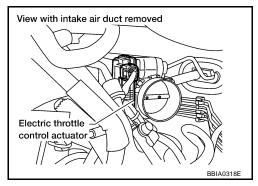
- 1. Turn ignition switch ON and wait at least 1 second.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Set shift lever to D position and wait at least 3 seconds.
- 4. Set shift lever to P or N position.
- 5. Start engine and let it idle for 3 seconds.
- 6. If DTC is detected, go to EC-616, "Diagnostic Procedure".

UBS00PEF

₩ith GST

Follow the procedure "With CONSULT-II" above.

Diagnostic Procedure


1. CHECK ELECTRIC THROTTLE CONTROL ACTUATOR VISUALLY

- Remove the intake air duct.
- 2. Check if a foreign matter is caught between the throttle valve and the housing.

OK or NG

OK >> GO TO 2.

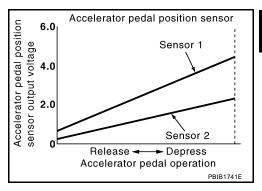
NG >> Remove the foreign matter and clean the electric throttle control actuator inside.

2. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-80, "Throttle Valve Closed Position Learning".
- 3. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

DTC P2122, P2123 APP SENSOR


PFP:18002

Component Description

UBS00PEG

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM

receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS00PEH

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	0.5 - 1.0V
ACCEL SEN 2*	(Engine stopped)	Accelerator pedal: Fully depressed	4.2 - 4.8V
CLSD THL POS	Ignition switch: ON (Engine stopped)	Accelerator pedal: Fully released	ON
CLOD THE POS		Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differ from ECM terminal voltage.

On Board Diagnosis Logic

UBS00PFI

These self-diagnoses have the one trip detection logic.

NOTE:

If DTC P2122 or P2123 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-529, "DTC P0643 SENSOR POWER SUPPLY".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2122 2122	Accelerator pedal position sensor 1 circuit low input	An excessively low voltage from the APP sensor 1 is sent to ECM.	Harness or connectors (The APP sensor 1 circuit is open or
P2123 2123	Accelerator pedal position sensor 1 circuit high input	An excessively high voltage from the APP sensor 1 is sent to ECM.	shorted.)Accelerator pedal position sensor (APP sensor 1)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

EC

Α

Е

G

П

SOOPEI

Κ

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

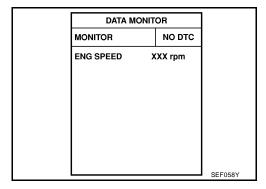
The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

UBS00PF

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

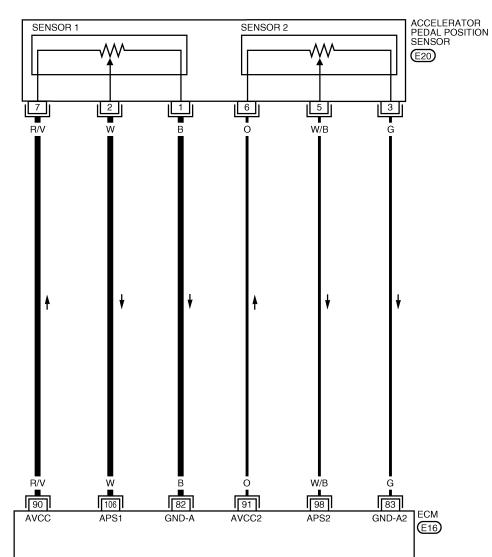
TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-621, "Diagnostic Procedure".

WITH GST


Follow the procedure "WITH CONSULT-II" above.

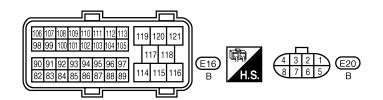
Wiring Diagram

EC-APPS1-01

■: DETECTABLE LINE FOR DTC ■ : NON-DETECTABLE LINE FOR DTC

Α

EC


C

 D

Е

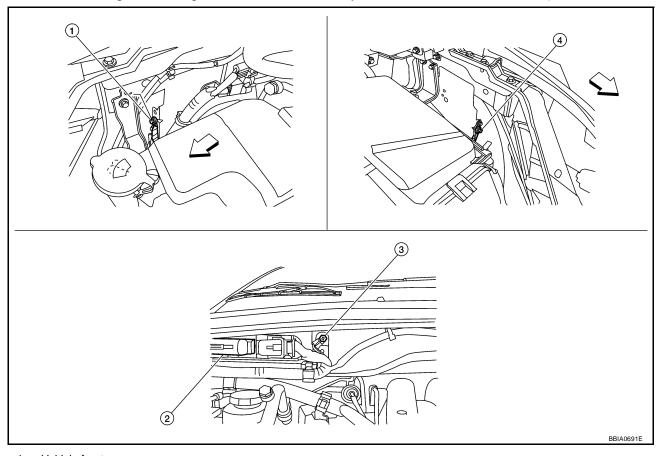
Н

M

BBWA2026E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
82	В	APP sensor 1 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
83	G	APP sensor 2 ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
90	R/V	APP sensor 1 power supply	[Ignition switch: ON]	Approximately 5V
91	0	APP sensor 2 power supply	[Ignition switch: ON]	Approximately 5V
98	W/B	Accelerator pedal position sensor 2	 [Ignition switch: ON] Engine stopped Accelerator pedal: Fully released [Ignition switch: ON] Engine stopped 	0.25 - 0.5V 2.0 - 2.5V
			Accelerator pedal: Fully depressed	
106	W	Accelerator pedal position	[Ignition switch: ON]Engine stoppedAccelerator pedal: Fully released	0.5 - 1.0V
106 W	VV	sensor 1	[Ignition switch: ON]Engine stoppedAccelerator pedal: Fully depressed	4.2 - 4.8V

Diagnostic Procedure

1. CHECK GROUND CONNECTIONS

- Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

EC

Α

UBS00PEL

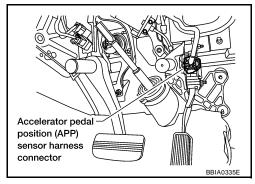
С

D

Е

F

G


Н

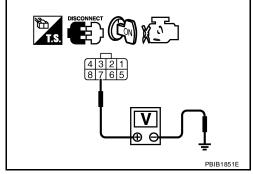
K

L

$2.\,$ check app sensor 1 power supply circuit

- Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch ON.

Check voltage between APP sensor terminal 7 and ground with CONSULT-II or tester.


Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair

>> Repair open circuit or short to ground or short to power in harness or connectors.

3. CHECK APP SENSOR 1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 82 and APP sensor terminal 1. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

4. CHECK APP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 106 and APP sensor terminal 2. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR

Refer to EC-623, "Component Inspection".

OK or NG

OK >> GO TO 7.

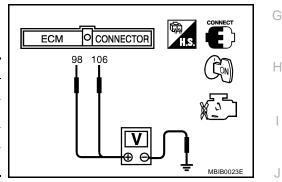
NG >> GO TO 6.

6. REPLACE ACCELERATOR PEDAL ASSEMBLY

- 1. Replace accelerator pedal assembly.
- 2. Perform EC-80, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-80, "Throttle Valve Closed Position Learning".
- 4. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK INTERMITTENT INCIDENT


Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.5 - 1.0V
(Accelerator pedal position sensor 1)	Fully depressed	4.2 - 4.8V
98	Fully released	0.25 - 0.5V
(Accelerator pedal position sensor 2)	Fully depressed	0.2 - 2.5V

- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-80, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-80, "Throttle Valve Closed Position Learning".
- 7. Perform <u>EC-80</u>, "Idle Air Volume Learning".

Removal and Installation ACCELERATOR PEDAL

Refer to ACC-3, "ACCELERATOR CONTROL SYSTEM".

UBS00PEN

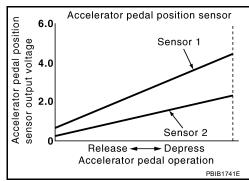
M

EC

Е

UBS00PEM

DTC P2127, P2128 APP SENSOR


PFP:18002

UBS00PF0

Component Description

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS00PEP

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	0.5 - 1.0V
ACCEL SEN 2*	(Engine stopped)	Accelerator pedal: Fully depressed	4.2 - 4.8V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
CLSD THE POS	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differ from ECM terminal voltage.

On Board Diagnosis Logic

UBS00PEQ

These self-diagnoses have the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2127 2127	Accelerator pedal position sensor 2 circuit low input	An excessively low voltage from the APP sensor 2 is sent to ECM.	Harness or connectors (APP sensor 2 circuit is open or
P2128 Accelerator pedal position sensor 2 circuit high input	A	An excessively high voltage from the APP sensor 2 is sent to ECM.	shorted.) (TP sensor circuit is shorted.) • Accelerator pedal position sensor
	sensor 2 circuit high input		(APP sensor 2) • Electric throttle control actuator
			(TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

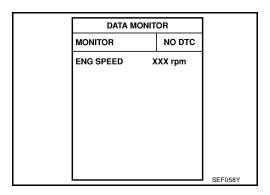
The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

UBS00PER

NOTE


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-628, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

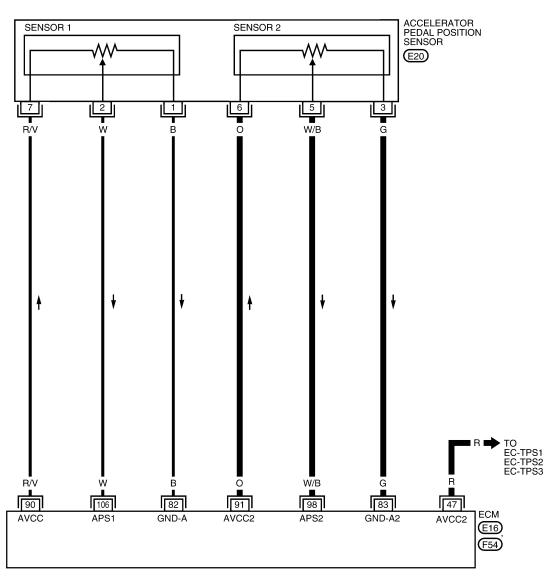
Α

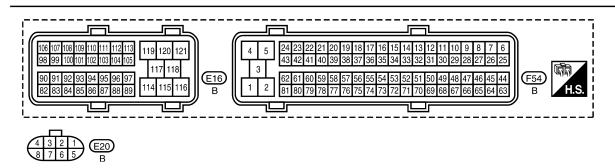
D

Е

G

Н


/


L

Wiring Diagram UBSOOPES

EC-APPS2-01

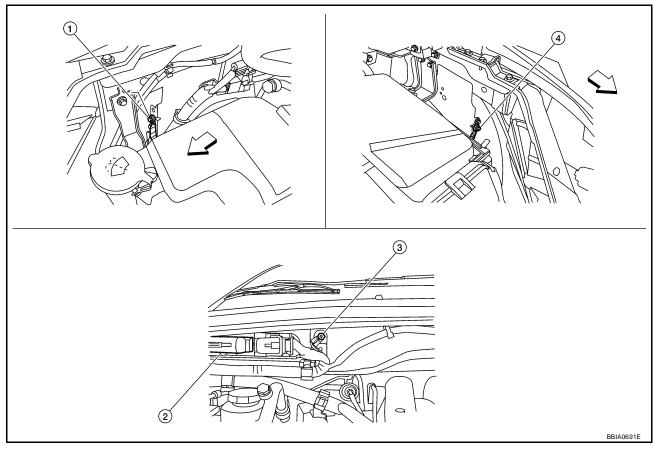
: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

BBWA1639E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


•		_	•	_		
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC	
47	R	Throttle position sensor power supply	[Ignition switch: ON]	Approximately 5V	С	
			[Engine is running]		_	
82	В	APP sensor 1 ground	Warm-up condition	Approximately 0V	D	
			Idle speed			
			[Engine is running]		_	
83	G	APP sensor 2 ground	Warm-up condition	Approximately 0V	Е	
			Idle speed			
90	R/V	APP sensor 1 power supply	[Ignition switch: ON]	Approximately 5V	_	
91	0	APP sensor 2 power supply	[Ignition switch: ON]	Approximately 5V	- F	
			[Ignition switch: ON]		_	
			Engine stopped	0.25 - 0.5V	G	
98	W/B	Accelerator pedal position	Accelerator pedal: Fully released		0	
90	VV/D	sensor 2	[Ignition switch: ON]		_	
			Engine stopped	0.2 - 2.5V	Н	
			Accelerator pedal: Fully depressed			
			[Ignition switch: ON]		_	
106 W	Accelerator pedal position	Engine stopped	0.5 - 1.0V			
		Accelerator pedal: Fully released				
100	V V	sensor 1	[Ignition switch: ON]		_	
			Engine stopped	4.2 - 4.8V	J	
				Accelerator pedal: Fully depressed		

Diagnostic Procedure

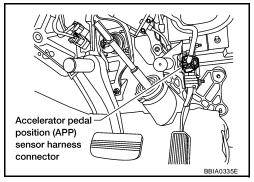
UBS00PET

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection" .

- 1. Body ground E24
 - Body ground E15
- 2. ECM

3. Body ground E9

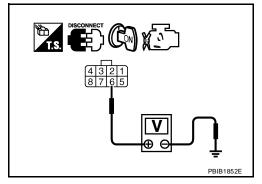

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-I

- 1. Disconnect accelerator pedal position (APP) sensor harness connector.
- Turn ignition switch ON.



Check voltage between APP sensor terminal 6 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

>> GO TO 7. OK NG >> GO TO 3.

3. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between APP sensor terminal 6 and ECM terminal 91. Refer to wiring diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
91	APP sensor terminal 6	EC-626
47	Electric throttle control actuator terminal 1	EC-634

OK or NG

OK >> GO TO 5.

NG >> Repair short to ground or short to power in harness or connectors.

5. CHECK THROTTLE POSITION SENSOR

Refer to EC-639, "Component Inspection".

OK or NG

OK >> GO TO 11. NG >> GO TO 6.

EC-629 2007 Quest Revision: March 2006

EC

D

Е

6. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace electric throttle control actuator.
- 2. PerformEC-80, "Throttle Valve Closed Position Learning".
- Perform <u>EC-80</u>, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK APP SENSOR 2 GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 83 and APP sensor terminal 3. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

```
OK >> GO TO 8.
```

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK APP SENSOR 2 INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 98 and APP sensor terminal 5. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

```
OK >> GO TO 9.
```

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK APP SENSOR

Refer to EC-631, "Component Inspection".

OK or NG

```
OK >> GO TO 11.
```

NG >> GO TO 10.

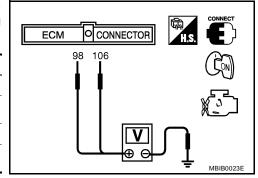
10. REPLACE ACCELERATOR PEDAL ASSEMBLY

- 1. Replace accelerator pedal assembly.
- 2. PerformEC-80, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-80, "Throttle Valve Closed Position Learning".
- 4. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

11. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

UBS00PEU

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.5 - 1.0V
(Accelerator pedal position sensor 1)	Fully depressed	4.2 - 4.8V
98 (Accelerator pedal position sensor 2)	Fully released	0.25 - 0.5V
	Fully depressed	0.2 - 2.5V

- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-80, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-80, "Throttle Valve Closed Position Learning".
- 7. Perform EC-80, "Idle Air Volume Learning".

Removal and Installation ACCELERATOR PEDAL

Refer to ACC-3, "ACCELERATOR CONTROL SYSTEM".

EC

Α

С

D

Е

F

UBS00PEV

Н

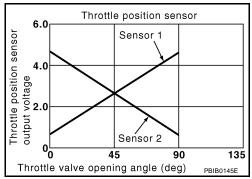
ı

J

K

L

DTC P2135 TP SENSOR


PFP:16119

Component Description

UBS00PEW

Electric throttle control actuator consists of throttle control motor, throttle position sensor, etc. The throttle position sensor responds to the throttle valve movement.

The throttle position sensor has the two sensors. These sensors are a kind of potentiometers which transform the throttle valve position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the throttle valve and feed the voltage signals to the ECM. The ECM judges the current opening angle of the throttle valve from these signals and the ECM controls the throttle control motor to make the throttle valve opening angle properly in response to driving condition.

CONSULT-II Reference Value in Data Monitor Mode

UBS00PEX

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
THRTL SEN 1 • Ignition switch: ON	9	Accelerator pedal: Fully released	More than 0.36V
THRTL SEN 2*	(Engine stopped) • Shift lever: D	Accelerator pedal: Fully depressed	Less than 4.75V

^{*:} Throttle position sensor 2 signal is converted by ECM internally. Thus, it differs from ECM terminal voltage signal.

On Board Diagnosis Logic

UBS00PEY

This self-diagnosis has the one trip detection logic.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2135 2135	Throttle position sensor circuit range/performance	Rationally incorrect voltage is sent to ECM compared with the signals from TP sensor 1 and TP sensor 2.	 Harness or connector (TP sensor 1 and 2 circuit is open or shorted.) (APP sensor 2 circuit is shorted.) Electric throttle control actuator (TP sensor 1 and 2) Accelerator pedal position sensor (APP sensor 2)

FAIL-SAFE MODE

When the malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Engine operation condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

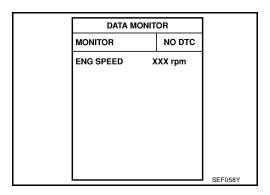
The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

UBS00PEZ

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-636, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

Α

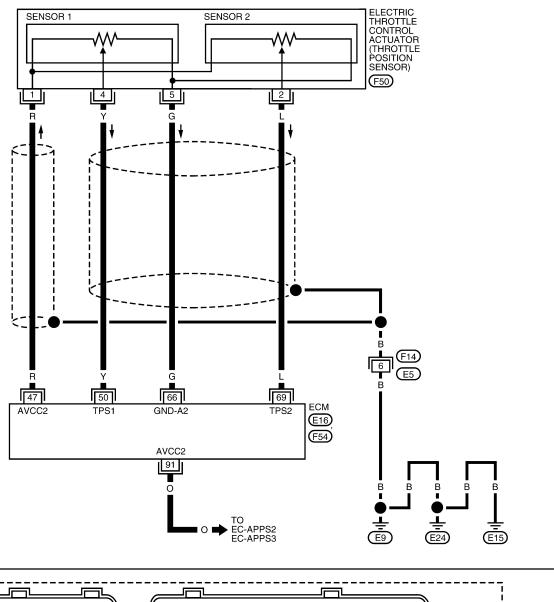
D

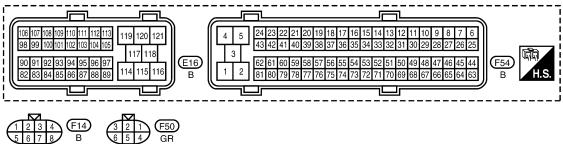
Е

F

G

Н


J


K

Wiring Diagram

EC-TPS3-01

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

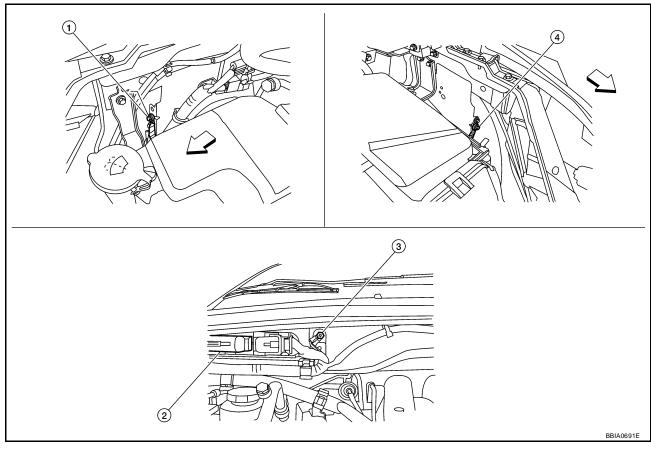
BBWA1640E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)			
R	Throttle position sensor power supply	[Ignition switch: ON]	Approximately 5V			
		[Ignition switch: ON]				
		Engine stopped	More than 0.36V			
		Shift lever: D	Word than 6.56V			
v	Throttle position sensor 1	Accelerator pedal: Fully released				
Throttle position sensor 1	Throttic position school 1	[Ignition switch: ON]				
		Engine stopped	Less than 4.75V			
					Shift lever: D	2003 than 4.75 v
		Accelerator pedal: Fully depressed				
	T	[Engine is running]				
G	G	·	Warm-up condition	Approximately 0V		
	9.04.14	Idle speed				
		[Ignition switch: ON]				
		Engine stopped	Less than 4.75V			
	Thurstella position access 2	Shift lever: D	Less than 4.73V			
69 L		 Accelerator pedal: Fully released 				
	Throttle position sensor 2	[Ignition switch: ON]				
		Engine stopped	More than 0.36V			
		Shift lever: D	Wole than 0.30V			
		Accelerator pedal: Fully depressed				
0	APP sensor 2 power supply	[Ignition switch: ON]	Approximately 5V			
	R Y	R Throttle position sensor power supply Y Throttle position sensor 1 G Throttle position sensor ground L Throttle position sensor 2	Throttle position sensor power supply Throttle position sensor 1 Throttle position sensor 2 Throttle position sensor 3 Throttle position sensor 4 Throttle position sensor 4 Throttle position sensor 5 Throttle position sensor 6 Throttle position sensor 9 Throttle position sensor 1 Throttle position sensor 2 Throttle position sensor 1 Throttle position sensor 1 Throttle position sensor 1 Throttle position s			


Α

Diagnostic Procedure

UBS00PF1

1. CHECK GROUND CONNECTIONS

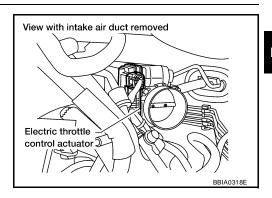
- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection" .

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9

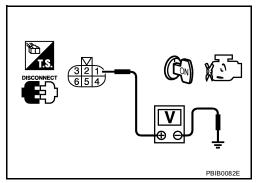

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

$\frac{1}{2}$. Check throttle position sensor power supply circuit-i

- 1. Disconnect electric throttle control actuator harness connector.
- 2. Turn ignition switch ON.



Check voltage between electric throttle control actuator terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

>> GO TO 7. OK NG >> GO TO 3.

3. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between electric throttle control actuator terminal 1 and ECM terminal 47. Refer to Wiring Diagram.

Continuity should exist.

OK or NG

OK >> GO TO 4.

NG >> Repair open circuit.

4. CHECK THROTTLE POSITION SENSOR POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
47	Electric throttle control actuator terminal 1	EC-634
91	APP sensor terminal 6	EC-642

OK or NG

OK >> GO TO 5.

NG >> Repair short to ground or short to power in harness or connectors.

5. CHECK APP SENSOR

Refer to EC-647, "Component Inspection".

OK or NG

OK >> GO TO 11. NG >> GO TO 6.

EC-637 2007 Quest Revision: March 2006

EC

D

Е

Н

6. REPLACE ACCELERATOR PEDAL ASSEMBLY

- 1. Replace accelerator pedal assembly.
- 2. PerformEC-80, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-80, "Throttle Valve Closed Position Learning".
- 4. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

7. CHECK THROTTLE POSITION SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 66 and electric throttle control actuator terminal 5. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 8.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

8. CHECK THROTTLE POSITION SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

Check harness continuity between ECM terminal 50 and electric throttle control actuator terminal 4, ECM terminal 69 and electric throttle control actuator terminal 2.
 Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK THROTTLE POSITION SENSOR

Refer to EC-639, "Component Inspection".

OK or NG

OK >> GO TO 11.

NG >> GO TO 10.

10. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace the electric throttle control actuator.
- 2. Perform EC-80, "Throttle Valve Closed Position Learning".
- Perform EC-80, "Idle Air Volume Learning".

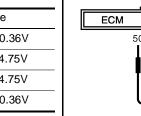
>> INSPECTION END

11. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

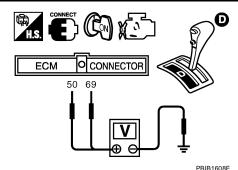
Component Inspection THROTTLE POSITION SENSOR


UBS00PF2

Α

EC

- Reconnect all harness connectors disconnected.
- 2. Perform EC-80, "Throttle Valve Closed Position Learning".
- 3. Turn ignition switch ON.
- 4. Set shift lever to D position.
- Check voltage between ECM terminals 50 (TP sensor 1 signal), 69 (TP sensor 2 signal) and ground under the following conditions.


Terminal	Accelerator pedal	Voltage
50	Fully released	More than 0.36V
(Throttle position sensor 1)	Fully depressed	Less than 4.75V
69	Fully released	Less than 4.75V
(Throttle position sensor 2)	Fully depressed	More than 0.36V

- If NG, replace electric throttle control actuator and go to the next step.
- 7. Perform EC-80, "Throttle Valve Closed Position Learning".
- 8. Perform EC-80, "Idle Air Volume Learning".

Removal and Installation **ELECTRIC THROTTLE CONTROL ACTUATOR**

Refer to EM-18, "INTAKE MANIFOLD COLLECTOR".

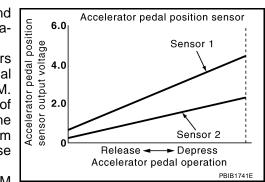
D

Е

LIBSOOPE3

Н

DTC P2138 APP SENSOR


PFP:18002

Component Description

UBS00PF4

The accelerator pedal position sensor is installed on the upper end of the accelerator pedal assembly. The sensor detects the accelerator position and sends a signal to the ECM.

Accelerator pedal position sensor has two sensors. These sensors are a kind of potentiometers which transform the accelerator pedal position into output voltage, and emit the voltage signal to the ECM. In addition, these sensors detect the opening and closing speed of the accelerator pedal and feed the voltage signals to the ECM. The ECM judges the current opening angle of the accelerator pedal from these signals and controls the throttle control motor based on these signals.

Idle position of the accelerator pedal is determined by the ECM receiving the signal from the accelerator pedal position sensor. The ECM uses this signal for the engine operation such as fuel cut.

CONSULT-II Reference Value in Data Monitor Mode

UBS00PF5

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
ACCEL SEN 1	Ignition switch: ON	Accelerator pedal: Fully released	0.5 - 1.0V
ACCEL SEN 2*	(Engine stopped)	Accelerator pedal: Fully depressed	4.2 - 4.8V
CLSD THL POS	Ignition switch: ON	Accelerator pedal: Fully released	ON
CESD THE FOS	(Engine stopped)	Accelerator pedal: Slightly depressed	OFF

^{*:} Accelerator pedal position sensor 2 signal is converted by ECM internally. Thus, it differ from ECM terminal voltage.

On Board Diagnosis Logic

UBS00PF6

This self-diagnosis has the one trip detection logic.

NOTE:

If DTC P2138 is displayed with DTC P0643, first perform the trouble diagnosis for DTC P0643. Refer to EC-529, "DTC P0643 SENSOR POWER SUPPLY".

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible cause
P2138 2138	Accelerator pedal position sensor circuit range/performance	Rationally incorrect voltage is sent to ECM compared with the signals from APP sensor 1 and APP sensor 2.	 Harness or connector (APP sensor 1 and 2 circuit is open or shorted.) (TP sensor circuit is shorted.) Accelerator pedal position sensor (APP sensor 1 and 2) Electric throttle control actuator (TP sensor 1 and 2)

FAIL-SAFE MODE

When the malfunction is detected, ECM enters fail-safe mode and the MIL lights up.

Engine operating condition in fail-safe mode

The ECM controls the electric throttle control actuator in regulating the throttle opening in order for the idle position to be within +10 degrees.

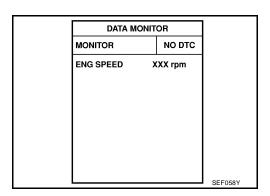
The ECM regulates the opening speed of the throttle valve to be slower than the normal condition.

So, the acceleration will be poor.

DTC Confirmation Procedure

UBS00PF7

NOTE:


If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10V at idle.

(P) WITH CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "DATA MONITOR" mode with CONSULT-II.
- 3. Start engine and let it idle for 1 second.
- 4. If DTC is detected, go to EC-644, "Diagnostic Procedure".

WITH GST

Follow the procedure "WITH CONSULT-II" above.

EC

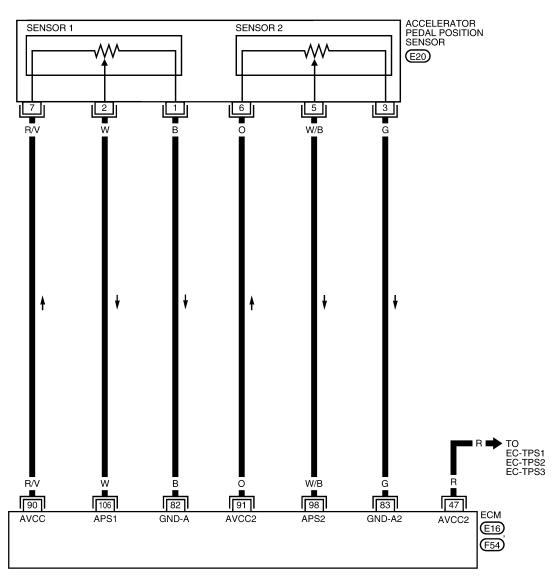
Α

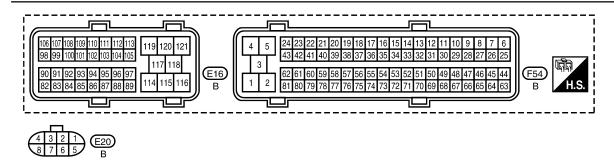
D

Е

G

Н


K


_

Wiring Diagram UBSOOPFE

EC-APPS3-01

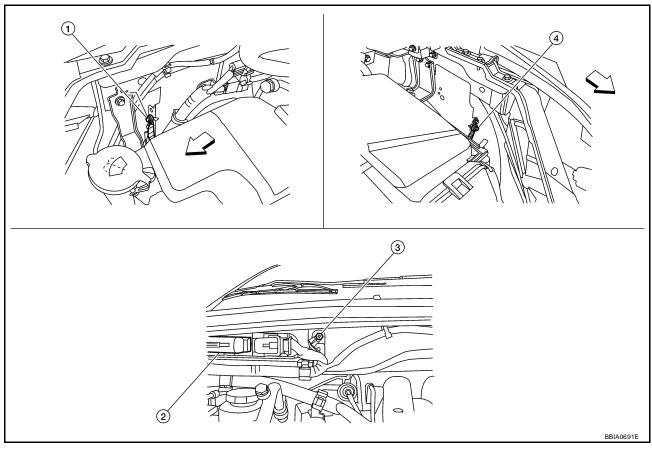
: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

BBWA1641E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


•		_	•	_	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
47	R	Throttle position sensor power supply	[Ignition switch: ON]	Approximately 5V	С
			[Engine is running]		_
82	В	APP sensor 1 ground	Warm-up condition	Approximately 0V	D
			Idle speed		
			[Engine is running]		_
83	G	APP sensor 2 ground	Warm-up condition	Approximately 0V	Е
			Idle speed		
90	R/V	APP sensor 1 power supply	[Ignition switch: ON]	Approximately 5V	_
91	0	APP sensor 2 power supply	[Ignition switch: ON]	Approximately 5V	- F
			[Ignition switch: ON]		_
			Engine stopped	0.25 - 0.5V	G
98	W/B	Accelerator pedal position	Accelerator pedal: Fully released		0
90	VV/D	sensor 2	[Ignition switch: ON]		_
			Engine stopped	0.2 - 2.5V	Н
			Accelerator pedal: Fully depressed		
			[Ignition switch: ON]		_
106 W	Accelerator pedal position	Engine stopped	0.5 - 1.0V		
		Accelerator pedal: Fully released			
100	106 W	sensor 1	[Ignition switch: ON]		_
			Engine stopped	4.2 - 4.8V	J
			Accelerator pedal: Fully depressed		

Diagnostic Procedure

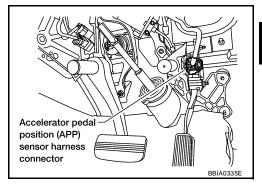
UBS00PF9

1. CHECK GROUND CONNECTIONS

- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection" .

- 1. Body ground E24
 - Body ground E15
- 2. ECM

3. Body ground E9

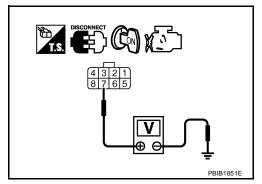

OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

2. CHECK APP SENSOR 1 POWER SUPPLY CIRCUIT

- 1. Disconnect accelerator pedal position (APP) sensor harness connector.
- 2. Turn ignition switch ON.

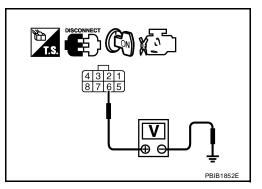

3. Check voltage between APP sensor terminals 7 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 3.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.


3. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-I

Check voltage between APP sensor terminal 6 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 8. NG >> GO TO 4.

4. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between APP sensor terminal 6 and ECM terminal 91. Refer to wiring diagram.

Continuity should exist.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit.

Revision: March 2006 EC-645 2007 Quest

EC

С

D

Ε

Н

K

IV/

5. CHECK APP SENSOR 2 POWER SUPPLY CIRCUIT-III

Check harness for short to power and short to ground, between the following terminals.

ECM terminal	Sensor terminal	Reference Wiring Diagram
91	APP sensor terminal 6	EC-642
47	Electric throttle control actuator terminal 1	EC-634

OK or NG

OK >> GO TO 6.

NG >> Repair short to ground or short to power in harness or connectors.

6. CHECK THROTTLE POSITION SENSOR

Refer to EC-639, "Component Inspection".

OK or NG

OK >> GO TO 12. NG >> GO TO 7.

7. REPLACE ELECTRIC THROTTLE CONTROL ACTUATOR

- 1. Replace electric throttle control actuator.
- 2. Perform EC-80, "Throttle Valve Closed Position Learning".
- 3. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

8. CHECK APP SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- Check harness continuity between APP sensor terminals 1 and ECM terminal 82, APP sensor terminal 3 and ECM terminal 83.

Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK APP SENSOR INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

 Check harness continuity between ECM terminal 106 and APP sensor terminal 2, ECM terminal 98 and APP sensor terminal 5.

Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 10.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

10. CHECK APP SENSOR

Refer to EC-647, "Component Inspection".

OK or NG

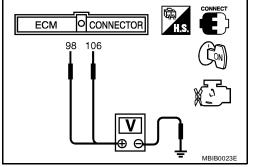
OK >> GO TO 12. NG >> GO TO 11.

11. REPLACE ACCELERATOR PEDAL ASSEMBLY

- 1. Replace accelerator pedal assembly.
- 2. Perform EC-80, "Accelerator Pedal Released Position Learning".
- 3. Perform EC-80, "Throttle Valve Closed Position Learning".
- 4. Perform EC-80, "Idle Air Volume Learning".

>> INSPECTION END

12. CHECK INTERMITTENT INCIDENT


Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection ACCELERATOR PEDAL POSITION SENSOR

- 1. Reconnect all harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Check voltage between ECM terminals 106 (APP sensor 1 signal), 98 (APP sensor 2 signal) and ground under the following conditions.

Terminal	Accelerator pedal	Voltage
106	Fully released	0.5 - 1.0V
(Accelerator pedal position sensor 1)	Fully depressed	4.2 - 4.8V
98	Fully released	0.25 - 0.5V
(Accelerator pedal position sensor 2)	Fully depressed	0.2 - 2.5V

- 4. If NG, replace accelerator pedal assembly and go to next step.
- 5. Perform EC-80, "Accelerator Pedal Released Position Learning".
- 6. Perform EC-80, "Throttle Valve Closed Position Learning".
- 7. Perform EC-80, "Idle Air Volume Learning".

Removal and Installation ACCELERATOR PEDAL

Refer to ACC-3, "ACCELERATOR CONTROL SYSTEM".

M

EC

Е

Н

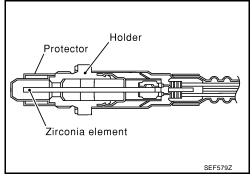
UBS00PFE

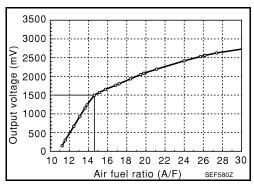
UBS00PFA

DTC P2A00, P2A03 A/F SENSOR 1

PFP:22693

Component Description


UBS00PFC


The A/F sensor is a planar dual-cell limit current sensor. The sensor element of the A/F sensor is the combination of a Nernst concentration cell (sensor cell) with an oxygen-pump cell, which transports ions. It has a heater in the element.

The sensor is capable of precise measurement λ = 1, but also in the lean and rich range. Together with its control electronics, the sensor outputs a clear, continuous signal throughout a wide λ range (0.7 < λ < air).

The exhaust gas components diffuse through the diffusion gap at the electrode of the oxygen pump and Nernst concentration cell, where they are brought to thermodynamic balance.

An electronic circuit controls the pump current through the oxygen-pump cell so that the composition of the exhaust gas in the diffusion gap remains constant at λ = 1. Therefore, the A/F sensor is able to indicate air/fuel ratio by this pumping of current. In addition, a heater is integrated in the sensor to ensure the required operating temperature of 700 - 800°C (1,292 - 1,472°F).

CONSULT-II Reference Value in Data Monitor Mode

UBS00PFD

Specification data are reference values.

MONITOR ITEM	CONI	DITION	SPECIFICATION
A/F SEN1 (B1) A/F SEN1 (B2)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	Fluctuates around 1.5V

On Board Diagnosis Logic

UBS00PFE

To judge the malfunction, the A/F signal computed by ECM from the air fuel ratio (A/F) sensor 1 signal is monitored not to be shifted to LEAN side or RICH side.

DTC No.	Trouble diagnosis name	DTC detecting condition	Possible Cause
P2A00 2A00 (Bank 1) P2A03 2A03 (Bank 2)	Air fuel ratio (A/F) sensor 1 circuit range/performance	 The output voltage computed by ECM from the A/F sensor 1 signal is shifted to the lean side for a specified period. The A/F signal computed by ECM from the A/F sensor 1 signal is shifted to the rich side for a specified period. 	 Air fuel ratio (A/F) sensor 1 Air fuel ratio (A/F) sensor 1 heater Fuel pressure Fuel injector Intake air leaks

DTC Confirmation Procedure

IBSOOPEE

NOTE

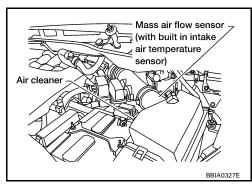
If DTC Confirmation Procedure has been previously conducted, always turn ignition switch OFF and wait at least 10 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

WITH CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- Turn ignition switch OFF and wait at least 10 seconds.
- 3. Turn ignition switch ON and select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CON-SULT-II.
- 4. Clear the self-learning coefficient by touching "CLEAR".
- 5. Turn ignition switch OFF and wait at least 10 seconds.
- 6. Start engine and keep the engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- 7. Let engine idle for 1 minute.
- Keep engine speed between 2,500 and 3,000 rpm for 20 minutes.
- 9. If 1st trip DTC is detected, go to EC-654, "Diagnostic Procedure"


WORK SUPPORT

SELF-LEARNING CONT CLEAR B1
100 %
B2
100 %

WITH GST

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF and wait at least 10 seconds.
- 3. Disconnect mass air flow sensor harness connector.
- 4. Start engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- Select Service \$03 with GST and make sure that DTC P0102 is detected.
- 7. Select Service \$04 with GST and erase the DTC P0102.
- 8. Start engine and keep the engine speed between 3,500 and 4,000 rpm for 1 minute under no load.
- 9. Let engine idle for 1 minute.
- 10. Keep engine speed between 2,500 and 3,000 rpm for 20 minutes.
- 11. Select Service \$07 with GST.

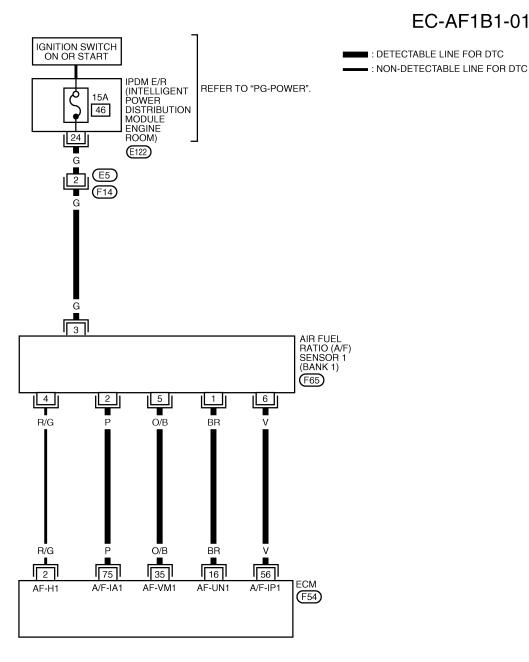
 If 1st trip DTC is detected, go to <u>EC-654, "Diagnostic Procedure"</u>.

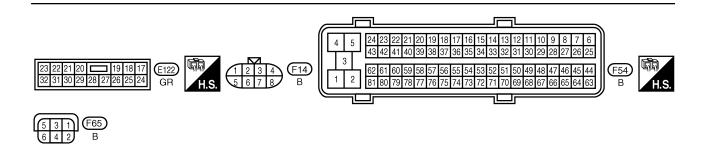
EC

Е

Α

Н


K


L

Wiring Diagram BANK 1

UBS00PFG

EC-AF1B1-01

BBWA2503E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMI- NAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
2	R/G	A/F sensor 1 heater (Bank 1)	[Engine is running] • Warm-up condition • Idle speed	Approximately 5V★ → 10.0V/Div 10 ms/Div T PBIB1584E
16	BR		F	Approximately 3.1V
35	O/B	A/F sensor 1 (Bank 1)	[Engine is running] • Warm-up condition	Approximately 2.6V
56	V	ANT SCHOOL I (DAIIK I)	Idle speed	Approximately 2.3V
75	Р			Approximately 2.3V

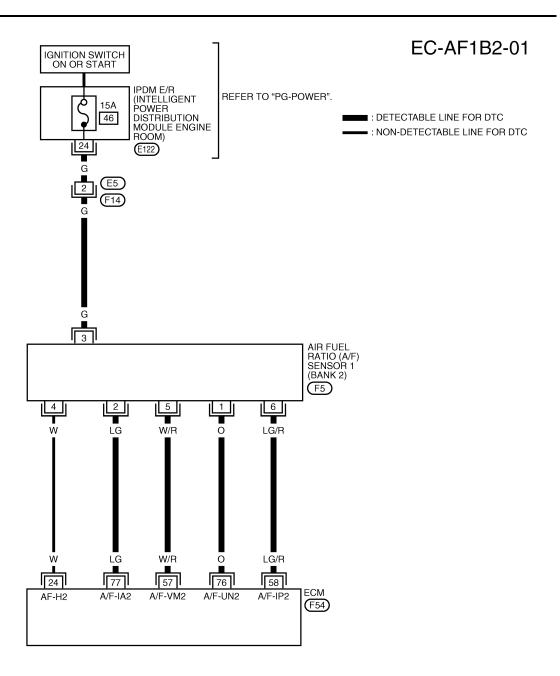
^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

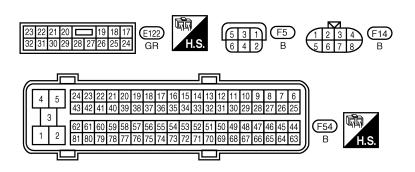
EC

Α

C

D


Е


Н

K

L

BANK 2

BBWA2504E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TERMINAL NO. WIRE COLOR ITEM CONDITION DATA (DC Voltage) 24 W A/F sensor 1 heater (Bank 2) [Engine is running] ■ Warm-up condition ■ Idle speed ■ Approximately 5V★ ■ Idle speed ■ Idle speed ■ Idle speed ■ Warm-up condition ■ Idle speed ■ Idle speed ■ Idle speed ■ Idle spe					_
Engine is running Warm-up condition Idle speed	NAL		ITEM	CONDITION	DATA (DC Voltage)
58 LG/R 76 O Engine is running] Approximately 2.3V Warm-up condition Idle speed Approximately 3.1V	24	W		Warm-up condition	> 10.0V/Div 10 ms/Div T
The sensor 1 (Bank 2) A/F sensor 1 (Bank 2) Warm-up condition Idle speed Approximately 2.3V Approximately 3.1V	57	W/R		r=	Approximately 2.6V
76 O Approximately 3.1V	58		A/E consor 1 (Bank 2)	- 0	Approximately 2.3V
	76	0	AVI SEIISUI I (Dällik Z)	-	Approximately 3.1V
1 77 2.0	77	LG			Approximately 2.3V

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

EC

Α

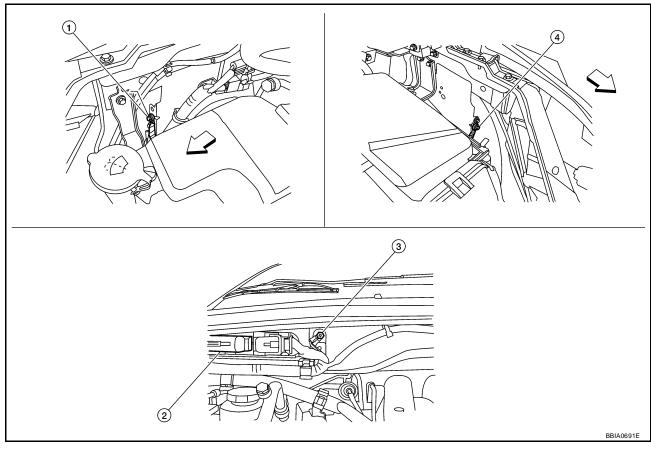
D

Е

G

Н

K


L

Diagnostic Procedure

UBS00PFH

1. CHECK GROUND CONNECTIONS

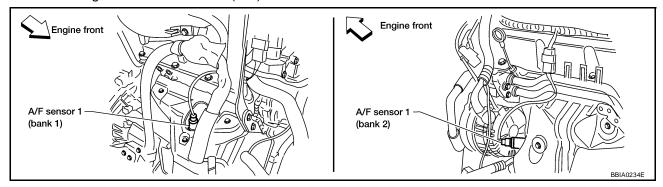
- 1. Turn ignition switch OFF.
- 2. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- 1. Body ground E24

Body ground E15

2. ECM

3. Body ground E9


OK or NG

OK >> GO TO 2.

NG >> Repair or replace ground connections.

$2. \ \text{retighten air fuel ratio (a/f) sensor 1} \\$

Loosen and retighten the air fuel ratio (A/F) sensor 1.

Tightening torque: 50 N-m (5.1 kg-m, 37 ft-lb)

>> GO TO 3.

3. CHECK FOR INTAKE AIR LEAK

- 1. Start engine and run it at idle.
- 2. Listen for an intake air leak after the mass air flow sensor.

OK or NG

OK >> GO TO 4.

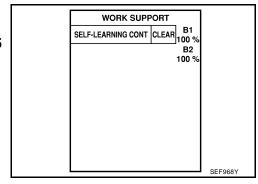
NG >> Repair or replace.

EC

D

Е

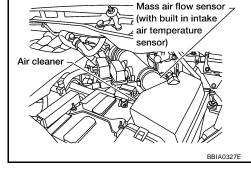
0


Н

4. CLEAR THE SELF-LEARNING DATA.

(II) With CONSULT-II

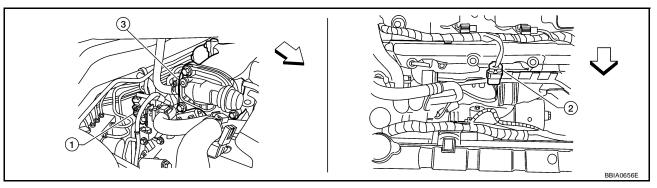
- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0171, P0172, P0174 and P0175 detected?


Is it difficult to start engine?

Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector.
- 4. Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- 6. Make sure DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to <u>EC-63</u>, "HOW TO ERASE <u>EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 8. Make sure DTC P0000 is displayed.
- Run engine for at least 10 minutes at idle speed.
 Is the 1st trip DTC P0171, P0172, P0174 and P0175 detected?

Is it difficult to start engine?


Yes or No

Yes >> Perform trouble diagnosis for DTC P0171, P0174 or P0172, P0175. Refer to <u>EC-322, "DTC P0171, P0174 FUEL INJECTION SYSTEM FUNCTION"</u> or <u>EC-334, "DTC P0172, P0175 FUEL INJECTION SYSTEM FUNCTION"</u>.

No >> GO TO 5.

5. CHECK HARNESS CONNECTOR

- 1. Turn ignition switch OFF.
- 2. Disconnect A/F sensor 1 harness connector.

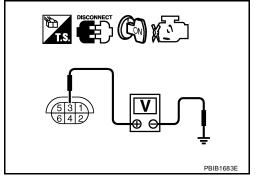
- Vehicle front
- Air fuel ratio (A/F) sensor 1 (bank 1)
 Air fuel ratio (A/F) sensor 1 (bank 2)
 Intake manifold collector harness connector
- 3. Check harness connector for water.

Water should not exist.

OK or NG

OK >> GO TO 6.

NG >> Repair or replace harness connector.


6. CHECK AIR FUEL RATIO (A/F) SENSOR 1 POWER SUPPLY CIRCUIT

- 1. Turn ignition switch ON.
- Check voltage between A/F sensor 1 terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- IPDM E/R harness connector E122
- 15A fuse
- Harness for open or short between A/F sensor 1 and fuse
 - >> Repair or replace harness or connectors.

EC

С

D

Е

F

G

Н

J

K

L

$8. \,$ Check a/f sensor 1 input signal circuit for open and short

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between the following terminals. Refer to Wiring Diagram.

	A/F sensor 1 terminal	ECM terminal
	1	16
Bank1	2	75
Danki	5	35
	6	56
Bank 2	1	76
	2	77
	5	57
	6	58

Continuity should exist.

4. Check harness continuity between the following terminals and ground. Refer to Wiring Diagram.

Ba	nk 1	Bank 2		
A/F sensor 1 terminal	ECM terminal	A/F sensor 1 terminal	ECM terminal	
1	16	1	76	
2	75	2	77	
5	35	5	57	
6	56	6	58	

Continuity should not exist.

5. Also check harness for short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK A/F SENSOR 1 HEATER

Refer to EC-175, "Component Inspection".

OK or NG

OK >> GO TO 10.

NG >> GO TO 11.

10. CHECK INTERMITTENT INCIDENT

Perform EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

OK or NG

OK >> GO TO 11.

NG >> Repair or replace.

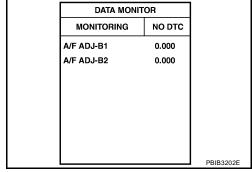
11. REPLACE AIR FUEL RATIO (A/F) SENSOR 1

Replace malfunctioning air fuel ratio (A/F) sensor 1.

CAUTION:

- Discard any air fuel ratio (A/F) sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new air fuel ratio (A/F) sensor, clean exhaust system threads using Heated Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

>> GO TO 12.


12. CONFIRM A/F ADJUSTMENT DATA

- 1. Turn ignition switch ON.
- 2. Select "A/F ADJ-B1" and "A/F ADJ-B2" in "DATA MONITOR" mode with CONSULT-II.
- 3. Make sure that "0.000" is displayed on CONSULT-II screen.

OK or NG

OK >> INSPECTION END

NG >> GO TO 13.

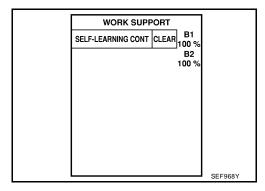
EC

С

Е

D

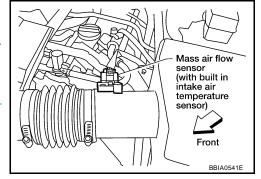
Н


i

ь л

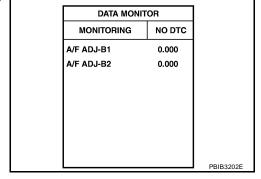
13. CLEAR A/F ADJUSTMENT DATA

(II) With CONSULT-II


- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".

W Without CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn ignition switch OFF.
- 3. Disconnect mass air flow sensor harness connector.
- 4. Restart engine and let it idle for at least 5 seconds.
- Stop engine and reconnect mass air flow sensor harness connector.
- 6. Make sure DTC P0102 is displayed.
- 7. Erase the DTC memory. Refer to <u>EC-63</u>, "<u>HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION"</u>.
- 8. Make sure DTC P0000 is displayed.


>> GO TO 14.

14. CONFIRM A/F ADJUSTMENT DATA

- 1. Turn ignition switch OFF and then ON.
- 2. Select "A/F ADJ-B1" and "A/F ADJ-B2" in "DATA MONITOR" mode with CONSULT-II.
- 3. Make sure that "0.000" is displayed on CONSULT-II screen.

>> INSPECTION END

Removal and Installation AIR FUEL RATIO (A/F) SENSOR 1

Refer to EM-26, "EXHAUST MANIFOLD AND THREE WAY CATALYST" .

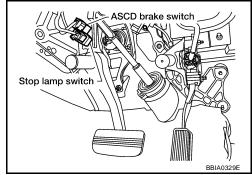
UBS00PFI

ASCD BRAKE SWITCH

PFP:25320

UBS00PFJ

Α


EC

D

Е

Component Description

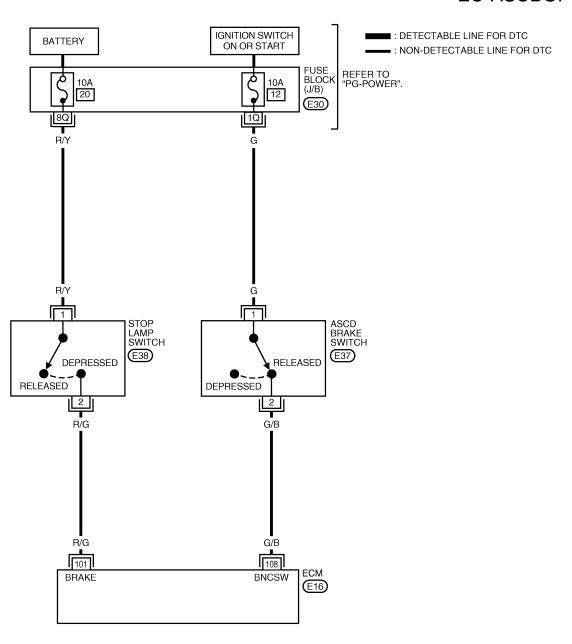
When the brake pedal is depressed, ASCD brake switch is turned OFF and stop lamp switch is turned ON. ECM detects the state of the brake pedal by this input of two kinds (ON/OFF signal). Refer to EC-29, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

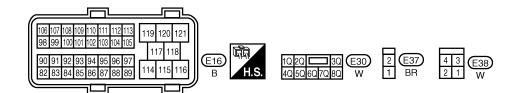
CONSULT-II Reference Value in Data Monitor Mode

UBS00PFK

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
BRAKE SW1	Ignition switch: ON	Brake pedal: Fully released	ON
(ASCD brake switch)	• ignition switch. ON	Brake pedal: Slightly depressed	OFF
BRAKE SW2	Ignition switch: ON	Brake pedal: Fully released	OFF
(Stop lamp switch)	amp switch)	Brake pedal: Slightly depressed	ON


Н


ı

K

Wiring Diagram UBS00PFI

EC-ASCBOF-01

BBWA2542E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
101 R/G	B/C	Stop lamp switch	[Ignition switch: OFF] • Brake pedal: Fully released	Approximately 0V
	NG		[Ignition switch: OFF] • Brake pedal: Slightly depressed	BATTERY VOLTAGE (11 - 14V)
108 G/B	G/R	G/B ASCD brake switch	[Ignition switch: ON] • Brake pedal: Fully released	BATTERY VOLTAGE (11 - 14V)
	G/B		[Ignition switch: ON] • Brake pedal: Slightly depressed	Approximately 0V

Diagnostic Procedure

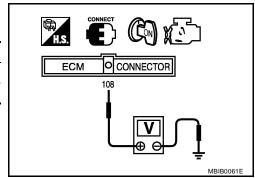
1. CHECK OVERALL FUNCTION-I

(P) With CONSULT-II

- 1. Turn ignition switch ON.
- 2. Select "BRAKE SW1" in "DATA MONITOR" mode with CONSULT-II.
- Check "BRAKE SW1" indication under the following conditions.

CONDITION	INDICATION
Brake pedal: Slightly depressed	OFF
Brake pedal: Fully released	ON

DATA MO	ONITOR
MONITOR	NO DTC
BRAKE SW1	OFF


⋈ Without CONSULT-II

- Turn ignition switch ON.
- Check voltage between ECM terminal 108 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Slightly depressed	Approximately 0V
Brake pedal: Fully released	Battery voltage

OK or NG

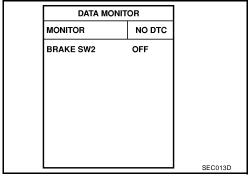
>> GO TO 2. OK NG >> GO TO 3.

EC

Α

Е

UBS00PFM


Н

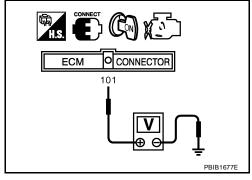
2. CHECK OVERALL FUNCTION-II

(II) With CONSULT-II

Check "BRAKE SW2" indication in "DATA MONITOR" mode.

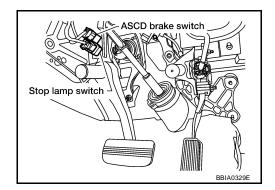
CONDITION	INDICATION
Brake pedal: Fully released	OFF
Brake pedal: Slightly depressed	ON

⋈ Without CONSULT-II


Check voltage between ECM terminal 101 and ground under the following conditions.

CONDITION	VOLTAGE
Brake pedal: Fully released	Approximately 0V
Brake pedal: Slightly depressed	Battery voltage

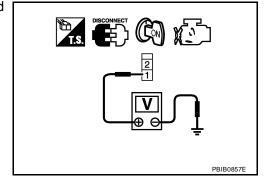
OK or NG


OK >> INSPECTION END

NG >> GO TO 7.

3. CHECK ASCD BRAKE SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Turn ignition switch ON.



4. Check voltage between ASCD brake switch terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between ASCD brake switch and fuse
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

5. CHECK ASCD BRAKE SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 108 and ASCD brake switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

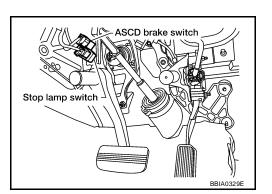
OK or NG

OK >> GO TO 6.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

6. CHECK ASCD BRAKE SWITCH

Refer to EC-667, "Component Inspection".

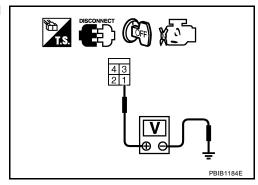

OK or NG

OK >> GO TO 11.

NG >> Replace ASCD brake switch.

7. CHECK STOP LAMP SWITCH POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.



3. Check voltage between stop lamp switch terminal 1 and ground with CONSULT -II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

EC

F

F

- 1 1

K

L

8. DETECT MALFUNCTIONING PART

Check the following.

- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between stop lamp switch and battery
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK STOP LAMP SWITCH INPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Disconnect ECM harness connector.
- Check harness continuity between ECM terminal 101 and stop lamp switch terminal 2. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 10.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

10. CHECK STOP LAMP SWITCH

Refer to EC-667, "Component Inspection".

OK or NG

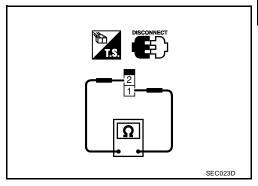
OK >> GO TO 11.

NG >> Replace stop lamp switch.

11. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

>> INSPECTION END

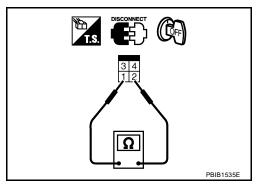

Component Inspection ASCD BRAKE SWITCH

UBS00PFN

- 1. Turn ignition switch OFF.
- 2. Disconnect ASCD brake switch harness connector.
- 3. Check harness continuity between ASCD brake switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released	Should exist
Brake pedal: Slightly depressed	Should not exist

If NG, adjust ASCD brake switch installation, refer to <u>BR-6</u>, <u>"BRAKE PEDAL"</u>, and perform step 3 again.



STOP LAMP SWITCH

- 1. Turn ignition switch OFF.
- 2. Disconnect stop lamp switch harness connector.
- 3. Check harness continuity between stop lamp switch terminals 1 and 2 under the following conditions.

Condition	Continuity
Brake pedal: Fully released	Should not exist
Brake pedal: Slightly depressed	Should exist

If NG, adjust stop lamp switch installation, refer to <u>BR-6, "BRAKE PEDAL"</u>, and perform step 3 again.

EC

Α

D

Е

F

G

Н

K

L

ASCD INDICATOR

ASCD INDICATOR PFP:24814

Component Description

UBS00PF0

ASCD indicator lamp illuminates to indicate ASCD operation status. Lamp has two indicators, CRUISE and SET, and is integrated in combination meter.

CRUISE indicator illuminates when MAIN switch on ASCD steering switch is turned ON to indicate that ASCD system is ready for operation.

SET indicator illuminates when following conditions are met.

- CRUISE indicator is illuminated.
- SET/COAST switch on ASCD steering switch is turned ON while vehicle speed is within the range of ASCD setting.

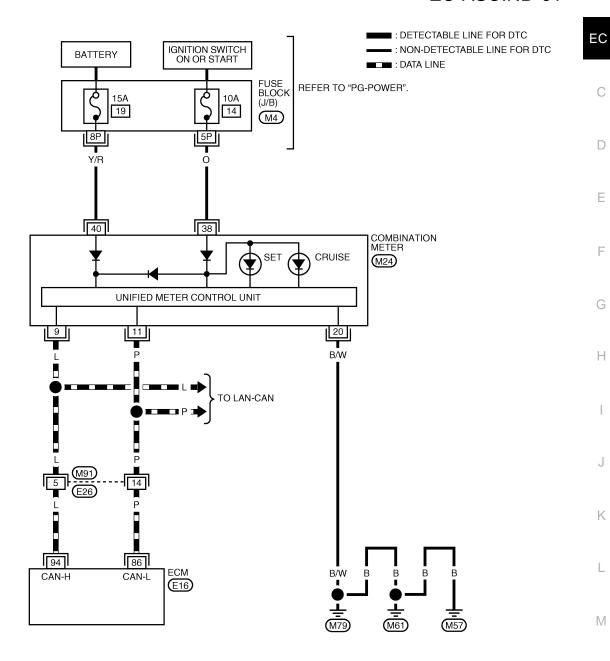
SET indicator remains lit during ASCD control.

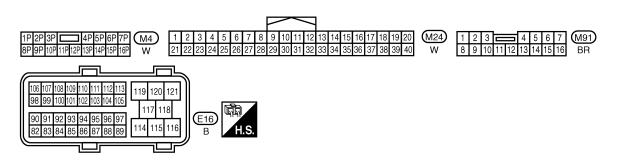
Refer to EC-29, "AUTOMATIC SPEED CONTROL DEVICE (ASCD)" for the ASCD function.

CONSULT-II Reference Value in Data Monitor Mode

UBS00PFP

Specification data are reference value.


MONITOR ITEM	CONDITION		SPECIFICATION
CRUISE LAMP	Ignition switch: ON	MAIN switch: Pressed at the 1st time → at the 2nd time	$ON \rightarrow OFF$
	MAIN switch: ON	ASCD: Operating	ON
SET LAMP	When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH)	ASCD: Not operating	OFF


Wiring Diagram

BS00PFQ

Α

EC-ASCIND-01

BBWA2543E

ASCD INDICATOR

UBS00PFR

Diagnostic Procedure

1. CHECK OVERALL FUNCTION

Check ASCD indicator under the following conditions.

ASCD INDICATOR	CONDITION		SPECIFICATION
CRUISE LAMP	Ignition switch: ON	MAIN switch: Pressed at the 1st time → at the 2nd time	$ON \to OFF$
	MAIN switch: ON	ASCD: Operating	ON
SET LAMP	When vehicle speed is between 40 km/h (25 MPH) and 144 km/h (89 MPH)	ASCD: Not operating	OFF

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK DTC

Check that DTC U1000 or U1001 is not displayed.

OK or NG

OK >> GO TO 3.

NG >> Perform trouble diagnoses for DTC U1000, U1001. Refer to EC-159, "DTC U1000, U1001 CAN COMMUNICATION LINE" .

3. CHECK COMBINATION METER OPERATION

Does combination meter operate normally?

Yes or No

Yes >> GO TO 4.

No >> Check combination meter circuit. Refer to <u>DI-5, "COMBINATION METERS"</u>.

4. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

ELECTRICAL LOAD SIGNAL

ELECTRICAL LOAD SIGNAL

PFP:25350

Description

UBS00PES

The electrical load signal (Headlamp switch signal, rear window defogger switch signal, etc.) is transferred through the CAN communication line from BCM to ECM via IPDM E/R.

UBS00PFT

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
LOAD SIGNAL • Ignition switch: ON	Rear window defogger switch is ON and/or lighting switch is in 2nd.	ON	
	Rear window defogger switch is OFF and lighting switch is OFF.	OFF	
HEATER FAN SW • Ignition switch: ON	Heater fan: Operating	ON	
HEATEN FAIN SW	HEATER FAIN SW	Heater fan: Not operating	OFF

Diagnostic Procedure

UBS00PFU

1. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-I

- Turn ignition switch ON.
- Connect CONSULT-II and select "DATA MONITOR" mode.
- Select "LOAD SIGNAL" and check indication under the following conditions.

Condition	Indication
Rear window defogger switch: ON	ON
Rear window defogger switch: OFF	OFF

DATA MONITOR MONITORING NO DTC LOAD SIGNAL PBIB0103E

OK or NG

OK >> GO TO 2. NG >> GO TO 4.

2. CHECK LOAD SIGNAL CIRCUIT OVERALL FUNCTION-II

Check "LOAD SIGNAL" indication under the following conditions.

Condition	Indication
Lighting switch: ON at 2nd position	ON
Lighting switch: OFF	OFF

MONITORING	NO DTC	
LOAD SIGNAL	ON	
		PBIB0103E

DATA MONITOR

OK or NG

OK >> GO TO 3. NG >> GO TO 5.

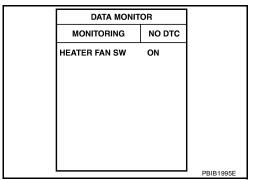
EC-671 2007 Quest Revision: March 2006

EC

Α

Е

Н


K

ELECTRICAL LOAD SIGNAL

3. CHECK HEATER FAN SIGNAL CIRCUIT OVERALL FUNCTION

Check "HEATER FAN SW" in "DATA MONITOR" mode with CONSULT-II under the following conditions.

Condition	LOAD SIGNAL
Heater fan control switch: ON	ON
Heater fan control switch: OFF	OFF

OK or NG

OK >> INSPECTION END.

NG >> GO TO 6.

4. CHECK REAR WINDOW DEFOGGER SYSTEM

Refer to <u>GW-87</u>, "<u>REAR WINDOW DEFOGGER</u>".

>> INSPECTION END

5. CHECK HEADLAMP SYSTEM

Refer to LT-5, "HEADLAMP (FOR USA)" or LT-28, "HEADLAMP (FOR CANADA) - DAYTIME LIGHT SYSTEM -" .

>> INSPECTION END

6. CHECK HEATER FAN CONTROL SYSTEM

Refer to ATC-32, "TROUBLE DIAGNOSIS" or MTC-32, "TROUBLE DIAGNOSIS".

>> INSPECTION END

ELECTRONIC CONTROLLED ENGINE MOUNT

PFP:11270

System Description

UBS00PFV

Α

EC

D

Е

Sensor	Input Signal to ECM	ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE) Engine speed		Engine mount	Electronic controlled engine mount	
Wheel sensor	Vehicle speed*	CONTROL	mount	

Sensor	Input Signal to ECM	ECM function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed	Engine mount	Electronic controlled engine mount
Wheel sensor	Vehicle speed*		mount

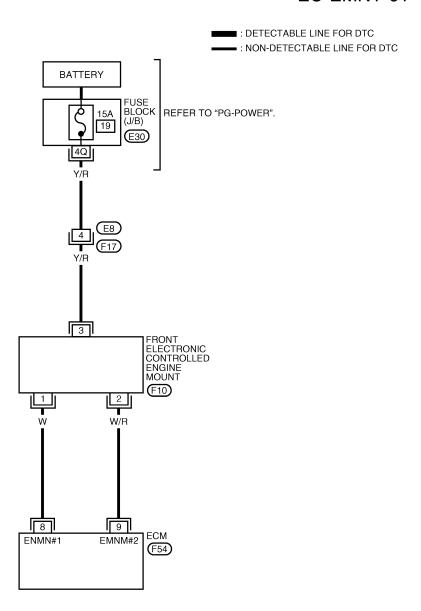
^{*:} This signal is sent to the ECM through CAN communication line.

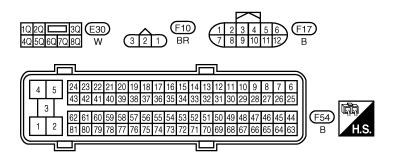
The ECM controls the engine mount operation corresponding to the engine speed and the vehicle speed. The control system has 2-step control [Soft/Hard]

Vehicle condition	Engine mount control	
Engine speed: Below 950 rpm	Soft	
Engine speed: Above 950 rpm	Hard	

CONSULT-II Reference Value in Data Monitor Mode

UBS00PFW


Specification data are reference values.


MONITOR ITEM	CONDITION		SPECIFICATION
ENGINE MOUNT • Engine: Running	• Engine: Pupping	Engine speed: Below 950 rpm	IDLE
	Engine speed: Above 950 rpm	TRVL	

Н

Wiring Diagram

EC-EMNT-01

BBWA2007E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- WIRE COLOR ITEM CONDITION	DATA (DC Voltage)
NO. GOLOR	
[Engine is running]	BATTERY VOLTAGE (11 - 14V)
• Engine speed: Above 950 rp	Off (11 - 14 v)
[Engine is running]	
8 W Electronic controlled engine mount-1 • For 2 seconds after engine sor less	speed: 950 rpm 0 - 1.0V
[Engine is running]	
• 2 seconds after engine spee less	ed: 950 rpm or 2.0 - 3.0V
[Engine is running]	BATTERY VOLTAGE
Engine speed: Below 950 rp.	om (11 - 14V)
[Engine is running]	
9 W/R Electronic controlled engine mount-2 • For 2 seconds after engine so or more	speed: 950 rpm 0 - 1.0V
[Engine is running]	
2 seconds after engine spee more	ed: 950 rpm or 2.0 - 3.0V

Diagnostic Procedure

1. CHECK OVERALL FUNCTION

(II) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Select "ENGINE MOUNTING" in "ACTIVE TEST" mode with CONSULT-II and touch "ON/OFF" on the CINSULT-II screen.
- 3. Check that the motor operating sound is heard from front electronic controlled engine mount for about 0.5 seconds according to the switching condition of "ENGINE MOUNTING".

				l
	ACTIVE TES	Т		
	ENGINE MOUNTING	IDLE		
	MONITOR			
	ENG SPEED	XXX rpm		
	COOLAN TEMP/S	xxx °c		
İ			SEC237C	

Α

EC

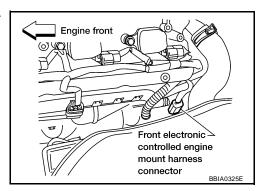
Е

UBS00PFY

⋈ Without CONSULT-II

- 1. Make sure that gear position is P or N.
- 2. Start engine and let it idle.
- 3. Change the engine speed from idle to more than 1,000 rpm and then return to idle (with vehicle stopped).
- 4. Check that the motor operating sound is heard from front electronic controlled engine mount for about 0.5 seconds when changing engine speed.

It is better to hear the operating sound around the left side front wheel house.

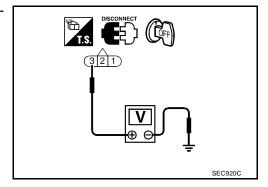

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.

$2. \ \mathsf{CHECK} \ \mathsf{ELECTRONIC} \ \mathsf{CONTROLLED} \ \mathsf{ENGINE} \ \mathsf{MOUNT} \ \mathsf{POWER} \ \mathsf{SUPPLY} \ \mathsf{CIRCUIT}$

- 1. Turn ignition switch OFF.
- Disconnect electronic controlled engine mount harness connector.



3. Check voltage between electronic controlled engine mount terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

3. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E8, F17
- Fuse block (J/B) connector E30
- 15A fuse
- Harness for open and short between electronic controlled engine mount and battery
 - >> Repair harness or connectors.

4. CHECK ELECTRONIC CONTROLLED ENGINE MOUNT OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminals and electronic engine mount terminals as follows. Refer to Wiring Diagram.

ECM terminal	Electronic controlled engine mount terminal
8	1
9	2

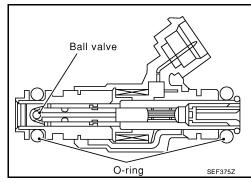
Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

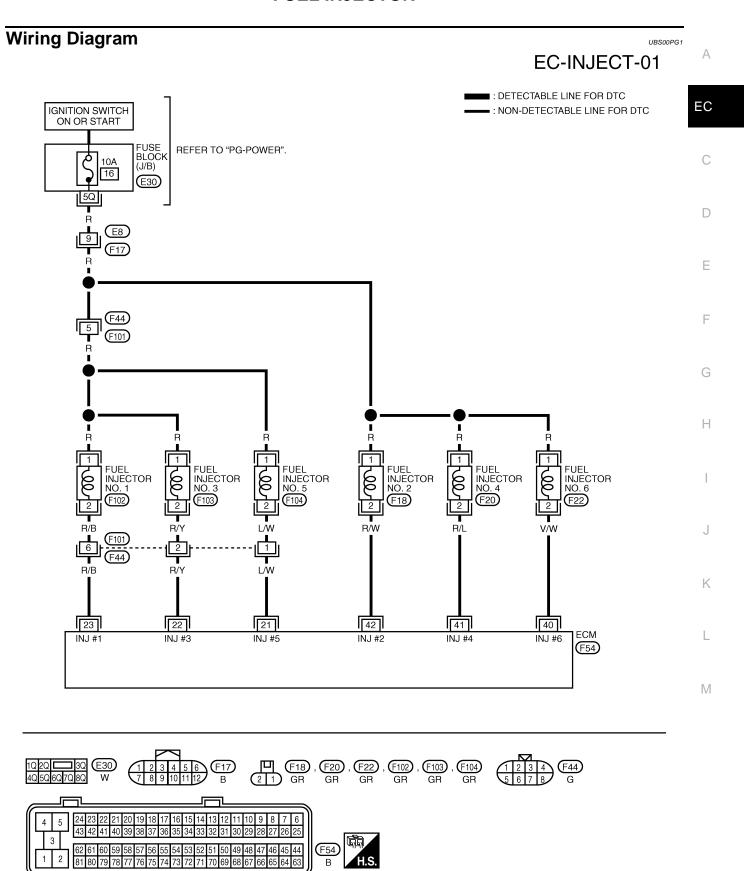

5. OUESK ELESTRONIS SONTROLLER ENGINE MOUNT	
5. CHECK ELECTRONIC CONTROLLED ENGINE MOUNT Visually check electronic controlled engine mount.	A
OK or NG OK >> GO TO 6. NG >> Replace electronic controlled engine mount.	EC
6. CHECK INTERMITTENT INCIDENT	С
Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .	
>> INSPECTION END	D
	Е
	F
	G
	Н
	I
	J
	K
	L

FUEL INJECTOR PFP:16600

Component Description

UBS00PFZ

The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the fuel injector circuit, the coil in the fuel injector is energized. The energized coil pulls the ball valve back and allows fuel to flow through the fuel injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the fuel injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.



CONSULT-II Reference Value in Data Monitor Mode

UBS00PG0

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
B/FUEL SCHDL	EC-139, "TROUBLE DIAGNOSIS - SPECIFICATION VALUE".		
	Engine: After warming up	Idle	2.0 - 3.0 msec
INJ PULSE-B1 INJ PULSE-B2	Shift lever: P or NAir conditioner switch: OFFNo load	2,000 rpm	1.9 - 2.9 msec

BBWA2539E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
21 22 23 40 41 42	L/W R/Y R/B V/W R/L R/W	Fuel injector No. 5 Fuel injector No. 3 Fuel injector No. 1 Fuel injector No. 6 Fuel injector No. 4 Fuel injector No. 2	[Engine is running] • Warm-up condition • Idle speed NOTE: The pulse cycle changes depending on rpm at idle	BATTERY VOLTAGE (11 - 14V) ★ SEC984C BATTERY VOLTAGE (11 - 14V) ★
		[Engine is running]Warm-up conditionEngine speed: 2,000 rpm.	→ 10.0 V/Div 50 ms/Div SEC985C	

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

UBS00PG2

1. INSPECTION START

Turn ignition switch to START.

Is any cylinder ignited?

Yes or No

Yes (With CONSULT-II)>>GO TO 2. Yes (Without CONSULT-II)>>GO TO 3. No >> GO TO 7.

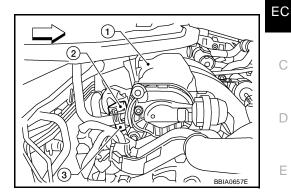
2. CHECK OVERALL FUNCTION

(II) With CONSULT-II

- 1. Start engine.
- 2. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 3. Make sure that each circuit produces a momentary engine speed drop.

ACTIVE TEST		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

OK or NG

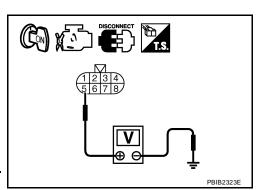

OK >> INSPECTION END

NG >> GO TO 7.

3. CHECK FUNCTION OF FUEL INJECTOR-I

W Without CONSULT-II

- 1. Stop engine.
- 2. Disconnect harness connector F44 (2), F101 (3).
- 3. Turn ignition switch ON.
- Intake manifold collector (1)



4. Check voltage between harness connector F44 terminal 5 and ground with CONSULT-II or tester.

Voltage: Battery voltage

- 5. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 7. Check harness continuity between harness connector F44 terminal and ECM terminal as follows. Refer to Wiring Diagram.

Cylinder	Harness connector F44 terminal	ECM terminal
1	6	23
3	2	22
5	1	21

Continuity should exist.

8. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

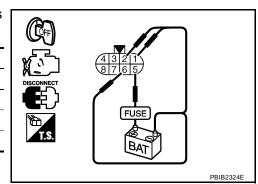
4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E8, F17
- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between harness connector F44 and fuse
- Harness for open or short between harness connector F44 and ECM

>> Repair open circuit or short to ground or short to power in harness or connectors.

D


Е

Н

5. CHECK FUNCTION OF FUEL INJECTOR-II

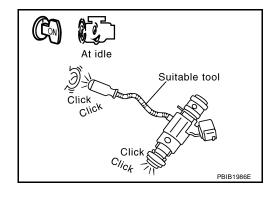
Provide battery voltage between harness connector F101 as follows and then interrupt it. Listen to each fuel injector operating sound.

Cylinder	Harness connector F101 terminal		
Cymidei	(+)	(–)	
1	5	6	
3	5	2	
5	5	1	

Operating sound should exist.

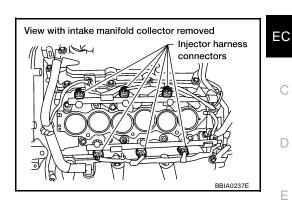
OK or NG

OK >> GO TO 6. NG >> GO TO 7.


6. CHECK FUNCTION OF FUEL INJECTOR-III

- 1. Reconnect all harness connector disconnected.
- 2. Start engine.
- 3. Listen to fuel injectors No. 2, No. 4, No.6 operating sound.

Clicking noise should exist.


OK or NG

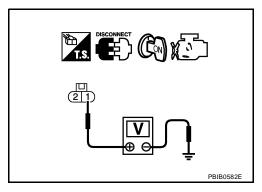
OK >> **INSPECTION END** NG >> GO TO 7.

$7.\,$ CHECK FULE INJECTOR POWER SUPPLY CIRCUIT

- 1. Turn ignition switch OFF.
- 2. Disconnect fuel injector harness connector.

Е

Н


M

- 3. Turn ignition switch ON.
- Check voltage between fuel injector terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 9. NG >> GO TO 8.

8. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E8, F17
- Harness connectors F44, F101
- Fuse block (J/B) connector E30
- 10A fuse
- Harness for open or short between fuel injector and fuse
 - >> Repair harness or connectors.

9. CHECK FUEL INJECTOR OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect ECM harness connector.
- Check harness continuity between fuel injector terminal 2 and ECM terminals 21, 22, 23, 40, 41, 42. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 11. NG >> GO TO 10.

10. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F101, F44
- Harness for open or short between fuel injector and ECM
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

11. CHECK FUEL INJECTOR

Refer to EC-684, "Component Inspection".

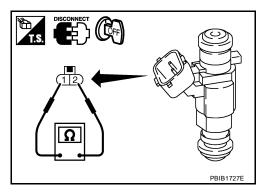
OK or NG

OK >> GO TO 12.

NG >> Replace fuel injector.

12. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".


>> INSPECTION END

Component Inspection FUEL INJECTOR

UBS00PG3

- 1. Disconnect fuel injector harness connector.
- 2. Check resistance between terminals as shown in the figure.

Resistance: $11.1 - 14.5\Omega$ [at $10 - 60^{\circ}$ C ($50 - 140^{\circ}$ F)]

Removal and Installation FUEL INJECTOR

Refer to EM-40, "FUEL INJECTOR AND FUEL TUBE" .

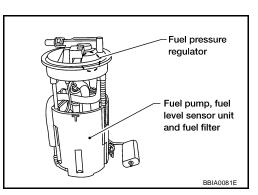
UBS00PG4

FUEL PUMP PFP:17042

Description SYSTEM DESCRIPTION

UBS00PG5

Sensor	Input Signal to ECM	ECM Function	Actuator
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)	Engine speed*	Fuel pump control	Fuel pump relay
Battery	Battery voltage*		


^{*:} ECM determines the start signal status by the signals of engine speed and battery voltage.

The ECM activates the fuel pump for 1 second after the ignition switch is turned ON to improve engine startability. If the ECM receives a engine speed signal from the camshaft position sensor (PHASE), it knows that the engine is rotating, and causes the pump to operate. If the engine speed signal is not received when the ignition switch is ON, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation	
Ignition switch is turned to ON.	Operates for 1 second.	
Engine running and cranking	Operates.	
When engine is stopped	Stops in 1.5 seconds.	
Except as shown above	Stops.	

COMPONENT DESCRIPTION

A turbine type design fuel pump is used in the fuel tank.

CONSULT-II Reference Value in Data Monitor Mode

Specification data are reference values.

MONITOR ITEM	CONDITION	SPECIFICATION	
FUEL PUMP RLY	For 1 second after turning ignition switch ONEngine running or cranking	ON	M
	Except above conditions	OFF	

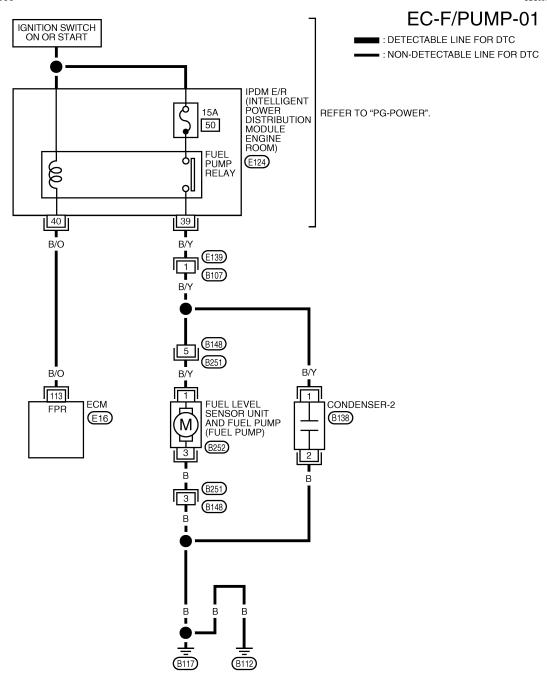
EC

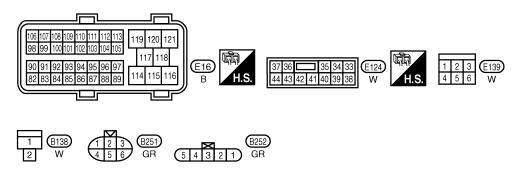
С

_

D

F


G


Н

Κ

UBS00PG6

BBWA2540E

FUEL PUMP

Specification data are reference values and are measured between each terminal and ground.

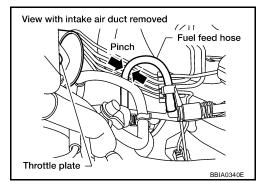
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
113	B/O	Fuel pump relay	[Ignition switch: ON] ● For 1 second after turning ignition switch ON [Engine is running]	0 - 1.5V
110	D/O	Tuel pullip lolay	[Ignition switch: ON] ■ More than 1 second after turning ignition switch ON	BATTERY VOLTAGE (11 - 14V)

Diagnostic Procedure

1. CHECK OVERALL FUNCTION

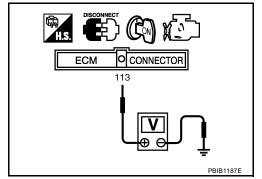

- 1. Turn ignition switch ON.
- 2. Pinch fuel feed hose with two fingers.

Fuel pressure pulsation should be felt on the fuel feed hose for 1 second after ignition switch is turned ON.

OK or NG

OK >> INSPECTION END

NG >> GO TO 2.


2. CHECK FUEL PUMP POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Turn ignition switch ON.
- 4. Check voltage between ECM terminal 113 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 4. NG >> GO TO 3.

Α

EC

D

UBS00PG8

Е

G

Н

K

L

3. CHECK FUEL PUMP POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF.
- 2. Disconnect IPDM E/R harness connector E124.
- Check harness continuity between IPDM E/R terminal 40 and ECM terminal 113. Refer to Wiring Diagram.

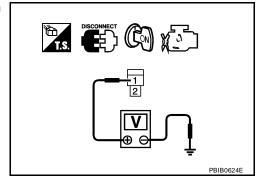
Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 13.

NG >> Repair open circuit or short to power or short to ground in harness or connectors.


4. CHECK CONDENSER-2 POWER SUPPLY CIRCUIT-I

- 1. Turn ignition switch OFF.
- 2. Reconnect all harness connectors disconnected.
- 3. Disconnect condenser-2 harness connector.
- 4. Turn ignition switch ON.
- Check voltage between condenser-2 terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage should exist for 1 second after ignition switch is turned ON.

OK or NG

OK >> GO TO 8. NG >> GO TO 5.

5. CHECK 15A FUSE

- 1. Turn ignition switch OFF.
- 2. Disconnect 15A fuse.
- 3. Check 15A fuse.

OK or NG

OK >> GO TO 6.

NG >> Replace fuse.

6. CHECK CONDENSER-2 POWER SUPPLY CIRCUIT-II

- 1. Disconnect IPDM E/R harness connector E124.
- Check harness continuity between IPDM E/R terminal 39 and condenser-2 terminal 1. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 13.

NG >> GO TO 7.

7. detect malfunctioning part

Check the following.

- Harness connectors B107, E139
- Harness for open or short between IPDM E/R and condenser-2

>> Repair harness or connectors.

8. CHECK CONDENSER-2 GROUND CIRCUIT FOR OPEN AND SHORT

1. Check harness continuity between condenser-2 terminal 2 and ground. Refer to Wiring Diagram.

Continuity should exist.

2. Also check harness for short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to power in harness or connectors.

9. CHECK CONDENSER-2

Refer to EC-690, "Component Inspection".

OK or NG

OK >> GO TO 10.

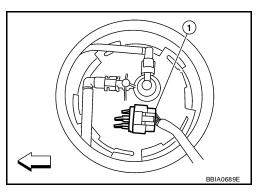
NG >> Replace condenser-2.

10. CHECK FUEL PUMP POWER SUPPLY AND GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- Disconnect "fuel level sensor unit and fuel pump" harness connector.
- 3. Disconnect harness connectors E139, B107
- Check harness continuity between "fuel level sensor unit and fuel pump" terminal 1 and harness connector B107 terminal 1, "fuel level sensor unit and fuel pump" terminal 3 and ground. Refer to Wiring Diagram.

Continuity should exist.

5. Also check harness for short to ground and short to power.


OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness connector B107
- Harness connectors B148, E251
- Harness for open or short between harness connector B107 and "fuel level sensor unit and fuel pump"
- Harness for open or short between "fuel level sensor unit and fuel pump" and ground
 - >> Repair harness or connectors.

EC

Ŭ

C

D

Е

G

Н

J

Κ

. .

L

FUEL PUMP

12. CHECK FUEL PUPMP

Refer to EC-690, "Component Inspection".

OK or NG

OK >> GO TO 13.

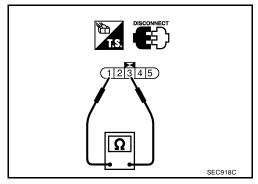
NG >> Replace "fuel level sensor unit and fuel pump".

13. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT" .

OK or NG

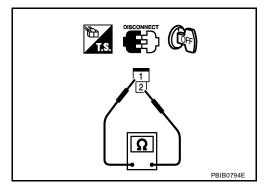
OK >> Replace IPDM E/R. Refer to <u>PG-18</u>, "IPDM E/R (INTELLIGENT POWER DISTRIBUTION MOD-ULE ENGINE ROOM)".


NG >> Repair or replace harness or connectors.

Component Inspection FUEL PUMP

UBS00PG9

- 1. Disconnect "fuel level sensor unit and fuel pump" harness connector.
- Check resistance between "fuel level sensor unit and fuel pump" terminals 1 and 3.


Resistance: Approximately 0.2 - 5.0 Ω [at 25°C (77°F)]

CONDENSER-2

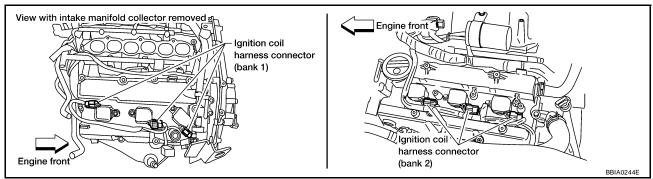
- Turn ignition switch OFF.
- 2. Disconnect condenser-2 harness connector.
- 3. Check resistance between condenser-2 terminals as 1 and 2.

Resistance: Above 1 M Ω [at 25°C (77°F)]

Removal and Installation FUEL PUMP

UBS00PGA

Refer to FL-5, "FUEL LEVEL SENSOR UNIT, FUEL FILTER AND FUEL PUMP ASSEMBLY".


IGNITION SIGNAL PFP:22448

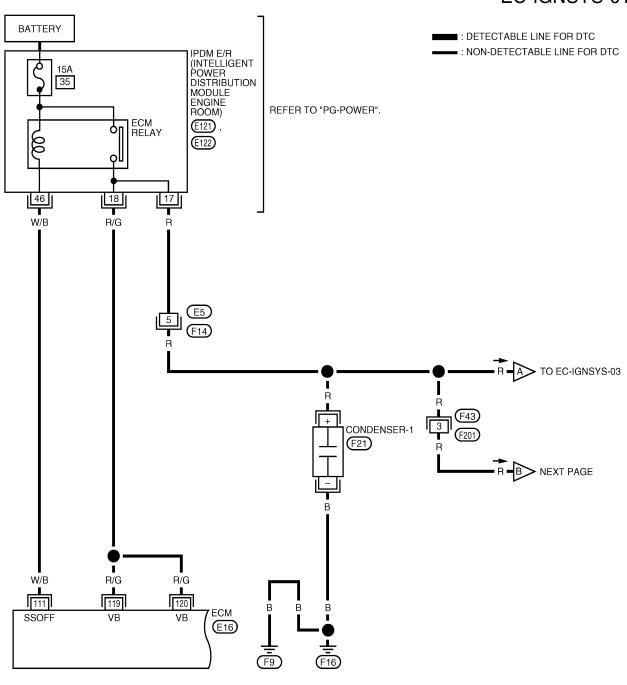
Component Description IGNITION COIL & POWER TRANSISTOR

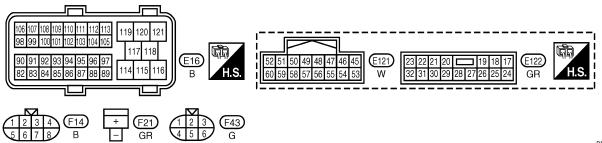
UBS00PGB

The ignition signal from the ECM is sent to and amplified by the power transistor. The power transistor turns ON and OFF the ignition coil primary circuit. This ON/OFF operation induces the proper high voltage in the coil secondary circuit.

Α

D


C


Е

Н

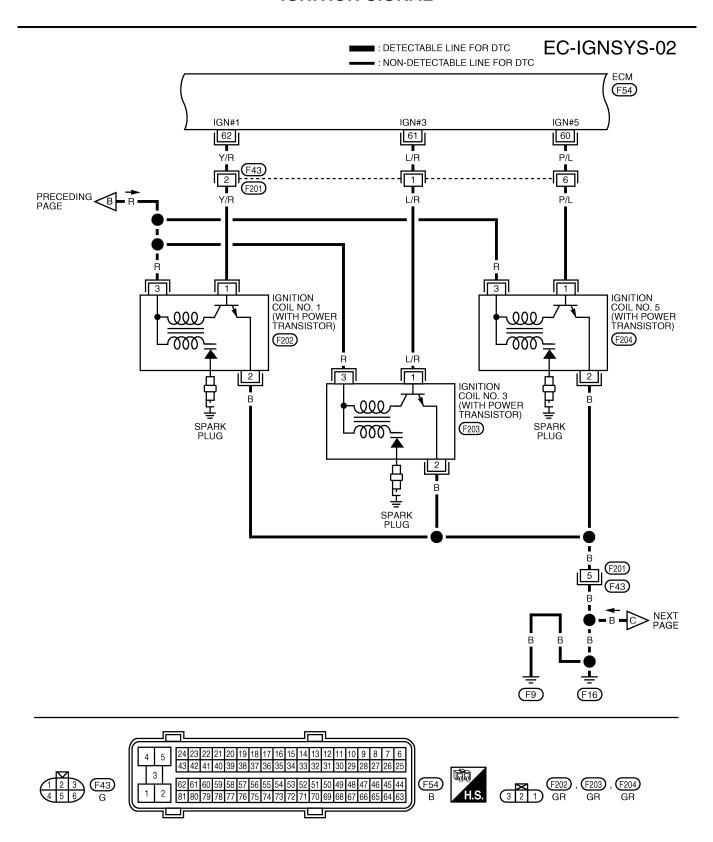
Wiring Diagram UBS00PGC

EC-IGNSYS-01

BBWA2535E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
111	W/B	ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF] • For a few seconds after turning ignition switch OFF	0 - 1.5V
		(Seil Silut-Oil)	[Ignition switch: OFF] • More than a few seconds after turning ignition switch OFF	BATTERY VOLTAGE (11 - 14V)
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)

EC С D Е F Н

Α

_

BBWA2536E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
60 61	P/L L/R	Ignition signal No. 5 Ignition signal No. 3	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	0 - 0.4V★
62	Y/R	Ignition signal No. 1	[Engine is running] ■ Warm-up condition ■ Engine speed: 2,500 rpm	0.1 - 0.6V★

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

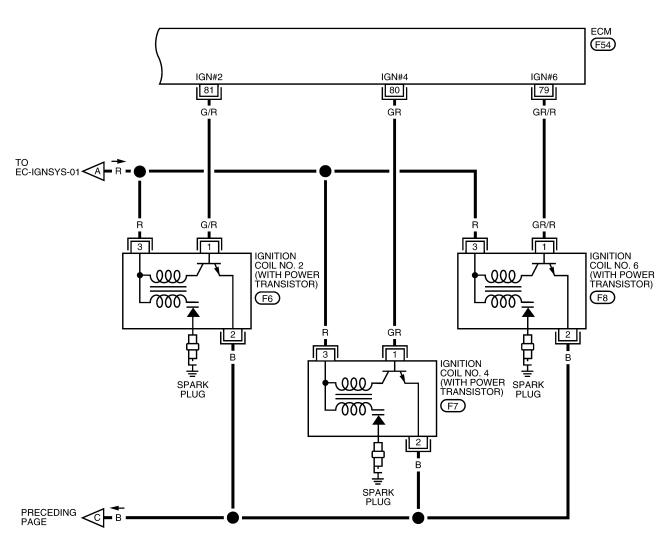
M

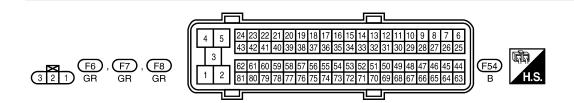
Α

EC

C

 D


Е


Н

Revision: March 2006 EC-695 2007 Quest

EC-IGNSYS-03

: DETECTABLE LINE FOR DTC
: NON-DETECTABLE LINE FOR DTC

BBWA2537E

Specification data are reference values and are measured between each terminal and ground. Pulse signal is measured by CONSULT-II.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
79 80	GR/R GR	Ignition signal No. 6 Ignition signal No. 4	 [Engine is running] Warm-up condition Idle speed NOTE: The pulse cycle changes depending on rpm at idle 	0 - 0.4V★
81	G/R	Ignition signal No. 2	[Engine is running] ● Warm-up condition ● Engine speed: 2,500 rpm	0.1 - 0.6V★
				SEC987C

^{★:} Average voltage for pulse signal (Actual pulse signal can be confirmed by oscilloscope.)

Diagnostic Procedure

1. CHECK ENGINE START

Turn ignition switch OFF, and restart engine.

Is engine running?

Yes or No

Yes (With CONSULT-II)>>GO TO 2. Yes (Without CONSULT-II)>>GO TO 3. No >> GO TO 4.

2. CHECK OVERALL FUNCTION

(II) With CONSULT-II

- 1. Perform "POWER BALANCE" in "ACTIVE TEST" mode with CONSULT-II.
- 2. Make sure that each circuit produces a momentary engine speed drop.

OK or NG

OK >> INSPECTION END

NG >> GO TO 10.

ACTIVE TES		
POWER BALANCE		
MONITOR		
ENG SPEED	XXX rpm	
MAS A/F SE-B1	xxx v	
		PBIB0133E

EC

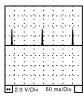
Α

С

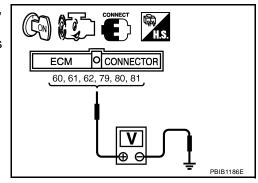
Е

G

UBSOOPGD


3. CHECK OVERALL FUNCTION

⋈ Without CONSULT-II


- 1. Let engine idle.
- 2. Read the voltage signal between ECM terminals 60, 61, 62, 79, 80, 81 and ground with an oscilloscope.
- 3. Verify that the oscilloscope screen shows the signal wave as shown below.

NOTE:

The pulse cycle changes depending on rpm at idle.

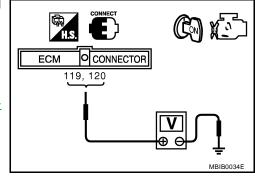
SEC986C

OK or NG

OK >> INSPECTION END

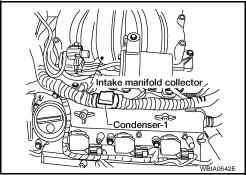
NG >> GO TO 10.

4. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-I


- 1. Turn ignition switch OFF, wait at least 10 seconds and then turn ON.
- 2. Check voltage between ECM terminals 119, 120 and ground with CONSULT-II or tester.

Voltage: Battery voltage

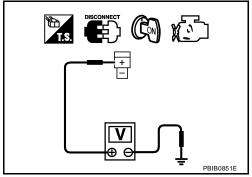
OK or NG


OK >> GO TO 5.

NG >> Go to <u>EC-150</u>, "<u>POWER SUPPLY AND GROUND CIR-</u>CUIT".

5. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-II

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser-1 harness connector.
- 3. Turn ignition switch ON.



 Check voltage between condenser-1 terminal + and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 6.

6. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-III

- Turn ignition switch OFF.
- 2. Disconnect IPDM E/R harness connector E122.
- 3. Check harness continuity between IPDM E/R terminal 17 and condenser-1 terminal +. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> Go to EC-150, "POWER SUPPLY AND GROUND CIRCUIT".

NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness for open or short between IPDM E/R and condenser-1
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

EC

F

G

Н

Κ

8. CHECK CONDENSER-1 GROUND CIRCUIT FOR OPEN AND SHORT

- 1. Turn ignition switch OFF.
- 2. Check harness continuity between condenser-1 terminal and ground. Refer to Wiring Diagram.

Continuity should exist.

3. Also check harness for short to power.

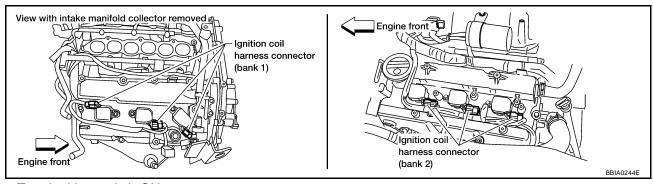
OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to power in harness or connectors.

9. CHECK CONDENSER-1

Refer to EC-702, "Component Inspection".

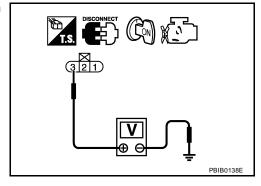

OK or NG

OK >> GO TO 10.

NG >> Replace condenser-1.

10. CHECK IGNITION COIL POWER SUPPLY CIRCUIT-V

- 1. Turn ignition switch OFF.
- 2. Reconnect all harness connectors disconnected.
- 3. Disconnect ignition coil harness connector.



- 4. Turn ignition switch ON.
- 5. Check voltage between ignition coil terminal 3 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 12. NG >> GO TO 11.

11. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors F43, F201
- Harness for open or short between ignition coil and harness connector F14
 - >> Repair or replace harness or connectors.

12. CHECK IGNITION COIL GROUND CIRCUIT FOR OPEN AND SHORT Turn ignition switch OFF. Check harness continuity between ignition coil terminal 2 and ground. EC Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to power. OK or NG OK >> GO TO 14. NG >> GO TO 13. 13. DETECT MALFUNCTIONING PART Е Check the following. Harness connectors F201, F43 Harness for open or short between ignition coil and ground >> Repair open circuit or short to power in harness or connectors. 14. CHECK IGNITION COIL OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT Disconnect ECM harness connector. Check harness continuity between ECM terminals 60, 61, 62, 79, 80, 81 and ignition coil terminal 1. Н Refer to Wiring Diagram. Continuity should exist. 3. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 16. NG >> GO TO 15. 15. DETECT MALFUNCTIONING PART Check the following. Harness connectors F43, F201 Harness for open or short between ignition coil and ECM >> Repair open circuit or short to ground or short to power in harness or connectors. M 16. CHECK IGNITION COIL WITH POWER TRANSISTOR Refer to EC-702, "Component Inspection". OK or NG OK >> GO TO 17. NG >> Replace malfunctioning ignition coil with power transistor. 17. CHECK INTERMITTENT INCIDENT Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection IGNITION COIL WITH POWER TRANSISTOR

UBS00PGE

CAUTION:

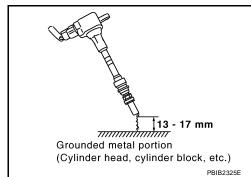
Do the following procedure in the place where ventilation is good without the combustible.

- 1. Turn ignition switch OFF.
- Disconnect ignition coil harness connector.
- 3. Check resistance between ignition coil terminals as follows.

Terminal No. (Polarity)	Resistance Ω [at 25°C (77°F)]
1 and 2	Except 0 or ∞
1 and 3	Except 0
2 and 3	Εχτορί σ

- 4. If NG, Replace ignition coil with power transistor. If OK, go to next step.
- 5. Turn ignition switch OFF.
- 6. Reconnect all harness connectors disconnected.
- 7. Remove fuel pump fuse in IPDM E/R to release fuel pressure.

NOTE:

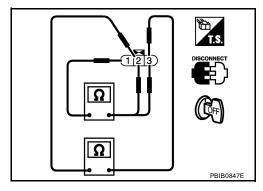

Do not use CONSULT-II to release fuel pressure, or fuel pressure applies again during the following procedure.

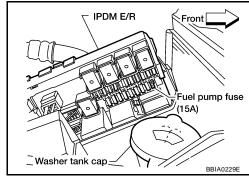
- Start engine.
- After engine stalls, crank it two or three times to release all fuel pressure.
- 10. Turn ignition switch OFF.
- 11. Remove ignition coil harness connectors to avoid the electrical discharge from the ignition coils.
- 12. Remove ignition coil and spark plug of the cylinder to be checked.
- 13. Crank engine for 5 seconds or more to remove combustion gas in the cylinder.
- 14. Connect spark plug and harness connector to ignition coil.
- 15. Fix ignition coil using a rope etc. with gap of 13 17 mm between the edge of the spark plug and grounded metal portion as shown in the figure.
- 16. Crank engine for about 3 seconds, and check whether spark is generated between the spark plug and the grounded part.

Spark should be generated.

CAUTION:

 Do not approach to the spark plug and the ignition coil within 50cm. Be careful not to get an electrical shock while checking, because the electrical discharge voltage becomes 20kV or more.

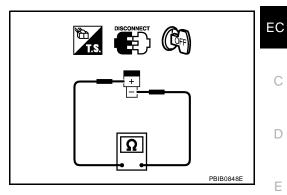



• It might cause to damage the ignition coil if the gap of more than 17 mm is taken.

NOTE:

When the gap is less than 13 mm, the spark might be generated even if the coil is malfunctioning.

17. If NG, Replace ignition coil with power transistor.



CONDENSER-1

- 1. Turn ignition switch OFF.
- 2. Disconnect condenser-1 harness connector.
- 3. Check resistance between condenser-1 terminals + and -.

Resistance: Above 1 M Ω [at 25°C (77°F)]

UBS00PGF

Removal and Installation IGNITION COIL WITH POWER TRANSISTOR

Refer to EM-36, "IGNITION COIL".

F

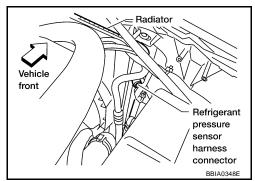
Α

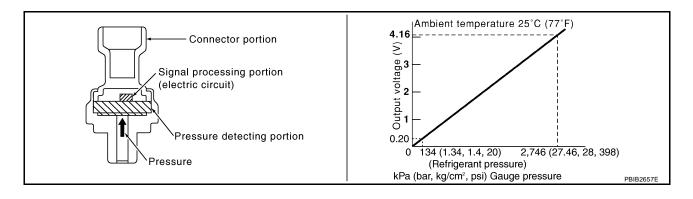
С

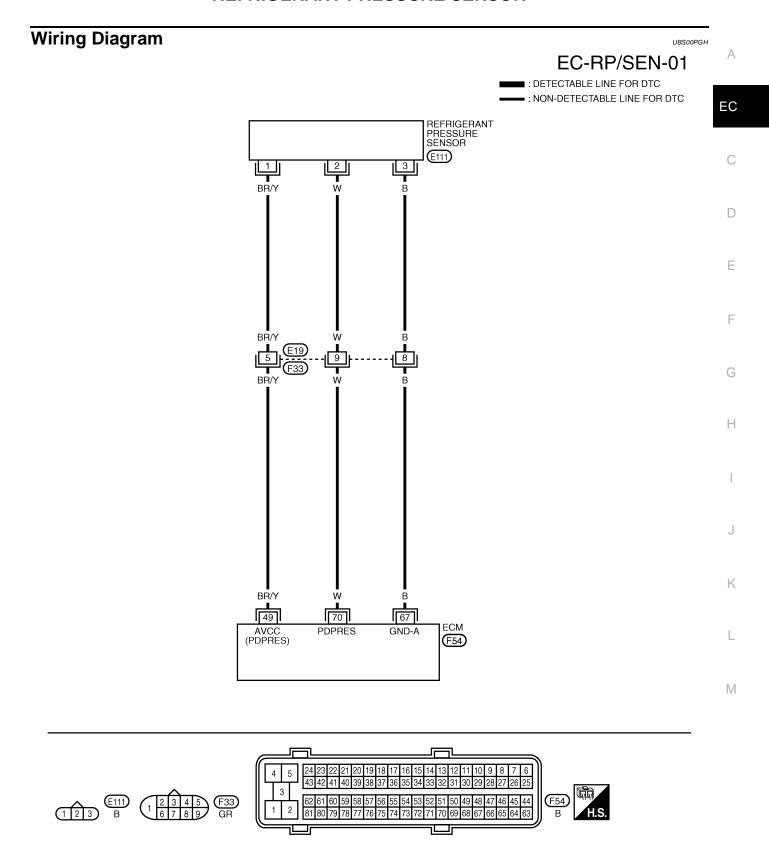
 D

Е

Н


REFRIGERANT PRESSURE SENSOR


PFP:92136


UBS00PGG

Component Description

The refrigerant pressure sensor is installed in the RH side of the condenser of the air conditioner system. The sensor uses an electrostatic volume pressure transducer to convert refrigerant pressure to voltage. The voltage signal is sent to ECM, and ECM controls cooling fan system.

BBWA2541E

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

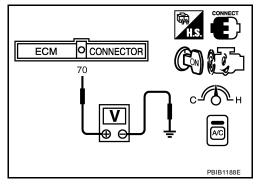
Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	BR/Y	Refrigerant pressure sensor power supply	[Ignition switch: ON]	Approximately 5V
67	В	Sensor ground	[Engine is running]Warm-up conditionIdle speed	Approximately 0V
70	W	Refrigerant pressure sensor	 [Engine is running] Warm-up condition Both A/C switch and blower fan switch: ON (Compressor operates.) 	1.0 - 4.0V

Diagnostic Procedure

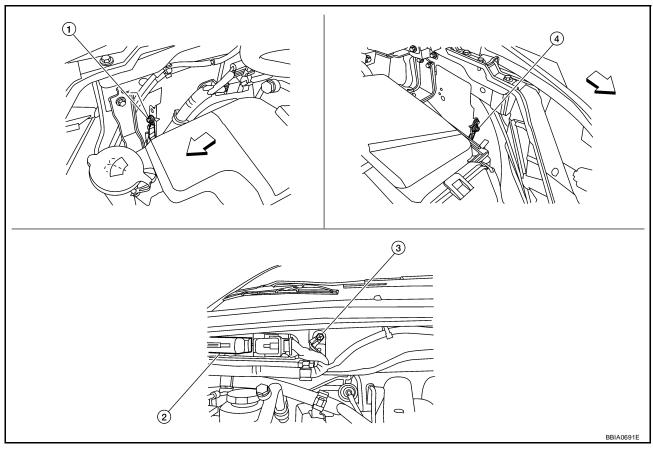
UBS00PGI

1. CHECK REFRIGERANT PRESSURE SENSOR OVERALL FUNCTION


- 1. Start engine and warm it up to normal operating temperature.
- 2. Turn A/C switch and blower fan switch ON.
- 3. Check voltage between ECM terminal 70 and ground with CON-SULT-II or tester.

Voltage: 1.0 - 4.0V

OK or NG


OK >> INSPECTION END

NG >> GO TO 2.

2. CHECK GROUND CONNECTIONS

- 1. Stop engine.
- 2. Turn A/C switch and blower fan switch OFF
- 3. Loosen and retighten three ground screws on the body. Refer to EC-158, "Ground Inspection".

- Body ground E24
 Body ground E15
- 2. ECM

3. Body ground E9

OK or NG

OK >> GO TO 3.

NG >> Repair or replace ground connections.

EC

С

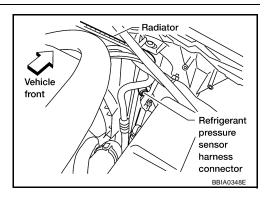
D

Е

F

G

Н

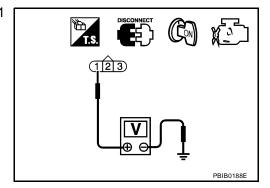

|

K

L

3. CHECK REFRIGERANT PRESSURE SENSOR POWER SUPPLY CIRCUIT

- 1. Disconnect refrigerant pressure sensor harness connector.
- 2. Turn ignition switch ON.



Check voltage between refrigerant pressure sensor terminal 1 and ground with CONSULT-II or tester.

Voltage: Approximately 5V

OK or NG

OK >> GO TO 5. NG >> GO TO 4.

4. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E19, F33
- Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair harness or connectors.

5. CHECK REFRIGERANT PRESSURE SENSOR GROUND CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- Disconnect ECM harness connector.
- 3. Check harness continuity between refrigerant pressure sensor terminal 3 and ECM terminal 67. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

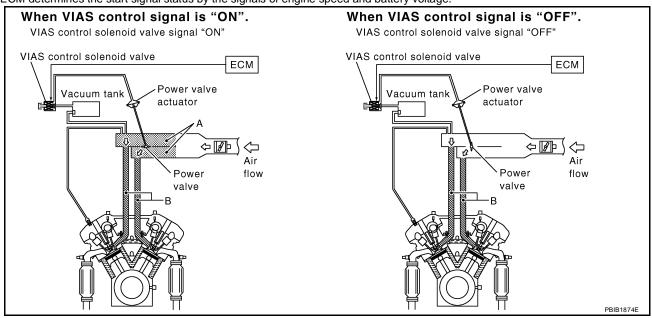
OK >> GO TO 7. NG >> GO TO 6.

6. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E19, F33
- Harness for open or short between ECM and refrigerant pressure sensor
 - >> Repair open circuit or short to ground or short to power in harness or connectors.

$7.\,$ check refrigerant pressure sensor input signal circuit for open and short Check harness continuity between ECM terminal 70 and refrigerant pressure sensor terminal 2. Refer to Wiring Diagram. EC Continuity should exist. 2. Also check harness for short to ground and short to power. OK or NG OK >> GO TO 9. NG >> GO TO 8. 8. DETECT MALFUNCTIONING PART Check the following. Е Harness connectors E19, F33 Harness for open or short between ECM and refrigerant pressure sensor >> Repair open circuit or short to ground or short to power in harness or connectors. 9. CHECK INTERMITTENT INCIDENT Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT". OK or NG OK >> Replace refrigerant pressure sensor. Н NG >> Repair or replace. Removal and Installation LIBSOOPG.I REFRIGERANT PRESSURE SENSOR Refer to ATC-206, "Removal and Installation for Refrigerant Pressure Sensor" or MTC-184, "Removal and Installation for Refrigerant Pressure Sensor".


VIAS PFP:14956

Description SYSTEM DESCRIPTION

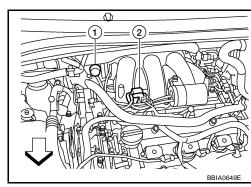
UBSOOPGK

Sensor Input Signal to ECM		ECM function	Actuator	
Crankshaft position sensor (POS) Camshaft position sensor (PHASE)				
Mass air flow sensor	Amount of intake air			
Engine coolant temperature sensor	Engine coolant temperature	VIAS control VIA	VIAS control solenoid valve	
Throttle position sensor	Throttle position			
Accelerator pedal position sensor	Accelerator pedal position			
Battery	Battery voltage*			

*: ECM determines the start signal status by the signals of engine speed and battery voltage.

When the engine is running at low or medium speed, the power valve is fully closed. Under this condition, the effective suction port length is equivalent to the total length of the intake manifold collector's suction port including the intake valve. This long suction port provides increased air intake which results in improved suction efficiency and higher torque generation.

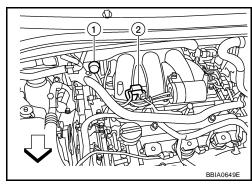
The surge tank and one-way valve are provided. When engine is running at high speed, the ECM sends the signal to the VIAS control solenoid valve. This signal introduces the intake manifold vacuum into the power valve actuator and therefore opens the power valve to two suction passages together in the collector.


Under this condition, the effective port length is equivalent to the length of the suction port provided independently for each cylinder. This shortened port length results in enhanced engine output with reduced suction resistance under high speeds.

COMPONENT DESCRIPTION

Power Valve

The power valve is installed in intake manifold collector and used to control the suction passage of the variable induction air control system. It is set in the fully closed or fully opened position by the power valve actuator (1) operated by the vacuum stored in the surge tank. The vacuum in the surge tank is controlled by the VIAS control solenoid valve (2).


◆ <>: Vehicle front

VIAS Control Solenoid Valve

The VIAS control solenoid valve (2) cuts the intake manifold vacuum signal for power valve control. It responds to ON/OFF signals from the ECM. When the solenoid is off, the vacuum signal from the intake manifold is cut. When the ECM sends an ON signal the coil pulls the plunger downward and feeds the vacuum signal to the power valve actuator (1).

• <p: Vehicle front

CONSULT-II Reference Value in Data Monitor Mode

UBS00PGL

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
VIAS S/V	Engine: After warming up	1,800 - 3,600 rpm	ON
VIAO O/V	Engine. Aiter warming up	Except above conditions	OFF

_

EC

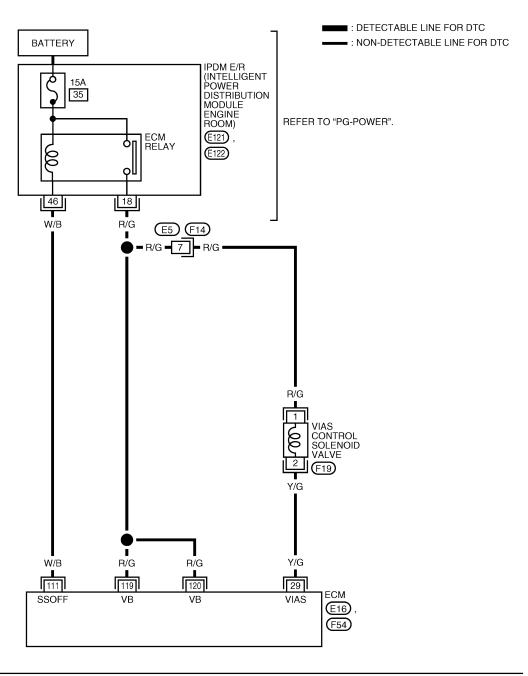
D

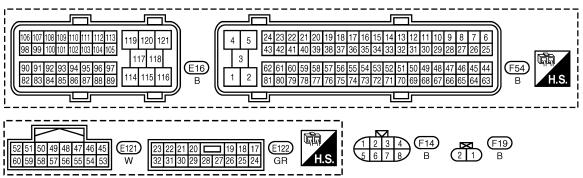
Е

F

G

Н


J


K

L

Wiring Diagram UBSOOPGN

EC-VIAS-01

VIAS

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

_					
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	EC
			[Engine is running] ● Idle speed	BATTERY VOLTAGE (11 - 14V)	С
29	Y/G	Y/G VIAS control solenoid valve	[Engine is running]		
			Engine speed: Between 1,800 and 3,600 rpm	0 - 1.0V	D
111	W/B	V/B ECM relay (Self shut-off)	[Engine is running] [Ignition switch: OFF]	0 - 1.5V	_ E
			For a few seconds after turning ignition switch OFF		
			[Ignition switch: OFF]	BATTERY VOLTAGE (11 - 14V)	F
			 More than a few seconds passed after turning ignition switch OFF 		
119 120	R/G R/G	Power supply for ECM	[Ignition switch: ON]	BATTERY VOLTAGE (11 - 14V)	G

 D Е

Α

Н

Diagnostic Procedure

1. CHECK OVERALL FUNCTION

(P) With CONSULT-II

- 1. Start engine and warm it up to normal operating temperature.
- 2. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II.
- Turn VIAS control solenoid valve ON and OFF, and make sure that power valve actuator rod moves as shown in the figure.

NOTE:

Use an inspection mirror (A) to confirm the operation of power valve actuator rod.

ACTIVE TE: VIAS SOL VALVE MONITOR	OFF	
ENG SPEED	XXX rpm	(A)
		Time (a)
		PBIB3050E

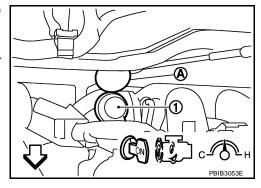
Power valve actuator

⋈ Without CONSULT-II

- Start engine and warm it up to normal operating temperature.
- Rev engine up to between 1,800 and 3,600 rpm and make sure that power valve actuator rod moves as shown in the figure.

NOTE:

Use an inspection mirror (A) to confirm the operation of power valve actuator rod.


- ⟨□: Vehicle front
- Power valve actuator (1)

OK or NG

>> INSPECTION END OK

NG (With CONSULT-II) >>GO TO 2.

NG (Without CONSULT-II) >>GO TO 3.

UBS00PGN

2. CHECK VACUUM EXISTENCE

(II) With CONSULT-II

- 1. Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Install the vacuum gauge as shown in the figure.
- 3. Start engine and let it idle.
- 4. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode with CONSULT-II.
- 5. Turn VIAS control solenoid valve ON and OFF, and check vacuum existence under the following conditions.

ACTIVE TE	ST	①
VIAS SOL VALVE	OFF	
MONITO	R	
ENG SPEED	XXX rpm	
		1 \\\'\'\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Vehicle front

Power valve actuator

2. Vacuum gauge

3. VIAS control solenoid valve

VIAS SOL VALVE	Vacuum
ON	Should exist
OFF	Should not exist

OK or NG

OK >> Repair or replace power valve actuator.

NG >> GO TO 4.

EC

D

Е

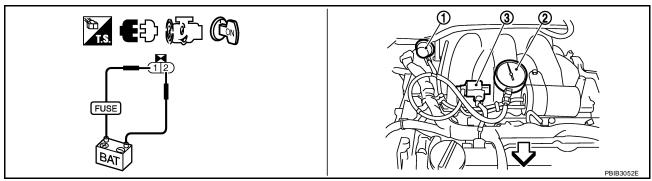
F

G

Н

ī

J


K

L

3. CHECK VACUUM EXISTENCE

W Without CONSULT-II

- 1. Stop engine and disconnect vacuum hose connected to power valve actuator.
- 2. Install the vacuum gauge as shown in the figure.
- 3. Disconnect VIAS control solenoid valve harness connector.
- 4. Start engine and let it idle.
- 5. Apply 12V of direct current between VIAS control solenoid valve terminals 1 and 2.

- 1. Power valve actuator
- 2. Vacuum gauge

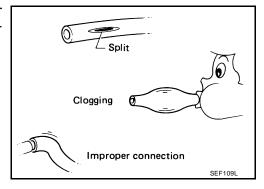
- 3. VIAS control solenoid valve
- 6. Check vacuum existence under the following conditions.

Condition	Vacuum
12V direct current supply	Should exist
No supply	Should not exist

OK or NG

OK >> Repair or replace power valve actuator.

NG >> GO TO 4.


4. CHECK VACUUM HOSE

- 1. Stop engine.
- 2. Check hoses and tubes between intake manifold and power valve actuator for crack, clogging, improper connection or disconnection. Refer to <u>EC-106, "Vacuum Hose Drawing".</u>

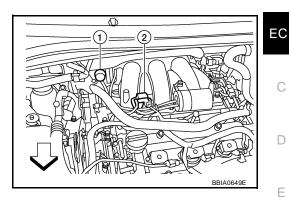
OK or NG

OK >> GO TO 5.

NG >> Repair hoses or tubes.

5. CHECK VACUUM TANK

Refer to EC-718, "Component Inspection".


OK or NG

OK >> GO TO 6.

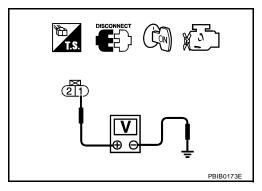
NG >> Replace vacuum tank.

6. CHECK VIAS CONTROL SOLENOID VALVE POWER SUPPLY CIRCUIT

- Turn ignition switch OFF.
- 2. Disconnect VIAS control solenoid valve (2) harness connector.
- 3. Turn ignition switch ON.
- ∀
 □: Vehicle front
- Power valve actuator (1)

Е

Н


M

4. Check voltage between VIAS control solenoid valve terminal 1 and ground with CONSULT-II or tester.

Voltage: Battery voltage

OK or NG

OK >> GO TO 8. NG >> GO TO 7.

7. DETECT MALFUNCTIONING PART

Check the following.

- Harness connectors E5, F14
- Harness for open or short between VIAS control solenoid valve and IPDM E/R
- Harness for open or short between VIAS control solenoid valve and ECM

>> Repair harness or connectors.

8. CHECK VIAS CONTROL SOLENOID VALVE OUTPUT SIGNAL CIRCUIT FOR OPEN AND SHORT

- Turn ignition switch OFF.
- 2. Disconnect ECM harness connector.
- 3. Check harness continuity between ECM terminal 29 and VIAS control solenoid valve terminal 2. Refer to Wiring Diagram.

Continuity should exist.

4. Also check harness for short to ground and short to power.

OK or NG

OK >> GO TO 9.

NG >> Repair open circuit or short to ground or short to power in harness or connectors.

9. CHECK VIAS CONTROL SOLENOID VALVE

Refer to EC-718, "Component Inspection".

OK or NG

OK >> GO TO 10.

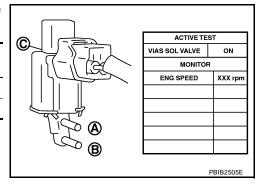
NG >> Replace VIAS control solenoid valve.

10. CHECK INTERMITTENT INCIDENT

Refer to EC-149, "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT".

>> INSPECTION END

Component Inspection VIAS CONTROL SOLENOID VALVE


UBS00PG0

(P) With CONSULT-II

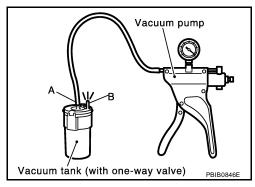
- 1. Reconnect harness connectors disconnected.
- 2. Turn ignition switch ON.
- 3. Perform "VIAS SOL VALVE" in "ACTIVE TEST" mode.
- Check air passage continuity and operation delay time under the following conditions.

Condition VIAS SOL VALVE	Air passage continuity between A and B	Air passage continuity between A and C	
ON	Yes	No	
OFF	No	Yes	

Operation takes less than 1 second.

⋈ Without CONSULT-II

Check air passage continuity and operation delay time under the following conditions.


Condition	Air passage continuity between A and B	Air passage continuity between A and C	
12V direct current supply between terminals 1 and 2	Yes	No	
No supply	No	Yes	

Operation takes less than 1 second.

FUSE BAT BAT PBIB2532E

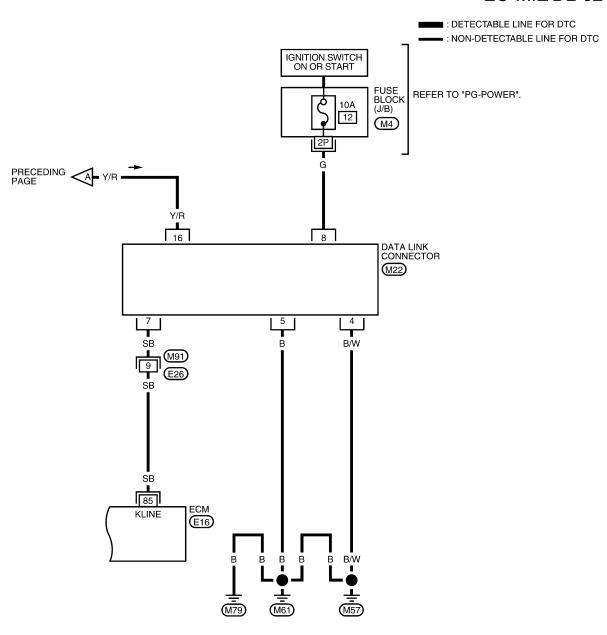
VACUUM TANK

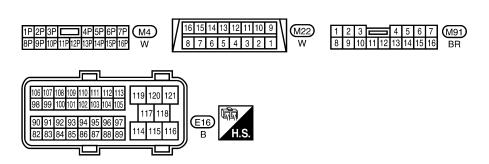
- 1. Disconnect vacuum hose connected to vacuum tank.
- 2. Connect a vacuum pump to the center port of vacuum tank.
- Apply vacuum and make sure that vacuum exists at the other port.

UBSOOPGP

Removal and Installation VIAS CONTROL SOLENOID VALVE

Refer to EM-24, "INTAKE MANIFOLD".


MIL AND DATA LINK CONNECTOR


MIL AND DATA LINK CONNECTOR PFP:24814 Α **Wiring Diagram** UBS00PGQ EC-MIL/DL-01 EC ■ : DETECTABLE LINE FOR DTC : NON-DETECTABLE LINE FOR DTC : DATA LINE IGNITION SWITCH ON OR START BATTERY C FUSE BLOCK REFER TO "PG-POWER". 10A (J/B) 19 14 M4D 5P 8P Е Y/R 🗖 🖎 NEXT PAGE 40 38 COMBINATION METER MALFUNCTION INDICATOR LAMP (M24) UNIFIED METER CONTROL UNIT 20 Н B/W TO LAN-CAN 94 86 B/W CAN-H (E16) M (M57) (M79) **□**4P5P6P7P (M4) 8 9 10 11 12 13 14 15 16 119 120 121 (E16) 114 115 116 82 83 84 85 86 87 88 89

BBWA2544E

MIL AND DATA LINK CONNECTOR

EC-MIL/DL-02

BBWA1653E

SERVICE DATA AND SPECIFICATIONS (SDS)

	ID SPECIFICATIONS (SE	PFP:000	
Fuel Pressure		UBS00	
Fuel pressure at idling kPa (kg	g/cm ² , psi)	Approximately 350 (3.57, 51)	
ldle Speed and Ign	ition Timing	UBSOC	
Target idle speed	No load* (in P or N position)	675 ± 50 rpm	
Air conditioner: ON	In P or N position	825 rpm or more	
Ignition timing	In P or N position	15 ± 5° BTDC	
 *: Under the following conditions Air conditioner switch: OFF Electric load: OFF (Lights, he Steering wheel: Kept in straig 	eater fan & rear window defogger)		
Calculated Load Va	alue	UBSO	
Co	nditions	Calculated load value % (Using CONSULT-II or GST)	
At idle		5 - 35	
At 2,500 rpm		5 - 35	
Mass Air Flow Sen	sor	UBS00	
Supply voltage		Battery voltage (11 - 14V)	
Output voltage at idle		1.0 - 1.3*V	
Mass air flow (Using CONSULT-II or GST)		2.0 - 6.0 g·m/sec at idle* 7.0 - 20.0 g·m/sec at 2,500 rpm*	
*: Engine is warmed up to norm	al operating temperature and running un	der no load.	
Intake Air Tempera	ture Sensor	UBSOC	
Temper	ature °C (°F)	Resistance k Ω	
25 (77)		1.800 - 2.200	
80 (176)		0.283 - 0.359	
Engine Coolant Te	mperature Sensor	UBS00.	
Temper	ature °C (°F)	Resistance k Ω	
20 (68)		2.1 - 2.9	
50 (122)		0.68 - 1.00	
90 (194)		0.236 - 0.260	
EGR Temperature	Sensor	UBSOC	
Temperature °C (°F)		Resistance k Ω	
0 (32)		0.73 - 0.88	
50 (122)		0.074 - 0.082	
100 (212)		0.011 - 0.014	
Air Fuel Ratio (A/F)) Sensor 1 Heater	UBSOC	
Resistance [at 25°C (77°F)]		2.3 - 4.3Ω	
Heated Oxygen sei	nsor 2 Heater	UBSXX	
Resistance [at 25°C (77°F)]		5.0 - 7.0Ω	
		0.0 1.000	

SERVICE DATA AND SPECIFICATIONS (SDS)

Crankshaft Position Sensor (POS) UBS00PH0 Refer to EC-386, "Component Inspection". **Camshaft Position Sensor (PHASE)** UBS00PH1 Refer to EC-396, "Component Inspection". **Throttle Control Motor** UBS00PH2 Resistance [at 25°C (77°F)] Approximately 1 - 15Ω **Fuel Injector** UBS00PH3 Resistance [at 10 - 60°C (50 - 140°F)] 11.1 - 14.5 Ω **Fuel Pump**

Resistance [at 25°C (77°F)]

UBS00PH4

Approximately 0.2 - $5.0\Omega\,$