SECTION

 REAR SUSPENSION

CONTENTS

PRECAUTIONS

Precautions for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"2
Precautions 2
PREPARATION 3
Special Service Tools 3
Commercial Service Tools 3
NOISE, VIBRATION, AND HARSHNESS (NVH) TROUBLESHOOTING 4
NVH Troubleshooting Chart 4
REAR SUSPENSION ASSEMBLY 5
Components 5
On-vehicle Service 6
Rear Wheel Alignment 6
PRELIMINARY INSPECTION 6
GENERAL INFORMATION AND RECOMMEN-
DATIONS 6
THE ALIGNMENT PROCESS 7
CAMBER 7
TOE-IN 8
Removal and Installation 9
REAR SUSPENSION ASSEMBLY 9
SHOCK ABSORBER 9
SUSPENSION ARM 9
RADIUS ROD 10
FRONT LOWER LINK 10
REAR LOWER LINK AND COIL SPRING 10
STABILIZER BAR 11
Inspection 11
SHOCK ABSORBER ASSEMBLY 11
SUSPENSION ARM 11
RADIUS ROD 11
FRONT LOWER LINK 12
UPPER RUBBER SEAT AND BUSHING 12
REAR LOWER LINK AND COIL SPRING 12
STABILIZER BAR 12
SERVICE DATA AND SPECIFICATIONS (SDS) 13
General Specifications (Rear) 13
Rear Wheel Alignment (Unladen*) 13
Ball Joint 13
Wheelarch Height (Unladen*) 14

Precautions for Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER", used along with a front seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. This system includes seat belt switch inputs and dual stage front air bag modules. The SRS system uses the seat belt switches to determine the front air bag deployment, and may only deploy one front air bag, depending on the severity of a collision and whether the front occupants are belted or unbelted.
Information necessary to service the system safely is included in the SRS and SB section of this Service Manual.
WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN/INFINITI dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the SRS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. SRS wiring harnesses can be identified by yellow and/or orange harnesses or harness connectors.

Precautions

- When installing each rubber part, final tightening must be carried out under unladen condition* with tires on ground.
Oil will shorten the life of rubber bushings. Be sure to wipe off any spilled oil.
* Fuel, radiator coolant and engine oil full. Spare tire, jack, hand tools and mats in designated positions.
- After installing removed suspension parts, check wheel alignment.
- Do not jack up at the radius rod, front and rear lower links.
- Always tighten the brake lines to specification when installing.
- Lock nuts are not reusable parts; always use new ones.
- When installing, do not wipe the oil off of the new lock nut before tightening.

PREPARATION

PREPARATION PFP:00002
Special Service Tools
The actual shapes of Kent-Moore tools may differ from those of special service tools illustrated here.

Tool number
(Kent-Moore No.)
Tool name
HT72520000 (J-25730-A) Ball joint remover

Commercial Service Tools

Tool name
Power tool

NVH Troubleshooting Chart

Use the following chart to help you find the cause of the symptom. If necessary, repair or replace these parts.

Reference page		$\left\|\begin{array}{l} 1 \\ \dot{1} \\ \vdots \\ 0 \\ \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ j \\ \infty \\ \propto \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ j \\ \infty \\ \sim \end{array}\right\|$	$\left\|\begin{array}{l} 1 \\ \vdots \\ j \\ 0 \\ 0 \\ \end{array}\right\|$			$\left\|\begin{array}{l} 0 \\ \vdots \\ \vdots \\ 0 \\ \underset{\sim}{1} \end{array}\right\|$					WT-4, "NVH Troubleshooting Chart"	BR-5, "NVH Troubleshooting Chart"	PS-5, "NVH Troubleshooting Chart"
Possible Cause and SUSPECTED	RTS											$\begin{aligned} & \mathscr{\Perp} \\ & \underset{\sim}{ஜ} \end{aligned}$		$\begin{aligned} & \mathscr{\infty} \\ & \underset{\sim}{x} \\ & \underset{\sim}{\underset{~}{~}} \end{aligned}$	
Symptom	Noise	\times	\times	\times	\times	\times	\times			\times	\times	\times	\times	\times	\times
	Shake	\times	\times	\times	\times		\times			\times	\times	\times	\times	\times	\times
	Vibration	\times	\times	\times	\times	\times				\times	\times	\times			\times
	Shimmy	\times	\times	\times	\times			\times			\times	\times	\times	\times	\times
	Shudder	\times	\times	\times							\times	\times	\times	\times	\times
	Poor quality ride or handling	\times	\times	\times	\times	\times		\times	\times		\times	\times	\times		

[^0]REAR SUSPENSION ASSEMBLY

REAR SUSPENSION ASSEMBLY

1. Cap
2. Distance tube
3. Bound bumper
4. Connecting rod mount bracket
5. Coil spring
6. Rear lower link
7. Member stay
8. Bushing
9. Bushing
10. Washer
11. Shock absorber mount bracket
12. Shock absorber
13. Connecting rod
14. Lower rubber seat
15. Front lower link
16. Member stay
17. Stabilizer bar
18. Member stopper
19. Bushing
20. Bound bumper cover
21. Suspension arm
22. Upper rubber seat
23. Knuckle
24. Radius rod
25. Stabilizer bar clamp
26. Stabilizer bar clamp
27. Rear suspension member

On-vehicle Service

- Check the suspension parts for excessive play, cracks, wear or damage. Shake each rear wheel to check for excessive play.
- Retighten all nuts and bolts to specification.
- Check that the cotter pin is inserted securely.
- Check the shock absorber for oil leaks or other damage.
- Check the wheelarch height. Refer to RSU-14, "Wheelarch Height (Unladen*)" .
- Check the suspension ball joint for grease leaks and the ball joint dust cover for cracks or other damage.

Rear Wheel Alignment

EESOO1C7
Before checking the rear wheel alignment, make a preliminary inspection.

- Measure the wheel alignment under unladen conditions.

NOTE:
Unladen conditions mean that fuel, engine coolant, and lubricants are full. That the spare tire, jack, hand tools, and mats are in their designated positions.

PRELIMINARY INSPECTION

- Check the tires for wear or improper inflation pressure.
- Check the wheels for deformation, cracks or other damage. If deformed, remove the wheel and check the wheel runout. Refer to WT-5, "Inspection" .
- Check the rear wheel hub assemblies for looseness.
- Check the rear suspension for looseness.
- Check that the rear shock absorber works properly.
- Check the wheelarch height (Unladen*). Refer to RSU-14, "Wheelarch Height (Unladen*)" .

GENERAL INFORMATION AND RECOMMENDATIONS

1. A Four-Wheel Thrust Alignment should be performed.

- This type of alignment is recommended for any NISSAN vehicle.
- The four-wheel "thrust" process helps ensure that the vehicle is properly aligned and the steering wheel is centered.
- The alignment machine itself should be capable of accepting any NISSAN vehicle.
- The alignment machine should be checked to ensure that it is level.

2. Make sure the alignment machine is properly calibrated.

- Your alignment machine should be regularly calibrated in order to give correct information.
- Check with the manufacturer of your specific alignment machine for their recommended Service/Calibration Schedule.

REAR SUSPENSION ASSEMBLY

THE ALIGNMENT PROCESS

IMPORTANT: Use only the alignment specifications listed in this Service Manual. Refer to RSU-13, "Rear Wheel Alignment (Unladen*)" .

1. When displaying the alignment settings, many alignment machines use "indicators": (Green/red, plus or minus, Go/No Go). Do NOT use these indicators.

- The alignment specifications programmed into your alignment machine that operate these indicators may not be correct.
- This may result in an ERROR.

2. Some newer alignment machines are equipped with an optional "Rolling Compensation" method to "compensate" the sensors (alignment targets or head units). Do NOT use this "Rolling Compensation" method.

- Use the "Jacking Compensation" method. After installing the alignment targets or head units, raise the vehicle and rotate the wheels $1 / 2$ turn both ways.
- See Instructions in the alignment machine you are using for more information.

CAMBER

- Measure camber of both the right and left wheels with a suitable alignment gauge and adjust in accordance with the following procedure.

Camber : Refer to RSU-13, "Rear Wheel Alignment (Unladen*)".

- If camber is not within specification, adjust by turning the adjusting bolts in the same direction.

1. Turn the adjusting bolts in the same direction to calibrate.

NOTE:
Camber changes about 5° with each graduation of the adjusting bolt.

2. Tighten the adjusting bolt nuts to specification.

Adjusting bolt nuts : Refer to RSU-5, "Components" .

REAR SUSPENSION ASSEMBLY

TOE-IN

Measure toe-in using the following procedure. If out of specification, inspect and replace any damaged or worn rear suspension components.

WARNING:

- Always perform the following procedure on a flat surface.

- Make sure that no person is in front of the vehicle before pushing it.

1. Bounce the rear of the vehicle up and down to stabilize the wheelarch height.
2. Push the vehicle straight ahead about $5 \mathrm{~m}(16 \mathrm{ft})$.
3. Put a mark on the base line of the tread (rear side) of both tires at the same height as the hub center as shown. These marks are the measuring points.

4. Measure the distance " A " (rear side).
5. Push the vehicle slowly ahead to rotate the wheels 180° degrees (1/2 turn).

- If the wheels have rotated more than 180° degrees ($1 / 2$ turn), start the above procedure again from the beginning. Never push the vehicle backward.

6. Measure the distance " B " (front side).

Total toe-in : Refer to RSU-13, "Rear Wheel Alignment (Unladen*)".

7. Adjust the toe-in by turning the adjusting bolts.

NOTE:
Toe-in changes about 1.5 mm (0.059 in) (one side) with each graduation of the adjusting bolt.

8. Tighten the adjusting bolt nuts to specification.

Adjusting bolt nuts : Refer to RSU-5, "Components" .

REAR SUSPENSION ASSEMBLY

Removal and Installation REAR SUSPENSION ASSEMBLY
 Removal
 CAUTION:
 Before removing the rear suspension assembly, disconnect the ABS wheel sensor from the assembly. Failure to do so may result in damage to the sensor wires and the sensor becoming inoperative.

1. Remove the center exhaust tube with mufflers. Refer to EX-3, "Removal and Installation" .
2. Remove the brake caliper assembly using power tools. Refer to BR-30, "Removal and Installation of Caliper Assembly and Disc Rotor" .

- Leave the brake line connected to the brake caliper.
- Do not depress the brake pedal, or the caliper piston will pop out.
- Do not pull or twist the brake hose.

3. Disconnect the parking brake cable assemblies from the front cable. Refer to PB-4, "Removal and Installation".
4. Remove the rear ABS wheel sensors. Refer to BRC-41, "WHEEL SENSORS" (TCS/ABS), BRC-94, "WHEEL SENSORS" (VDC/TCS/ABS).
5. Set a suitable jack to support the rear suspension assembly.
6. Remove the shock absorber upper end nut using power tools.
7. Remove the suspension member nuts and the member stay bolts using power tools.
8. Use the jack to support and lower the rear suspension member assembly for removal.

Installation

Installation is in the reverse order of removal. Refer to RSU-2, "Precautions" .

- Check the rear wheel alignment and adjust if necessary. Refer to RSU-13, "Rear Wheel Alignment (Unladen*)".

SHOCK ABSORBER

Removal

1. Remove the wheel and tire using power tools.
2. Set a suitable jack on the rear lower link to remove the lower shock absorber nut and bolt using power tools.
3. Remove the suitable jack from rear lower link.
4. Remove the upper shock absorber nuts using power tools.
5. Remove the shock absorber.

Installation

Installation is in the reverse order of removal.

SUSPENSION ARM

Removal

1. Remove the rear suspension assembly. Refer to RSU-9, "REAR SUSPENSION ASSEMBLY" .
2. Remove the connecting rod mounting bracket from suspension arm using power tools.
3. Remove the two suspension arm nuts and bolts from the suspension member side of the suspension arm using power tools.
4. Remove the ball joint cotter pin and lock nut using power tools.

- Discard the cotter pin, use a new cotter pin for installation.

5. Remove the suspension arm from the knuckle using Tool.

$$
\text { Tool number } \quad: \text { HT72520000 (J-25730-A) }
$$

CAUTION:

- Do not damage the ball joint when removing.
- While using Tool, temporarily tighten the nut so as not to damage screw threads.

Installation

Installation is in the reverse order of removal.

REAR SUSPENSION ASSEMBLY

- Discard the cotter pin, use a new cotter pin for installation.
- Check the rear wheel alignment and adjust if necessary. Refer to RSU-13, "Rear Wheel Alignment (Unladen*)".
RADIUS ROD

Removal

1. Remove the rear suspension assembly. Refer to RSU-9, "REAR SUSPENSION ASSEMBLY" .
2. Remove the radius rod using power tools.

Installation

Installation is in the reverse order of removal.

- Check the rear wheel alignment and adjust if necessary. Refer to RSU-13, "Rear Wheel Alignment (Unladen*)"

FRONT LOWER LINK

Removal

1. Remove the front lower link nut and bolt from the knuckle side and the adjusting bolt and nut from the suspension member side using power tools.

- Do not reuse the adjusting nut, use a new adjusting nut for installation.

2. Remove the front lower link.

Installation

Installation is in the reverse order of removal.

- Do not reuse the adjusting nut, use a new adjusting nut for installation.
- Check the rear wheel alignment and adjust if necessary. Refer to RSU-13, "Rear Wheel Alignment (Unladen*)".

REAR LOWER LINK AND COIL SPRING

Removal

1. Loosen the rear lower link bolt and nut from the suspension member side.
2. Support the rear lower link by placing a suitable jack under the knuckle.
3. Remove the rear lower link adjusting bolt and nut from the suspension member side using power tool.

- Do not reuse the adjusting nut, use a new adjusting nut for installation.

4. Slowly lower the jack to lower the rear lower link and coil spring.
5. Remove the upper rubber seat, coil spring, and lower rubber seat from the rear lower link.
6. Remove rear lower link bolt and nut from the suspension member side using power tool.
7. Remove the rear lower link.

Installation

Installation is in the reverse order of removal.

- Do not reuse the adjusting nut, use a new adjusting nut for installation.

REAR SUSPENSION ASSEMBLY

- Check that the projecting part inside the upper rubber seat and the bracket flange are attached as shown.
- Check that the projection part outside the upper rubber seat is directed toward the front of the vehicle.
- Position the hollow of the lower rubber seat with the groove part of the rear lower link.
- Install the coil spring so that the side with the two paint markers is directed toward the lower side.
- Check the rear wheel alignment and adjust if necessary. Refer to RSU-13, "Rear Wheel Alignment (Unladen*)" .

Inspection

SHOCK ABSORBER ASSEMBLY

- Check for smooth operation through a full stroke of both compression and extension.
- Check for oil leaks on the welded or gland packing portions.
- Check the piston rod for cracks, deformation, or other damage and replace if necessary.

SUSPENSION ARM

- Check the suspension arm for damage, cracks, deformation and replace if necessary.
- Check the rubber bushing for damage, cracks, deformation and replace if necessary.
- Check the ball joint. Replace the suspension arm assembly if any of the following conditions exist:
- Ball stud is worn.
- Joint is hard to swing.
- Check if the swinging force "A", turning force "B", or vertical end play " C " is out of specification.
NOTE:
Before checking specifications, turn the ball joint at least 10 revolutions so the ball joint is properly broken in.

Turning force "B" : Refer to RSU-13, "Ball Joint" .
Vertical end play "C" : Refer to RSU-13, "Ball Joint" .

RADIUS ROD

- Check the radius rod for any deformation, cracks, or damage and replace if necessary.

REAR SUSPENSION ASSEMBLY

- After installing the radius rod, check the wheel alignment and adjust if necessary.

FRONT LOWER LINK

- Check the front lower link for any deformation, cracks, or damage and replace if necessary.

UPPER RUBBER SEAT AND BUSHING

- Check the rubber parts for deterioration, or cracks and replace if necessary.

REAR LOWER LINK AND COIL SPRING

- Check the rear lower link and coil spring for any deformation, cracks, or other damage and replace if necessary.

STABILIZER BAR

- Check the stabilizer bar and clamps for any deformation, cracks, or damage and replace if necessary.
- Check the rubber bushings for deterioration, or cracks and replace if necessary.

SERVICE DATA AND SPECIFICATIONS (SDS)

Suspension type	Multi-link independent suspension		
Shock absorber type	Double-acting hydraulic		
Rear Wheel Alignment (Unladen*)			EES0019A
Market		United States and Canada	Mexico
Camber Degree minute (Decimal degree)	Minimum	$-0^{\circ} 08^{\prime}\left(-0.13^{\circ}\right)$	$-0^{\circ} 30^{\prime}\left(-0.5^{\circ}\right)$
	Nominal	$-0^{\circ} 38^{\prime}\left(-0.63^{\circ}\right)$	$0^{\circ} 0^{\prime}\left(0^{\circ}\right)$
	Maximum	$-0^{\circ} 68^{\prime}\left(-1.13^{\circ}\right)$	$0^{\circ} 30^{\prime}\left(0.5^{\circ}\right)$

	Lines parallel to center line of body-			
Total toe-in	Distance $(A-B)$ mm (in)	Minimum	2.3 (0.091)	1.3 (0.051)
		Nominal	3.8 (0.150)	2.8 (0.110)
		Maximum	5.3 (0.209)	4.3 (0.169)
	Distance difference between RH and LH side mm (in)	Minimum	-2.0 (-0.079)	
		Nominal	0 (0)	
		Maximum	2.0 (0.079)	
	Angle (left plus right) Degree minute (Decimal degree)	Minimum	$0^{\circ} 6^{\prime}\left(0.10^{\circ}\right)$	$0^{\circ} 3^{\prime}\left(0.05^{\circ}\right)$
		Nominal	$0^{\circ} 10^{\prime}\left(0.17^{\circ}\right)$	$0^{\circ} 7^{\prime}\left(0.12^{\circ}\right)$
		Maximum	$0^{\circ} 14^{\prime}\left(0.23^{\circ}\right)$	$0^{\circ} 11^{\prime}\left(0.18^{\circ}\right)$

*: Fuel, radiator coolant and engine oil full. Spare tire, jack, hand tools and mats in designated positions.
Ball Joint

Swinging force "A" (measuring point at the cotter pin hole of the ball stud) Turning torque "B" Vertical end play "C"$\quad$$7.8-54.9 \mathrm{~N}(0.8-5.6 \mathrm{~kg}-\mathrm{f}, 1.8-12.3 \mathrm{lb}-\mathrm{f})$

SERVICE DATA AND SPECIFICATIONS (SDS)

Wheelarch Height (Unladen*)

Market	United States and Canada		Mexico	
Tire	$225 / 55 R 17$	$245 / 45 R 18$	$225 / 55 R 17$	$245 / 45 R 18$
Front (Hf)	$738(29.06)$	$737(29.02)$	$787(30.98)$	$761(29.96)$
Rear (Hr)	$705(27.76)$	$705(27.76)$	$743(29.25)$	$726(28.58)$

*: Fuel, radiator coolant and engine oil full. Spare tire, jack, hand tools and mats in designated positions.

[^0]: x : Applicable

