ENGINE CONTROL SYSTEM

SECTION EC

GI

MA

EM

CONTENTS

DIAGNOSTIC TROUBLE CODE INDEX4	Idle Speed/Ignition Timing/Idle Mixture Ratio
Alphabetical & P No. Index for DTC4	Adjustment37
PRECAUTIONS AND PREPARATION6	ON BOARD DIAGNOSTIC SYSTEM
Special Service Tools6	DESCRIPTION45
Commercial Service Tools6	Introduction
Supplemental Restraint System (SRS) "AIR	Two Trip Detection Logic45
BAG" and "SEAT BELT PRE-TENSIONER"8	Emission-related Diagnostic Information46
Precautions for On Board Diagnostic (OBD)	Malfunction Indicator Lamp (MIL)60
System of Engine and A/T8	OBD System Operation Chart60
Engine Fuel & Emission Control System9	CONSULT-II66
Precautions10	Generic Scan Tool (GST)
ENGINE AND EMISSION CONTROL OVERALL	TROUBLE DIAGNOSIS — Introduction79
SYSTEM 12	Introduction
Circuit Diagram12	Diagnostic Worksheet19
Engine Control Component Parts Location13	TROUBLE DIAGNOSIS — Work Flow81
System Diagram15	Work Flow81
Vacuum Hose Drawing16	Description for Work Flow82
System Chart17	TROUBLE DIAGNOSIS — Basic Inspection83
ENGINE AND EMISSION BASIC CONTROL	Basic Inspection83 BR
SYSTEM DESCRIPTION18	TROUBLE DIAGNOSIS — General Description 89
Multiport Fuel Injection (MFI) System18	Diagnostic Trouble Code (DTC) Inspection
Distributor Ignition (DI) System20	Priority Chart89
Air Conditioning Cut Control21	Fail-Safe Chart90
Fuel Cut Control22	Symptom Matrix Chart91
EVAPORATIVE EMISSION SYSTEM23	CONSULT-II Reference Value in Data Monitor
Description23	Mode94
Inspection23	Major Sensor Reference Graph in Data
Evaporative Emission Line Drawing26	Monitor Mode96
On Board Refueling Vapor Recovery (ORVR)28	ECM Terminals and Reference Value98
POSITIVE CRANKCASE VENTILATION33	TROUBLE DIAGNOSIS — SPECIFICATION
Description33	VALUE 108
Inspection33	Description
BASIC SERVICE PROCEDURE34	Testing Condition108
Fuel Pressure Release34	Inspection Procedure108
Fuel Pressure Check34	Diagnostic Procedure109
Fuel Pressure Regulator Check35	TROUBLE DIAGNOSIS FOR INTERMITTENT
Injector Removal and Installation35	INCIDENT112
Fast Idle Cam (FIC)35	Description112

CONTENTS (Cont'd.)

Common I/I Report Situations 112	TROUBLE DIAGNOSIS FOR DTC P0180	240
Diagnostic Procedure112	Fuel Tank Temperature Sensor	240
TROUBLE DIAGNOSIS FOR POWER SUPPLY 113	TROUBLE DIAGNOSIS FOR DTC P0300 -	
Main Power Supply and Ground Circuit 113	P0304	244
TROUBLE DIAGNOSIS FOR DTC P0100118	No. 4 - 1 Cylinder Misfire, Multiple Cylinder	
Mass Air Flow Sensor (MAFS)118	Misfire	244
TROUBLE DIAGNOSIS FOR DTC P0105127	TROUBLE DIAGNOSIS FOR DTC P0325	249
Absolute Pressure Sensor127	Knock Sensor (KS)	249
TROUBLE DIAGNOSIS FOR DTC P0110129	TROUBLE DIAGNOSIS FOR DTC P0335	254
Intake Air Temperature Sensor129	Crankshaft Position Sensor (CKPS) (OBD)	
TROUBLE DIAGNOSIS FOR DTC P0115134	TROUBLE DIAGNOSIS FOR DTC P0340	259
Engine Coolant Temperature Sensor (ECTS) 134	Camshaft Position Sensor (CMPS)	259
TROUBLE DIAGNOSIS FOR DTC P0120139	TROUBLE DIAGNOSIS FOR DTC P0400	
Throttle Position Sensor139	EGR Function (Close)	
TROUBLE DIAGNOSIS FOR DTC P0125151	TROUBLE DIAGNOSIS FOR DTC P0402	
Engine Coolant Temperature (ECT) Sensor 151	EGRC-BPT Valve Function	
TROUBLE DIAGNOSIS FOR DTC P0130156	TROUBLE DIAGNOSIS FOR DTC P0420	
Heated Oxygen Sensor 1 (Front) (Circuit) 156	Three Way Catalyst Function	
TROUBLE DIAGNOSIS FOR DTC P0131163	TROUBLE DIAGNOSIS FOR DTC P0440	
Heated Oxygen Sensor 1 (front) (Lean Shift	Evaporative Emission (EVAP) Control System	
Monitoring)163	(Small Leak) (Negative Pressure)	284
TROUBLE DIAGNOSIS FOR DTC P0132170	TROUBLE DIAGNOSIS FOR DTC P0443	
Heated Oxygen Sensor 1 (Front) (Rich Shift	Evaporative Emission (EVAP) Canister Purge	
Monitoring)170	Volume Control Solenoid Valve	293
TROUBLE DIAGNOSIS FOR DTC P0133178	TROUBLE DIAGNOSIS FOR DTC P0446	
Heated Oxygen Sensor 1 (Front) (Response	Evaporative Emission (EVAP) Canister Vent	200
Monitoring) 178	Control Valve (Circuit)	200
TROUBLE DIAGNOSIS FOR DTC P0134186	TROUBLE DIAGNOSIS FOR DTC P0450	
Heated Oxygen Sensor 1 (Front) (High	Evaporative Emission (EVAP) Control System	007
Voltage) 186	Pressure Sensor	304
TROUBLE DIAGNOSIS FOR DTC P0135192	TROUBLE DIAGNOSIS FOR DTC P0455	
Heated Oxygen Sensor 1 Heater (Front) 192	Evaporative Emission (EVAP) Control System	510
TROUBLE DIAGNOSIS FOR DTC P0137196	(Large Leak)	310
Heated Oxygen Sensor 2 (Rear) (Min. Voltage	TROUBLE DIAGNOSIS FOR DTC P0460	
Monitoring)196	Fuel Level Sensor Function (Slosh)	
TROUBLE DIAGNOSIS FOR DTC P0138204	TROUBLE DIAGNOSIS FOR DTC P0461	
Heated Oxygen Sensor 2 (Rear) (Max.	Fuel Level Sensor Function	
, , ,	TROUBLE DIAGNOSIS FOR DTC P0464	
Voltage Monitoring)	Fuel Level Sensor Circuit	
	TROUBLE DIAGNOSIS FOR DTC P0500	
Heated Oxygen Sensor 2 (Rear) (Response		
Monitoring)	Vehicle Speed Sensor (VSS)	
	TROUBLE DIAGNOSIS FOR DTC P0505	330
Heated Oxygen Sensor 2 (Rear) (High	Idle Air Control Valve (IACV) — Auxiliary Air	000
Voltage)	Control (AAC) Valve	
TROUBLE DIAGNOSIS FOR DTC P0141225	TROUBLE DIAGNOSIS FOR DTC P0510	
Heated Oxygen Sensor 2 Heater (Rear)225	Closed Throttle Position Switch	
TROUBLE DIAGNOSIS FOR DTC P0171230	TROUBLE DIAGNOSIS FOR DTC P0600	
Fuel Injection System Function (Lean side)230	A/T Control	
TROUBLE DIAGNOSIS FOR DTC P0172235	TROUBLE DIAGNOSIS FOR DTC P0605	
Fuel Injection System Function (Rich side)235	Engine Control Module (ECM)	345

CONTENTS (Cont'd.)

GI

MA

EM

LC

EC

FE

CL

MT

AT

FA

RA

BR

BT

HA

EL

TROUBLE DIAGNOSIS FOR DTC P1126347	TROUBLE DIAGNOSIS FOR DTC P1448405
Thermostat Function347	Evaporative Emission (EVAP) Canister Vent
TROUBLE DIAGNOSIS FOR DTC P1148348	Control Valve (Open)405
Closed Loop Control348	TROUBLE DIAGNOSIS FOR DTC P1464412
TROUBLE DIAGNOSIS FOR DTC P1336351	Fuel Level Sensor Circuit (Ground signal)412
Crankshaft Position Sensor (CKPS) (OBD)	TROUBLE DIAGNOSIS FOR DTC P1490415
(COG)351	Vacuum Cut Valve Bypass Valve (Circuit)415
TROUBLE DIAGNOSIS FOR DTC P1400356	TROUBLE DIAGNOSIS FOR DTC P1491420
EGRC-Solenoid Valve356	Vacuum Cut Valve Bypass Valve420
TROUBLE DIAGNOSIS FOR DTC P1401361	TROUBLE DIAGNOSIS FOR DTC P1605425
EGR Temperature Sensor361	A/T Diagnosis Communication Line425
TROUBLE DIAGNOSIS FOR DTC P1402367	TROUBLE DIAGNOSIS FOR DTC P1706428
EGR Function (Open)367	Park/Neutral Position (PNP) Switch428
TROUBLE DIAGNOSIS FOR DTC P1440374	TROUBLE DIAGNOSIS FOR OVERHEAT433
Evaporative Emission (EVAP) Control System	Overheat433
(Small Leak) (Positive Pressure)374	TROUBLE DIAGNOSIS FOR
TROUBLE DIAGNOSIS FOR DTC P1441376	NON-DETECTABLE ITEMS445
Evaporative Emission (EVAP) Control System	Ignition Signal445
(Very Small Leak)376	Injector451
TROUBLE DIAGNOSIS FOR DTC P1444386	Start Signal454
Evaporative Emission (EVAP) Canister Purge	Fuel Pump457
Volume Control Solenoid Valve386	Power Steering Oil Pressure Switch463
TROUBLE DIAGNOSIS FOR DTC P1446393	IACV-FICD Solenoid Valve467
Evaporative Emission (EVAP) Canister Vent	Electric Load Signal471
Control Valve (Close)393	MIL & Data Link Connectors474
TROUBLE DIAGNOSIS FOR DTC P1447398	SERVICE DATA AND SPECIFICATIONS (SDS) 475
Evaporative Emission (EVAP) Control System	General Specifications475
Purge Flow Monitoring398	Inspection and Adjustment475

- When you read wiring diagrams:

 Read GI section, "HOW TO READ WIRING DIAGRAMS".
- Read EL section, "POWER SUPPLY ROUTING" for power distribution circuit. When you perform trouble diagnoses, read GI section, "HOW TO FOLLOW FLOW CHART IN TROUBLE DIAGNOSES" and "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT".

DIAGNOSTIC TROUBLE CODE INDEX

Alphabetical & P No. Index for DTC

ALPHABETICAL INDEX FOR DTC

Items	DTC*4		Items	DTC*4	
(CONSULT-II screen terms)	CONSULT-II GST*1	Reference page	(CONSULT-II screen terms)	CONSULT-II GST*1	Reference page
Unable to access ECM	_	EC-90	HO2S1 (B1)	P0130	EC-156
COOLAN T SEN/CIRC	P0125	EC-151	HO2S1 (B1)	P0133	EC-178
VT 1ST GR FNCTN	P0731	AT-95	HO2S1 (B1)	P0132	EC-170
VT 2ND GR FNCTN	P0732	AT-101	HO2S1 (B1)	P0131	EC-163
VT 3RD GR FNCTN	P0733	AT-107	HO2S1 (B1)	P0134	EC-186
/T 4TH GR FNCTN	P0734	AT-113	HO2S1 HTR (B1)	P0135	EC-192
/T COMM LINE	P0600	EC-341	HO2S2 (B1)	P0138	EC-204
VT DIAG COMM LINE	P1605	EC-425	HO2S2 (B1)	P0137	EC-196
VT TCC S/V FNCTN	P0744	AT-125	HO2S2 (B1)	P0140	EC-219
BSL PRES SEN/CIRC	P0105	EC-127	HO2S2 (B1)	P0139	EC-212
IR TEMP SEN/CIRC	P0110	EC-129	HO2S2 HTR (B1)	P0141	EC-225
TF TEMP SEN/CIRC	P0710	AT-83	IACV/AAC VLV/CIRC	P0505	EC-330
MP SEN/CIRCUIT	P0340	EC-259	KNOCK SEN/CIRC-B1	P0325	EC-249
CLOSED LOOP-B1	P1148	EC-348	L/PRESS SOL/CIRC	P0745	AT-133
CLOSED TP SW/CIRC	P0510	EC-335	MAF SEN/CIRCUIT*2	P0100	EC-118
COOLANT T SEN/CIRC	P0115	EC-134	MULTI CYL MISFIRE	P0300	EC-244
KP SENSOR (COG)	P1336	EC-351	NATO MALEUNO		EC-59 or
KP SEN/CIRCUIT	P0335	EC-254	NATS MALFUNC	_	EL-257
YL 1 MISFIRE	P0301	EC-244	NO DTC IS DETECTED. FUR-	_	
YL 2 MISFIRE	P0302	EC-244	THER TESTING MAY BE REQUIRED.	P0000	_
YL 3 MISFIRE	P0303	EC-244	O/R CLTCH SOL/CIRC	P1760	AT-154
YL 4 MISFIRE	P0304	EC-244	OVERHEAT	_	EC-433
CM	P0605	EC-345	P-N POS SW/CIRCUIT	P1706	EC-428
GR SYSTEM	P0400	EC-266	PNP SW/CIRC	P0705	AT-78
GR SYSTEM	P1402	EC-367	PURG VOLUME CONT/V	P1444	EC-386
GR TEMP SEN/CIRC	P1401	EC-361	PURG VOLUME CONT/V	P0443	EC-293
GRC SOLENOID/V	P1400	EC-356	SFT SOL A/CIRC*2	P0750	AT-138
GRC-BPT VALVE	P0402	EC-275	SFT SOL B/CIRC*2	P0755	AT-143
NGINE SPEED SIG	P0725	AT-92	TCC SOLENOID/CIRC	P0740	AT-120
VAP PURG FLOW/MON	P1447	EC-398	THERMSTAT FNCTN	P1126	EC-347
VAP SMALL LEAK	P0440	EC-284	THRTL POS SEN/CIRC*2	P0120	EC-139
VAPO SYS PRES SEN	P0450	EC-304	TP SEN/CIRC A/T*2	P1705	AT-148
EVAP GROSS LEAK	P0455	EC-310	TW CATALYST SYS-B1	P0420	EC-280
VAP SMALL LEAK	P1440	EC-374	VC CUT/V BYPASS/V	P1491	EC-420
EVAP VERY SML LEAK	P1441	EC-376	VC/V BYPASS/V	P1491	EC-415
UEL LEVL SEN/CIRC	P0464	EC-323	VEH SPD SEN/CIR AT*3	P0720	AT-88
UEL LEV SEN SLOSH	P0460	EC-318	VEH SPEED SEN/CIRC*3	P0500	
UEL LEVEL SENSOR	P0461	EC-321	VENT CONTROL VALVE	P0500 P1446	EC-326 EC-393
UEL LEVL SEN/CIRC	P1464	EC-412	VENT CONTROL VALVE		EC-393 EC-405
FUEL SYS-LEAN BK1	P0171	EC-230		P1448	
UEL SYS-RICH BK1	P0172	EC-235	VENT CONTROL VALVE	P0446	EC-299
FUEL TEMP SEN/CIRC	P0180	EC-240	*1: These numbers are presorm: *2: When the fail-safe operations.		

^{*2:} When the fail-safe operation occurs, the MIL illuminates.

^{*3:} The MIL illuminates when both the "Revolution sensor signal" and the "Vehicle speed sensor" meet the fail-safe condition at the same time.

^{*4: 1}st trip DTC No. is the same as DTC No.

DIAGNOSTIC TROUBLE CODE INDEX

Alphabetical & P No. Index for DTC (Cont'd)

P NO. INDEX FOR DTC

DTC*4	ltama		DTC*4	ltomo		
CONSULT-II GST*1	Items (CONSULT-II screen terms)	Reference page	CONSULT-II GST*1	ltems (CONSULT-II screen terms)	Reference page	(
_	Unable to access ECM	EC-90	P0510	CLOSED TP SW/CIRC	EC-335	
_	NATS MALFUNC	EC-59 or EL	P0600	A/T COMM LINE	EC-341	
		section	P0605	ECM	EC-345	
D0000	NO DTC IS DETECTED. FUR-		P0705	PNP SW/CIRC	AT-78	F.
P0000	THER TESTING MAY BE REQUIRED.	_	P0710	ATF TEMP SEN/CIRC	AT-83	
P0100	MAF SEN/CIRCUIT*2	EC-118	P0720	VEH SPD SEN/CIR AT*3	AT-88	
P0105	ABSL PRES SEN/CIRC	EC-127	P0725	ENGINE SPEED SIG	AT-92	[
P0110	AIR TEMP SEN/CIRC	EC-129	P0731	A/T 1ST GR FNCTN	AT-95	Ŀ
P0115	COOLANT T SEN/CIRC	EC-134	P0732	A/T 2ND GR FNCTN	AT-101	
P0120	THRTL POS SEN/CIRC*2	EC-139	P0733	A/T 3RD GR FNCTN	AT-107	
P0125	*COOLAN T SEN/CIRC	EC-151	P0734	A/T 4TH GR FNCTN	AT-113	
P0130	HO2S1 (B1)	EC-156	P0740	TCC SOLENOID/CIRC	AT-120	
P0131	HO2S1 (B1)	EC-163	P0744	A/T TCC S/V FNCTN	AT-125	[
P0132	HO2S1 (B1)	EC-170	P0745	L/PRESS SOL/CIRC	AT-133	
P0133	HO2S1 (B1)	EC-178	P0750	SFT SOL A/CIRC*2	AT-138	
P0134	HO2S1 (B1)	EC-186	P0755	SFT SOL B/CIRC*2	AT-143	(
P0135	HO2S1 HTR (B1)	EC-192	P1126	THERMSTAT FNCTN	EC-347	
P0137	HO2S2 (B1)	EC-192	P1148	CLOSED LOOP-B1	EC-348	[
P0138	HO2S2 (B1)	EC-204	P1336	CKP SENSOR (COG)	EC-351	ı
P0139	HO2S2 (B1)	EC-212	P1400	EGRC SOLENOID/V	EC-356	
P0139 P0140	HO2S2 (B1)	EC-212 EC-219	P1401	EGR TEMP SEN/CIRC	EC-361	ı
P0140	, ,		P1402	EGR SYSTEM	EC-367	
P0141 P0171	HO2S2 HTR (B1)	EC-225	P1440	EVAP SMALL LEAK	EC-374	
	FUEL SYS-LEAN/BK1	EC-230	P1441	EVAP VERY SML LEAK	EC-376	
P0172	FUEL SYS-RICH/BK1	EC-235	P1444	PURG VOLUME CONT/V	EC-386	
P0180	FUEL TEMP SEN/CIRC	EC-240	P1446	VENT CONTROL VALVE	EC-393	ſ
P0300	MULTI CYL MISFIRE	EC-244	P1464	FUEL LEVL SEN/CIRC	EC-412	
P0301	CYL 1 MISFIRE	EC-244	P1447	EVAP PURG FLOW/MON	EC-398	
P0302	CYL 2 MISFIRE	EC-244	P1448	VENT CONTROL VALVE	EC-405	[
P0303	CYL 3 MISFIRE	EC-244	P1490	VC/V BYPASS/V	EC-415	
P0304	CYL 4 MISFIRE	EC-244	P1491	VC CUT/V BYPASS/V	EC-420	
P0325	KNOSK SEN/CIRC-B1	EC-249	P1605	A/T DIAG COMM LINE	EC-425	7
P0335	CKP SEN/CIRCUIT	EC-254	P1705	TP SEN/CIRC A/T*2	AT-148	
P0340	CMP SEN/CIRCUIT	EC-259	P1706	P-N POS SW/CIRCUIT	EC-428	
P0400	EGR SYSTEM	EC-266	P1760	O/R CLTCH SOL/CIRC	AT-154	
P0402	EGRC-BPT VALVE	EC-275	F1700	OVERHEAT	EC-433	
P0420	TW CATALYST SYS-B1	EC-280				· [
P0440	EVAP SMALL LEAK	EC-284		bers are prescribed by SAE all-safe operation occurs, the		Į
P0443	PURG VOLUME CONT/V	EC-293	nates.	an-sale operation occurs, the	; wiiL iiiullii-	
P0446	VENT CONTROL VALVE	EC-299	*3: The MIL illu	uminates when both the "Rev		[
P0450	EVAPO SYS PRES SEN	EC-304		the "Vehicle speed sensor" i	meet the fail-	٠
P0455	EVAP GROSS LEAK	EC-310		ion at the same time. C No. is the same as DTC N	0	
P0460	FUEL LEV SEN SLOSH	EC-318	4. ISLUIP DI	U INO. IS THE SAINE AS DIC IN	.	[
P0461	FUEL LEVEL SENSOR	EC-321				
P0464	FUEL LEVL SEN/CIRC	EC-323				
P0500	VEH SPEED SEN/CIRC*3	EC-326				[
P0505	IACV/AAC VLV/CIRC	EC-330				

PRECAUTIONS AND PREPARATION

Special Service Tools

The actual shapes of Kent-Moore tools may differ from those of special service tools illustrated here.

Tool number (Kent-Moore No.) Tool name	Description	
KV10117100 (J36471-A) Heated oxygen sensor wrench	NT379	Loosening or tightening front heated oxygen sensor with 22 mm (0.87 in) hexagon nut
KV10114400 (J-38365) Heated oxygen sensor wrench	a	Loosening or tightening rear heated oxygen sensor
	NT636	a: 22 mm (0.87 in)
(J-45356) Fuel filler cap adapter		Checking fuel tank vacuum relief valve open- ing pressure
	NT815	

Commercial Service Tools

Tool name	Description	
Leak detector (J41416)	NT703	When locating the EVAP leak
EVAP service port adapter (J41413-OBD)	NT704	When applying positive pressure through EVAP service port

PRECAUTIONS AND PREPARATION

Commercial Service Tools (Cont'd)

MT

AT

FA

RA

BR

ST

RS

BT

HA

EL

Tool name	Description		
Oxygen sensor thread cleaner (J-43897-18) (J-43897-12)		a Mating b surface shave cylinder	Reconditioning the exhaust system threads before installing a new oxygen sensor. Use with anti-seize lubricant shown below.
	NT778		a: J-43897-18 18 mm diameter, for Zirconia Oxygen Sensor b: J-43897-12 12 mm diameter, for Titania Oxygen Sensor
Anti-seize lubricant (Permatex TM 133AR or equivalent meeting MIL specification MIL-A-907)			Lubricating oxygen sensor thread cleaning tool when reconditioning exhaust system threads.
	NT779	W W	

Supplemental Restraint System (SRS) "AIR BAG" and "SEAT BELT PRE-TENSIONER"

The Supplemental Restraint System such as "AIR BAG" and "SEAT BELT PRE-TENSIONER" used along with a seat belt, helps to reduce the risk or severity of injury to the driver and front passenger for certain types of collision. The SRS system composition which is available to NISSAN MODEL L30 is as follows (The composition varies according to the optional equipment):

- For a frontal collision
 - The Supplemental Restraint System consists of driver air bag module (located in the center of the steering wheel), front passenger air bag module (located on the instrument panel on passenger side), seat belt pre-tensioners, a diagnosis sensor unit, warning lamp, wiring harness and spiral cable.
- For a side collision
 - The Supplemental Restraint System consists of side air bag module (located in the outer side of front seat), satellite sensor, diagnosis sensor unit (one of components of air bags for a frontal collision), wiring harness, warning lamp (one of components of air bags for a frontal collision).

Information necessary to service the system safely is included in the **RS section** of this Service Manual.

WARNING:

- To avoid rendering the SRS inoperative, which could increase the risk of personal injury or death in the event of a collision which would result in air bag inflation, all maintenance must be performed by an authorized NISSAN dealer.
- Improper maintenance, including incorrect removal and installation of the SRS, can lead to personal injury caused by unintentional activation of the system. For removal of Spiral Cable and Air Bag Module, see the RS section.
- Do not use electrical test equipment on any circuit related to the SRS unless instructed to in this Service Manual. Spiral cable and wiring harnesses (except "SEAT BELT PRE-TEN-SIONER") covered with yellow insulation either just before the harness connectors or for the complete harness are related to the SRS.

Precautions for On Board Diagnostic (OBD) System of Engine and A/T

The ECM has an on board diagnostic system. It will light up the malfunction indicator lamp (MIL) to warn the driver of a malfunction causing emission deterioration.

CAUTION:

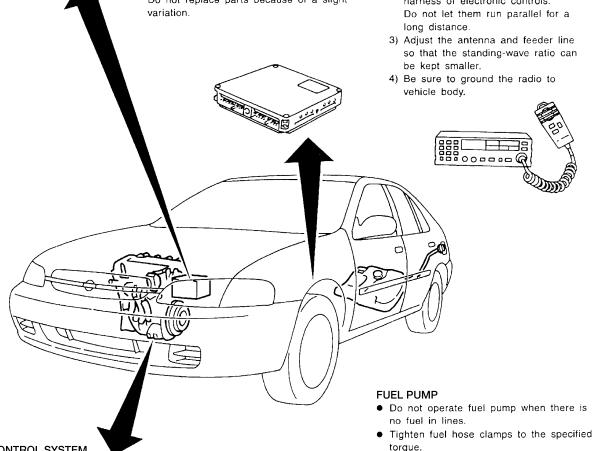
- Be sure to turn the ignition switch "OFF" and disconnect the negative battery terminal before
 any repair or inspection work. The open/short circuit of related switches, sensors, solenoid
 valves, etc. will cause the MIL to light up.
- Be sure to connect and lock the connectors securely after work. A loose (unlocked) connector will cause the MIL to light up due to the open circuit. (Be sure the connector is free from water, grease, dirt, bent terminals, etc.)
- Certain systems and components, especially those related to OBD, may use a new style slide-locking type harness connector.
 - For description and how to disconnect, refer to EL-5 section ("Description", "HARNESS CONNECTOR").
- Be sure to route and secure the harnesses properly after work. The interference of the harness with a bracket, etc. may cause the MIL to light up due to the short circuit.
- Be sure to connect rubber tubes properly after work. A misconnected or disconnected rubber tube may cause the MIL to light up due to the malfunction of the EGR system or fuel injection system, etc.
- Be sure to erase the unnecessary malfunction information (repairs completed) from the ECM and TCM (Transmission control module) before returning the vehicle to the customer.

Engine Fuel & Emission Control System

ECM

- Do not disassemble ECM.
- Do not turn on-board diagnostic test mode selector forcibly.
- power source. Do not attempt to disconnect battery cables while engine is running.

Always use a 12 volt battery as


BATTERY

If a battery terminal is disconnected, the memory will return to the ECM value. The ECM will now start to self-control at its initial value. Engine operation can vary slightly when the terminal is disconnected. However, this is not an indication of a problem.

Do not replace parts because of a slight

WIRELESS EQUIPMENT

- When installing C.B. ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on its installation location.
- 1) Keep the antenna as far as possible away from the electronic control units.
- 2) Keep the antenna feeder line more the 20 cm (7.9 in) away from the harness of electronic controls. Do not let them run parallel for a
- so that the standing-wave ratio can be kept smaller.

ENGINE CONTROL SYSTEM

PARTS HANDLING

- Handle mass air flow sensor carefully to avoid damage.
- Do not disassemble mass air flow sensor.
- Do not clean mass air flow sensor with any type of detergent.
- Do not disassemble IACV-AAC valve.
- Even a slight leak in the air intake system can cause serious problems
- Do not shock or jar the camshaft position sensor.

WHEN STARTING

- Do not depress accelerator pedal when starting.
- · Immediately after starting, do not rev up engine unnecessarily.
- Do not rev up engine just prior to shutdown.

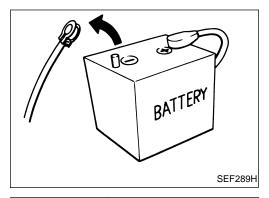
ECM HARNESS HANDLING

- Securely connect ECM harness connectors.
 - A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs.
- Keep ECM harness at least 10 cm (3.9 in) away from adjacent harnesses, to prevent an ECM system malfunction due to receiving external noise, degraded operation of ICs, etc.
- Keep ECM parts and harnesses dry
- Before removing parts, turn off ignition switch and then disconnect battery ground cable.

MA

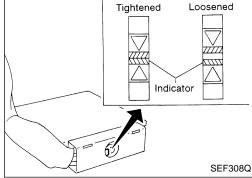
MT

AT FA

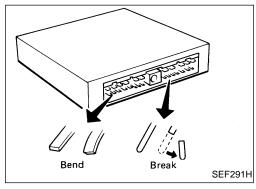

RA

BR

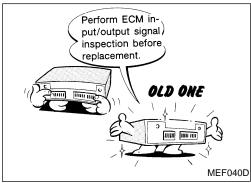
BT


HA

PRECAUTIONS AND PREPARATION


Precautions

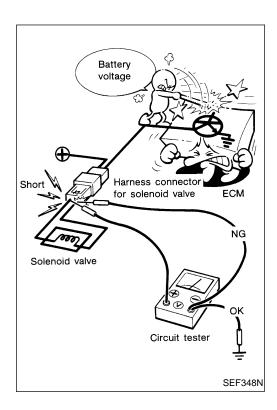
 Before connecting or disconnecting the ECM harness connector, turn ignition switch OFF and disconnect negative battery terminal. Failure to do so may damage the ECM because battery voltage is applied to ECM even if ignition switch is turned off.


 When connecting ECM harness connector, tighten securing bolt until the gap between orange indicators disappears.

(0.3 - 0.5 kg-m, 26 - 43 in-lb)

 When connecting or disconnecting pin connectors into or from ECM, take care not to damage pin terminals (bend or break).

Make sure that there are not any bends or breaks on ECM pin terminal, when connecting pin connectors.


Before replacing ECM, perform Terminals and Reference Value inspection and make sure ECM functions properly. Refer to EC-98.

 After performing each TROUBLE DIAGNOSIS, perform "OVERALL FUNCTION CHECK" or "DTC (Diagnostic Trouble Code) CONFIRMATION PROCEDURE".

The DTC should not be displayed in the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" if the repair is completed. The "OVERALL FUNCTION CHECK" should be a good result if the repair is completed.

PRECAUTIONS AND PREPARATION

Precautions (Cont'd)

- When measuring ECM signals with a circuit tester, never allow the two tester probes to contact. Accidental contact of probes will cause a short circuit and damage the ECM power transistor.
- Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's power transistor. Use a ground other than ECM terminals, such as an engine ground.

MA

EM

LC

EC

FE

CL

MT

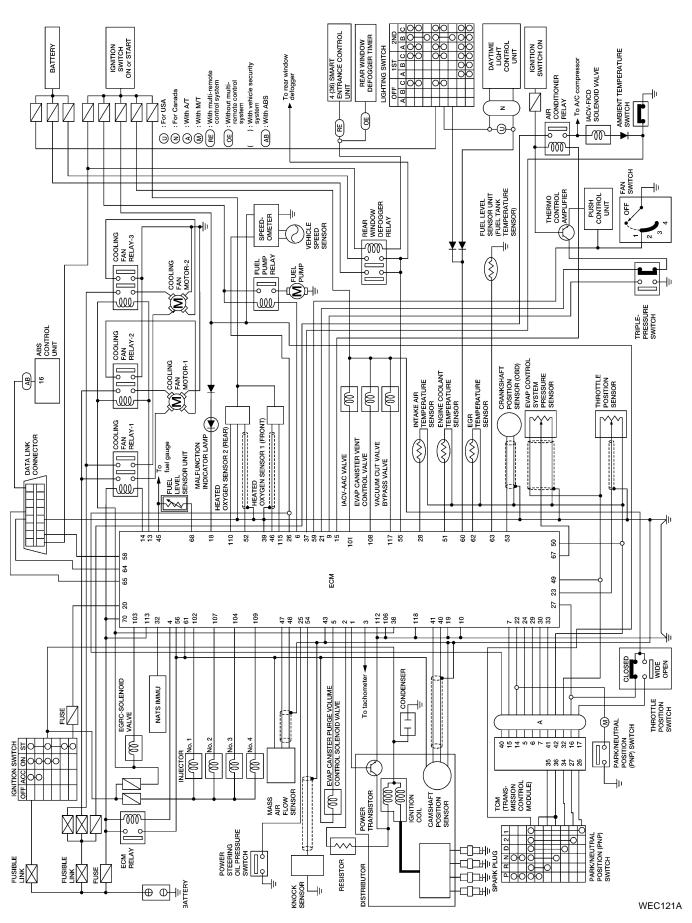
AT

FA

RA

BR

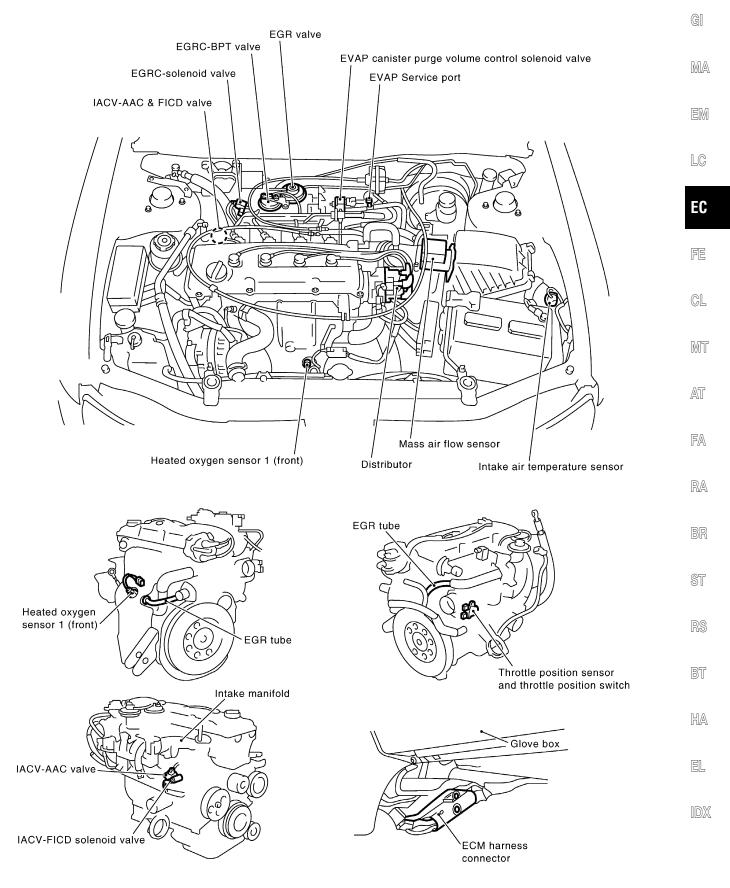
ST


RS

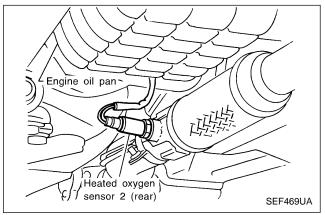
BT

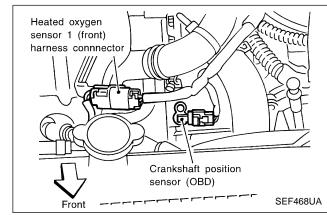
HA

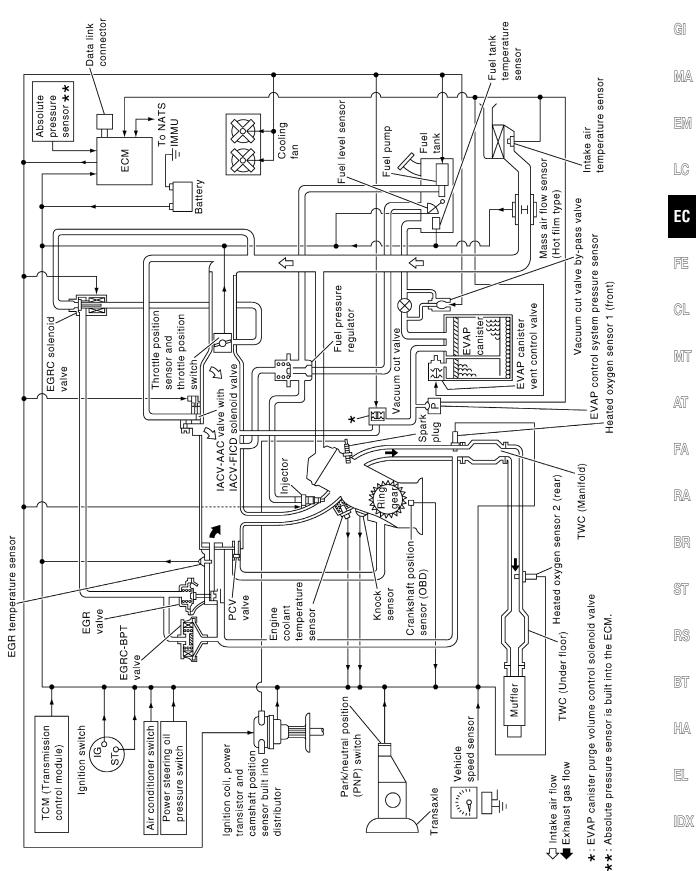
EL


Circuit Diagram

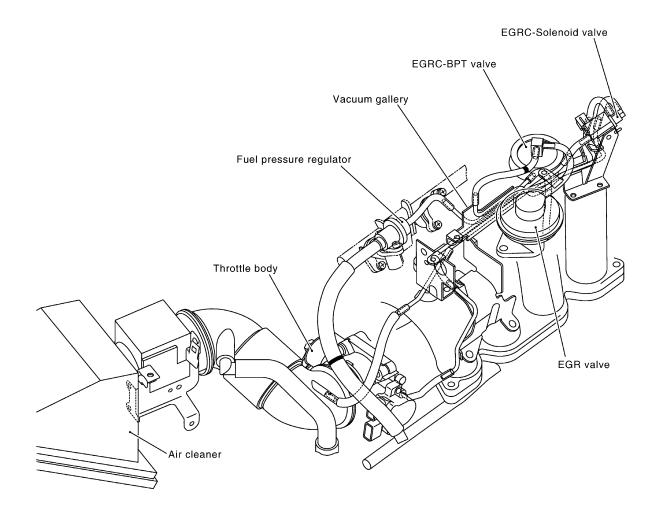
EC-12


ENGINE AND EMISSION CONTROL OVERALL SYSTEM


Engine Control Component Parts Location

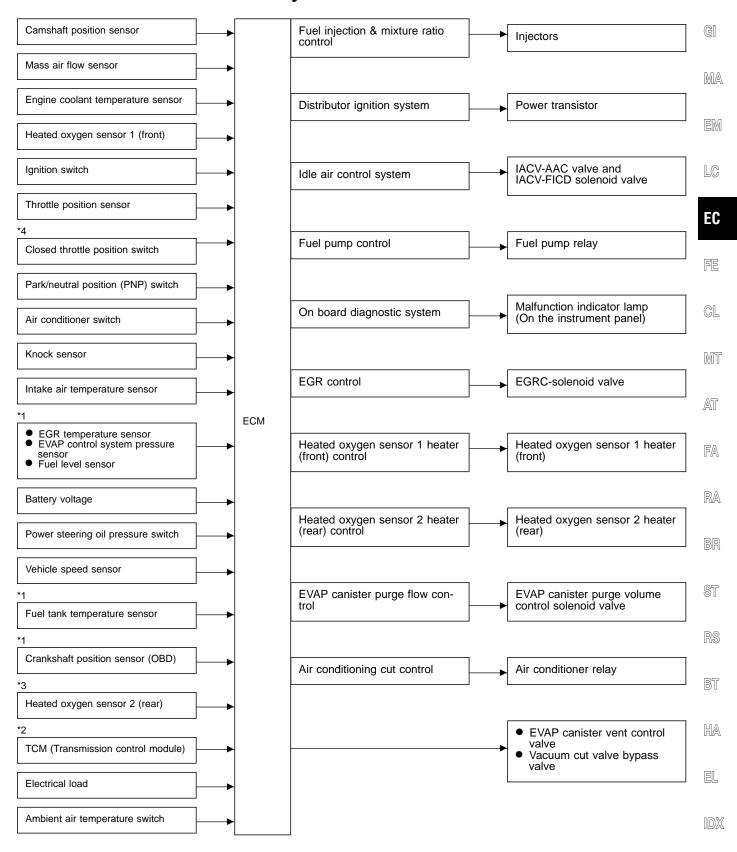

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

Engine Control Component Parts Location (Cont'd)



System Diagram

Vacuum Hose Drawing


SEF729Z

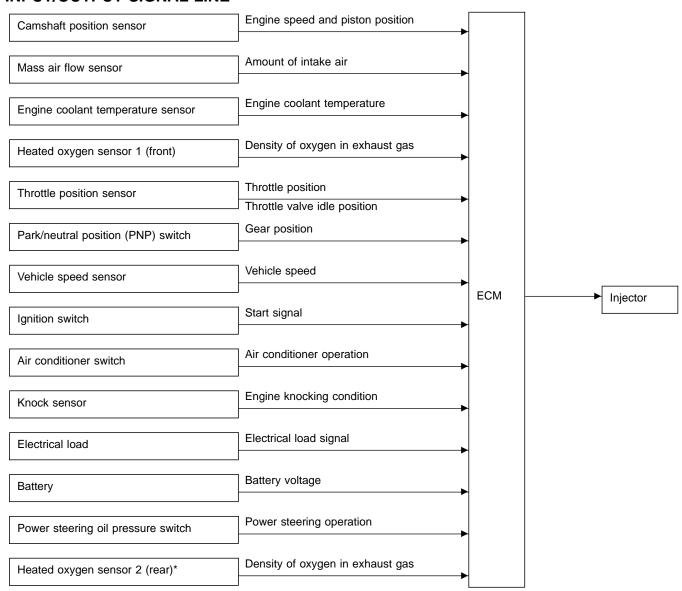
Note: Do not use soapy water or any type of solvent while installing vacuum hoses or purge hoses.

Refer to "System Diagram", EC-15, for vacuum control system.

ENGINE AND EMISSION CONTROL OVERALL SYSTEM

System Chart

^{*1:} These sensors are not used to control the engine system. They are used only for the on board diagnosis.


^{*2:} The DTC related to A/T will be sent to ECM.

^{*3:} This sensor is not used to control the engine system under normal conditions.

^{*4:} This switch will operate in place of the throttle position sensor to control EVAP parts if the sensor malfunctions.

Multiport Fuel Injection (MFI) System

INPUT/OUTPUT SIGNAL LINE

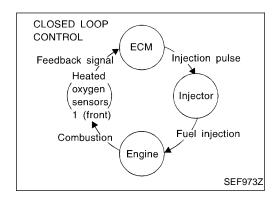
^{*} Under normal conditions, this sensor is not for engine control operation.

BASIC MULTIPORT FUEL INJECTION SYSTEM

The amount of fuel injected from the fuel injector is determined by the ECM. The ECM controls the length of time the valve remains open (injection pulse duration). The amount of fuel injected is a program value in the ECM memory. The program value is preset by engine operating conditions. These conditions are determined by input signals (for engine speed and intake air) from both the camshaft position sensor and the mass air flow sensor.

VARIOUS FUEL INJECTION INCREASE/DECREASE COMPENSATION

In addition, the amount of fuel injected is compensated to improve engine performance under various operating conditions as listed below.


<Fuel increase>

- During warm-up
- When starting the engine
- During acceleration
- Hot-engine operation
- When selector lever is changed from "N" to "D" (A/T models only)
- High-load, high-speed operation

<Fuel decrease>

- During deceleration
- During high engine speed operation

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

Multiport Fuel Injection (MFI) System (Cont'd) MIXTURE RATIO FEEDBACK CONTROL (CLOSED LOOP CONTROL)

The mixture ratio feedback system provides the best air-fuel mixture ratio for driveability and emission control. The three way catalyst can then better reduce CO, HC and NOx emissions. This system uses a heated oxygen sensor 1 (front) in the exhaust manifold to monitor if the engine operation is rich or lean. The ECM adjusts the injection pulse width according to the sensor voltage signal. For more information about the heated oxygen sensor 1 (front), refer to EC-156, 163. This maintains the mixture ratio within the range of stoichiometric (ideal air-fuel mixture)

This stage is referred to as the closed loop control condition. Heated oxygen sensor 2 (rear) is located downstream of the three way catalyst. Even if the switching characteristics of the heated oxygen sensor 1 (front) shift, the air-fuel ratio is controlled to stoichiometric by the signal from the heated oxygen sensor 2 (rear).

OPEN LOOP CONTROL

The open loop system condition refers to when the ECM detects any of the following conditions. Feedback control stops in order to maintain stabilized fuel combustion.

- Deceleration and acceleration
- High-load, high-speed operation
- Malfunction of heated oxygen sensor 1 (front) or its circuit
- Insufficient activation of heated oxygen sensor 1 (front) at low engine coolant temperature
- High engine coolant temperature
- During warm-up
- When starting the engine

MIXTURE RATIO SELF-LEARNING CONTROL

The mixture ratio feedback control system monitors the mixture ratio signal transmitted from the heated oxygen sensor 1 (front). This feedback signal is then sent to the ECM. The ECM controls the basic mixture ratio as close to the theoretical mixture ratio as possible. However, the basic mixture ratio is not necessarily controlled as originally designed. Both manufacturing differences (i.e., mass air flow sensor hot film) and characteristic changes during operation (i.e., injector clogging) directly affect mixture ratio. Accordingly, the difference between the basic and theoretical mixture ratios is monitored in this system. This is then computed in terms of "injection pulse duration" to automatically compensate for the difference between the two ratios.

"Fuel trim" refers to the feedback compensation value compared against the basic injection duration. Fuel trim includes short term fuel trim and long term fuel trim.

"Short term fuel trim" is the short-term fuel compensation used to maintain the mixture ratio at its theoretical value. The signal from the heated oxygen sensor 1 (front) indicates whether the mixture ratio is RICH or LEAN compared to the theoretical value. The signal then triggers a reduction in fuel volume if the mixture ratio is rich, and an increase in fuel volume if it is lean. "Long term fuel trim" is overall fuel compensation carried out long-term to compensate for continual deviation of the short term fuel trim from the central value. Such deviation will occur due to individual engine differences, wear over time and changes in the usage environment.

EC

LC

MA

@I

FE

MT

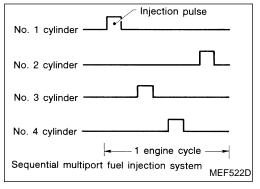
ם שעם

FA

RA

BR

ST


RS

BT

HA

EC-19

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

No. 1 cylinder \prod

- 1 engine cycle -

MEF523D

Simultaneous multiport fuel injection system

Multiport Fuel Injection (MFI) System (Cont'd) **FUEL INJECTION TIMING**

Two types of systems are used.

Sequential multiport fuel injection system

Fuel is injected into each cylinder during each engine cycle according to the firing order. This system is used when the engine is running.

Simultaneous multiport fuel injection system

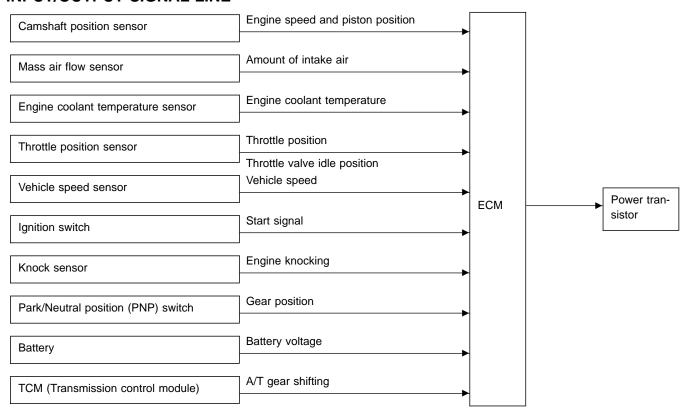
Fuel is injected simultaneously into all four cylinders twice each engine cycle. In other words, pulse signals of the same width are simultaneously transmitted from the ECM.

The four injectors will then receive the signals two times for each engine cycle.

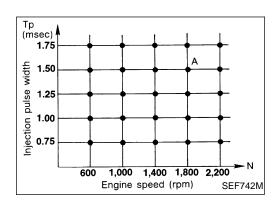
This system is used when the engine is being started and/or if the fail-safe system (CPU) is operating.

FUEL SHUT-OFF

Fuel to each cylinder is cut off during deceleration or operation of the engine at excessively high speeds.


Distributor Ignition (DI) System

INPUT/OUTPUT SIGNAL LINE


No. 2 cylinder Λ

No. 3 cylinder \prod

No. 4 cylinder Π

ENGINE AND EMISSION BASIC CONTROL SYSTEM DESCRIPTION

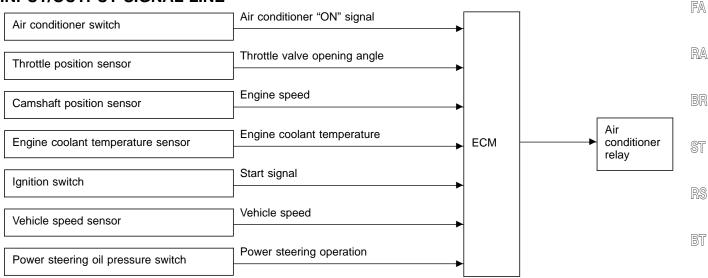
Distributor Ignition (DI) System (Cont'd) SYSTEM DESCRIPTION

The ignition timing is controlled by the ECM to maintain the best air-fuel ratio for every running condition of the engine.

The ignition timing data is stored in the ECM. This data forms the map shown.

The ECM receives information such as the injection pulse width and camshaft position sensor signal. Computing this information, ignition signals are transmitted to the power transistor.

During the following conditions, the ignition timing is revised by the ECM according to the other data stored in the ECM.


- At starting
- During warm-up
- At idle
- At low battery voltage
- During acceleration

The knock sensor retard system is designed only for emergencies. The basic ignition timing is programmed within the antiknocking zone, if recommended fuel is used under dry conditions. The retard system does not operate under normal driving conditions.

If engine knocking occurs, the knock sensor monitors the condition. The signal is transmitted to the ECM. The ECM retards the ignition timing to eliminate the knocking condition.

Air Conditioning Cut Control

INPUT/OUTPUT SIGNAL LINE

SYSTEM DESCRIPTION

This system improves engine operation when the air conditioner is used.

Under the following conditions, the air conditioner is turned off.

- When the accelerator pedal is fully depressed.
- When cranking the engine.
- At high engine speeds.

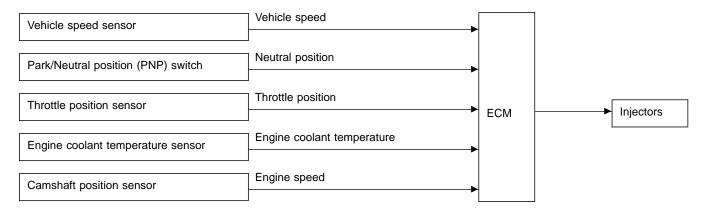
- When the engine coolant temperature becomes excessively high.
- When operating power steering during low engine speed or low vehicle speed.
- When engine speed is excessively low.

EC

EM

GI

FA

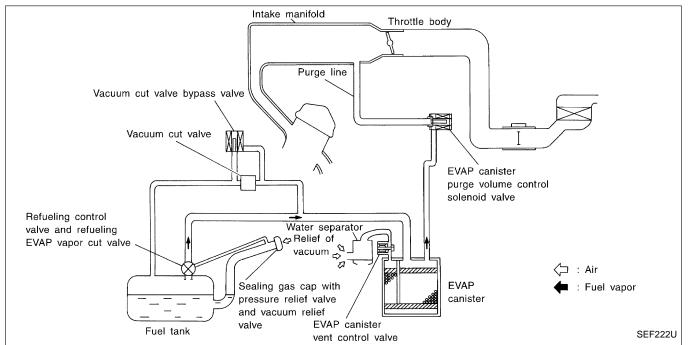

BR

BT

HA

Fuel Cut Control (at no load & high engine speed)

INPUT/OUTPUT SIGNAL LINE

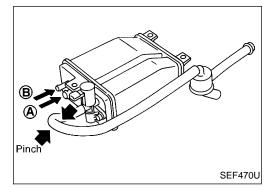

If the engine speed is above 4,000 rpm with no load, (for example, in neutral and engine speed over 4,000 rpm) fuel will be cut off after some time. The exact time when the fuel is cut off varies based on engine speed.

Fuel cut will operate until the engine speed reaches 2,000 rpm, then fuel cut is cancelled.

NOTE:

This function is different from deceleration control listed under "Multiport Fuel Injection (MFI) System", EC-18.

Description



The evaporative emission system is used to reduce hydrocarbons emitted into the atmosphere from the fuel system. This reduction of hydrocarbons is accomplished by activated charcoals in the EVAP canister.

The fuel vapor in the sealed fuel tank is led into the EVAP canister which contains activated carbon and the vapor is stored there when the engine is not operating or when refueling to the

The vapor in the EVAP canister is purged by the air through the purge line to the intake manifold when the engine is operating. EVAP canister purge volume control solenoid valve is controlled by engine control module. When the engine operates, the flow rate of vapor controlled by EVAP canister purge volume control solenoid valve is proportionally regulated as the air flow

EVAP canister purge volume control solenoid valve also shuts off the vapor purge line during decelerating and idling.

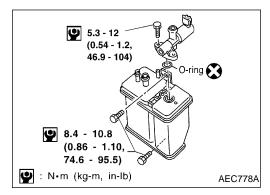
Inspection

EVAP CANISTER

Check EVAP canister as follows:

- Pinch the fresh air hose.
- Blow air into port (A) and check that air flows freely through port (B).

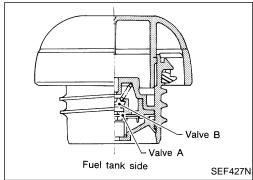
MA


EC

AT

BT

HA


耴

Inspection (Cont'd) TIGHTENING TORQUE

Tighten EVAP canister as shown in the figure.

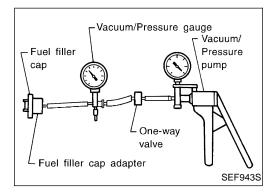
Make sure new O-ring is installed properly between EVAP canister and EVAP vent control valve.

FUEL TANK VACUUM RELIEF VALVE (Built into fuel filler cap)

- 1. Wipe clean valve housing.
- 2. Check valve opening pressure and vacuum.

Pressure:

16.0 - 20.0 kPa (0.163 - 0.204 kg/cm², 2.32 - 2.90 psi)


Vacuum:

-6.0 to -3.3 kPa (-0.061 to -0.034 kg/cm², -0.87 to -0.48 psi)

3. If out of specification, replace fuel filler cap as an assembly.

CAUTION:

Lise only a genuine fuel filler cap as a replacement. If an

Use only a genuine fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.

VACUUM CUT VALVE

Refer to EC-420.

EVAPORATIVE EMISSION (EVAP) CANISTER PURGE VOLUME CONTROL SOLENOID VALVE

Refer to EC-386.

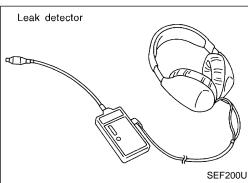
FUEL TANK TEMPERATURE SENSOR

Refer to EC-240.

EVAP service port adapter EVAP service port Pressure pump SEF462UH

Inspection (Cont'd) **EVAP SERVICE PORT**

Positive pressure is delivered to the evaporator system through the evaporator service port. If fuel vapor leakage in the evaporator system occurs, use a leak detector to locate the leak.


MA

EM

EC

EVAP SYSTEM CLOSE APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT NEXT SCREEN. **NEVER USE COMPRESSED** AIR OR HIGH PRESSURE **PUMP! DO NOT START** ENGINE, TOUCH START.

PEF658U

How to detect fuel vapor leakage

CAUTION:

- Never use compressed air or a high pressure pump.
- Do not start engine.
- Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in EVAP system.

1.

Improper installation of adapter to the service port may cause a leak.

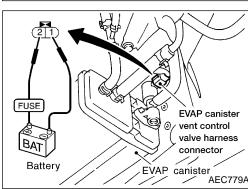
MIT

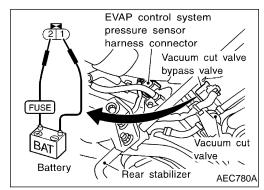
- Attach the EVAP service port adapter securely to the 1. EVAP service port.
 - 2. Also attach the pressure pump and hose.
 - Turn ignition switch "ON". 3.
- Select the "EVAP SYSTEM CLOSE" of "WORK SUP-4. PORT MODE" with CONSULT-II.
- 5. Touch "START". A bar graph (Pressure indicating display) will appear on the screen.
- 6. Apply positive pressure to the EVAP system until the pressure indicator reaches the middle of the bar graph.
- Locate the leak using a leak detector. Refer to "Evaporative Emission Line Drawing", EC-26.

· OR ·

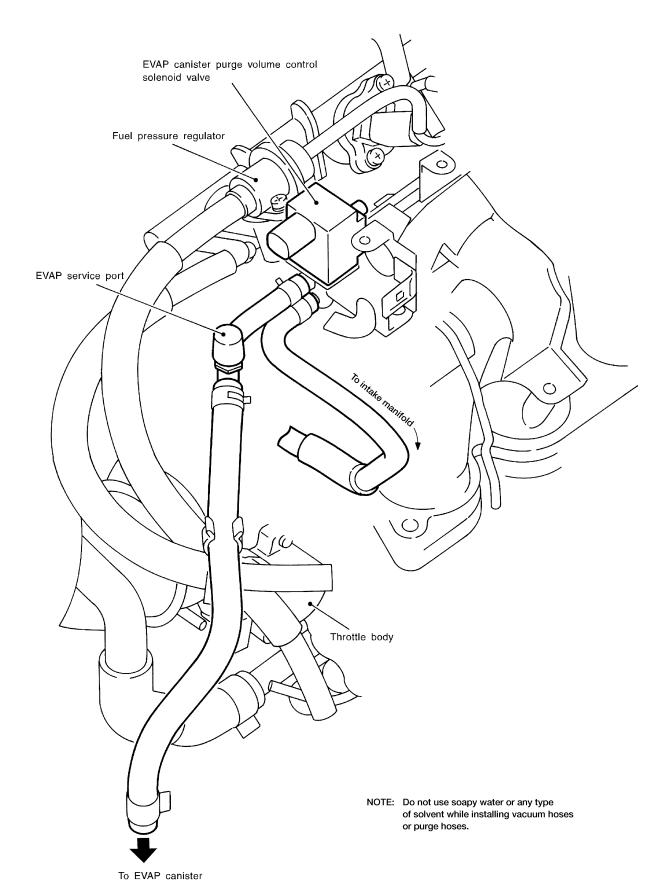
Attach the EVAP service port adapter securely to the EVAP service port and pressure pump with pressure

RA

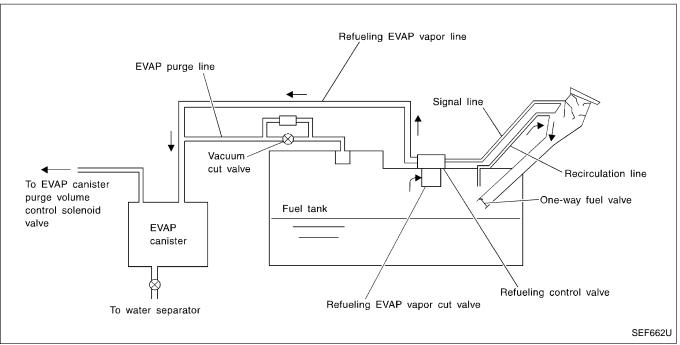

gauge to the EVAP service port. 2. Apply battery voltage to between the terminals of both EVAP canister vent control valve and vacuum cut valve bypass valve to make a closed EVAP sys-


3. To locate the leak, deliver positive pressure to the EVAP system until pressure gauge points reach 1.38 to 2.76 kPa (0.014 to 0.028 kg/cm², 0.2 to 0.4 psi).

Locate the leak using a leak detector. Refer to "Evaporative Emission Line Drawing", EC-26.


HA

EL


Evaporative Emission Line Drawing

Evaporative Emission Line Drawing (Cont'd)

On Board Refueling Vapor Recovery (ORVR) SYSTEM DESCRIPTION

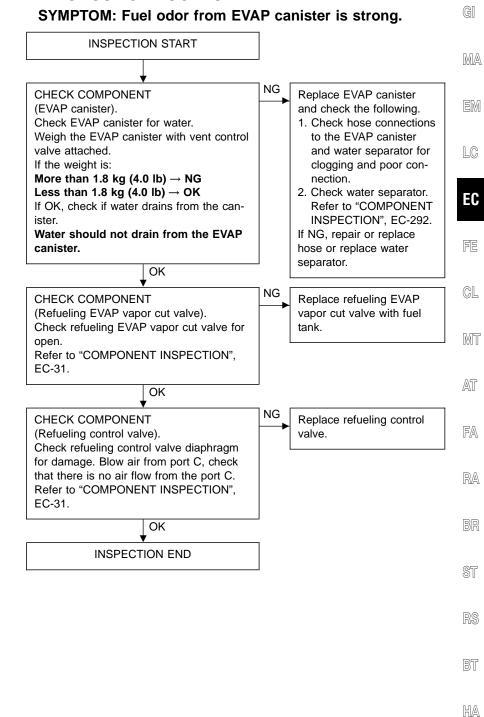
From the beginning of refueling, the fuel tank pressure goes up. When the pressure reaches the setting value of the refueling control valve (RCV) opening pressure, the RCV is opened. After RCV opens, the air and vapor inside the fuel tank go through refueling EVAP vapor cut valve, RCV and refueling vapor line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is released to the atmosphere.

When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged during driving.

The RCV is always closed during driving and the evaporative emission control system is operated the same as conventional system.

WARNING:

When conducting inspections below, be sure to observe the following:

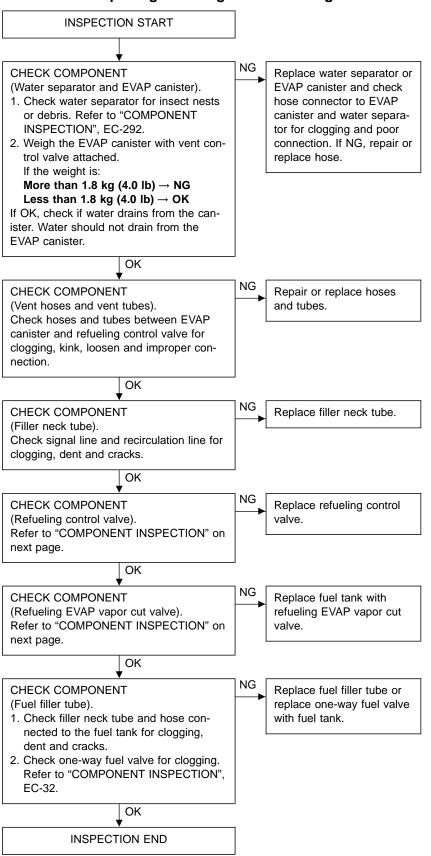

- Put a "CAUTION: INFLAMMABLE" sign in workshop.
- Do not smoke while servicing fuel system. Keep open flames and sparks away from work area.
- Be sure to furnish the workshop with a CO₂ fire extinguisher.

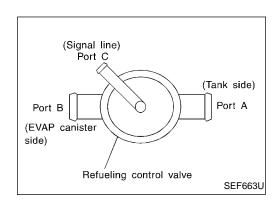
CAUTION:

- Before removing fuel line parts, carry out the following procedures:
- a. Put drained fuel in an explosion-proof container and put lid on securely.
- b. Release fuel pressure from fuel line. Refer to "Fuel Pressure Release", EC-34.
- c. Disconnect battery ground cable.
- Always replace O-ring when the fuel gauge retainer is removed.
- Do not kink or twist hose and tube when they are installed.
- Do not tighten hose and clamps excessively to avoid damaging hoses.
- After installation, run engine and check for fuel leaks at connection.
- Do not attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically.
 Continued refueling may cause fuel overflow, resulting in fuel spray and possibly a fire.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

DIAGNOSTIC PROCEDURE



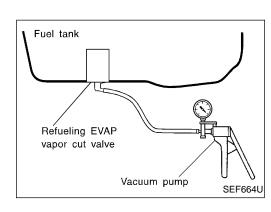

EL

IDX

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

SYMPTOM: Cannot refuel/Fuel odor from the fuel filler opening is strong while refueling.

On Board Refueling Vapor Recovery (ORVR) (Cont'd)


COMPONENT INSPECTION

Refueling control valve

Check refueling control valve as follows:

- 1. Check visually for cracks in the appearance.
- Check air continuity between port A and B.
 Blow air into the port A. Air should flow freely through port B.
- 3. Blow air into port C and check there is no leakage.
- 4. Apply pressure to both port A and C [20 kPa (150 mmHg, 5.91 inHg)] and check there is no leakage from port B.

If NG, replace refueling control valve.

Refueling EVAP vapor cut valve

- 1. Remove fuel tank. Refer to "FUEL SYSTEM" in FE section. Drain fuel from the tank as follows:
 - With CONSULT-II
 - a. Remove fuel feed hose located on the fuel gauge retainer, and then connect a spare fuel hose to other side of the fuel container.
 - b. Drain fuel using "FUEL PUMP RELAY" in "ACTIVE TEST" mode with CONSULT-II.

Without CONSULT-II

- Remove fuel gauge retainer.
- b. Drain fuel from the tank using a hand pump into a fuel container.
- 2. Check valve head appearance visually for cracks.
- Check refueling EVAP vapor cut valve for being stuck to close as follows.
 - Blow air into the refueling EVAP vapor cut valve, and check that the air flows freely into the tank.
- 4. Check EVAP vapor cut valve for being stuck to open as follows.
- a. Connect vacuum pump to cut valve.
- Remove fuel gauge retainer with fuel gauge unit.

Always replace O-ring with new one.

- c. Put fuel filler tank upside down.
- d. Apply negative pressure [-13.3 kPa (-100 mmHg, -3.94 inHg)] with fuel gauge retainer remaining open and check that the pressure is applicable.
 - If NG, replace refueling EVAP vapor cut valve with fuel tank.

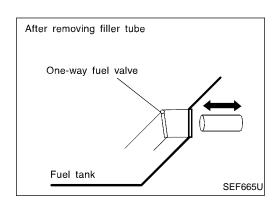
LC

EM

GI

MA

EC


MT

RA

IDX

BT

HA

On Board Refueling Vapor Recovery (ORVR) (Cont'd)

One-way fuel valve

- Drain fuel from the tank. Refer to "COMPONENT INSPECTION" of refueling EVAP vapor cut valve, EC-31.
- 2. Remove fuel filler tube and hose.
- Check one-way fuel valve for operation.
 When a stick is inserted, the valve should open, when removing stick it should close.

Do not drop any material into the tank.

If NG, replace one-way fuel valve with fuel tank.

POSITIVE CRANKCASE VENTILATION

Description

This system returns blow-by gas to the intake collector.

The positive crankcase ventilation (PCV) valve is provided to conduct crankcase blow-by gas to the intake manifold.

During partial throttle operation of the engine, the intake manifold sucks the blow-by gas through the PCV valve.

Normally, the capacity of the valve is sufficient to handle any blow-by and a small amount of ventilating air.

The ventilating air is then drawn from the air duct

into the crankcase. In this process the air passes through the hose connecting air inlet tubes to rocker cover.

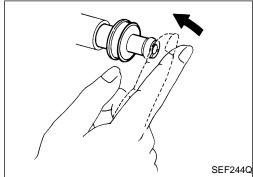
Under full-throttle condition, the manifold vacuum is insufficient to draw the blow-by flow through the valve. The flow goes through the hose connection in the reverse direction.

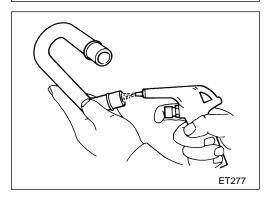
On vehicles with an excessively high blow-by, the valve does not meet the requirement. This is because some of the flow will go through the hose connection to the intake collector under all conditions.

EM

EC


MIT


AT


FA

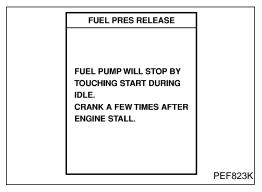
RA

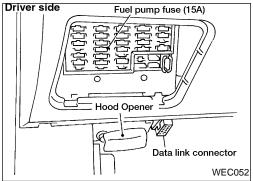
BR

Inspection

PCV (Positive Crankcase Ventilation) VALVE

With engine running at idle, remove PCV valve from breather separator. A properly working valve makes a hissing noise as air passes through it. A strong vacuum should be felt immediately when a finger is placed over the valve inlet.


VENTILATION HOSE

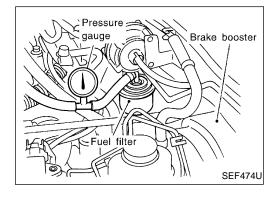

- 1. Check hoses and hose connections for leaks.
- 2. Disconnect all hoses and clean with compressed air. If any hose cannot be freed of obstructions, replace.

HA

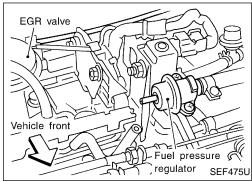
BT

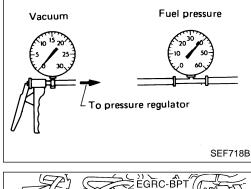
BASIC SERVICE PROCEDURE

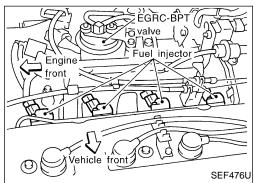
Fuel Pressure Release

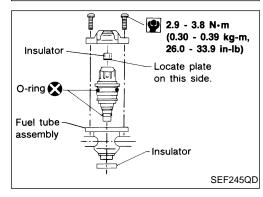

Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

- 1. Start engine.
- 2. Perform "FUEL PRESSURE RELEASE" in "WORK SUPPORT" mode to release fuel pressure to zero.
- 3. After engine stalls, crank it two or three times to make sure that fuel pressure is released.
- 4. Turn ignition switch OFF.


- OR ·
- 1. Remove fuse for fuel pump.
- 2. Start engine.
- 3. After engine stalls, crank it two or three times to release all fuel pressure.
- 4. Turn ignition switch off and reconnect fuel pump fuse.




Fuel Pressure Check


- When reconnecting fuel line, always use new clamps.
- Make sure that clamp screw does not contact adjacent parts.
- Use a torque driver to tighten clamps.
- Use Pressure Gauge to check fuel pressure.
- Do not perform fuel pressure check with system operating. Fuel pressure gauge may indicate false readings.
- Release fuel pressure to zero.
- 2. Disconnect fuel hose between fuel filter and fuel tube (engine side).
- 3. Install pressure gauge between fuel filter and fuel tube.
- 4. Start engine and check for fuel leakage.

BASIC SERVICE PROCEDURE

Fuel Pressure Check (Cont'd)

Read the indication of fuel pressure gauge.

At idling:

With vacuum hose connected Approximately 235 kPa (2.4 kg/cm², 34 psi) With vacuum hose disconnected

Approximately 294 kPa (3.0 kg/cm², 43 psi)

If results are unsatisfactory, perform Fuel Pressure Regulator Check.

Fuel Pressure Regulator Check

- Stop engine and disconnect fuel pressure regulator vacuum hose from intake manifold.
- Plug intake manifold with a rubber cap.
- Connect variable vacuum source to fuel pressure regulator.
- Start engine and read indication of fuel pressure gauge as vacuum is changed.

Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace fuel pressure regulator.

Injector Removal and Installation

- Release fuel pressure to zero.
- Remove injector tube assembly with injectors from intake manifold.
- Remove injectors from injector tube assembly.
- Push injector tail piece.
- Do not pull on the connector.
- Install injectors.
- Clean exterior of injector tail piece.
- Use new O-rings.

After properly connecting injectors to fuel tube assembly, check connections for fuel leakage.

- Assemble injectors to injector tube assembly.
- Install injector tube assembly to intake manifold.

Fast Idle Cam (FIC)

COMPONENT DESCRIPTION

The FIC is installed on the throttle body to maintain adequate engine speed while the engine is cold. It is operated by a volumetric change in wax located inside the thermo-element. The thermo-element is operated by engine coolant temperature.

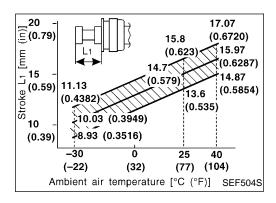
LC

GI

MA

MIT

FA


RA

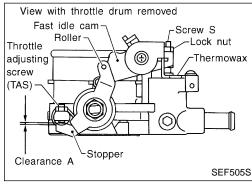
BT

HA

耴

BASIC SERVICE PROCEDURE

Fast Idle Cam (FIC) (Cont'd) COMPONENT INSPECTION AND ADJUSTMENT


Perform inspection and adjustment as follows:

- Make sure the engine has cooled down and remove the throttle body. Refer to "OUTER COMPONENT PARTS" in EM section.
- Leave the throttle body for more than 3 hours so the temperature of the thermowax levels with the ambient air temperature.

Avoid direct sunlight or other heat source (heater, air conditioner, etc.).

 Check dimension L₁ without removing thermowax from throttle body. Measure ambient air temperature with a thermometer.

L ₁ dimension	Judgement and remedy	
Inside hatched area	The thermowax is normal. Perform FIC adjustment. Go to step 4.	
Outside hatched area	Replace the thermowax and install the FIC. Perform adjustment from step 2.	

3.0□ M/T models (0.118)2.5 2.08 (0.098)MAX (0.0819)2.0 MIN 1.37 (0.0539) (0.0323) (0.079)1.74 1.5 (0.0685)(0.059)0.52 Clearance 1.05 (0.0205)(0.0413) (0.039)0.53 (0.0209) 0.5 0.25 (0.0098) (0.020)0.0_40-30-20-10 0 10 20 30 40 (-40)(-22)(-4)(14)(32)(50)(68)(86)(104) Ambient air temperature [°C (°F)] A/T models (0.118)2.29 (0.0902)2.5 (0.098)1.90 (in) (0.0748) 1.47 (0.0579) 2.10 (0.079)Lmm (0.0827)1.07 (0.059)(0.0421)(0.0693)Slearance 1 0 (0.039)1.23 (0.0484) 0.5 (0.020)0.74 (0.0291) 0.040-30-20-10 0 10 20 30 40 (-40)(-22)(-4)(14)(32)(50)(68)(86)(104) Ambient air temperature [°C (°F)] SEF673U Check the clearance A between the stopper and the throttle adjusting screw (TAS). If not within specifications (the hatched area as shown in the figure below), adjust clearance using screw S.

Do not adjust the clearance using the throttle adjusting screw (TAS).

- 5. After adjusting clearance A, tighten the lock nut of screw S.
- Install the throttle body. Refer to "OUTER COMPONENT PARTS" in EM section.
- 7. Warm up engine to normal operating temperature. Confirm there is clearance between FIC and roller.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment

PREPARATION

- Make sure that the following parts are in good order.
- (1) Battery
- (2) Ignition system
- (3) Engine oil and coolant levels
- (4) Fuses
- (5) ECM harness connector
- (6) Vacuum hoses
- (7) Air intake system
 (Oil filler cap, oil level gauge, etc.)
- (8) Fuel pressure
- (9) Engine compression
- (10) EGR valve operation
- (11) Throttle valve
- (12) EVAP system

- On models equipped with air conditioner, checks should be carried out while the air conditioner is "OFF".
- On models equipped with automatic transaxle, when checking idle speed, ignition timing and mixture ratio, checks should be carried out while shift lever is in "N" position.
- When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.
- Turn off headlamps, heater blower, rear defogger.
- Keep front wheels pointed straight ahead.
- Make the check after the cooling fan has stopped.

GI

 $\mathbb{M}\mathbb{A}$

∃M

[C

EC

CL

MT

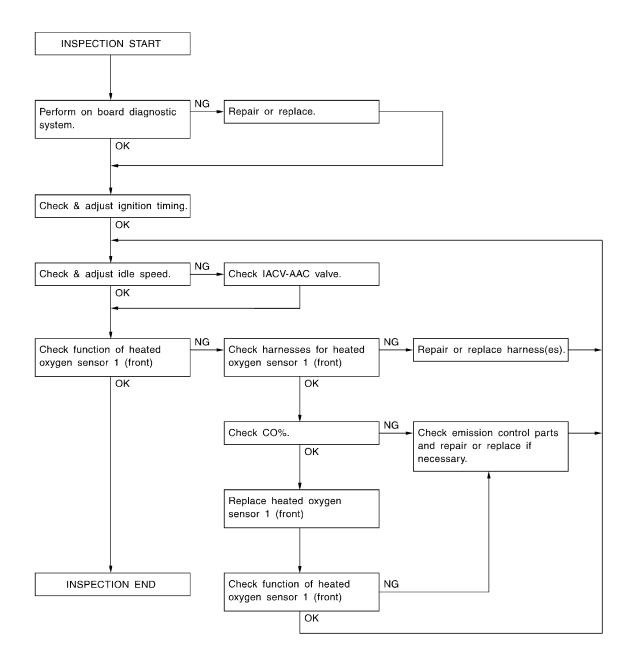
AT

FA

RA

BR

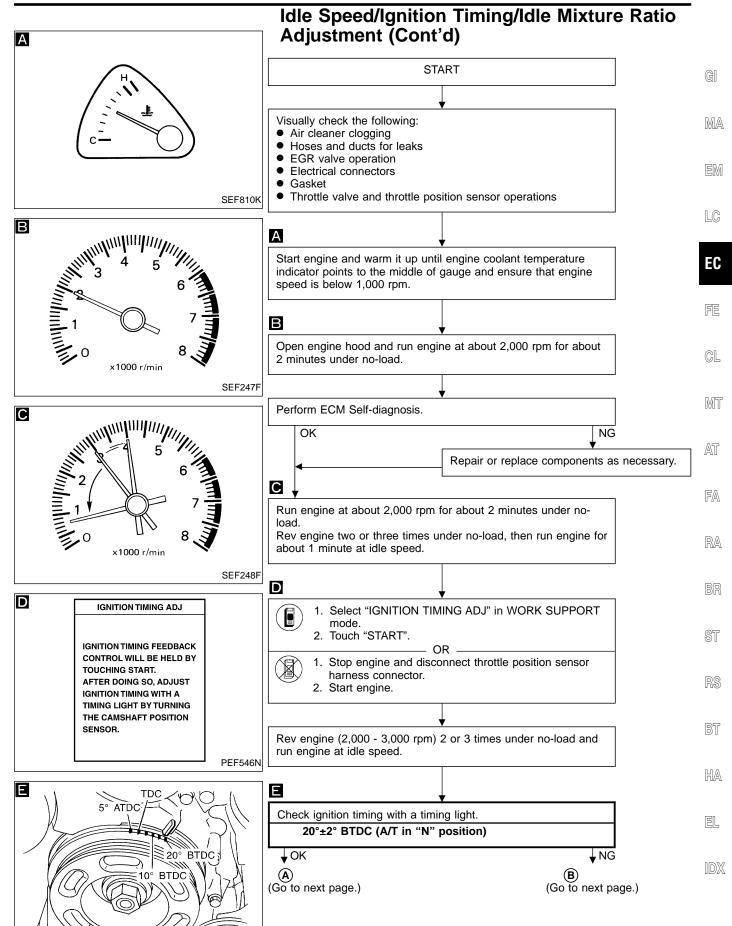
ST

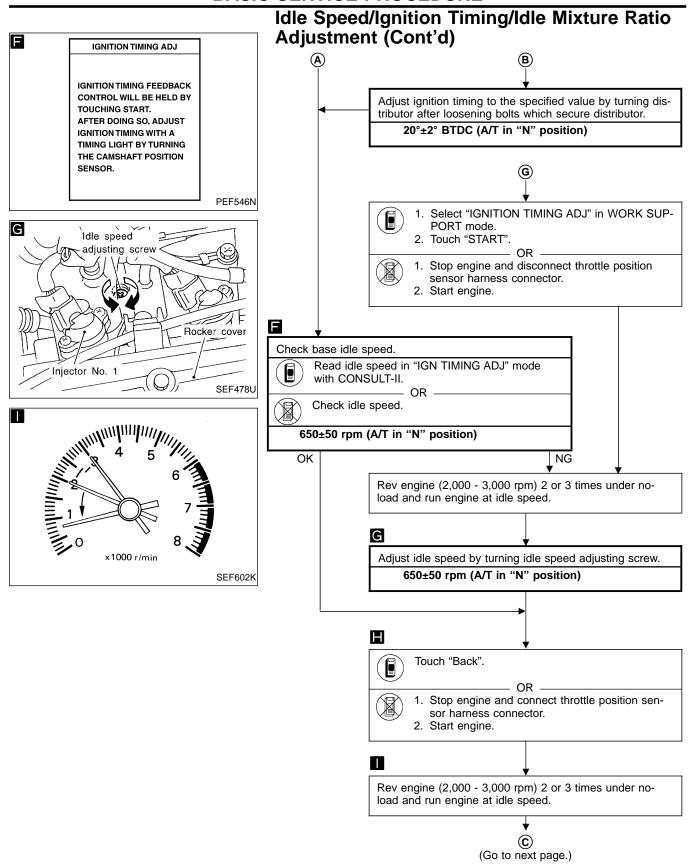

RS

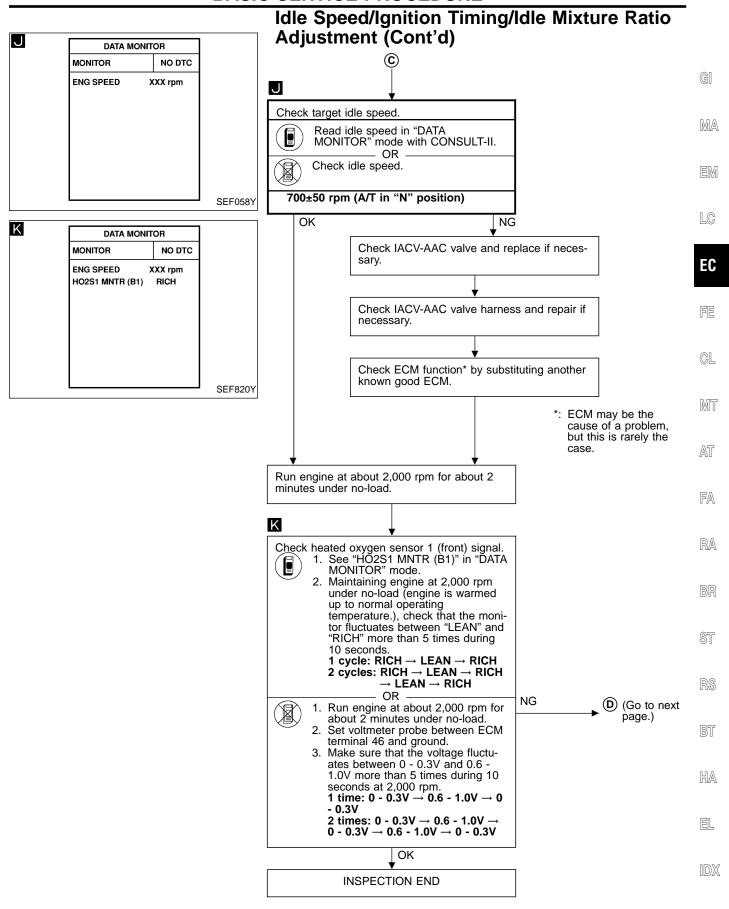
BT

HA

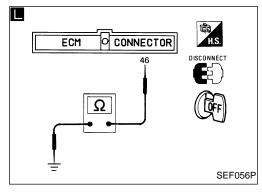
Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)


Overall inspection sequence




SEF554Y


NOTE:


If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

Check heated oxygen sensor 1 (front) harness:

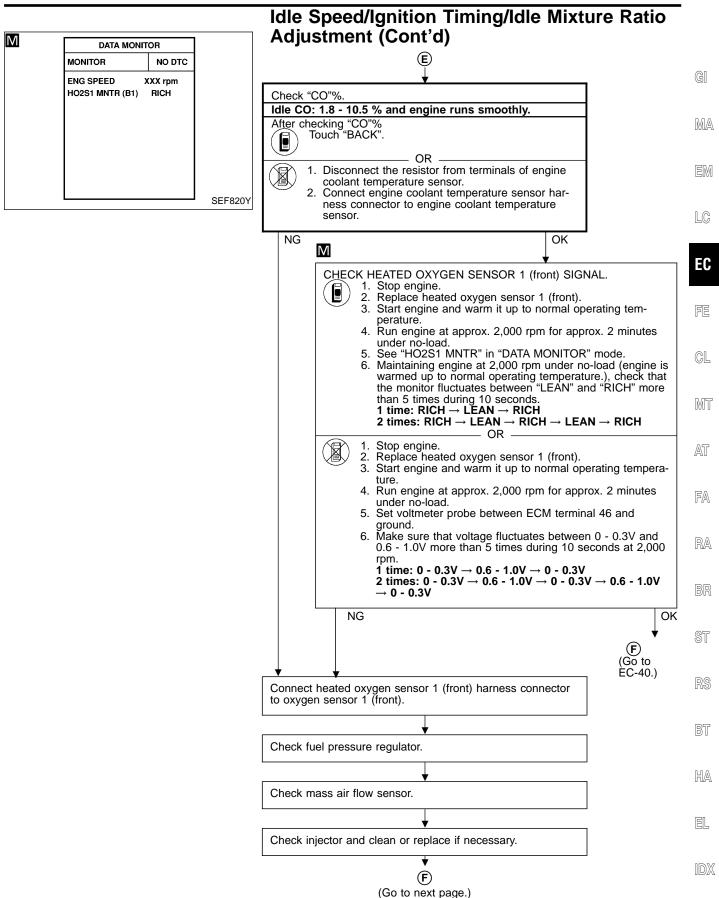
- Turn off engine and disconnect battery ground cable.
- 2. Disconnect ECM harness connector from ECM.
- Disconnect heated oxygen sensor 1 (front) harness connector and connect terminal for heated oxygen sensor 1 (front) to ground with a jumper wire.
- Check for continuity between terminal No. 46 of ECM harness connector and ground metal on vehicle body.

Continuity exists ... OK
Continuity does not exist ... NG

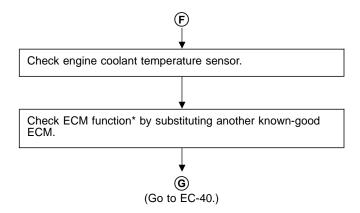
Connect ECM harness connector to ECM.

- 1. Select "ENG COOLANT TEMP" in "ACTIVE TEST" mode.
- 2. Set "COOLANT TEMP" at 5°C (41°F).

 OR


- 1. Disconnect engine coolant temperature sensor harness connector.
- 2. Connect a resistor (4.4 k Ω) between terminals of engine coolant temperature sensor harness connector.

Start engine and warm it up until engine coolant temperature indicator points to the middle of gauge. (Be careful to start engine after setting "COOLANT TEMP" or installing a 4.4 k Ω resistor.)


Rev engine two or three times under no-load then run engine at idle speed.

↓ (E)

(Go to next page.)

Idle Speed/Ignition Timing/Idle Mixture Ratio Adjustment (Cont'd)

- *: ECM may be the cause of a problem, but this is rarely the case
- If a vehicle contains a part which is operating outside of design specifications with no MIL illumination, the part shall not be replaced prior to emission testing unless it is determined that the part has been tampered with or abused in such a way that the diagnostic system cannot reasonably be expected to detect the resulting malfunction.

Introduction

The ECM has an on board diagnostic system, which detects malfunctions related to engine sensors or actuators. The ECM also records various emission-related diagnostic information including:

- Diagnostic Trouble Code (DTC)......Mode 3 of SAE J1979
 Freeze Frame dataMode 2 of SAE J1979

- 1st Trip Freeze Frame data

The above information can be checked using procedures listed in the table below.

	DTC	1st trip DTC	Freeze Frame data	1st trip Freeze Frame data	SRT code	Test value
Diagnostic test mode II (Self- diagnostic results)	X	X*1	_	_	_	_
CONSULT-II	Х	Х	X	X	Х	_
GST	X	X*2	X	_	X	X

^{*1:} When DTC and 1st trip DTC simultaneously appear on the display, they cannot be clearly distinguished from each other.
*2: 1st trip DTCs for self-diagnoses concerning SRT items cannot be shown on the GST display.

The malfunction indicator lamp (MIL) on the instrument panel lights up when the same malfunction is detected in two consecutive trips (Two trip detection logic), or when the ECM enters fail-safe mode (Refer to EC-90).

Two Trip Detection Logic

When a malfunction is detected for the first time, 1st trip DTC and 1st trip Freeze Frame data are stored in the ECM memory. The MIL will not light up at this stage. <1st trip>
If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are

stored in the ECM memory, and the MIL lights up. The MIL lights up at the same time when the DTC is stored. <2nd trip> The "trip" in the "Two Trip Detection Logic" means a driving mode in which self-diagnosis is performed during vehicle operation. Specific on board diagnostic items will cause the ECM to light up or blink the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.

X: Applicable —: Not applicable

MA

LC

EC

FE

CL

AT

BT

HA

						π. πρρ		от арриоавіо
	MIL				DTC		1st trip DTC	
Items	1st trip		2nd trip		1st trip dis-	2nd trip dis-	1st trip dis-	2nd trip dis-
	Blinking	Lighting up	Blinking	Lighting up	playing	playing	playing	playing
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	Х	_	_	_	_	_	х	_
Misfire (Possible three way catalyst damage) — DTC: P0300 - P0304 is being detected	_	_	X	_	_	х	_	_
Closed loop control — DTC: P1148	_	Х	_	_	х	_	Х	_
Fail-safe items (Refer to 90.)	_	Х	_	_	X*1	_	X*1	_
Except above	_	_	_	Х	_	Х	Х	_

^{*1:} Except "ECM".

Emission-related Diagnostic Information

DTC AND 1ST TRIP DTC

The 1st trip DTC (whose number is the same as the DTC number) is displayed for the latest self-diagnostic result obtained. If the ECM memory was cleared previously, and the 1st trip DTC did not reoccur, the 1st trip DTC will not be displayed. If a malfunction is detected during the 1st trip, the 1st trip DTC is stored in the ECM memory. The MIL will not light up (two trip detection logic). If the same malfunction is not detected in the 2nd trip (meeting the required driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the 2nd trip, both the 1st trip DTC and DTC are stored in the ECM memory and the MIL lights up. In other words, the DTC is stored in the ECM memory and the MIL lights up when the same malfunction occurs in two consecutive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd trips, only the 1st trip DTC will continue to be stored. For malfunctions that blink or light up the MIL during the 1st trip, the DTC and 1st trip DTC are stored in the ECM memory.

Procedures for clearing the DTC and the 1st trip DTC from the ECM memory are described in "HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION". Refer to EC-58.

For malfunctions in which 1st trip DTCs are displayed, refer to EC-56. These items are required by legal regulations to continuously monitor the system/component. In addition, the items monitored non-continuously are also displayed on CONSULT-II.

1st trip DTC is specified in Mode 7 of SAE J1979. 1st trip DTC detection occurs without lighting up the MIL and therefore does not warn the driver of a problem. However, 1st trip DTC detection will not prevent the vehicle from being tested, for example during Inspection/Maintenance (I/M) tests.

When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame data as specified in "Work Flow" procedure Step II, refer to page EC-81. Then perform "Diagnostic trouble code confirmation procedure" or "Overall function check" to try to duplicate the problem. If the malfunction is duplicated, the item requires repair.

How to read DTC and 1st trip DTC

DTC and 1st trip DTC can be read by the following methods.

CONSULT-II or GST (Generic Scan Tool) Examples: P0340, P1320, P0705, P0750, etc. These DTCs are prescribed by SAE J2012.

(CONSULT-II also displays the malfunctioning component or system.)

- 1st trip DTC No. is the same as DTC No.
- Output of a DTC indicates a malfunction. However, Mode II and GST do not indicate whether
 the malfunction is still occurring or has occurred in the past and has returned to normal.
 CONSULT-II can identify malfunction status as shown below. Therefore, using CONSULT-II (if
 available) is recommended.

A sample of CONSULT-II display for DTC is shown below. DTC or 1st trip DTC of a malfunction is displayed in SELF-DIAGNOSTIC RESULTS mode of CONSULT-II. Time data indicates how many times the vehicle was driven after the last detection of a DTC.

If the DTC is being detected currently, the time data will be "0".

If a 1st trip DTC is stored in the ECM, the time data will be "[1t]".

	SELF DIAG RESULTS			SELF DIAG RESULTS		
	DTC RESULTS	TIME	DTC RESULTS	DTC RESULTS	TIME	
DTC	MAF SEN/CIRCUIT [P0100]	0	MAF SEN/CIRCUIT [P0100]		1t	
display						

Emission-related Diagnostic Information (Cont'd)

FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA

The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant temperature, short term fuel trim, long term fuel trim, engine speed, vehicle speed and absolute pressure sensor at the moment a malfunction is detected.

Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data. The data, stored together with the DTC data, are called freeze frame data and displayed on CON-SULT-II or GST. The 1st trip freeze frame data can only be displayed on the CONSULT-II screen, not on the GST. For details, see EC-69.

Only one set of freeze frame data (either 1st trip freeze frame data or freeze frame data) can be stored in the ECM. 1st trip freeze frame data is stored in the ECM memory along with the 1st trip DTC. There is no priority for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the following priorities to update the data.

Priority	Items				
1	Freeze frame data	Misfire — DTC: P0300 - P0304			
'		Fuel Injection System Function — DTC: P0171, P0172			
2		Except the above items (Includes A/T related items)			
3	1st trip freeze frame da	ıta			

For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was stored in the 2nd trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different malfunction is detected. There is no priority for 1st trip freeze frame data. However, once freeze frame data is stored in the ECM memory, first trip freeze data is no longer stored (because only one freeze frame data or first trip freeze frame data can be stored in the ECM). If freeze frame data is stored in the ECM memory and freeze frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the ECM memory.

Both 1st trip freeze frame data and freeze frame data (along with the DTCs) are cleared when the ECM memory is erased. Procedures for clearing the ECM memory are described in "HOW TO ERASE EMIS-SION-RELATED DIAGNOSTIC INFORMATION". Refer to EC-58.

SYSTEM READINESS TEST (SRT) CODE

System Readiness Test (SRT) code is specified in Mode 1 of SAE J1979. As part of an enhanced emissions test for Inspection & Maintenance (I/M), certain states require the status of SRT be used to indicate whether the engine control module (ECM) has completed self-diagnosis of major emission systems and components. Completion must be verified in order for the emissions inspection to proceed.

If a vehicle is rejected for a State emissions inspection due to one or more SRT items indicating "INCMP", use the information in this Service Manual to set the SRT to "CMPLT".

In most cases the ECM will automatically complete its self-diagnosis cycle during normal usage, and the SRT status will indicate "CMPLT" for each application system. Once set as "CMPLT" the SRT status remains "CMPLT" until the self-diagnosis memory is erased.

Occasionally, certain portions of the self-diagnostic test may not be completed as a result of the customer's normal driving pattern and the SRT will indicate "INCMP" for these items.

NOTE:

The SRT will also indicate "INCMP" if the self-diagnosis memory is erased for any reason or if the ECM memory power supply is interrupted for several hours.

If, during the state emissions inspection, the SRT indicates "CMPLT" for all test items, the inspector will continue with the emissions test. However, if the SRT indicates "INCMP" for one or more of the SRT items the vehicle is returned to the customer untested.

NOTE:

If MIL is "ON" during the state emissions inspection, the vehicle is also returned to the customer untested even though the SRT indicates "CMPLT" for all test items. Therefore, it is important to check SRT ("CMPLT") and DTC (No DTCs) before the inspection.

SRT item

The table on next page shows required self-diagnostic items to set the SRT to "CMPLT".

EC-47

MA

EC

RA

HA

EL

Emission-related Diagnostic Information (Cont'd)

SRT item (CONSULT-II indication)	Performance Priority*	Required self-diagnostic items to set the SRT to "CMPLT"	Corresponding DTC No.
CATALYST	3	Three way catalyst function	P0420
	2	EVAP control system (small leak) (negative pressure)	P0440
EVAP SYSTEM	3	EVAP control system (very small leak) (negative pressure/positive pressure)	P1441
		EVAP control system purge flow monitoring	P1447
	3	Heated oxygen sensor 1 (front) (circuit)	P0130
		Heated oxygen sensor 1 (front) (lean shift monitoring)	P0131
		Heated oxygen sensor 1 (front) (rich shift monitoring)	P0132
		Heated oxygen sensor 1 (front) (response monitoring)	P0133
O2 SENSOR		Heated oxygen sensor 1 (front) (high voltage)	P0134
		Heated oxygen sensor 2 (rear) (min. voltage monitoring)	P0137
		Heated oxygen sensor 2 (rear) (max. voltage monitoring)	P0138
		Heated oxygen sensor 2 (rear) (response monitoring)	P0139
		Heated oxygen sensor 2 (rear) (high voltage)	P0140
O2 SEN HEATER	3	Heated oxygen sensor 1 heater (front)	P0135
UZ SEN HEATER		Heated oxygen sensor 2 heater (rear)	P0141
	3	EGR function (close)	P0400
EGR SYSTEM		EGRC-BPT valve function	P0402
	1	EGR function (open)	P1402

^{*:} If completion of several SRTs is required, perform driving patterns (DTC confirmation procedure), one by one based on the priority for models with CONSULT-II.

Emission-related Diagnostic Information (Cont'd)

SRT set timing

SRT is set as "CMPLT" after self-diagnosis has been performed one or more times. Completion of SRT is done regardless of whether the result is OK or NG. The set timing is different between OK and NG results and is shown in the table below.

		Example						
Self-diagnosis result		Diagnosis	Ignition cycle ← ON → OFF ← ON → OFF ← ON →					
	Case 1	P0400	OK (1)	— (1)	OK (2)	— (2)		
		P0402	OK (1)	— (1)	— (1)	OK (2)		
		P1402	OK (1)	OK (2)	— (2)	— (2)		
All OK		SRT of EGR	"CMPLT"	"CMPLT"	"CMPLT"	"CMPLT"		
All OK	Case 2	P0400	OK (1)	— (1)	— (1)	— (1)		
		P0402	— (0)	— (0)	OK (1)	— (1)		
		P1402	OK (1)	OK (2)	— (2)	— (2)		
		SRT of EGR	"INCMP"	"INCMP"	"CMPLT"	"CMPLT"		
	Case 3	P0400	OK	OK	_	_		
		P0402	_	_	_	_		
						NG		
NG exists		P1402	NG	_	NG	(Consecutive NG)		
		(1st trip) DTC	1st trip DTC	_	1st trip DTC	DTC (= MIL "ON")		
		SRT of EGR	"INCMP"	"INCMP"	"INCMP"	"CMPLT"		

OK: Self-diagnosis is carried out and the result is OK. NG: Self-diagnosis is carried out and the result is OK.

When all SRT related self-diagnoses show OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will indicate "CMPLT". → Case 1 above

When all SRT related self-diagnoses show OK results through several different cycles, the SRT will indicate "CMPLT" at the time the respective self-diagnoses have at least one OK result. → Case 2 above In one or more SRT related self-diagnoses show NG results in 2 consecutive cycles, the SRT will also indicate "CMPLT". → Case 3 above

The table above shows that the minimum number of cycle for setting SRT as "INCMP" is one (1) for each self-diagnosis (Case 1 & 2) or two (2) for one of self-diagnosis (Case 3). However, in preparation for the State emissions inspection, it is unnecessary of each self-diagnosis to be executed twice (Case 3) because of the following reasons;

- The SRT will indicate "CMPLT" at the time the respective self-diagnoses have one (1) OK result.
- The emissions inspection requires "CMPLT" of the SRT only with OK self-diagnosis result.
- When, during SRT driving pattern, 1st trip DTC (NG) is detected prior to "CMPLT" of SRT, the selfdiagnosis memory must be erased from ECM after repair.
- If the 1st trip DTC is erased, all the SRT will indicate "INCMP".

NOTE:

SRT can be set as "CMPLT" together with the DTC(s). Therefore, DTC check must always be carried out prior to the State emission inspection even though the SRT indicates "CMPLT".

SRT service procedure

If a vehicle has been rejected for the State emissions inspection due to one or more SRT items indicating "INCMP", review the flowchart diagnostic sequence on the next page.

MA

EM

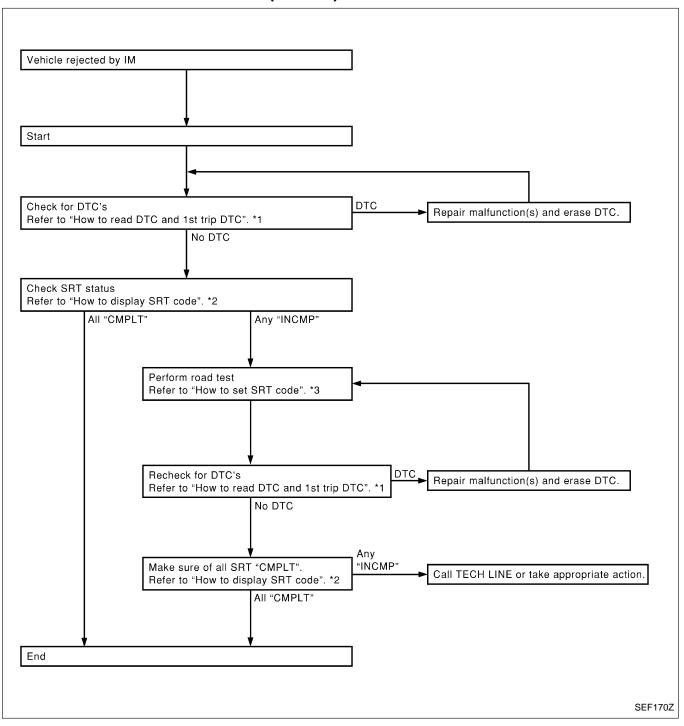
EC

MT

FA

RA

BR


BT

HA

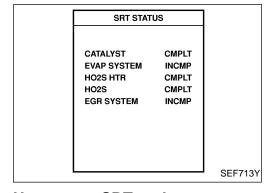
耴

 ^{—:} Self-diagnosis is not carried out.

Emission-related Diagnostic Information (Cont'd)

Emission-related Diagnostic Information (Cont'd)

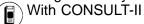
How to display SRT code



1. Selecting "SRT STATUS" in "DTC CONFIRMATION" mode with CONSULT-II. For items whose SRT codes are set, a "CMPLT" is displayed on the CONSULT-II screen; for items whose SRT codes are not set, "INCMP" is displayed.

(a) 2. Selecting Mode 1 with GST (Generic Scan Tool)

A sample of CONSULT-II display for SRT code is shown at left. "INCMP" means the self-diagnosis is incomplete and SRT is not set. "CMPLT" means the self-diagnosis is complete and SRT is set.


EC

CL

MT

How to set SRT code

To set all SRT codes, self-diagnosis for the items indicated above must be performed one or more times. Each diagnosis may require a long period of actual driving under various conditions.

Perform corresponding DTC Confirmation Procedure one by one based on "Performance Priority" in the table on EC-89.

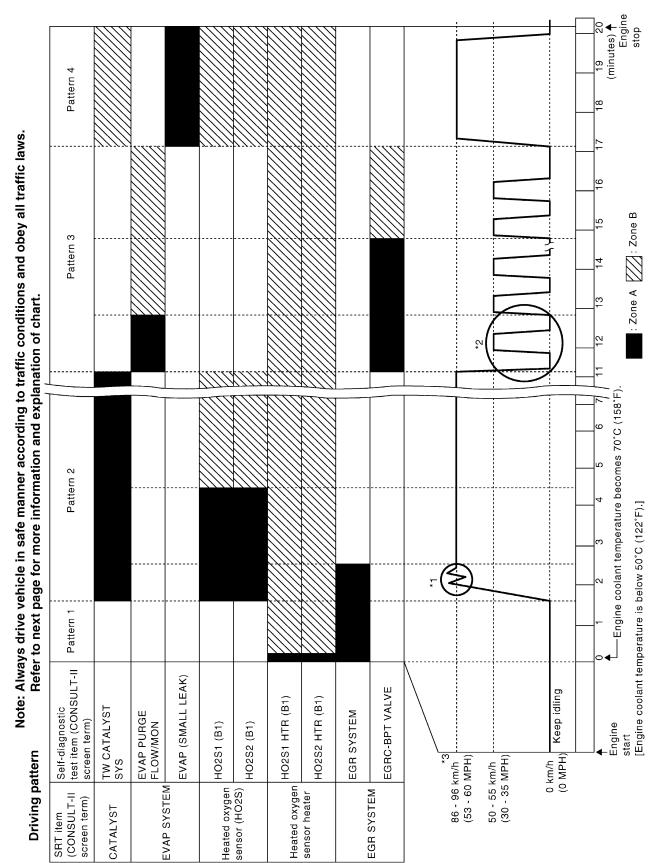
AT

Without CONSULT-II

The most efficient driving pattern in which SRT codes can be properly set is explained on the next page. The driving pattern should be performed one or more times to set all SRT codes.

BR

BT


HA

耴

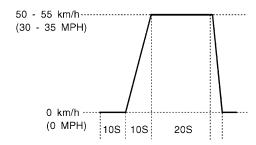
IDX

Emission-related Diagnostic Information (Cont'd)

Driving pattern

Emission-related Diagnostic Information (Cont'd)

 The time required for each diagnosis varies with road surface conditions, weather, altitude, individual driving habits, etc.


Zone A refers to the range where the time required, for the diagnosis under normal conditions*, is the shortest. Zone B refers to the range where the diagnosis can still be performed if the diagnosis is not completed within zone A

- *: Normal conditions refer to the following:
- Sea level
- Flat road
- Ambient air temperature: 20 30°C (68 86°F)
- Diagnosis is performed as quickly as possible under normal conditions.

Under different conditions [For example: ambient air temperature other than 20 - 30°C (68 - 86°F)], diagnosis may also be performed.

- Pattern 1: The engine is started at the engine coolant temperature of 0 to 35°C (32 to 95°F).
 - The engine must be operated at idle speed until the engine coolant temperature is greater than 70°C (158°F).
 - The engine is started at the fuel tank temperature of warmer than 0°C (32°F) (where the voltage between the ECM terminal 63 and ground is less than 4.1V).
- Pattern 2: When steady-state driving is performed again even after it is interrupted, each diagnosis can be conducted. In this case, the time required for diagnosis may be extended.
- Pattern 3: The driving pattern outlined in *2 must be repeated at least 3 times.

 On M/T models, shift gears following "suggested upshift speeds" schedule at right.
- Pattern 4: Tests are performed after the engine has been operated for at least 17 minutes.
 - The accelerator pedal must be held very steady during steady-state driving.
 - If the accelerator pedal is moved, the test must be conducted all over again.
- *1: Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH), then release the accelerator pedal and keep it released for more than 10 seconds. Depress the accelerator pedal until vehicle speed is 90 km/h (56 MPH) again.
- *2: Operate the vehicle in the following driving pattern.
 - 1) Decelerate vehicle to 0 km/h and let engine idle.
 - Repeat driving pattern shown below at least 10 times.
 - During acceleration, hold the accelerator pedal as steady as possible.
 - Repeat steps 1 and 2 until the EGR system SRT is set.

SEF414S

G

MA

EM

п

EC

FE

CL

MT

AT

FA

RA

BR

057

IU6

BT

HA

톏

^{*3:} Checking the vehicle speed with CONSULT-II or GST is advised.

Emission-related Diagnostic Information (Cont'd)

Suggested transmission gear position for A/T models

Set the selector lever in the "D" position with "OD" ON.

Suggested upshift speeds for M/T models

Shown below are suggested vehicle speeds for shifting into a higher gear. These suggestions relate to fuel economy and vehicle performance. Actual upshift speeds will vary according to road conditions, the weather and individual driving habits.

For normal acceleration in low altitude areas [less than 1,219 m (4,000 ft)]:

Gear change	ACCEL shift point km/h (MPH)	CRUISE shift point km/h (MPH)
1st to 2nd	24 (15)	24 (15)
2nd to 3rd	40 (25)	29 (18)
3rd to 4th	58 (36)	48 (30)
4th to 5th	64 (40)	63 (39)

For quick acceleration in low altitude areas and high altitude areas [over 1,219 m (4,000 ft)]:

Gear change	km/h (MPH)
1st to 2nd	24 (15)
2nd to 3rd	40 (25)
3rd to 4th	64 (40)
4th to 5th	72 (45)

Suggested maximum speed in each gear

Downshift to a lower gear if the engine is not running smoothly, or if you need to accelerate. Do not exceed the maximum suggested speed (shown below) in any gear. For level road driving, use the highest gear suggested for that speed. Always observe posted speed limits and drive according to the road conditions to ensure safe operation. Do not over-rev the engine when shifting to a lower gear as it may cause engine damage or loss of vehicle control.

Gear	km/h (MPH)
1st	50 (31)
2nd	92 (57)

Emission-related Diagnostic Information (Cont'd)

TEST VALUE AND TEST LIMIT (GST ONLY—NOT CONSULT-II APPLICABLE)

The following is the information specified in Mode 6 of SAE J1979.

The test value is a parameter used to determine whether a system/circuit diagnostic test is "OK" or "NG" while being monitored by the ECM during self-diagnosis. The test limit is a reference value which is specified as the maximum or minimum value and is compared with the test value being monitored. Items for which these data (test value and test limit) are displayed are the same as SRT code items (9 test items).

These data (test value and test limit) are specified by Test ID (TID) and Component ID (CID) and can be displayed on the GST screen.

X: Applicable —: Not applicable

GI

MA

	Self-diagnostic test	Test	value			_	
SRT item	item	TID	CID	Test limit	Application	EC	
CATALVET	Three way catalyst	01H	01H	Max.	Х		
CATALYST	function	02H	81H	Max.	Х	FE	
EVAP SYSTEM	EVAP control system (Small leak)	05H	03H	Max.	Х	- CL	
EVAP STSTEM	EVAP control system purge flow monitoring	06H	83H	Min.	Х	- MT	
		09H	04H	Max.	Х	_	
		0AH	84H	Min.	Х	– AT	
	Heated oxygen sen- sor 1 (front)	0BH	04H	Max.	Х	_	
		0CH	04H	Max.	Х	FA	
HO2S		0DH	04H	Max.	Х	_	
		19H	86H	Min.	Х	RA	
	Heated oxygen sensor 2 (rear)	1AH	86H	Min.	X		
		1BH	06H	Max.	Х	BR	
		1CH	06H	Max.	X		
	Heated oxygen sen-	29H	08H	Max.	X	– – ST	
HO2S HTR	sor 1 heater (front)	2AH	88H	Min.	X		
HO25 HTK	Heated oxygen sen-	2DH	0AH	Max.	X	_	
	sor 2 heater (rear)	2EH	8AH	Min.	X	RS	
		31H	8CH	Min.	Х	_	
		32H	8CH	Min.	X	BT	
	EGR function	33H	8CH	Min.	X		
EGR SYSTEM		34H	8CH	Min.	X	— HA	
		35H	0CH	Max.	X		
	EGRC-BPT valve	36H	0CH	Max.	X	– – El	
	function	37H	8CH	Min.	Х	- 56	

 $\mathbb{I}\mathbb{D}\mathbb{X}$

Emission-related Diagnostic Information (Cont'd)

EMISSION-RELATED DIAGNOSTIC INFORMATION ITEMS

X: Applicable
—: Not applicable

DTC'3 CONSULT-II screen terms						—: Not applicable
URE INDICATED P0000 — — — — — — — — — — — — — — — — — X EC-18 ABSL PRES SENCIRC P0110 — — — X EC-129 AIR TEMP SENCIRC P0115 — — — X EC-134 THRTL POS SENCIRC P0125 — — — X EC-134 HO2S1 (B1) P0130 X X X X°2 EC-166 HO2S1 (B1) P0131 X X X°2 EC-167 HO2S1 (B1) P0133 X X X°2 EC-170 HO2S1 (B1) P0133 X X X°2 EC-178 HO2S1 (B1) P0133 X X X°2 EC-178 HO2S1 (B1) P0133 X X X°2 EC-178 HO2S1 (B1) P0134 X X X°2 EC-186 HO2S2 (B1) P0135 X X		CONSULT-II	SRT code	Test limit	1st trip DTC*3	Reference page
ABSL PRES SENCIRC P0105 — X EC-127 AR TEMP SENCIRC P0110 — X EC-129 COOLANT T SENCIRC P0115 — X EC-134 THRTL POS SENCIRC P0120 — X EC-139 "COOLANT SENCIRC P0120 — X EC-139 "COOLANT SENCIRC P0120 — X EC-139 "COOLANT SENCIRC P0125 — X EC-151 HO2S1 (B1) P0130 X X X X X'2 EC-156 HO2S1 (B1) P0131 X X X X'2 EC-166 HO2S1 (B1) P0131 X X X X'2 EC-163 HO2S1 (B1) P0133 X X X X'2 EC-178 HO2S1 (B1) P0133 X X X X'2 EC-178 HO2S1 (B1) P0134 X X X X'2 EC-178 HO2S1 (B1) P0135 X X X X'2 EC-186 HO2S1 (HTR (B1) P0135 X X X X'2 EC-192 HO2S2 (B1) P0137 X X X X'2 EC-192 HO2S2 (B1) P0138 X X X X'2 EC-204 HO2S2 (B1) P0199 X X X X X'2 EC-204 HO2S2 (B1) P0199 X X X X X'2 EC-219 HO2S2 (B1) P0140 X X X X'2 EC-219 HO2S2 (B1) P0141 X X X X X'2 EC-225 FUEL SYS-LEAN/BK1 P0171 — X EC-225 FUEL SYS-LEAN/BK1 P0172 — X EC-236 MULTI CYL MISFIRE P0300 — X EC-244 CYL 2 MISFIRE P0301 — X EC-244 CYL 2 MISFIRE P0303 — X EC-244 CYL 2 MISFIRE P0303 — X EC-244 CYL 3 MISFIRE P0303 — X EC-244 CYL 3 MISFIRE P0303 — X EC-244 CYL 4 MISFIRE P0304 — X EC-246 CYL 3 MISFIRE P0305 — X EC-246 CYL 3 MISFIRE P0306 — X EC-246 CYL 3 MISFIRE P0307 — X EC-246 CYL 3 MISFIRE P0308 — X EC-246 CYL 3 MISFIRE P0309 — X EC-246 CYL 3 MISFIRE P0309 — X EC-246 CYL 3 MISFIRE P0309 — X EC-246 CYL 4 MISFIRE P0300 — X EC-246 CYL 5 MISFIRE P0300 — X EC-246 CYL 5 MISFIRE P0300 — X EC-246 CYL 6 MISFIRE P0300 — X EC-246 CYL 7 MISFIRE P0300 — X EC-246 CYL 8 MISFIRE P0300 — X EC-246 CYL 8 MISFIRE P0300 — X EC-246 CYL 8 MISFIRE P0300 — X EC-246 CYL 9 MISFIRE P0300 — X EC-246 CYL 9 MISFIRE P0300 — X EC-266 EGR C-BPT VALVE P0400 X X X X'2 EC-266 EGR C-BPT VALVE P0400 X X X X'2 EC-266 EGR C-BPT VALVE P0406 — X EC-269 EVAP SMALL LEAK P0406 — X EC-269 EVAP SMALL LEAK P0406 — X EC-269 EVAP CONTROL VALVE P0446 — X EC-289 EVAP CONTROL VALVE P0446 — X EC-289		P0000	_	_	_	_
AIR TEMP SENCIRC P0110 — X EC-129 COOLANT T SENCIRC P0116 — X EC-134 THRTL POS SENCIRC P0120 — X EC-134 THRTL POS SENCIRC P0125 — X EC-131 HO2S1 (81) P0130 X X X X'2 EC-166 HO2S1 (81) P0131 X X X X'2 EC-163 HO2S1 (81) P0131 X X X X'2 EC-163 HO2S1 (81) P0132 X X X X'2 EC-163 HO2S1 (81) P0133 X X X X'2 EC-170 HO2S1 (81) P0133 X X X X'2 EC-178 HO2S1 (81) P0134 X X X X'2 EC-178 HO2S1 (81) P0135 X X X X'2 EC-178 HO2S1 (81) P0135 X X X X'2 EC-186 HO2S2 (81) P0137 X X X X'2 EC-186 HO2S2 (81) P0138 X X X X'2 EC-196 HO2S2 (81) P0139 X X X X'2 EC-204 HO2S2 (81) P0140 X X X X'2 EC-212 HO2S2 (81) P0141 X X X X'2 EC-212 HO2S2 (81) P0141 X X X X X'2 EC-215 FUEL SYS-LEANBK1 P0171 — X EC-230 FUEL SYS-LEANBK1 P0171 — X EC-230 MULTI CYL MISFIRE P0300 — X EC-235 FUEL TEMP SENCIRC P0180 — X EC-244 CYL 1 MISFIRE P0301 — X EC-244 CYL 1 MISFIRE P0303 — X EC-244 CYL 1 MISFIRE P0303 — X EC-244 CYL 1 MISFIRE P0304 — X EC-244 CYL 1 MISFIRE P0305 — X EC-244 CYL 4 MISFIRE P0305 — X EC-244 CYL 4 MISFIRE P0306 — X EC-244 CYL 4 MISFIRE P0307 — X EC-255 EGR SYSTEM P0400 X X X X'2 EC-266 EGR C-BPT VALVE P0401 X X X X'2 EC-266 EGR C-BPT VALVE P0403 — X EC-258 EVAP SENCIRCUIT P0335 — X EC-258 EVAP SENCIRCUIT P0340 — X EC-259 EVAP SENCIRCUIT P0340 — X EC-269 EVAP SENCIRCUIT P0340 — X EC-269 EVAP SENCIRCUIT P0340 — X EC-269 EVAP SENCIRCUIT P0343 — X X X X Z'2 EC-260 EVAP SENCIRCUIT P0443 — X EC-269 EVAP SENCIRCUIT P0443 — X EC-269 EVAP SENCIRCUIT P0443 — X EC-269 EVAP CONTROL VALVE P0446 — X X EC-269 EVAP CONTROL VALVE P0446 — X X EC-269 EVAP CONTROL VALVE P0446 — X X EC-269	MAF SEN/CIRCUIT	P0100	_	_	Х	EC-118
COOLANT T SENICIRC P0115 — X EC-134 THRTL POS SENICIRC P0120 — — X EC-139 "COOLANT SENICIRC P0125 — — X EC-151 HO2S1 (B1) P0130 X X X*2 EC-163 HO2S1 (B1) P0131 X X X*2 EC-163 HO2S1 (B1) P0132 X X X*2 EC-163 HO2S1 (B1) P0133 X X X*2 EC-170 HO2S1 (B1) P0133 X X X*2 EC-178 HO2S1 (B1) P0134 X X X*2 EC-178 HO2S2 (B1) P0135 X X X*2 EC-186 HO2S2 (B1) P0136 X X X*2 EC-192 HO2S2 (B1) P0138 X X X*2 EC-216 HO2S2 (B1) P0139 X X X*2 EC-212 HO2S2 (B1) P0140 </td <td>ABSL PRES SEN/CIRC</td> <td>P0105</td> <td>_</td> <td>_</td> <td>Х</td> <td>EC-127</td>	ABSL PRES SEN/CIRC	P0105	_	_	Х	EC-127
THRTL POS SENCIRC	AIR TEMP SEN/CIRC	P0110	_	_	Х	EC-129
**COOLANT SENICIRC P0125 — — X EC-151 HO2S1 (B1) P0130 X X X X*2 EC-156 HO2S1 (B1) P0131 X X X*2 EC-156 HO2S1 (B1) P0132 X X X*2 EC-170 HO2S1 (B1) P0133 X X X*2 EC-178 HO2S1 (B1) P0134 X X X*2 EC-186 HO2S1 (B1) P0135 X X X*2 EC-192 HO2S2 (B1) P0137 X X X*2 EC-192 HO2S2 (B1) P0138 X X X*2 EC-294 HO2S2 (B1) P0138 X X X*2 EC-219 HO2S2 (B1) P0138 X X X*2 EC-212 HO2S2 (B1) P0139 X X X*2 EC-212 HO2S2 (B1) P0140 X X X*2 EC-212 HO2S2 (B1	COOLANT T SEN/CIRC	P0115	_	_	Х	EC-134
HO2S1 (B1)	THRTL POS SEN/CIRC	P0120	_	_	Х	EC-139
HO2S1 (B1)	*COOLAN T SEN/CIRC	P0125	_	_	Х	EC-151
HO2S1 (B1)	HO2S1 (B1)	P0130	Х	Х	X*2	EC-156
HO2S1 (B1)	HO2S1 (B1)	P0131	Х	Х	X*2	EC-163
HO2S1 (B1)	HO2S1 (B1)	P0132	Х	Х	X*2	EC-170
HO2S1 HTR (B1)	HO2S1 (B1)	P0133	Х	Х	X*2	EC-178
HO2S2 (B1)	HO2S1 (B1)	P0134	Х	Х	X*2	EC-186
HO252 (B1)	HO2S1 HTR (B1)	P0135	Х	Х	X*2	EC-192
HO2S2 (B1)	HO2S2 (B1)	P0137	Х	Х	X*2	EC-196
HO2S2 (B1)	HO2S2 (B1)	P0138	Х	Х	X*2	EC-204
HO2S2 HTR (B1)	HO2S2 (B1)	P0139	Х	Х	X*2	EC-212
FUEL SYS-LEAN/BK1 P0171 — — X EC-230 FUEL SYS-RICH/BK1 P0172 — — X EC-235 FUEL TEMP SEN/CIRC P0180 — — X EC-240 MULTI CYL MISFIRE P0300 — — X EC-244 CYL 1 MISFIRE P0301 — — X EC-244 CYL 2 MISFIRE P0302 — — X EC-244 CYL 3 MISFIRE P0303 — — X EC-244 CYL 4 MISFIRE P0304 — — X EC-244 KNOCK SEN/CIRC-B1 P0325 — — X EC-249 CKP SEN/CIRCUIT P0335 — — X EC-254 CMP SEN/CIRCUIT P0340 — — X EC-259 EGR SYSTEM P0400 X X X'2 EC-256 EGR-BPT VALVE P0402 X X X'2 EC-275	HO2S2 (B1)	P0140	Х	Х	X*2	EC-219
FUEL SYS-RICH/BK1 P0172 — — X EC-235 FUEL TEMP SEN/CIRC P0180 — — X EC-240 MULTI CYL MISFIRE P0300 — — X EC-244 CYL 1 MISFIRE P0301 — — X EC-244 CYL 2 MISFIRE P0302 — — X EC-244 CYL 3 MISFIRE P0303 — — X EC-244 CYL 4 MISFIRE P0304 — — X EC-244 KNOCK SEN/CIRC-B1 P0325 — — X EC-249 CKP SEN/CIRCUIT P0335 — — X EC-254 CMP SEN/CIRCUIT P0340 — — X EC-259 EGR SYSTEM P0400 X X X*2 EC-266 EGRC-BPT VALVE P0402 X X X*2 EC-275 TW CATALYST SYS-B1 P0420 X X X X*2 EC-280	HO2S2 HTR (B1)	P0141	Х	Х	X*2	EC-225
FUEL TEMP SEN/CIRC P0180 — — X EC-240 MULTI CYL MISFIRE P0300 — — X EC-244 CYL 1 MISFIRE P0301 — — X EC-244 CYL 2 MISFIRE P0302 — — X EC-244 CYL 3 MISFIRE P0303 — — X EC-244 CYL 4 MISFIRE P0304 — — X EC-244 KNOCK SEN/CIRC-B1 P0325 — — X EC-249 CKP SEN/CIRCUIT P0335 — — X EC-254 CMP SEN/CIRCUIT P0340 — — X EC-259 EGR SYSTEM P0400 X X X*2 EC-266 EGRC-BPT VALVE P0402 X X X*2 EC-275 TW CATALYST SYS-B1 P0420 X X X X*2 EC-280 EVAP SMALL LEAK P0440 X X X X*2	FUEL SYS-LEAN/BK1	P0171	_	_	Х	EC-230
MULTI CYL MISFIRE P0300 — — X EC-244 CYL 1 MISFIRE P0301 — — X EC-244 CYL 2 MISFIRE P0302 — — X EC-244 CYL 3 MISFIRE P0303 — — X EC-244 CYL 4 MISFIRE P0304 — — X EC-244 KNOCK SEN/CIRC-B1 P0325 — — X EC-249 CKP SEN/CIRCUIT P0335 — — X EC-254 CMP SEN/CIRCUIT P0340 — — X EC-259 EGR SYSTEM P0400 X X X*2 EC-266 EGRC-BPT VALVE P0402 X X X*2 EC-275 TW CATALYST SYS-B1 P0420 X X X*2 EC-280 EVAP SMALL LEAK P0440 X X X*2 EC-376 PURG VOLUME CONT/V P0443 — — X EC-293	FUEL SYS-RICH/BK1	P0172	_	_	Х	EC-235
CYL 1 MISFIRE P0301 — — X EC-244 CYL 2 MISFIRE P0302 — — X EC-244 CYL 3 MISFIRE P0303 — — X EC-244 CYL 4 MISFIRE P0304 — — X EC-244 KNOCK SEN/CIRC-B1 P0325 — — X EC-249 CKP SEN/CIRCUIT P0335 — — X EC-254 CMP SEN/CIRCUIT P0340 — — X EC-259 EGR SYSTEM P0400 X X X*2 EC-266 EGRC-BPT VALVE P0402 X X X*2 EC-275 TW CATALYST SYS-B1 P0420 X X X X*2 EC-280 EVAP SMALL LEAK P0440 X X X X*2 EC-376 PURG VOLUME CONT/V P0443 — — X X*2 EC-310 VENT CONTROL VALVE P0446 — —	FUEL TEMP SEN/CIRC	P0180	_	_	Х	EC-240
CYL 2 MISFIRE P0302 — — X EC-244 CYL 3 MISFIRE P0303 — — X EC-244 CYL 4 MISFIRE P0304 — — X EC-244 KNOCK SEN/CIRC-B1 P0325 — — X EC-249 CKP SEN/CIRCUIT P0335 — — X EC-254 CMP SEN/CIRCUIT P0340 — — X EC-259 EGR SYSTEM P0400 X X X X*2 EC-266 EGRC-BPT VALVE P0402 X X X X*2 EC-275 TW CATALYST SYS-B1 P0420 X X X X*2 EC-280 EVAP SMALL LEAK P0440 X X X X*2 EC-376 PURG VOLUME CONT/V P0443 — — X X*2 EC-310 VENT CONTROL VALVE P0446 — — — X EC-299	MULTI CYL MISFIRE	P0300	_	_	Х	EC-244
CYL 3 MISFIRE P0303 — — X EC-244 CYL 4 MISFIRE P0304 — — X EC-244 KNOCK SEN/CIRC-B1 P0325 — — X EC-249 CKP SEN/CIRCUIT P0335 — — X EC-254 CMP SEN/CIRCUIT P0340 — — X EC-259 EGR SYSTEM P0400 X X X*2 EC-266 EGRC-BPT VALVE P0402 X X X*2 EC-275 TW CATALYST SYS-B1 P0420 X X X*2 EC-280 EVAP SMALL LEAK P0440 X X X*2 EC-376 PURG VOLUME CONT/V P0443 — — X X*2 EC-310 VENT CONTROL VALVE P0446 — — X EC-299	CYL 1 MISFIRE	P0301	_	_	Х	EC-244
CYL 4 MISFIRE P0304 — — X EC-244 KNOCK SEN/CIRC-B1 P0325 — — X EC-249 CKP SEN/CIRCUIT P0335 — — X EC-254 CMP SEN/CIRCUIT P0340 — — X EC-259 EGR SYSTEM P0400 X X X*2 EC-266 EGRC-BPT VALVE P0402 X X X*2 EC-275 TW CATALYST SYS-B1 P0420 X X X X*2 EC-280 EVAP SMALL LEAK P0440 X X X X*2 EC-376 PURG VOLUME CONT/V P0443 — — X X*2 EC-310 VENT CONTROL VALVE P0446 — — X EC-299	CYL 2 MISFIRE	P0302	_	_	Х	EC-244
KNOCK SEN/CIRC-B1 P0325 — — X EC-249 CKP SEN/CIRCUIT P0335 — — X EC-254 CMP SEN/CIRCUIT P0340 — — X EC-259 EGR SYSTEM P0400 X X X*2 EC-266 EGRC-BPT VALVE P0402 X X X*2 EC-275 TW CATALYST SYS-B1 P0420 X X X*2 EC-280 EVAP SMALL LEAK P0440 X X X*2 EC-376 PURG VOLUME CONT/V P0443 — — X EC-293 EVAP GROSS LEAK P0455 — X X*2 EC-310 VENT CONTROL VALVE P0446 — — X EC-299	CYL 3 MISFIRE	P0303	_	_	X	EC-244
CKP SEN/CIRCUIT P0335 — — X EC-254 CMP SEN/CIRCUIT P0340 — — X EC-259 EGR SYSTEM P0400 X X X*2 EC-266 EGRC-BPT VALVE P0402 X X X*2 EC-275 TW CATALYST SYS-B1 P0420 X X X*2 EC-280 EVAP SMALL LEAK P0440 X X X*2 EC-376 PURG VOLUME CONT/V P0443 — — X EC-293 EVAP GROSS LEAK P0455 — X X*2 EC-310 VENT CONTROL VALVE P0446 — — X EC-299	CYL 4 MISFIRE	P0304	_	_	X	EC-244
CMP SEN/CIRCUIT P0340 — — X EC-259 EGR SYSTEM P0400 X X X X*2 EC-266 EGRC-BPT VALVE P0402 X X X X*2 EC-275 TW CATALYST SYS-B1 P0420 X X X X*2 EC-280 EVAP SMALL LEAK P0440 X X X X*2 EC-376 PURG VOLUME CONT/V P0443 — — X EC-293 EVAP GROSS LEAK P0455 — X X*2 EC-310 VENT CONTROL VALVE P0446 — — X EC-299	KNOCK SEN/CIRC-B1	P0325	_	_	Х	EC-249
EGR SYSTEM P0400 X X X*2 EC-266 EGRC-BPT VALVE P0402 X X X*2 EC-275 TW CATALYST SYS-B1 P0420 X X X*2 EC-280 EVAP SMALL LEAK P0440 X X X*2 EC-376 PURG VOLUME CONT/V P0443 — — X EC-293 EVAP GROSS LEAK P0455 — X X*2 EC-310 VENT CONTROL VALVE P0446 — — X EC-299	CKP SEN/CIRCUIT	P0335	_	_	Х	EC-254
EGRC-BPT VALVE P0402 X X X*2 EC-275 TW CATALYST SYS-B1 P0420 X X X X*2 EC-280 EVAP SMALL LEAK P0440 X X X X*2 EC-376 PURG VOLUME CONT/V P0443 — — X EC-293 EVAP GROSS LEAK P0455 — X X*2 EC-310 VENT CONTROL VALVE P0446 — — X EC-299	CMP SEN/CIRCUIT	P0340	_	_	Х	EC-259
TW CATALYST SYS-B1 P0420 X X X*2 EC-280 EVAP SMALL LEAK P0440 X X X*2 EC-376 PURG VOLUME CONT/V P0443 — — X EC-293 EVAP GROSS LEAK P0455 — X X*2 EC-310 VENT CONTROL VALVE P0446 — — X EC-299	EGR SYSTEM	P0400	X	Х	X*2	EC-266
EVAP SMALL LEAK P0440 X X X*2 EC-376 PURG VOLUME CONT/V P0443 — — X EC-293 EVAP GROSS LEAK P0455 — X X*2 EC-310 VENT CONTROL VALVE P0446 — — X EC-299	EGRC-BPT VALVE	P0402	X	Х	X*2	EC-275
PURG VOLUME CONT/V P0443 — — X EC-293 EVAP GROSS LEAK P0455 — X X*2 EC-310 VENT CONTROL VALVE P0446 — — X EC-299	TW CATALYST SYS-B1	P0420	X	Х	X*2	EC-280
EVAP GROSS LEAK P0455 — X X*2 EC-310 VENT CONTROL VALVE P0446 — — X EC-299	EVAP SMALL LEAK	P0440	Х	X	X*2	EC-376
VENT CONTROL VALVE P0446 — — X EC-299	PURG VOLUME CONT/V	P0443	_	_	Х	EC-293
	EVAP GROSS LEAK	P0455	_	X	X*2	EC-310
EVAP SYS PRES SEN P0450 — — X EC-304	VENT CONTROL VALVE	P0446		_	X	EC-299
	EVAP SYS PRES SEN	P0450	_	_	Х	EC-304

^{*1:} These numbers are prescribed by SAE J2012.
*2: These are not displayed with GST.
*3: 1st trip DTC No. is the same as DTC No.

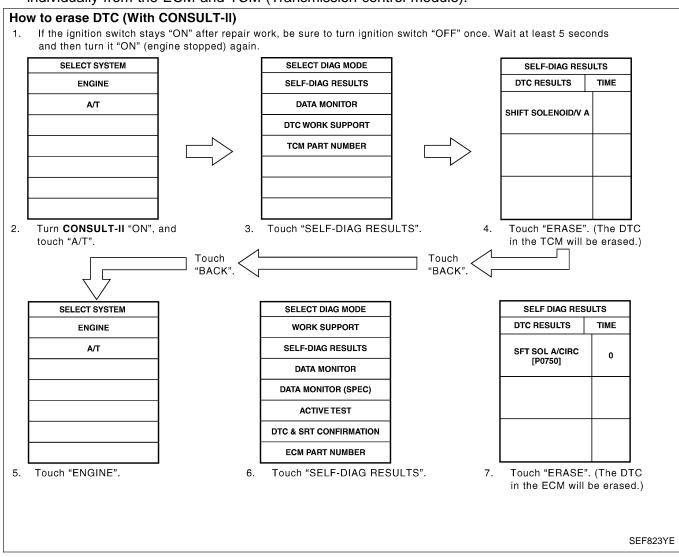
Emission-related Diagnostic Information (Cont'd)

X: Applicable
—: Not applicable

					—: Not applicable	
Items (CONSULT-II screen terms)	DTC*3 CONSULT-II GST*1	SRT code	Test value/ Test limit (GST only)	1st trip DTC*3	Reference page	• GI
FUEL LEV SEN SLOSH	P0460	_	_	X	EC-318	- MA
FUEL LEVEL SENSOR	P0461	_	_	X	EC-321	-
FUEL LEVL SEN/CIRC	P0464	_	_	X	EC-323	- EM
VEH SPEED SEN/CIRC	P0500	_	_	X	EC-326	-
IACV/AAC VLV/CIRC	P0505	_	_	X	EC-330	
CLOSED TP SW/CIRC	P0510	_	_	X	EC-335	- LC
A/T COMM LINE	P0600	_	_	_	EC-341	
ECM	P0605	_	_	X	EC-345	EC
PNP SW/CIRC	P0705	_	_	X	AT-78	-
ATF TEMP SEN/CIRC	P0710	_	_	X	AT-83	- FE
VEH SPD SEN/CIR AT	P0720	_	_	X	AT-88	. LE
ENGINE SPEED SIG	P0725	_	_	X	AT-92	-
A/T 1ST GR FNCTN	P0731	_	_	X	AT-95	- GL
A/T 2ND GR FNCTN	P0732	_	_	X	AT-101	-
A/T 3RD GR FNCTN	P0733	_	_	X	AT-107	- MT
A/T 4TH GR FNCTN	P0734	_	_	X	AT-113	-
TCC SOLENOID/CIRC	P0740	_	_	X	AT-120	
A/T TCC S/V FNCTN	P0744	_	_	X	AT-125	- AT
L/PRESS SOL/CIRC	P0745	_	_	X	AT-133	-
SFT SOL A/CIRC	P0750	_	_	X	AT-138	FA
SFT SOL B/CIRC	P0755	_	_	X	AT-143	-
THERMSTAT FNCTN	P1126	_	_	X	EC-347	- - RA
CLOSED LOOP-B1	P1148	_	_	X	EC-348	. IñVA
IGN SIGNAL-PRIMARY	P1320	_	_	X	EC-445	-
CKP SENSOR (COG)	P1336	_	_	X	EC-351	- BR
EGRC SOLENOID/V	P1400	_	_	X	EC-356	-
EGR TEMP SEN/CIRC	P1401	_	_	X	EC-361	- ST
EGR SYSTEM	P1402	X	X	X*2	EC-367	. 🔍
EVAP SMALL LEAK	P1440	X	Х	X*2	EC-374	
EVAP VERY SML LEAK	P1441	X*4	X	X*2	EC-51	- RS
PURG VOLUME CONT/V	P1444	_	_	X	EC-386	-
VENT CONTROL VALVE	P1446	_	_	X	EC-393	- BT
EVAP PURG FLOW/MON	P1447	X	Х	X*2	EC-398	-
VENT CONTROL VALVE	P1448	_	_	X	EC-405	- nna
FUEL LEVEL SEN/CIRC	P1464	_	_	X	EC-412	- HA
VC/V BYPASS/V	P1490	_	_	X	EC-415	-
VC CUT/V BYPASS/V	P1491	_	_	X	EC-420	EL
A/T DIAG COMM LINE	P1605	_	_	X	EC-425	-
TP SEN/CIRC A/T	P1705	_	_	X	AT-148	- IDX
P-N POS SW/CIRCUIT	P1706	_	_	X	EC-428	
O/R CLTCH SOL/CIRC	P1760	_	_	X	AT-154	-
	1			1 "	1	_

^{*1:} These numbers are prescribed by SAE J2012.
*2: These are not displayed with GST.
*3: 1st trip DTC No. is the same as DTC No.
*4: SRT code will not be set if the self-diag result is NG.

Emission-related Diagnostic Information (Cont'd)


HOW TO ERASE EMISSION-RELATED DIAGNOSTIC INFORMATION

How to erase DTC (With CONSULT-II)

Note: If the diagnostic trouble code is not for A/T related items (see EC-4), skip steps 2 through 4.

- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 5 seconds and then turn it "ON" (engine stopped) again.
- 2. Turn CONSULT-II "ON" and touch "A/T".
- 3. Touch "SELF-DIAG RESULTS".
- 4. Touch "ERASE". [The DTC in the TCM (Transmission control module) will be erased.] Then touch "BACK" twice.
- Touch "ENGINE".
- Touch "SELF-DIAG RESULTS".
- 7. Touch "ERASE". (The DTC in the ECM will be erased.)
- If DTCs are displayed for both ECM and TCM (Transmission control module), they need to be erased individually from the ECM and TCM (Transmission control module).

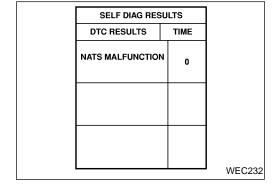
The emission-related diagnostic information can be erased by selecting "ERASE" in the "SELF-DIAG RESULTS" mode with CONSULT-II.

Emission-related Diagnostic Information (Cont'd)

GST

How to erase DTC (With GST)

Note: If the diagnostic trouble code is not for A/T related items (see EC-4), skip step 2.


- 1. If the ignition switch stays "ON" after repair work, be sure to turn ignition switch "OFF" once. Wait at least 5 seconds and then turn it "ON" (engine stopped) again.
- Perform "SELF-DIAGNOSTIC PROCEDURE (Without CONSULT-II)" in AT-45 section titled "TROUBLE DIAGNOSIS", "Self-diagnosis". (The engine warm-up step can be skipped when performing the diagnosis only to erase the DTC.)
- 3. Select Mode 4 with GST (Generic Scan Tool).

The emission-related diagnostic information can be erased by selecting Mode 4 with GST (Generic Scan Tool).

NOTE:

- If the battery is disconnected, the emission-related diagnostic information will be lost after approx. 24 hours.
- The following data are cleared when the ECM memory is erased.
- 1. Diagnostic trouble codes
- 2. 1st trip diagnostic trouble codes
- 3. Freeze frame data
- 4. 1st trip freeze frame data
- 5. System readiness test (SRT) codes
- 6. Test values
- 7. Others

Actual work procedures are explained using a DTC as an example. Be careful so that not only the DTC, but all of the data listed above, are cleared from the ECM memory during work procedures.

NVIS (NISSAN VEHICLE IMMOBILIZER SYSTEM — NATS)

- If the security indicator lights up with ignition switch in the "ON" position or "NATS MALFUNCTION" is displayed on "SELF-DIAG RESULTS" screen, perform self-diagnostic results mode with CONSULT-II using NATS program card. Refer to "NVIS (Nissan Vehicle Immobilizer System — NATS)" in EL section.
- Confirm no self-diagnostic results of NVIS (NATS) is displayed before touching "ERASE" in "SELF-DIAG RESULTS" mode with CONSULT-II.
- When replacing ECM, initialization of NVIS (NATS) system and registration of all NVIS (NATS) ignition key IDs must be carried out with CONSULT-II using NATS program card. Therefore, be sure to receive all keys from vehicle owner. Regarding the procedures of NVIS (NATS) initialization and NVIS (NATS) ignition key ID registration, refer to "CON-SULT-II OPERATION MANUAL IVIS/NVIS".

EC

GI

MA

EM

LC

0.1

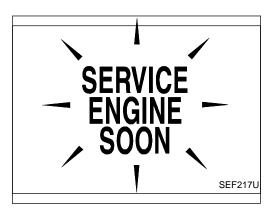
CL

MT

FA

AT

RA


BR

RS

BT

HA

EL

Malfunction Indicator Lamp (MIL)

- 1. The malfunction indicator lamp will light up when the ignition switch is turned ON without the engine running. This is a bulb check.
- If the malfunction indicator lamp does not light up, refer to EL section, "WARNING LAMPS" or see EC-474.
- 2. When the engine is started, the malfunction indicator lamp should go off.

If the lamp remains on, the on board diagnostic system has detected an engine system malfunction.

ON BOARD DIAGNOSTIC SYSTEM FUNCTION

The on board diagnostic system has the following two functions.

Diagnostic Test Mode	KEY and ENG. Status	Function	Explanation of Function		
Mode I	Ignition switch in "ON" position Engine stopped	BULB CHECK	This function checks the MIL bulb for damage (blown, open circuit, etc.). If the MIL does not come on, check MIL circuit.		
	Engine running	MALFUNCTION WARNING	This is a usual driving condition. When a malfunction is detected twice in two consecutive driving cycles (two trip detection logic), the MIL will light up to inform the driver that a malfunction has been detected. The following malfunctions will light up or blink the MIL in the 1st trip. Coolant overtemperature enrichment protection "Misfire (Possible three way catalyst damage)" "Closed loop control" Fail-safe mode		

Diagnostic Test Mode I — Bulb Check

In this mode, the MIL on the instrument panel should stay ON. If it remains OFF, check the bulb. Refer to EL section, "WARNING LAMPS" or see EC-474.

Diagnostic Test Mode I — Malfunction Warning

MIL	Condition
ON	When the malfunction is detected or the ECM's CPU is malfunctioning.
OFF	No malfunction.

OBD System Operation Chart

RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS

- When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are stored in the ECM memory.
- When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data are stored in the ECM memory, and the MIL will come on. For details, refer to "Two Trip Detection Logic" on EC-45.
- The MIL will go off after the vehicle is driven 3 times with no malfunction. The drive is counted only
 when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs while
 counting, the counter will reset.

OBD System Operation Chart (Cont'd)

- The DTC and the freeze frame data will be stored until the vehicle is driven 40 times (driving pattern A) without the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injection System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern C) without the same malfunction recurring. The "TIME" in "SELF-DIAGNOSTIC RESULTS" mode of CONSULT-II will count the number of times the vehicle is driven.
- The 1st trip DTC is not displayed when the self-diagnosis results in "OK" for the 2nd trip.

SUMMARY CHART

Items	Fuel Injection System	Misfire	Other
MIL (goes off)	3 (pattern B)	3 (pattern B)	3 (pattern B)
DTC, Freeze Frame Data (no display)	80 (pattern C)	80 (pattern C)	40 (pattern A)
1st Trip DTC (clear)	1 (pattern C), *1	1 (pattern C), *1	1 (pattern B)
1st Trip Freeze Frame Data (clear)	*1, *2	*1, *2	1 (pattern B)

For details about patterns "B" and "C" under "Fuel Injection System" and "Misfire", see EC-63. For details about patterns "A" and "B" under "Other" see, EC-65.

GI

MA

LC

EC

FE

CL

MT

AT

FA

RA

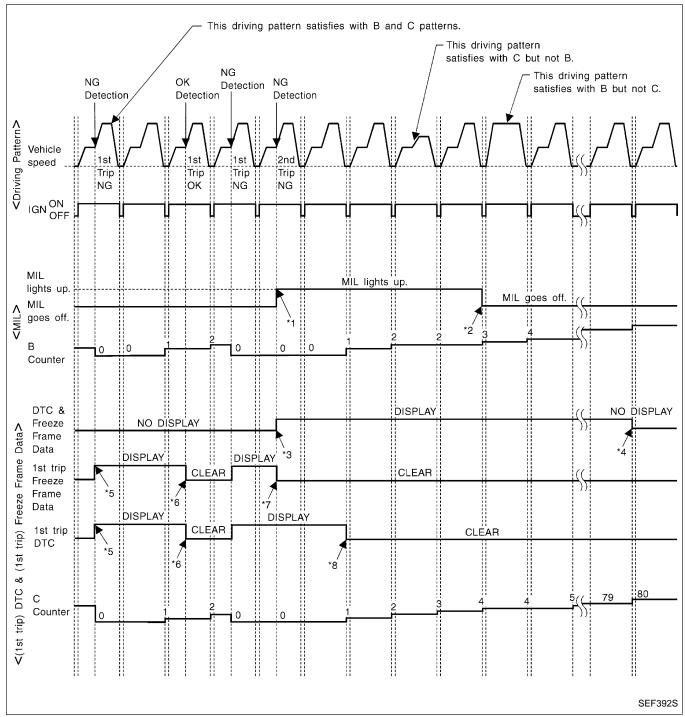
BR

T2

D@

BT

HA


IDX

^{*1:} Clear timing is at the moment OK is detected.

^{*2:} Clear timing is when the same malfunction is detected in the 2nd trip.

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS FOR "MISFIRE" <EXHAUST QUALITY DETERIORATION>, "FUEL INJECTION SYSTEM"

- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 80 times (pattern C) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: The 1st trip DTC and the 1st trip freeze frame data will be cleared at the moment OK is detected.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.
- *8: 1st trip DTC will be cleared when vehicle is driven once (pattern C) without the same malfunction after DTC is stored in ECM.

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunction.
- The MIL will go off when the B counter reaches 3. (*2 in "OBD SYSTEM OPERATION CHART")

<Driving pattern C>

Driving pattern C means the vehicle operation as follows:

- (1) The following conditions should be satisfied at the same time: Engine speed: (Engine speed in the freeze frame data) ±375 rpm Calculated load value: (Calculated load value in the freeze frame data) x (1±0.1) [%] Engine coolant temperature (T) condition:
- When the freeze frame data shows lower than 70°C (158°F), "T" should be lower than 70°C (158°F).
- When the freeze frame data shows higher than or equal to 70°C (158°F), "T" should be higher than
 or equal to 70°C (158°F).

Example:

If the stored freeze frame data is as follows:

Engine speed: 850 rpm, Calculated load value: 30%, Engine coolant temperature: 80°C (176°F)

To be satisfied with driving pattern C, the vehicle should run under the following conditions: Engine speed: 475 - 1,225 rpm, Calculated load value: 27 - 33%, Engine coolant temperature: more than 70°C (158°F)

- The C counter will be cleared when the malfunction is detected regardless of (1).
- The C counter will be counted up when (1) is satisfied without the same malfunction.
- The DTC will not be displayed after C counter reaches 80.
- The 1st trip DTC will be cleared when C counter is counted once without the same malfunction after DTC is stored in ECM.

EM LC

GI

MA

EC

FE

GL

AT

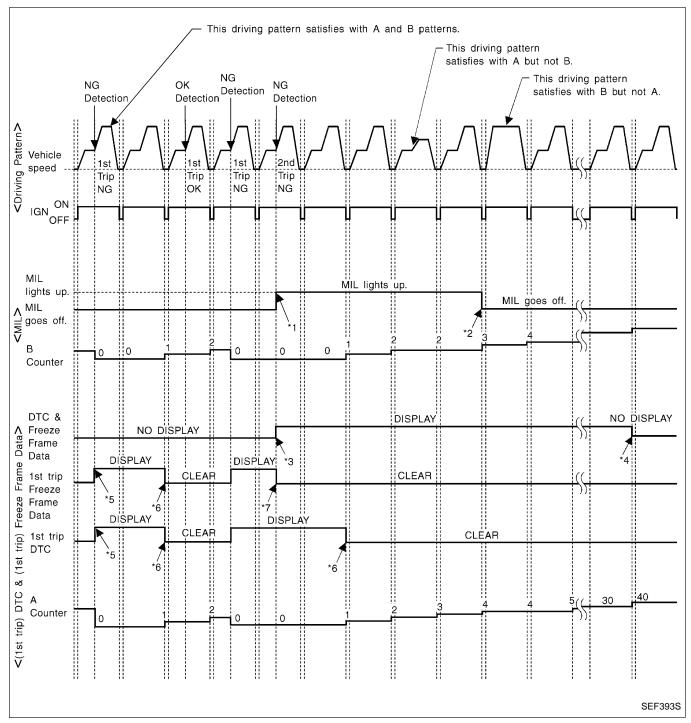
FA

RA

BR

ST

D@

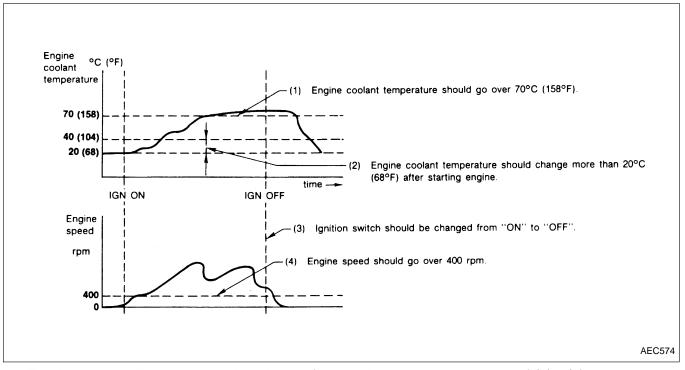

BT

HA

EL

OBD System Operation Chart (Cont'd)

RELATIONSHIP BETWEEN MIL, DTC, 1ST TRIP DTC AND DRIVING PATTERNS EXCEPT FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"



- *1: When the same malfunction is detected in two consecutive trips, MIL will light up.
- *2: MIL will go off after vehicle is driven 3 times (pattern B) without any malfunctions.
- *3: When the same malfunction is detected in two consecutive trips, the DTC and the freeze frame data will be stored in ECM.
- *4: The DTC and the freeze frame data will not be displayed any longer after vehicle is driven 40 times (pattern A) without the same malfunction. (The DTC and the freeze frame data still remain in ECM.)
- *5: When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data will be stored in ECM.
- *6: 1st trip DTC will be cleared after vehicle is driven once (pattern B) without the same malfunction.
- *7: When the same malfunction is detected in the 2nd trip, the 1st trip freeze frame data will be cleared.

OBD System Operation Chart (Cont'd)

EXPLANATION FOR DRIVING PATTERNS EXCEPT FOR "MISFIRE <EXHAUST QUALITY DETERIORATION>", "FUEL INJECTION SYSTEM"

<Driving pattern A>

- The A counter will be cleared when the malfunction is detected regardless of (1) (4).
- The A counter will be counted up when (1) (4) are satisfied without the same malfunction.
- The DTC will not be displayed after the A counter reaches 40.

<Driving pattern B>

Driving pattern B means the vehicle operation as follows:

All components and systems should be monitored at least once by the OBD system.

- The B counter will be cleared when the malfunction is detected once regardless of the driving pattern.
- The B counter will be counted up when driving pattern B is satisfied without any malfunctions.
- The MIL will go off when the B counter reaches 3 (*2 in "OBD SYSTEM OPERATION CHART").

GI

MA

EM

EC

FE

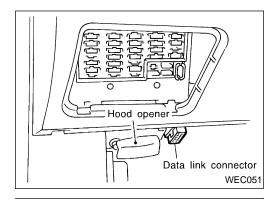
MT

AT

FA

BR

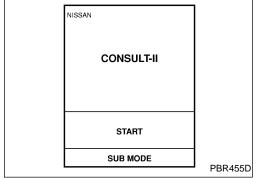
RA


ST

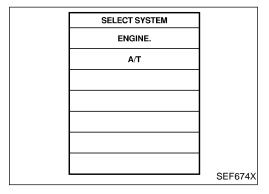
RS

BT

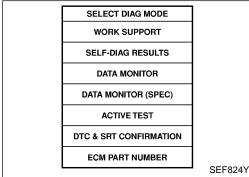
HA


EL

CONSULT-II


CONSULT-II INSPECTION PROCEDURE

- 1. Turn ignition switch OFF.
- 2. Connect "CONSULT-II" to data link connector which is located under LH dash panel near the fuse box cover.



3. Turn ignition switch ON.

4. Touch "START".

5. Touch "ENGINE".

6. Perform each diagnostic test mode according to each service procedure.

For further information, see the CONSULT-II Operation Manual.

CONSULT-II (Cont'd)

ENGINE CONTROL COMPONENT PARTS/SYSTEMS APPLICATION

Item			SELF-DIAGNOSTIC RESULTS*1			DATA	DE	DTC CONFIRMATION	
		WORK SUP- PORT		FREEZE FRAME DATA*2	DATA MONITOR	MONI- TOR (SPEC)	ACTIVE TEST	SRT STATUS	DTC WORK SUP- PORT
	Camshaft position sensor		Х	Х	Х	Х			
	Mass air flow sensor		Х		Х	Х			
	Engine coolant temperature sensor		Х	Х	Х	Х	Х		
	Heated oxygen sensor 1 (front)		Х	Х		Х		Х	Х
	Heated oxygen sensor 2 (rear)		Х		Х	Х		Х	Х
	Vehicle speed sensor		Х	Х	Х	Х			
	Throttle position sensor	Х	Х		Х	Х			
	Fuel tank temperature sensor		Х		Х	Х	Х		
	EVAP control system pressure sensor		Х		Х	Х			
	Absolute pressure sensor		Х	Х	Х	Х			
	EGR temperature sensor		Х		Х	Х			
	Intake air temperature sensor		Х		Х	Х			
INPUT	Crankshaft position sensor (OBD)		Х						
	Knock sensor		Х						
	Fuel level sensor		Х		Х	Х			
	Ignition switch (start signal)				Х	Х			
	Closed throttle position switch		Х						
	Closed throttle position switch (throttle position sensor signal)				Х	х			
	Air conditioner switch				Х	Х			
	Park/neutral position (PNP) switch		Х		Х	Х			
	Power steering oil pressure switch				Х	Х			
	Air conditioner pressure switch				Х	Х			
	Battery voltage				Х	Х			
	Ambient air temperature switch				Х	Х			
	Injectors				Х	Х	Х		
	Power transistor (Ignition timing)		X (Ignition signal)		Х	Х	х		
	IACV-AAC valve	Х	X		Х	Х	Х		
	EVAP canister purge volume control solenoid valve		Х		Х	Х	х		Х
	Air conditioner relay				Х	Х			
OUTPUT	Fuel pump relay	Х			Х	Х	Х		
	EGRC-solenoid valve		Х		Х	Х	Х		
	Heated oxygen sensor 1 heater (front)		х		Х	Х		х	
	Heated oxygen sensor 2 heater (rear)		Х		Х	Х		Х	
	Cooling fan		Х		Х	Х	Х		
	EVAP canister vent control valve		Х		Х	Х	Х		
	Vacuum cut valve bypass valve		Х		Х	Х	Х		Х
	Calculated load value			Х	Х	Х			

X: Applicable *1: This item includes 1st trip DTCs.

^{*2:} This mode includes 1st trip freeze frame data or freeze frame data. The items appear on CONSULT-II screen in freeze frame data mode only if a 1st trip DTC or DTC is detected. For details, refer to EC-47.

CONSULT-II (Cont'd)

FUNCTION

Diagnostic test mode	Function
Work support	This mode enables a technician to adjust some devices faster and more accurately by following the indications on the CONSULT-II unit.
Self-diagnostic results	Self-diagnostic results such as 1st trip DTC, DTCs and 1st trip freeze frame data or freeze frame data can be read and erased quickly.*1
Data monitor	Input/Output data in the ECM can be read.
Data monitor (SPEC)	Input/Output of the specification for Basic fuel schedule, AFM, A/F, feedback control valve and the other data monitor items can be read.
Active test	Diagnostic Test Mode in which CONSULT-II drives some actuators apart from the ECMs and also shifts some parameters in a specified range.
DTC & SRT confirmation	The status of system monitoring tests and the self-diagnosis status/result can be confirmed.
ECM part numbers	ECM part numbers can be read.

- The following emission-related diagnostic information is cleared when the ECM memory is erased.

 1. Diagnostic trouble codes

 2. 1st trip diagnostic trouble codes

 - 3. Freeze frame data
 - 4. 1st trip freeze frame data
 - 5. System readiness test (SRT) codes
 - 6. Test values 7. Others

WORK SUPPORT MODE

WORK ITEM	CONDITION	USAGE
THRTL POS SEN ADJ	CHECK THE THROTTLE POSITION SENSOR SIGNAL. ADJUST IT TO THE SPECIFIED VALUE BY ROTATING THE SENSOR BODY UNDER THE FOLLOWING CONDITIONS. IGN SW "ON" ENG NOT RUNNING ACC PEDAL NOT PRESSED	When adjusting throttle position sensor initial position
IGNITION TIMING ADJ	 IGNITION TIMING FEEDBACK CONTROL WILL BE HELD BY TOUCHING "START". AFTER DOING SO, ADJUST IGNITION TIMING WITH A TIMING LIGHT BY TURNING THE CRANK- SHAFT POSITION SENSOR. 	When adjusting initial ignition timing
FUEL PRESSURE RELEASE	FUEL PUMP WILL STOP BY TOUCHING "START" DURING IDLING. CRANK A FEW TIMES AFTER ENGINE STALLS.	When releasing fuel pressure from fuel line
SELF-LEARNING CONT	THE COEFFICIENT OF SELF-LEARNING CONTROL MIXTURE RATIO RETURNS TO THE ORIGINAL COEFFICIENT.	When releasing fuel pressure from fuel line
EVAP SYSTEM CLOSE	OPEN THE VACUUM CUT VALVE BYPASS VALVE AND CLOSE THE EVAP CANISTER VENT CONTROL VALVE IN ORDER TO MAKE EVAP SYSTEM CLOSE UNDER THE FOLLOWING CONDITIONS. BATTERY VOLTAGE IS SUFFICIENT IGN SW "ON" ENGINE NOT RUNNING AMBIENT TEMPERATURE IS ABOVE 0°C (32°F). NO VACUUM AND NO HIGH PRESSURE IN EVAP SYSTEM TANK FUEL TEMP. IS MORE THAN 0°C (32°F). WITHIN 10 MINUTES AFTER STARTING "EVAP SYSTEM CLOSE" WHEN TRYING TO EXECUTE "EVAP SYSTEM CLOSE" UNDER THE CONDITION EXCEPT ABOVE, CONSULT-II WILL DISCONTINUE IT AND DISPLAY APPROPRIATE INSTRUCTION. NOTE: WHEN STARTING ENGINE, CONSULT-II MAY DISPLAY "BATTERY VOLTAGE IS LOW. CHARGE BATTERY", EVEN IN USING CHARGED BATTERY.	When detecting EVAP vapor leak point of EVAP system
TARGET IDLE RPM ADJ*	IDLE CONDITION	When setting target idle speed

^{*:} This function is not necessary in the usual service procedure.

CONSULT-II (Cont'd)

SELF-DIAGNOSTIC MODE

DTC and 1st trip DTC

Regarding items of "DTC and 1st trip DTC", refer to "DIAGNOSTIC TROUBLE CODE INDEX" (See EC-4.).

G

MA

Freeze frame data and 1st trip freeze frame data

Freeze frame data item*	Description	EN
DIAG TROUBLE CODE [PXXXX]	• Engine control component part/control system has a trouble code, it is displayed as "PXXXX". [Refer to "Alphabetical & P No. Index for DTC" (EC-4).]	- LC
FUEL SYS-B1	 "Fuel injection system status" at the moment a malfunction is detected is displayed. One mode in the following is displayed. "MODE 2": Open loop due to detected system malfunction "MODE 3": Open loop due to driving conditions (power enrichment, deceleration enrichment) "MODE 4": Closed loop - using oxygen sensor(s) as feedback for fuel control "MODE 5": Open loop - has not yet satisfied condition to go to closed loop 	EC
CAL/LD VALUE [%]	The calculated load value at the moment a malfunction is detected is displayed.	- _ GL
COOLANT TEMP [°C] or [°F]	The engine coolant temperature at the moment a malfunction is detected is displayed.	- 00
S-FUEL TRIM-B1 [%]	 "Short-term fuel trim" at the moment a malfunction is detected is displayed. The short-term fuel trim indicates dynamic or instantaneous feedback compensation to the base fuel schedule. 	
L-FUEL TRIM-B1 [%]	 "Long-term fuel trim" at the moment a malfunction is detected is displayed. The long-term fuel trim indicates much more gradual feedback compensation to the base fuel schedule than short-term fuel trim. 	- AT - FA
ENGINE SPEED [rpm]	The engine speed at the moment a malfunction is detected is displayed.	- 11/11
VEHICLE SPEED [km/h] or [mph]	The vehicle speed at the moment a malfunction is detected is displayed.	- RA
ABSOL PRESS [kPa] or [kg/cm ²] or [psi]	The absolute pressure at the moment a malfunction is detected is displayed.	- BR
B/FUEL SCHDL [msec]	The base fuel schedule at the moment a malfunction is detected is displayed.	- ST
INT/A TEMP SE [°C] or [°F]	The intake air temperature at the moment a malfunction is detected is displayed.	- RS

^{*:} The items are the same as those of 1st trip freeze frame data.

BT

EL

CONSULT-II (Cont'd)

DATA MONITOR MODE

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
ENG SPEED [rpm]	0	0	 Indicates the engine speed computed from the REF signal (180° signal) of the camshaft position sensor. 	
MAS A/F SE-B1 [V]	\bigcirc	\bigcirc	 The signal voltage of the mass air flow sensor is displayed. 	 When the engine is stopped, a certain value is indicated.
B/FUEL SCHDL [msec]		0	 "Base fuel schedule" indicates the fuel injection pulse width programmed into ECM, prior to any learned on board correction. 	 When the engine is running, specification range is indicated.
A/F ALPHA-B1 [%]		0	 The mean value of the air-fuel ratio feedback correction factor per cycle is indicated. 	 When the engine is running, specification range is indicated. This data also includes the data for the air-fuel ratio learning control.
COOLAN TEMP/S [°C] or [°F]	\bigcirc		 The engine coolant temperature (determined by the signal voltage of the engine coolant temperature sensor) is displayed. 	 When the engine coolant tempera- ture sensor is open or short- circuited, ECM enters fail-safe mode. The engine coolant temperature determined by the ECM is displayed.
HO2S1 (B1) [V]	\bigcirc	\bigcirc	• The signal voltage of the heated oxygen sensor 1 (front) is displayed.	
HO2S2 (B1) [V]	\bigcirc	\bigcirc	• The signal voltage of the heated oxygen sensor 2 (rear) is displayed.	
HO2S1 MNTR (B1) [RICH/LEAN]	0		 Display of heated oxygen sensor 1 (front) signal during air-fuel ratio feedback control: RICH means the mixture became "rich", and control is being affected toward a leaner mixture. LEAN means the mixture became "lean", and control is being affected toward a rich mixture. 	 After turning ON the ignition switch, "RICH" is displayed until air-fuel mix- ture ratio feedback control begins. When the air-fuel ratio feedback is clamped, the value just before the clamping is displayed continuously.
HO2S2 MNTR (B1) [RICH/LEAN]	0		 Display of heated oxygen sensor 2 (rear) signal: RICH means the amount of oxygen after three way catalyst is relatively small. LEAN means the amount of oxygen after three way catalyst is relatively large. 	When the engine is stopped, a certain value is indicated.
VHCL SPEED SE [km/h] or [mph]	\bigcirc	0	The vehicle speed computed from the vehicle speed sensor signal is displayed.	
BATTERY VOLT [V]	\bigcirc	\bigcirc	 The power supply voltage of ECM is dis- played. 	
THRTL POS SEN [V]	\bigcirc	\bigcirc	 The throttle position sensor signal voltage is displayed. 	
FUEL T/TMP SE [°C] or [°F]	\bigcirc		 The fuel temperature judged from the fuel tank temperature sensor signal voltage is dis- played. 	
INT/A TEMP SE [°C] or [°F]	\bigcirc	0	 The intake air temperature determined by the signal voltage of the intake air temperature sensor is indicated. 	
EGR TEMP SEN [V]	\bigcirc	\bigcirc	 The signal voltage of the EGR temperature sensor is displayed. 	
EVAP SYS PRES [V]	\bigcirc		 The signal voltage of EVAP control system pressure sensor is displayed. 	
ABSOL PRES/SE [V]	\bigcirc		 The signal voltage of the absolute pressure sensor is displayed. 	
FUEL LEVEL SE [V]	\bigcirc		 The signal voltage of the fuel level sensor is displayed. 	
START SIGNAL [ON/OFF]	\bigcirc	\bigcirc	 Indicates [ON/OFF] condition from the starter signal. 	 After starting the engine, [OFF] is displayed regardless of the starter signal.

NOTE:

Any monitored item that does not match the vehicle being diagnosed is deleted from the display automatically.

CONSULT-II (Cont'd)

Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks	GI
CLSD THL POS [ON/OFF]	\bigcirc	0	 Indicates idle position [ON/OFF] computed by ECM according to the throttle position sensor signal. 		
CLSD THL/P SW [ON/OFF]			 Indicates mechanical contact [ON/OFF] condition of the closed throttle position switch. 		MA
AIR COND SIG [ON/OFF]	0	0	 Indicates [ON/OFF] condition of the air conditioner switch as determined by the air conditioner signal. 		EM
P/N POSI SW [ON/OFF]	\bigcirc	\bigcirc	Indicates [ON/OFF] condition from the park/ neutral position switch signal.		LC
PW/ST SIGNAL [ON/OFF]	0	0	[ON/OFF] condition of the power steering oil pressure switch determined by the power steering oil pressure signal is indicated.		EC
LOAD SIGNAL	\bigcirc		 Indicates [ON/OFF] condition from the rear defogger signal. 		
AMB TEMP SW [ON/OFF]	\bigcirc		 Indicates [ON/OFF] condition from the ambient air temperature switch signal. 		FE
IGNITION SW [ON/OFF]	\bigcirc		 Indicates [ON/OFF] condition from ignition switch. 		. GL
HEATER FAN SW	\bigcirc		 Indicates [ON/OFF] condition from the heater fan switch. 		© B
A/C PRESS SW [ON/OFF]	0		 Indicates [ON/OFF] condition of the air conditioner triple-pressure switch (medium-pressure side) determined by the pressure of the air conditioning high pressure side. 		MT
INJ PULSE-B1 [msec]		0	 Indicates the actual fuel injection pulse width compensated by ECM according to the input signals. 	When the engine is stopped, a certain computed value is indicated.	AT
IGN TIMING [BTDC]		\bigcirc	Indicates the ignition timing computed by ECM according to the input signals.	When the engine is stopped, a certain value is indicated.	FA
CAL/LD VALUE [%]			"Calculated load value" indicates the value of the current airflow divided by peak airflow.		RA
ABSOL TH·P/S [%]			 "Absolute throttle position sensor" indicates the throttle opening computed by ECM according to the signal voltage of the throttle position sensor. 		BR
MASS AIRFLOW [g·m/s]			 Indicates the mass airflow computed by ECM according to the signal voltage of the mass airflow sensor. 		ST
IACV-AAC/V [%]		0	 Indicates the IACV - AAC valve control value computed by ECM according to the input sig- nals. 		RS
PURG VOL C/V [%]			 Indicates the EVAP canister purge volume control solenoid valve computed by the ECM according to the input signals. The opening becomes larger as the value increases. 		BT
EVAP SYS PRES [V]			The signal voltage of EVAP control system pressure sensor is displayed.		HA
AIR COND RLY [ON/OFF]		0	The air conditioner relay control condition (determined by ECM according to the input signal) is indicated.		EL
EGRC SOL/V [ON/OFF] (flow/cut)		0	 The control condition of the EGRC-solenoid valve (determined by ECM according to the input signal) is indicated. ON EGR is operational OFF EGR operation is cut-off 		IDX
FUEL PUMP RLY [ON/OFF]		0	 Indicates the fuel pump relay control condition determined by ECM according to the input signals. 		

CONSULT-II (Cont'd)

			` ,	
Monitored item [Unit]	ECM input signals	Main signals	Description	Remarks
VC/V BYPASS/V [ON/OFF]			 The control condition of the vacuum cut valve bypass valve (determined by ECM according to the input signal) is indicated. ON Open OFF Closed 	
VENT CONT/V [ON/OFF]			 The control condition of the EVAP canister vent control valve (determined by ECM according to the input signal) is indicated. ON Closed OFF Open 	
COOLING FAN [HI/LOW/OFF]			Indicates the control condition of the cooling fan (determined by ECM according to the input signal). HI High speed operation LOW Low speed operation OFF Stop	
HO2S1 HTR (B1) [ON/OFF]			 Indicates [ON/OFF] condition of heated oxygen sensor 1 heater (front) determined by ECM according to the input signals. 	
HO2S2 HTR (B1) [ON/OFF]			 Indicates [ON/OFF] condition of heated oxy- gen sensor 2 heater (rear) determined by ECM according to the input signals. 	
TRVL AFTER MIL [km] or [Mile]			Distance traveled while MIL is activated.	
VOLTAGE [V]			Voltage measured by the voltage probe.	
Frequency [msec] or [Hz] or [%]			Pulse width, frequency or duty cycle measured by the pulse probe.	 Only "#" is displayed if item is unable to be measured. Figures with "#"s are temporary ones. They are the same figures as an actual piece of data which was just previously measured.

[•] Any monitored item that does not match the vehicle being diagnosed is detected from the display automatically.

CONSULT-II (Cont'd)

DATA MONITOR (SPEC) MODE

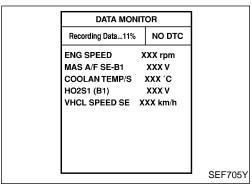
Monitored item [Unit]	ECM input signal	Main		Description	Remarks				
() () the REF sig			the REF sig	e engine speed computed from nal (180° signal) of the camshaft sor (PHASE).					
				roltage of the mass air flow sen- ation is displayed.	When engine is running specification range is indicated.				
B/FUEL SCHDL [msec]			tion pulse w	chedule" indicates the fuel injec- idth programmed into ECM, prior ed on board correction.	 When engine is running specification range is indicated. 				
A/F ALPHA-B1 [%]		0		alue of the air-fuel ratio feedback actor per cycle is indicated.	 When engine is running specification range is indicated. This data also includes the data for the air-fuel ratio learning control. 				
ACTIVE TEST	MODE								
TEST ITEM		CONDITI		JUDGEMENT	CHECK ITEM (REMEDY)				
FUEL INJECTION	condition Change using C	n the amount ONSULT-II.	e original trouble of fuel injection	If trouble symptom disappears, see CHECK ITEM.	Harness and connectorFuel injectorsFront heated oxygen sensor				
IACV-AAC/V OPEN- ING	engine. • Change		ng up, idle the AC valve opening ULT-II.	Engine speed changes according to t opening percent.	he Harness and connector ■ IACV-AAC valve				
ENG COOLANT TEMP	Engine: Return to the original trouble condition			If trouble symptom disappears, see CHECK ITEM.	Harness and connectorEngine coolant temperature sensorFuel injectors				
IGNITION TIMING	 Engine: Return to the original trouble condition 			If trouble symptom disappears, see CHECK ITEM.	Adjust initial ignition timing				
POWER BALANCE	Engine: engine.A/C swiShift levCut off	After warmir tch "OFF" er "N"	g up, idle the signal one at a T-II.	Engine runs rough or dies.	 Harness and connector Compression Injectors Power transistor Spark plugs Ignition coils 				
COOLING FAN	Turn the using C	ONSULT-II.	"ON" and "OFF"	Cooling fan moves and stops.	Harness and connectorCooling fan motor				
FUEL PUMP RELAY	Turn the "OFF" u operatin	e fuel pump r sing CONSU g sound.	Engine stopped) elay "ON" and ILT-II and listen to	Fuel pump relay makes the operating sound.	Harness and connectorFuel pump relay				
EGRC SOLENOID VALVE	Turn so with the		"ON" and "OFF" I and listen to	Solenoid valve makes an operating sound.	Harness and connectorSolenoid valve				
PURG VOL CONT/V	at 1,500 • Change ume cor	rpm. the EVAP ca	ng up, run engine anister purge vol- I valve opening ULT-II.	Engine speed changes according to t opening percent.	Harness and connector EVAP canister purge volume control solenoid valve				
FUEL T/TMP SE	Change	the fuel tank	temperature usin	g CONSULT-II.					
VENT CONTROL/V	Turn so with the operatin	enoid valve CONSULT-I g sound.	Engine stopped) "ON" and "OFF" I and listen to	Solenoid valve makes an operating sound.	Harness and connectorSolenoid valve				
VC/V BYPASS/V	Turn so with the	enoid valve	Engine stopped) "ON" and "OFF" I and listen to	Solenoid valve makes an operating sound.	Harness and connectorSolenoid valve				

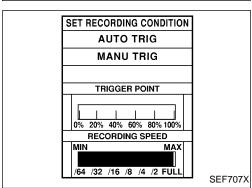
operating sound.

CONSULT-II (Cont'd)

DTC CONFIRMATION MODE

SRT STATUS mode


For details, refer to "SYSTEM READINESS TEST (SRT) CODE", EC-47.


SRT WORK SUPPORT mode

This mode enables a technician to drive a vehicle to set the SRT while monitoring the SRT status.

DTC WORK SUPPORT mode

TEST MODE	TEST ITEM	CONDITION	REFERENCE PAGE	
	PURGE FLOW P1447		EC-398	
	VC CUT/V BP/V P1491	1	EC-420	
EVAPORATIVE	PURG VOL CN/V P1444	1	EC-386	
SYSTEM	EVAP SML LEAK P0440	1	EC-284	
	EVAP SML LEAK P1440		EC-374	
	EVAP V/S LEAK P1441		EC-376	
	HO2S1 (B1) P0130		EC-156	
HEATED OXYGEN	HO2S1 (B1) P0131	Refer to corresponding trouble diagnosis	EC-163	
(FRONT)	HO2S1 (B1) P0132	for DTC.	EC-170	
SENSOR 1	1	EC-178		
	HO2S2 (B1) P0137		EC-196	
HEATED OXYGEN SENSOR 2 (REAR)	HO2S2 (B1) P0138	1	EC-204	
02/100/11/2 (11/2/111)	HO2S2 (B1) P0139		EC-212	
	EGR SYSTEM P0400]	EC-266	
EGR SYSTEM	EGRC-BPT/VLV P0402]	EC-275	
	EGR SYSTEM P1402]	EC-367	

CONSULT-II (Cont'd)

REAL TIME DIAGNOSIS IN DATA MONITOR MODE (RECORDING VEHICLE DATA)

CONSULT-II has two kinds of triggers and they can be selected by touching "SETTING" in "DATA MONITOR" mode.

"AUTO TRIG" (Automatic trigger):

• The malfunction will be identified on the CONSULT-II screen in real time.

In other words, DTC/1st trip DTC and malfunction item will be displayed at the moment the malfunction is detected by ECM.

At the moment a malfunction is detected by ECM, "MONITOR" in "DATA MONITOR" screen is changed to "Recording Data ... xx%" as shown at left, and the data after the malfunction detection is recorded. Then when the percentage reached 100%, "REAL-TIME DIAG" screen is displayed. If "STOP" is touched on the screen during "Recording Data ... xx%", "REAL-TIME DIAG" screen is also displayed.

The recording time after the malfunction detection and the recording speed can be changed by "TRIGGER POINT" and "Recording Speed". Refer to CONSULT-II OPERATION MANUAL.

2. "MANU TRIG" (Manual trigger):

 DTC/1st trip DTC and malfunction item will not be displayed automatically on CONSULT-II screen even though a malfunction is detected by ECM.

DATA MONITOR can be performed continuously even though a malfunction is detected.

Use these triggers as follows:

1. "AUTO TRIG"

While trying to detect the DTC/1st trip DTC by performing the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE", be sure to select to "DATA MONITOR (AUTO TRIG)" mode. You can confirm the malfunction at the moment it is detected.

While narrowing down the possible causes, CONSULT-II should be set in "DATA MONITOR (AUTO TRIG)" mode, especially in case the incident is intermittent.
 When you are inspecting the circuit by gently shaking (or twisting) the suspicious connectors, components and harness in the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE", the moment a malfunction is found the DTC/1st trip DTC will be displayed. (Refer to GI section, "Incident Simulation Tests" in "HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT".)

2. "MANU TRIG"

If the malfunction is displayed as soon as "DATA MONITOR" is selected, reset CONSULT-II to "MANU TRIG".
 By selecting "MANU TRIG" you can monitor and store the data. The data can be utilized for further diagnosis, such as a comparison with the value for the normal operating condition.

EC

MA

MT

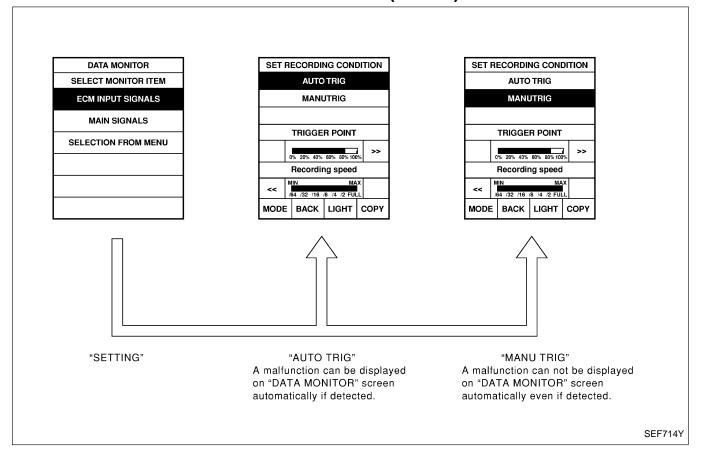
AT

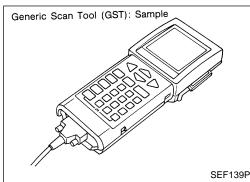
FA

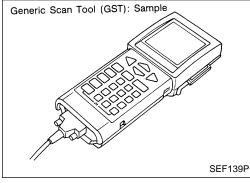
__

SI

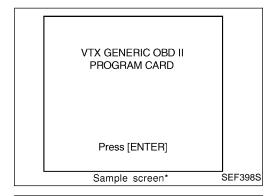
RS


BT


HA


EL

DX


CONSULT-II (Cont'd)

Hood opener Data link connector **WEC051**

OBD II FUNCTIONS F0: DATA LIST F1: FREEZE DATA F2: DTCs F3: SNAPSHOT F4: CLEAR DIAG INFO F5: O2 TEST RESULTS F6: READINESS TESTS F7: ON BOARD TESTS F8: EXPAND DIAG PROT F9: UNIT CONVERSION Sample screen*

Generic Scan Tool (GST)

DESCRIPTION

Generic Scan Tool (OBDII scan tool) complying with SAE J1978 has 7 different functions explained on the next page. ISO9141 is used as the protocol.

The name "GST" or "Generic Scan Tool" is used in this service manual.

GST INSPECTION PROCEDURE

- Turn ignition switch OFF.
- Connect "GST" to data link connector which is located under LH dash panel near the fuse box cover.

Turn ignition switch ON. Enter the program according to instruction on the screen or in the operation manual. (*: Regarding GST screens in this section, sample screens are

shown.)

5. Perform each diagnostic mode according to each service

For further information, see the GST Operation Manual of the tool maker.

EC-77

MA

EM LC

EC

FE

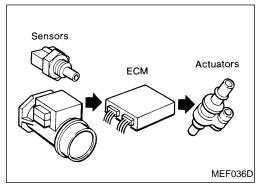
MT

FA

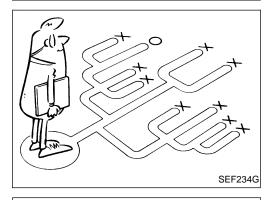
RA

BR

BT


HA

Generic Scan Tool (GST) (Cont'd)


FUNCTION

Dia	agnostic test mode	Function
MODE 1	READINESS TESTS	This mode gains access to current emission-related data values, including analog inputs and outputs, digital inputs and outputs, and system status information.
MODE 2	(FREEZE DATA)	This mode gains access to emission-related data value which were stored by ECM during the freeze frame. [For details, refer to "Freeze Frame Data" (EC-69).]
MODE 3	DTCs	This mode gains access to emission-related power train trouble codes which were stored by ECM.
MODE 4	CLEAR DIAG INFO	This mode can clear all emission-related diagnostic information. This includes: Clear number of diagnostic trouble codes (MODE 1) Clear diagnostic trouble codes (MODE 3) Clear trouble code for freeze frame data (MODE 1) Clear freeze frame data (MODE 2) Reset status of system monitoring test (MODE 1) Clear on board monitoring test results (MODE 6 and 7)
MODE 6	(ON BOARD TESTS)	This mode accesses the results of on board diagnostic monitoring tests of specific components/systems that are not continuously monitored.
MODE 7	(ON BOARD TESTS)	This mode enables the off board test drive to obtain test results for emission-related powertrain components/systems that are continuously monitored during normal driving conditions.
MODE 8	_	This mode can close EVAP system in ignition switch "ON" position (Engine stopped). When this mode is performed, following parts can be opened or closed. EVAP canister vent control open Vacuum cut valve bypass valve closed In the following conditions, this mode cannot function. Low ambient temperature Low battery voltage Engine running Ignition switch "OFF" Low fuel temperature Too much pressure is applied to EVAP system
MODE 9	(CALIBRATION ID)	This mode enables the off-board (External test equipment) to request specific vehicle information such as Vehicle Identification Number (VIN) and Calibration IDs.

TROUBLE DIAGNOSIS — Introduction

KEY POINTS

WHAT Vehicle & engine model WHEN Date, Frequencies WHERE..... Road conditions HOW Operating conditions,

Weather conditions,

Symptoms

SEF907L

Introduction

The engine has an ECM to control major systems such as fuel control, ignition control, idle air control system, etc. The ECM accepts input signals from sensors and instantly drives actuators. It is essential that both input and output signals are proper and stable. At the same time, it is important that there are no problems such as vacuum leaks, fouled spark plugs, or other problems with the engine.

It is much more difficult to diagnose a problem that occurs intermittently rather than continuously. Most intermittent problems are caused by poor electric connections or improper wiring. In this case, careful checking of suspected circuits may help prevent the replacement of good parts.

A visual check only may not find the cause of the problems. A road test with CONSULT-II (or GST) or a circuit tester connected should be performed. Follow the "Work Flow" on EC-81.

Before undertaking actual checks, take a few minutes to talk with a customer who approaches with a driveability complaint. The customer can supply good information about such problems, especially intermittent ones. Find out what symptoms are present and under what conditions they occur. A "Diagnostic Worksheet" like the example on next page should be used. Start your diagnosis by looking for "conventional" problems first. This will help troubleshoot driveability problems on an electronically controlled engine vehicle.

Diagnostic Worksheet

There are many operating conditions that lead to the malfunction of engine components. A good grasp of such conditions can make trouble-shooting faster and more accurate.

In general, each customer feels differently about a problem. It is important to fully understand the symptoms or conditions for a customer complaint.

Utilize a diagnostic worksheet like the one on the next page in order to organize all the information for troubleshooting. Some conditions may cause the malfunction indicator lamp to come on steady or blink and DTC to be detected. Examples:

- Vehicle ran out of fuel, which caused the engine to misfire.
- Fuel filler cap was left off or incorrectly screwed on, allowing fuel to evaporate into the atmosphere, [for the models with EVAP (SMALL LEAK) diagnosis.]

GI

 $\mathbb{M}\mathbb{A}$

LC

EC

FE

CL

MT

AT

FA

RA

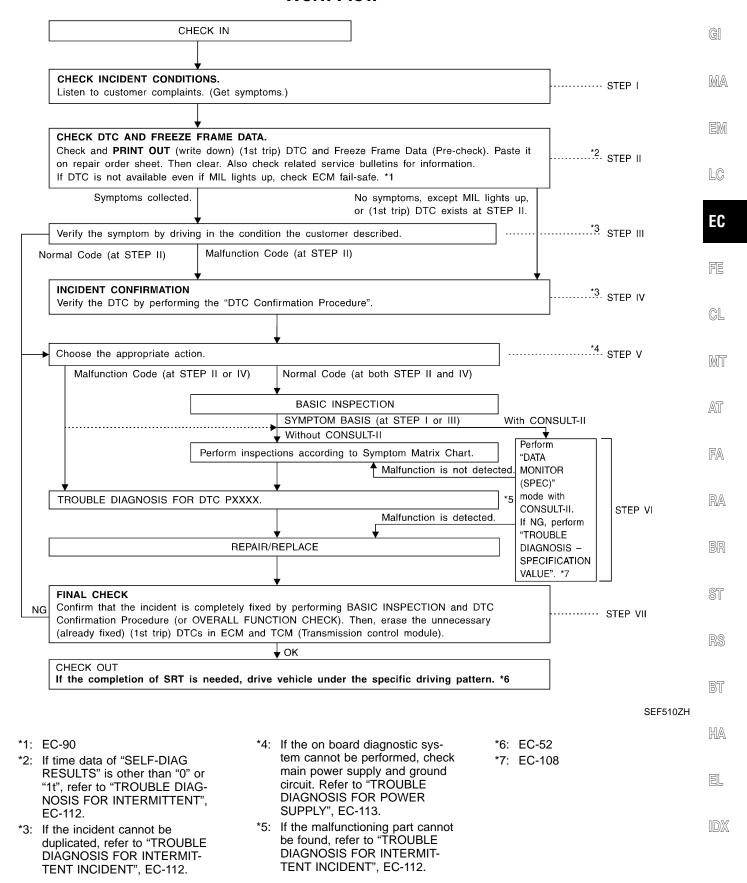
BR

_ _

HA

EL

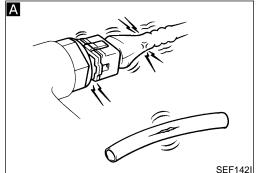
TROUBLE DIAGNOSIS — Introduction


Diagnostic Worksheet (Cont'd)

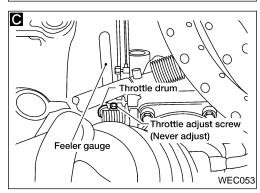
WORKSHEET SAMPLE

Customer name	e MR/MS	Model & Year	VIN						
Engine #		Trans.	Mileage						
Incident Date		Manuf. Date	In Service Date						
Fuel and fuel fil	ller cap	□ Vehicle ran out of fuel causing misfire □ Fuel filler cap was left off or incorrectly screwed on.							
	□ Startability	□ Impossible to start □ No combustion □ Partial combustion affected by throttle □ Partial combustion NOT affected by th □ Possible but hard to start □ Others [
Symptoms	□ Idling	□ No fast idle □ Unstable □ High id □ Others [dle □ Low idle]						
Symptoms	□ Driveability	□ Stumble □ Surge □ Knock □ Intake backfire □ Exhaust backfire □ Others [□ Lack of power						
	□ Engine stall	□ At the time of start □ While idling □ While accelerating □ While decelerating □ Unit of the stopping □ While loading	ng						
Incident occurre	ence	□ Just after delivery □ Recently □ In the morning □ At night □ In the	e daytime						
Frequency		□ All the time □ Under certain conditions	s □ Sometimes						
Weather condi	tions	□ Not affected							
	Weather	□ Fine □ Raining □ Snowing	□ Others []						
	Temperature	□ Hot □ Warm □ Cool □ Cold	□ Humid °F						
Engine conditio	ns	□ Cold □ During warm-up □ After w Engine speed □ □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1 □ 1	varm-up 4,000 6,000 8,000 rpm						
Road conditions	S	□ In town □ In suburbs □ Highway	□ Off road (up/down)						
Driving conditio	ns	□ Not affected □ At starting □ While idling □ At rac □ While accelerating □ While cruising □ While decelerating □ While turning (RI Vehicle speed □ □ 10 20 30	· ·						
Malfunction ind	icator lamp	□ Turned on □ Not turned on							

TROUBLE DIAGNOSIS — Work Flow


Work Flow

TROUBLE DIAGNOSIS — Work Flow


Description for Work Flow

STEP	DESCRIPTION
STEP I	Get detailed information about the conditions and the environment when the incident/symptom occurred using the "DIAGNOSTIC WORK SHEET", EC-80.
STEP II	Before confirming the concern, check and write down (print out using CONSULT-II or Generic Scan Tool) the (1st trip) Diagnostic Trouble Code (DTC) and the (1st trip) freeze frame data, then erase the code and the data. (Refer to EC-58.) The (1st trip) DTC and the (1st trip) freeze frame data can be used when duplicating the incident at STEP III & IV. Study the relationship between the cause, specified by (1st trip) DTC, and the symptom described by the customer. (The "Symptom Matrix Chart" will be useful. See EC-91.) Also check related service bulletins for information.
STEP III	Try to confirm the symptom and under what conditions the incident occurs. The "DIAGNOSTIC WORK SHEET" and the freeze frame data are useful to verify the incident. Connect CON-SULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI-24 section.) If the malfunction code is detected, skip STEP IV and perform STEP V.
STEP IV	Try to detect the (1st trip) Diagnostic Trouble Code by driving in (or performing) the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE". Check and read the (1st trip) DTC and (1st trip) freeze frame data by using CONSULT-II or Generic Scan Tool. During the (1st trip) DTC verification, be sure to connect CONSULT-II to the vehicle in DATA MONITOR (AUTO TRIG) mode and check real time diagnosis results. If the incident cannot be verified, perform INCIDENT SIMULATION TESTS. (Refer to GI-24 section.) In case the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" is not available, perform the "OVERALL FUNCTION CHECK" instead. The (1st trip) DTC cannot be displayed by this check, however, this simplified "check" is an effective alternative. The "NG" result of the "OVERALL FUNCTION CHECK" is the same as the (1st trip) DTC detection.
STEP V	Take the appropriate action based on the results of STEP I through IV. If the malfunction code is indicated, proceed to TROUBLE DIAGNOSIS FOR DTC PXXXX. If the normal code is indicated, proceed to the BASIC INSPECTION. (Refer to EC-83.) If CONSULT-II is available, perform "DATA MONITOR (SPEC)" mode with CONSULT-II and proceed to the "TROUBLE DIAGNOSIS-SPECIFI-CATION VALUE", EC-108. (If malfunction is detected, proceed to "REPAIR REPLACE". Then perform inspections according to the Symptom Matrix Chart. (Refer to EC-91.)
STEP VI	Identify where to begin diagnosis based on the relationship study between symptom and possible causes. Inspect the system for mechanical binding, loose connectors or wiring damage using (tracing) "Harness Layouts". Gently shake the related connectors, components or wiring harness with CONSULT-II set in "DATA MONITOR (AUTO TRIG)" mode. Check the voltage of the related ECM terminals or monitor the output data from the related sensors with CONSULT-II. Refer to EC-94. The "DIAGNOSTIC PROCEDURE" in EC section contains a description based on open circuit inspection. A short circuit inspection is also required for the circuit check in the DIAGNOSTIC PROCEDURE. For details, refer to GI-26 section ("HOW TO PERFORM EFFICIENT DIAGNOSIS FOR AN ELECTRICAL INCIDENT", "Circuit Inspection"). Repair or replace the malfunction parts.
STEP VII	Once you have repaired the circuit or replaced a component, you need to run the engine in the same conditions and circumstances which resulted in the customer's initial complaint. Perform the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" and confirm the normal code [Diagnostic trouble code No. P0000 or 0505] is detected. If the incident is still detected in the final check, perform STEP VI by using a different method from the previous one. Before returning the vehicle to the customer, be sure to erase the unnecessary (already fixed) (1st trip) DTC in ECM and TCM (Transmission control module). (Refer to EC-56.)

Hood opener

Basic Inspection

Precaution:

Perform Basic Inspection without electrical or mechanical loads applied;

- Headlamp switch is OFF,
- Air conditioner switch is OFF,
- Rear window defogger switch is OFF,
- Steering wheel is in the straight-ahead position, etc.

Α

BEFORE STARTING

- 1. Check service records for any recent repairs that may indicate a related problem, or the current need for scheduled maintenance.
- 2. Open engine hood and check the following:
- Harness connectors for improper connections
- Vacuum hoses for splits, kinks, or improper connections
- Wiring for improper connections, pinches, or cuts

В

Data link connector

WEC051

CONNECT CONSULT-II TO THE VEHICLE.

Connect "CONSULT-II" to the data link connector for CONSULT-II and select "ENGINE" from the menu. Refer to EC-66.

C

CHECK FI CAM FUNCTION.

1. Turn ignition switch "ON".

- 2. Select "COOLANT TEMP/S" in "DATA MONITOR MODE" with CONSULT-II.
- 3. Warm up engine until "COOL-ANT TEMP/S" reaches to 75°C (167°F).
- 4. Stop engine and wait at least 5 seconds then turn ignition switch "ON".
- 5. When engine coolant temperature is between 75 to 85°C (167 to 185°F), check clearance between throttle drum and stopper. Refer to the left figure. Clearance should be less than 0.05 mm (0.0020 in).


(GSF)

- 2. Select "MODE 1" WITH GST.
- 3. When engine coolant temperature is between 75 to 85°C (167 to 185°F), check clearance between throttle drum and stopper. Refer to the left figure. Clearance should be less than

0.05 mm (0.0020 in).

(Go to next page.)

NG

MA

EM

LC

EC

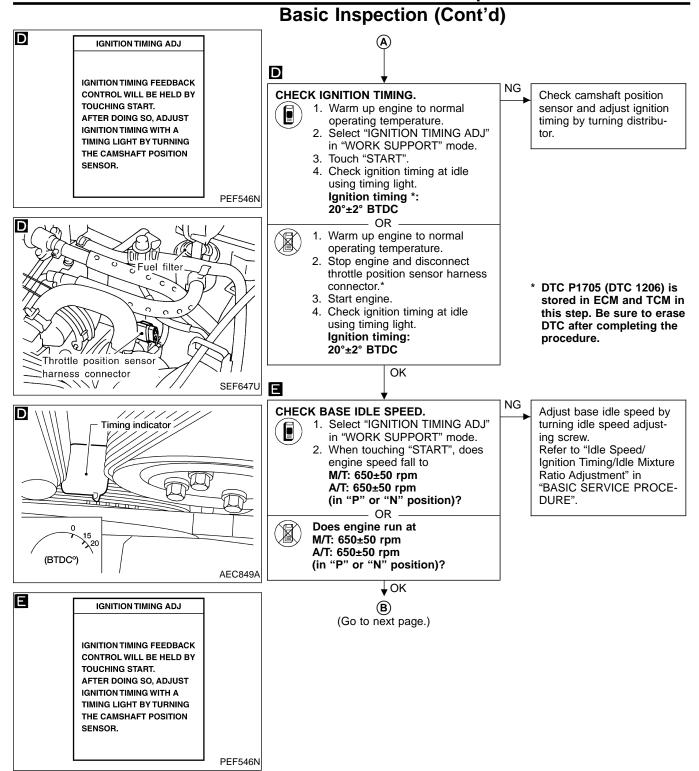
CL

MT

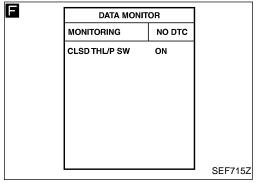
AT

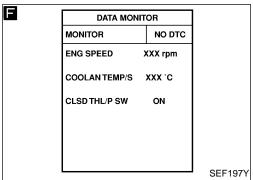
FA

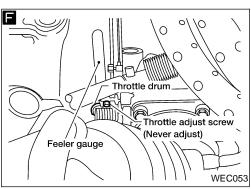
BR

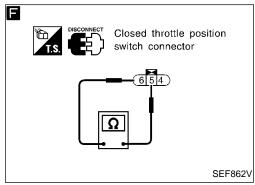

RA

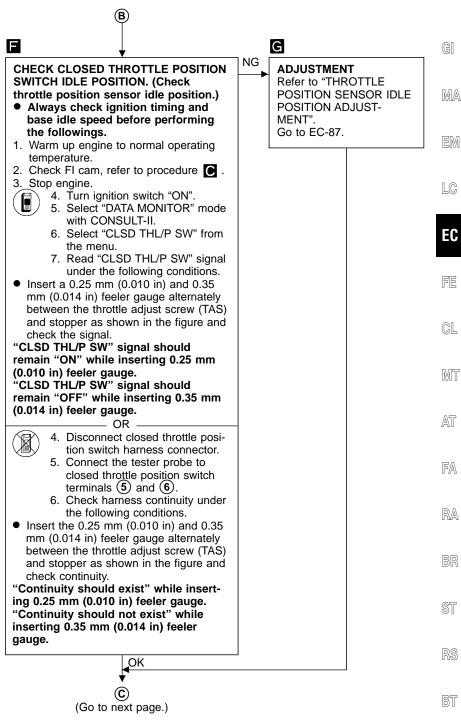
BT

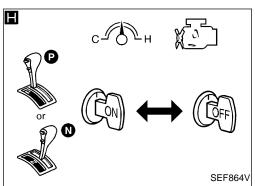

HA


EL


IDX




Basic Inspection (Cont'd)



HA

IDX

Basic Inspection (Cont'd)

- Reconnect throttle position sensor harness connector and closed throttle position switch harness connector.
- Rev engine (2,000 to 3,000 rpm) 2 or 3 times under no-load and then run engine at idle speed.

RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY.

Note: Always warm up engine to normal operating temperature. If engine is cool, the throttle position sensor idle position memory will not be reset correctly.

- 1. Start engine.
- 2. Warm up engine to normal operating temperature.

- Select "CLSD THL POS" in "DATA MONITOR" mode (Manual trigger) with CON-SULT-II.
- 4. Stop engine. (Turn ignition switch "OFF".)
- 5. Turn ignition switch "ON" and wait at least 5 seconds.
- 6. Turn ignition switch "OFF" and wait at least 5 seconds.

 Repeat steps 5 and 6 until "CLSD THL POS" in "DATA MONITOR" mode with CON-SULT-II changes to "ON".

7. Repeat steps 5 and 6, 20 times.

NG

EC-37.

Adjust idle speed. Refer to

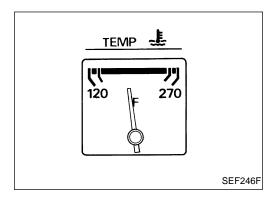
CHECK TARGET IDLE SPEED.

Read the engine idle speed in "DATA MONITOR" mode with CONSULT-II.

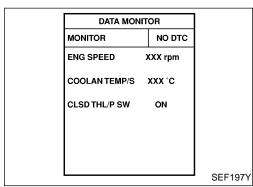
700±50 rpm (in "P" or "N" position) ————— OR ————

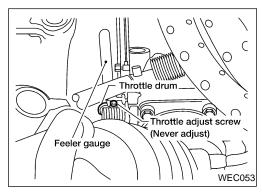
Check idle speed.
700±50 rpm
(in "P" or "N" position)

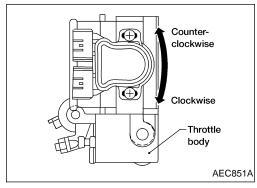
↓OK



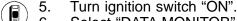
ERASE DTC MEMORY.


After this inspection, unnecessary diagnostic trouble code No. might be stored or displayed. Erase the stored memory in ECM and TCM. Refer to "How to erase DTC" in "ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION" and A/T section ("Self-diagnosis", "TROUBLE DIAGNOSES").




INSPECTION END

DATA MONITOR MONITORING NO DTC CLSD THL/P SW ON SEF715Z



Basic Inspection (Cont'd)

THROTTLE POSITION SENSOR IDLE POSITION ADJUSTMENT

Note:

- Never adjust throttle adjust screw (TAS).
- Do not touch throttle drum when checking "CLSD THL/P SW" signal or "continuity", doing so may cause an incorrect adjustment.
- 1. Warm engine up to normal operating temperature.
- 2. Check FI cam. Refer to procedure C.
- 3. Stop engine.
- 4. Loosen throttle position sensor fixing bolts.

- 6. Select "DATA MONITOR" mode with CONSULT-II.
- 7. Select "CLSD THL/P SW" from the menu.
- 8. Read "CLSD THL/P SW" signal under the following conditions.
- Insert 0.25 mm (0.010 in) feeler gauge between throttle adjust screw and stopper as shown in the figure and check the following.
- Open throttle valve and then close.
- "CLSD THL/P SW" signal should remain "OFF" when the throttle valve is closed. (If signal is "ON", turn throttle position sensor body counterclockwise until the signal switches to "OFF".)
- 9. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body clockwise and stop it when "CLSD THL/P SW" signal switches from "OFF" to "ON", then tighten sensor body fixing bolts.
- 10. Make sure the signal is "ON" when the throttle valve is closed and "OFF" when it is opened. Repeat it two or three times.
- 11. Remove 0.25 mm (0.010 in) feeler gauge then insert 0.35 mm (0.014 in) feeler gauge and check the following. Make sure the signal remains "OFF" when the throttle valve is closed. Repeat it two or three times.
- 12. Tighten throttle position sensor.

 Check that the "CLSD THL/P SW" signal remains "OFF" while closing throttle valve. If NG, repeat from the step 4.

After this adjustment, go to procedure RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY.

- OR -

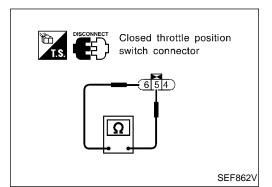
EM

LC

MA

GI

EC


RA

IJØ)

BT

HA

EL

Basic Inspection (Cont'd)

- Disconnect closed throttle position sensor harness connector.
- 6. Connect tester probes to the closed throttle position switch terminals (5) and (6) and check continuity under the following conditions.
- Insert the 0.25 mm (0.010 in) feeler gauge between the throttle adjust screw and throttle drum as shown in the figure and check the following.
- Open throttle valve then close.
- The continuity should not exist while closing the throttle valve. If the continuity exists, turn throttle position sensor body counterclockwise until the continuity does not exist.
- 7. Temporarily tighten sensor body fixing bolts as follows.
- Gradually move the sensor body clockwise and stop it when the continuity comes to exist, then tighten sensor body fixing bolts.
- 8. Make sure the continuity exists when the throttle valve is closed and continuity does not exist when it is opened. Repeat it two or three times.
- Remove 0.25 mm (0.010 in) feeler gauge, then insert 0.35 mm (0.014 in) feeler gauge and check the following.
 - Make sure the continuity does not exist when the throttle valve is closed. Repeat it two or three times.
- 10. Tighten throttle position sensor.
 Check that the continuity does not exist while closing the throttle valve. If NG, repeat from the step 5.
 After this adjustment, go to procedure RESET THROTTLE POSITION SENSOR IDLE POSITION MEMORY.

Diagnostic Trouble Code (DTC) Inspection Priority Chart

HA

EL

IDX

If some DTCs are displayed at the same time, perform inspections one by one based on the following priority chart.

Priority	Detected items (DTC)		
1	P0100 Mass air flow sensor		
	P0110 Intake air temperature sensor		
	P0115 P0125 Engine coolant temperature sensor		
	P0120 Throttle position sensor		
	P0180 Fuel tank temperature sensor		
	P0325 Knock sensor		
	P0340 Camshaft position sensor		
	• P0460, P0461, P0464, P1464 Fuel level sensor		
	P0500 Vehicle speed sensor		
	● P0605 ECM		
	P1126 Thermostat function		
	P1400 EGRC-solenoid valve		
	P1605 A/T diagnosis communication line		
	P1706 Park/neutral position (PNP) switch		
2	P0105 Absolute pressure sensor		
	P0130-P0134 Heated oxygen sensor 1 (front)		
	P0135 Heated oxygen sensor 1 heater (front)		
	P0137-P0140 Heated oxygen sensor 2 (rear)		
	P0141 Heated oxygen sensor 2 heater (rear)		
	P0335, P1336 Crankshaft position sensor		
	P0443, P1444 EVAP canister purge volume control solenoid valve		
	! 9		
	· ·		
	·		
	 P0605 ECM P1126 Thermostat function P1400 EGRC-solenoid valve P1605 A/T diagnosis communication line P1706 Park/neutral position (PNP) switch P0105 Absolute pressure sensor P0130-P0134 Heated oxygen sensor 1 (front) P0135 Heated oxygen sensor 1 heater (front) P0137-P0140 Heated oxygen sensor 2 (rear) P0141 Heated oxygen sensor 2 heater (rear) P0335, P1336 Crankshaft position sensor P0443, P1444 EVAP canister purge volume control solenoid valve P0446, P1446, P1448 EVAP canister vent control valve P0450 EVAP control system pressure sensor P0510 Closed throttle position switch P0705-P0725, P0740-P1760 A/T related sensors, solenoid valves and switches P1401 EGR temperature sensor P1447 EVAP control system purge flow monitoring P1490, P1491 Vacuum cut valve bypass valve P0171, P0172 Fuel injection system function P0304 - P0300 Misfire P0402 EGRC-BPT valve function P0420 Three way catalyst function 		
3	P0171, P0172 Fuel injection system function		
	• P0304 - P0300 Misfire		
	• P0400, P1402 EGR function		
	P0420 Three way catalyst function		
	P0440, P1440 EVAP control system (SMALL LEAK)		
	P0455 EVAP control system (GROSS LEAK)		
	P1441 EVAP control system (VERY SMALL LEAK)		
	P0505 IACV-AAC valve		
	P0600 Signal circuit from TCM to ECM		
	P0000 Signal circuit from 1 Civil to Ecivil P0731-P0734, P0744 A/T function		
	P1148 Closed loop control		
	F 1140 Closed loop collicol		

Fail-Safe Chart

The ECM enters fail-safe mode, if any of the following malfunctions is detected due to the open or short circuit. When the ECM enters the fail-safe mode, the MIL illuminates.

DTC No.	Detected items	Engine operating condition in fail-safe mode								
90100 GST	Mass air flow sensor circuit	Engine speed will n	ot rise more than 2	,400 rpm due to the fuel cut.						
P0115	Engine coolant temperature sensor circuit	Engine coolant temperature will be determined by ECM based on the ti after turning ignition switch "ON" or "START". CONSULT-II displays the engine coolant temperature decided by ECM.								
		Con	ndition	Engine coolant temperature decided (CONSULT-II display)						
		Just as ignition swi Start	itch is turned ON or	40°C (104°F)						
		More than approx. tion ON or Start	4 minutes after igni-	80°C (176°F)						
		Except as shown a	above	40 - 80°C (104 - 176°F) (Depends on the time)						
		With the ignition key in the OFF position, cooling fans will operate for 120 seconds when in fail-safe mode.								
P0120	Throttle position sensor circuit	Throttle position will the engine speed. Therefore, accelera	sed on the injected fuel amount and							
		Con	Driving condition							
		When engine is idli	ing	Normal						
		When accelerating		Poor acceleration						
Unable to access ECM	ECM	When the fail-safe s condition in the CPI the instrument pane However it is not po Engine control wit When ECM fail-safe	etion of the ECM was system activates (i.e. U of ECM), the MA el lights to warn the possible to access Entrales entrales is operating, fuel in	as judged to be malfunctioning. e., if the ECM detects a malfunction LFUNCTION INDICATOR LAMP on driver. CM and DTC cannot be confirmed. injection, ignition timing, fuel pump ion are controlled under certain limita-						
			E	CM fail-safe operation						
		Engine speed	Engine speed	will not rise more than 3,000 rpm						
		Fuel injection	Simultaneou	us multiport fuel injection system						
		Ignition timing	Ignition tim	ning is fixed at the preset value						
		Fuel pump	Fuel pump relay is	"ON" when engine is running and "OFF" when engine stalls						
		Cooling fans	-	ON" (High speed condition) when engine and "OFF" when engine stalls.						
		IACV-AAC valve	Full open							
		Replace ECM, if ECM fail-safe condition is confirmed.								

Symptom Matrix Chart

							SY	MPT	NC.							
						_	<u> </u>				Ξ.				-	G[
		START/RESTART (EXCP. HA)		r spot	Z	POWER/POOR ACCELERATION				111	TEMPERATURE HIGH	1PTION	NOIT	CHARGE)		MA
SYSTEM — Basic engine control system				GING/FLA	ETONATIC	/POOR AC)LE	DNILL		N TO IDLE		FUEL CONSUMPTION	OIL CONSUMPTION	(UNDER CI	Reference page	EM
			STALL	HESITATION/SURGING/FLAT	SPARK KNOCK/DETONATION	OF POWER	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER		SIVE OIL C	RY DEAD (LC
		HARD/NO	ENGINE	HESITA.	SPARK	LACKO	HIGH ID	ROUGH	IDLING	SLOW/N	OVERH	EXCESSIVE	EXCESSIVE	BATTER		EC
Warranty s	symptom code	AA	AB	AC	AD	AE	AF	AG	АН	AJ	AK	AL	AM	НА		
Fuel	Fuel pump circuit	1	1	2	3	2		2	2			3		2	EC-457	FE
	Fuel pressure regulator system	3	3	4	4	4	4	4	4	4		4			EC-35	
	Injector circuit	1	1	2	3	2		2	2			2			EC-451	
	Evaporative emission system	3	3	4	4	4	4	4	4	4		4			EC-23	CL
Air	Positive crankcase ventilation system	3	3	4	4	4	4	4	4	4		4	1		EC-33	© L
	Incorrect idle speed adjustment	3	3				1	1	1	1		1			EC-83	
	IACV-AAC valve circuit	1	1	2	3	3	2	2	2	2		2		2	EC-330	0/152
	IACV-FICD solenoid valve circuit	2	2	3	3	3	3	3	3	3		3			EC-467	MT
Ignition	Incorrect ignition timing adjustment	3	3	1	1	1		1	1			1			EC-83	
	Ignition circuit	1	1	2	2	2		2	2			2			EC-445	Λ=
EGR	EGRC-solenoid valve circuit		2	2	3	3						3			EC-356	AT
	EGR system	2	1	2	3	3	3	2	2	3		3			EC-266	
	er supply and ground circuit	2	2	3	3	3		3	3		2	3		2	EC-113	
Air condition	oner circuit	2	2	3	3	3	3	3	3	3		3		2	HA section	FA

^{1 - 6:} The numbers refer to the order of inspection.

(continued on next page)

RA

BR

ST

BT

HA

EL

TROUBLE DIAGNOSIS — General Description Symptom Matrix Chart (Cont'd)

							SY	MPT	MC						
SYSTEM — Engine control system		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FUEL CONSUMPTION	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER CHARGE)	Reference page
Warranty syr	nptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	НА	
Engine	Camshaft position sensor circuit	2	2	3	3	3		3	3			3			EC-259
control	Mass air flow sensor circuit	1	1	2	2	2		2	2			2			EC-118
	Heated oxygen sensor 1 (front) circuit		1	2	3	2		2	2			2			EC-156,163
	Engine coolant temperature sensor circuit	1	1	2	3	2	3	2	2	3		2			EC-134,151
	Throttle position sensor circuit		1	2		2	2	2	2	2		2			EC-139
	Incorrect throttle position sensor adjustment		3	1		1	1	1	1	1		1			EC-83
	Vehicle speed sensor circuit		2	3		3						3			EC-326
	Knock sensor circuit			2								3			EC-249
	ECM	2	2	3	3	3	3	3	3	3	3	3			EC-345,90
	Start signal circuit	2													EC-454
	Park/neutral position (PNP) switch circuit			3		3		3	3			3			EC-428
	Power steering oil pressure switch circuit		2					3	3						EC-463

^{1 - 6:} The numbers refer to the order of inspection.

(continued on next page)

Symptom Matrix Chart (Cont'd)

		· <i>)</i>	, k										*			
			1		<u> </u>	1	S\	/MPT(OM T		-				-	
		CP. HA)		ОТ		ERATION.					TURE HIGH	NC	_	GE)		GI
SYSTEM		ART (EX		-LAT SP	MOIT	ACCEL				IDLE	MPERA	SUMPTIC	MPTION	R CHARGE)		MA
	echanical & other	RT/REST		JRGING/F	/DETON/	ER/POOF	V IDLE	IUNTING	NO!	URN TO	ATER TE	FUEL CONSUMPTION	L CONSU) (UNDEF	Reference page	EM
		HARD/NO START/RESTART (EXCP. HA)	ENGINE STALL	HESITATION/SURGING/FLAT SPOT	SPARK KNOCK/DETONATION	LACK OF POWER/POOR ACCELERATION	HIGH IDLE/LOW IDLE	ROUGH IDLE/HUNTING	IDLING VIBRATION	SLOW/NO RETURN TO IDLE	OVERHEATS/WATER TEMPERATURE HIGH	EXCESSIVE FL	EXCESSIVE OIL CONSUMPTION	BATTERY DEAD (UNDER		LC
Warranty syr	mptom code	AA	AB	AC	AD	AE	AF	AG	AH	AJ	AK	AL	AM	HA	-	EC
Fuel	Fuel tank			1						1.0					FE section	
	Fuel piping	5		5	5	5		5	5	1		5	i			
	Vapor lock		5												1	FE
	Valve deposit]				1									
	Poor fuel (Heavy weight gasoline, Low octane)	5		5	5	5		5	5			5			_	CL
Air	Air duct															
	Air cleaner					1										
	Air leakage from air duct		_ ا	_		_		_	_			_				Mī
	(Mass air flow sensor — throttle body) Throttle body, Throttle wire	5	5	5	5	5	5	5	5	5		5			FE section	
	Air leakage from intake manifold/ Collector/Gasket	- "			3		3			3					—	AT
Cranking	Battery		T .													
	Generator circuit	1	1	1		1		1	1			1		1	EL section	
	Starter circuit	3														FA
	Flywheel/Drive plate	6													EM section	
	Park/neutral position (PNP) switch	4													AT section	EΛ
Engine	Cylinder head	5	5	5	5	5		5	5		_	5			-	RA
	Cylinder head gasket						-			ł	4	-	3	-		
	Cylinder block Piston	┨											4			66
	Piston ring	1											-			BR
	Connecting rod	6	6	6	6	6		6	6			6				
	Bearing	1													EM section	@5r
	Crankshaft	1														ST
Valve	Timing chain															
mechanism	Camshaft	5	5	5	5	_		5	5			5				 □ (0
	Intake valve] °	3)	5		3	3			3	3			RS
	Exhaust valve															
Exhaust	Exhaust manifold/Tube/Muffler/Gasket	1													FE section	D57
1.1.2.2	Three way catalyst		_											_		BT
Lubrication	Oil pan/Oil strainer/Oil pump/Oil filter/Oil gallery	5	_		5	_		5	_			5			MA, EM, LC section	
	Oil level (Low)/Filthy oil	l °	5	5)	5		ြ	5			၂ ၁			36011011	
Cooling	Radiator/Hose/Radiator filler cap										 				-	HA
	Thermostat	†								5	1				LC section	
	Water pump	ĺ		l .						Ť	1					
	Water gallery	5	5	5	5	5		5	5		4	5				EL
	Cooling fan	1								5	1				EC-433	
	Coolant level (low)/Contaminated coolant										<u> </u>				MA section	ושו
NVIS (Nissai	NATS)	1	1												EC-59 or EL section.	ID)
															Jecuon.	

^{1 - 6:} The numbers refer to the order of inspection.

CONSULT-II Reference Value in Data Monitor Mode

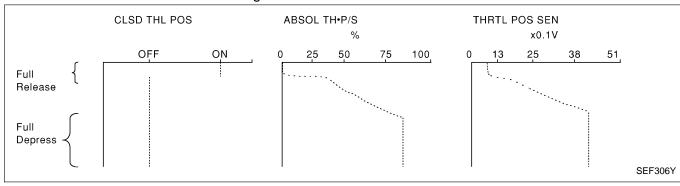
Remarks:

- Specification data are reference values.
- Specification data are output/input values which are detected or supplied by the ECM at the connector.
 - * Specification data may not be directly related to their components signals/values/operations.
 - i.e. Adjust ignition timing with a timing light before monitoring IGN TIMING, because the monitor may show the specification data in spite of the ignition timing not being adjusted to the specification data. This IGN TIMING monitors the data calculated by the ECM according to the signals input from the camshaft position sensor and other ignition timing related sensors.
- If the real-time diagnosis results are NG and the on board diagnostic system results are OK when diagnosing the mass air flow sensor, first check to see if the fuel pump control circuit is normal.

MONITOR ITEM	CON	IDITION	SPECIFICATION			
ENG SPEED	Tachometer: Connect Run engine and compare tachometer	indication with the CONSULT-II value.	Almost the same speed as the CON-SULT-II value.			
MAS A/F SE-B1	Engine: After warming upAir conditioner switch: "OFF"	Idle	1.0 - 1.7V			
WING TOT GE BY	Shift lever: "N"No-load	2,500 rpm	1.8 - 2.4V			
B/FUEL SCHDL	ditto	Idle	0.6 - 1.0 msec			
B/FUEL SCHUL	ditto	2,000 rpm	0.7 - 1.1 msec			
A/F ALPHA-B1	Engine: After warming up	Maintaining engine speed at 2,000 rpm	54 - 155%			
COOLAN TEMP/S	Engine: After warming up		More than 70°C (158°F)			
HO2S1 (B1)			0 - 0.3V ↔ Approx. 0.6 - 1.0V			
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN → RICH Changes more than 5 times during 10 seconds.			
HO2S2 (B1)		Revving engine from idle up to 3,000	0 - 0.3V ↔ Approx. 0.6 - 1.0V			
HO2S2 MNTR (B1)	Engine: After warming up	rpm quickly	LEAN ↔ RICH			
VHCL SPEED SE	Turn drive wheels and compare spee value	dometer indication with the CONSULT-II	Almost the same speed as the CONSULT-II value			
BATTERY VOLT	Ignition switch: ON (Engine stopped)	11 - 14V				
TURTI ROG OFN	After warming up	Throttle valve: fully closed	0.15 - 0.85V			
THRTL POS SEN	Ignition switch: ON (Engine stopped)	Throttle valve: fully opened	Approx. 3.5 - 4.7V			
FUEL T/TMP SE	Ignition switch: ON	·				
EGR TEMP SEN	Engine: After warming up		Less than 4.5V			
ABSOL PRES/SE	Ignition switch: ON		Approx. 4.4V			
START SIGNAL	• Ignition switch: $ON \rightarrow START \rightarrow ON$		$OFF \to ON \to OFF$			
OLOD THE BOO	Engine: After warming up	Throttle valve: Idle position	ON			
CLSD THL POS	SEN	Throttle valve: Slightly open	OFF			
CLSD THL/P SW	Engine: After warming up Ignition switch: ON	Throttle valve: Idle position	ON			
CLSD THL/F SW	(Engine stopped)	Throttle valve: Slightly open	OFF			
		Air conditioner switch: "OFF"	OFF			
AIR COND SIG	 Engine: After warming up, idle the engine 	Air conditioner switch: "ON" (Compressor operates.)	ON			
DAL BOOL OW	A 1 111 111 111 111	Shift lever: "P" or "N"	ON			
P/N POSI SW	Ignition switch: ON	Except above	OFF			
PW/ST SIGNAL	Engine: After warming up, idle the	Steering wheel in neutral position (forward direction)	OFF			
	engine	The steering wheel is fully turned	ON			
LOAD CICNAL	• Invition quitale, CN	Rear window defogger is operating.	ON			
LOAD SIGNAL	Ignition switch: ON	Rear window defogger is not operating.	OFF			
AMP TEMP CVA	Ignition switch: ON	Below 23.5°C (74°F)	OFF			
AMB TEMP SW	 Compare ambient temperature with the following: 	Above 23.5°C (74°F)	ON			

CONSULT-II Reference Value in Data Monitor Mode (Cont'd)

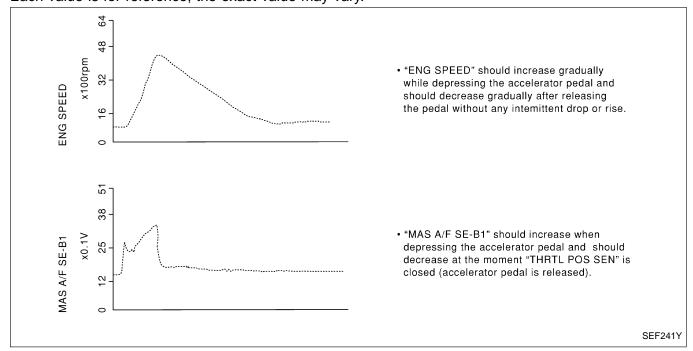
MONITOR ITEM	CON	NDITION	SPECIFICATION	
IGNITION SW	 Ignition switch: ON → OFF → ON 		$ON \rightarrow OFF \rightarrow ON$	
LIEATED FAN OW	A lowesting products ON	Fan control switch: ON	ON	M/
HEATER FAN SW	Ignition switch: ON	Fan control switch: OFF	OFF	
A/C PRESS SW	 Air conditioner high pressure side: In kg/cm², 206 - 235 psi) 	creasing to 1,422 - 1,618 kPa (14.5 - 16.5	ON	
	Air conditioner high pressure side: Example 1.	xcept above	OFF	
INJ PULSE-B1	Engine: After warming upAir conditioner switch: "OFF"	Idle	2.5 - 3.3 msec	LC
	Shift lever: "N"No-load	2,000 rpm	2.4 - 3.2 msec	
IGN TIMING	ditto	Idle	Approx. 20° BTDC	
IGN TIVIING	ditto	2,000 rpm	More than 25° BTDC	
IACV-AAC/V	ditto	Idle	Approx. 20%	FE
IAC V-AAC/V	ditto	2,000 rpm	_	
	Engine: After warming up	Idle	0%	
PURG VOL C/V	Air conditioner switch "OFF" No-load	Vehicle running (Shift lever "1") 2,000 rpm (90 seconds after starting engine)	_	
EVAP SYS PRES	Ignition switch: ON		Approx. 3.4V	
AIR COND RLY	 Air conditioner switch: OFF → ON 		OFF → ON	M1
EGRC SOL/V ■ Engine: After warming up ■ Air conditioner switch: "OFF" ■ Shift lever: "N" ■ No-load		Idle	OFF (CUT)	
		Engine speed: Revving from 1,500 to 4,000 rpm quickly	ON (FLOW)	— At
FUEL PUMP RLY	Ignition switch is turned to ON (Oper Engine running and cranking	ates for 5 seconds)	ON	 FA
	Except as shown above		OFF	
VC/V BYPASS/V	Ignition switch: ON		OFF	—— D/A
VENT CONT/V	Ignition switch: ON		OFF	—— R/
		Engine coolant temperature is 94°C (201°F) or less.	OFF	BF
COOLING FAN	 Engine: Idling, after warming up Air conditioner switch "OFF" Vehicle speed 	Engine coolant temperature is between 95°C (203°F) and 104°C (219°F).	LOW	
		Engine coolant temperature is 95°C (203°F) or more.	н	ST
HO2S1 HTR (B1)	Engine speed: Idle		ON	
HO231 HTK (B1)	• Engine speed: Above 3,600 rpm		OFF	 R9
	Engine speed: Idle [After driving 2 m	inutes at 70 km/h (43 mph) or more]	ON	
HO2S2 HTR (B1)	Engine speed: Above 3,000 rpmIgnition switch: ON (Engine stopped)		OFF	B1
CAL/LD VALUE	Engine: After warming upAir conditioner switch: "OFF"	Idle	Approx. 19%	
	Shift lever: "N"No-load	2,500 rpm	Approx. 18%	
ABSOL TH-P/S	Ignition switch: ON	Throttle valve: fully closed	0.0%	
7.200E 111170	(Engine stopped)	Throttle valve: fully opened	Approx. 80%	
MASS AIRFLOW	 Engine: After warming up Air conditioner switch: "OFF" 	Idle	Approx. 3.24 g·m/s	
	Shift lever: "N"No-load	2,500 rpm	Approx. 12.2 g·m/s	
	T. Control of the Con		Approximately 0.2 - 2.3V	

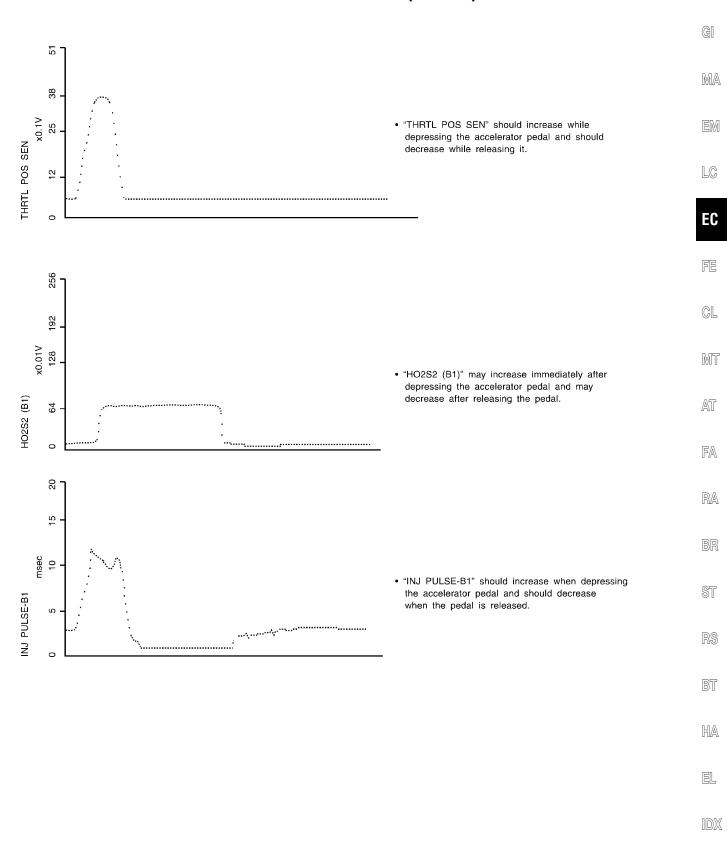

Major Sensor Reference Graph in Data Monitor Mode

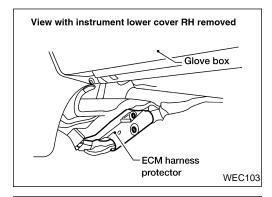
The following are the major sensor reference graphs in "DATA MONITOR" mode. (Select "HI SPEED" in "DATA MONITOR" with CONSULT-II.)

THRTL POS SEN, ABSOL TH:P/S, CLSD THL POS

Below is the data for "THRTL POS SEN", "ABSOL TH·P/S" and "CLSD THL POS" when depressing the accelerator pedal with the ignition switch "ON".

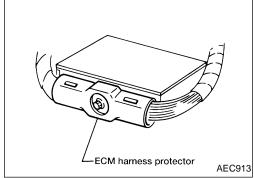

The signal of "THRTL POS SEN" and "ABSOL TH·P/S" should rise gradually without any intermittent drop or rise after "CLSD THL POS" is changed from "ON" to "OFF".

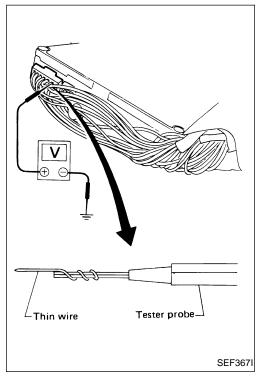

ENG SPEED, MAS A/F SE-B1, THRTL POS SEN, HO2S2 (B1), INJ PULSE-B1


Below is the data for "ENG SPEED", "MAS A/F SE-B1", "THRTL POS SEN", "HO2S1 (B1)", "HO2S2 (B1)", and "INJ PULSE-B1" when revving engine quickly up to 4,800 rpm under no load after warming up engine to normal operating temperature.

Each value is for reference, the exact value may vary.

Major Sensor Reference Graph in Data Monitor Mode (Cont'd)

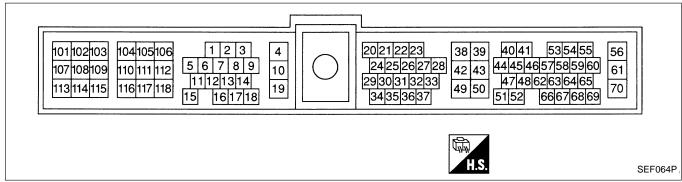



ECM Terminals and Reference Value

PREPARATION

- 1. ECM is located behind the instrument lower cover. For this inspection:
 - Remove instrument lower cover.

2. Remove ECM harness protector.



- Perform all voltage measurements with the connector connected. Extend tester probe as shown to perform tests easily.
 - Open harness securing clip to make testing easier.
 - Use extreme care not to touch 2 pins at one time.
 - Data is for comparison and may not be exact.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

ECM HARNESS CONNECTOR TERMINAL LAYOUT

ECM Terminals and Reference Value (Cont'd)

HA

EL

ECM INSPECTION TABLE

Specification data are reference values and are measured between each terminal and ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI Ma
			Engine is running. (Warm-up condition) Idle speed	0.3 - 0.5V (V) 4 2 0 20ms	MA EM LC
1	W/B	Ignition signal		0.7 - 1.0V	EC
			Engine is running.	(V) 4 2	FE
			Engine speed is 2,000 rpm	20ms	CL
				SEF187T	MT
				13 - 14V	052
			Engine is running. (Warm-up condition) Idle speed	(V) 40 20 0	AT FA
				20ms	RA
2	OR/B	Ignition check		SEF188T	
		3		12 - 13V	BR
			Engine is running. Engine speed is 2,000 rpm.	(V) 40 20 0	ST
				20ms	RS
				SEF189T	BT

TER- MINAL	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
NO.			Engine is running. (Warm-up condition) Idle speed	0.5 - 1.5V (V) 10 5 0 20ms
3	L/OR	Tachometer	Engine is running. Engine speed is 2,000 rpm	2 - 3V (V) 10 5 0 20ms
4	W/G	ECM relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF" Ignition switch "OFF" A few seconds passed after turning igni-	0 - 1V BATTERY VOLTAGE (11 - 14V)
5	L	EVAP canister purge volume control solenoid valve	tion switch "OFF" Engine is running. Idle speed	BATTERY VOLTAGE (11 - 14V)
6	B/P	Fuel pump relay	Ignition switch "ON" For 5 seconds after turning ignition switch "ON" Engine is running. Ignition switch "ON" More than 5 seconds after turning ignition switch "ON"	0 - 1V BATTERY VOLTAGE (11 - 14V)
7	PU	A/T check signal	Ignition switch "ON" Engine is running.	0 - 4.0V
9	GY/R	Air conditioner triple-pressure switch	Ignition switch "ON".	Approximately 6 - 10V
10	В	ECM ground	Engine is running. Idle speed	Engine ground
13	LG	Cooling fan relay (High)	Engine is running. Cooling fan is not operating.	BATTERY VOLTAGE (11 - 14V)
			Engine is running. Cooling fan (High) is operating.	0 - 0.4V

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
14	LG/R	Cooling fan relay (Low)	Engine is running. Cooling fan is not operating.	BATTERY VOLTAGE (11 - 14V)
14	LG/IX	Cooling farr relay (Low)	Engine is running. Cooling fan (Low) is operating.	0 - 0.3V
15	R/Y	Air conditioner relay	Engine is running. Both A/C switch and blower switch are "ON"*	Approximately 0V
			Engine is running. A/C switch is "OFF"	BATTERY VOLTAGE (11 - 14V)
			[Ignition switch "ON"]	Approximately 0.1V
18	OR/L	Malfunction indicator lamp	Engine is running. Idle speed	BATTERY VOLTAGE (11 - 14V)
19	В	ECM ground	Engine is running. Idle speed	Engine ground
			Ignition switch "ON"	Approximately 0V
20	B/Y	Start signal	Ignition switch "START"	BATTERY VOLTAGE (11 - 14V)
21	L/OR	Air conditioner switch	Engine is running. Both air conditioner switch and blower switch are "ON" (Compressor operates)	Approximately 0V
			Engine is running. Air conditioner switch is "OFF"	BATTERY VOLTAGE (11 - 14V)
22	G/OR	Park/neutral position (PNP)	Ignition switch "ON" Gear position is "N" or "P"	Approximately 0V
	0,011	switch	Ignition switch "ON" Except the above gear position	Approximately 5V
00	,	The state of the s	Ignition switch "ON" (Warm-up condition) Accelerator pedal fully released	0.3 - 0.7V
23	Y	Throttle position sensor	Ignition switch "ON" Accelerator pedal fully depressed	Approximately 4V
24	Y/B	A/T signal No. 1	Ignition switch "ON" Engine is running. Idle speed	6 - 8V
		Power steering oil pressure	Engine is running. Steering wheel is fully being turned	Approximately 0V
25	LG/B	switch	Engine is running. Steering wheel is not being turned	Approximately 5V

^{*:} Any mode except "OFF", ambient air temperature above 10°C (50°F).

				, ,
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
26	PU/R	Vehicle speed sensor	Engine is running. Lift up the vehicle. In 2nd gear position 40 km/h (25 MPH)	4 - 7V (V) 10 5 0 50 ms SEF642U
27	Y	Throttle position switch (Closed position)	Ignition switch "ON" (Warm-up condition) Accelerator pedal fully released Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
			Accelerator pedal depressed	Approximately 0V
28	R/Y	Intake air temperature sensor	Engine is running.	Approximately 0 - 4.8V Output voltage varies with intake air temperature.
29	Y/G	A/T signal No. 2	Ignition switch "ON" Engine is running. Idle speed	6 - 8V
30	Y/R	A/T signal No. 3	Ignition switch "ON"	0V
33	GY	Throttle position sensor sig-	Ignition switch "ON" (Warm-up condition) Accelerator pedal fully released	Approximately 0.4V
		nal	Ignition switch "ON" Accelerator pedal fully depressed	Approximately 4V
37	Y/G	Ambient air temperature	Engine is running. Idle speed	ov
31	1/G	switch	Engine is running. [Ambient air temperature is 20°C (68°F)]	Approximately 8V
			Ignition switch "OFF"	0V
38	R	Ignition switch	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
39	В	ECM ground	Engine is running. Idle speed	Engine ground

	ECM Terminals and Reference value (Cont d)				
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	GI
	Engine is running. (Warm-up condition) Idle speed		Approximately 2.5V (V) 10 5 0 0.2ms	MA EM	
40	B/W	Camshaft position sensor (Position signal)	Engine is running. Engine speed is 2,000 rpm.	Approximately 2.3 - 2.5V (V) 10 5 0 0.2ms SEF196T	EC FE
		Complete position consequ	Engine is running. (Warm-up condition) Idle speed	0.1 - 0.5V (V) 10 5 0 10ms	MT AT FA
41	L	Camshaft position sensor (Reference signal)	Engine is running. Engine speed is 2,000 rpm.	0.2 - 0.4V (V) 10 5 0 10ms SEF200T	RA BR ST
43	В	ECM ground	Engine is running. Idle speed	Engine ground (Probe this terminal with tester probe when measuring.)	BT
45	G/L	Fuel level sensor	Engine is running. Idle speed	0 - Approximately 4.5V	HA
46	W	Heated oxygen sensor 1 (front)	Engine is running. After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0	EL

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	DD.	Mana air flaw capaar	Engine is running. (Warm-up condition) Idle speed	1.2 - 1.5V
47	BR	Mass air flow sensor	Engine is running. (Warm-up condition) Engine speed is 2,500 rpm	1.9 - 2.3V
48	B/R	Mass air flow sensor ground	Engine is running. (Warm-up condition) Idle speed	Approximately 0V
49	W/R	Sensors' power supply	Ignition switch "ON"	Approximately 5V
50	В	Sensors' ground	Engine is running. (Warm-up condition) Idle speed	Approximately 0V
51	BR/Y	Engine coolant temperature sensor	Engine is running.	Approximately 0 - 4.8V Output voltage varies with engine coolant temperature.
52	W	Heated oxygen sensor 2 (rear)	Engine is running. After warming up to normal operating temperature and revving engine from idle to 3,000 rpm quickly	0 - Approximately 1.0V
		Crankshaft position sensor	Engine is running. (Warm-up condition) Idle speed	Approximately 0.5V (V) 4 2 0 0.2 ms SEF643U
53	BR	(OBD)	Engine is running. Engine speed is 2,000 rpm	Approximately 0V (V) 4 2 0 0.2 ms SEF644U
54	W	Knock sensor	Engine is running. Idle speed	Approximately 2.5V
55	L/R	L/R Rear window defogger relay	Ignition switch "ON" Rear window defogger is "OFF".	Approximately 0V
55		Treat miles in delegger rollay	lgnition switch "ON" Rear window defogger is "ON".	BATTERY VOLTAGE (11 - 14V)
			- Real willdow delogger is ON.	,

ECM Terminals and Reference Value (Cont'd)

			LOW Terminals and Nerelen	oo valao (oont a)
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
59	LG/R	Blower fan switch	Ignition switch "ON" Blower fan switch is "ON"	Approximately 0V
39	LG/IX	blower fair Switch	CONDITION [Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
60	BR	Headlamp switch	Lighting switch "ON"	BATTERY VOLTAGE (11 - 14V)
			Lighting switch "OFF"	Approximately 0V
60	1.00	ECD tomorphise concer		Less than 4.5V
62	L/Y	EGR temperature sensor		0 - 1.5V
63	LG/R	Fuel tank temperature sensor	Engine is running.	Approximately 0 - 4.8V Output voltage varies with fuel temperature.
58	L/B		Engine is running.	2 441/
64	G/B	Data link connector		0 - 14V
65	GY/L		turned on.)	3 - 9V
67	W	EVAP control system pres- sure sensor	Ignition switch "ON"	Approximately 3.4V
68	В	Fuel level sensor	Ignition switch "ON"	Approximately 0V
70	W/L	Power supply (Back-up)	Ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
				Approximately 12V
			, , , , ,	(V) 10 5 0 2 ms
101	SB	IACV-AAC valve		SEF645U
				1 - 12V
				(V) 10 5
			— Engine speed is 2,000 fpfff	2 ms
				SEF646U

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
102	R/B	Injector No. 1	Engine is running. (Warm-up condition)	BATTERY VOLTAGE (11 - 14V) (V) 40 20
104	G/B	Injector No. 3	└─ Idle speed	0 20ms SEF204T
107	Y/B	Injector No. 2	Engine is running. (Warm-up condition)	BATTERY VOLTAGE (11 - 14V) (V) 40 20
109	L/B	Injector No. 4	Engine speed is 2,000 rpm	0 20ms SEF205T
103	Р	EGRC-solenoid valve	Engine is running. (Warm-up condition) Idle speed Engine is running. (Warm-up condition) Revving engine from idle to 3,000 rpm quickly	BATTERY VOLTAGE (11 - 14V) 0 - 0.7V
106	В	ECM ground	Engine is running. Idle speed	Engine ground
108	PU	EVAP canister vent control valve	[Ignition switch "ON"]	BATTERY VOLTAGE (11 - 14V)
			Engine is running. Idle speed [After driving 2 minutes at 70 km/h (43 mph) or more]	Approximately 0.4V
110	R/Y	Heated oxygen sensor 2 heater (rear)	Ignition switch "ON" Engine stopped Engine is running. Engine speed is above 3,000 rpm	BATTERY VOLTAGE (11 - 14V)
112	В	ECM ground	Engine is running. Idle speed	Engine ground
113	W/L	Current return	Engine is running. Idle speed	BATTERY VOLTAGE (11 - 14V)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
115	OR	Heated oxygen sensor 1	Engine is running. Engine speed is below 3,600 rpm Approximately	Approximately 0.4V
115	OK	heater (front)	Engine is running. Engine speed is above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)
117	PU/R	Vacuum cut valve bypass valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
118	В	ECM ground	Engine is running. Idle speed	Engine ground

EC

FE

CL

MT

AT

FA

RA

BR

ST

RS

BT

HA

EL

G[

 $\mathbb{M}\mathbb{A}$

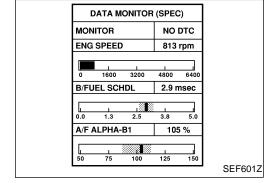
LC

EC-107

TROUBLE DIAGNOSIS — SPECIFICATION VALUE

Description

The specification (SP) value indicates the tolerance of the value that is displayed in "DATA MONITOR (SPEC)" mode of CONSULT-II during normal operation of the Engine Control System. When the value in "DATA MONITOR (SPEC)" mode is within the SP value, the Engine Control System is confirmed OK. When the value in "DATA MONITOR (SPEC)" mode is NOT within the SP value, the Engine Control System may have one or more malfunctions.

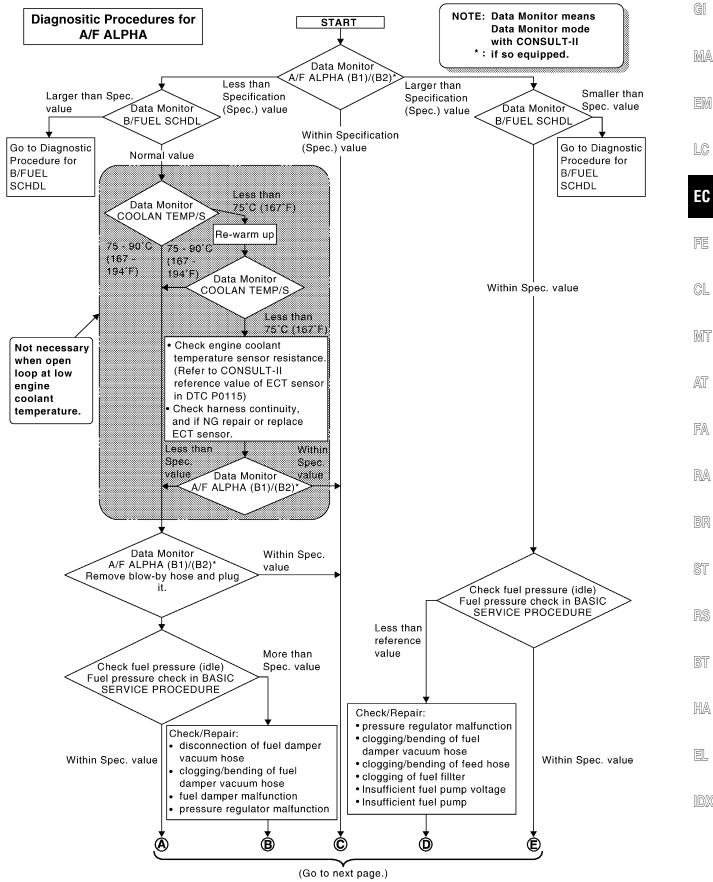

The SP value is used to detect malfunctions that may affect the Engine Control System, but will not light the MIL.

The SP value will be displayed for the following three items:

- B/FUEL SCHDL (The fuel injection pulse width programmed into ECM prior to any learned on board correction)
- A/F ALPHA-B1/B2 (The mean value of air-fuel ratio feedback correction factor per cycle)
- MAS A/F SE-B1 (The signal voltage of the mass air flow sensor)

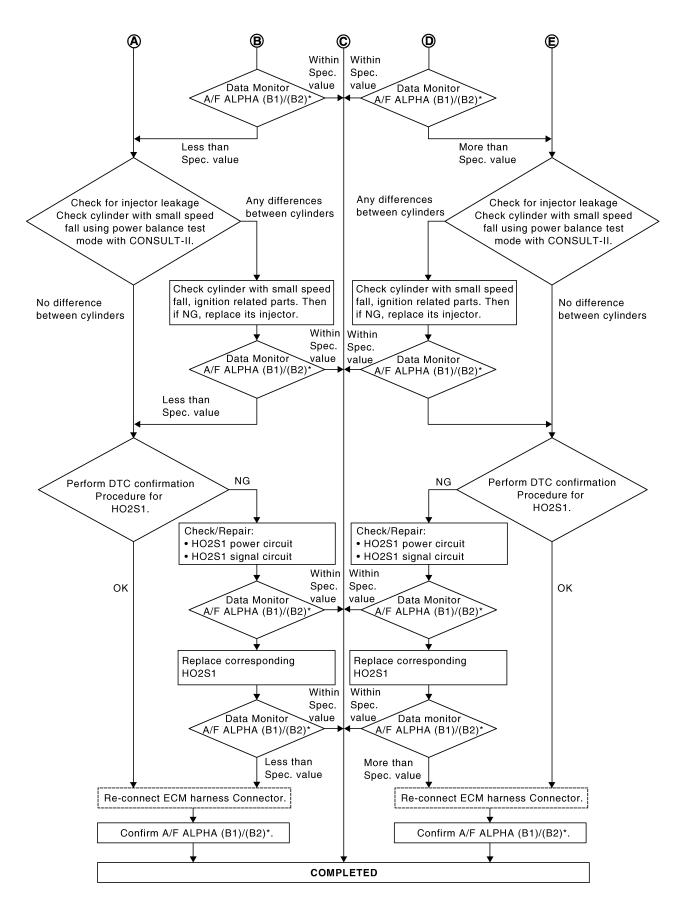
Testing Condition

- Vehicle driven distance: More than 5,000 km (3,107 miles)
- Barometric pressure: 98.3 104.3 kPa (1.003 1.064 kg/cm², 14.25 15.12 psi)
- Atmospheric temperature: 20 30°C (68 86°F)
- Engine coolant temperature: 75 95°C (167 203°F)
- Transmission: Warmed-up*1
- Electrical load: Not applied*2
- Engine speed: Idle
 - *1: For A/T or CVT models, after the engine is warmed up to normal operating temperature, drive vehicle until "FLUID TEMP SE" (A/T or CVT fluid temperature sensor signal) indicates less than 0.9V. For M/T models, drive vehicle for 5 minutes after the engine is warmed up to normal operating temperature.
- *2: Rear window defogger switch, air conditioner switch, lighting switch are "OFF". Cooling fans are not operating. Steering wheel is straight ahead.

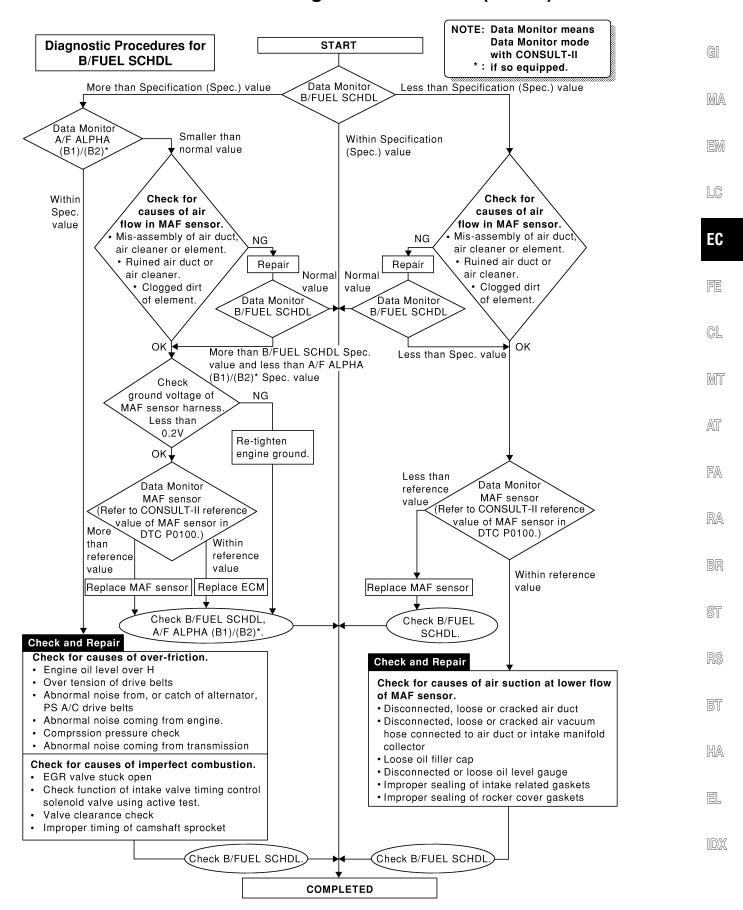

Inspection Procedure

NOTE:

Perform "DATA MONITOR (SPEC)" mode in maximum scale display.


- 1. Perform "Basic Inspection", EC-83.
- Confirm that the testing conditions indicated above are met.
- 3. Select "B/FUEL SCHDL", "A/F ALPHA-B1", "A/F ALPHA-B2" and "MAS A/F SE-B1" in "DATA MONITOR (SPEC)" mode with CONSULT-II.
- 4. Make sure that monitor items are within the SP value.
- 5. If NG, go to "Diagnostic Procedure", EC-109.

Diagnostic Procedure

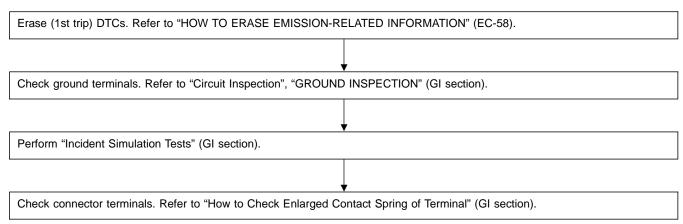

TROUBLE DIAGNOSIS — SPECIFICATION VALUE

Diagnostic Procedure (Cont'd)

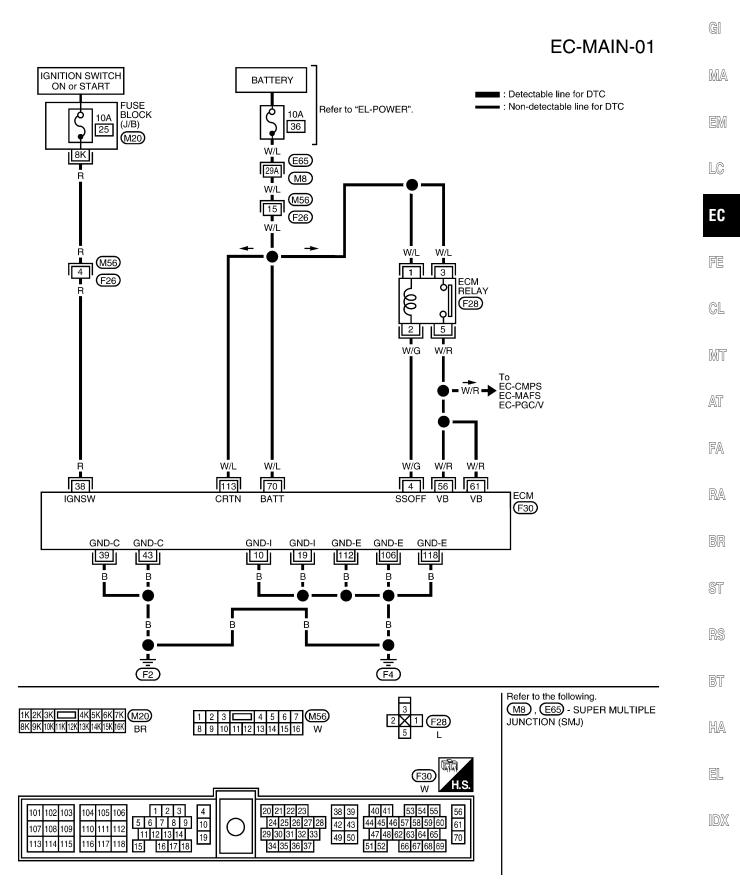
TROUBLE DIAGNOSIS — SPECIFICATION VALUE

Diagnostic Procedure (Cont'd)

TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT


Description

Intermittent incidents (I/I) may occur. In many cases, the problem resolves itself (the part or circuit function returns to normal without intervention). It is important to realize that the symptoms described in the customer's complaint often do not recur on DTC (1st trip) visits. Realize also that the most frequent cause of I/I occurrences is poor electrical connections. Because of this, the conditions under which the incident occurred may not be clear. Therefore, circuit checks made as part of the standard diagnostic procedure may not indicate the specific problem area.

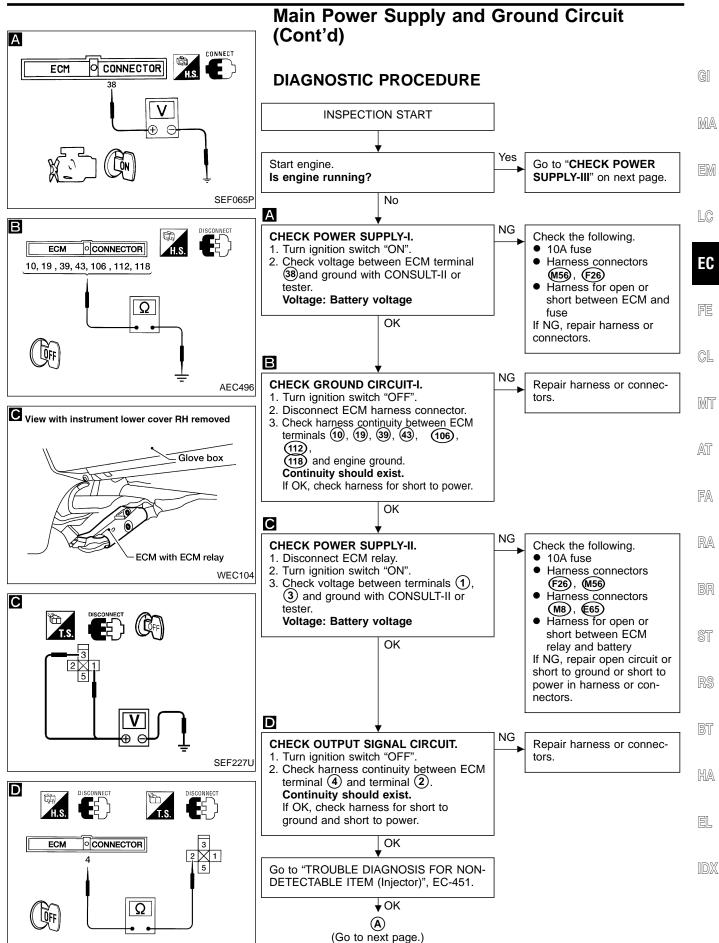

Common I/I Report Situations

STEP in Work Flow	Situation
II	The CONSULT-II is used. The SELF-DIAG RESULTS screen shows time data other than "0" or "1t".
III	The symptom described by the customer does not recur.
IV	(1st trip) DTC data does not appear during the DTC CONFIRMATION PROCEDURE.
VI	The TROUBLE DIAGNOSIS for PXXXX does not indicate the problem area.

Diagnostic Procedure

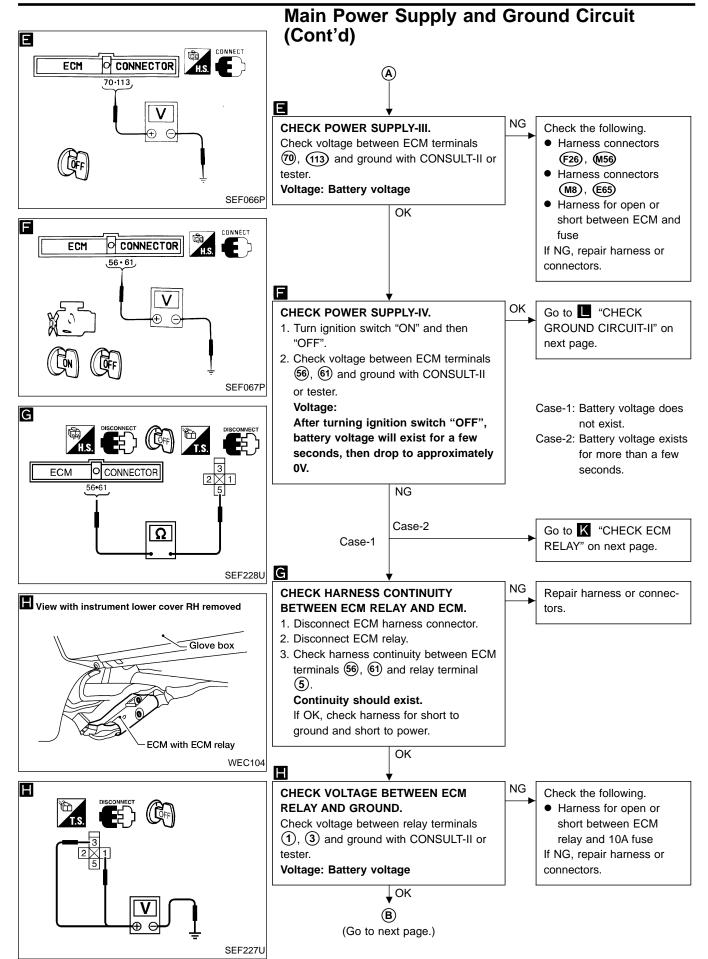
Main Power Supply and Ground Circuit

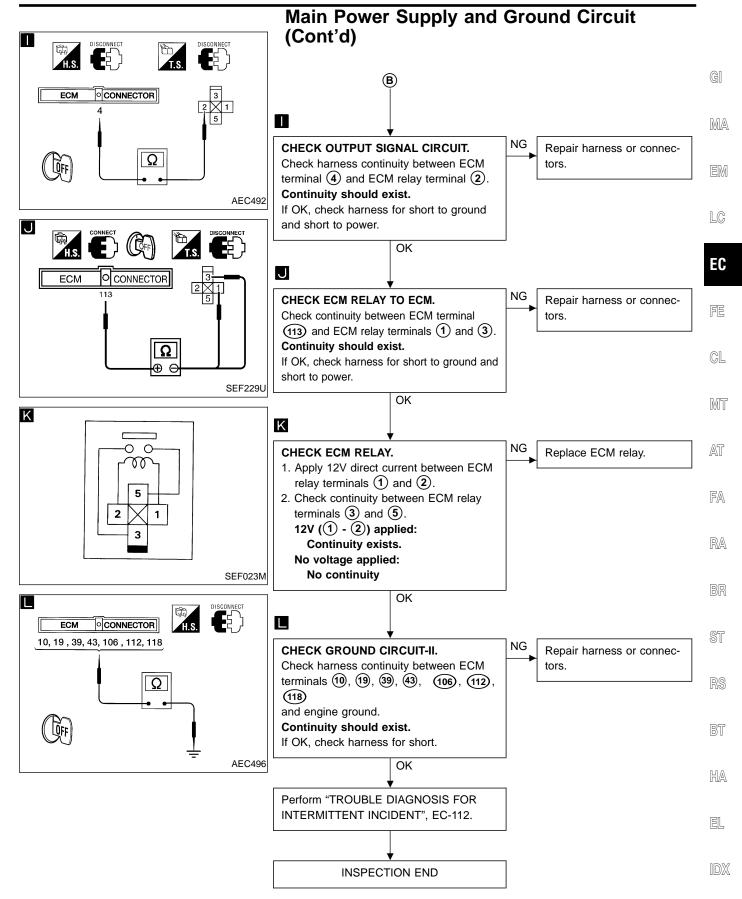
Main Power Supply and Ground Circuit (Cont'd)

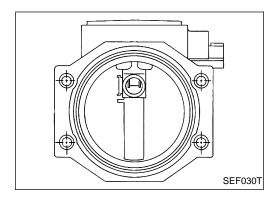

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


			se a ground other than Edwi terminais, s	g
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	W/G	ECM relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF" Ignition switch "OFF"	0 - 1V BATTERY VOLTAGE
			☐ A few seconds passed after turning ignition switch "OFF"	(11 - 14V)
10	В	ECM ground	Engine is running. Idle speed	Engine ground
19	В	ECM ground	Engine is running. Idle speed	Engine ground
			Ignition switch "OFF"	0V
38	R	Ignition switch	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
39	В	ECM ground	Engine is running. Idle speed	Engine ground
43	В	ECM ground	Engine is running. Idle speed	Engine ground (Probe this terminal with tester probe when measuring.)
56	W/R	Dower cumbly for ECM	Ignition switch "ON"	BATTERY VOLTAGE
61	W/R	Power supply for ECM	Ignition switch ON	(11 - 14V)
70	W/L	Power supply (Back-up)	Ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
106	В	ECM ground	Engine is running. Idle speed	Engine ground
112	В	ECM ground	Engine is running. Idle speed	Engine ground
113	W/L	Current return	Engine is running. Idle speed	BATTERY VOLTAGE (11 - 14V)
118	В	ECM ground	Engine is running. Idle speed	Engine ground



EC-115

AEC492

Mass Air Flow Sensor (MAFS)

COMPONENT DESCRIPTION

The mass air flow sensor is placed in the stream of intake air. It measures the intake flow rate by measuring a part of the entire intake flow. It consists of a hot film that is supplied with electric current from the ECM. The temperature of the hot film is controlled by the ECM a certain amount. The heat generated by the hot wire is reduced as the intake air flows around it. The more air, the greater the heat loss.

Therefore, the ECM must supply more electric current to maintain the temperature of the hot wire as air flow increases. The ECM detects the air flow by means of this current change.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION		SPECIFICATION
MAS AIR/FL SE	Engine: After warming upAir conditioner switch: "OFF"	Idle	1.0 - 1.7V
MAS AIR/FL SE	Shift lever: "N"No-load	2,500 rpm	1.8 - 2.4V
CAL/LD VALUE	 Engine: After warming up Air conditioner switch: "OFF" Shift lever: "N" No-load 	Idle	Approx. 19%
CAL/LD VALUE		2,500 rpm	Approx. 18%
MASS AIRFLOW	Engine: After warming upAir conditioner switch: "OFF"	Idle	Approx. 3.24 g·m/s
WASS AIRFLOW	Shift lever: "N"No-load	2,500 rpm	Approx. 12.2 g·m/s

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
47	BR	Mass air flow sensor	Engine is running. (Warm-up condition) Idle speed	1.2 - 1.5V
	BIX	wass all now sensor	Engine is running. (Warm-up condition) Engine speed is 2,500 rpm	1.9 - 2.3V
48	B/R	Mass air flow sensor ground	Engine is running. (Warm-up condition) Idle speed	Approximately 0V

Mass Air Flow Sensor (MAFS) (Cont'd)

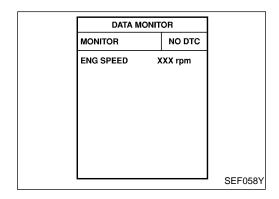
ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0100	A) An excessively high voltage from the sensor is sent to ECM when engine is not running.	Harness or connectors (The sensor circuit is open or shorted.) Mass air flow sensor	
	C) A high voltage from the sensor is sent to ECM under light load driving condition.		
	B) An excessively low voltage from the sensor is sent to ECM* when engine is running. D) A low voltage from the sensor is sent to ECM under heavy load driving condition.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air leaks Mass air flow sensor 	

^{*:} When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode
Mass air flow sensor circuit	Engine speed will not rise more than 2,400 rpm due to the fuel cut.

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE


Perform "Procedure for malfunction A" first. If the 1st trip DTC cannot be confirmed, perform "Procedure for malfunction B". If there is no problem on "Procedure for malfunction B", perform "Procedure for malfunction C". If there is no problem on "Procedure for malfunction C", perform "Procedure for malfunction D".

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

Procedure for malfunction A

- Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 6 seconds.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-123.

- OR

- Turn ignition switch "ON", and wait at least 6 seconds.
- 2) Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-123.

HA

BT

GI

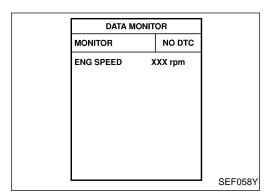
MA

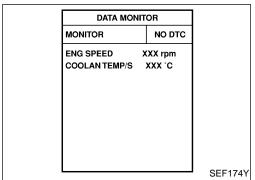
EM

EC

FE

GL


MIT


FA

RA

BR

EL

Mass Air Flow Sensor (MAFS) (Cont'd)

Procedure for malfunction B

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait 5 seconds at most.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-123.

- OR

- 1) Turn ignition switch "ON".
- 2) Start engine and wait 5 seconds at most.
- 3) Select "MODE 7" with GST.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-123.

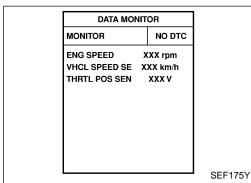
NOTE:

If 1st trip DTC is confirmed after more than 5 seconds, there may be malfunction C.

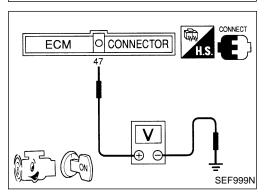
Procedure for malfunction C

NOTE:

If engine will not start or stops soon, wait at least 10 seconds with engine stopped (Ignition switch "ON") instead of running engine at idle speed.


- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Start engine and warm it up to normal operating temperature.
- 4) Run engine for at least 10 seconds at idle speed.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-123.

- OR -



- 1) Start engine and warm it up to normal operating temperature.
- 2) Run engine for at least 10 seconds at idle speed.
- 3) Select "MODE 7" with GST.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-123.

OK NG MAS A/F SE-B1 MAS A/F SE-B1 x0.1V 0 12 25 38 51 0 12 25 38 51

CALC LOAI COOLANT SHORT FT LONG FT # SHORT FT LONG FT # ENGINE SF VEHICLE S IGN ADVAN INTAKE AIF MAF THROTTLE	FEMP #1 1 #2 2 D PD CE	20% 95°C 2% 0% 4% 0% 2637RPM 0MPH 41.0° 41°C 14.1gm/sec 3%	
		;	SEF534P

Mass Air Flow Sensor (MAFS) (Cont'd)

Procedure for malfunction D

- 1) Turn ignition switch "ON".
- Start engine and warm it up to normal operating temperature.

If engine cannot be started, go to "DIAGNOSTIC PROCEDURE", EC-123.

- 3) Select "DATA MONITOR" mode with CONSULT-II.
- Check the voltage of MAS AIR/FL SE with "DATA MONITOR".
- 5) Increases engine speed to about 4,000 rpm.
- 6) Monitor the linear voltage rise in response to engine speed increases.

If NG, go to "DIAGNOSTIC PROCEDURE", EC-123. If OK, go to following step.

7) Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED: More than 2,000 rpm THRTL POS SEN: More than 3V Selector lever: Suitable position

Driving location: Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

8) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-123.

- OR -

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the mass air flow sensor circuit. During this check, a 1st trip DTC might not be confirmed.

Procedure for malfunction D

- 1) Turn ignition switch "ON".
- 2) Start engine and warm it up to normal operating temperature.
- 3) Select "MODE 1" with GST.
- 4) Check the mass air flow with "MODE 1".
- 5) Check for linear mass air flow rise in response to increases to about 4,000 rpm in engine speed.
- 6) f NG, go to "DIAGNOSTIC PROCEDURE", EC-123.

- OR ·

NO TOOLS

- 1) Turn ignition switch "ON".
- Start engine and warm it up to normal operating temperature.
- 3) Check the voltage between ECM terminal @and ground.
- 4) Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.
- 5) f NG, go to "DIAGNOSTIC PROCEDURE", EC-123.

MA

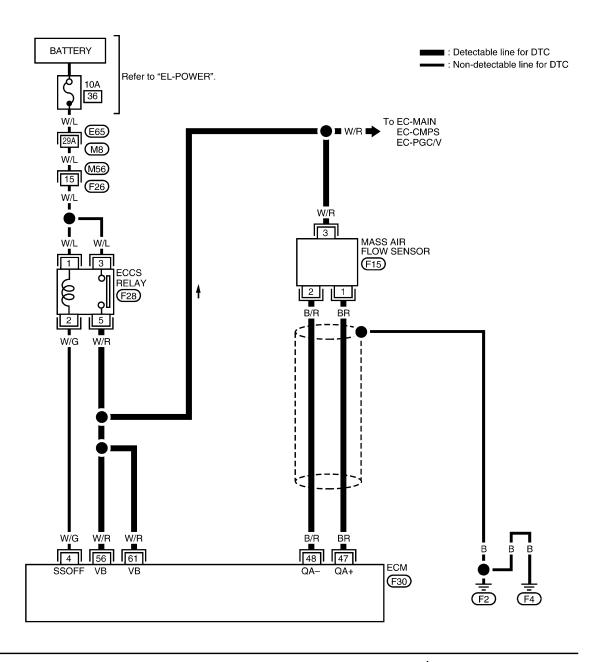
EC

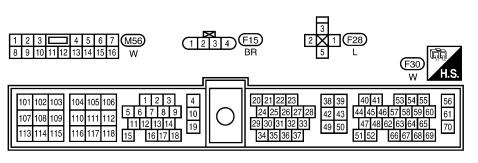
MT

AT

RA

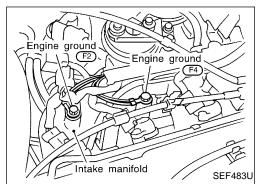
ST

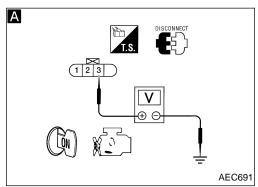

BT

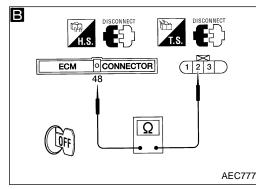

HA

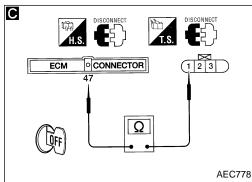
EL

Mass Air Flow Sensor (MAFS) (Cont'd)

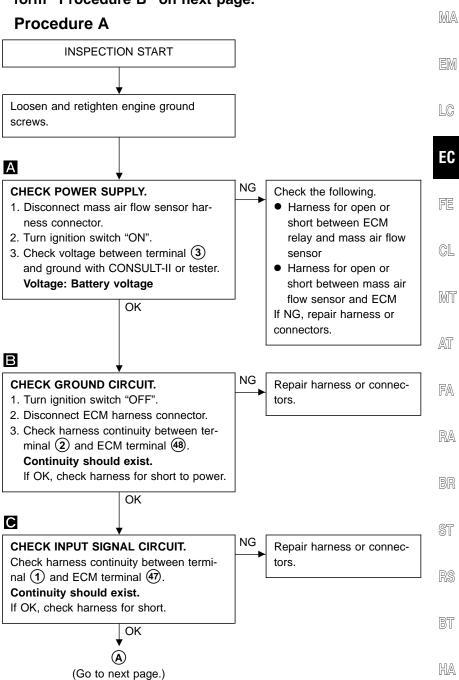

EC-MAFS-01

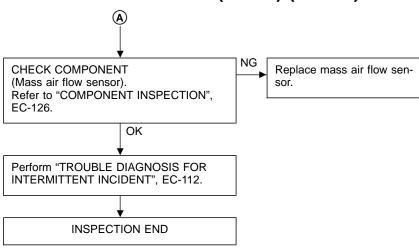


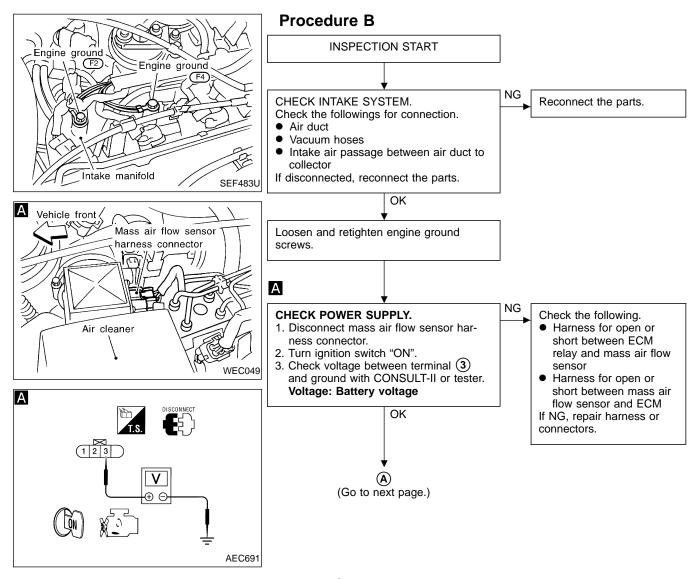

Refer to the following.

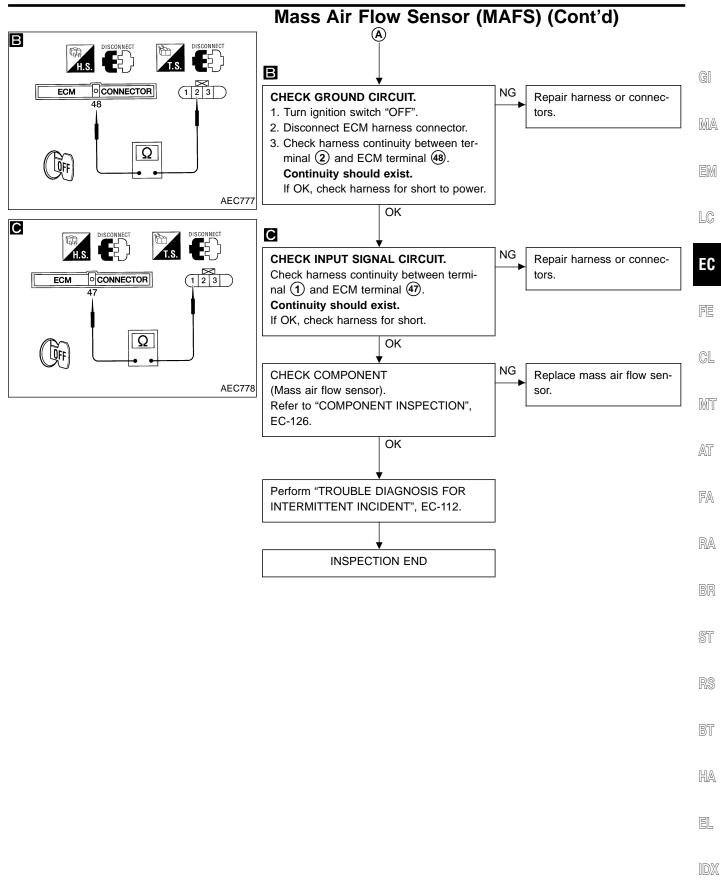

(M8), (E65) - SUPER MULTIPLE
JUNCTION (SMJ)

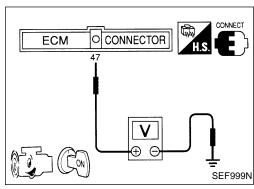
A Vehicle front Mass air flow sensor harness connector Air cleaner WEC049

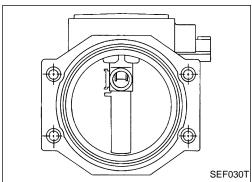



Mass Air Flow Sensor (MAFS) (Cont'd) DIAGNOSTIC PROCEDURE


If the trouble is duplicated after "Procedure for malfunction A or C", perform "Procedure A" below. If the trouble is duplicated after "Procedure for malfunction B or D", perform "Procedure B" on next page.




IDX


Mass Air Flow Sensor (MAFS) (Cont'd)

Mass Air Flow Sensor (MAFS) (Cont'd) COMPONENT INSPECTION

Mass air flow sensor

- 1. Turn ignition switch "ON".
- 2. Start engine and warm it up to normal operating temperature.
- 3. Check voltage between ECM terminal 47 and ground.

Conditions	Voltage V
Ignition switch "ON" (Engine stopped.)	Less than 1.0
Idle (Engine is warmed-up to normal operating temperature.)	1.2 - 1.5
2,500 rpm (Engine is warmed-up to normal operating temperature.)	1.9 - 2.3
Idle to about 4,000 rpm*	1.2 - 1.5 to Approx. 2.7

- *: Check for linear voltage rise in response to increases to about 4,000 rpm in engine speed.
- 4. If the voltage is out of specification, disconnect mass air flow sensor harness connector and connect it again. Repeat above check.
- 5. If NG, remove mass air flow sensor from air duct. Check hot film for damage or dust.

Absolute Pressure Sensor COMPONENT DESCRIPTION

The sensor detects ambient barometric pressure and sends the voltage signal to the ECM. As the pressure increases, the voltage rises. The absolute pressure sensor is built into the ECM.

GI

MA

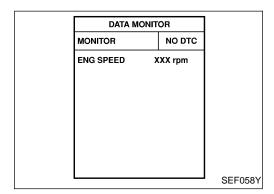
ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Item (Possible Cause)	
P0105	An excessively low or high voltage from the sensor is sent to micro computer.	ECM	[

EM

LC

EC


DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

MT

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 6 seconds.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-128.

- 1) Turn ignition switch "ON" and wait at least 6 seconds.
- 2) Select "MODE 7" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-128.

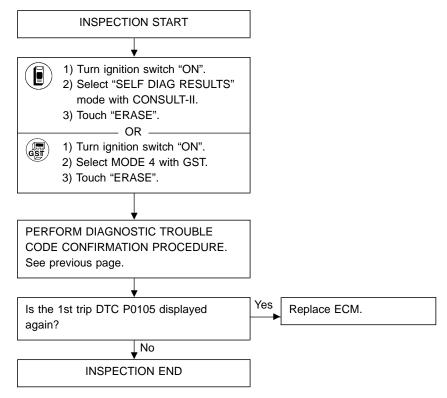
RA

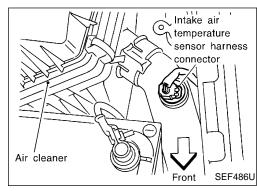
FA

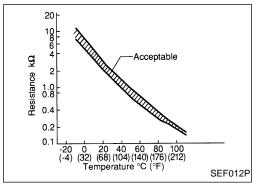
BR

ST

RS


BT


HA


EL

IDX

Absolute Pressure Sensor (Cont'd) DIAGNOSTIC PROCEDURE

Intake Air Temperature Sensor

COMPONENT DESCRIPTION

The intake air temperature sensor is mounted to the air duct housing. The sensor detects intake air temperature and transmits a signal to the ECM.

The temperature sensing unit uses a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise.

<Reference data>

•	Intake air temperature °C (°F)	Voltage* V	Resistance k Ω
	20 (68)	3.5	2.1 - 2.9
	80 (176)	1.23	0.27 - 0.38

^{*:} These data are reference values and are measured between ECM terminal (28) (Intake air temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0110	A) An excessively low or high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Intake air temperature sensor
	B) Rationally incorrect voltage from the sensor is sent to ECM, compared with the voltage signal from engine coolant temperature sensor.	

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B".

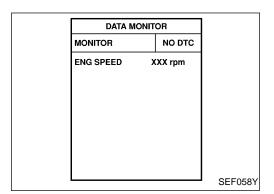
NOTE:

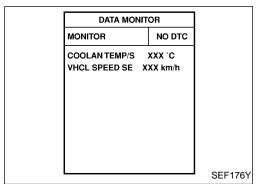
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test. LC

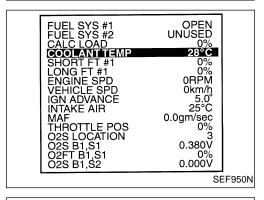
MA

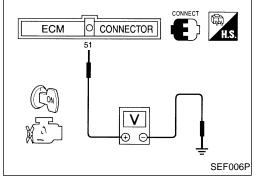
EC

CL


AT FA


RA


BR


ST

HA

Intake Air Temperature Sensor (Cont'd)

Procedure for malfunction A

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-132.

- OR

- 1) Turn ignition switch "ON" and wait at least 5 seconds.
- 2) Select MODE 7 with GST.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-132.

Procedure for malfunction B

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

- 1) Wait until engine coolant temperature is less than 90°C (194°F).
 - (a) Turn ignition switch "ON".
 - (b) Select "DATA MONITOR" mode with CONSULT-
 - (c) Check the engine coolant temperature.
 - (d) If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch "OFF" and cool down engine.
- Perform the following steps before engine coolant temperature is above 90°C (194°F).
- Turn ignition switch "ON".
- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine.
- Hold vehicle speed more than 70 km/h (43 MPH) for 100 consecutive seconds.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-132.

- OR -

- 1) Wait until engine coolant temperature is less than 90°C (194°F).
 - (a) Turn ignition switch "ON".
 - (b) Select MODE 1 with GST.
 - (c) Check the engine coolant temperature.
 - (d) If the engine coolant temperature is not less than 90°C (194°F), turn ignition switch "OFF" and cool down engine.
- Perform the following steps before engine coolant temperature is above 90°C (194°F).
- 2) Start engine.
- 3) Hold vehicle speed more than 70 km/h (43 MPH) for 105 consecutive seconds.
- 4) Select MODE 7 with GST.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-132.

Intake Air Temperature Sensor (Cont'd)

EC-IATS-01

GI

MA

EM

LC

EC

FE

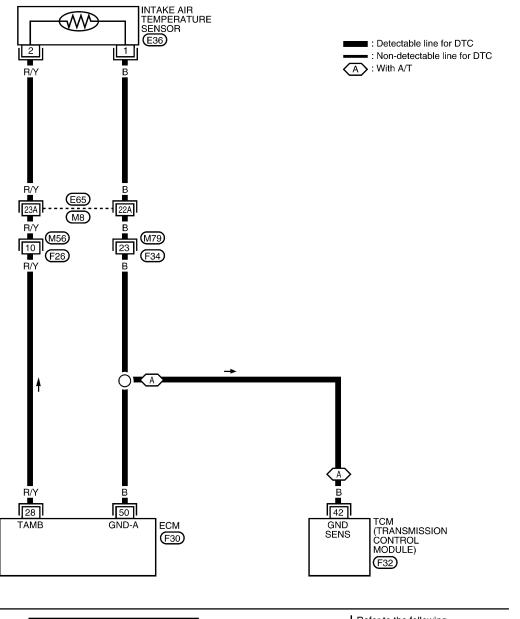
CL

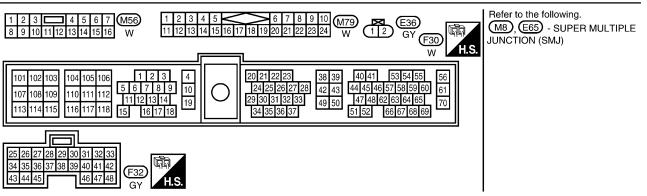
MT

AT

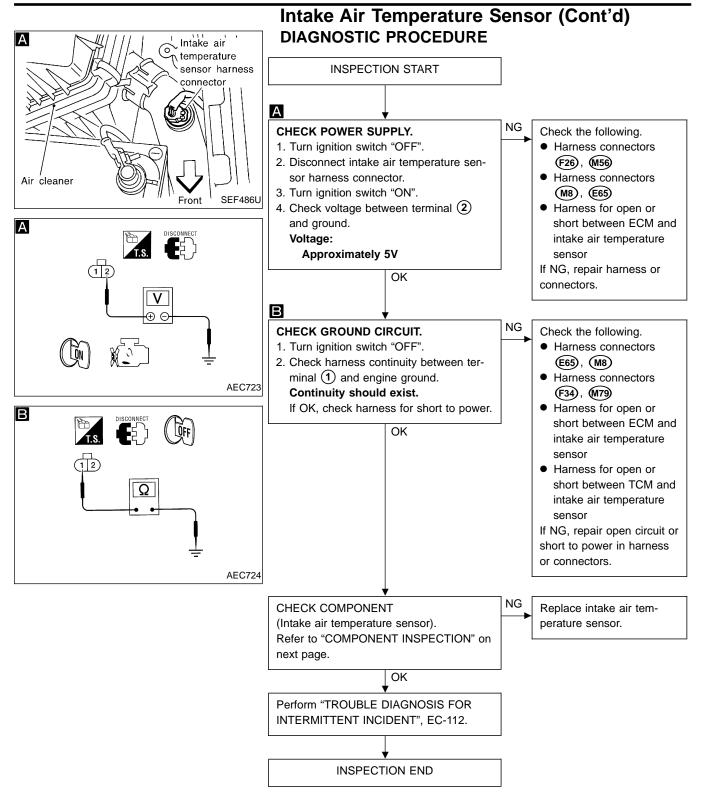
FA

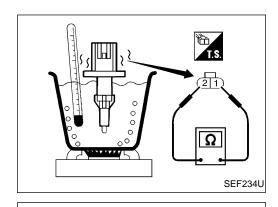
RA


BR


RS

BT


HA


EL

WEC703

Intake Air Temperature Sensor (Cont'd) COMPONENT INSPECTION

Intake air temperature sensor

Check resistance as shown in the figure.

GI

MA

EM

<Reference data>

Intake air temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
80 (176)	0.27 - 0.38

If NG, replace intake air temperature sensor.

EC

LC

CL

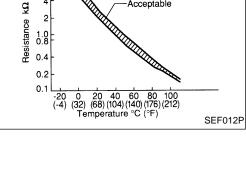
MT

AT

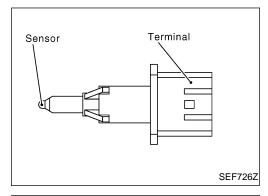
FA

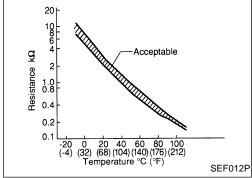
RA

BR


ST

RS


BT


HA

EL

Acceptable

Engine Coolant Temperature Sensor (ECTS) COMPONENT DESCRIPTION

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

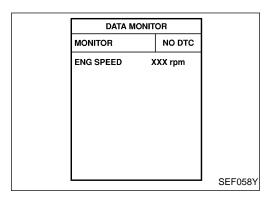
<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance k Ω
-10 (14)	4.4	7.0 - 11.4
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

[:] These data are reference values and are measured between ECM terminal (51) (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0115	 An excessively high or low voltage from the sensor is sent to ECM.* 	 Harness or connectors (The sensor circuit is open or shorted.) Engine coolant temperature sensor

^{*:} When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating condition in fail-safe mode	
	Engine coolant temperature will be determined by ECM based on the time after turning ignition switch "ON" or "START". CONSULT-II displays the engine coolant temperature decided by ECM.	
	Condition	Engine coolant temperature decided (CONSULT-II display)
Engine coolant temperature sensor circuit	Just as ignition switch is turned ON or Start	40°C (104°F)
	More than approx. 4 minutes after ignition ON or Start	80°C (176°F)
	Except as shown above	40 - 80°C (104 - 176°F) (Depends on the time)
	With the ignition key in the OFF position,	cooling fans will operate for 120 sec-

onds when in fail-safe mode.

Engine Coolant Temperature Sensor (ECTS) (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-137.

- OR -

- 1) Turn ignition switch "ON" and wait at least 5 seconds.
- 2) Select "MODE 7" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-137.

GI

MA

EM

EC

CL

MT

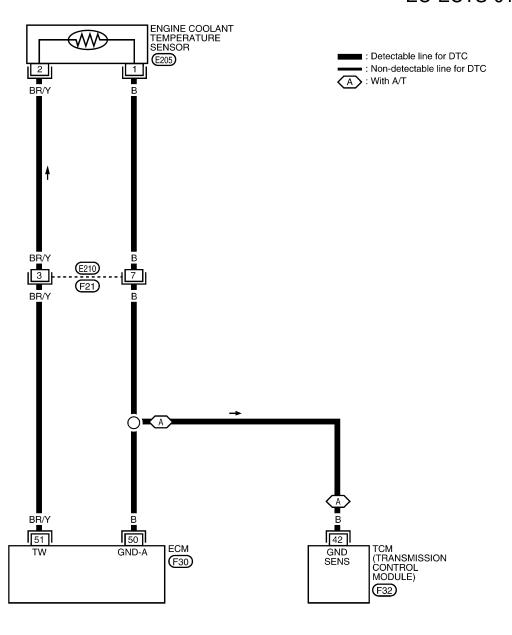
AT

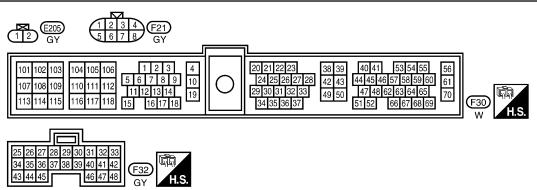
FA

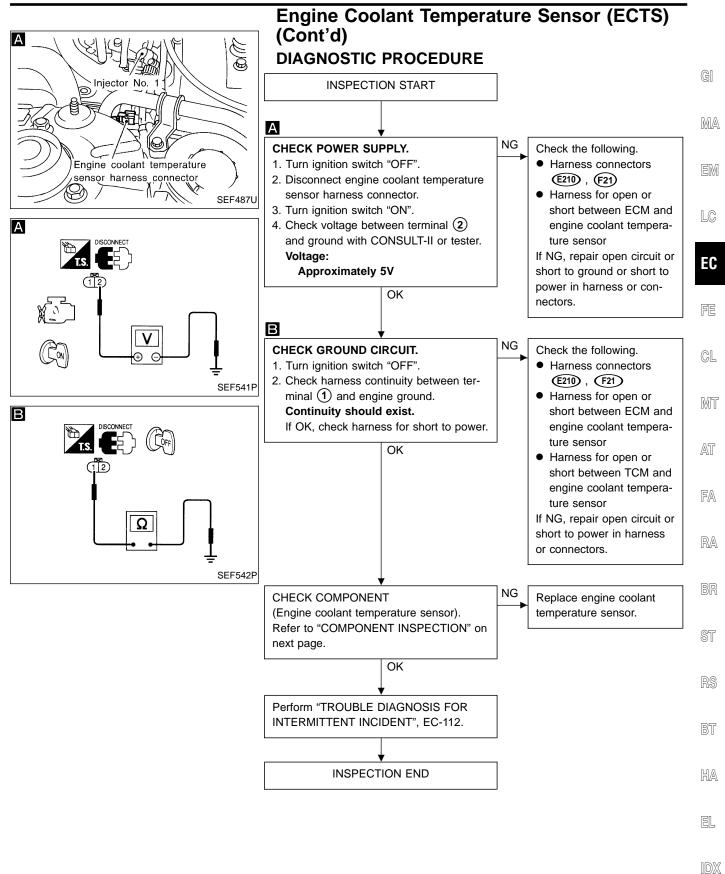
RA

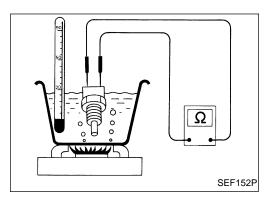
BR

ST


BT


HA


EL


Engine Coolant Temperature Sensor (ECTS) (Cont'd)

EC-ECTS-01

20 | Acceptable |

Engine Coolant Temperature Sensor (ECTS) (Cont'd)

COMPONENT INSPECTION

Engine coolant temperature sensor

Check resistance as shown in the figure.

<Reference data>

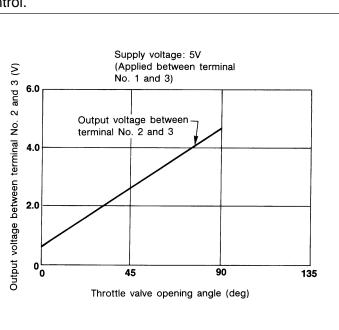
Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

Throttle Position Sensor

Note: If both DTC P0120 and DTC P0510 are displayed, perform TROUBLE DIAGNOSIS FOR DTC P0510 first. (See EC-335.)

GI


MA

EM

COMPONENT DESCRIPTION

The throttle position sensor responds to the accelerator pedal LC movement. This sensor is a kind of potentiometer which transforms the throttle position into output voltage, and emits the voltage signal to the ECM. In addition, the sensor detects the opening and closing speed of the throttle valve and feeds the voltage signal to the ECM.

Idle position of the throttle valve is determined by the ECM receiving the signal from the throttle position sensor. This sensor controls engine operation such as fuel cut. On the other hand, the "Wide open and closed throttle position switch", which is built into the throttle position sensor unit, is not used for engine control.

AEC029A

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION		SPECIFICATION
TUDTI DOS SEN	Engine: After warming upIgnition switch: ON	Throttle valve: fully closed	0.15 - 0.85V
THRTL POS SEN	(Engine stopped)	Throttle valve: fully opened	Approx. 3.5 - 4.7V
ABSOL TH·P/S	Engine: After warming upIgnition switch: ON	Throttle valve: fully closed	0.0%
ABSOL IN P/S	(Engine stopped)	Throttle valve: fully opened	Approx. 80%

Wide open

throttle

position

switch

Closed

throttle

position switch Throttle

position

sensor

EC

MT

AT

FA

RA

BR

BT

HA

EL

Throttle Position Sensor (Cont'd)

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
23	Υ	Throttle position sensor	Ignition switch "ON" (Warm-up condition) Accelerator pedal fully released	0.15 - 0.85V
	23 1 Throttie position sensor	Ignition switch "ON" Accelerator pedal fully depressed	Approximately 3.5 - 4.7V	
33	GY	Throttle position sensor	Ignition switch "ON" (Warm-up condition) Accelerator pedal fully released	Approximately 0.4V
33	signal	Ignition switch "ON" Accelerator pedal fully depressed	Approximately 4V	
49	R	Sensors' power supply	Ignition switch "ON"	Approximately 5V
50	В	Sensors' ground	Engine is running. (Warm-up condition) Idle speed	Approximately 0V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0120	A) An excessively low or high voltage from the sensor is sent to ECM.*	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor
	B) A high voltage from the sensor is sent to ECM under light load driving condition.	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Throttle position sensor Fuel injector Camshaft position sensor Mass air flow sensor
	C) A low voltage from the sensor is sent to ECM under heavy load driving condition.	 Harness or connectors (The throttle position sensor circuit is open or shorted.) Intake air leaks Throttle position sensor

^{*:} When this malfunction is detected, the ECM enters fail-safe mode and the MIL lights up.

Detected items	Engine operating co	ndition in fail-safe mode	
	Throttle position will be determined basengine speed. Therefore, acceleration will be poor.		
Throttle position sensor circuit	Condition	Driving condition	
	When engine is idling	Normal	
	When accelerating	Poor acceleration	

Throttle Position Sensor (Cont'd)

Perform "Procedure for malfunction A" first. If the DTC cannot be confirmed, perform "Procedure for malfunction B". If there is no problem on "Procedure for malfunction B", perform "Procedure for malfunction C".

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

Procedure for malfunction A

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

- Before performing the following procedure, confirm that battery voltage is more than 10V at idle.
- This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and maintain the following conditions for at least 5 consecutive seconds.

VHCL SPEED SE: More than 4 km/h (2 MPH)
Selector lever: Suitable position except "P" or
"N" position

 If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-145.

- OR -

(GST)

- 1) Start engine and maintain the following conditions for at least 5 consecutive seconds.
 - Vehicle speed: More than 4 km/h (2 MPH)
 Selector lever: Suitable position except "P" or
 "N" position
- 2) Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-145.

SEF065Y

DATA MONITOR

VHCL SPEED SE XXX km/h

MONITOR

ENG SPEED

P/N POSI SW

NO DTC

XXX rpm

OFF

LC

MA

GL

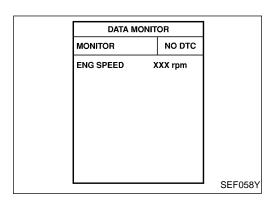
MT

PΛ

RA

BR

ST


RS

BT

HA

EL

 \mathbb{Z}

Throttle Position Sensor (Cont'd)

Procedure for malfunction B

1) Turn ignition switch "ON".

2) Select "DATA MONITOR" mode with CONSULT-II.

Start engine and let it idle for at least 10 seconds.
 If idle speed is over 1,100 rpm, maintain the following conditions for at least 10 seconds to keep engine speed below 1,100 rpm.

A/T model

Selector lever: Suitable position except "P" or "N"

Brake pedal: Depressed

Vehicle speed: 0 km/h (0 MPH)

M/T model

Selector lever: Suitable position except "N"

(Higher gear position such as 3rd or 4th position is better to keep

engine rpm low.)

Accelerator pedal: Released

Vehicle speed: As slow as possible

OR

 If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-145.

1) Start engine and let it idle for at least 10 seconds. If idle speed is over 1,100 rpm, maintain the following conditions for at least 10 seconds to keep engine speed below 1,100 rpm.

A/T model

Selector lever: Suitable position except "P" or "N"

Brake pedal: Depressed

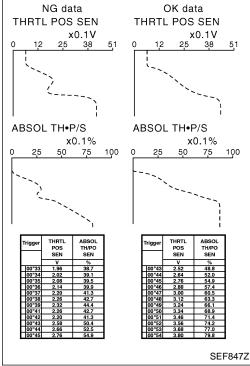
Vehicle speed: 0 km/h (0 MPH)

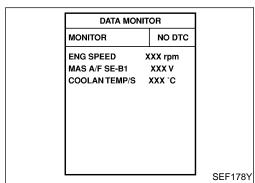
M/T model

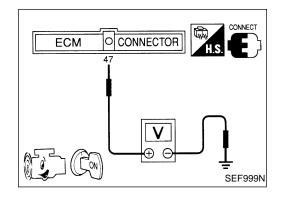
Selector lever: Suitable position except "N"

(Higher gear position such as 3rd or 4th position is better to keep

engine rpm low.)


Accelerator pedal: Released


Vehicle speed: As slow as possible


2) Select "MODE 7" with GST.

3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-145.

DATA MONITOR MONITOR NO DTC THRTL POS SEN ABSOLTH-P/S XXX % SEF177Y

Throttle Position Sensor (Cont'd)

Procedure for malfunction C

CAUTION:

Always drive vehicle at a safe speed.

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON".
- 4) Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II.
- Select "THRTL POS SEN" and "ABSOL TH-P/S" in "DATA MONITOR" mode with CONSULT-II.
- 6) Press RECORD on CONSULT-II SCREEN at the same time accelerator pedal is depressed.
- 7) Print out the recorded graph and check the following:
- The voltage rise is linear in response to accelerator pedal depression.
- The voltage when accelerator pedal is fully depressed is approximately 4V. If NG, go to "DIAGNOSTIC PROCEDURE", EC-145. If OK, go to following step.
- 8) Select "AUTO TRIG" in "DATA MONITOR" mode with CONSULT-II.
- 9) Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED: More than 2,000 rpm MAS AIR/FL SE: More than 3V

COOLAN TEMP/S: More than 70°C (158°F)

Selector lever: Suitable position

Driving location: Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required

for this test.

10) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-145.

- OR -1) Maintain the following conditions for at least 10 consecutive seconds.

Gear position: Suitable position Engine speed: More than 2,000 rpm

Voltage between ECM terminal 47 and ground: More than 3V

Engine coolant temperature: More than 70°C (158°F)

If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-145.

EC

GI

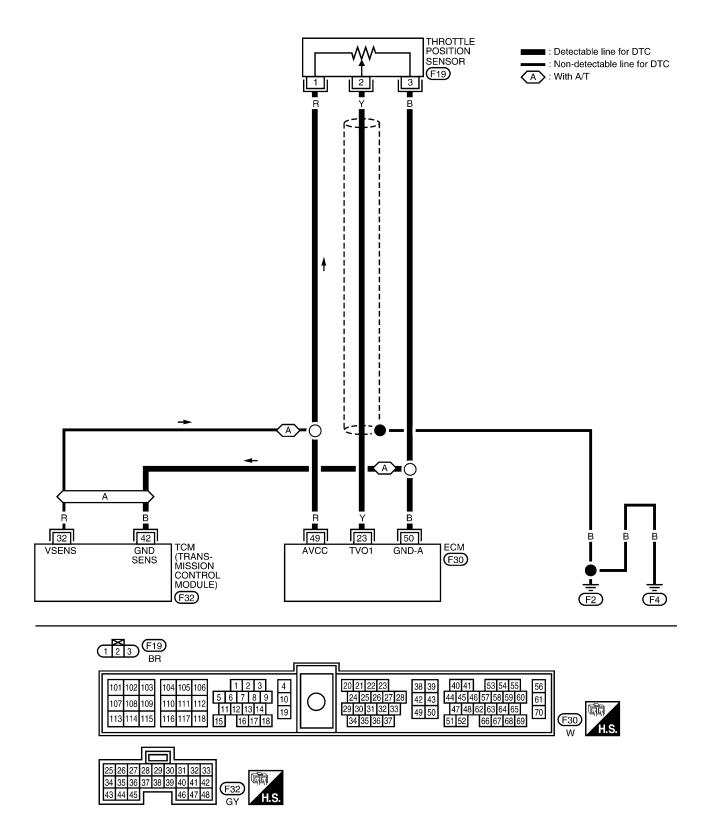
MA

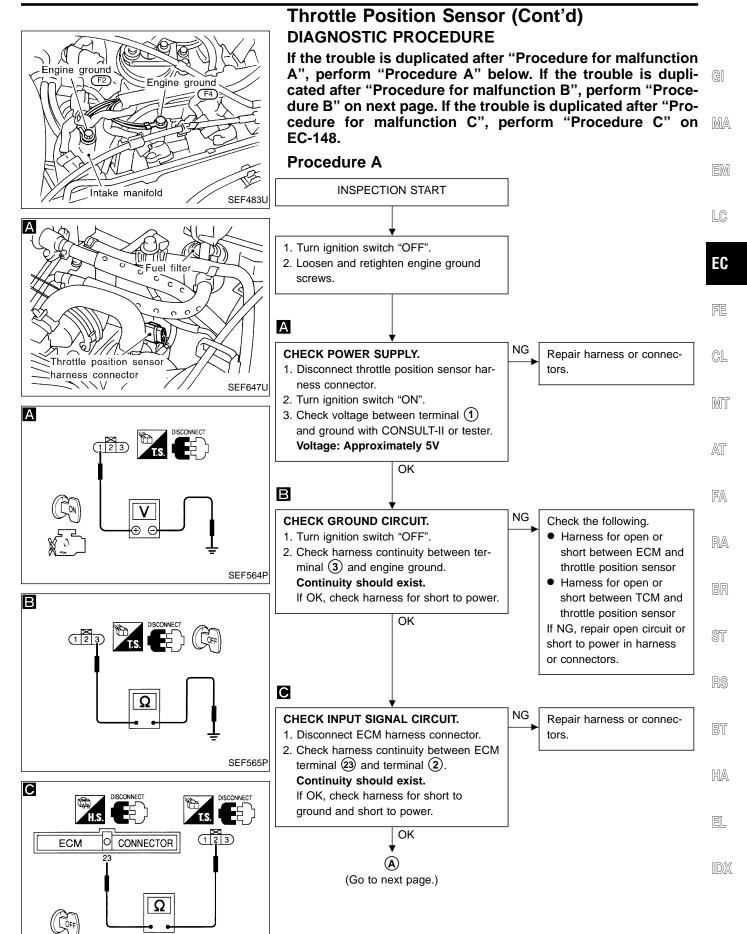
MT

AT

RA

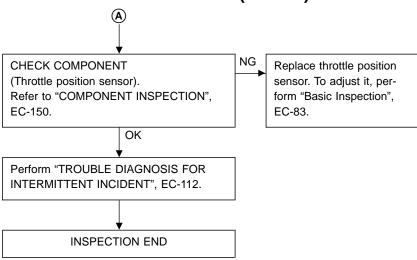
BR

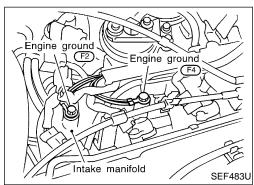

BT

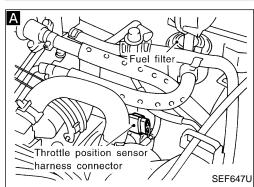

HA

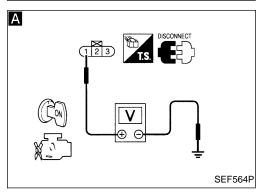
(GST)

Throttle Position Sensor (Cont'd)

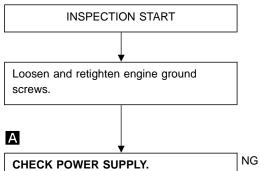

EC-TPS-01



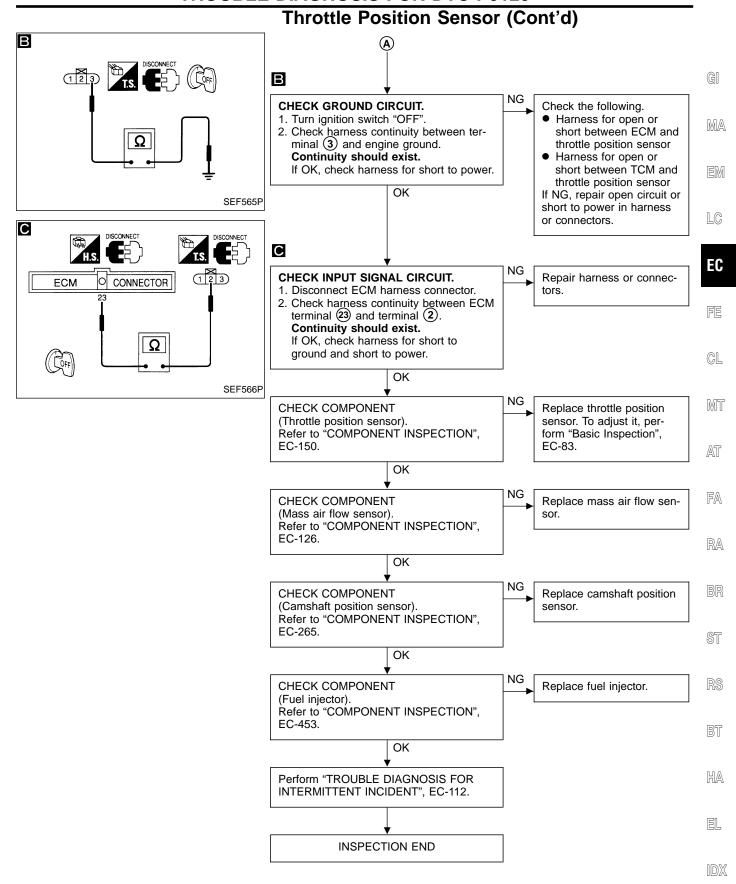


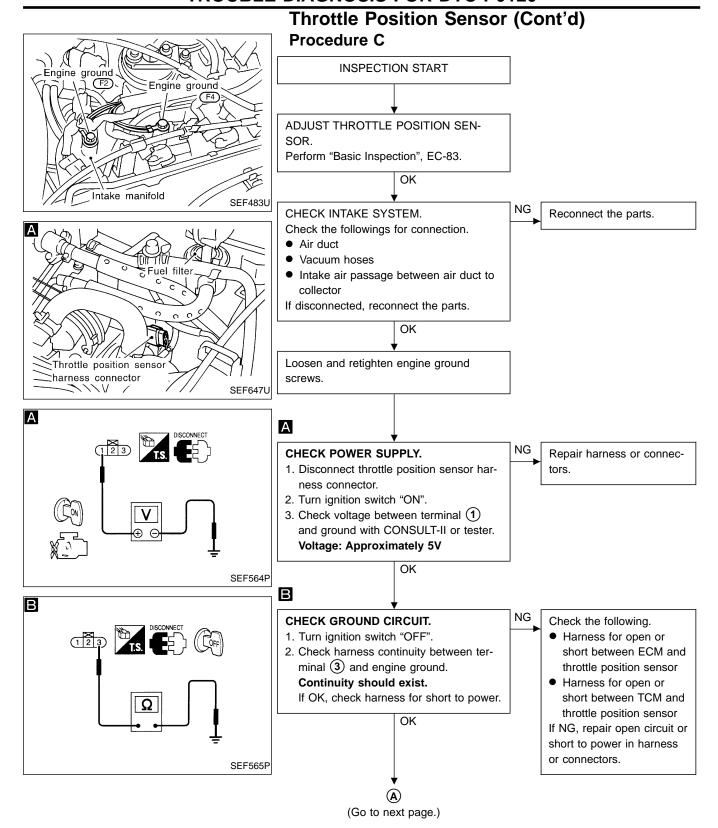

SEF566P

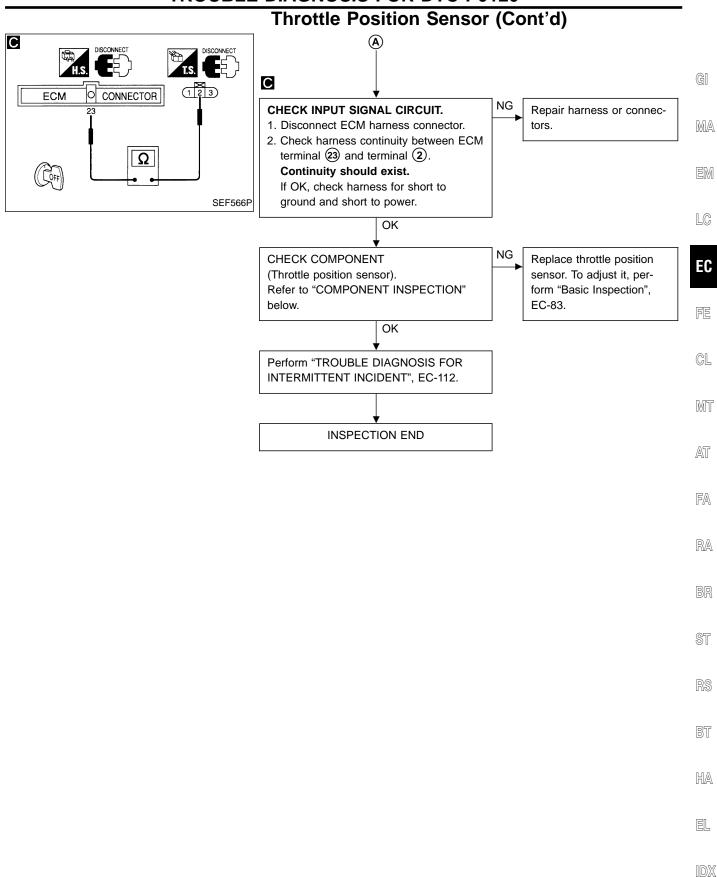
Throttle Position Sensor (Cont'd)

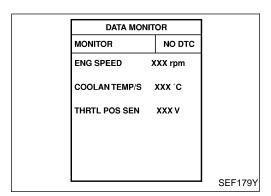


Procedure B




- Disconnect throttle position sensor harness connector.
- 2. Turn ignition switch "ON".
- Check voltage between terminal 1 and ground with CONSULT-II or tester.
 Voltage: Approximately 5V

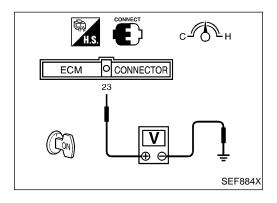

↓ OK


(Go to next page.)

Repair harness or connectors.

Throttle Position Sensor (Cont'd) COMPONENT INSPECTION

Throttle position sensor


- Start engine and warm it up to normal operating temperature.
- 2. Stop engine and turn ignition switch "ON".
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- Check voltage of "THRTL POS SEN".

Voltage measurement must be made with throttle position sensor installed in vehicle.

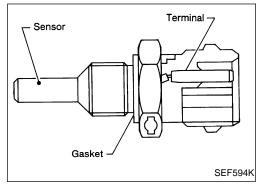
Throttle valve conditions	Voltage (V)
Completely closed	0.15 - 0.85 (a)
Partially open	Between (a) and (b)
Completely open	3.5 - 4.7 (b)

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-83.

5. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

1. Start engine and warm it up to normal operating temperature.

— OR -


- 2. Stop engine and turn ignition switch "ON".
- 3. Check voltage between ECM terminal ② (Throttle position sensor signal) and ground.


Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage (V)
Completely closed	0.15 - 0.85 (a)
Partially open	Between (a) and (b)
Completely open	3.5 - 4.7 (b)

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-83.

4. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

Engine Coolant Temperature (ECT) Sensor COMPONENT DESCRIPTION

The engine coolant temperature sensor is used to detect the engine coolant temperature. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the engine coolant temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Engine coolant temperature °C (°F)	Voltage* V	Resistance k Ω
20 (68)	3.5	2.1 - 2.9
50 (122)	2.2	0.68 - 1.00
90 (194)	0.9	0.236 - 0.260

^{*:} These data are reference values and are measured between ECM terminal (51) (Engine coolant temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0125	 Voltage sent to ECM from the sensor is not practical, even when some time has passed after starting the engine. Engine coolant temperature is insufficient for closed loop fuel control. 	 Harness or connectors (High resistance in the circuit) Engine coolant temperature sensor Thermostat

GI

MA

LC

EC

26

©I

MT

AT

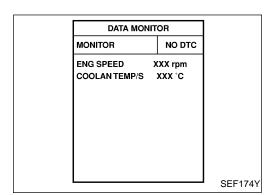
EV.

FA

RA

BR

057


D@

BT

HA

EL

IDX

Engine Coolant Temperature (ECT) Sensor (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Be careful not to overheat engine.

NOTE:

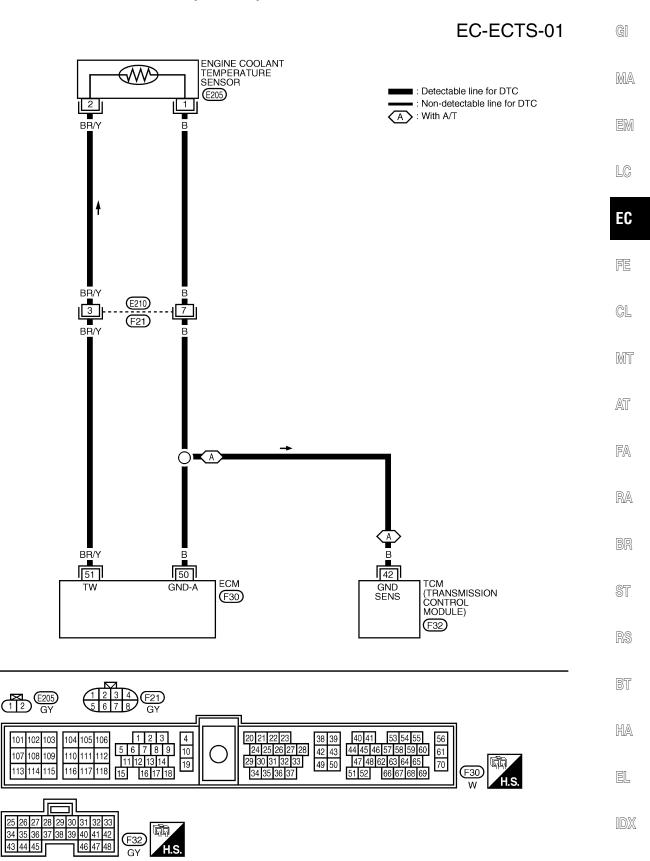
- If both DTC P0115 (0103) and P0125 (0908) are displayed, first perform "TROUBLE DIAGNOSIS FOR DTC P0115". Refer to EC-134.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

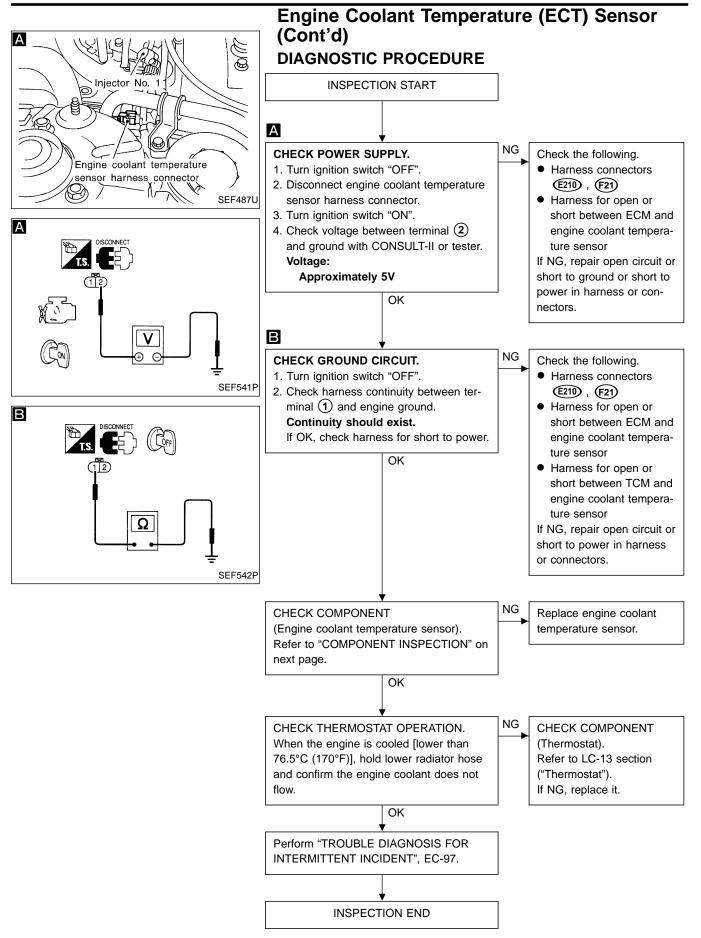
- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for 65 minutes at idle speed.

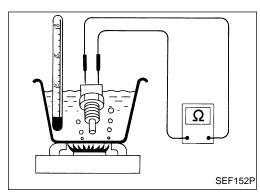
If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.

 If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-154.

- OR -




- 1) Start engine and run it for 65 minutes at idle speed.
- 2) Select "MODE 7" with GST.


If "COOLAN TEMP/S" increases to more than 10°C (50°F) within 65 minutes, stop engine because the test result will be OK.

3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-154.

Engine Coolant Temperature (ECT) Sensor (Cont'd)

Acceptable Resistance kn 1.0 0.8 0.2 -20 0 20 40 60 80 100 (-4) (32) (68) (104) (140) (176) (212) Temperature °C (°F) SEF012P

Engine Coolant Temperature (ECT) Sensor (Cont'd)

COMPONENT INSPECTION

Engine coolant temperature sensor

Check resistance as shown in the figure.

<Reference data>

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.0
90 (194)	0.236 - 0.260

If NG, replace engine coolant temperature sensor.

MA

LC

EC

FE

CL

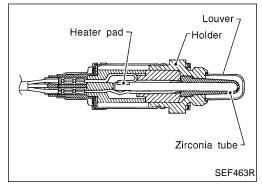
MT

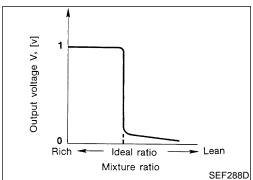
FA

AT

RA

BR


ST


RS

BT

HA

EL

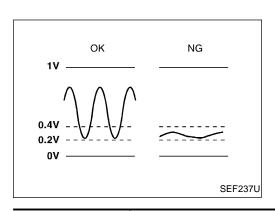
Heated Oxygen Sensor 1 (Front) (Circuit) COMPONENT DESCRIPTION

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONE	DITION	SPECIFICATION
HO2S1 (B1)			0 - 0.3V ↔ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
46	W	Heated oxygen sensor 1 (front)	Engine is running. After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0 SEF201T

Heated Oxygen Sensor 1 (Front) (Circuit) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Under the condition in which the heated oxygen sensor 1 (front) signal is not input, the ECM circuits will read a continuous approximately 0.3V. Therefore, for this diagnosis, the time that output voltage is within 200 to 400 mV range is monitored, and the diagnosis checks that this time is not inordinately long.

MA

EM

EC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0130	The voltage from the sensor is constantly approx. 0.3V.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front)

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE CAUTION:**

AT

MIT

Always drive vehicle at a safe speed. NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before con-

RA

BT

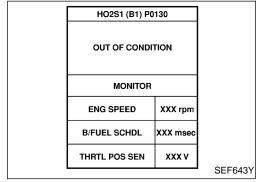
HA

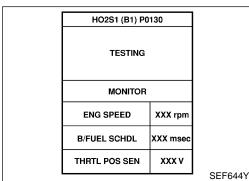
ducting the next test. **TESTING CONDITION:**

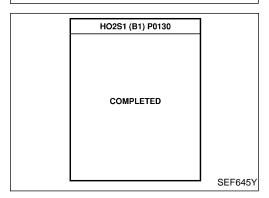
- Always perform at a temperature above -10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

- 1) Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- Select "HO2S1 (B1) P0130" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- Touch "START".
- 5) Start engine and let it idle for at least 3 minutes.

NOTE:

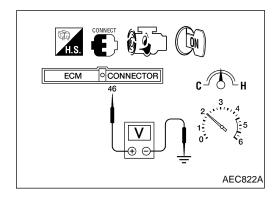

Never rev up engine above 3,600 rpm after this step. If the engine speed exceeds, return to step 5).


6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 10 to 60 seconds.)


ENG SPEED: 1,900 - 3,150 rpm

Vehicle speed: More than 80 km/h (50 MPH)

B/FUEL SCHDL: 3 - 12.5 msec Selector lever: Suitable position



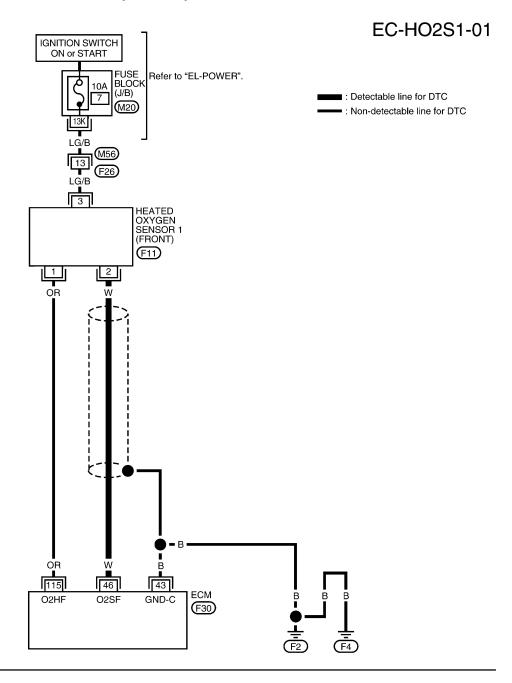
Heated Oxygen Sensor 1 (Front) (Circuit) (Cont'd)

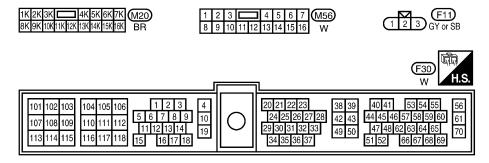
If "TESTING" is not displayed after 5 minutes, retry from step 2).

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-160.

During this test, P1148 may be stored in ECM.

- OR ·


OVERALL FUNCTION CHECK


Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 46(sensor signal) and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage does not remain in the range of 0.2 -0.4V.
- 4)f NG, go to "DIAGNOSTIC PROCEDURE", EC-160.

Heated Oxygen Sensor 1 (Front) (Circuit) (Cont'd)

GI

MA

EM

LC

EC

FE

CL

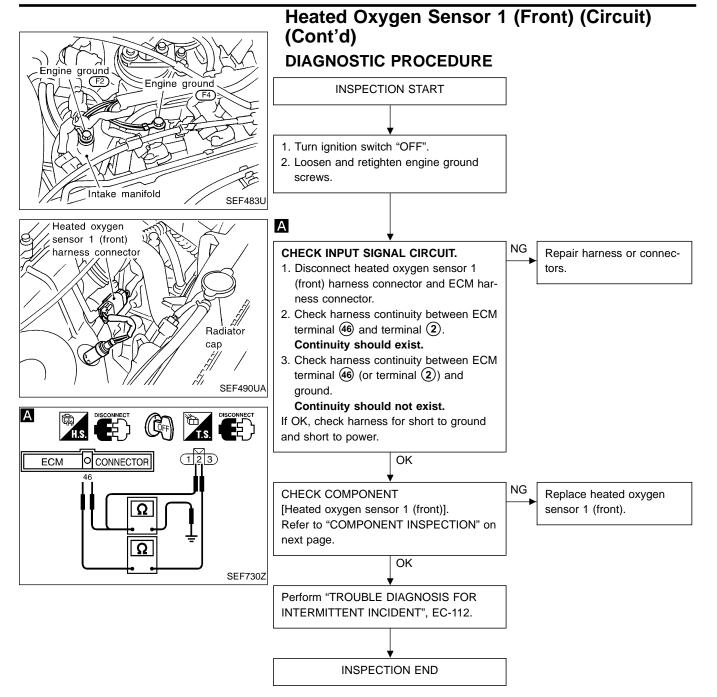
MT

AT

FA

RA

BR


ST

RS

BT

HA

EL

MONITOR NO DTC ENG SPEED XXX rpm MAS A/F SE-B1 XXX V COOLAN TEMP/S XXX 'C HO2S1 (B1) XXX V	DATA MONI	TOR	
MAS A/F SE-B1 XXX V COOLANTEMP/S XXX C HO2S1 (B1) XXX V	MONITOR	NO DTC	
COOLANTEMP/S XXX °C HO2S1 (B1) XXX V	ENG SPEED	XXX rpm	
HO2S1 (B1) XXX V	MAS A/F SE-B1	xxx v	
` '	COOLAN TEMP/S	xxx °c	
HOOSE INTER (DE)	HO2S1 (B1)	xxx v	
HO2S1 MINTH (B1) LEAN	HO2S1 MNTR (B1)	LEAN	
			SEF

Heated Oxygen Sensor 1 (Front) (Circuit) (Cont'd)

COMPONENT INSPECTION

Heated oxygen sensor 1 (front)

 Start engine and warm it up to normal operating temperature. GI

MA

EM

LC

EC

CL

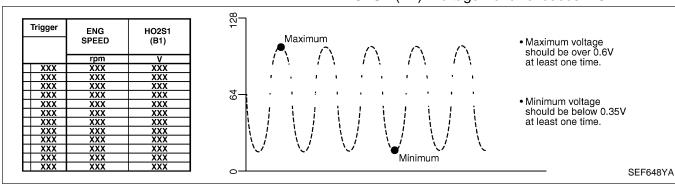
AT

FA

RA

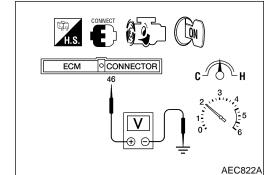
BR

HA


- 2) Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.

5 times (cycles) are counted as shown below:

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

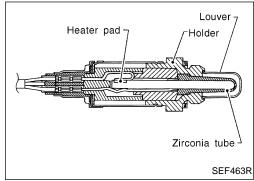

R = "HO2S1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.35V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

- Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal (6)(sensor signal) and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.35V and 0.6 to 1.0V more than five times within 10 seconds.
 - 1 time: 0 0.35V \rightarrow 0.6 1.0V \rightarrow 0 0.35V 2 times: 0 0.35V \rightarrow 0.6 1.0V \rightarrow 0 0.35V \rightarrow 0.6 1.0V \rightarrow 0 0.35V


EC-161

Heated Oxygen Sensor 1 (Front) (Circuit) (Cont'd)

- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.35V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Output voltage V_s [v] Rich -Ideal ratio Mixture ratio SEF288D

Heated Oxygen Sensor 1 (front) (Lean Shift Monitoring)

COMPONENT DESCRIPTION

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

GI

MA

EC

FE

GL

MT

AT

FA

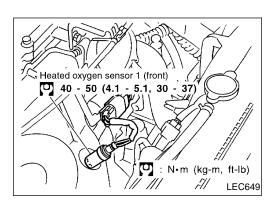
RA

BR

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	COND	DITION	SPECIFICATION
HO2S1 (B1)			0 - 0.3V ↔ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.

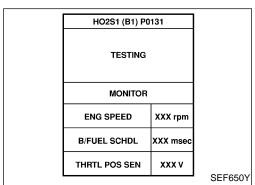

ECM TERMINALS AND REFERENCE VALUE

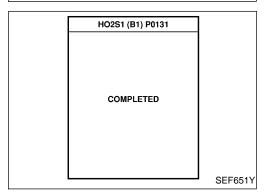
Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

			(DC Voltage)	RS
46 W Heate	ited oxygen sensor 1 nt)	Engine is running. After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0	BT HA


Heated Oxygen Sensor 1 (front) (Lean Shift Monitoring) (Cont'd)


ON BOARD DIAGNOSIS LOGIC

To judge the malfunction, the output from the heated oxygen sensor 1 (front) is monitored to determine whether the "rich" output is sufficiently high and whether the "lean" output is sufficiently low. When both the outputs are shifting to the lean side, the malfunction will be detected.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0131	The maximum and minimum voltages from the sensor are not reached to the specified voltages.	 Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure Injectors Intake air leaks

HO2S1 (B1) P0	131				
OUT OF CONDI					
MONITOR					
ENG SPEED					
B/FUEL SCHDL					
THRTL POS SEN					
SEF649					

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

- 1) Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- 3) Turn ignition switch "ON" and select "HO2S1 (B1) P0131" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3 minutes.

NOTE:

Never rev up engine above 3,600 rpm after this step. If the engine speed exceeds, return to step 5).

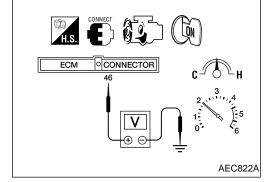
6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds.)

ENG SPEED: 1,150 - 2,600 rpm

Vehicle speed: Less than 100 km/h (62 MPH)

B/FUEL SCHDL: 3 - 12.5 msec Selector lever: Suitable position

Heated Oxygen Sensor 1 (front) (Lean Shift Monitoring) (Cont'd)


If "TESTING" is not displayed after 5 minutes, retry from step 2).

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-167.

MA

LC

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.

- OR ·

1) Start engine and warm it up to normal operating temperature.

perature.
2) Set voltmeter probes between ECM terminal 46 (sen-

sor signal) and engine ground.

3) Check the following with engine speed held at 2,000 rpm constant under no load.

• The maximum voltage is over 0.6V at least one time.

The minimum voltage is over 0.1V at least one time.

4)f NG, go to "DIAGNOSTIC PROCEDURE", EC-167.

EC

CL

AT

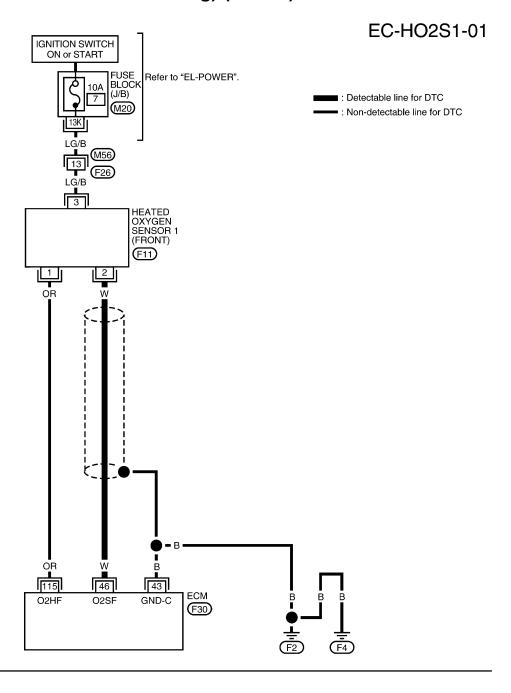
FA

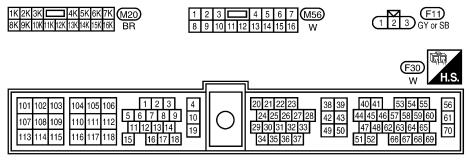
RA

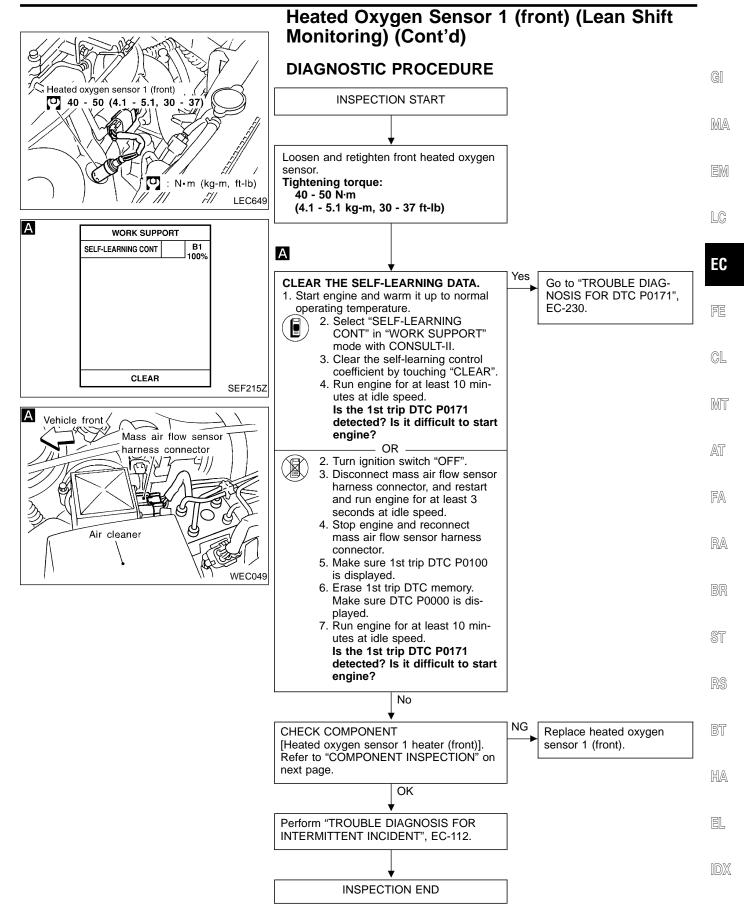
BR

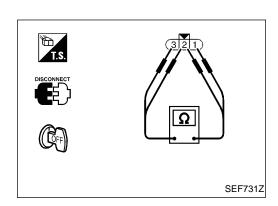
ST

RS


BT


HA


EL


IDX

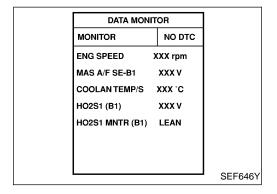
Heated Oxygen Sensor 1 (front) (Lean Shift Monitoring) (Cont'd)

Heated Oxygen Sensor 1 (front) (Lean Shift Monitoring) (Cont'd) COMPONENT INSPECTION

Heated oxygen sensor 1 heater (front)

Check resistance between terminals 3 and 1.

Resistance: 2.3 - 4.3Ω at 25°C (77°F)


Check continuity between terminals ② and ①, ③ and ②.

Continuity should not exist.

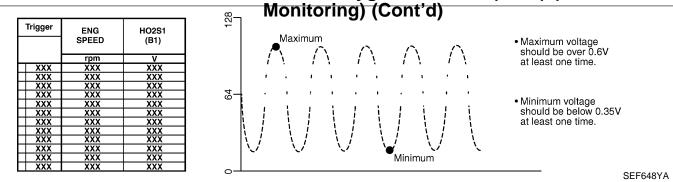
If NG, replace the heated oxygen sensor 1 (front).

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

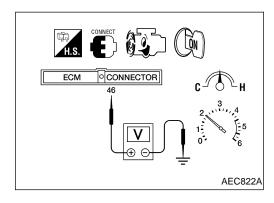
Heated oxygen sensor 1 (front)

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.


5 times (cycles) are counted as shown below:

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

R = "HO2S1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"


- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.35V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

1) Start engine and warm it up to normal operating temperature.

· OR ·

- 2) Set voltmeter probes between ECM terminal (49) (sensor signal) and engine ground.
- Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.35V and 0.6 to 1.0V more than five times within 10 seconds.
 - 1 time: 0 $0.35V \rightarrow 0.6$ $1.0V \rightarrow 0$ 0.35V2 times: 0 - $0.35V \rightarrow 0.6$ - $1.0V \rightarrow 0$ - $0.35V \rightarrow 0.6$ - $1.0V \rightarrow 0$ - 0.35V
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.35V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

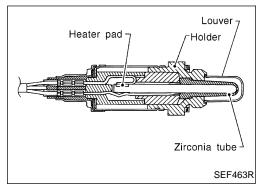
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

LC

GI

MA

EC


CL

RA

RS

_ _ _

HA

Rich Ideal ratio Lean Mixture ratio SEF288D

Heated Oxygen Sensor 1 (Front) (Rich Shift Monitoring)

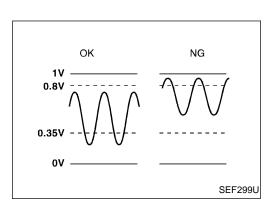
COMPONENT DESCRIPTION

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONE	SPECIFICATION	
HO2S1 (B1)			0 - 0.3V ↔ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

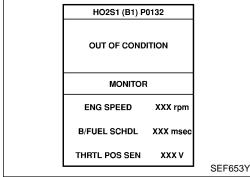
	<u>, </u>			<u> </u>
TER- MINAL NO.	WIRE COLOR	ITEM	DATA (DC Voltage)	
46	W	Heated oxygen sensor 1 (front)	Engine is running. After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0 1s SEF201T

Heated Oxygen Sensor 1 (Front) (Rich Shift Monitoring) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

To judge the malfunction, the output from the heated oxygen sensor 1 (front) is monitored to determine whether the "rich" output is sufficiently high. The "lean" output is sufficiently low. When both the outputs are shifting to the rich side, the malfunction will be detected.

MA


EM

EC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0132	The maximum and minimum voltages from the sensor are beyond the specified voltages.	Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front)
	, ,	Fuel pressure
		Injectors

MIT

AT

PROCEDURE **CAUTION:** Always drive vehicle at a safe speed. NOTE: If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-

DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before con-

RA

ducting the next test. **TESTING CONDITION:**

Always perform at a temperature above -10°C (14°F). Before performing the following procedure, confirm

that battery voltage is more than 11V at idle. 1) Start engine and warm it up to normal operating temperature.

DIAGNOSTIC TROUBLE CODE CONFIRMATION

Stop engine and wait at least 5 seconds.

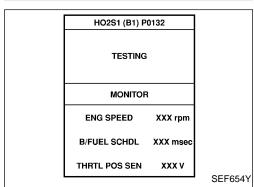
3) Turn ignition switch "ON" and select "HO2S1 (B1) P0132" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.

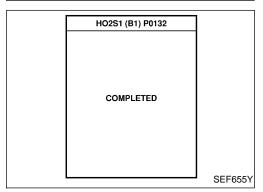
BT

4) Touch "START".

5) Start engine and let it idle for at least 3 minutes. NOTE:

HA


Never rev up engine above 3,600 rpm after this step. If the engine speed exceeds, return to step 5).


6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds.)

ENG SPEED: 1,150 - 2,600 rpm

Vehicle speed: Less than 100 km/h (62 MPH)

B/FUEL SCHDL: 3 - 12.5 msec Selector lever: Suitable position

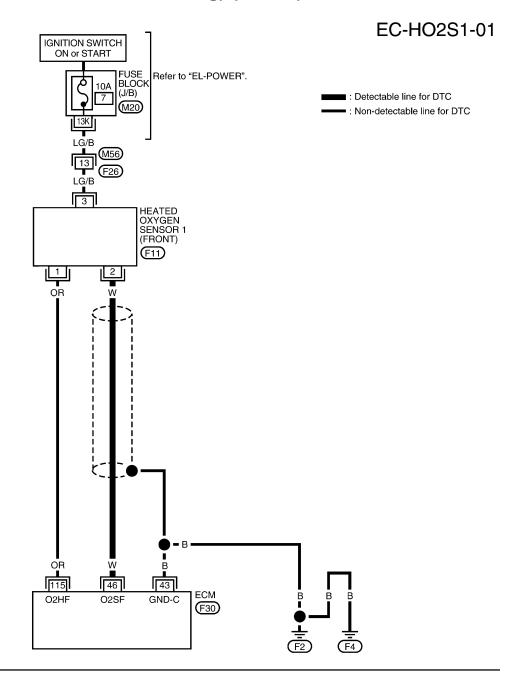
Heated Oxygen Sensor 1 (Front) (Rich Shift Monitoring) (Cont'd)

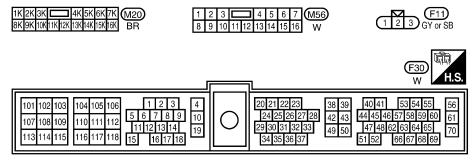
If "TESTING" is not displayed after 5 minutes, retry from step 2).

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-174.

OR

OVERALL FUNCTION CHECK


Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.



- Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 46(sensor signal) and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The maximum voltage is below 0.8V at least one time.
- The minimum voltage is below 0.35V at least one time.

4)f NG, go to "DIAGNOSTIC PROCEDURE", EC-174.

Heated Oxygen Sensor 1 (Front) (Rich Shift Monitoring) (Cont'd)

GI

MA

EM

LC

EC

FE

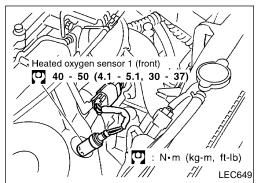
CL

MT

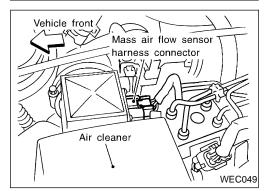
AT

FA

RA


BR

RS


BT

HA

EL

Α WORK SUPPORT SELF-LEARNING CONT CLEAR SEF215Z

Heated Oxygen Sensor 1 (Front) (Rich Shift Monitoring) (Cont'd) **DIAGNOSTIC PROCEDURE**

Yes

Go to "TROUBLE DIAG-

EC-235.

NOSIS FOR DTC P0172",

INSPECTION START Loosen and retighten heated oxygen sensor 1 (front). Tightening torque: 40 - 50 N·m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

Α

CLEAR THE SELF-LEARNING DATA

1. Start engine and warm it up to normal operating temperature. 2. Select "SELF-LEARNING

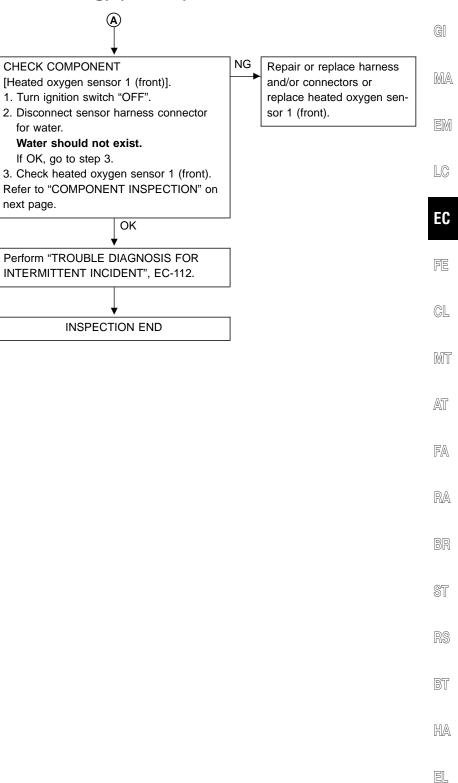
- CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed.

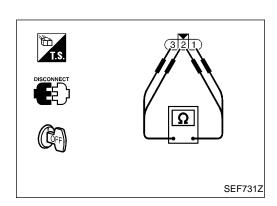
Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

- OR -

- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase 1st trip DTC memory. Make sure DTC P0000 is displayed.
- 7. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 detected? Is it difficult to start engine?


No CHECK COMPONENT NG [Heated oxygen sensor 1 heater (front)]. Refer to "COMPONENT INSPECTION" below. OK


(Go to next page.)

Replace heated oxygen

sensor 1 (front).

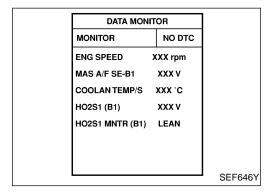
Heated Oxygen Sensor 1 (Front) (Rich Shift Monitoring) (Cont'd)

Heated Oxygen Sensor 1 (Front) (Rich Shift Monitoring) (Cont'd) COMPONENT INSPECTION

Heated oxygen sensor 1 heater (front)

Check resistance between terminals 3 and 1.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F)


Check continuity between terminals ② and ①, ③ and ②.

Continuity should not exist.

If NG, replace the heated oxygen sensor 1 (front).

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

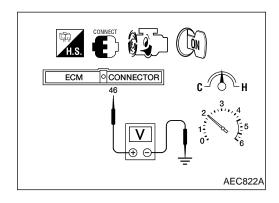
Heated oxygen sensor 1 (front)

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- 5) Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.

5 times (cycles) are counted as shown below:

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

R = "HO2S1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"


- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.35V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

Heated Oxygen Sensor 1 (Front) (Rich Shift Monitoring) (Cont'd)

Trigger	ENG SPEED	HO2S1 (B1)	128		Max					_			_	Maximum voltage	(
	rpm	l v		l !	~ \	- /	`\		ı	- [`\	- [1	should be over 0.6V at least one time.	١.
XXX	XXX	XXX	1	l '	•	,	•	•	•	'	•	•	•	at least one time.	
XXX	XXX	XXX	1	,	i	- 1	1		•	ı	1		1		
XXX	XXX	XXX	l												
XXX	XXX	XXX	49		1	:	•	•		•	•	•	'	- Minimum college	
XXX	XXX	XXX	1	i .	1				,	1	:		:	 Minimum voltage should be below 0.35V 	
XXX	XXX	XXX		! i	ļ.	i	!	i	1	i	- 1	i	- 1		
XXX	XXX	XXX		\ i	1	į	١.	!	1	!	i	!	i	at least one time.	
XXX	XXX	XXX	1	li !	i	!	i	!	i	!	į	- !	١.		
XXX	XXX	XXX	1	N /	,	i	,	i	١, .	i	`\	i	,		
XXX	XXX	XXX	1	V	',	j.	``	,	``●′	,	`.	/	Υ.		
XXX	XXX	XXX	1						- 1	Minir	mum				
XXX	XXX	XXX												SEF648YA	

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

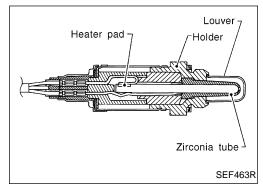
Start engine and warm it up to normal operating temperature.

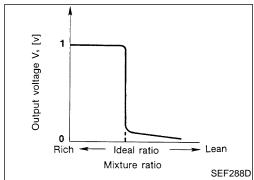
- OR -

- Set voltmeter probes between ECM terminal (6)(sensor signal) and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.35V and 0.6 to 1.0V more than five times within 10 seconds.
 - 1 time: 0 0.35V \rightarrow 0.6 1.0V \rightarrow 0 0.35V 2 times: 0 - 0.35V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.35V \rightarrow 0.6 - 1.0V → 0 - 0.35V
- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.35V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


Mh



HA

Heated Oxygen Sensor 1 (Front) (Response Monitoring)

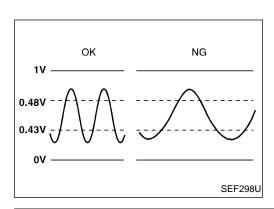
COMPONENT DESCRIPTION

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONE	SPECIFICATION	
HO2S1 (B1)			0 - 0.3V ↔ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
46	W	Heated oxygen sensor 1 (front)	Engine is running. After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0 1s SEF201T

Heated Oxygen Sensor 1 (Front) (Response Monitoring) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

To judge the malfunction of heated oxygen sensor 1 (front), this diagnosis measures response time of heated oxygen sensor 1 (front) signal. The time is compensated by engine operating (speed and load), fuel feedback control constant, and heated oxygen sensor 1 (front) temperature index. Judgment is based on whether the compensated time (heated oxygen sensor 1 (front) cycling time index) is inordinately long or not.

(3	ì	

MA

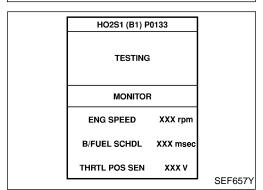
PΩ/I

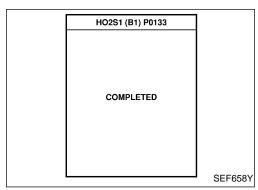
LG

EC

MIT

AT


RA


HA

耴

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0133	The response of the voltage signal from the sensor takes more than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front) Fuel pressure Injectors Intake air leaks Exhaust gas leaks PCV Mass air flow sensor

HO2S1 (B1) P0133 OUT OF CONDITION MONITOR ENG SPEED XXX rpm B/FUEL SCHDL XXX msec THRTL POS SEN XXX V

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform at a temperature above –10°C (14°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.
- Never raise engine speed above 3,600 rpm during the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE". If the engine speed limit is exceeded, retry the procedure from step 2).

- Start engine and warm it up to normal operating temperature.
- Stop engine and wait at least 5 seconds.
- 3) Turn ignition switch "ON" and select "HO2S1 (B1) P0133" of "HO2S1" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 4) Touch "START".
- 5) Start engine and let it idle for at least 3 minutes.

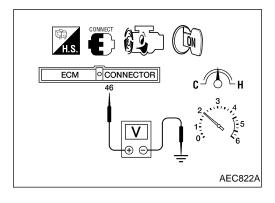
NOTE:

Never rev up engine above 3,600 rpm after this step. If the engine speed exceeds, return to step 5).

6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take approximately 20 seconds.)

ENG SPEED: 1,900 - 3,150 rpm

Vehicle speed: More than 80 km/h (50 MPH)


B/FUEL SCHDL: 3 - 12.5 msec

Heated Oxygen Sensor 1 (Front) (Response Monitoring) (Cont'd)

Selector lever: Suitable position

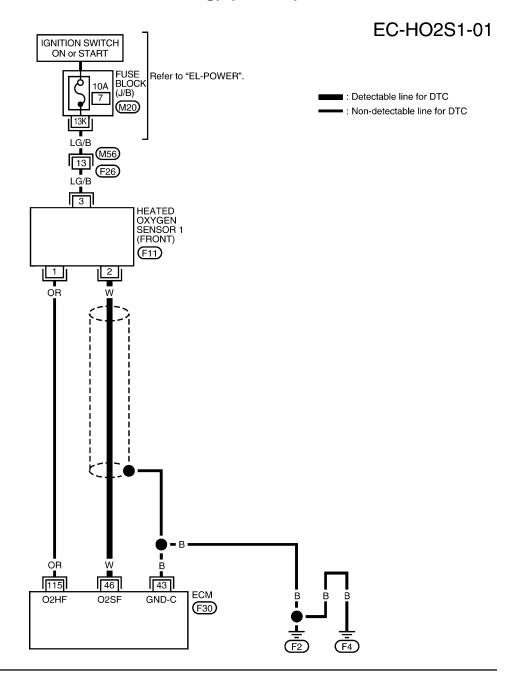
If "TESTING" is not displayed after 5 minutes, retry from step 2).

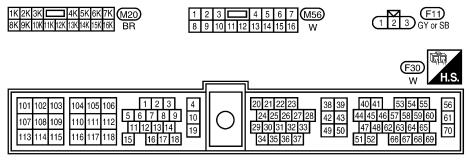
7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-182.

- OR -

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the heated oxygen sensor 1 (front) circuit. During this check, a 1st trip DTC might not be confirmed.




- 1) Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal (6)
 [Heated oxygen sensor 1 (front) signal] and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.35 and 0.6 to 1.0V more than five times within 10 seconds.
 1 time: 0 0.35 → 0.6 1.0V → 0 0.35

2 times: 0 - 0.35 \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.35 \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.35

4)f NG, go to "DIAGNOSTIC PROCEDURE", EC-182.

Heated Oxygen Sensor 1 (Front) (Response Monitoring) (Cont'd)

GI

MA

EM

LC

EC

FE

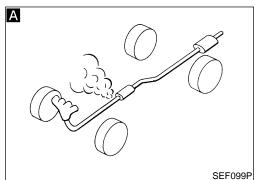
CL

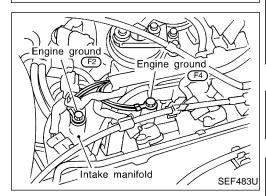
MT

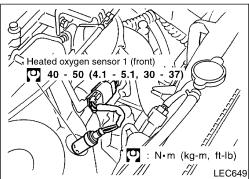
AT

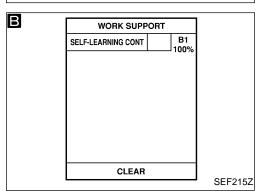
FA

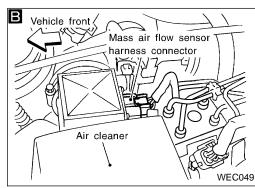
RA


BR


RS


BT


HA


EL

Heated Oxygen Sensor 1 (Front) (Response Monitoring) (Cont'd) DIAGNOSTIC PROCEDURE

INSPECTION START 1. Turn ignition switch "OFF". 2. Loosen and retighten engine ground screws.

Loosen and retighten heated oxygen sensor 1 (front).

Tightening torque: 40 - 50 N⋅m (4.1 - 5.1 kg-m, 30 - 37 ft-lb)

Α

CHECK EXHAUST AIR LEAK.

Start engine and run it at idle. Listen for an exhaust air leak before three way catalyst.

↓OK

CHECK FOR INTAKE AIR LEAK.

Start engine and run it at idle. Listen for an intake air leak between the mass air flow sensor and the intake manifold.

CLEAR THE SELF-LEARNING DATA

1. Start engine and warm it up to normal operating temperature.

2. Select "SELF-LEARNING"

CONT" in "WORK SUPPORT" mode with CONSULT-II.

OK

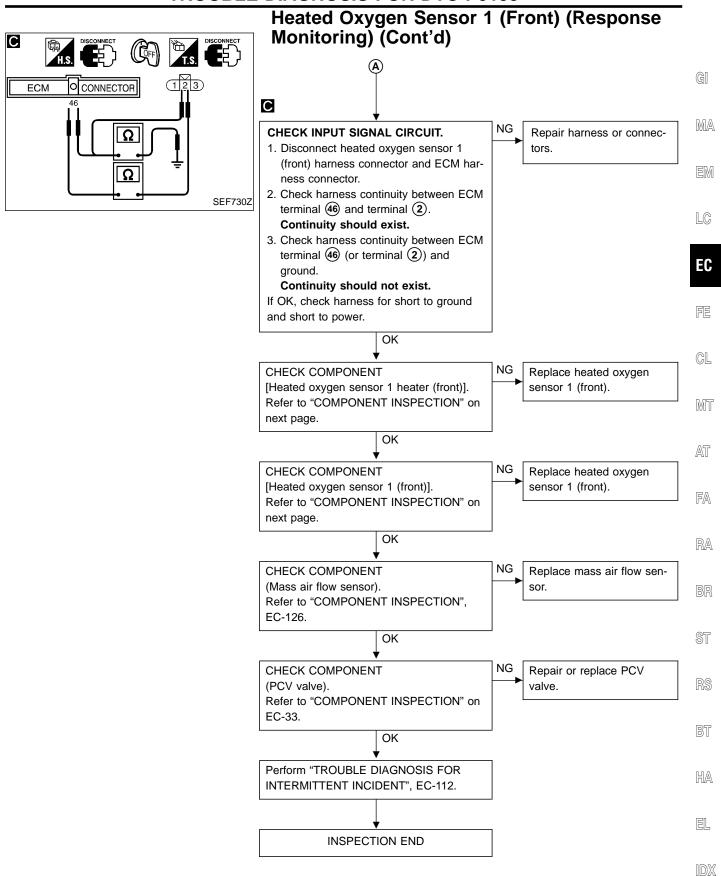
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 or

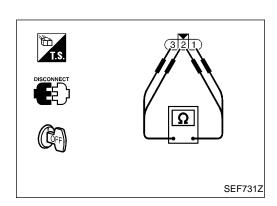
P0172 detected? Is it difficult to start engine? OR

- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase 1st trip DTC memory. Make sure DTC P0000 is displayed.
- 7. Run engine for at least 10 minutes at idle speed.

Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

> **♦** No (A)


(Go to next page.)


Yes Go to "TROUBLE DIAG-NOSIS FOR DTC P0171", EC-230 or "TROUBLE DIAGNOSIS FOR DTC

P0172". EC-235.

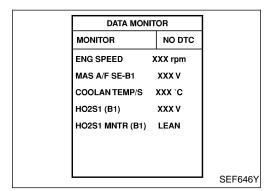
Repair or replace.

Repair or replace.

Heated Oxygen Sensor 1 (Front) (Response Monitoring) (Cont'd) COMPONENT INSPECTION

Heated oxygen sensor 1 heater (front)

Check resistance between terminals ③ and ④. Resistance: 2.3 - 4.3 Ω at 25°C (77°F)


Check continuity between terminals 2 and 1, 3 and 2.

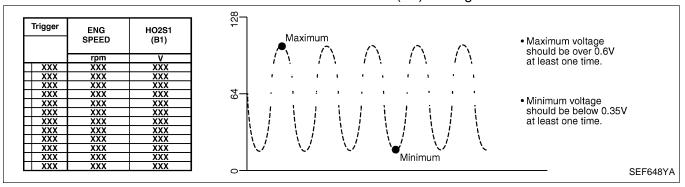
Continuity should not exist.

If NG, replace the heated oxygen sensor 1 (front).

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Heated oxygen sensor 1 (front)


- Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.

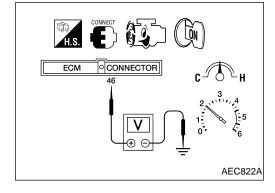
5 times (cycles) are counted as shown below:

cycle | 1 | 2 | 3 | 4 | 5 | HO2S1 MNTR (B1) R-L-R-L-R-L-R-L-R

R = "HO2S1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.35V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

Heated Oxygen Sensor 1 (Front) (Response Monitoring) (Cont'd)


CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

1) Start engine and warm it up to normal operating temperature.

- OR -

- 2) Set voltmeter probes between ECM terminal 46 (sensor signal) and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.35V and 0.6 to 1.0V more than five times within 10 seconds.
 1 time: 0 0.35V → 0.6 1.0V → 0 0.35V
 2 times: 0 0.35V
 2 times: 0 0.35V
 - 1 time: 0 0.35V \rightarrow 0.6 1.0V \rightarrow 0 0.35V 2 times: 0 0.35V \rightarrow 0.6 1.0V \rightarrow 0 0.35V \rightarrow 0.6 1.0V \rightarrow 0 0.35V
- The maximum voltage is over 0.6V at least one time.
 The minimum voltage is below 0.35V at least one
- The minimum voltage is below 0.35V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

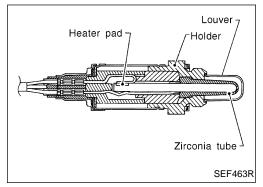
FE

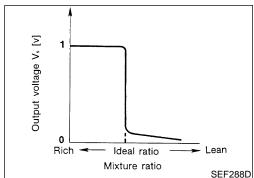
CI

MT

AT

I-/A


RA


BR

BT

HA

EL

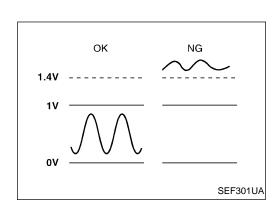
Heated Oxygen Sensor 1 (Front) (High Voltage) COMPONENT DESCRIPTION

The heated oxygen sensor 1 (front) is placed into the exhaust manifold. It detects the amount of oxygen in the exhaust gas compared to the outside air. The heated oxygen sensor 1 (front) has a closed-end tube made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions. The heated oxygen sensor 1 (front) signal is sent to the ECM. The ECM adjusts the injection pulse duration to achieve the ideal air-fuel ratio. The ideal air-fuel ratio occurs near the radical change from 1V to 0V.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S1 (B1)			0 - 0.3V ↔ Approx. 0.6 - 1.0V
HO2S1 MNTR (B1)	Engine: After warming up	Maintaining engine speed at 2,000 rpm	LEAN ↔ RICH Changes more than 5 times during 10 seconds.


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

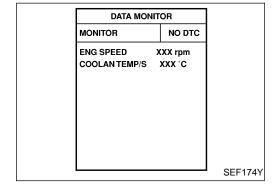
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
46	W	Heated oxygen sensor 1 (front)	Engine is running. After warming up to normal operating temperature and engine speed is 2,000 rpm	0 - Approximately 1.0V (V) 2 1 0 SEF201T

Heated Oxygen Sensor 1 (Front) (High Voltage) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

To judge the malfunction, the diagnosis checks that the heated oxygen sensor 1 (front) output is not inordinately high.

MA


EM

EC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0134	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 1 (front)

CL

Mh

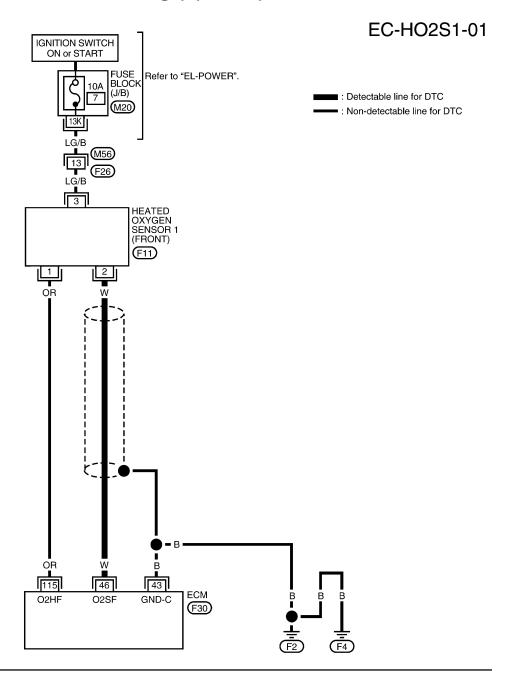
DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

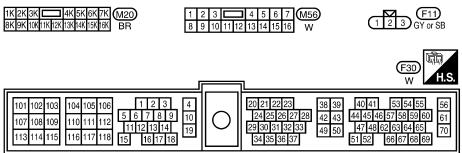
NOTE:

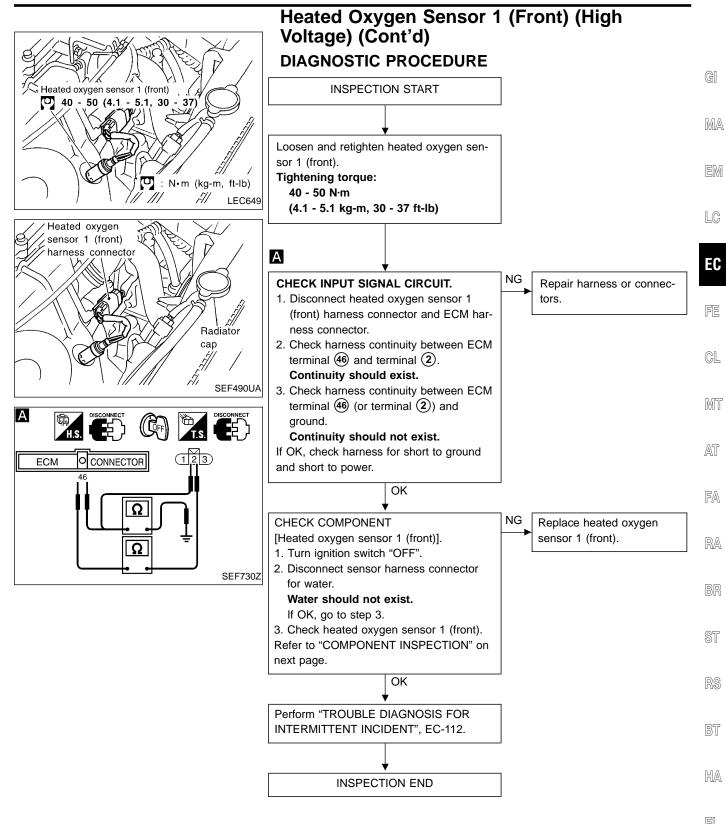
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON".
 - Select "DATA MONITOR" mode with CONSULT-II.
 - Restart engine and let it idle for 35 seconds.
 - If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-189.

OR -


- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- Restart engine and let it idle for 35 seconds.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- Restart engine and let it idle for 35 seconds.
- Select "MODE 3" with GST.
- detected. DTC is "DIAGNOSTIC go to PROCEDURE", EC-189.
- When using GST, "DTC CONFIRMATION PROCEDURE" should be performed twice as much as when using CON-SULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CON-SULT-II is recommended.


RA


HA

IDX

Heated Oxygen Sensor 1 (Front) (High Voltage) (Cont'd)

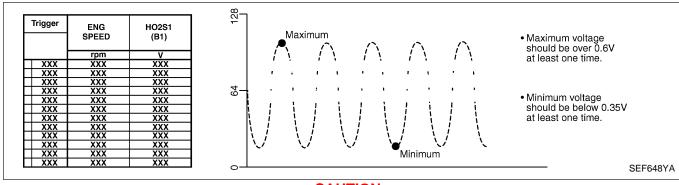
IDX

NO DTC XX rpm XXX V XXX C	
xxx °C	
KXX °C	
xxx v	
LEAN	

Heated Oxygen Sensor 1 (Front) (High Voltage) (Cont'd)

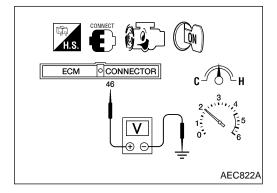
COMPONENT INSPECTION

Heated oxygen sensor 1 (front)



- Start engine and warm it up to normal operating temperature.
- 2) Select "MANU TRIG" and "HI SPEED" in "DATA MONITOR" mode with CONSULT-II, and select "HO2S1 (B1)" and "HO2S1 MNTR (B1)".
- 3) Hold engine speed at 2,000 rpm under no load during the following steps.
- 4) Touch "RECORD" on CONSULT-II screen.
- Check the following.
- "HO2S1 MNTR (B1)" in "DATA MONITOR" mode changes from "RICH" to "LEAN" to "RICH" 5 times in 10 seconds.

5 times (cycles) are counted as shown below:


R = "HO2S1 MNTR (B1)", "RICH" L = "HO2S1 MNTR (B1)", "LEAN"

- "HO2S1 (B1)" voltage goes above 0.6V at least once.
- "HO2S1 (B1)" voltage goes below 0.35V at least once.
- "HO2S1 (B1)" voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

- 1) Start engine and warm it up to normal operating temperature.
- Set voltmeter probes between ECM terminal (46) (sensor signal) and engine ground.
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage fluctuates between 0 to 0.35V and 0.6 to 1.0V more than five times within 10 seconds.

1 time: $0 - 0.35V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.35V$

2 times: 0 - 0.35V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.35V \rightarrow 0.6 - 1.0V \rightarrow 0 - 0.35V

Heated Oxygen Sensor 1 (Front) (High Voltage) (Cont'd)

- The maximum voltage is over 0.6V at least one time.
- The minimum voltage is below 0.35V at least one time.
- The voltage never exceeds 1.0V.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

MA

EM

LC

EC

FE

CL

MT

AT

FA

RA

BR

272

RS

BT

HA

EL

Heated Oxygen Sensor 1 Heater (Front)

SYSTEM DESCRIPTION

The ECM performs ON/OFF control of the heated oxygen sensor 1 heater (front) corresponding to the engine speed.

OPERATION

Engine speed rpm	Heated oxygen sensor 1 heater (front)
Above 3,600	OFF
Below 3,600	ON

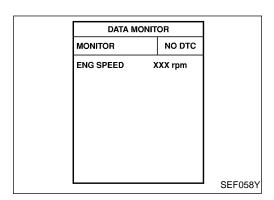
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION	SPECIFICATION
HO2S1 HTR (B1)	Engine speed: Idle	ON
	Engine speed: Above 3,600 rpm	OFF

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
OR Heated oxygen sensor 1 heater (front)	Heated oxygen sensor 1	Engine is running. Engine speed is below 3,600 rpm	Approximately 0.4V	
	Engine is running. Engine speed is above 3,600 rpm	BATTERY VOLTAGE (11 - 14V)		

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0135	 The current amperage in the heated oxygen sensor 1 heater (front) circuit is out of the normal range. [An improper voltage drop signal is sent to ECM through the heated oxygen sensor 1 heater (front).] 	 Harness or connectors [The heated oxygen sensor 1 heater (front) circuit is open or shorted.] Heated oxygen sensor 1 heater (front)

Heated Oxygen Sensor 1 Heater (Front) (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is in between 10.5V and 16V.

- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 5 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-195.

- 1) Start engine and run it for at least 5 seconds at idle speed.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- Start engine and run it for at least 5 seconds at idle speed.
- Select "MODE 3" with GST.
- 5) If DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-195.
- When using GST, "DIAGNOSTIC TROUBLE CODE CON-FIRMATION PROCEDURE" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

GI

MA

EM

I △

EC

GL

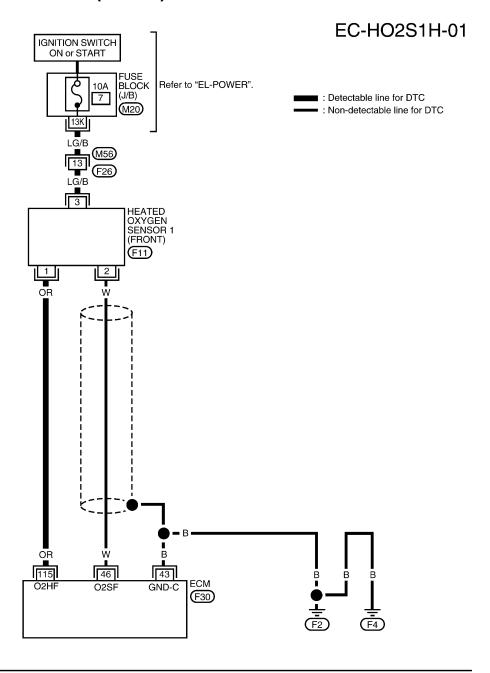
MT

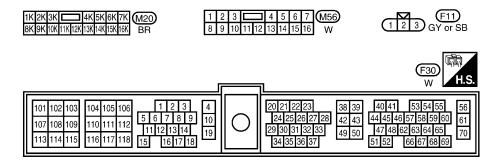
UVU U

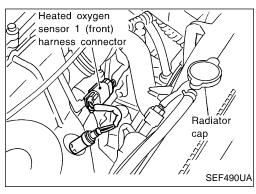
FA

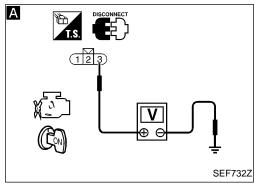
RA

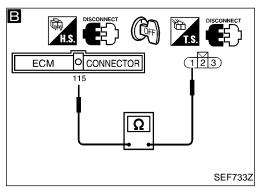
BR

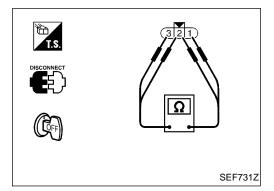

ST

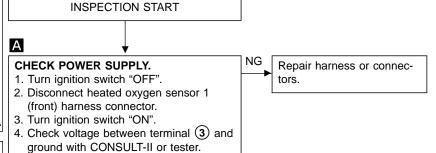

RS


BT


HA


Heated Oxygen Sensor 1 Heater (Front) (Cont'd)





Heated Oxygen Sensor 1 Heater (Front) (Cont'd) DIAGNOSTIC PROCEDURE

NG

tors.

Repair harness or connec-

Replace heated oxygen

sensor 1 (front).

CHECK HO2S1 HEATER (B1) OUTPUT CIRCUIT.

OK

1. Turn ignition switch "OFF".

Voltage: Battery voltage

- 2. Disconnect ECM harness connector.
- Check harness continuity between terminal 1 and ECM terminal 115.

 Continuity should exist.

 If OK check harness for short to ground.

If OK, check harness for short to ground and short to power.

OK

CHECK COMPONENT
[Heated oxygen sensor 1 heater (front)].
Refer to "COMPONENT INSPECTION" below.

OK

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-112.

INSPECTION END

COMPONENT INSPECTION

Heated oxygen sensor 1 heater (front)

Check resistance between terminals 3 and 1.

Resistance: 2.3 - 4.3 Ω at 25°C (77°F) Check continuity between terminals ② and ①, ③ and ②.

Continuity should not exist.

If NG, replace the heated oxygen sensor 1 (front).

CAUTION:

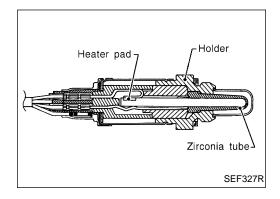
- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

GI

MA

MT

AT


____FA

RA

BR

RS

BT

Heated Oxygen Sensor 2 (Rear) (Min. Voltage Monitoring)

COMPONENT DESCRIPTION

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

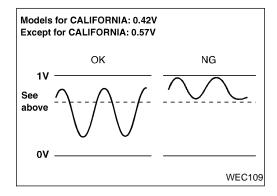
This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONE	DITION	SPECIFICATION
HO2S2 (B1)	● Engine: After warming up	Revving engine from idle to 3,000	0 - 0.3V ↔ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)	Engine. After warming up	rpm quickly	LEAN ↔ RICH

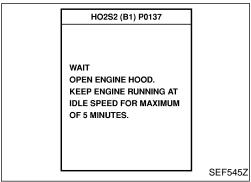

ECM TERMINALS AND REFERENCE VALUE

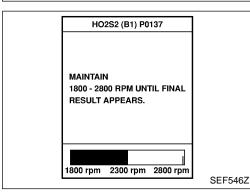
Specification data are reference values and are measured between each terminal and ground.

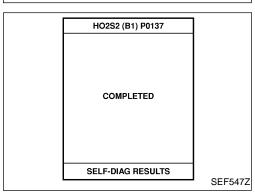
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
52	W	Heated oxygen sensor 2 (rear)	Engine is running. After warming up to normal operating temperature and revving engine from idle to 3,000 rpm quickly	0 - Approximately 1.0V




ON BOARD DIAGNOSIS LOGIC


The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the minimum voltage of the sensor is sufficiently low during the various driving condition such as fuel-cut.

Heated Oxygen Sensor 2 (Rear) (Min. Voltage Monitoring) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	GI
P0137	The minimum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) Fuel pressure Injectors 	MA

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "COOLANT TEMP/S" is more than 70°C (158°F).
- 6) Select "HO2S2 (B1) P0137" of "HO2S2 (B1)" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 7) Start engine and follow the instruction of CONSULT-II.
- 8) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS".
 - If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-200. If "CANNOT BE DIAGNOSED" is displayed, perform the following.
 - A) Stop engine and cool down "COOLAN TEMP/SE" to less than 70°C (158°F).
 - B) Turn ignition switch "ON".
 - C) Select "DATA MONITOR" mode with CONSULT-II.
 - D) Start engine.
 - E) Perform from step 6) again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

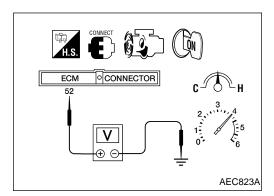
L(C

EC

FE

CL

MT


RA

" ST

RS

HA

EL

Heated Oxygen Sensor 2 (Rear) (Min. Voltage Monitoring) (Cont'd)

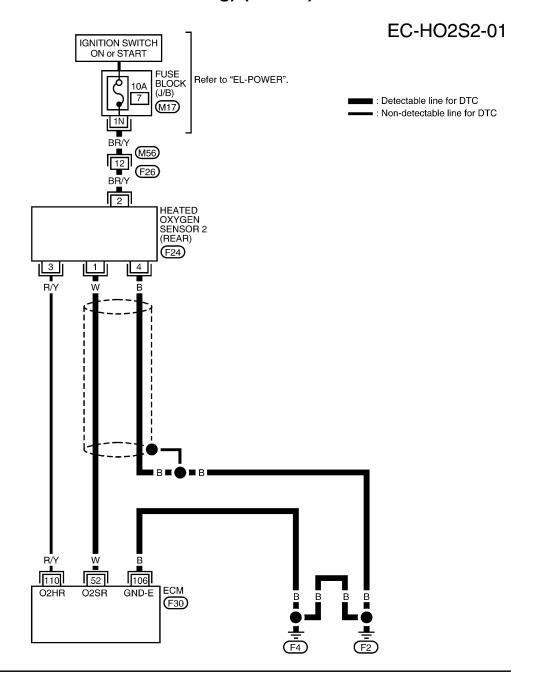
- OR -

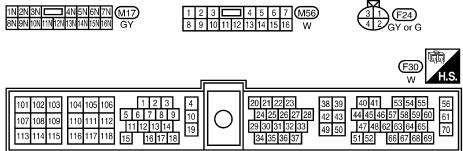
OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals \$20(sensor signal) and engine ground.
- 4) Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.
 (Depress and release accelerator pedal as soon as

possible.)
The voltage should be below 0.54V at least once during this procedure.


If the voltage can be confirmed in step 3, step 4 is not necessary.


5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T).

The voltage should be below 0.54V at least once during this procedure.

6)f NG, go to "DIAGNOSTIC PROCEDURE", EC-200.

Heated Oxygen Sensor 2 (Rear) (Min. Voltage Monitoring) (Cont'd)

GI

MA

EM

LC

EC

FE

CL

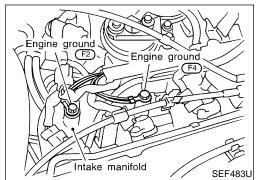
MT

AT

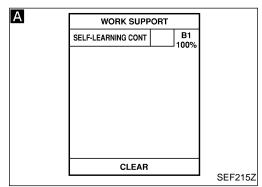
FA

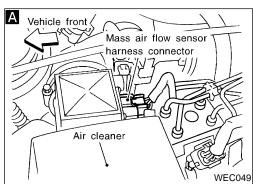
RA

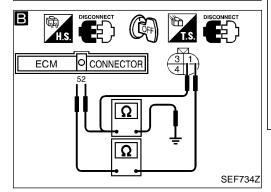
BR


ST

RS


BT


HA


EL

Engine oil pan Heated oxygen cusensor 2 (rear) SEF932UA

Heated Oxygen Sensor 2 (Rear) (Min. Voltage Monitoring) (Cont'd) **DIAGNOSTIC PROCEDURE**

INSPECTION START 1. Turn ignition switch "OFF". 2. Loosen and retighten engine ground screws.

Α

CLEAR THE SELF-LEARNING DATA

1. Start engine and warm it up to normal operating temperature.

- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0172 detected? Is it difficult to start engine?

OR -

- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase 1st trip DTC memory. Make sure DTC P0000 is displayed.
- 7. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171

No

detected? Is it difficult to start engine?

В

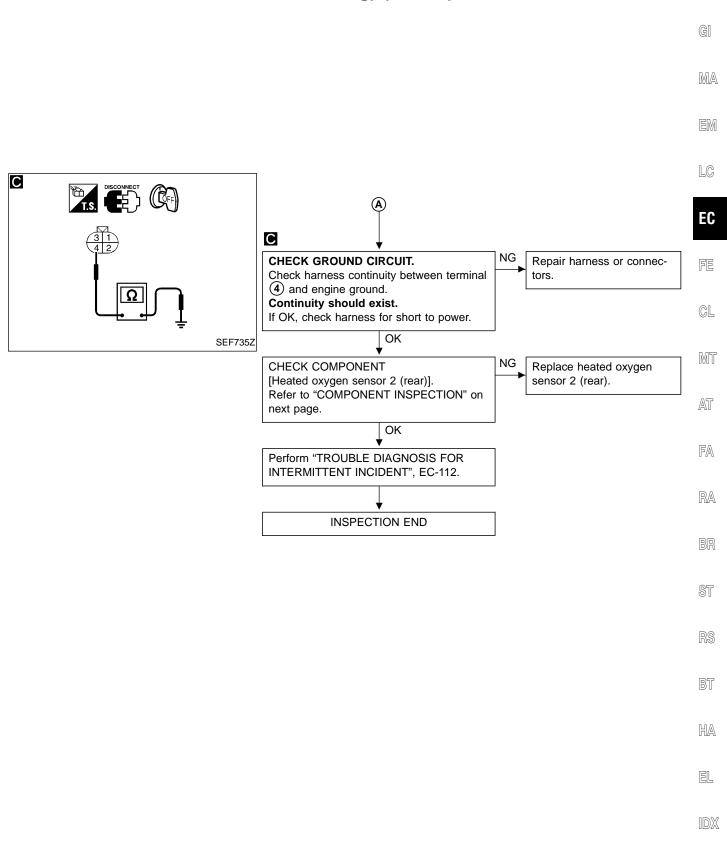
CHECK INPUT SIGNAL CIRCUIT.

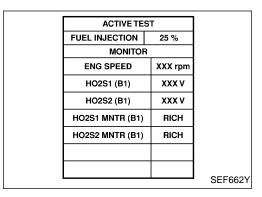
- 1. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector.
- 2. Check harness continuity between ECM terminal 52 and terminal 1. Continuity should exist.
- 3. Check harness continuity between ECM terminal (52) (or terminal (1)) and ground. Continuity should not exist.

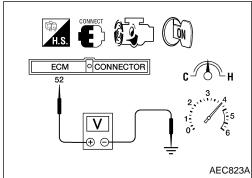
If OK, check harness for short to ground and short to power.

> OK (Go to next page.)

Repair harness or connectors.


NG


Go to "TROUBLE DIAG-


EC-235.

NOSIS FOR DTC P0172".

Heated Oxygen Sensor 2 (Rear) (Min. Voltage Monitoring) (Cont'd)

Heated Oxygen Sensor 2 (Rear) (Min. Voltage Monitoring) (Cont'd) COMPONENT INSPECTION

Heated oxygen sensor 2 (rear)

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- 4) Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

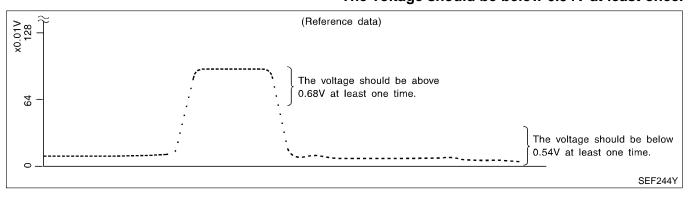
"HO2S2 (B1)" should be above 0.56V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.


- OR

- Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals \$20(sensor signal) and engine ground.
- 4) Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

(Depress and release accelerator pedal as soon as possible.)

The voltage should be above 0.56V at least once. If the voltage is above 0.56V at step 4, step 5 is not necessary.

5) Check the voltage when racing up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). The voltage should be below 0.54V at least once.

Heated Oxygen Sensor 2 (Rear) (Min. Voltage Monitoring) (Cont'd)

CAUTION:

- Discard any heated oxygen sensor which has been

 G dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

MA

LC

EC

FE

CL

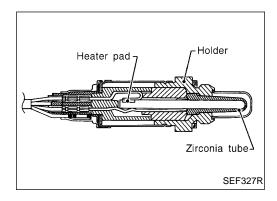
MT

AT

FA

RA

BR


ST

RS

BT

HA

EL

Heated Oxygen Sensor 2 (Rear) (Max. Voltage Monitoring)

COMPONENT DESCRIPTION

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

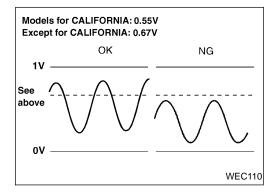
This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONE	DITION	SPECIFICATION
HO2S2 (B1)	• Engine: After warming up	Revving engine from idle to 3,000	0 - 0.3V ↔ Approx. 0.6 - 1.0V
I ● Engine: After warming up	rpm quickly	LEAN ↔ RICH	

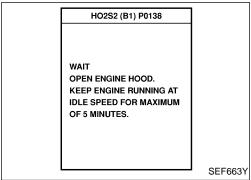

ECM TERMINALS AND REFERENCE VALUE

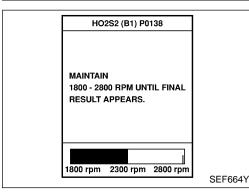
Specification data are reference values and are measured between each terminal and ground.

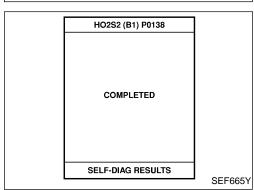
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
52	W	Heated oxygen sensor 2 (rear)	Engine is running. After warming up to normal operating temperature and revving engine from idle to 3,000 rpm quickly	0 - Approximately 1.0V




ON BOARD DIAGNOSIS LOGIC


The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the maximum voltage of the sensor is sufficiently high during the various driving condition such as fuel-cut.

Heated Oxygen Sensor 2 (Rear) (Max. Voltage Monitoring) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	GI
P0138	The maximum voltage from the sensor is not reached to the specified voltage.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) Fuel pressure Injectors Intake air leaks 	MA EM

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "COOLANT TEMP/S" is more than 70°C (158°F).
- 6) Select "HO2S2 (B1) P0138" of "HO2S2 (B1)" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 7) Start engine and follow the instruction of CONSULT-II.
- 8) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-208.

If "CAN NOT BE DIAGNOSED" is displayed, perform the following.

- A) Stop engine and cool down "COOLAN TEMP/SE" to less than 70°C (158°F).
- B) Turn ignition switch "ON".
- C) Select "DATA MONITOR" mode with CONSULT-II.
- D) Start engine.
- E) Perform from step 6) again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

EC

FE

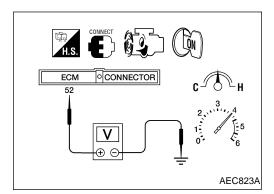
CL

MT

MT

; FA

RA


BR

ST

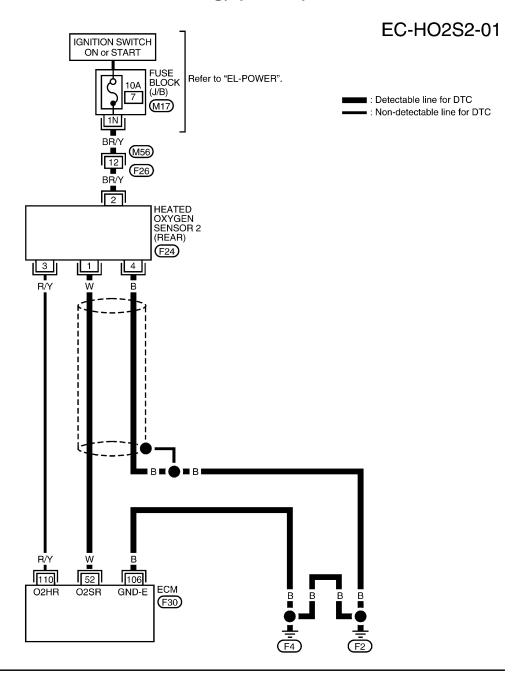
BT

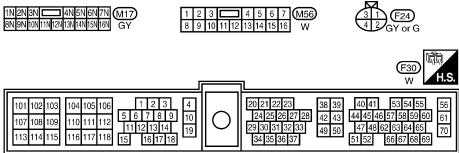
HA

EL

Heated Oxygen Sensor 2 (Rear) (Max. Voltage Monitoring) (Cont'd)

- OR -


OVERALL FUNCTION CHECK


Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals \mathfrak{D} (sensor signal) and engine ground.
- Check the voltage when revving engine up to 4,000 rpm under no load at least 10 times.
 (Depress and release accelerator pedal as soon as possible.)
 - The voltage should be above 0.56V at least once during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T).
 - The voltage should be above 0.56V at least once during this procedure.
- 6)f NG, go to "DIAGNOSTIC PROCEDURE", EC-208.

Heated Oxygen Sensor 2 (Rear) (Max. Voltage Monitoring) (Cont'd)

GI

MA

EM

LC

EC

FE

CL

MT

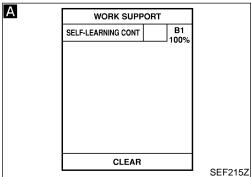
AT

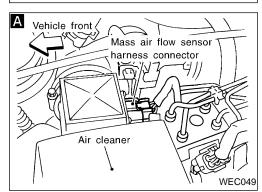
FA

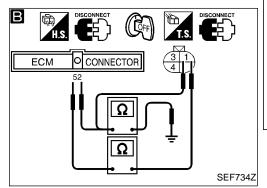
RA

BR

RS


BT


HA


EL

Intake manifold SEF483U

Engine oil pan Heated oxygen cusensor 2 (rear) SEF932UA

Heated Oxygen Sensor 2 (Rear) (Max. Voltage Monitoring) (Cont'd)

Yes

DIAGNOSTIC PROCEDURE

INSPECTION START 1. Turn ignition switch "OFF". 2. Loosen and retighten engine ground screws.

Α

CLEAR THE SELF-LEARNING DATA

1. Start engine and warm it up to normal operating temperature.

- 2. Select "SELF-LEARNING CONT" in "WORK SUPPORT" mode with CONSULT-II.
- 3. Clear the self-learning control coefficient by touching "CLEAR".
- 4. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171 detected? Is it difficult to start engine?

OR

- 2. Turn ignition switch "OFF".
- 3. Disconnect mass air flow sensor harness connector, and restart and run engine for at least 3 seconds at idle speed.
- 4. Stop engine and reconnect mass air flow sensor harness connector.
- 5. Make sure 1st trip DTC P0100 is displayed.
- 6. Erase 1st trip DTC memory. Make sure DTC P0000 is displayed.
- 7. Run engine for at least 10 minutes at idle speed. Is the 1st trip DTC P0171

No

detected? Is it difficult to start engine?

CHECK INPUT SIGNAL CIRCUIT.

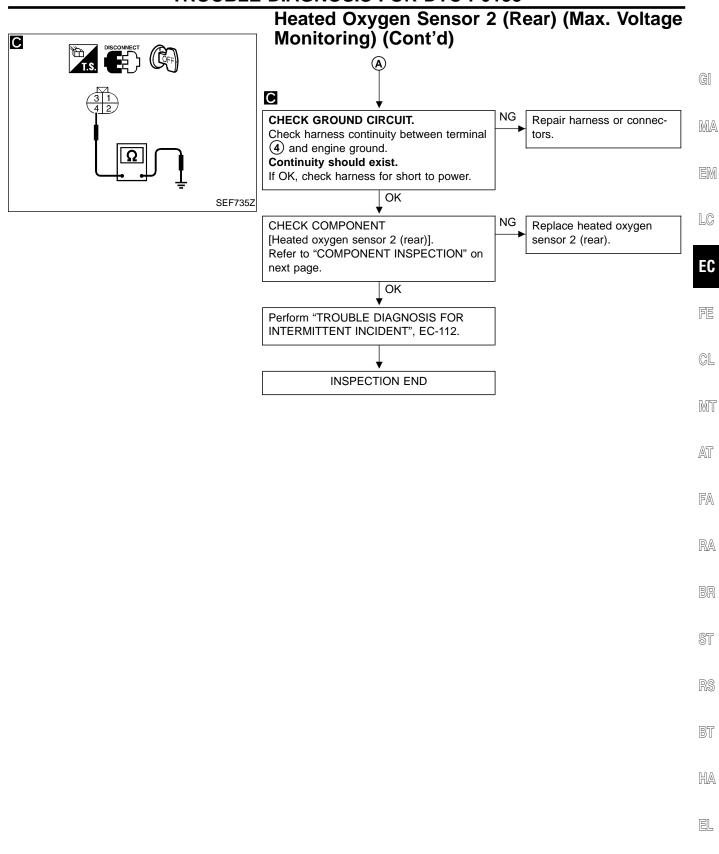
- 1. Disconnect heated oxygen sensor 2 (rear) harness connector and ECM harness connector.
- 2. Check harness continuity between ECM terminal (52) and terminal (1).

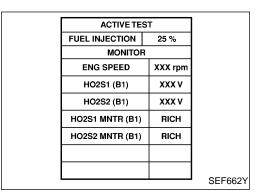
Continuity should exist.

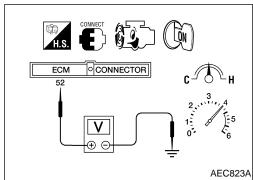
3. Check harness continuity between ECM terminal (52) (or terminal (1)) and ground.

Continuity should not exist.

If OK, check harness for short to ground and short to power.


(Go to next page.)


EC-230.


Go to "TROUBLE DIAG-

NOSIS FOR DTC P0171",

Repair harness or connectors.

Heated Oxygen Sensor 2 (Rear) (Max. Voltage Monitoring) (Cont'd) COMPONENT INSPECTION

Heated oxygen sensor 2 (rear)

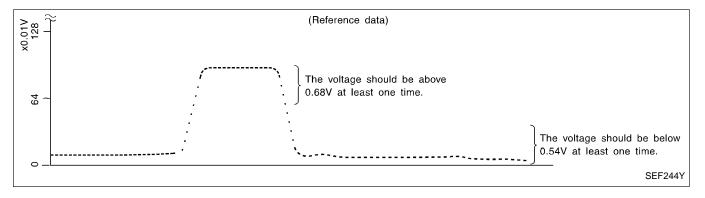
- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- 4) Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

"HO2S2 (B1)" should be above 0.56V at least once when the "FUEL INJECTION" is +25%.

"HO2S2 (B1)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.


1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.

- OR

- Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals (52) (sensor signal) and engine ground.
- 4) Check the voltage when revving up to 4,000 rpm under no load at least 10 times.
 (Depress and release accelerator pedal as soon as

possible.)
The voltage should be above 0.56V at least once. If the voltage is above 0.56V at step 4, step 5 is not necessary.

5) Check the voltage when racing up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). The voltage should be below 0.54V at least once.

Heated Oxygen Sensor 2 (Rear) (Max. Voltage Monitoring) (Cont'd)

CAUTION:

- Discard any heated oxygen sensor which has been

 G dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

MA

LC

EC

FE

CL

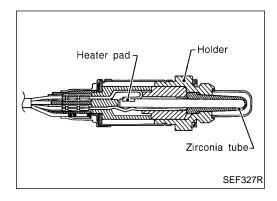
MT

AT

FA

RA

BR


ST

RS

BT

HA

EL

Heated Oxygen Sensor 2 (Rear) (Response Monitoring)

COMPONENT DESCRIPTION

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

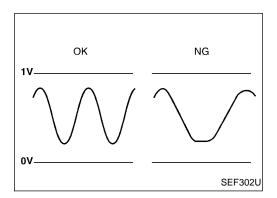
This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)		Revving engine from idle to 3,000 rpm quickly	0 - 0.3V ↔ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)	Engine: After warming up		LEAN ↔ RICH

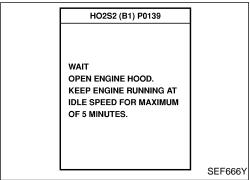

ECM TERMINALS AND REFERENCE VALUE

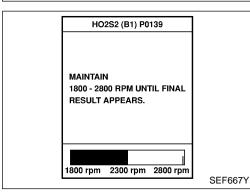
Specification data are reference values and are measured between each terminal and ground.

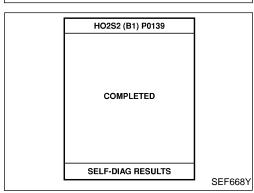
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
52	W	Heated oxygen sensor 2 (rear)	Engine is running. After warming up to normal operating temperature and revving engine from idle to 3,000 rpm quickly	0 - Approximately 1.0V




ON BOARD DIAGNOSIS LOGIC


The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether the switching response of the sensor's voltage is faster than specified during the various driving condition such as fuel-cut.

Heated Oxygen Sensor 2 (Rear) (Response Monitoring) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	GI
P0139	It takes more time for the sensor to respond between rich and lean than the specified time.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear) Fuel pressure Injectors Intake air leaks 	M/

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Open engine hood before conducting following procedure.

- Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "COOLANT TEMP/S" is more than 70°C (158°F).
- 6) Select "HO2S2 (B1) P0139" of "HO2S2 (B1)" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 7) Start engine and follow the instruction of CONSULT-II.
- 8) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If NG is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-216. If "CAN NOT BE DIAGNOSED" is displayed, perform

the following.

A) Step engine and seel down "COOLAN TEMP/SE"

- A) Stop engine and cool down "COOLAN TEMP/SE" to less than 70°C (158°F).
- B) Turn ignition switch "ON".
- C) Select "DATA MONITOR" mode with CONSULT-II.
- D) Start engine.
- E) Perform from step 6) again when the "COOLAN TEMP/S" reaches to 70°C (158°F).

EC

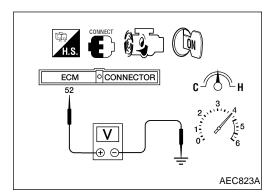
FE

CL

MT

; FA

RA


BR

ST

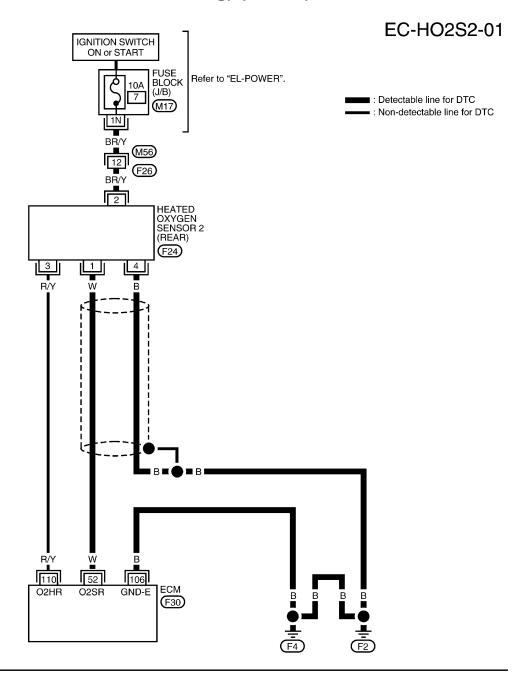
_ _

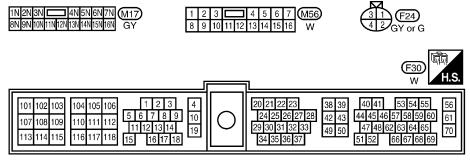
BT

HA

Heated Oxygen Sensor 2 (Rear) (Response Monitoring) (Cont'd)

- OR ·


OVERALL FUNCTION CHECK


Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals (sensor signal) and engine ground.
- Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as possible.)
 - The voltage should change at more than 0.06V for 1 second during this procedure.
 - If the voltage can be confirmed in step 4, step 5 is not necessary.
- 5) Keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T).
 - The voltage should change at more than 0.06V for 1 second during this procedure.
- 6)f NG, go to "DIAGNOSTIC PROCEDURE", EC-216.

Heated Oxygen Sensor 2 (Rear) (Response Monitoring) (Cont'd)

GI

MA

EM

LC

EC

FE

CL

MT

AT

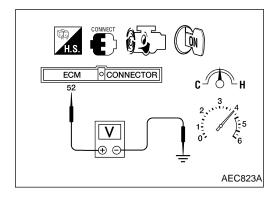
FA

RA

BR


ST

RS


BT

HA

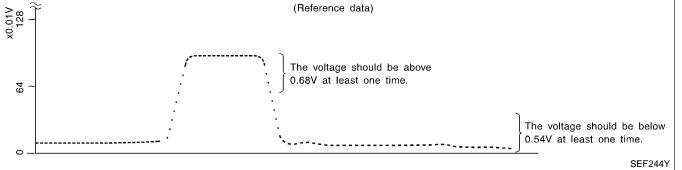
EL

Γ	ACTIVE TES		
	FUEL INJECTION	25 %	
	MONITOR		
	ENG SPEED	XXX rpm	
	HO2S1 (B1) XXX V		
	HO2S2 (B1)	xxx v	
	HO2S1 MNTR (B1)	RICH	
ſ	HO2S2 MNTR (B1)	RICH	
L			SEF662

Heated Oxygen Sensor 2 (Rear) (Response Monitoring) (Cont'd) COMPONENT INSPECTION

Heated oxygen sensor 2 (rear)

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- 4) Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.


"HO2S2 (B1)" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant. - OR

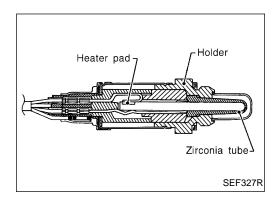
- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals (52) (sensor signal) and ground.
- 4) Check the voltage when revving up to 4,000 rpm under no load at least 10 times. (Depress and release accelerator pedal as soon as
 - possible.) The voltage should be above 0.56V at least once. If the voltage is above 0.56V at step 4, step 5 is not necessary.
- 5) Check the voltage when racing up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). The voltage should be below 0.54V at least once.

HA

GI

MA

EC


RA

BR

Heated Oxygen Sensor 2 (Rear) (Response Monitoring) (Cont'd)

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Heated Oxygen Sensor 2 (Rear) (High Voltage) COMPONENT DESCRIPTION

The heated oxygen sensor 2 (rear), after three way catalyst, monitors the oxygen level in the exhaust gas.

Even if switching characteristics of the heated oxygen sensor 1 (front) are shifted, the air fuel ratio is controlled to stoichiometric, by the signal from the heated oxygen sensor 2 (rear).

This sensor is made of ceramic zirconia. The zirconia generates voltage from approximately 1V in richer conditions to 0V in leaner conditions.

Under normal conditions the heated oxygen sensor 2 (rear) is not used for engine control operation.

GI

MA

EM

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION		SPECIFICATION
HO2S2 (B1)	• Engine: After werming up	Revving engine from idle to 3,000	0 - 0.3V ↔ Approx. 0.6 - 1.0V
HO2S2 MNTR (B1)	Engine: After warming up	rpm quickly	LEAN ↔ RICH

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
52	W	Heated oxygen sensor 2 (rear)	Engine is running. After warming up to normal operating temperature and revving engine from idle to 3,000 rpm quickly	0 - Approximately 1.0V

0K NG

1.4V ----
1V ______

0V ______

SEF305UA

ON BOARD DIAGNOSIS LOGIC

The heated oxygen sensor 2 (rear) has a much longer switching time between rich and lean than the heated oxygen sensor 1 (front). The oxygen storage capacity before the three way catalyst causes the longer switching time. To judge the malfunctions of heated oxygen sensor 2 (rear), ECM monitors whether or not the voltage is too high during the various driving condition such as fuel-cut.

EC

CL

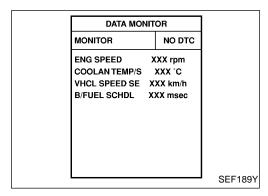
MT

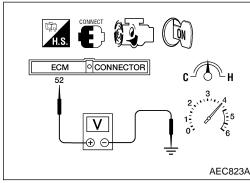
FA

AT

BR

RA


BT


HA

FI

Heated Oxygen Sensor 2 (Rear) (High Voltage) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0140	An excessively high voltage from the sensor is sent to ECM.	 Harness or connectors (The sensor circuit is open or shorted.) Heated oxygen sensor 2 (rear)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Maintain the following conditions for at least 5 consecutive seconds.

ENG SPEED: 1,000 - 3,000 rpm

VHCL SPEED SE: 32 - 120 km/h (20 - 75 MPH)

B/FUEL SCHDL: 3 - 12.5 msec

COOLAN TEMP/S: More 70°C (158°F)

Selector lever: Suitable position

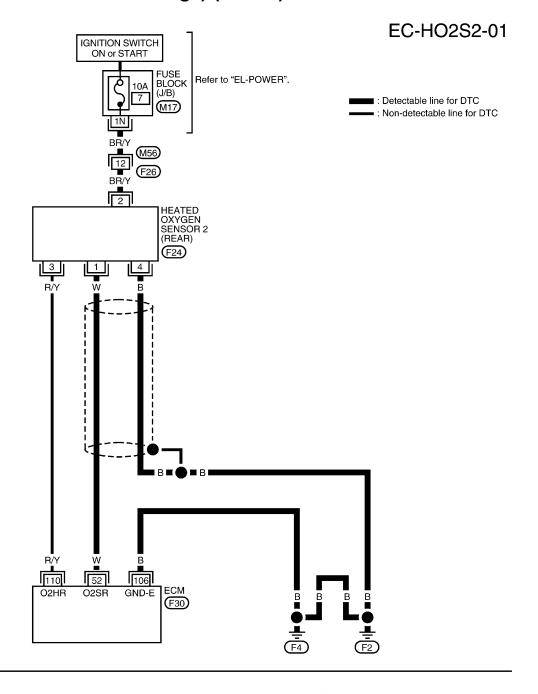
4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-222.

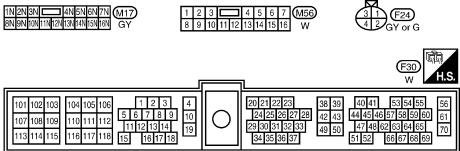
- OR ·

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the heated oxygen sensor 2 (rear) circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals \$\overline{32}\$ (sensor signal) and ground.
- 4) Check the voltage after revving up to 4,000 rpm under no load at least 10 times.


 (Depress and release accelerator pedal as soon as


(Depress and release accelerator pedal as soon as possible.)

The voltage should be below 1.4V during this procedure.

5)f NG, go to "DIAGNOSTIC PROCEDURE", EC-222.

Heated Oxygen Sensor 2 (Rear) (High Voltage) (Cont'd)

GI

MA

EM

LC

EC

FE

CL

MT

AT

FA

RA

BR


ST

RS

BT

HA

EL

ACTIVE TES	-	1
ACTIVE TES	Ī	
FUEL INJECTION	25 %	
MONITOR		
ENG SPEED	XXX rpm	
HO2S1 (B1)	xxx v	
HO2S2 (B1)	xxx v	
HO2S1 MNTR (B1)	RICH	
HO2S2 MNTR (B1)	RICH	
		SEF662Y

Heated Oxygen Sensor 2 (Rear) (High Voltage) (Cont'd)

COMPONENT INSPECTION

Heated oxygen sensor 2 (rear)

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Stop vehicle with engine running.
- Select "FUEL INJECTION" in "ACTIVE TEST" mode, and select "HO2S2 (B1)" as the monitor item with CONSULT-II.
- 4) Check "HO2S2 (B1)" at idle speed when adjusting "FUEL INJECTION" to ±25%.

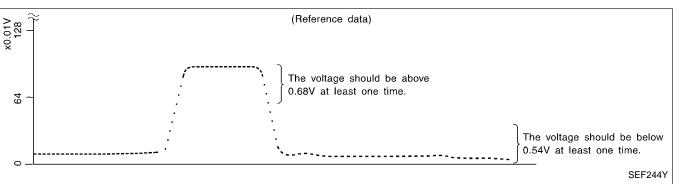
"HO2S2 (B1)" should be above 0.56V at least once when the "FUEL INJECTION" is +25%. "HO2S2 (B1)" should be below 0.54V at least once when the "FUEL INJECTION" is -25%.

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.

- OR -


- 2) Stop vehicle with engine running.
- 3) Set voltmeter probes between ECM terminals (sensor signal) and ground.
- 4) Check the voltage when revving up to 4,000 rpm under no load at least 10 times.

 (Depress and release accelerator pedal as soon as

(Depress and release accelerator pedal as soon as possible.)

The voltage should be above 0.56V at least once. If the voltage is above 0.56V at step 4, step 5 is not necessary.

5) Check the voltage when racing up to 6,000 rpm under no load. Or keep vehicle at idling for 10 minutes, then check the voltage. Or check the voltage when coasting from 80 km/h (50 MPH) in 3rd gear position (M/T), D position with "OD" OFF (A/T). The voltage should be below 0.54V at least once.

EC-223

EC

GI

MA

CL

MT

RA

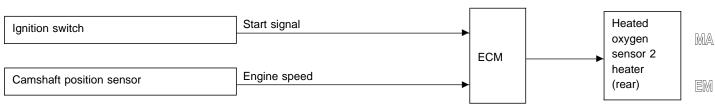
BR

ST

KS

HA

EL


Heated Oxygen Sensor 2 (Rear) (High Voltage) (Cont'd)

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

Heated Oxygen Sensor 2 Heater (Rear)

SYSTEM DESCRIPTION

OPERATION

The ECM performs ON/OFF control of the heated oxygen sensor 2 heater (rear) corresponding to the engine speed.

Engine speed rpm	Heated oxygen sensor 2 heater (rear)
Above 3,000	OFF
Below 3,000	ON

GI

EC

CL

MT

AT

FA

RA

HA

耴

IDX

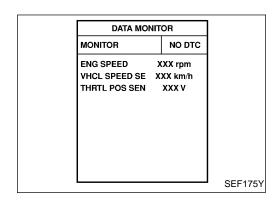
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION	SPECIFICATION
	• Engine speed: Idle [After driving 2 minutes at 70 km/h (43 mph) or more]	ON
HO2S2 HTR (B1)	Engine speed: Above 3,000 rpmIgnition switch: ON (Engine stopped)	OFF

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	BR
			Engine is running. [After driving 2 minutes at 70 km/h (43 mph) or more] Engine speed is below 3,000 rpm	Approximately 0.4V	ST
110	R/Y	Heated oxygen sensor 2 heater (rear)	Ignition switch "ON" Engine stopped	BATTERY VOLTAGE	RS
			Engine is running. Engine speed is above 3,000 rpm)	(11 - 14V	BT

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0141	 The current amperage in the heated oxygen sensor 2 heater (rear) circuit is out of the normal range. [An improper voltage drop signal is sent to ECM through the heated oxygen sensor 2 heater (rear).] 	 Harness or connectors [The heated oxygen sensor 2 heater (rear) circuit is open or shorted.] Heated oxygen sensor 2 heater (rear) 	

Heated Oxygen Sensor 2 Heater (Rear) (Cont'd)

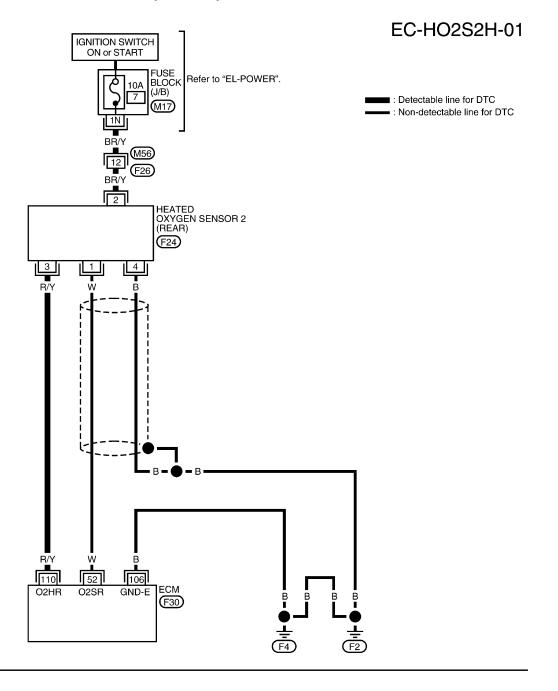
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

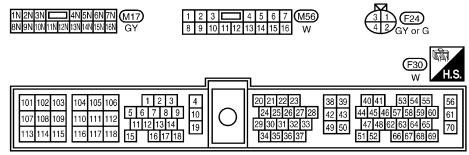
NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is in between 10.5V and 16V.


- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-228.


OR ·

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- 4) Select "MODE 3" with GST.
- 5) If DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-228.
- When using GST, "DIAGNOSTIC TROUBLE CODE CON-FIRMATION PROCEDURE" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

Heated Oxygen Sensor 2 Heater (Rear) (Cont'd)

GI

MA

EM

LC

EC

FE

CL

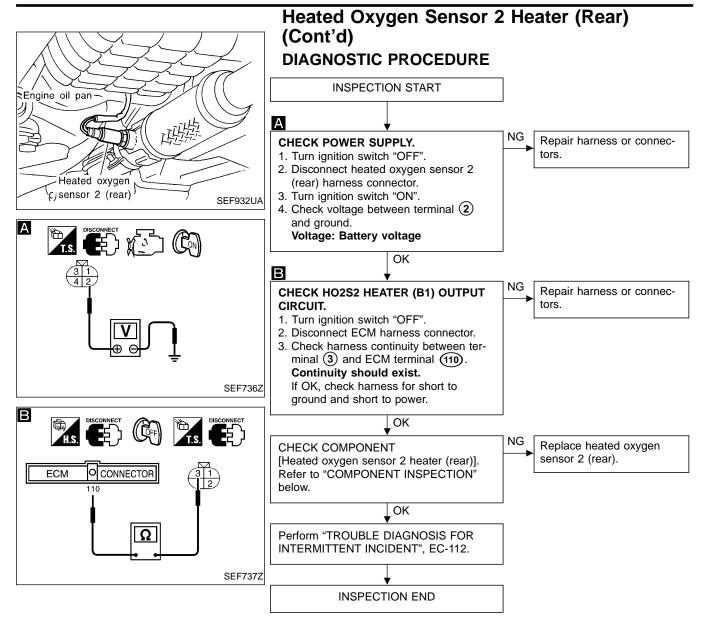
MT

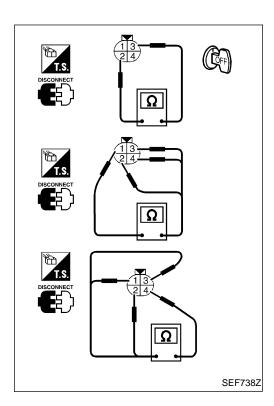
AT

FA

RA

BR


ST


RS

BT

HA

EL

Heated Oxygen Sensor 2 Heater (Rear) (Cont'd)

COMPONENT INSPECTION

Heated oxygen sensor 2 heater (rear)

Check the following.

1. Check resistance between terminals ② and ③. Resistance: 2.3 - 4.3Ω at 25°C (77°F)

2. Check continuity.

Terminal No.	Continuity
1 and 2, 3, 4	- No
④ and ①, ②, ③	INO

If NG, replace the heated oxygen sensor 2 (rear).

CAUTION:

- Discard any heated oxygen sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.
- Before installing new oxygen sensor, clean exhaust system threads using Oxygen Sensor Thread Cleaner tool J-43897-18 or J-43897-12 and approved anti-seize lubricant.

GI

MA

EM

LC

EC

ee.

CL

MT

AT FA

RA

BR

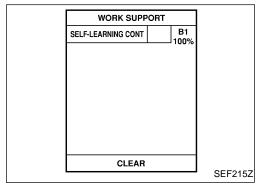
ST

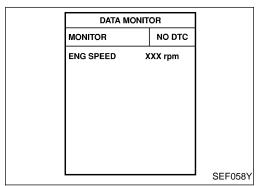
RS

BT

HA

EL


Fuel Injection System Function (Lean side)


ON BOARD DIAGNOSIS LOGIC

With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1 (front). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios

In case the amount of the compensation value is extremely large (The actual mixture ratio is too lean.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

Heated oxygen sens	or 1 (front) Density of oxygen in exhaust ga (Mixture ratio feedback signal)	ECM Injectors
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0171	 Fuel injection system does not operate prope The amount of mixture ratio compensation is mixture ratio is too lean.) 	·

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON" and select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CON-SULT-II.
- Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- Start engine again and let it idle for at least 10 minutes.

The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists.

Fuel Injection System Function (Lean side) (Cont'd)

- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction.
- 8) Crank engine while depressing accelerator pedal. If

1st trip DTC is detected and engine starts, go to "DIAGNOSTIC PROCEDURE", EC-233. If engine does not start, visually check for exhaust and intake air leak.

GI

- OR ·

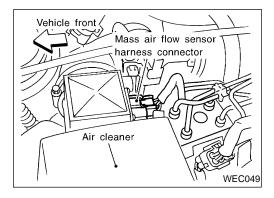
- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- Disconnect mass air flow sensor harness connector. Then restart and run engine for at least 3 seconds at idle speed.
- 4) Stop engine and reconnect mass air flow sensor harness connector.
- 5) Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.
- 6) Select "MODE 4" with GST and erase the 1st trip DTC P0100.
- Start engine again and run it for at least 10 minutes at idle speed. 8) Select "MODE 7" with GST. The 1st trip DTC P0171
- should be detected at this stage, if a malfunction exists.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If engine starts, go to "DIAGNOSTIC PROCEDURE", EC-233. If 1st trip DTC is detected and engine does not start, visually check for exhaust and intake air leak.

EC

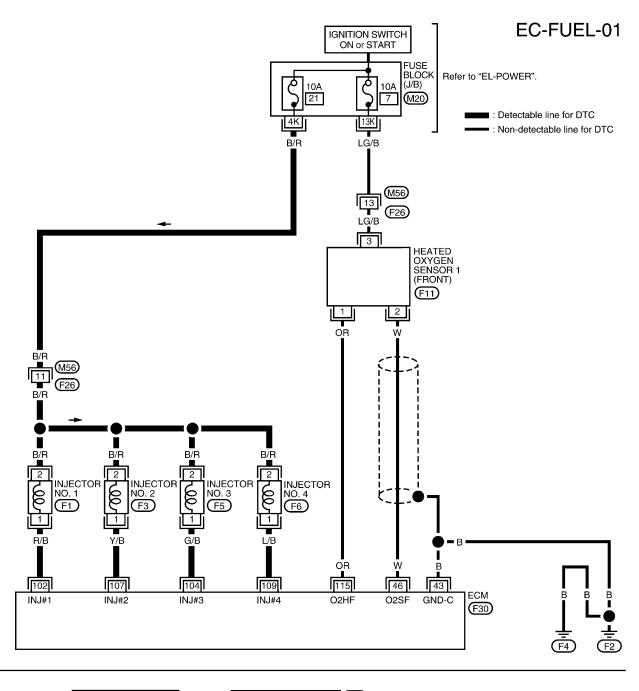
MT

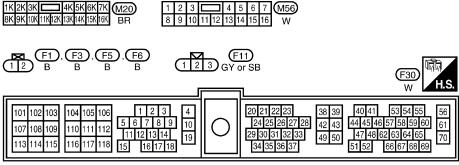
FA

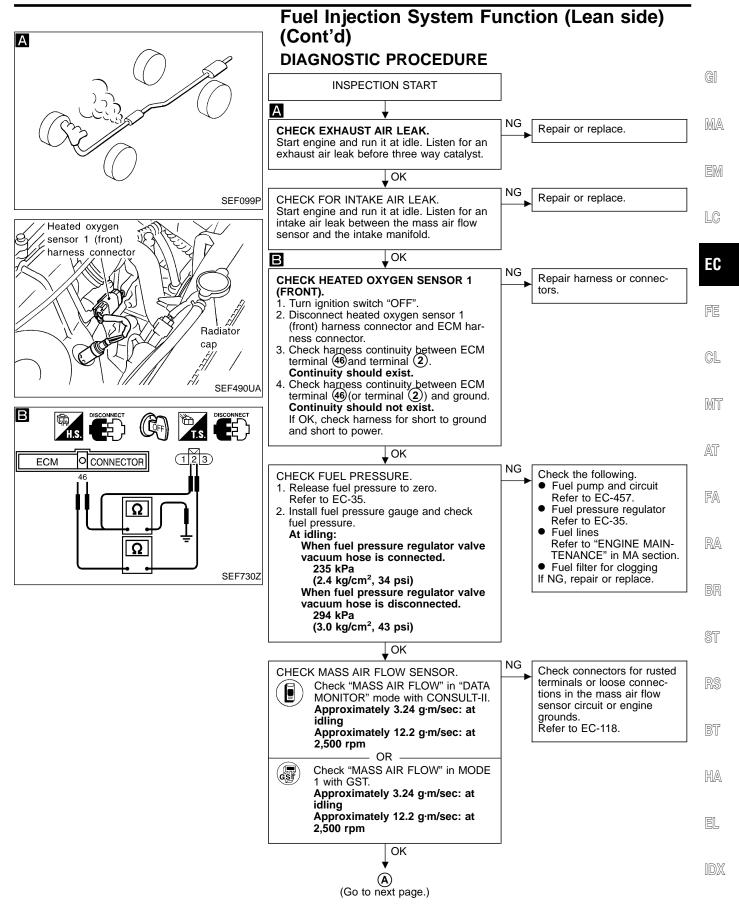
RA

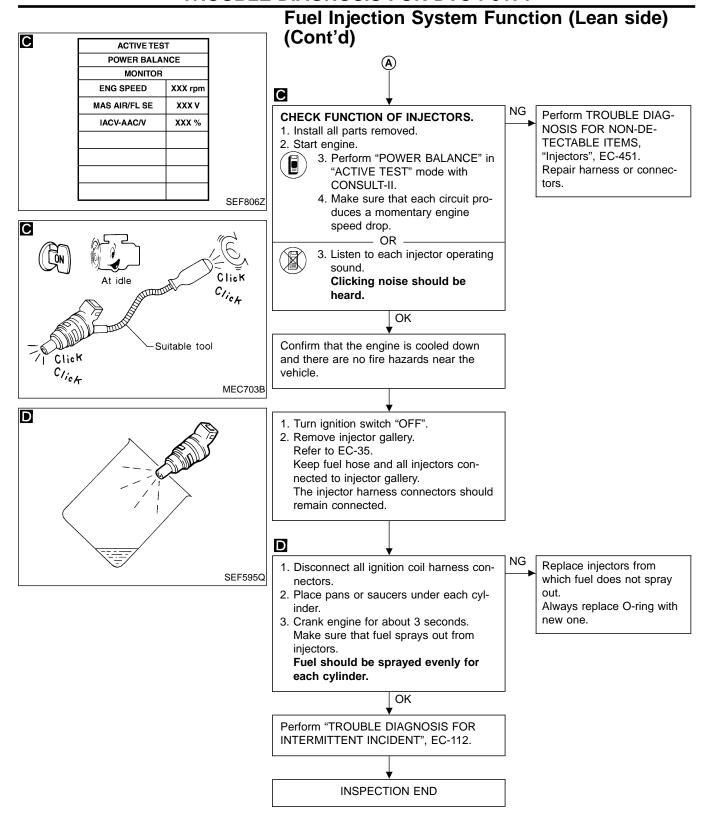

ST

BT


HA


耴


IDX



Fuel Injection System Function (Lean side) (Cont'd)

Fuel Injection System Function (Rich side)

MA

EM

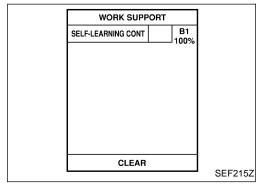
LC

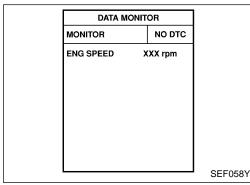
EC

Mh

RA

HA


ON BOARD DIAGNOSIS LOGIC


With the Air/Fuel Mixture Ratio Self-Learning Control, the actual mixture ratio can be brought closely to the theoretical mixture ratio based on the mixture ratio feedback signal from the heated oxygen sensor 1 (front). The ECM calculates the necessary compensation to correct the offset between the actual and the theoretical ratios.

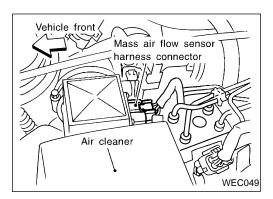
In case the amount of the compensation value is extremely large (The actual mixture ratio is too rich.), the ECM judges the condition as the fuel injection system malfunction and light up the MIL (2 trip detection logic).

	¬ Density of oxygen in exhaust gas		7	
Heated oxygen sensor 1 (front)	(Mixture ratio feedback signal)	ECM	 	Injectors
	•			

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0172	 Fuel injection system does not operate properly. The amount of mixture ratio compensation is too large. (The mixture ratio is too rich.) 	 Heated oxygen sensor 1 (front) Injectors Exhaust gas leaks 	
		Incorrect fuel pressureMass air flow sensor	

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

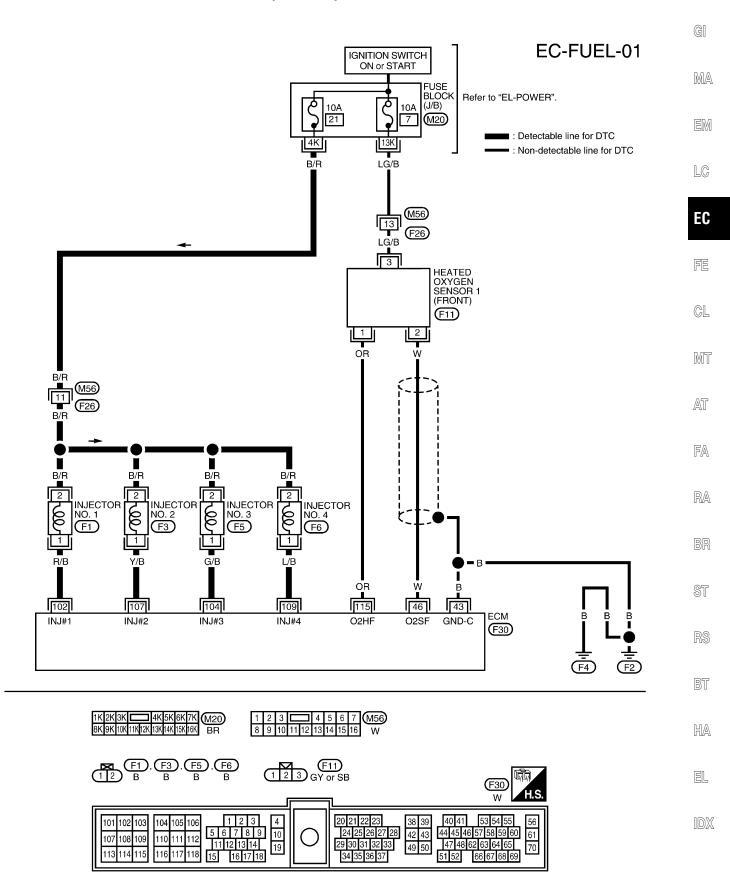
NOTE:

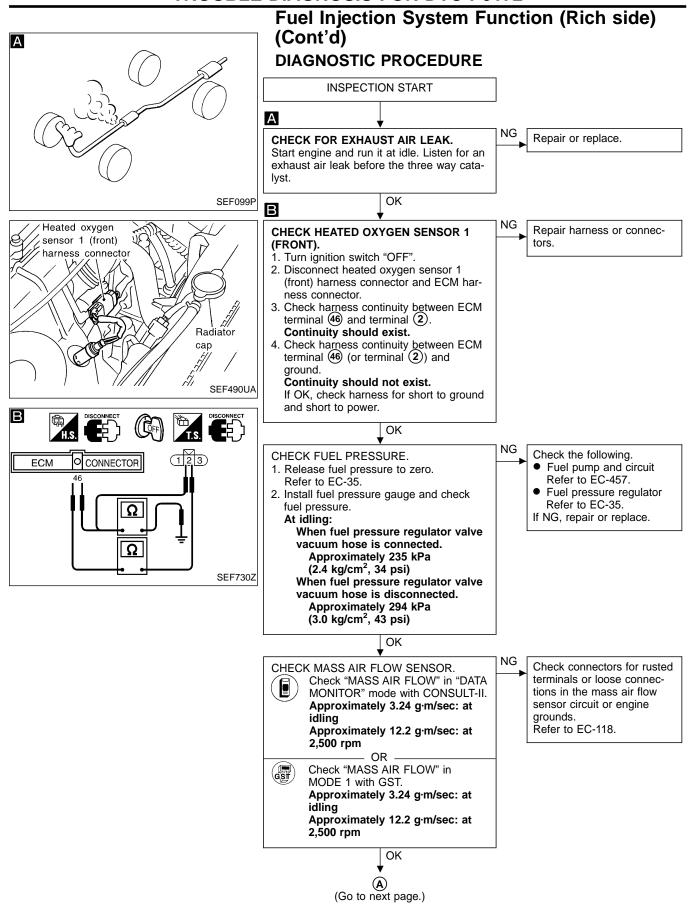

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

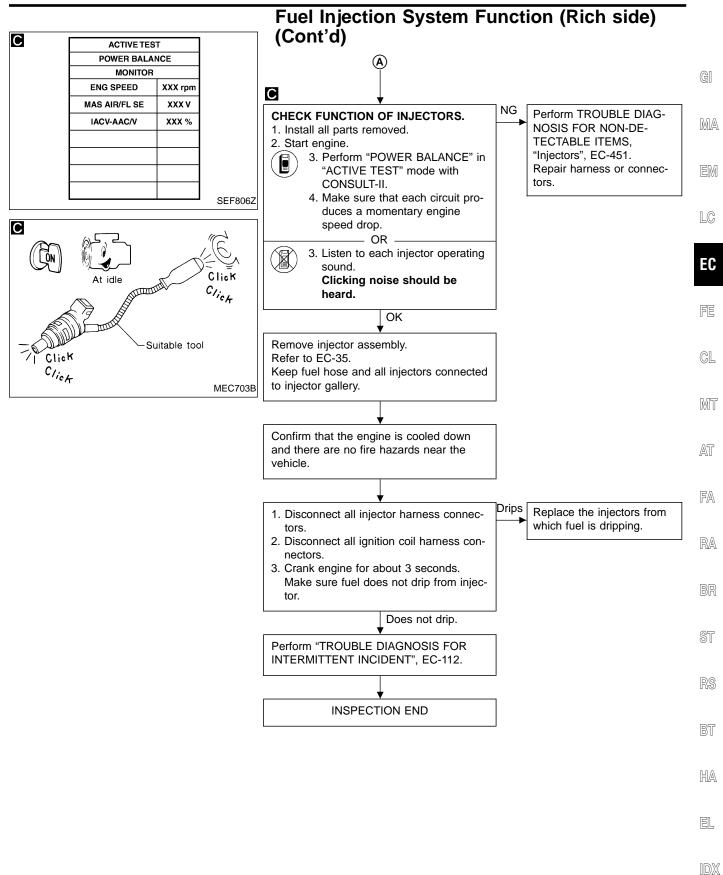
- Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON" and select "SELF-LEARN CONTROL" in "WORK SUPPORT" mode with CON-SULT-II.
- 4) Clear the self-learning control coefficient by touching "CLEAR".
- 5) Select "DATA MONITOR" mode with CONSULT-II.
- 6) Start engine again and let it idle for at least 10 minutes.
 - The 1st trip DTC P0172 should be detected at this stage, if a malfunction exists.
- 7) If it is difficult to start engine at step 6, the fuel injection system has a malfunction.
- Crank engine while depressing accelerator pedal. If 1st trip DTC is detected and engine starts, go to "DIAGNOSTIC PROCEDURE", EC-238. If engine does not start, remove ignition plugs and check for fouling, etc.

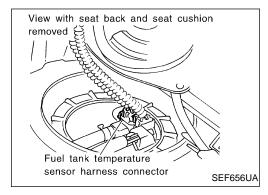
- OR ----- IDX

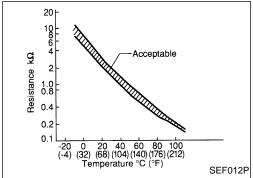
EC-235




Fuel Injection System Function (Rich side) (Cont'd)




- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Disconnect mass air flow sensor harness connector.
 Then restart and run engine for at least 3 seconds at idle speed.
- 4) Stop engine and reconnect mass air flow sensor harness connector.
- 5) Select "MODE 7" with GST. Make sure 1st trip DTC P0100 is detected.
- 6) Select "MODE 4" with GST and erase the 1st trip DTC P0100.
- 7) Start engine again and run it for at least 10 minutes at idle speed.
- 8) Select "MODE 7" with GST. The 1st trip DTC P0171 should be detected at this stage, if a malfunction exists.
- 9) If it is difficult to start engine at step 8, the fuel injection system has a malfunction.
- 10) Crank engine while depressing accelerator pedal. If 1st trip DTC is detected and engine starts, go to "DIAGNOSTIC PROCEDURE", EC-233. If engine does not start, remove ignition plugs and check for fouling, etc.

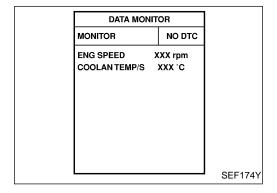

Fuel Injection System Function (Rich side) (Cont'd)

Fuel Tank Temperature Sensor COMPONENT DESCRIPTION

The fuel tank temperature sensor is used to detect the fuel temperature inside the fuel tank. The sensor modifies a voltage signal from the ECM. The modified signal returns to the ECM as the fuel temperature input. The sensor uses a thermistor which is sensitive to the change in temperature. The electrical resistance of the thermistor decreases as temperature increases.

<Reference data>

Fluid temperature °C (°F)	Voltage* V	Resistance k Ω
20 (68)	3.5	2.3 - 2.7
50 (122)	2.2	0.79 - 0.90


^{*:} These data are reference values and are measured between ECM terminal (3) (Fuel tank temperature sensor) and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Causes)
P0180	 An excessively high or low voltage is sent to ECM. Rationally incorrect voltage is sent to ECM, compared with the voltage signals from engine coolant temperature sensor and intake air temperature sensor. 	 Harness or connectors (The sensor circuit is open or shorted.) Fuel tank temperature sensor

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 10 seconds.

Fuel Tank Temperature Sensor (Cont'd)

If the result is NG, go to "DIAGNOSTIC PROCEDURE", EC-243.

If the result is OK, go to following step.

NOTE: If "COOLAN TEMP/S" is already less than 60°C (140°F) before step 4), the result will be OK. If "COOLAN TEMP/S" is above 60°C (140°F), go to the following step.

- 4) Cool engine down until "COOLAN TEMP/S" is less than 60°C (140°F).
- 5) Wait at least 10 seconds.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-243.

- OR -

- 1) Turn ignition switch "ON" and wait at least 10 seconds.
- Select "MODE 7" with GST.
 If the result is NG, go to "DIAGNOSTIC PROCEDURE", EC-243.
 If the result is OK, go to following step.
- 3) Select "MODE 1" with GST and check for the engine coolant temperature.
- 4) Cool engine down until the engine coolant temperature is less than 60°C (140°F). If the temperature is already less than 60°C (140°F) before step 4), the result will be OK.
- 5) Wait at least 10 seconds.
- 6) Select "MODE 7" with GST.
- 7) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-243.

GI

MA

EM

LC

EC

FE

CL

VL

AT

AT

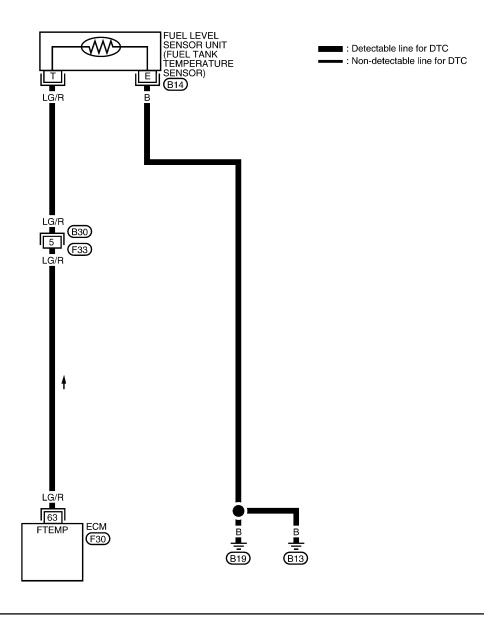
FA

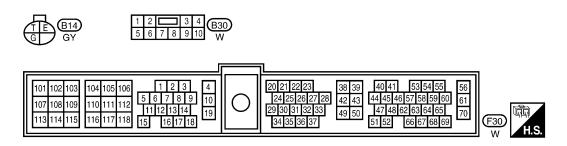
RA

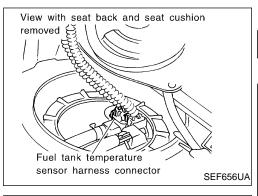
BR

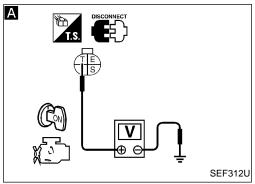
T9

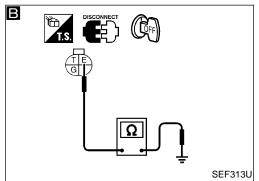
RS

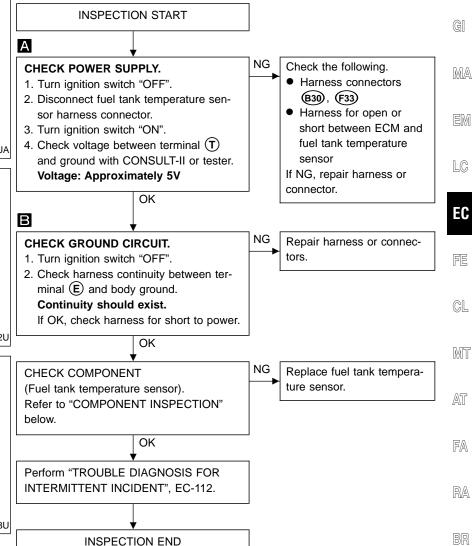

BT

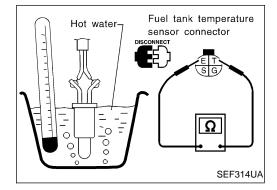

HA


IDX


Fuel Tank Temperature Sensor (Cont'd)


EC-FTTS-01





Fuel Tank Temperature Sensor (Cont'd) DIAGNOSTIC PROCEDURE

COMPONENT INSPECTION

Fuel tank temperature sensor

Check resistance by heating with hot water or heat gun as shown in the figure.

BT

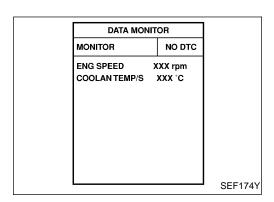
HA

Temperature °C (°F)	Resistance k Ω
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel tank temperature sensor.

No. 4 - 1 Cylinder Misfire, Multiple Cylinder Misfire

ON BOARD DIAGNOSIS LOGIC


When a misfire occurs, engine speed will fluctuate (vary). If the engine speed fluctuates enough to cause the crankshaft position sensor (POS) to vary, ECM can determine that a misfire is occurring.

Sensor	Input Signal to ECM	ECM function
Crankshaft position sensor (OBD)	Engine speed	On board diagnosis of misfire

The misfire detection logic consists of the following two conditions.

- 1. One Trip Detection Logic (Three Way Catalyst Damage)
 - On the first trip that a misfire condition occurs that can damage the three way catalyst (TWC) due to overheating, the MIL will blink.
 - When a misfire condition occurs, the ECM monitors the crankshaft position sensor (POS) signal every 200 engine revolutions, for a change.
 - When the misfire conditions decreases to a level that will not damage the TWC, the MIL will turn off. If another misfire conditions occurs that can damage the TWC on a second trip, the MIL will blink. When the misfire condition decreases to a level that will not damage the TWC, the MIL will remain on. If another misfire condition occurs that can damage the TWC, the MIL will begin to blink again.
- 2. Two Trip Detection Logic (Exhaust quality deterioration)
 For misfire conditions that will not cause damage to the TWC (but will affect vehicle emissions), the MIL will only light when the misfire is detected on a second trip. During this condition, the ECM monitors the crankshaft position sensor (POS) signal every 1,000 engine revolutions.
 A misfire malfunction can be detected on any one cylinder or on multiple cylinders.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0300	Multiple cylinders misfire.	Improper spark plug Insufficient compression
P0301	No. 1 cylinder misfires.	Incorrect fuel pressure EGR valve The injector circuit is open or shorted
P0302	No. 2 cylinder misfires.	Injectors Intake air leak
P0303	No. 3 cylinder misfires.	The ignition secondary circuit is open or shorted Lack of fuel Drive plate/Flywheel
P0304	No. 4 cylinder misfires.	Heated oxygen sensor 1 (front) Incorrect distributor rotor

No. 4 - 1 Cylinder Misfire, Multiple Cylinder Misfire (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE (Overall)

CAUTION:

Always drive vehicle at a safe speed.

NOTE

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

- 1) Turn ignition switch "ON", and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Start engine again and drive at 1,500 3,000 rpm for at least 3 minutes.

Hold the accelerator pedal as steady as possible.

Note: Refer to the freeze frame data for the test

driving conditions.5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-246.

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Start engine again and drive at 1,500 3,000 rpm for at least 3 minutes.

Hold the accelerator pedal as steady as possible.

Note: Refer to the freeze frame data for the test driving conditions.

- 4) Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-246.

GI

MA

EM

LG

EC

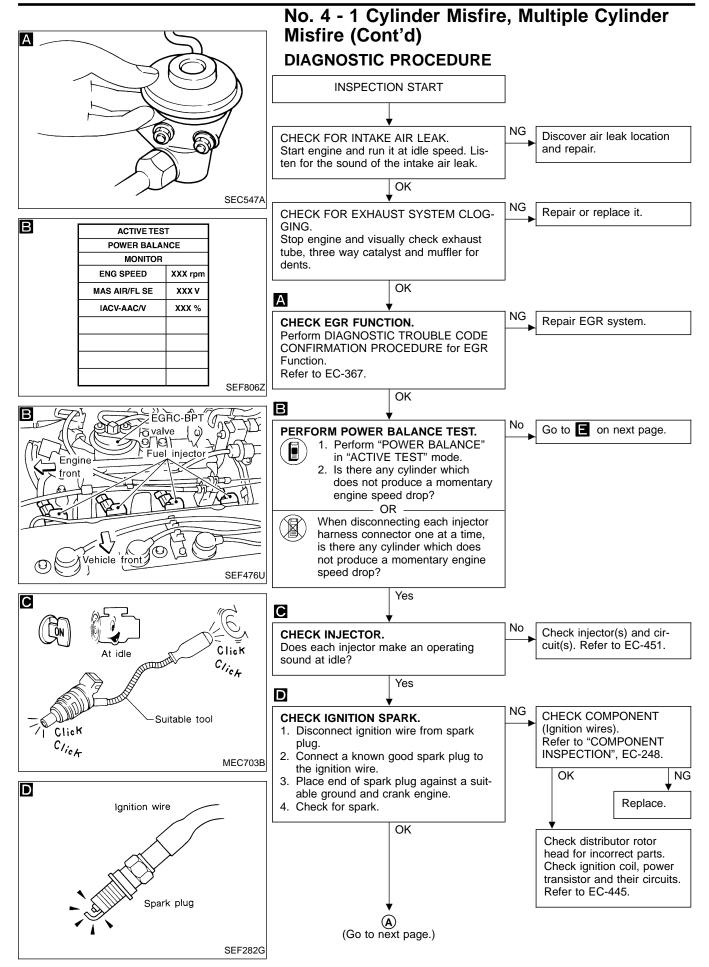
CL

 \mathbb{MT}

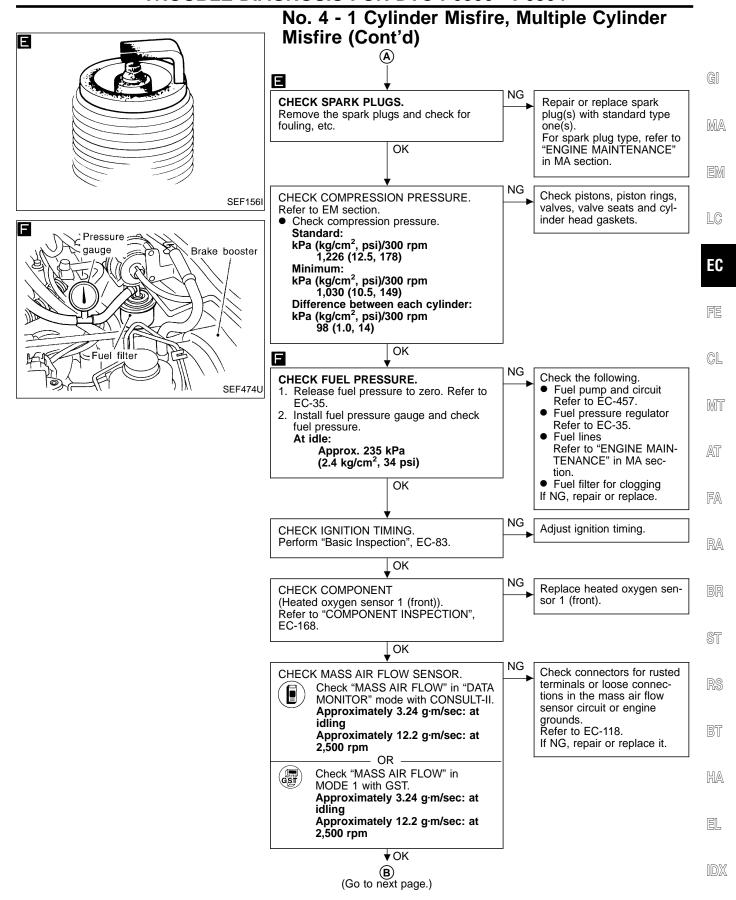
W25

FA

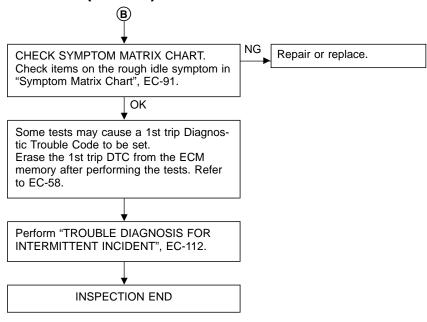
RA


@F

KS

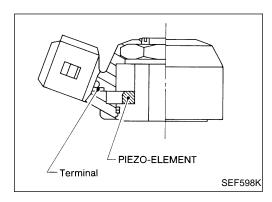

BT

HA


EL

EC-246

No. 4 - 1 Cylinder Misfire, Multiple Cylinder Misfire (Cont'd)


COMPONENT INSPECTION

Ignition wires

- Inspect wires for cracks, damage, burned terminals and for improper fit.
- Measure the resistance of wires to their distributor cap terminal. Move each wire while testing to check for intermittent breaks

Resistance:

13.6 - 18.4 k Ω /m (4.15 - 5.61 k Ω /ft) at 25°C (77°F) If the resistance exceeds the above specification, inspect ignition wire to distributor cap connection. Clean connection or replace the ignition wire with a new one.

Knock Sensor (KS)

COMPONENT DESCRIPTION

The knock sensor is attached to the cylinder block. It senses engine knocking using a piezoelectric element. A knocking vibration from the cylinder block is sensed as vibrational pressure. This pressure is converted into a voltage signal and sent to the ECM.

٩I

MA

EM

LG

EC

MT

FA

RA

BR

BT

HA

耴

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
54	W	Knock sensor	Engine is running. Idle speed	Approximately 2.5V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0325	 An excessively low or high voltage from the knock sensor is sent to ECM. 	 Harness or connectors (The knock sensor circuit is open or shorted.) Knock sensor

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

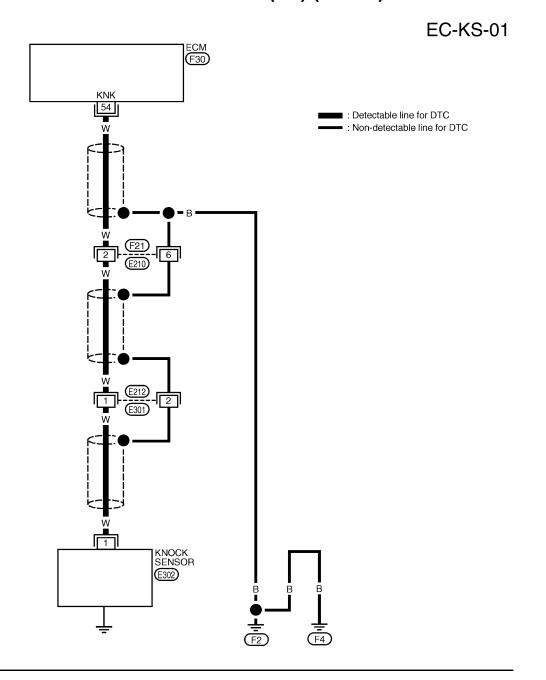
TESTING CONDITION:

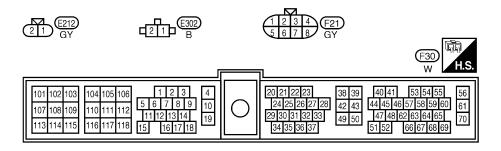
Before performing the following procedure, confirm that battery voltage is more than 10V.

1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.

^{*} Freeze frame data will not be stored in the ECM for the knock sensor. The MIL will not light for knock sensor malfunction. The knock sensor has one trip detection logic.

Knock Sensor (KS) (Cont'd)


- 2) Start engine and run it for at least 5 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-252.


– OR -

- 1) Start engine and run it for at least 5 seconds at idle speed.
- 2) Select "MODE 3" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-252.

Knock Sensor (KS) (Cont'd)

LEC652

GI

MA

EM

LC

EC

FE

CL

MT

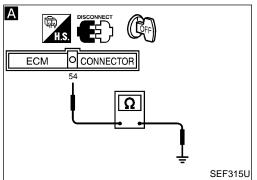
AT

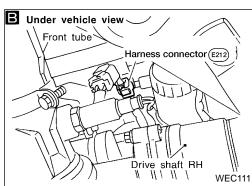
FA

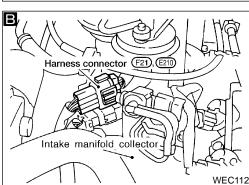
RA

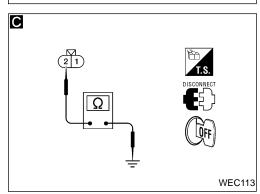
BR

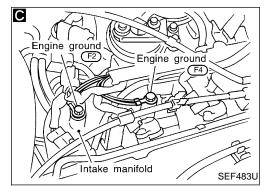
ST

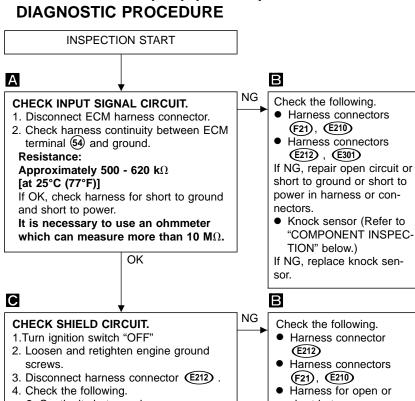

RS


BT

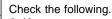

HA


EL


IDX

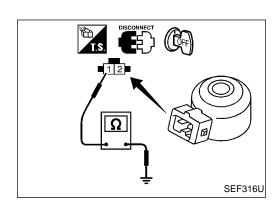


Knock Sensor (KS) (Cont'd) **DIAGNOSTIC PROCEDURE**


 Continuity between harness connector (E212) terminal (2) and ground Continuity should exist.

If OK, check harness for short to power. Then reconnect harness connector (E212) .

OK


Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-112.

INSPECTION END

- Harness connector
- Harness connectors (F21), (E210)
- Harness for open or short between connectors (E212) and (E210)
- Harness for open or short between connector (F21) and ground

If NG, repair open circuit or short to power in harness or connectors.

Knock Sensor (KS) (Cont'd) COMPONENT INSPECTION

Knock sensor

- Use an ohmmeter which can measure more than 10 M Ω .
- 1. Disconnect knock sensor harness connector.
- Check resistance between terminal ①and ground.
 Resistance: 500 620 kΩ [at 25°C (77°F)]

CAUTION:

Do not use any knock sensors that have been dropped or physically damaged. Use only new ones.

GI

 $\mathbb{M}\mathbb{A}$

LC

EC

FE

CL

MT

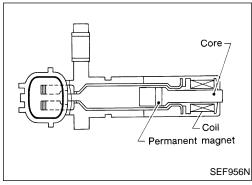
AT

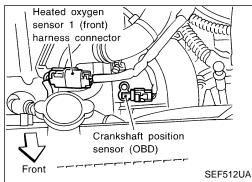
FA

RA

BR

ST


RS


BT

HA

EL

 $\mathbb{D}\mathbb{X}$

Crankshaft Position Sensor (CKPS) (OBD) COMPONENT DESCRIPTION

The crankshaft position sensor (OBD) is located on the transaxle housing facing the gear teeth (cogs) of the flywheel or drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil. When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

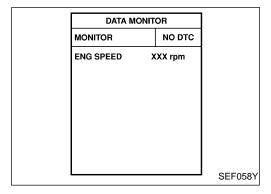
The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not directly used to control the engine system. It is used only for on board diagnosis.

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (AC Voltage)
53	BR	Crankshaft position sensor	Engine is running. (Warm-up condition) Idle speed Approximately 0.5V (V) 4 2 0.2 ms SEFE Approximately 0V (V) 4 2 Approximately 0V	
		(OBD)	Engine is running. Engine speed is 2,000 rpm	

Crankshaft Position Sensor (CKPS) (OBD) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0335	 The proper pulse signal from the crankshaft position sensor (OBD) is not sent to ECM while the engine is running at the specified engine speed. 	 Harness or connectors [The crankshaft position sensor (OBD) circuit is open.] Crankshaft position sensor (OBD)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 2) Start engine and run it for at least 15 seconds at idle speed.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-257.

- 1) Start engine and run it for at least 15 seconds at idle speed.
- 2) Select "MODE 7" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-257.

GI

MA

EM

LC

EC

CL

MT

202 2

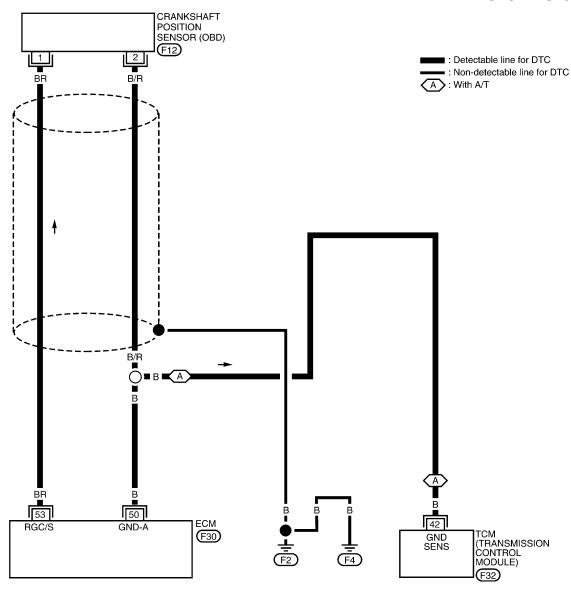
RA

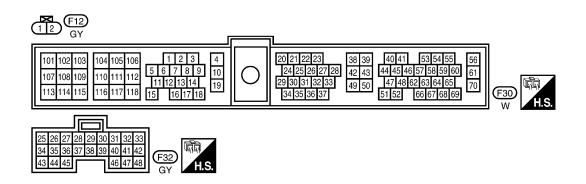
BR

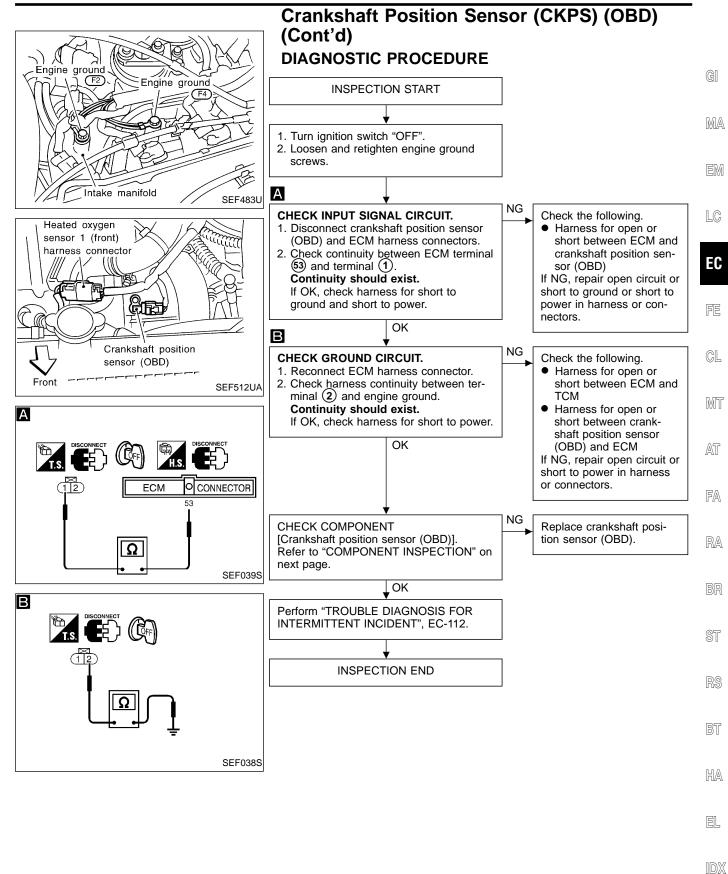
ST

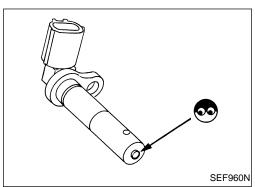
D@

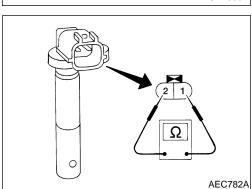
BT

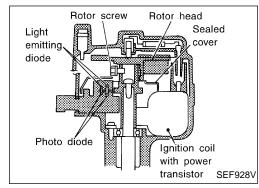

HA

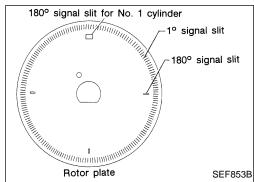

EL


IDX


Crankshaft Position Sensor (CKPS) (OBD) (Cont'd)


EC-CKPS-01


Crankshaft Position Sensor (CKPS) (OBD) (Cont'd)


COMPONENT INSPECTION

Crankshaft position sensor (OBD)

- Disconnect crankshaft position sensor (OBD) harness connector.
- 2. Loosen the fixing bolt of the sensor.
- 3. Remove the sensor.
- 4. Visually check the sensor for chipping.
- Check resistance as shown in the figure.
 Resistance: Approximately 512 632Ω
 [at 25°C (77°F)]

If NG, replace crankshaft position sensor (OBD).

Camshaft Position Sensor (CMPS) COMPONENT DESCRIPTION

The camshaft position sensor is a basic component of the engine control system. It monitors engine speed and piston position. These input signals to the ECM are used to control fuel injection, ignition timing and other functions.

The camshaft position sensor has a rotor plate and a waveforming circuit. The rotor plate has 360 slits for a 1° (POS) signal and 4 slits for a 180° (REF) signal. The wave-forming circuit consists of Light Emitting Diodes (LED) and photo diodes.

The rotor plate is positioned between the LED and the photo diode. The LED transmits light to the photo diode. As the rotor plate turns, the slits cut the light to generate rough-shaped pulses. These pulses are converted into on-off signals by the wave-forming circuit and sent to the ECM.

The distributor is not repairable and must be replaced as an assembly except distributor cap and rotor head.

NOTE:

The rotor screw which secures distributor rotor head to the distributor shaft must be torqued properly.

№: 3.3 - 3.9 N·m(0.34 - 0.40 kg-m, 29.5 - 34.7 in-lb)

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
4	W/G	ECM relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF"	0 - 1V	[<u></u>
			Ignition switch "OFF" A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)	

GI

MA

∃MI

_C

EC

FE

CL

MT

AT

FA

RA

BR

ST

RS

BT

HA

EL

 \mathbb{Z}

Camshaft Position Sensor (CMPS) (Cont'd)

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
		Camshaft position sensor	Engine is running. (Warm-up condition) Idle speed	Approximately 2.5V (V) 10 5 0 0.2ms SEF195T
40	B/W	(Position signal)	Engine is running. Engine speed is 2,000 rpm.	Approximately 2.3 - 2.5V (V) 10 5 0 0.2ms
				0.1 - 0.5V
			Engine is running. (Warm-up condition) Idle speed	(V) 10 5 0
41	L	Camshaft position sensor (Reference signal)		0.2 - 0.4V
			Engine is running. Engine speed is 2,000 rpm.	(V) 10 5 0 10ms
56	W/R	Dower gupply for ECM	Ignition quitab "ON"	BATTERY VOLTAGE
61	W/R	Power supply for ECM	Ignition switch "ON"	(11 - 14V)

Camshaft Position Sensor (CMPS) (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	GI
P0340	A) Either 1° or 180° signal is not sent to ECM for the first few seconds during engine cranking.	 Harness or connectors (The camshaft position sensor circuit is open or shorted.) Camshaft position sensor 	MA
	B) Either 1° or 180° signal is not sent to ECM often enough while the engine speed is higher than the specified engine speed.	 Starter motor (Refer to EL section.) Starting system circuit (Refer to EL section.) Dead (Weak) battery 	EM
	C) The relation between 1° and 180° signal is not in the normal range during the specified engine speed.		LC -

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B and C".

EC

⊚п

FE

GL

MT

DATA MONITOR MONITOR NO DTC ENG SPEED XXX rpm

Procedure for malfunction A

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

BR

BT

HA

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

- OR -

SEF058Y

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Crank engine for at least 2 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-264.

- 1) Crank engine for at least 2 seconds.
- 2) Select "MODE 7" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-264.

DATA MONITOR

MONITOR NO DTC

ENG SPEED XXX rpm

SEF058Y

Procedure for malfunction B and C

NOTE:

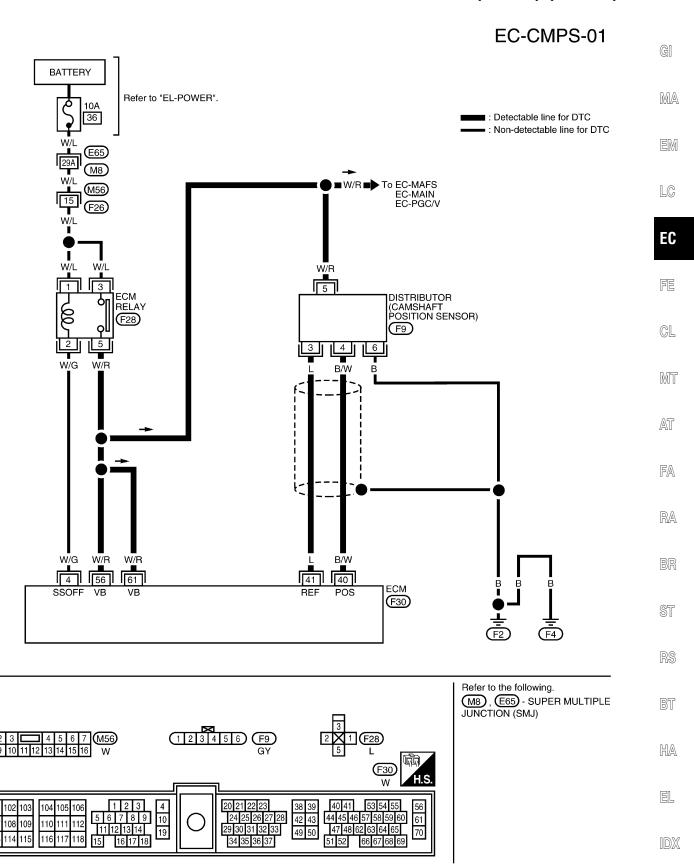
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

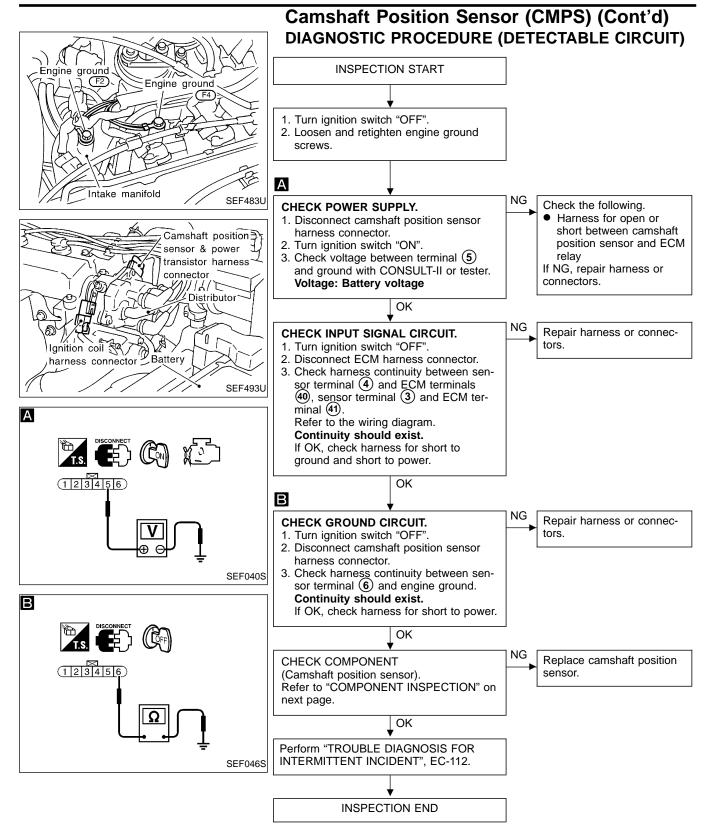
TESTING CONDITION:

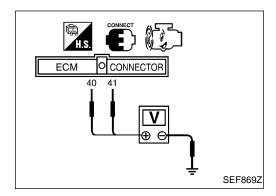
Before performing the following procedure, confirm that battery voltage is more than 10.5V at idle.

1) Turn ignition switch "ON".

Camshaft Position Sensor (CMPS) (Cont'd)


- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and run it for at least 2 seconds at idle speed.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-264.


– OR –



- 1) Start engine and run it for at least 2 seconds at idle speed.
- 2) Select "MODE 7" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-264.

Camshaft Position Sensor (CMPS) (Cont'd)

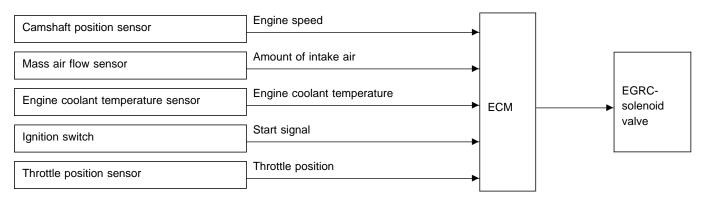
Camshaft Position Sensor (CMPS) (Cont'd) COMPONENT INSPECTION

Camshaft position sensor

- 1. Start engine and warm it up to the normal operating temperature.
- 2. Check voltage between ECM terminals (4), (40) and ground.

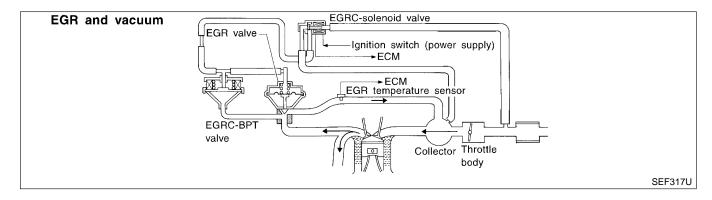
Condition	Terminal	Voltage	
		Approximately 2.5V	EM
	40 and ground	(V) 10 5 0	LC
		0.2ms SEF195T	EC
Engine running at idle		Approximately 0.1 - 0.5V	FE
	41) and ground	(V) 10 5 0	CL
		10ms	MT
		SEF199T	
	40 and ground	Approximately 2.3 - 2.5V	AT
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FA
Engine speed is 2,000		0.2ms SEF196T	RA
rpm		Approximately 0.2 - 0.4V	BR
	41) and ground	(V) 10 5 0	ST
		10ms SEF200T	RS

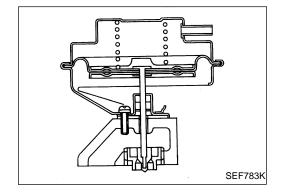
If NG, replace distributor assembly with camshaft position sensor.


EL

HA

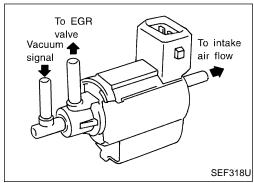
MA


EGR Function (Close)


SYSTEM DESCRIPTION

This system cuts and controls vacuum applied to the EGR valve to suit engine operating conditions. This cut-and-control operation is accomplished through the ECM and the EGRC-solenoid valve. When the ECM detects any of the following conditions, the ECM cuts the current for the solenoid valve. This causes the port vacuum to be discharged into the atmosphere. The EGR valve remains closed.

- Low engine coolant temperature
- Engine starting
- High-speed engine operation
- Engine idling
- Excessively high engine coolant temperature
- Mass air flow sensor malfunction
- Low ambient temperature



COMPONENT DESCRIPTION

Exhaust gas recirculation (EGR) valve

The EGR valve controls the amount of exhaust gas routed to the intake manifold. Vacuum is applied to the EGR valve in response to throttle valve opening. The vacuum controls the movement of a taper valve connected to the vacuum diaphragm in the EGR valve.

EGR temperature

ECM

EGR temperature

SEF073P

sensor

EGR Function (Close) (Cont'd)

EGRC-solenoid valve

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized.

A plunger will then move to cut the vacuum signal from the intake manifold to the EGR valve. When the ECM sends an OFF signal, the vacuum signal passes through the solenoid valve. The signal then reaches the EGR valve.

MA

EM

LC

ON BOARD DIAGNOSIS LOGIC

If the absence of EGR flow is detected by EGR temperature sensor under the condition that calls for EGR, a low-flow malfunction is diagnosed.

EC

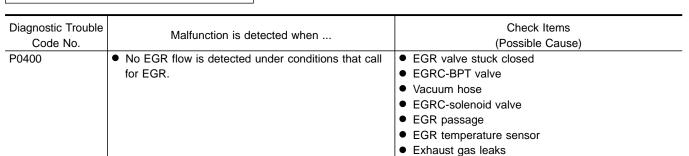
FE

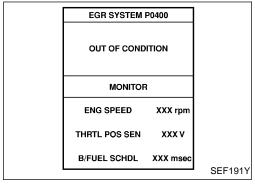
CL

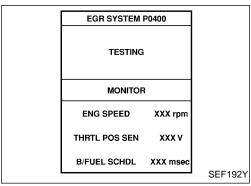
MT

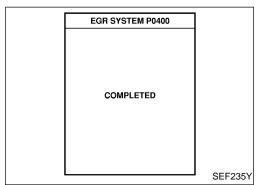
AT

FA


RA


BR


BT


HA

IDX

EGR Function (Close) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.
- During the test, P0400 will not be stored in ECM even though "NG" is displayed on the CONSULT-II screen.

TESTING CONDITION:

For best results, perform test at a temperature above 5°C (41°F) or higher.

- 1) Turn ignition switch "ON"
- Check "COOLAN TEMP/S" in "DATA MONITOR" mode witch CONSULT-II.
 Confirm COOLAN TEMP/S value is within the range

COOLANT TEMP/S: Less than 40°C (104°F)

If the value is out of range, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to lower the coolant temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.

- 3) Turn ignition switch "ON" and select "EGR SYSTEM P0400" of "EGR SYSTEM" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- 4) Touch "START".

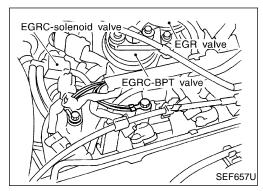
listed below.

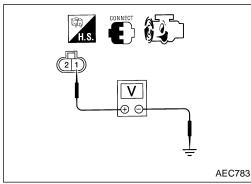
- 5) Start engine and let it idle. When the engine coolant temperature reaches 70°C (158°F), immediately go to the next step.
- 6) Accelerate vehicle to a speed of 40 km/h (25 MPH) once and then stop vehicle.
 - If "COMPLETED" with "OK" appears on CONSULT-II screen, go to step 9).
 - If "COMPLETED" does not appear on CONSULT-II screen, go to the following step.
- 7) Check the output voltage of "THRTL POS SEN" (at closed throttle position) and note it.
- 8) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions until "TESTING" changes to "COMPLETED". (It will take approximately 50 seconds or more.)

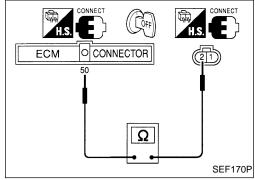
ENG SPEED: 1,500 - 2,500 rpm (A/T) 2,000 - 3,000 rpm (M/T)

Vehicle speed: 10 km/h (6 MPH) or more B/FUEL SCHDL: 6.25 - 11.5 msec (A/T)

5.25 - 8.75 msec (M/T)


THRTL POS SEN: X - (X + 4.5) V


X = Voltagé value measured at step 7)


Selector lever: Suitable position

If "TESTING" is not displayed after 5 minutes, retry from step 2).

 Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-271.

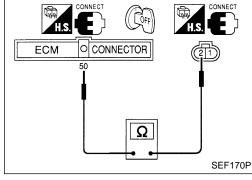
EGR Function (Close) (Cont'd) **OVERALL FUNCTION CHECK**

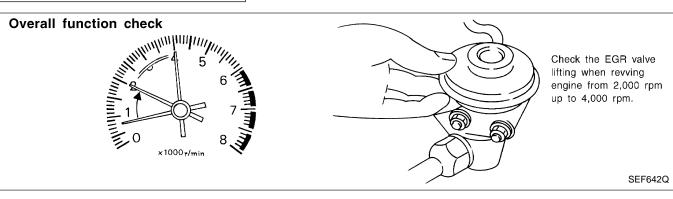
Use this procedure to check the overall EGR function. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and warm it up to normal operating tem-
- 2) Check the EGR valve lifting when revving from 2,000 rpm up to 4,000 rpm under no load using the followina methods.

EGR valve should lift up and down without stick-

If NG, go to A in DIAGNOSTIC PROCEDURE on EC-271.


3) Check voltage between EGR temperature sensor harness connector terminal (1) and ground at idle speed.


Less than 4.5V should exist.

- 4) Turn ignition switch "OFF".
- 5) Check harness continuity between EGR temperature sensor harness connector terminal (2) and ECM terminal 60.

Continuity should exist.

6) Perform "COMPONENT INSPECTION", "EGR temperature sensor". Refer to EC-273.

EC

LC

CL

MT

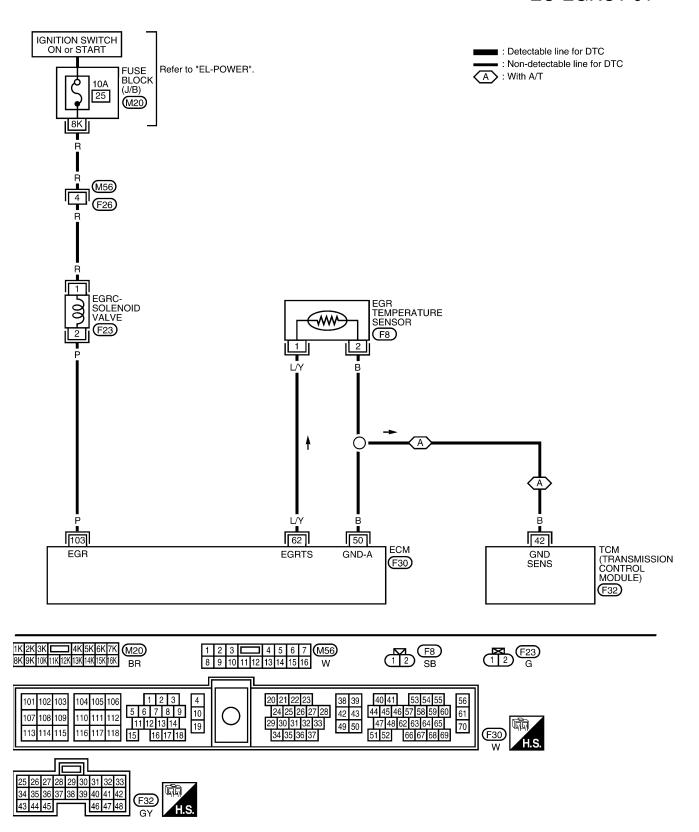
FA

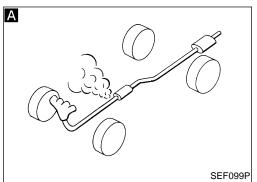
AT

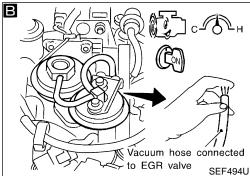
RA

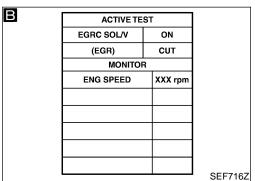
BR

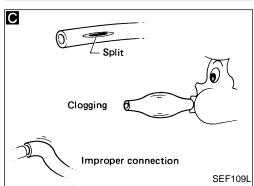
BT

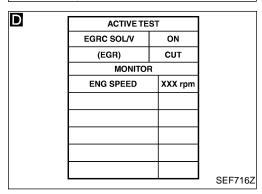

HA

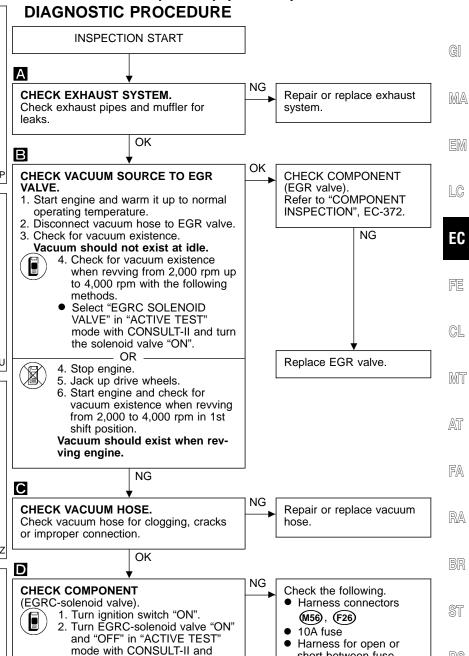

耴


IDX


EGR Function (Close) (Cont'd)


EC-EGRC1-01





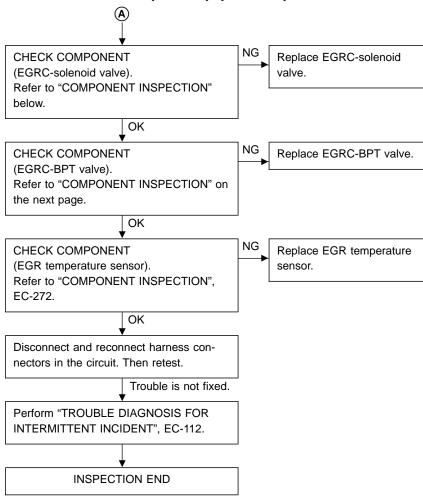
EGR Function (Close) (Cont'd) DIAGNOSTIC PROCEDURE

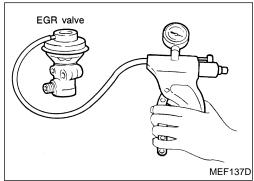
check operating sound.

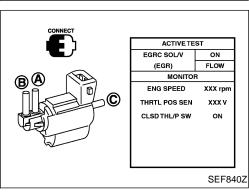
OR 1. Start engine and keep engine speed at 2,000 rpm in 1st shift position. 2. Check operating sound of the

solenoid valve when disconnecting and reconnecting EGRCsolenoid valve harness connector. (The DTC or the 1st trip DTC for the EGRC-solenoid valve will be displayed, however, ignore it.)

> **▼**OK (Go to next page.)


- short between fuse block and EGRC-solenoid valve
- Harness for open or short between ECM and EGRC-solenoid valve


If NG, repair open circuit or short to power in harness or connectors.


BT

HA

EGR Function (Close) (Cont'd)

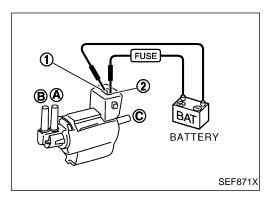
COMPONENT INSPECTION

EGR valve

Apply vacuum to EGR vacuum port with a hand vacuum pump.

EGR valve spring should lift.

Check for sticking.


If NG, repair or replace EGR valve.

EGRC-solenoid valve

Check air passage continuity.

Perform "EGRC SOLÉNOID VALVE" in "ACTIVE TEST" mode.

Condition EGRC SOLENOID VALVE	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
ON	Yes	No
OFF	No	Yes

EGR Function (Close) (Cont'd)

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace EGRC-solenoid valve.

FE

CL

MT

AT

FA

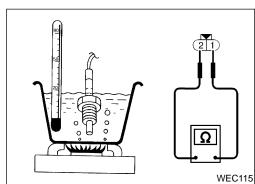
RA

BR

ST

RS

BT

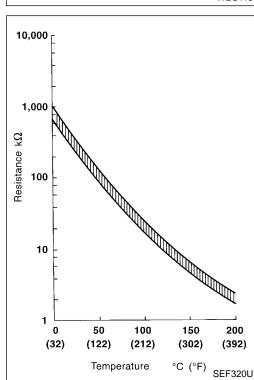

HA

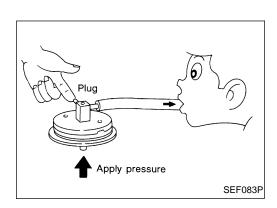
EL

GI

MA

EM

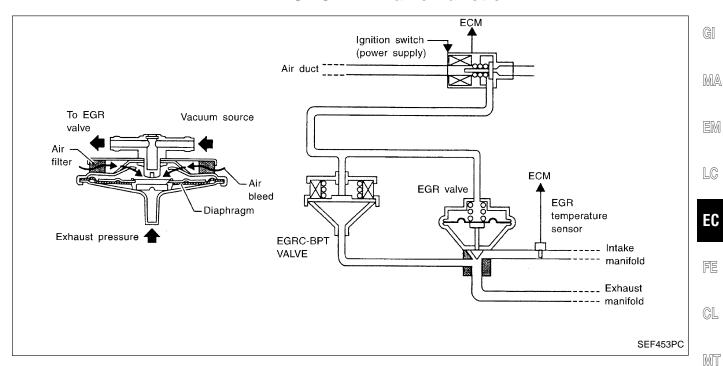

EGR temperature sensor


Check resistance change and resistance value.

<Reference data>

EGR temperature °C (°F)	Voltage V	Resistance $M\Omega$
0 (32)	4.61	0.68 - 1.11
50 (122)	2.53	0.09 - 0.12
100 (212)	0.87	0.017 - 0.024

If NG, replace EGR temperature sensor.



EGR Function (Close) (Cont'd) EGRC-BPT valve

- 1. Plug one of two ports of EGRC-BPT valve.
- 2. Vacuum from the other port and check for leakage while applying a pressure above 0.981 kPa (100 mmH₂O, 3.94 inH₂O) from under EGRC-BPT valve.
- 3. If a leakage is noted, replace the valve.

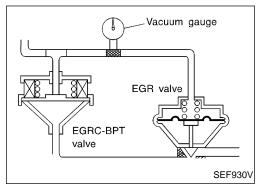
EGRC-BPT Valve Function

SYSTEM DESCRIPTION

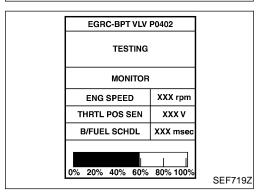
The EGRC-BPT valve monitors exhaust pressure to activate the diaphragm, controlling throttle body vacuum applied to the EGR valve. In other words, recirculated exhaust gas is controlled in response to positioning of the EGR valve or to engine operation.

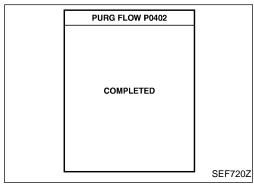
FA

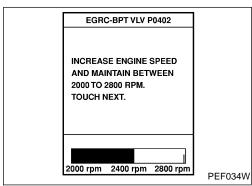
RA


EL

IDX


ON BOARD DIAGNOSIS LOGIC


If too much EGR flow exists due to an EGRC-BPT valve malfunction, off idle engine roughness will increase. If the roughness is large, then the vacuum to the EGR valve is interrupted through the EGRC-solenoid valve. If the engine roughness is reduced at that time, the EGRC-BPT valve malfunction is indicated


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0402	The EGRC-BPT valve does not operate properly.	EGRC-BPT valveEGR valveMisconnected rubber tube	 \$1
		Blocked rubber tube Camshaft position sensor Blocked exhaust system	R
		Orifice Mass air flow sensor EGRC-solenoid valve	Bl
	1	1	

EGRC-BPT VLV P0402 OUT OF CONDITION MONITOR ENG SPEED XXX rpm THRTL POS SEN XXX V B/FUEL SCHDL XXX msec 0% 20% 40% 60% 80% 100% SEF718Z

EGRC-BPT Valve Function (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

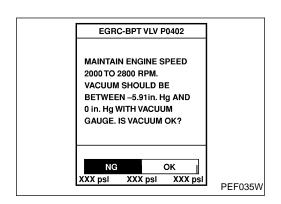
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform test at a temperature above 5°C (41°F).
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

- 1) Install vacuum gauge between EGRC-BPT valve and EGR valve as shown in the illustration.
- 2) Start engine and warm it up to normal operating temperature.
- 3) Stop engine and wait at least 5 seconds.
- 4) Turn ignition switch "ON" and select "EGRC-BPT/VLV P0402" of "EGR SYSTEM" in "DTC WORK SUP-PORT" mode with CONSULT-II.
- 5) Start engine and let it idle.
- 6) Touch "START".
- 7) Check the output voltage of "THRTL POS SEN" (at closed throttle position) and note it.
- 8) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen and the bar chart may increase. Maintain the conditions many times until "COMPLETED" appears.

Selector lever: Suitable position ENG SPEED: 1,200 - 1,600 rpm (A/T) 1,000 - 2,000 rpm (M/T)


Vehicle speed: 30 - 54 km/h (19 - 34 MPH) (A/T)

30 - 100 km/h (19 - 62 MPH) (M/T)

B/FUEL SCHDL: 5 - 6.5 msec (A/T) 4.5 - 6.0 msec (M/T)

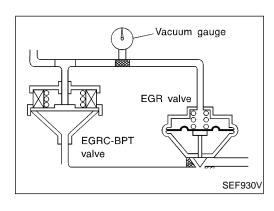
THRTL POS SEN: 0.7 - 1.1V

- The bar chart on CONSULT-II screen indicates the status of this test. However, the test may be finished before the bar chart becomes full scale.
- If the bar chart indication does not continue to progress, completely release accelerator pedal once and try to meet the conditions again.
- If "TESTING" does not appear on CONSULT-II screen, retry from step 2).
- If CONSULT-II instructs to carry out "OVERALL FUNCTION CHECK", go to next step. If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-278.
- 10) Open engine hood.
- Raise engine speed to 2400 ± 400 rpm under no-load and hold it. Then touch "NEXT" on CONSULT-II screen.

EGRC-BPT Valve Function (Cont'd)

12) Check vacuum gauge while keeping engine speed 2400 ± 400 rpm.

Vacuum should be 0 to -20.0 kPa (0 to -150 mmHg, 0 to -5.91 inHg).


If NG, go to "DIAGNOSTIC PROCEDURE", EC-278. If OK, touch "YES" on the CONSULT-II screen.

13) Check the rubber tube between intake manifold collector, EGRC-solenoid valve, EGR valve and EGRC-BPT valve for cracks, blockages or twist. If NG, repair or replace.

If OK, touch "YES" on the CONSULT-II screen.

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the EGRC-BPT valve. During this check, a 1st trip DTC might not be confirmed.

- 1) Install vacuum gauge between EGRC-BPT valve and EGR valve as shown in the illustration.
- 2) Lift up vehicle.
- Start engine and shift to 1st gear or 1 position.
- 4) Check vacuum gauge while keeping engine speed 2400 ± 400 rpm.

Vacuum should be 0 to -20.0 kPa (0 to -150 mmHg, 0 to -5.91 inHg).

If NG, go to "DIAGNOSTIC PROCEDURE", EC-278. If OK, go to next step.

5) Check rubber tube between intake manifold collector, EGRC-solenoid valve, EGR valve and EGRC-BPT valve for misconnection, cracks or blockages. If NG, repair or replace.

EM

LC

EC

MT

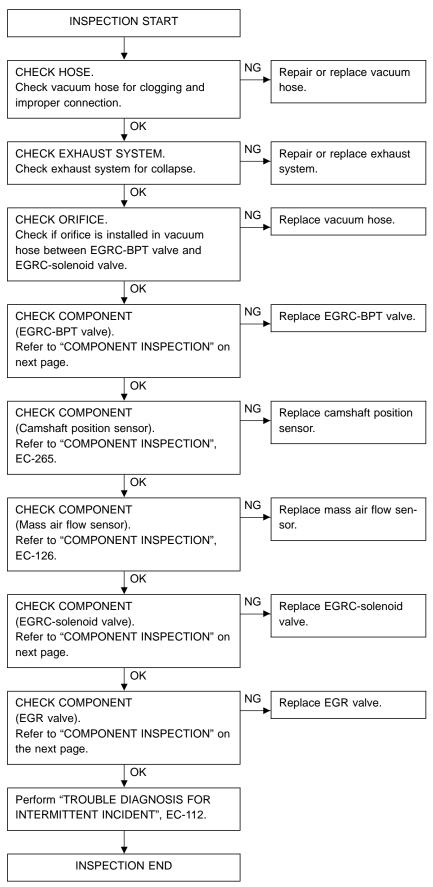
AT

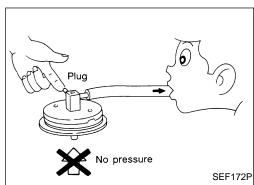
CL

RA

BR

ST


RS


BT

HA

EL

EGRC-BPT Valve Function (Cont'd) DIAGNOSTIC PROCEDURE

EGRC-BPT Valve Function (Cont'd) COMPONENT INSPECTION

EGRC-BPT valve

Plug one of two ports of EGRC-BPT valve.

Vacuum from the other port and check leakage without applying any pressure from under EGR-BPT valve. Leakage should exist.

GI

MA

EM

LC

EGR valve

Apply vacuum to EGR vacuum port with a hand vacuum pump.

EC

EGR valve spring should lift.

Check for sticking.

If NG, repair or replace EGR valve.

FE

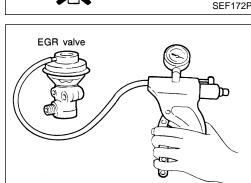
CL

MT

FA

Air passage
continuity

RA


BR

BT

HA

EL

IDX

EGRC-solenoid valve

Check air passage continuity.

MEF137D

ON

FLOW

xxx v

ON

SEF840Z

SEF871X

ACTIVE TEST

MONITOR ENG SPEED

EGRC SOL/V

(EGR)

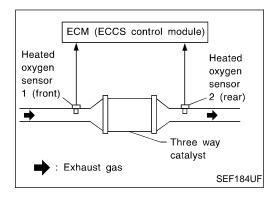
THRTL POS SEN

CLSD THL/P SW

BAT **BATTERY** Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.

Condition EGRC SOLENOID VALVE	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
ON	Yes	No
OFF	No	Yes

OR


Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes

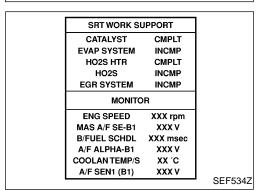
If NG or operation takes more than 1 second, replace EGRCsolenoid valve.

FUSE

①

 $\mathbf{B}\mathbf{A}$

Three Way Catalyst Function ON BOARD DIAGNOSIS LOGIC


The ECM monitors the switching frequency ratio of heated oxygen sensors 1 (front) and 2 (rear).

Three way catalyst with high oxygen storage capacity will indicate a low switching frequency of heated oxygen sensor 2 (rear). As oxygen storage capacity decreases, the heated oxygen sensor 2 (rear) switching frequency will increase.

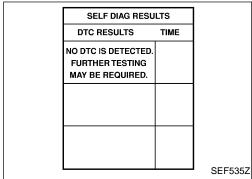
When the frequency ratio of heated oxygen sensors 1 (front) and 2 (rear) approaches a specified limit value, the three way catalyst malfunction is diagnosed.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0420	 Three way catalyst does not operate properly. Three way catalyst does not have enough oxygen storage capacity. 	 Three way catalyst Exhaust tube Intake air leaks Injectors Injector leaks Spark plug Improper ignition timing

SRT WORK SU	SRT WORK SUPPORT	
CATALYST	INCMP	
EVAP SYSTEM	INCMP	
HO2S HTR	CMPLT	
HO2S	INCMP	
EGR SYSTEM	INCMP	
MONITO	R	
ENG SPEED	XXX rpm	
MAS A/F SE-B1	XXX V	
B/FUEL SCHDL	XXX msec	
A/F ALPHA-B1	XXX V	
COOLAN TEMP/S	XX °C	
A/F SEN1 (B1)	XXX V	
-		SEF

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:


If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Open engine hood before conducting following procedure
- Do not hold engine speed more than specified minutes below.

- 1) Turn ignition switch "ON".
- 2) Select "DTC & SRT CONFIRMATION" then "SRT WORK SUPPORT" mode with CONSULT-II.
- 3) Start engine.
- 4) Rev engine up to 2,500 to 3,500 rpm and hold it for 3 consecutive minutes then release the accelerator pedal completely.
- If "INCMP" of "CATALYST" changes to "CMPLT", go to step 7.
- 5) Wait 5 seconds at idle.
- 6) Rev engine up to 2,000 to 3,000 rpm and hold it until "INCMP" of "CATALYST" changes to "CMPLT" (It will take maximum of approximately 5 minutes.)

OCONNECTOR

Three Way Catalyst Function (Cont'd)

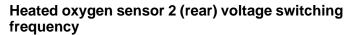
7) Select "SELF-DIAG RESULTS" mode with CON-SULT-II.

If the 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-282. If not "CMPLT", stop engine and cool down "COOLANT TEMP/SE" to less than 70°C (158°F) and then retest from step 1).

MA

EM

Use this procedure to check the overall function of the three way catalyst.


OR

During this check, a 1st trip DTC might not be confirmed.

AEC828A

- 1) Start engine and drive vehicle at a speed of more than 70 km/h (43 MPH) for 2 consecutive minutes.
- Stop vehicle with engine running.
- Set voltmeters probes between ECM terminals 46 [heated oxygen sensor 1 (front) signal] and engine ground, and ECM terminals (52) [heated oxygen sensor 2 (rear) signal] and ground.
- 4) Keep engine speed at 2,000 rpm constant under no load.
- 5) Make sure that the voltage switching frequency (high & low) between ECM terminals (52) and ground is much less than that of ECM terminals 46 and 43. Switching frequency ratio =

Heated oxygen sensor 1 (front) voltage switching frequency

This ratio should be less than 0.75.

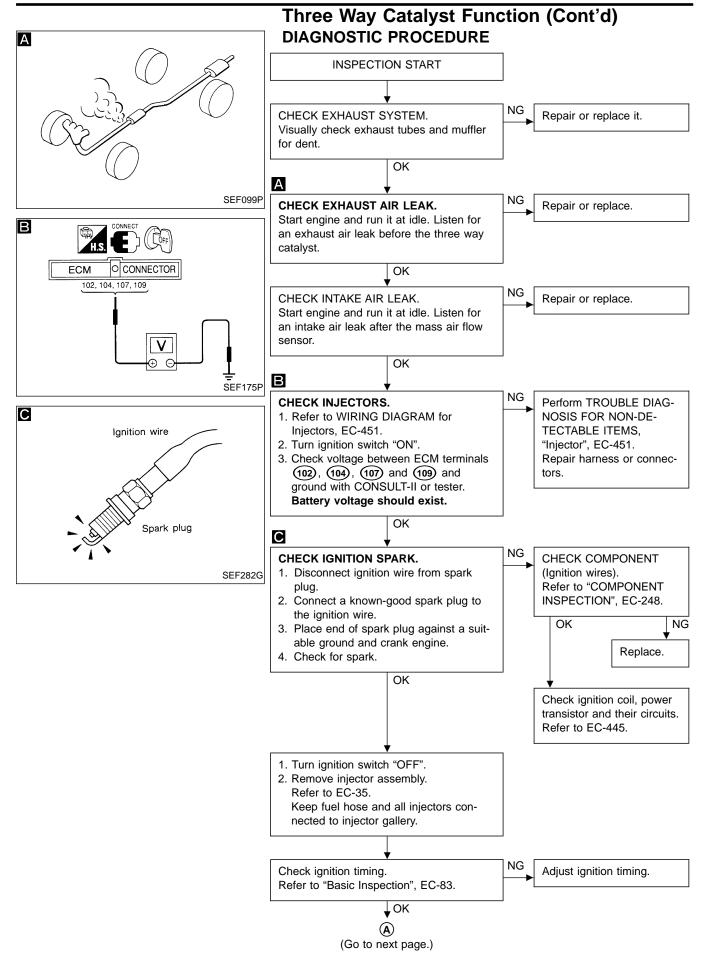
If the ratio is greater than above, it means three way catalyst does not operate properly.

Note: If the voltage at terminal 46 does not switch periodically more than 5 times within 10 seconds at step 4, perform TROUBLE DIAGNOSIS FOR DTC P0133 first. (See EC-156.)

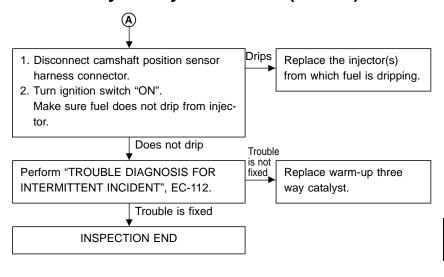
6)f NG, go to "DIAGNOSTIC PROCEDURE", EC-282.

EC

MT


FA

RA BR


BT

HA

EL

Three Way Catalyst Function (Cont'd)

GI

MA

EM

LC

EC

FE

CL

MT

AT

FA

RA

BR

RS

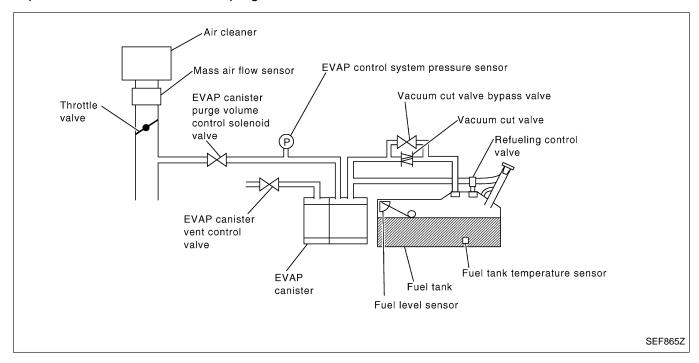
BT

HA

EL

IDX

EC-283


Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure)

Note: If both DTC P0440 and P1448 are displayed, perform TROUBLE DIAGNOSIS FOR DTC P1448 first. (Refer to EC-405.)

ON BOARD DIAGNOSIS LOGIC

This diagnosis detects leaks in the EVAP purge line using engine intake manifold vacuum. If pressure does not increase, the ECM will check for leaks in the line between the fuel tank and EVAP canister purge volume control solenoid valve under the following vacuum test condition.

The vacuum cut valve bypass valve is opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP canister vent control valve will then be closed to shut the EVAP purge line off. The EVAP canister purge volume control solenoid valve is opened to depressurize the EVAP purge line using intake manifold vacuum. After this depressurization is implemented, the EVAP canister purge volume control solenoid valve will be closed.

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	GI
P0440	 EVAP control system has a leak. EVAP control system does not operate properly. 	 Incorrect fuel tank vacuum relief valve Incorrect fuel filler cap used Fuel filler cap remains open or fails to close Foreign matter caught in fuel filler cap 	MA
		Leak is in line between intake manifold and EVAP canister volume purge control solenoid valve Foreign matter caught in EVAP canister vent control valve.	EM
		 EVAP canister or fuel tank leaks EVAP purge line (pipe and rubber tube) leaks EVAP purge line rubber tube bent Blocked or bent rubber tube to EVAP control system 	LC
		 pressure sensor Loose or disconnected rubber tube EVAP canister vent control valve and the circuit 	EC
		 EVAP canister purge volume control solenoid valve EVAP canister purge volume control solenoid valve and the circuit Fuel tank temperature sensor O-ring of EVAP canister vent control valve is missing 	FE
		 or damaged Water separator EVAP canister is saturated with water EVAP control system pressure sensor 	CL
		Refueling control valve ORVR system leaks Fuel level sensor and the circuit	MT

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

EVAP SML LEAK P0440/P1440

1)FOR BEST RSLT,PERFORM
AT FOLLOWING CONDITIONS.
-FUEL LEVEL: 1/4-3/4
-AMBIENT TEMP: 0-30 C(32-86F)
-OPEN ENGINE HOOD.
2)START ENG WITH VHCL
STOPPED. IF ENG IS ON,STOP
FOR 5 SEC. THEN RESTART.
3)TOUCH START.

WAIT
2 TO 10 MINUTES.
KEEP ENGINE RUNNING
AT IDLE SPEED.

SEF566X

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Never remove fuel filler cap during the DTC confirmation procedure.

FA

RA

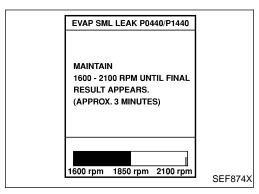
BR

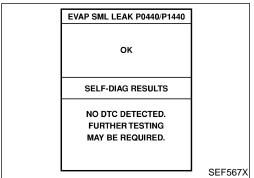
BT

HA

NOTE:

- If DTC P0440 is displayed with P1448, perform TROUBLE DIAGNOSIS FOR DTC P1448 first. Refer to EC-405.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.


TESTING CONDITION:


- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Open engine hood before conducting following procedure.

- 1) Turn ignition switch "ON".
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.

EC-285

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

- 4) Check that the following conditions are met. COOLAN TEMP/S: 0 70°C (32 158°F) INT/A TEMP SE: 0 60°C (32 140°F)
- 5) Select "EVAP SML LEAK PÒ440" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

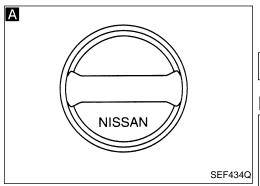
Follow the instruction displayed.

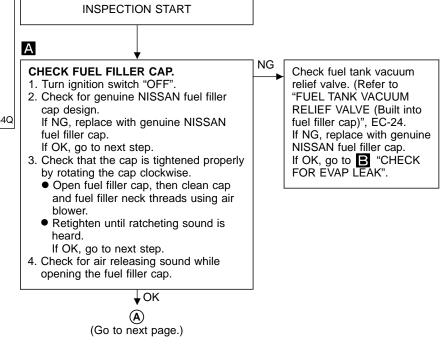
NOTE:

- If the engine cannot be maintained within the range on CONSULT-II screen, go to "Basic Inspection", EC-83.
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.
- 6) Make sure that "OK" is displayed. If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-287.

- OR -

NOTE:


Be sure to read the explanation of "Driving pattern" on EC-52 before driving vehicle.


- 1) Start engine.
- 2) Drive vehicle according to "Driving pattern", EC-52.
- 3) Stop vehicle.
- 4) Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.
- If SRT of EVAP system is set, the result will be OK.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 6) Start engine.

It is not necessary to cool engine down before driving.

- 7) Drive vehicle again according to the "Driving pattern".
- 8) Stop vehicle.
- Select "MODE 3" with GST.
- If P1447 is displayed on the screen, go to "TROUBLE DIAGNOSIS FOR DTC P1447", EC-398.
- If P0440 is displayed on the screen, go to "DIAG-NOSTIC PROCEDURE", EC-287.
- If P1440 is displayed on the screen, go to "Diagnostic procedure", EC-374.
- If P0440, P1440 and P1447 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 5).

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd) DIAGNOSTIC PROCEDURE

GI

MA

EM

LC

EC

FE

CL

MT

AT

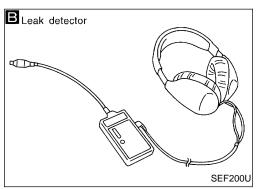
FA

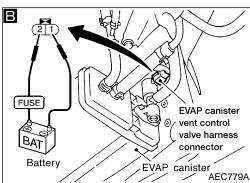
RA

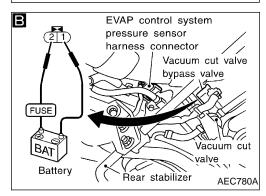
BR

%TF

RS


BT


HA


—n

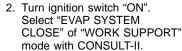
Adapter for service port service port Pressure pump SEF462U

В **EVAP SYSTEM CLOSE** APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT NEXT SCREEN. **NEVER USE COMPRESSED** AIR OR HIGH PRESSURE **PUMP! DO NOT START** ENGINE. TOUCH START. PEF658U

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

В

CHECK FOR EVAP LEAK.


 Never use compressed air or high pressure pump.

Improper installation of service port may cause leaking.

Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system. To locate EVAP leak portion, proceed with

the following steps. 1. Install the EVAP service port adapter

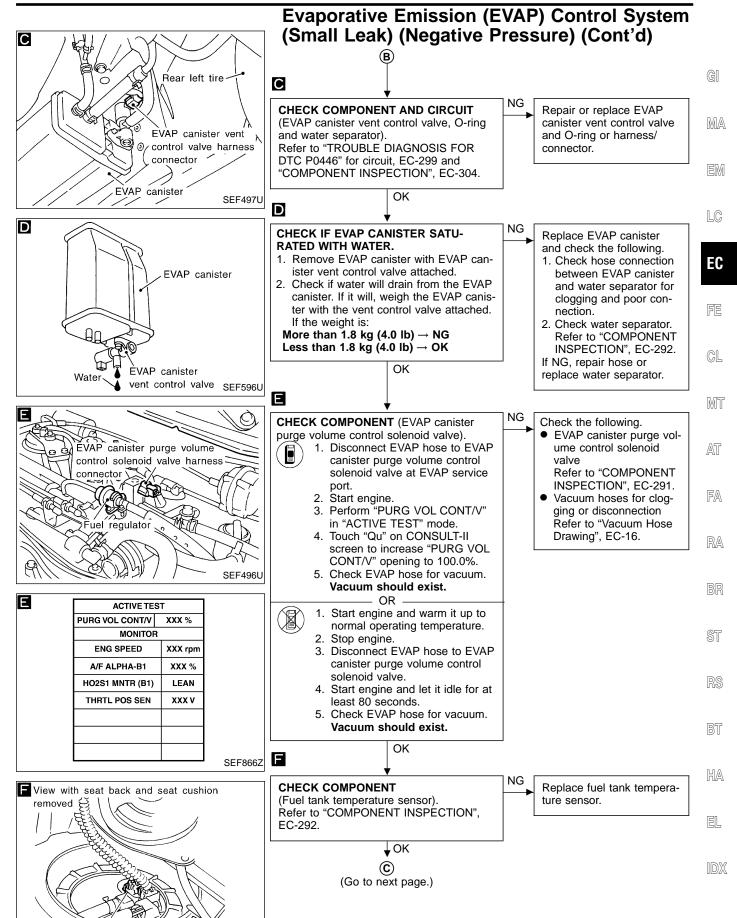
and the pressure pump securely.

3. Touch "START" and apply vacuum into the EVAP line until the pressure indicator reaches the middle of bar graph.

4. Using EVAP leak detector, locate the leak portion. For the leak detector, refer to instruction manual for more details. Refer to "Evaporative Emission Line Drawing", EC-26. - OR

2. Turn ignition switch "OFF"

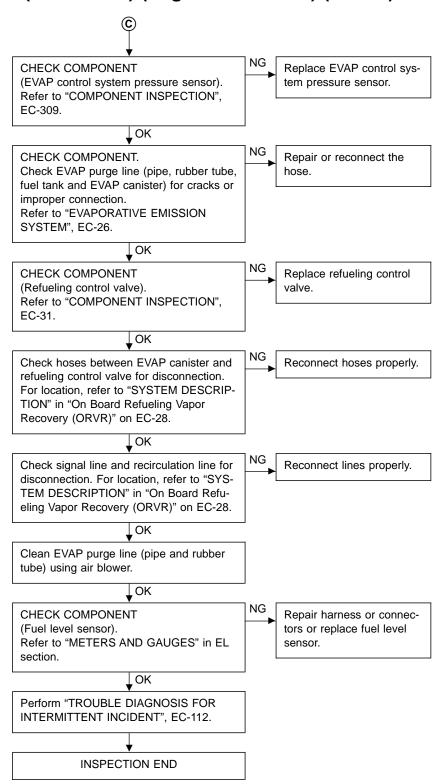
Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

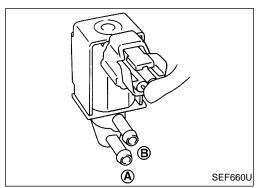

4. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12 volts until the end of test.)

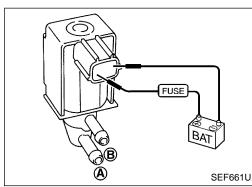
5. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg).

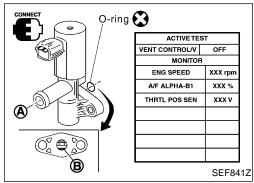
6. Locate the leak using a leak detector. Refer to the instruction manual for more details about the leak detector. Refer to "Evaporative Emission Line Drawing", EC-26.

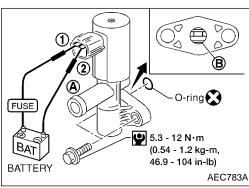
> **↓**OK **(B)** (Go to next page.)




SEF656UA


Fuel tank témperature sensor harness connector


Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)



ACTIVE TES	ACTIVE TEST	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 MNTR (B1)	LEAN	
THRTL POS SEN	xxx v	
L		SEF866Z

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd) **COMPONENT INSPECTION**

EVAP canister purge volume control solenoid valve

- Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. If OK, inspection end. If NG, go to following step.

MA

EM

EC

MT

AT

RA

BR

BT

HA

IDX

3. Check air passage continuity.

Condition PURG VOL CONT/V value	Air passage continuity between (A) and (B)
100.0%	Yes
0.0%	No

If NG, replace the EVAP canister purge volume control solenoid valve. - OR -

Check air passage continuity.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals	Yes
No supply	No

If NG or operation takes more than 1 second, replace solenoid valve.

EVAP canister vent control valve

Check air passage continuity.

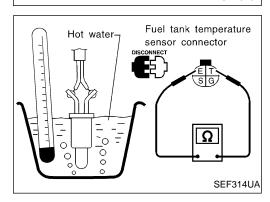
Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

ON No OFF Yes	Condition	Air passage continuity between (A) and (B)
OFF Yes	ON	No
	OFF	Yes

OR -

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals 1 and 2	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary. If portion (B) is rusted, replace control valve.


Make sure new O-ring is installed properly.

EC-291

Blind plug C B A

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - C: Inlet port (To member)

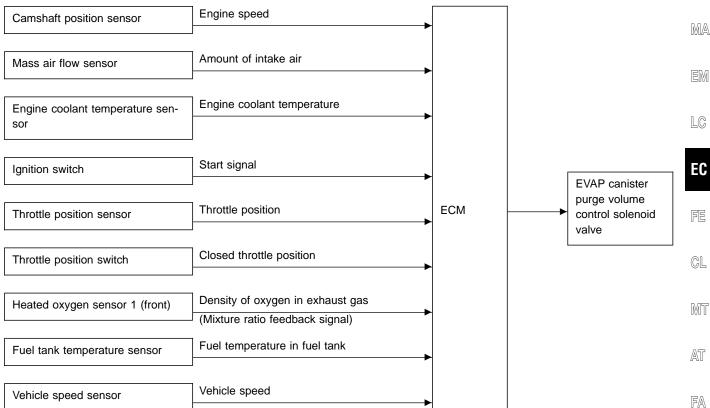
SEF829T

Evaporative Emission (EVAP) Control System (Small Leak) (Negative Pressure) (Cont'd)

Water separator

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that (a) and (c) are not clogged by blowing air from (B) with (A), and then (c) plugged.
- 5. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.

Fuel tank temperature sensor


Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance k Ω
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90


If NG, replace fuel tank temperature sensor.

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve

SYSTEM DESCRIPTION

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses a ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

GI

EC

MIT

RA

BT

HA

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve (Cont'd)

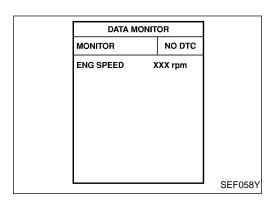
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION		SPECIFICATION
	Engine: After warming up	Idle	0 %
PURG VOL C/V	Air conditioner switch "OFF"No-load	Vehicle running (Shift lever "1") 2,000 rpm (90 seconds after starting engine)	_

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
4	W/G	ECM relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF" Ignition switch "OFF"	0 - 1V BATTERY VOLTAGE
			A few seconds passed after turning ignition switch "OFF"	(11 - 14V)
5	L	EVAP canister purge vol- ume control solenoid valve	Engine is running. Idle speed	BATTERY VOLTAGE (11 - 14V)
56	W/R	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE
61	W/R	Fower supply for ECIVI	Ignition switch ON	(11 - 14V)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0443	An improper voltage signal is sent to ECM through the valve.	Harness or connectors (The valve circuit is open or shorted.) EVAP canister purge volume control solenoid valve

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and let it idle for at least 13 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-297.

- 1) Start engine and let it idle for at least 13 seconds.
- 2) Select "MODE 7" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-297.

GI

MA

EM

LC

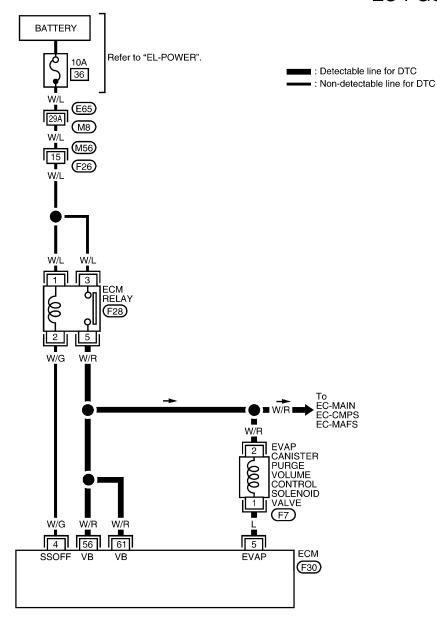
EC

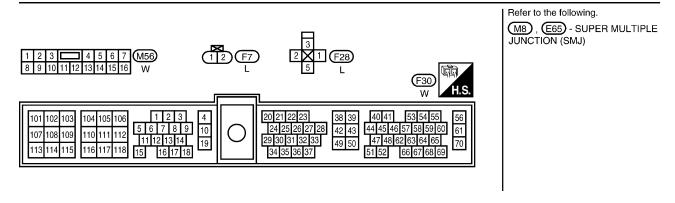
MT

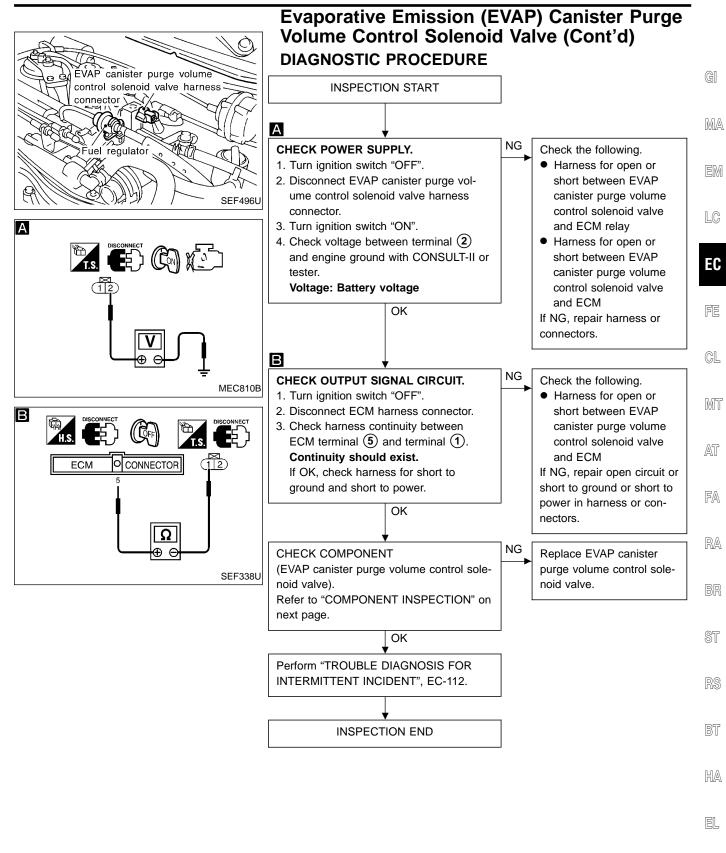
AT FA

RA

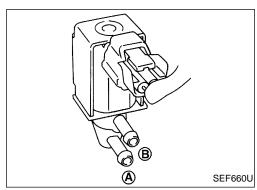
BR

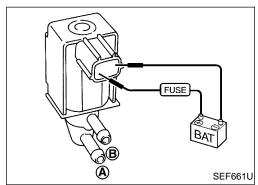

BT


HA


IDX

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve (Cont'd)


EC-PGC/V-01



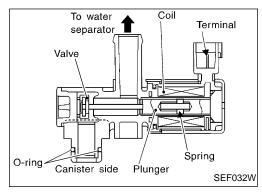
ACTIVE TEST		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 MNTR (B1)	LEAN	
THRTL POS SEN	xxx v	
		SEF801Y

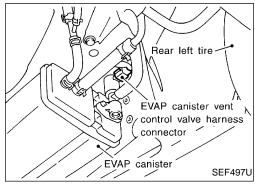
Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve (Cont'd) COMPONENT INSPECTION

EVAP canister purge volume control solenoid valve

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. If OK, inspection end. If NG, go to following step.
- 3. Check air passage continuity.

Condition PURG VOL CONT/V value	Air passage continuity between (A) and (B)
100.0%	Yes
0.0%	No


If NG, replace the EVAP canister purge volume control solenoid - OR ·



Check air passage continuity.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals	Yes
No supply	No

If NG or operation takes more than 1 second, replace solenoid valve.

Evaporative Emission (EVAP) Canister Vent **Control Valve (Circuit)**

COMPONENT DESCRIPTION

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other LC evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

EC

GI

MA

FE

GL

MIT

AT

FA

RA

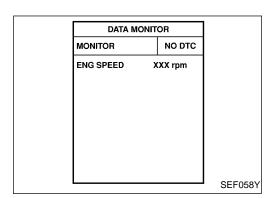
BR

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

ON BOARD DIAGNOSIS LOGIC

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	S
108	PU	EVAP canister vent control valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	R

			BT
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	HA
P0446	An improper voltage signal is sent to ECM through EVAP canister vent control valve.	 Harness or connectors (EVAP canister vent control valve circuit is open or shorted.) EVAP canister vent control valve 	EL

Evaporative Emission (EVAP) Canister Vent Control Valve (Circuit) (Cont'd)
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

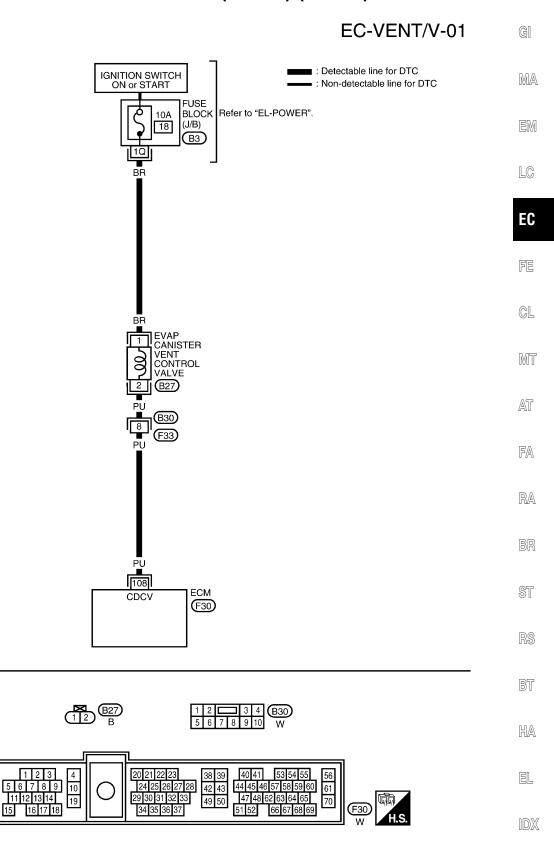
Always drive vehicle at a safe speed.

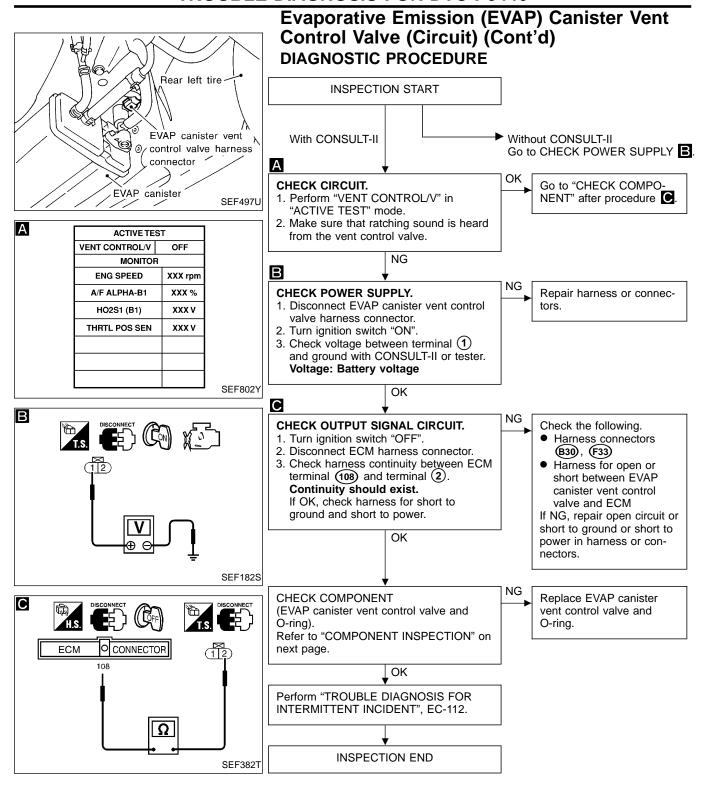
NOTE:

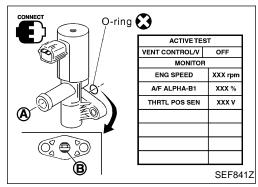
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

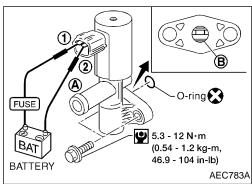
TESTING CONDITION:

Before performing the following procedure, confirm battery voltage is more than 11V at idle.


- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 8 seconds.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-302.


- 1) Start engine and wait at least 8 seconds.
- 2) Select "MODE 7" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-302.


Evaporative Emission (EVAP) Canister Vent Control Valve (Circuit) (Cont'd)



110 111 112

107 108 109

Evaporative Emission (EVAP) Canister Vent Control Valve (Circuit) (Cont'd) COMPONENT INSPECTION

EVAP canister vent control valve

Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

Condition	Air passage continuity between (A) and (B)	
ON	No	
OFF	Yes	

- OR -

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals ① and ②	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If portion (B) is rusted, replace control valve.

Make sure new O-ring is installed properly.

EM

GI

MA

EC

FE

LC

CL

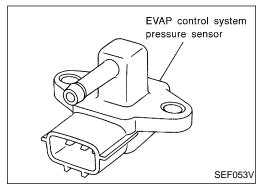
AT

MT

FA

RA

BR


ST

D@

BT

HA

EL

5 - 4.5 - 2 - 4.

Evaporative Emission (EVAP) Control System Pressure Sensor

COMPONENT DESCRIPTION

The EVAP control system pressure sensor detects pressure in the purge line. The sensor output voltage to the ECM increases as pressure increases. The EVAP control system pressure sensor is not used to control the engine system. It is used only for on board diagnosis.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION	SPECIFICATION
EVAP SYS PRES	• Ignition switch: ON	Approx. 3.4V

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
49	R	Sensors' power supply	Ignition switch "ON"	Approximately 5V
50	В	Sensors' ground	Engine is running. (Warm-up condition) Idle speed	Approximately 0V
67	W	EVAP control system pressure sensor	Ignition switch "ON"	Approximately 3.4V

Evaporative Emission (EVAP) Control System Pressure Sensor (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	
P0450	An improper voltage signal from EVAP control system pressure sensor is sent to ECM.	Harness or connectors (The EVAP control system pressure sensor circuit is open or shorted.) Rubber hose to EVAP control system pressure is	
		clogged, vent, kinked, disconnected or improper connection. • EVAP control system pressure sensor	
		 EVAP canister vent control valve EVAP canister purge volume control solenoid valve EVAP canister 	
		Rubber hose from EVAP canister vent control valve to water separator	

MONITOR NO DTC ENG SPEED XXX rpm COOLAN TEMP/S XXX °C FUEL T/TMP SE XXX °C
COOLAN TEMP/S XXX °C
FUELT/TMP SE XXX °C

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Always perform at a temperature above 0°C (32°F).

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON".
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure that "FUEL T/TMP SE" is more than 0°C (32°F).
- Start engine and wait at least 20 seconds.
- 7) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-307.

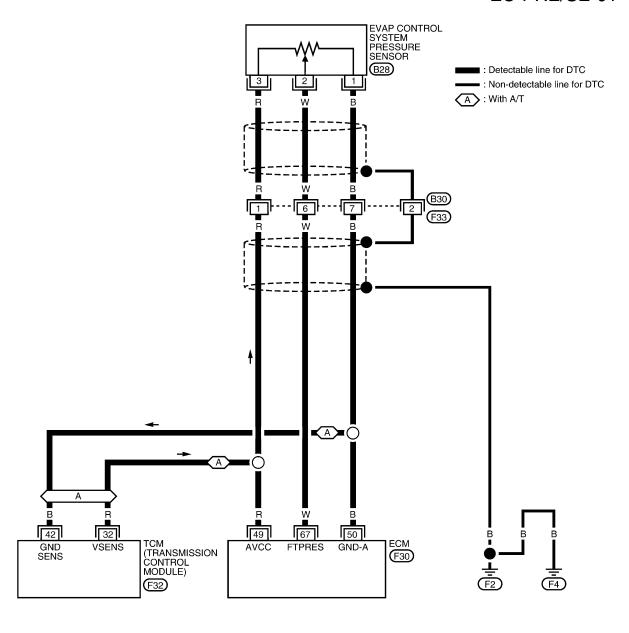
– OR -

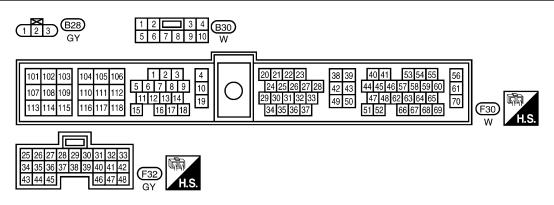
- 1) Start engine and warm it up to normal operating temperature.
- 2) Check that voltage between ECM terminal @and ground is less than 4.2V.
- 3) Turn ignition switch "OFF" and wait at least 5 seconds.
- Start engine and wait at least 20 seconds.
- Select "MODE 7" with GST.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-307.

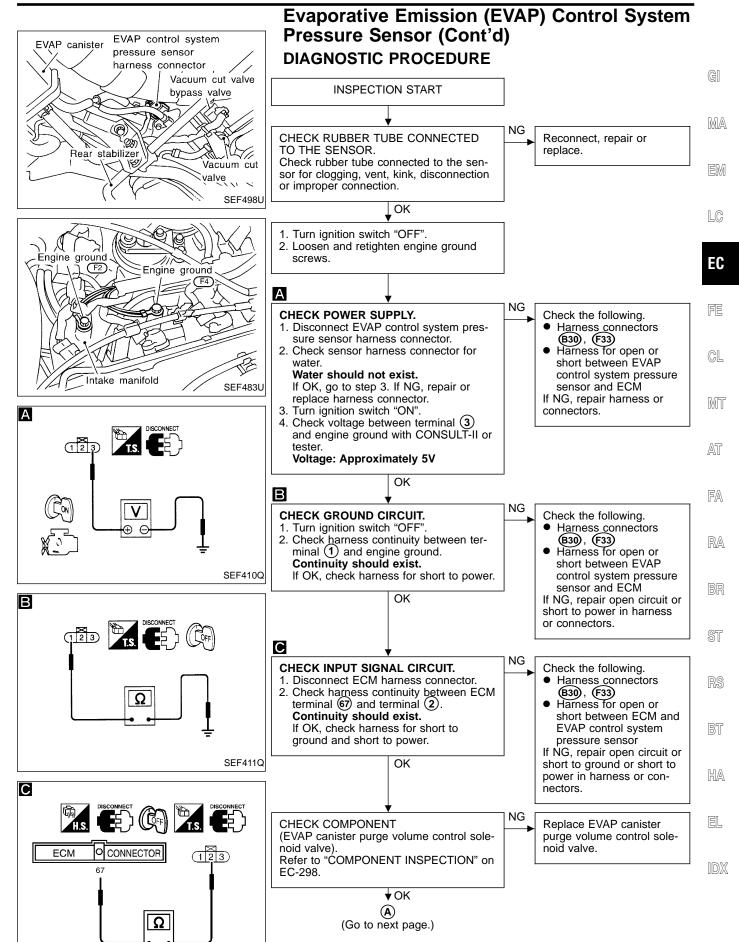
GL

MIT

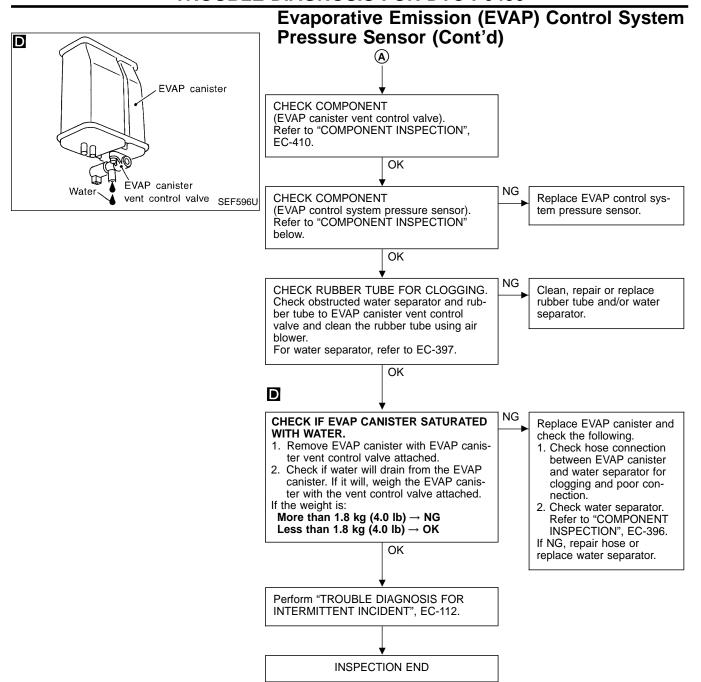
RA

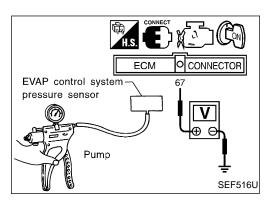

BR


BT


IDX

Evaporative Emission (EVAP) Control System Pressure Sensor (Cont'd)


EC-PRE/SE-01



SEF496R

Evaporative Emission (EVAP) Control System Pressure Sensor (Cont'd)

COMPONENT INSPECTION

EVAP control system pressure sensor

- Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- Check output voltage between ECM terminal and engine ground.

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply pressure over 20.0 kPa (150 mmHg, 5.91 in Hg) or vacuum below -20.0 kPa (-150 mmHg, -5.91 inHg).
- 6. If NG, replace EVAP control system pressure sensor.
- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

MA

EM

1 @

EC

EU

⊚⊓

FE

VL.

MT

IVU U

MT

FA

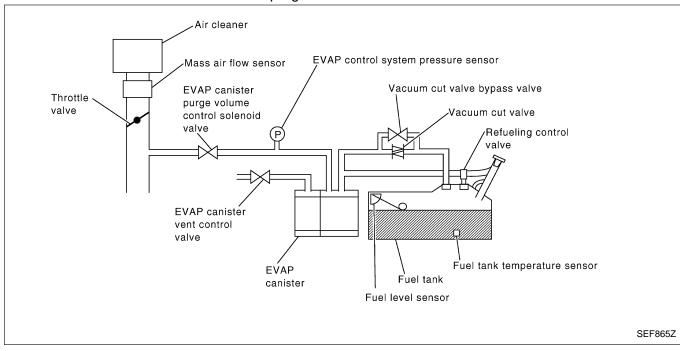
RA

BR

057

BT

HA


EL

IDX

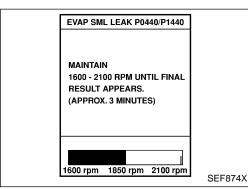
Evaporative Emission (EVAP) Control System (Large Leak)

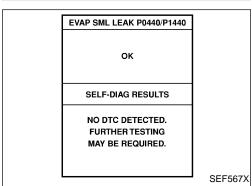
ON BOARD DIAGNOSTIC LOGIC

This diagnosis detects a large leak (fuel filler cap fell off) in the EVAP system between the fuel tank and the EVAP canister purge volume control solenoid valve.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0455	 EVAP system has a large leak such as fuel filter cap fell off. EVAP system does not operate properly. 	 Fuel cap remains open or fails to close. Incorrect fuel tank vacuum relief valve. Incorrect fuel filler cap used. Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks. EVAP purge line (Pipe and rubber tube) leaks. EVAP purge line rubber tube bent. Blocked or bent rubber tube to EVAP control system pressure sensor. Loose or disconnected rubber tube. EVAP canister vent control valve and the circuit. EVAP canister purge volume control solenoid valve and the circuit EVAP canister purge volume control solenoid valve and tank temperature sensor O-ring of EVAP canister vent control valve is missing or damaged. EVAP control system pressure sensor Refueling control valve ORVR system leaks

CAUTION:


- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.


1)FOR BEST RSLT,PERFORM
AT FOLLOWING CONDITIONS.
-FUEL LEVEL: 1/4-3/4
-AMBIENT TEMP: 0-30 C(32-86F)
-OPEN ENGINE HOOD.
2)START ENG WITH VHCL
STOPPED. IF ENG IS ON,STOP
FOR 5 SEC.THEN RESTART.
3)TOUCH START.

SEF565X

WAIT
2 TO 10 MINUTES.
KEEP ENGINE RUNNING
AT IDLE SPEED.

SEF566X

Evaporative Emission (EVAP) Control System (Large Leak) (Cont'd)

DTC CONFIRMATION PROCEDURE

CAUTION:

Never remove fuel filler cap during the DTC confirmation procedure.

GI

MA

EM

EC

AT

FA

RA

NOTE:

- If DTC P1448 is displayed with P0455, perform TROUBLE DIAGNOSIS FOR DTC P1448 first.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle placed on the flat level surface.
- Open engine hood before conducting following procedure.

- 1) Tighten fuel filler cap securely until ratching sound is heard.
- Turn ignition switch "ON".
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- 5) Make sure the following conditions are met. COOLAN TEMP/S: 0 70°C (32 158°F) INT/A TEMP SE: 0 60°C (32 140°F)
- 6) Select "EVAP SML LEAK PÒ440" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.

Follow the instruction displayed.

NOTE:

- If the engine cannot be maintained within the range on CONSULT-II screen, go to "Basic Inspection", EC-83.
- Make sure that EVAP hoses are connected EVAP canister purge volume control solenoid valve properly.
- 7) Make sure that "OK" is displayed.

 If "NG" is displayed, select "SELF-DIAG RESULTS" mode with CONSULT-II and make sure that "EVAP GROSS LEAK [P0445]" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-313.

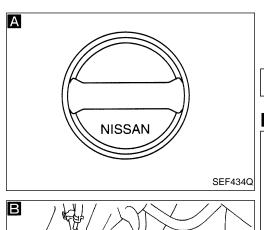
 If P0440 is displayed, perform "DIAGNOSTIC PROCEDURE" for P0440, EC-287.

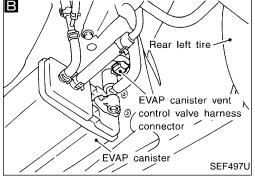
- OR -

NOTE:

Be sure to read the explanation of "Driving pattern" on EC-52 before driving vehicle.

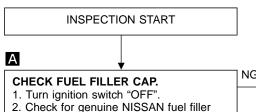
- 1) Start engine.
- 2) Drive vehicle according to "Driving pattern", EC-52.
- Stop vehicle.
- 4) Select "MODE 1" with GST.
- If SRT of EVAP system is not set yet, go to the following step.


EC-311


Evaporative Emission (EVAP) Control System (Large Leak) (Cont'd)

- If SRT of EVAP system is set, the result will be OK.
- 5) Turn ignition switch "OFF" and wait at least 5 seconds.
- 6) Start engine.

It is not necessary to cool engine down before driving.


- 7) Drive vehicle again according to the "Driving pattern".
- 8) Stop vehicle.
- 9) Select "MODE 3" with GST.
- If P1447 is displayed on the screen, go to "TROUBLE DIAGNOSIS FOR DTC P1447", EC-398.
- If P0440 is displayed on the screen, go to "DIAG-NOSTIC PROCEDURE", EC-287.
- If P1440 is displayed on the screen, go to "Diagnostic Procedure", EC-374.
- If P0440, P0455, P1440 and P1447 are not displayed on the screen, go to the following step.
- 10) Select "MODE 1" with GST.
- If SRT of EVAP system is set, the result will be OK.
- If SRT of EVAP system is not set, go to step 5).

Evaporative Emission (EVAP) Control System (Large Leak) (Cont'd)

DIAGNOSTIC PROCEDURE

2. Check for genuine NISSAN fuel filler cap design.

If NG, replace with genuine NISSAN fuel filler cap. If OK, go to next step.

- 3. Check that the cap is tightened properly by rotating the cap clockwise.
- Open fuel filler cap, then clean cap and fuel filler neck threads using air blower
- Retighten until ratcheting sound is heard. If OK, go to next step.

OK

4. Check for air releasing sound while opening the fuel filler cap.

improper connection or disconnection.

В

Check fuel tank vacuum relief valve. (Refer to "FUEL TANK VACUUM RELIEF VALVE (Built into fuel filler cap)", EC-24. If NG, replace with genuine NISSAN fuel filler cap. If OK, go to B "CHECK FOR EVAP LEAK".

EC

GI

MA

EM

FE

MT

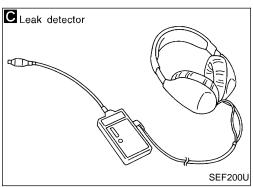
AT

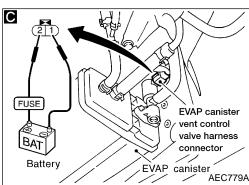
FA

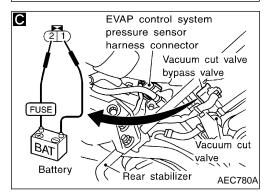
RA

BR

BT


HA

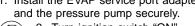

NG CHECK COMPONENT. Repair or reconnect the Check EVAP purge line (pipe, rubber tube, hose. fuel tank and EVAP canister) for cracks or


Refer to "EVAPORATIVE EMISSION SYSTEM", EC-26. OK Check hoses between EVAP canister and Reconnect hoses properly. refueling control valve for disconnection. For location, refer to "SYSTEM DESCRIP-TION" in "On Board Refueling Vapor Recovery (ORVR)" on EC-28. OK NG Repair or replace EVAP **CHECK COMPONENT AND CIRCUIT** (EVAP canister vent control valve, O-ring canister vent control valve and water separator). and O-ring or harness/ Refer to "TROUBLE DIAGNOSIS FOR connector. DTC P0446" for circuit, EC-299 and "COMPONENT INSPECTION", EC-316. **↓**OK (A) (Go to next page.)

Adapter for service port service port Pressure pump SEF462U

C **EVAP SYSTEM CLOSE** APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT NEXT SCREEN. **NEVER USE COMPRESSED** AIR OR HIGH PRESSURE **PUMP! DO NOT START** ENGINE. TOUCH START. PEF658U

Evaporative Emission (EVAP) Control System (Large Leak) (Cont'd)

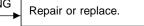

CHECK FOR EVAP LEAK.

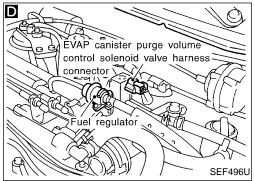
 Never use compressed air or high pressure pump.

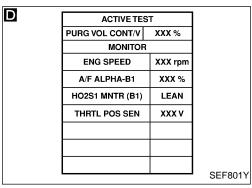
Improper installation of service port may cause leaking.

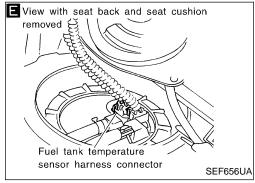
Do not exceed 4.12 kPa (0.042 kg/cm², 0.6 psi) of pressure in the system. To locate EVAP leak portion, proceed with

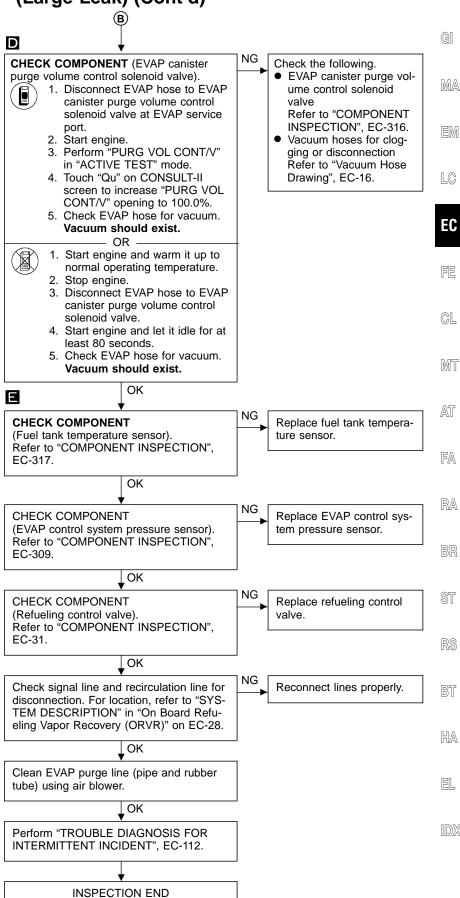
the following steps. 1. Install the EVAP service port adapter

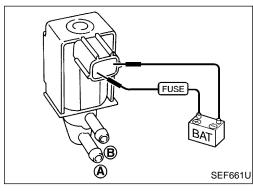


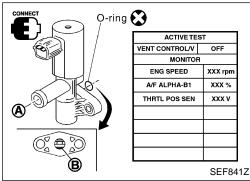

- 2. Turn ignition switch "ON". Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.
- 3. Touch "START" and apply vacuum into the EVAP line until the pressure indicator reaches the middle of bar graph.
- 4. Using EVAP leak detector, locate the leak portion. For the leak detector, refer to instruction manual for more details. Refer to "Evaporative Emission Line Drawing", EC-26.

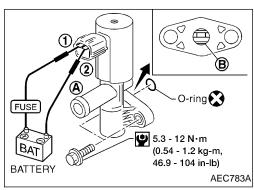



- OR 2. Turn ignition switch "OFF"
- Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)
- 4. Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12 volts until the end of test.)
- 5. Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg).
- 6. Locate the leak using a leak detector. Refer to the instruction manual for more details about the leak detector. Refer to "Evaporative Emission Line Drawing", EC-26.






Evaporative Emission (EVAP) Control System (Large Leak) (Cont'd)



	ACTIVE TES		
	PURG VOL CONT/V	XXX %	
	MONITOR		
	ENG SPEED	XXX rpm	
	A/F ALPHA-B1	XXX %	
	HO2S1 MNTR (B1)	LEAN	
	THRTL POS SEN	xxx v	
L			SEF801Y

B SEF660U

Evaporative Emission (EVAP) Control System (Large Leak) (Cont'd) COMPONENT INSPECTION

EVAP canister purge volume control solenoid valve

- 1. Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. If OK, inspection end. If NG, go to following step.
- 3. Check air passage continuity.

Condition PURG VOL CONT/V value	Air passage continuity between (A) and (B)
100.0%	Yes
0.0%	No

If NG, replace the EVAP canister purge volume control solenoid valve.

OR

Check air passage continuity.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals	Yes
No supply	No

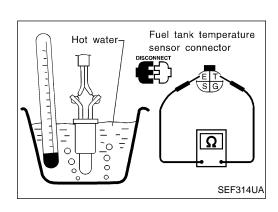
If NG or operation takes more than 1 second, replace solenoid valve.

EVAP canister vent control valve

Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

Condition	Air passage continuity between (A) and (B)	
ON	No	
OFF	Yes	
OR		



Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals 1 and 2	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If portion (B) is rusted, replace control valve.

Make sure new O-ring is installed properly.

Evaporative Emission (EVAP) Control System (Large Leak) (Cont'd)

Fuel tank temperature sensor

Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance k Ω
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel tank temperature sensor.

 $\mathbb{M}\mathbb{A}$

....

EM

LC

EC

FE

CL

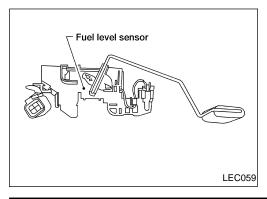
MT

AT

FA

RA

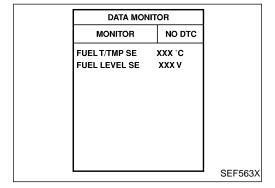
BR


ST

RS

BT

HA


EL

Fuel Level Sensor Function (Slosh) ON BOARD DIAGNOSTIC LOGIC

When the vehicle is parked, naturally the fuel level in the fuel tank is stable. It means that output signal of the fuel level sensor does not change. If ECM senses sloshing signal from the sensor, fuel level sensor malfunction is diagnosed.

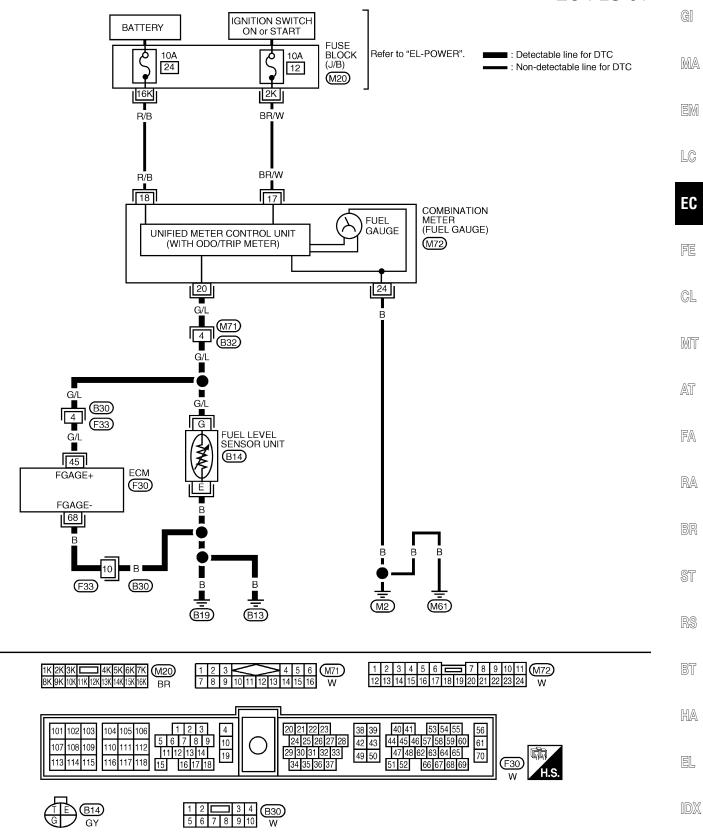
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0460	Even though the vehicle is parked, a signal being varied is sent from the fuel level sensor to ECM.	 Fuel level sensor circuit (The fuel level sensor circuit is open or shorted.) Fuel level sensor

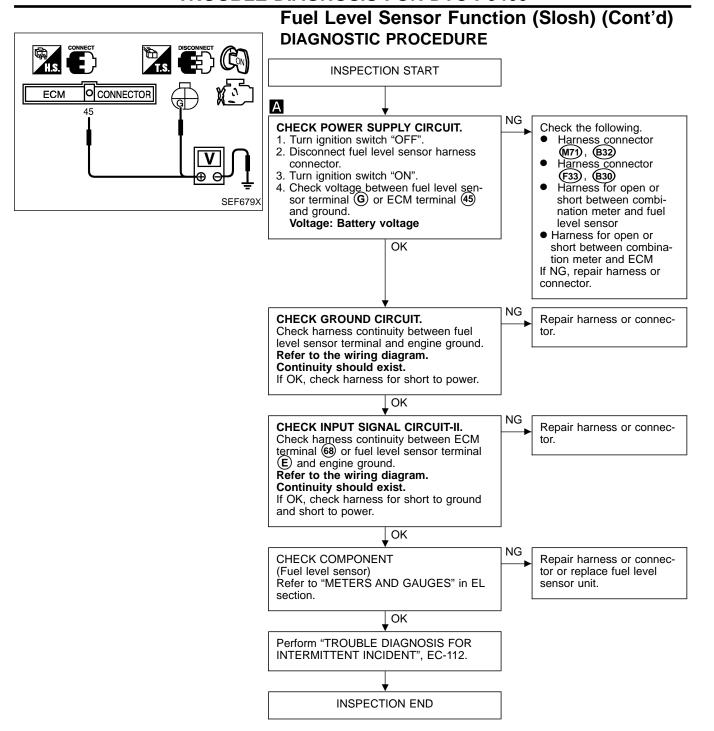
DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

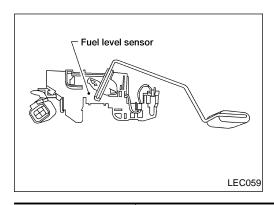
NOTE:

If "DTC Confirmation Procedure" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait maximum of 2 consecutive minutes.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-320.




(GST)


- OR -Follow the above procedure "With CONSULT-II".

Fuel Level Sensor Function (Slosh) (Cont'd)

EC-FLS-01

Fuel Level Sensor Function ON BOARD DIAGNOSTIC LOGIC

Driving long distances naturally affects the fuel gauge level. This diagnosis detects the fuel gauge malfunction of the gauge not moving even after a long distance has been driven.

GI

EM

П	0	
Įμ	-(6)	

EC

MT

AT

FA

RA

BR

BT

HA

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0461	The output signal of the fuel level sensor does not change within the specified range.	 Harness or connectors (The fuel level sensor circuit is open or shorted) Fuel level sensor

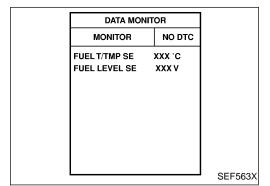
OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the fuel level sensor function. During this check, a 1st trip DTC might not be confirmed.

WARNING:

When performing following procedure, be sure to observe the handling of the fuel. Refer to "WARNING" and "CAUTION", "Fuel Tank" in FE section.

TESTING CONDITION:


Before starting overall function check, preparation of draining fuel and refilling fuel is required.

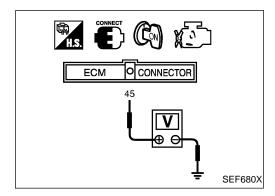
NOTE:

- Start from step 7) using CONSULT-II if it appears impossible to drain 30 (7-7/8 US gal, 6-5/8 Imp gal) or more.
- Be careful not to discharge battery when performing following procedure.

PREPARATION:

- 1) Prepare a fuel container and a spare hose.
- 2) Release fuel pressure from fuel line, refer to "Fuel Pressure Release", EC-34.
- 3) Remove the fuel feed hose on the fuel level sensor unit.
- 4) Connect a spare fuel hose where the fuel feed hose was removed and the other side into the fuel container.

- Turn ignition switch "OFF" and wait at least 5 seconds then turn "ON".
- Select "FUEL LEVEL SE" in "DATA MONITOR" mode with CONSULT-II.
- Check "FUEL LEVEL SE" output voltage and note it.
- 4) Select "FUEL PUMP" in "ACTIVE TEST" mode with CONSULT-II.


NOTE:

If "FUEL LEVEL SE" changes more than 0.03V which was noted at step 3), stop draining or refilling fuel because the test result will be OK.

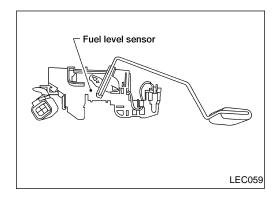
Fuel Level Sensor Function (Cont'd)

- 5) Touch "ON" and drain approximately 30 liters (7-7/8 US gal, 6-5/8 Imp gal) of fuel, and then stop it.
- 6) Check "FUEL LEVEL SE" output voltage and note it.
- 7) Fill 30 liters (7-7/8 US gal, 6-5/8 Imp gal) of fuel into the fuel tank.
- 8) Check "FUEL LEVEL SE" output voltage and confirm whether the voltage changes more than 0.03V at step 5).

If NG, check component of fuel level sensor. Refer to "METERS AND GAUGES" in EL section.

- 1) Turn ignition switch "OFF".
- 2) Set voltmeters probe between ECM terminal 45 (fuel level sensor output signal) and ground.

- OR -


- 3) Turn ignition switch "ON".
- 4) Check output voltage of fuel level sensor at ECM terminal 45 and note it.

NOTE:

If "FUEL LEVEL SE" changes more than 0.03V which was noted at step 4), stop draining or refilling fuel because the test result will be OK.

- 5) Drain fuel by 30 (7-7/8 US gal, 6-5/8 Imp gal) from the fuel tank using proper equipment.
- 6) Fill 30 liters (7-7/8 US gal, 6-5/8 Imp gal) of fuel into the fuel tank.
- 7) Check the output voltage of fuel level sensor at ECM terminal that whether the voltage changes more than 0.03V at the step 4).

If NG, check component of fuel level sensor, refer to "METERS AND GAUGES" in EL section.

Fuel Level Sensor Circuit COMPONENT DESCRIPTION

The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

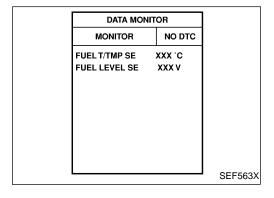
ON BOARD DIAGNOSTIC LOGIC

ECM receives two signals from the fuel level sensor.

One is between the level sensor and the combination meter, and the other is between the level sensor and the ground.

This diagnosis indicates the former to detect open or short circuit malfunction.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0464	An excessively low or high voltage is sent from the sensor to ECM.	Fuel level sensor circuit (The fuel level sensor circuit is open or shorted.) Fuel level sensor


DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITIONS:

Before performing the following procedure, confirm that battery voltage is more than 11V at ignition switch "ON".

- 1) Turn ignition switch "ON".
- Select "DATA MONITOR" mode with CONSULT-II.
- Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-325.

——— OR -

Follow the procedure "With CONSULT-II".

(II

MA

LC

EC

FE

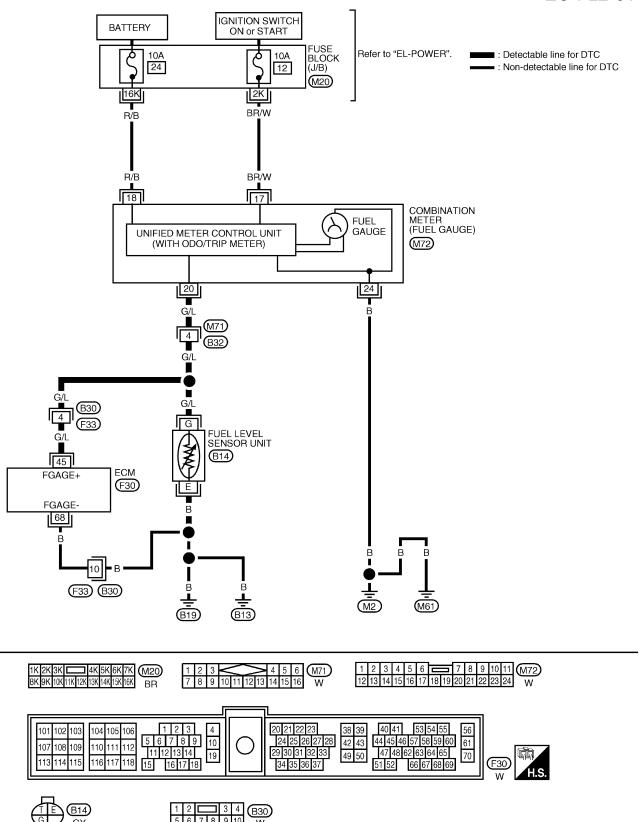
CL

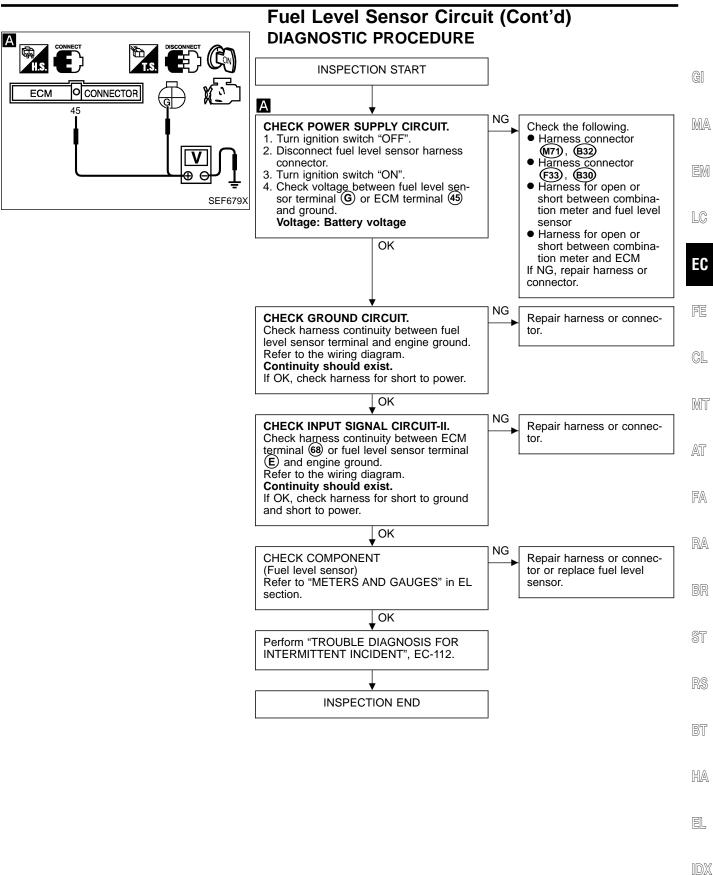
MT

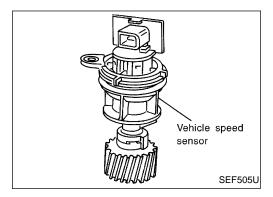
FA

BR

D@


BT


HA


EL

Fuel Level Sensor Circuit (Cont'd)

EC-FL2-01

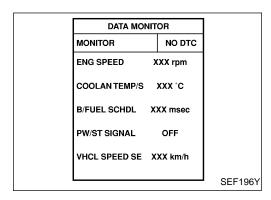
Vehicle Speed Sensor (VSS)

COMPONENT DESCRIPTION

The vehicle speed sensor is installed in the transaxle. It contains a pulse generator which provides a vehicle speed signal to the speedometer. The speedometer then sends a signal to the ECM.

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
26	PU/R	Vehicle speed sensor	Engine is running. Lift up the vehicle. In 2nd gear position 40 km/h (25 MPH)	4 - 7V (V) 10 5 0 50 ms SEF642U

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0500	●The almost 0 km/h (0 MPH) signal from vehicle speed sensor is sent to ECM even when vehicle is being driven.	 Harness or connector (The vehicle speed sensor circuit is open or shorted.) Vehicle speed sensor

Vehicle Speed Sensor (VSS) (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

 If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Step 1 and 2 may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

Start engine

 Read vehicle speed sensor signal in "DATA MONITOR" mode with CONSULT-II. The vehicle speed on CONSULT-II should exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

If NG, go to "DIAGNOSTIC PROCEDURE", EC-329. If OK, go to following step.

- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Warm engine up to normal operating temperature.
- 5) Maintain the following conditions for at least 10 consecutive seconds.

ENG SPEED: 2,100 - 6,000 rpm

COOLAN TEMP/S: More than 70°C (158°F)

B/FUEL SCHDL: 6 - 1.25 msec (A/T)

5.5 - 14 msec (M/T)

Selector lever: Suitable position

PW/ST SIGNAL: OFF

 If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-329.

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a DTC might not be confirmed.

- 1) Jack up drive wheels.
- 2) Start engine.
- Read vehicle speed sensor signal in "MODE 1" with GST.

The vehicle speed sensor on GST should be able to exceed 10 km/h (6 MPH) when rotating wheels with suitable gear position.

4)f NG, go to "DIAGNOSTIC PROCEDURE", EC-329.

GI

MA

EM

LC

EC

FE

CL

 \mathbb{MT}

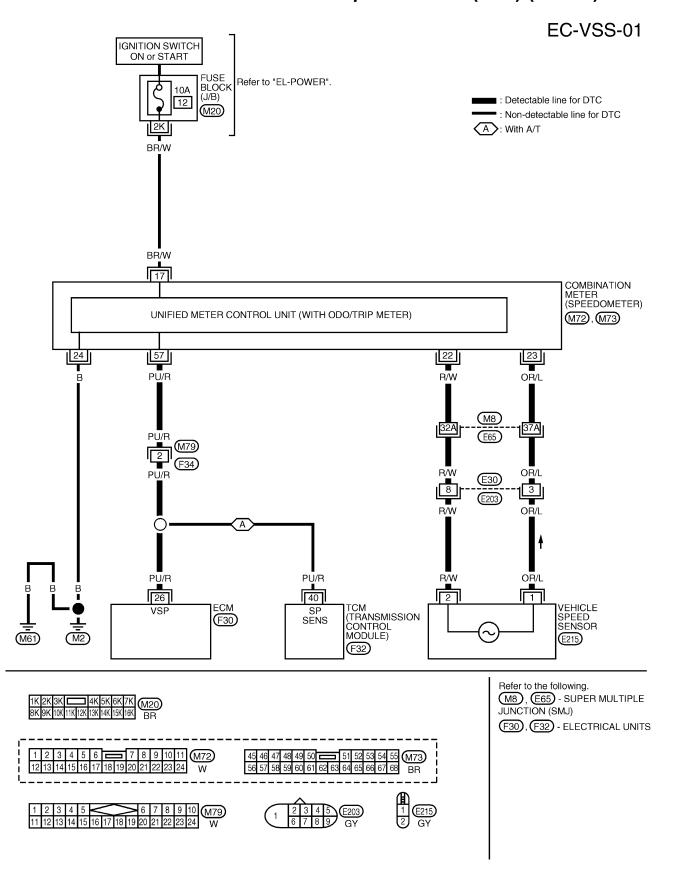
AT

FA

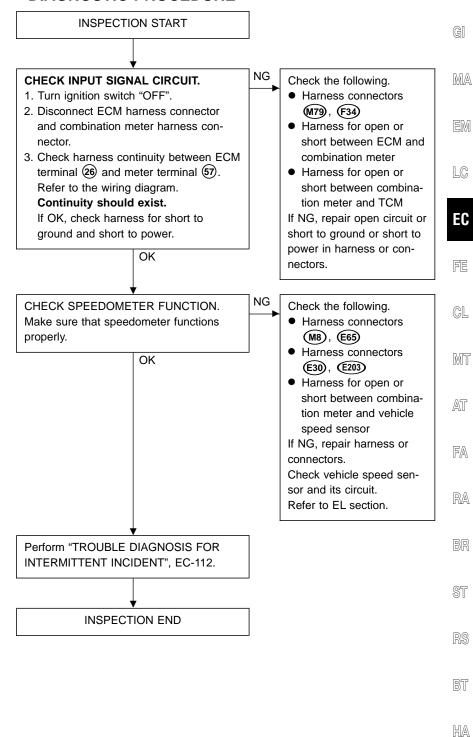
RA

ST

RS

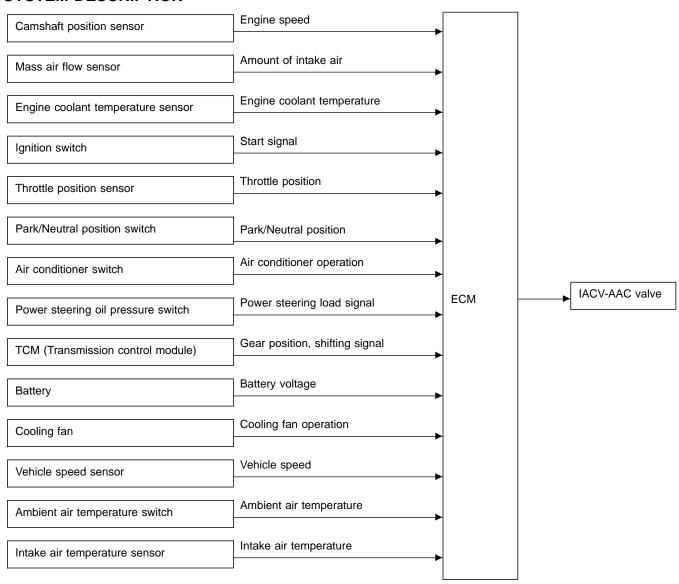

BT

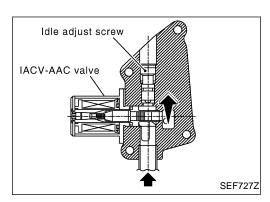
HA


EL

DX

Vehicle Speed Sensor (VSS) (Cont'd)


Vehicle Speed Sensor (VSS) (Cont'd) DIAGNOSTIC PROCEDURE


IDX

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve

SYSTEM DESCRIPTION

This system automatically controls engine idle speed to a specified level. Idle speed is controlled through fine adjustment of the amount of air which bypasses the throttle valve via IACV-AAC valve. The IACV-AAC valve repeats ON/OFF operation according to the signal sent from the ECM. The camshaft position sensor detects the actual engine speed and sends a signal to the ECM. The ECM then controls the ON/OFF time of the IACV-AAC valve so that engine speed coincides with the target value memorized in ECM. The target engine speed is the lowest speed at which the engine can operate steadily. The optimum value stored in the ECM is determined by taking into consideration various engine conditions, such as during warm up, deceleration, and engine load (air conditioner and power steering).

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd) COMPONENT DESCRIPTION

IACV-AAC valve

The IACV-AAC valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of air that will flow through the valve. The more air that flows through the valve, the higher the idle speed.

G[

MA

LG

EM

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION		SPECIFICATION
IACV-AAC/V	Engine: After warming upAir conditioner switch: "OFF"	Idle	Approx. 20%
IACV-AAC/V	Shift lever: "N"No-load	2,000 rpm	_

EC

⊚⊓

MT

AT

FE

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	FA
				Approximately 12V	
			Engine is running. (Warm-up condition)	(V) 10	RA
			Idle speed	5	BR
				2 ms	ST
101	SB	IACV-AAC valve		SEF645U	0 1
				1 - 12V	
				(V)	RS
		Engine is running. (Warm-up condition) Engine speed is 2,000 rpm	5 0 2 ms	BT	
				HA	
			SEF646U	ınl/Al	

IDX

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0505	A) The IACV-AAC valve does not operate properly.	 Harness or connectors (The IACV-AAC valve circuit is open.) IACV-AAC valve
	B) The IACV-AAC valve does not operate properly.	 Harness or connectors (The IACV-AAC valve circuit is shorted.) IACV-AAC valve

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

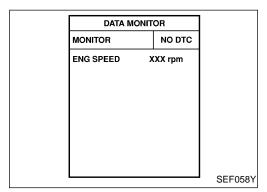
Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B".

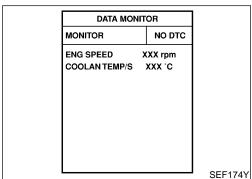
Procedure for malfunction A

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 2 seconds.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-334.

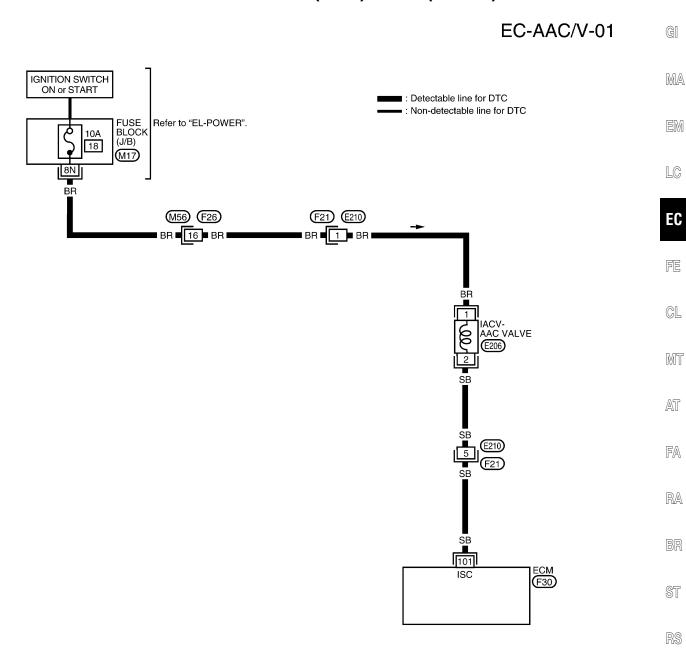
- 1) Turn ignition switch "ON" and wait at least 2 seconds.
- 2) Select "MODE 7" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE". EC-334.

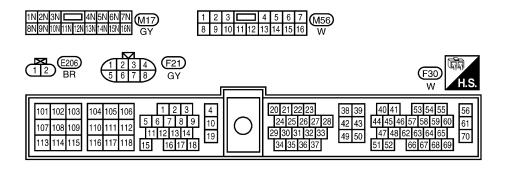
Procedure for malfunction B



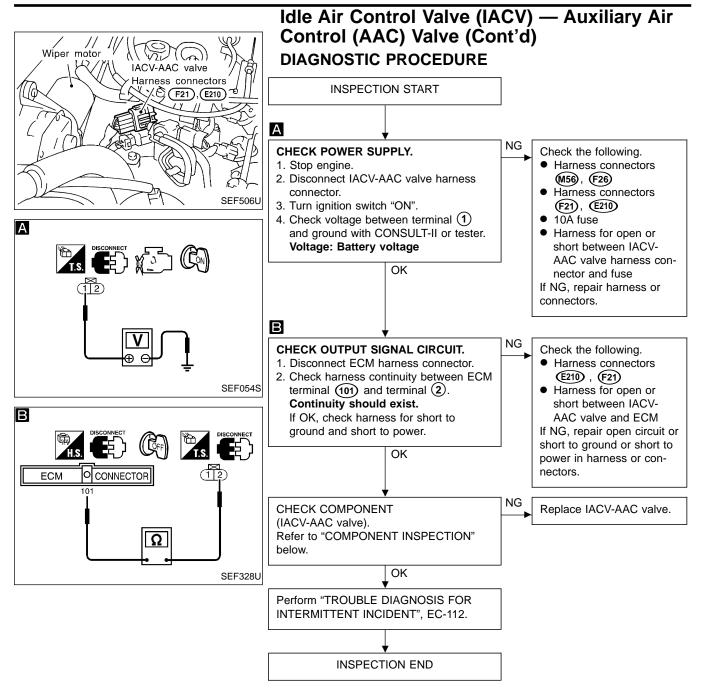

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON" again and select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine and run it for at least 1 minute at idle speed.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-334.

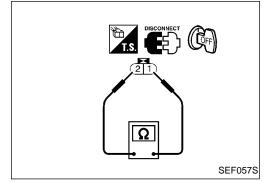
- OR -




- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Start engine again and run it for at least 1 minute at idle speed.
- 4) Select "MODE 7" with GST.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-334.

Idle Air Control Valve (IACV) — Auxiliary Air Control (AAC) Valve (Cont'd)





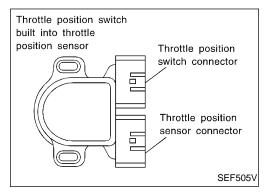
BT

HA

EL

COMPONENT INSPECTION

IACV-AAC valve


Disconnect IACV-AAC valve harness connector.

Check IACV-AAC valve resistance.

Resistance:

Approximately 10 Ω [at 20°C (68°F)]

- Check plunger for seizing or sticking.
- Check for broken spring.

Closed Throttle Position Switch

COMPONENT DESCRIPTION

A closed throttle position switch and wide open throttle position switch are built into the throttle position sensor unit. The wide open throttle position switch is used only for A/T control. When the throttle valve is in the closed position, the closed throttle position switch sends a voltage signal to the ECM. The ECM only uses this signal to open or close the EVAP canister purge volume control solenoid valve when the throttle position sensor is malfunctioning.

GI

MA

LC

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
27	_	Throttle position switch	Ignition switch "ON" (Warm-up condition) Accelerator pedal fully released	BATTERY VOLTAGE (11 - 14V)
21	1	(Closed position)	Ignition switch "ON" Accelerator pedal depressed	Approximately 0V

ON BOARD DIAGNOSIS LOGIC

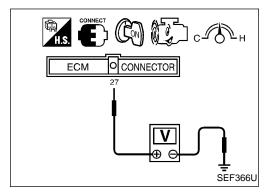
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0510	Battery voltage from the closed throttle position switch is sent to ECM with the throttle valve opened.	 Harness or connectors (The closed throttle position switch circuit is shorted.) Closed throttle position switch Throttle position sensor

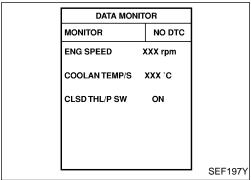
EC

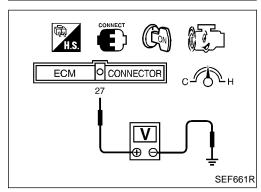
FE

GL

MT


FA


RA


BR

BT

HA

Closed Throttle Position Switch (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Check voltage between ECM terminal ② and ground under the following conditions.

At idle: Battery voltage At 2,000 rpm: 0 - 1V

If the check result is NG, go to "DIAGNOSTIC PROCEDURE", EC-338.

If OK, go to following step.

- 3) Select "DATA MONITOR" mode with CONSULT-II at the start of the test.
- 4) Drive the vehicle for at least 5 consecutive seconds under the following condition.

THRTL POS SEN: More than 2.5V

VHCL SPEED SE: More than 4 km/h (2 MPH)

Selector lever: Suitable position

Driving pattern: Driving vehicle uphill (Increased engine load) will help maintain the driving conditions required for this test.

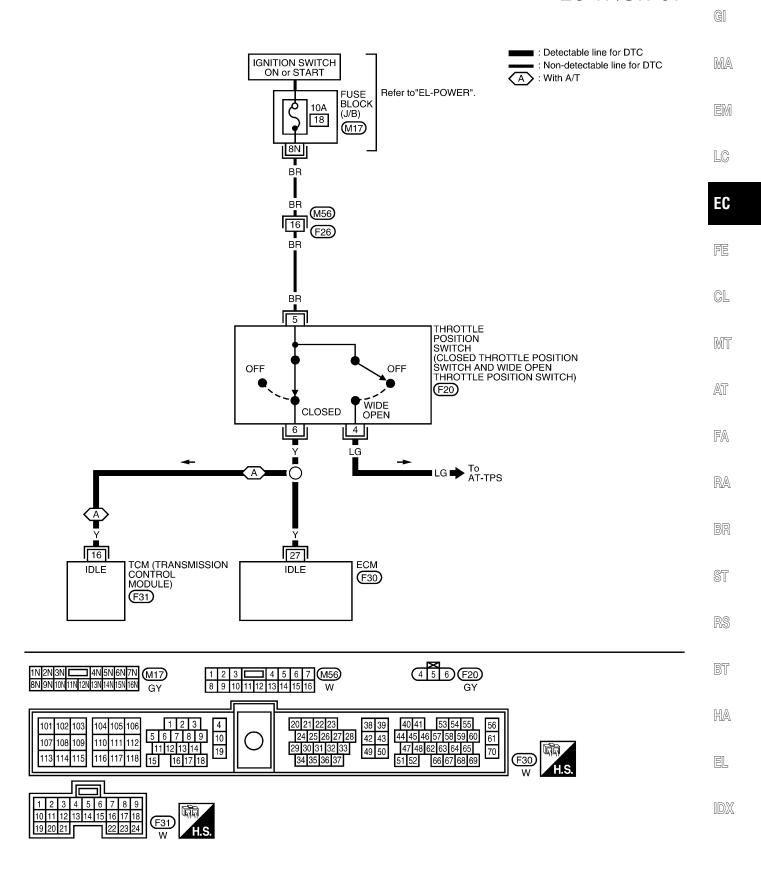
5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-338.

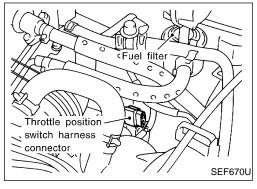
OR -

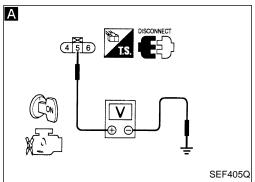
OVERALL FUNCTION CHECK

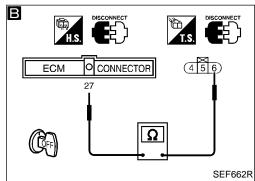
Use this procedure to check the overall function of the closed throttle position switch circuit. During this check, a 1st trip DTC might not be confirmed.

- Start engine and warm it up to normal operating temperature.
- 2) Check the voltage between ECM terminal ② and ground under the following conditions.

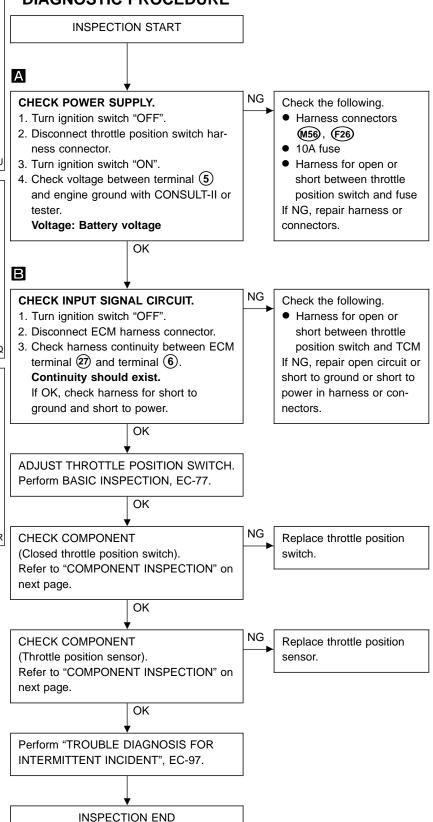

At idle: Battery voltage

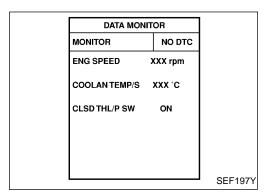

At 2,000 rpm: Approximately 0V


3)f NG, go to "DIAGNOSTIC PROCEDURE", EC-338.

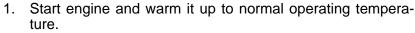

Closed Throttle Position Switch (Cont'd)

EC-TP/SW-01





Closed Throttle Position Switch (Cont'd) DIAGNOSTIC PROCEDURE



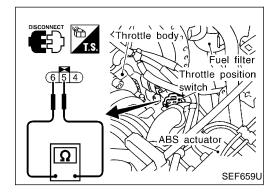
Closed Throttle Position Switch (Cont'd) COMPONENT INSPECTION

Closed throttle position switch

Stop engine and turn ignition switch "ON".

Select "DATA MONITOR" mode with CONSULT-II.

Check indication of "CLSD THL/P SW".


Measurement must be made with closed throttle position switch installed in vehicle.

Throttle valve conditions	CLSD THL/P SW
Completely closed	ON
Partially open or completely open	OFF

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-83.

5. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

Start engine and warm it up to normal operating tempera-

Turn ignition switch "OFF".

Disconnect closed throttle position switch harness connec-

Check continuity between terminals (5) and (6).

Resistance measurement must be made with closed throttle position switch installed in vehicle.

Throttle valve conditions	Continuity
Completely closed	Yes
Partially open or completely open	No

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-83.

5. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace closed throttle position switch.

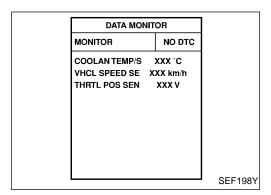
GI

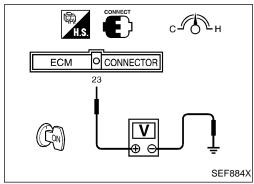
MA

EM

EC

MT


CL


BR

BT

HA

IDX

Closed Throttle Position Switch (Cont'd)

Throttle position sensor

- 1. Start engine and warm it up to normal operating temperature.
- Stop engine and turn ignition switch "ON".
- 3. Select "DATA MONITOR" mode with CONSULT-II.
- Check voltage of "THRTL POS SEN".

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage (V)
Completely closed	0.15 - 0.85 (a)
Partially open	Between (a) and (b)
Completely open	3.5 - 4.7 (b)

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-83.

5. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

OR

- 1. Start engine and warm it up to normal operating temperature.
- 2. Stop engine and turn ignition switch "ON".
- 3. Check voltage between ECM terminal ② (Throttle position sensor signal) and ground.

Voltage measurement must be made with throttle position sensor installed in vehicle.

Throttle valve conditions	Voltage (V)	
Completely closed	0.15 - 0.85 (a)	
Partially open	Between (a) and (b)	
Completely open	3.5 - 4.7 (b)	

If NG, adjust closed throttle position switch. Refer to "Basic Inspection", EC-83.

4. If it is impossible to adjust closed throttle position switch in "Basic Inspection", replace throttle position sensor.

A/T Control

COMPONENT DESCRIPTION

These circuit lines are used to control the smooth shifting up and down of A/T during the hard acceleration/deceleration.

Voltage signals are exchanged between ECM and TCM (Transmission control module).

MA

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

Π	0

EC

FE

GL

MIT

AT

FA

RA

BR

EM

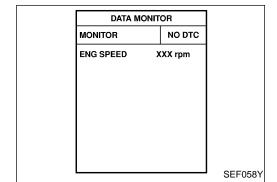
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	
24	Y/B	A/T signal No. 1	Ignition switch "ON" Engine is running. Idle speed	6 - 8V	
29	Y/G	A/T signal No. 2	Ignition switch "ON" Engine is running. Idle speed	6 - 8V	
30	Y/R	A/T signal No. 3	Ignition switch "ON"	OV	,

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Item (Possible Cause)
P0600*	ECM receives incorrect voltage from TCM (Transmission control module) continuously.	 Harness or connectors (The circuit between ECM and TCM is open or shorted.)

^{*:} This DTC can be detected only by "DATA MONITOR (AUTO TRIG)" with CONSULT-II.

D@


ST

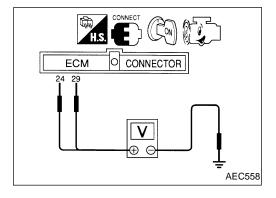
ппΔ

HA

EL

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:


If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and race more than 1,000 rpm once, then let it idle for more than 40 seconds.

A/T Control (Cont'd)

4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-344.

—— OR -

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the A/T control. During this check, a DTC might not be confirmed.

- 1) Turn ignition switch "ON".
- 2) Start engine.
- Check voltage between ECM terminal @ and ground. ECM terminal @ and ground.

Voltage: Approximately 7V 4) f NG, go to "DIAGNOSTIC PROCEDURE", EC-344.

A/T Control (Cont'd)

EC-AT/C-01

GI

MA

EM

LC

EC

FE

CL

MT

AT

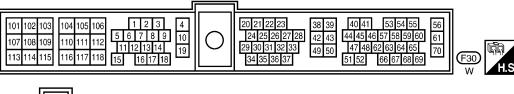
FA

RA

BR

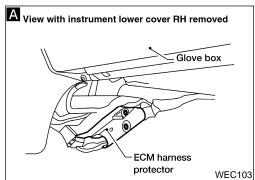
ST

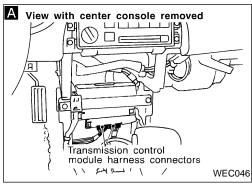

RS

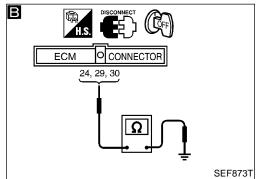

BT

HA

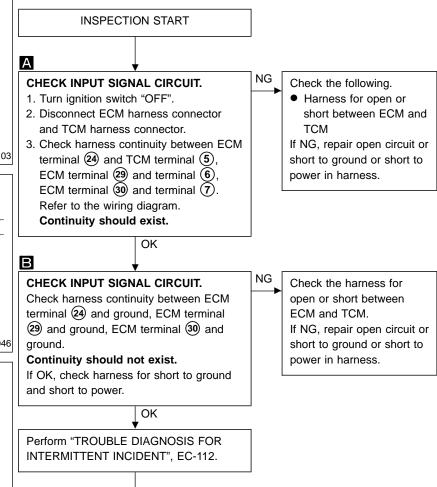
EL

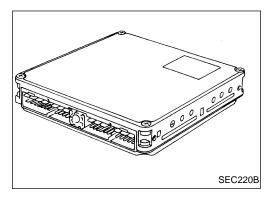

IDX





WEC015





A/T Control (Cont'd) DIAGNOSTIC PROCEDURE

INSPECTION END

Engine Control Module (ECM) COMPONENT DESCRIPTION

The ECM consists of a microcomputer, diagnostic test mode selector, and connectors for signal input and output and for power supply. The unit controls the engine.

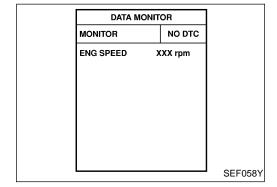
GI

MA

EM

LG

EC


ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Item (Possible Cause)
P0605	ECM calculation function is malfunctioning.	● ECM

MIT

FE

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

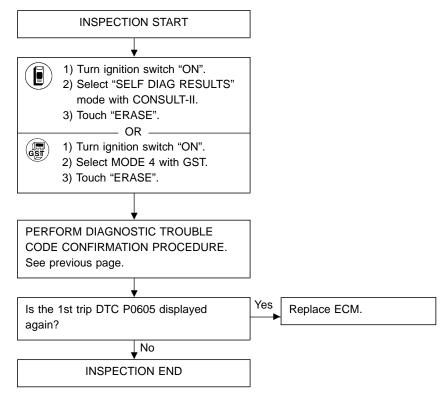
NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine.
- 4) Run engine for at least 30 seconds at idle speed.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-346.

- 1) Turn ignition switch "ON".
- 2) Start engine.
 - 3) Run engine for at least 30 seconds at idle speed.
 - 4) Select "Mode 7" with GST.
 - 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-346.

ST


RA

BT

HA

EL

Engine Control Module (ECM) (Cont'd) DIAGNOSTIC PROCEDURE

Thermostat Function

DIAGNOSTIC LOGIC

Even though the engine has been driven sufficiently to raise the engine coolant temperature, the engine coolant temperature is not raised to the specified temperature due to the thermostat having a leaking seal or being stuck open.

1	(2		
١	Ç	么	IL]

Diagnostic Trouble Code No.	Malfunction is detected when	Check Item (Possible Cause)	EM
P1126	1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	 Thermostat function Leakage from sealing portion of thermostat 	[♠
		Engine coolant temperature sensor	LU

EC

MA

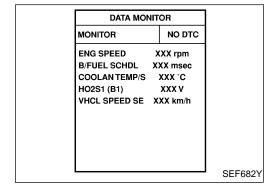
DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

NOTE:

If "DTC CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform at ambient temperature of -10°C (14°F) or higher.
- For best results, perform at engine coolant temperature of -10°C to 65°C (14 to 149°F).


۸۵	
AT	

MT

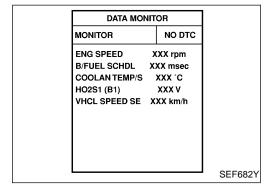
FA

RA

BR

- Replace the thermostat with a new one. Refer to "Thermostat", "ENGINE COOLING SYSTEM" in LC section. Use only a genuine NISSAN thermostat as a replacement. If an incorrect thermostat is used, the MIL may come on.
- Turn ignition switch "ON".
- Select "COOLANT TEMP/S" in data monitor mode with CONSULT-II.
- 4) Check that the "COOLANT TEMP/S" is above 64°C (149°F).
 - If it is below 65°C (149°F), go to the following step. If it is above 65°C (149°F), stop engine and cool down the engine to less than 65°C (149°F), then retry from step 2).
- 5) Drive vehicle for 10 consecutive minutes in the following conditions.

VHCL SPEED SE: 80 km/h to 120 km/h (75 MPH) If 1st trip DTC is detected, CHECK COMPONENT INSPECTION of ENGINE COOLANT TEMPERA-TURE SENSOR, EC-138.


- OR -Follow the above procedure "With CONSULT-II".

Closed Loop Control

ON BOARD DIAGNOSIS LOGIC

★ The closed loop control has the one trip detection logic.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1148	The closed loop control function does not operate even when vehicle is driving in the specified condition.	 The heated oxygen sensor 1 (front) circuit is open or shorted. Heated oxygen sensor 1 (front) Heated oxygen sensor 1 heater (front)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Never raise engine speed above 3,600 rpm during the "DIAGNOSTIC TROUBLE CODE CONFIRMATION PRO-CEDURE". If the engine speed limit is exceeded, retry the procedure from step 1).
- Before performing the following procedure, confirm that battery voltage is more than 11V.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Hold engine speed at 2,000 rpm.
- 4) While holding engine speed at 2,000 rpm, check the following.
- "HO2S1 (B1)" voltage should go above 0.7V at least once.
- "HO2S1 (B1)" voltage should go below 0.21V at least once
 - If the check result is NG, perform "DIAGNOSIS PROCEDURE", EC-182.
 - If the check result is OK, perform the following step.
- 5) Let engine idle at least 3 minutes.
- Maintain the following condition at least 50 consecutive seconds.

B/FUEL SCHDL: 3.5 ms or more

Closed Loop Control (Cont'd)

ENG SPEED: 2,000 - 3,500 rpm Selector lever: Suitable position VHCL SPEED SE: More than 70 km/h (43 MPH) During this test, P0130 may be displayed on CONSULT-II screen.

7) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-350.

– OR -

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the closed loop control. During this check, a 1st trip DTC might not be confirmed.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Set voltmeter probes between ECM terminal 46 (sensor signal) and 43 (engine ground).
- 3) Check the following with engine speed held at 2,000 rpm constant under no load.
- The voltage should go above 0.7V at least once.
- The voltage should go below 0.21V at least once.
- 4)f NG, go to "DIAGNOSTIC PROCEDURE", EC-350.

MA

EM

EC

FE

CL

MT

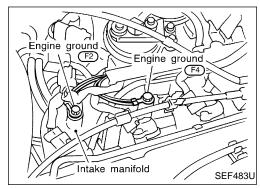
AT

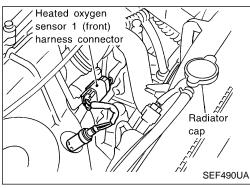
FA

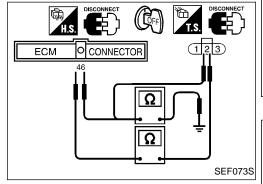
RA

BR

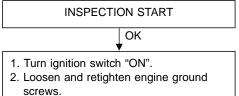
ST


BT


HA


EL

IDX


Closed Loop Control (Cont'd)

DIAGNOSTIC PROCEDURE

Loosen and retighten heated oxygen sensor 1 (front).

OK

OK

Tightening torque: 41 - 59 N·m

(4.1 - 6.1 kg-m, 30 - 44 ft-lb)

CHECK INPUT SIGNAL CIRCUIT.

- 1. Disconnect heated oxygen sensor 1 (front) harness connector and ECM harness connector.
- 2. Check harness continuity between ECM terminal (46) and terminal (2). Continuity should exist.
- 3. Check harness continuity between ECM terminal (46) (or terminal (2)) and ground.

Continuity should not exist.

CHECK COMPONENT

EC-184.

If OK, check harness for short to ground and short to power.

OK Replace heated oxygen [Heated oxygen sensor 1 heater (front)]. sensor 1 (front). Refer to "COMPONENT INSPECTION",

NG

NG

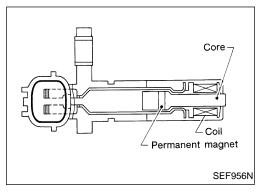
Repair open circuit, short

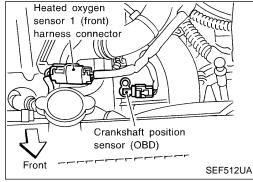
in harness or connectors.

Replace heated oxygen

sensor 1 (front).

to ground or short to power


CHECK COMPONENT [Heated oxygen sensor 1 (front)]. Refer to "COMPONENT INSPECTION", EC-184. OK


OK

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-112.

INSPECTION END

OK

Crankshaft Position Sensor (CKPS) (OBD) (COG)

COMPONENT DESCRIPTION

The crankshaft position sensor (OBD) is located on the transmission housing facing the gear teeth (cogs) of the flywheel or drive plate. It detects the fluctuation of the engine revolution.

The sensor consists of a permanent magnet, core and coil.

When the engine is running, the high and low parts of the teeth cause the gap with the sensor to change.

The changing gap causes the magnetic field near the sensor to change.

Due to the changing magnetic field, the voltage from the sensor changes.

The ECM receives the voltage signal and detects the fluctuation of the engine revolution.

This sensor is not directly used to control the engine system. It is used only for the on board diagnosis.

EC

LC

GI

MA

FE

CL

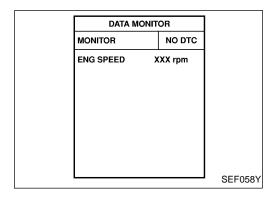
MT

AT

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
50	В	Sensors' ground	Engine is running. (Warm-up condition) Idle speed	Approximately 0V
				Approximately 0V
53	BR Crankshaft position sensor			4
		0.2 ms SEF643U		
55		(OBD)		Approximately 0V
			Engine is running. Engine speed is 2,000 rpm	1 1 1 1 1 1 1 1 1
				SEF644U

Crankshaft Position Sensor (CKPS) (OBD) (COG) (Cont'd)

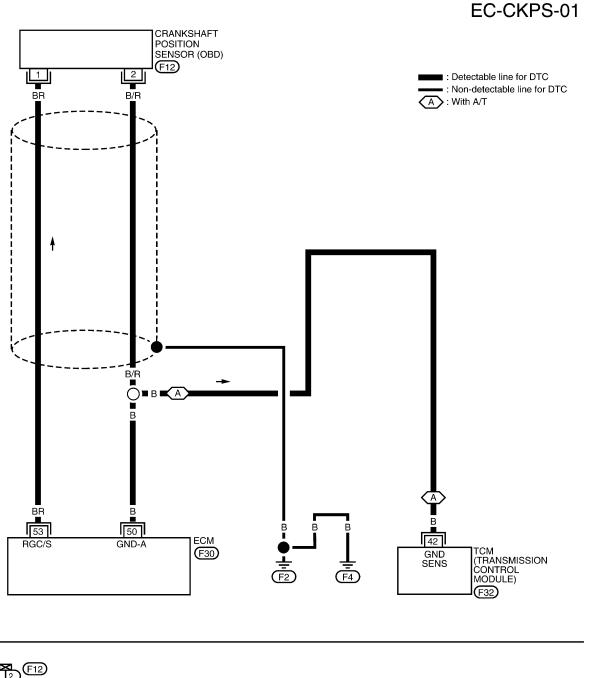
ON BOARD DIAGNOSIS LOGIC

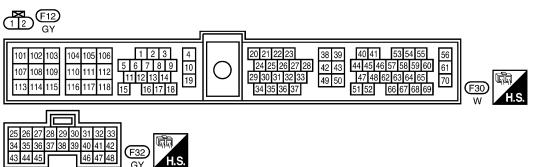
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1336	A chipping of the flywheel or drive plate gear tooth (cog) is detected by the ECM.	 Harness or connectors Crankshaft position sensor (OBD) Drive plate/Flywheel

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.


- 1) Turn ignition switch "ON" and select "DATA MONITOR" mode with CONSULT-II.
- Start engine and run it for at least 2 minutes at idle speed.
- If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-354.


– OR -

- 1) Start engine and run it for at least 2 minutes at idle speed.
- 2) Select "MODE 7" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-354.

Crankshaft Position Sensor (CKPS) (OBD) (COG) (Cont'd)

GI

MA

EM

LC

EC

FE

CL

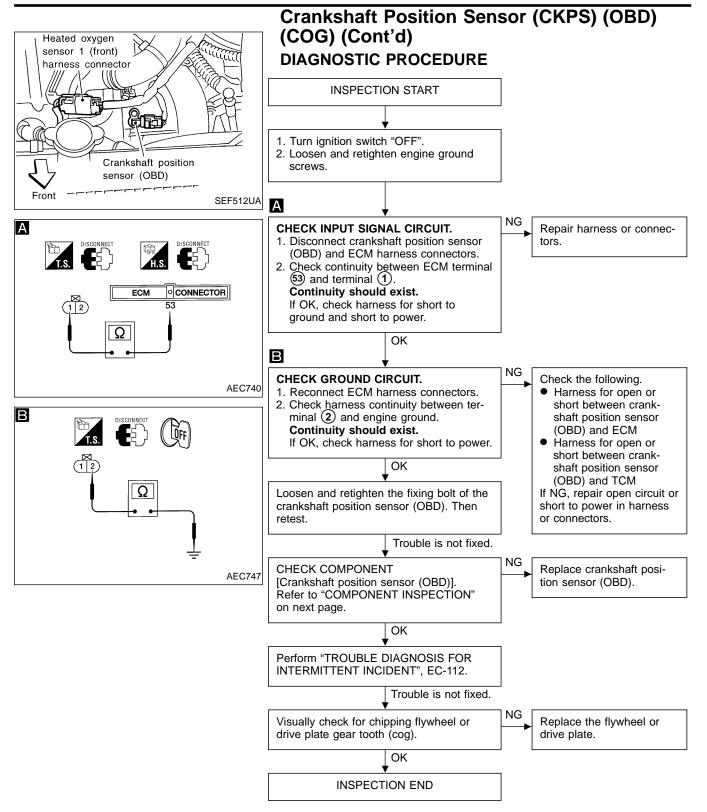
MT

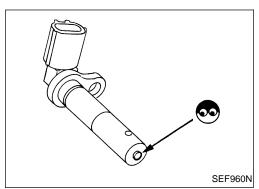
AT

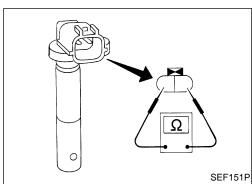
FA

RA

BR


ST


RS


BT

HA

EL

Crankshaft Position Sensor (CKPS) (OBD) (COG) (Cont'd)

COMPONENT INSPECTION

Crankshaft position sensor (OBD)

- 1. Disconnect crankshaft position sensor (OBD) harness connector.
- Loosen the fixing bolt of the sensor.
- Remove the sensor.
- Visually check the sensor for chipping.
 - Check resistance as shown in the figure. Resistance: Approximately 512 - 632 Ω [at 25°C (77°F)]

GI

MA

EM

LC

EC

FE

CL

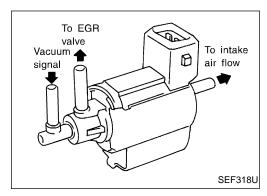
MT

AT

FA

RA

BR


ST

RS

BT

HA

EL

EGRC-Solenoid Valve COMPONENT DESCRIPTION

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The vacuum signal passes through the solenoid valve. The signal then reaches the EGR valve. When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal from the throttle body to the EGR valve.

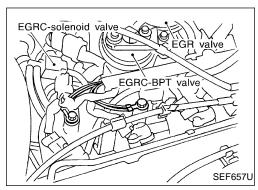
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

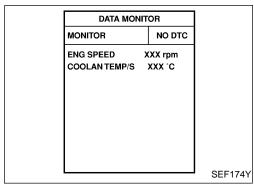
Specification data are reference values

MONITOR ITEM	CONDITION		SPECIFICATION
	 Engine: After warming up Air conditioner switch: "OFF" 	Idle	OFF
EGRC SOL/V	Shift lever: "N" No-load	Engine speed: Revving from 1,500 to 4,000 rpm quickly	ON

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
103	P	EGRC-solenoid valve	Idle speed (11 - 14V)	BATTERY VOLTAGE (11 - 14V)
	r	EGNC-solellolu valve	Engine is running. (Warm-up condition) Revving engine from idle to 3,000 rpm quickly	0 - 0.7V

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1400	EGRC-solenoid valve.	 Harness or connectors (The EGRC-solenoid valve circuit is open or shorted.) EGRC-solenoid valve

EGRC-Solenoid Valve (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II and wait at least 5 seconds.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-359.

- OR

- Turn ignition switch "ON" and wait at least 5 seconds.
- Select "MODE 7" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-359.

GI

MA

LC

EC

FE

CL

MT

AT

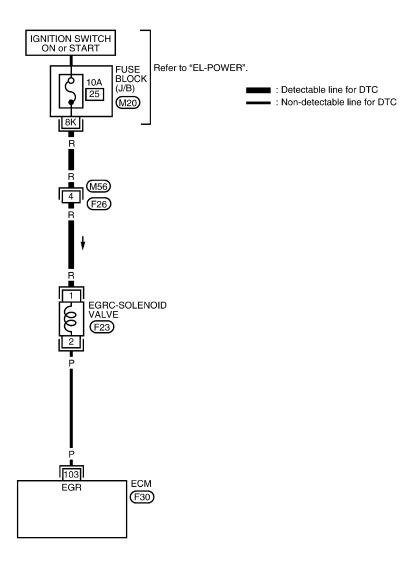
FA

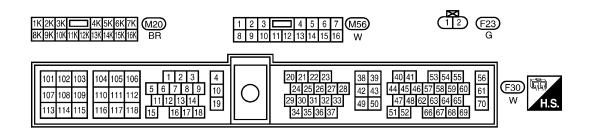
RA

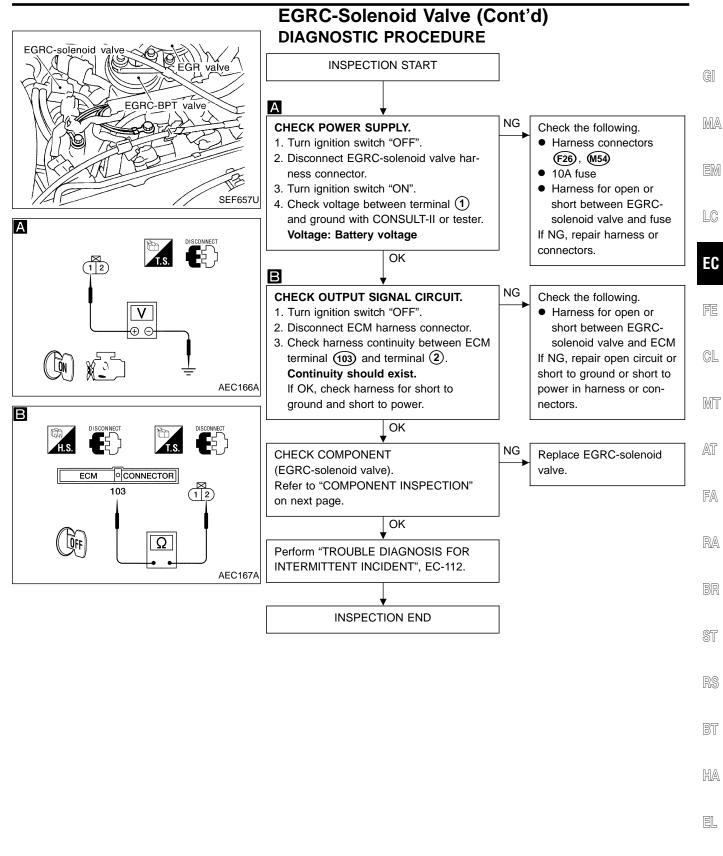
BR

RS

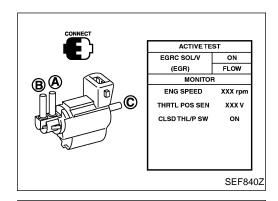
BT

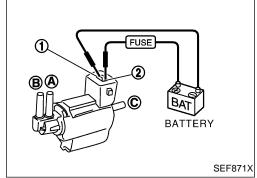

HA


EL


IDX

EGRC-Solenoid Valve (Cont'd)


EC-EGRC/V-01

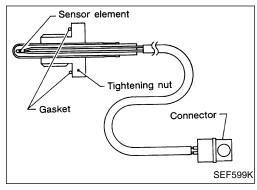


IDX

EGRC-Solenoid Valve (Cont'd) **COMPONENT INSPECTION**

EGRC-solenoid valve

Check air passage continuity.


Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.

Condition EGRC SOLENOID VALVE	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
ON	Yes	No
OFF	No	Yes

- OR -

Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals (1) and (2)	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace EGRCsolenoid valve.

EGR Temperature Sensor COMPONENT DESCRIPTION

The EGR temperature sensor detects temperature changes in the EGR passage way. When the EGR valve opens, hot exhaust gases flow, and the temperature in the passage way changes. The EGR temperature sensor is a thermistor that modifies a voltage signal sent from the ECM. This modified signal then returns to the ECM as an input signal. As the temperature increases, EGR temperature sensor resistance decreases. This sensor is not used to control the engine system. It is used only for the on board diagnosis.

<Reference data>

EGR temperature °C (°F)	Voltage* V	Resistance MΩ
0 (32)	4.61	0.68 - 1.11
50 (122)	2.53	0.09 - 0.12
100 (212)	0.87	0.017 - 0.024

^{*:} These data are reference values and are measured between ECM terminal (2) (EGR temperature sensor) and ground.

When EGR system is operating.

Voltage: 0 - 1.5V

CAUTION:

Do not use ECM ground terminals when measuring input/ output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	ST
P1401	A) An excessively low voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is low.	 Harness or connectors (The EGR temperature sensor circuit is shorted.) EGR temperature sensor Malfunction of EGR function, EGRC-BPT valve or 	RS
		EGRC-solenoid valve	BT
	B) An excessively high voltage from the EGR temperature sensor is sent to ECM even when engine coolant temperature is high.	 Harness or connectors (The EGR temperature sensor circuit is open.) EGR temperature sensor Malfunction of EGR function, EGRC-BPT valve or 	HA
		EGRC-solenoid valve	EL

GI

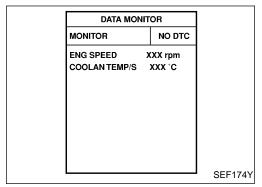
MA

EM

LC

EC

FE


CL

MT

FA

RA

BR

DATA MONITOR MONITOR NO DTC **ENG SPEED** XXX rpm COOLAN TEMP/S XXX °C VHCL SPEED SE XXX km/h THRTL POS SEN XXX V B/FUEL SCHDL XXX msec SEF201Y

EGR Temperature Sensor (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

Perform "Procedure for malfunction A" first. If DTC cannot be confirmed, perform "Procedure for malfunction B".

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

Procedure for malfunction A

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Verify that engine coolant temperature is less than 70°C (158°F).

If the engine coolant temperature is above the range, cool the engine down.

- 4) Start engine and let it idle for at least 8 seconds.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-365.

OR

- Turn ignition switch "ON".
- 2) Select "MODE 1" with GST.
- Verify that engine coolant temperature is less than 40°C (104°F).

If the engine coolant temperature is above the range, cool the engine down.

- Start engine and let it idle for at least 8 seconds.
- 5) Select "MODE 7" with GST.
- 6) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-365.

Procedure for malfunction B

CAUTION:

Always drive vehicle at a safe speed.

TESTING CONDITION:

Always perform the test at a temperature of -10°C (14°F) or higher.

- 1) Start engine and warm it up to normal operating temperature.
- Run engine at idle for at least 2 minutes.
- Confirm that EGR valve is not lifting. If the check result is NG, go to "TROUBLE DIAGNOSES FOR DTC P0400, P0402 and P1402". (See pages EC-266, 275 and 367.)
- 4) Select "DATA MONITOR" mode with CONSULT-II.
- 5) Read "EGR TEMP SEN" at about 1,500 rpm while holding the EGR valve in full open position by hand. Voltage should decrease to less than 1.0V. If the check result is NG, go to "DIAGNOSTIC PROCEDURE", EC-365.
- If the check result is OK, go to following step.

 6) Turn ignition switch "OFF" and wait at least 5 seconds.
- 7) Turn ignition switch "ON".
- 8) Check the output voltage of "THRTL POS SEN" at closed throttle position and note it.
- 9) Start engine.
- 10) Maintain the following conditions for at least 5 consecutive seconds.

EGR Temperature Sensor (Cont'd)

ENG SPEED: 1,500 - 2,500 rpm (A/T)

2,000 - 3,000 rpm (M/T)

VHCL SPEED SE: 10 km/h (6 MPH) or more

B/FUEL SCHDL: 6.25 - 10.5 ms (A/T)

5.5 - 8.75 ms (M/T)

THRTL POS SEN: X - (X + 0.45) V

X= Voltage value measured at

step 8)

Selector lever: Suitable position

11) If 1st trip DTC is detected, go to "DIAGNOSTIC

PROCEDURE", EC-365.

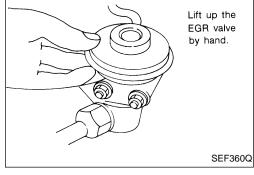
OVERALL FUNCTION CHECK

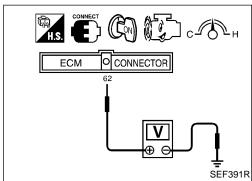
Use this procedure to check the overall function of the EGR temperature sensor. During this check, a 1st trip DTC might not be confirmed.

Procedure for malfunction B

 Start engine and warm it up to normal operating temperature.

2) Run engine at idle for at least 2 minutes.


3) Confirm that EGR valve is not lifting. If NG, go to TROUBLE DIAGNOSIS FOR DTC P1402 (See page EC-367).


4) Check voltage between ECM terminal @and ground at about 1,500 rpm with EGR valve lifted up to the full position by hand.

Voltage should decrease to less than 1.0V.

5) If step 4 is OK, perform TROUBLE DIAGNOSIS FOR DTC P0400 and P1400 (See pages EC-266 and 356).

If step 4 is NG, go to "DIAGNOSTIC PROCEDURE", EC-365.

FE

CL

GI

EM

RA

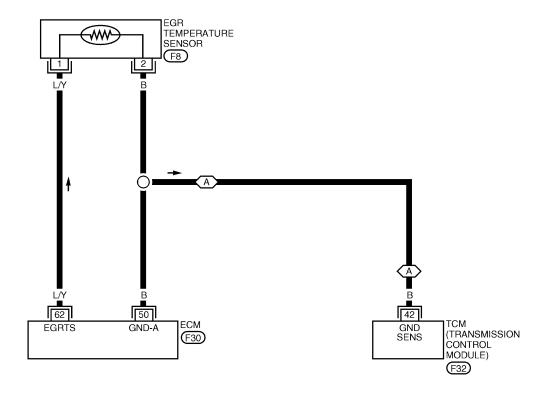
BR

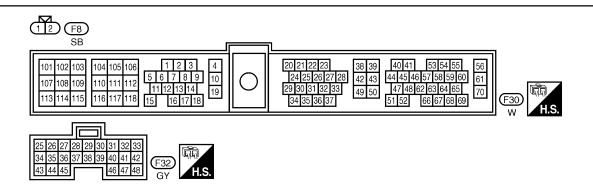
ST

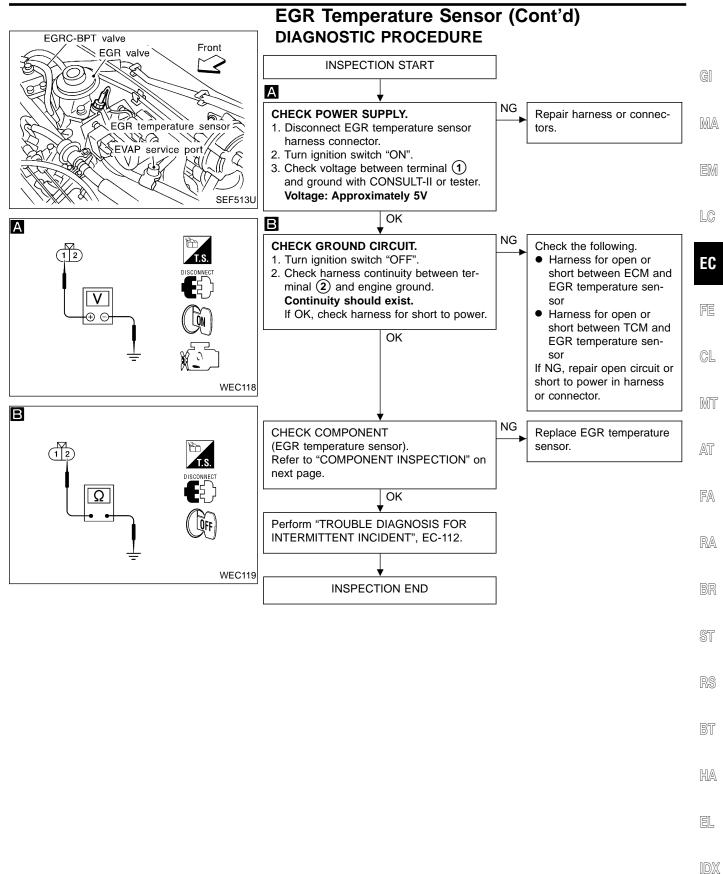
RS

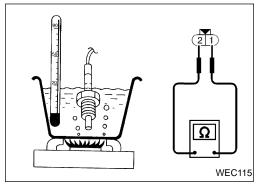
HA

BT


IDX


EGR Temperature Sensor (Cont'd)


EC-EGR/TS-01


: Detectable line for DTC
: Non-detectable line for DTC

A : With A/T

100

(212)

(32)

(122)

Temperature

150

(302)

200

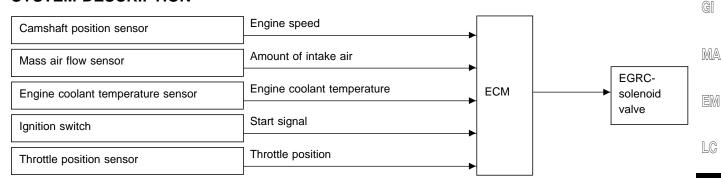
(392)

°C (°F) SEF320U

EGR Temperature Sensor (Cont'd) COMPONENT INSPECTION

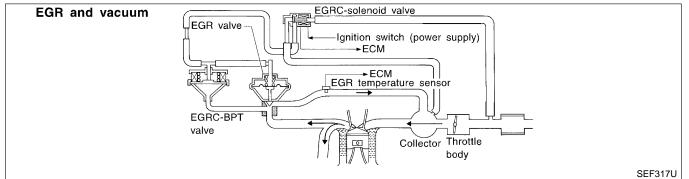
EGR temperature sensor

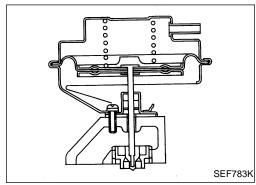
Check resistance change and resistance value.

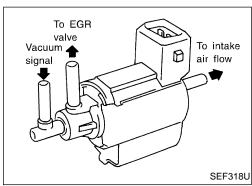

<Reference data>

EGR temperature °C (°F)	Voltage V	Resistance $M\Omega$
0 (32)	4.61	0.68 - 1.11
50 (122)	2.53	0.09 - 0.12
100 (212)	0.87	0.017 - 0.024

If NG, replace EGR temperature sensor.


EGR Function (Open)


SYSTEM DESCRIPTION



This system cuts and controls vacuum applied to the EGR valve to suit engine operating conditions. This cut-and-control operation is accomplished through the ECM and the EGRC-solenoid valve. When the ECM detects any of the following conditions, it cuts the current for the solenoid valve. This causes the port vacuum to be discharged into the atmosphere. The EGR valve remains closed.

- Low engine coolant temperature
- Engine starting
- High-speed engine operation
- Engine idling
- Excessively high engine coolant temperature
- Mass air flow sensor malfunction
- Low ambient temperature

COMPONENT DESCRIPTION

Exhaust gas recirculation (EGR) valve

The EGR valve controls the amount of exhaust gas routed to the intake manifold. Vacuum is applied to the EGR valve in response to throttle valve opening. The vacuum controls the movement of a taper valve connected to the vacuum diaphragm in the EGR valve.

EGRC-solenoid valve

The EGRC-solenoid valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the coil in the solenoid valve is energized. The vacuum signal passes through the solenoid valve. The signal then reaches the EGR valve. When the ECM sends an OFF signal, a plunger will then move to cut the vacuum signal from the intake manifold to the EGR valve.

EC

FE

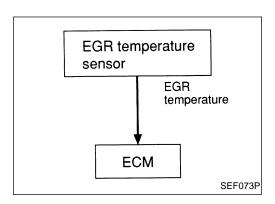
CL

AT

MIT

FA

RA

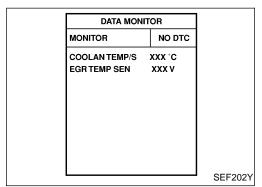

BR

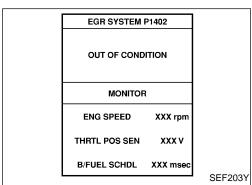
B.0

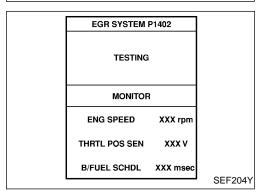
BT

HA

EL


EGR Function (Open) (Cont'd) ON BOARD DIAGNOSIS LOGIC


If EGR temperature sensor detects EGR flow under the condition that does not call for EGR, a high-flow malfunction is diagnosed.


NOTE:

Diagnosis for this DTC will end when engine coolant temperature is approx. 50 - 60°C (120 - 140°F). Ignition switch must be turned "ON" (engine running) with engine coolant temperature below 40°C (104°F) when starting DTC confirmation procedure.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1402	call for EGR.	 EGRC-solenoid valve EGR valve leaking or stuck open EGR temperature sensor EGRC-BPT valve

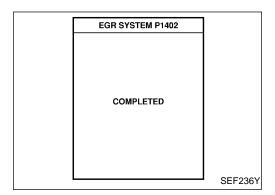
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

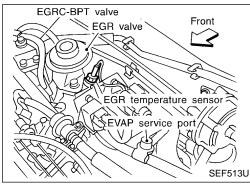
NOTE:

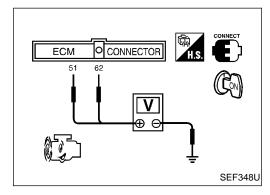
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform the test at a temperature of 0°C (32°F) or higher.
- Engine coolant temperature and EGR temperature must be verified in "DATA MONITOR" mode with CONSULT-II before starting DTC WORK SUPPORT test. If it is out of range below, the test cannot be conducted.


COOLAN TEMP/S: -10 to 40°C (14 to 104°F)


EGR TEMP SEN: Less than 4.6V


If the values are out of the ranges indicated above, park the vehicle in a cool place and allow the engine temperature to stabilize. Do not attempt to reduce the coolant or EGR temperature with a fan or means other than ambient air. Doing so may produce an inaccurate diagnostic result.

- 1) Turn ignition switch OFF and wait at least 5 seconds. Then turn ignition switch "ON".
- 2) Select "EGR SYSTEM P1402" of "EGR SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 3) Follow the instruction of CONSULT-II.
- 4) Start engine and let it idle until "TESTING" on CON-SULT-II screen is turned to "COMPLETED". (It will take 70 seconds or more.)

EGR Function (Open) (Cont'd)

If "TESTING" is not displayed after 5 minutes, turn ignition "OFF" and cool the engine coolant temperature to the range of -10 to 40°C (14 to 104°F). Retry from step 1).

5) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-371.

OR ·

GST

- Turn ignition switch "ON" and select "MODE 1" with GST.
- 2) Check that engine coolant temperature is within the range of -10 to 40°C (14 to 104°F).
- 3) Check that voltage between ECM terminal @(EGR temperature) and ground is less than 4.8V.
- 4) Start engine and let it idle for at least 70 seconds.
- 5) Stop engine.
- 6) Perform from step 1) to 4).
- 7) Select "MODE 3" with GST.
- 8) If DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-371.
- When using GST, "DIAGNOSTIC TROUBLE CODE CON-FIRMATION PROCEDURE" should be performed twice as much as when using CONSULT-II because GST cannot display MODE 7 (1st trip DTC) concerning this diagnosis. Therefore, using CONSULT-II is recommended.

GI

SILI

MA

1 🙈

LC

EC

FE

ை

00

MT

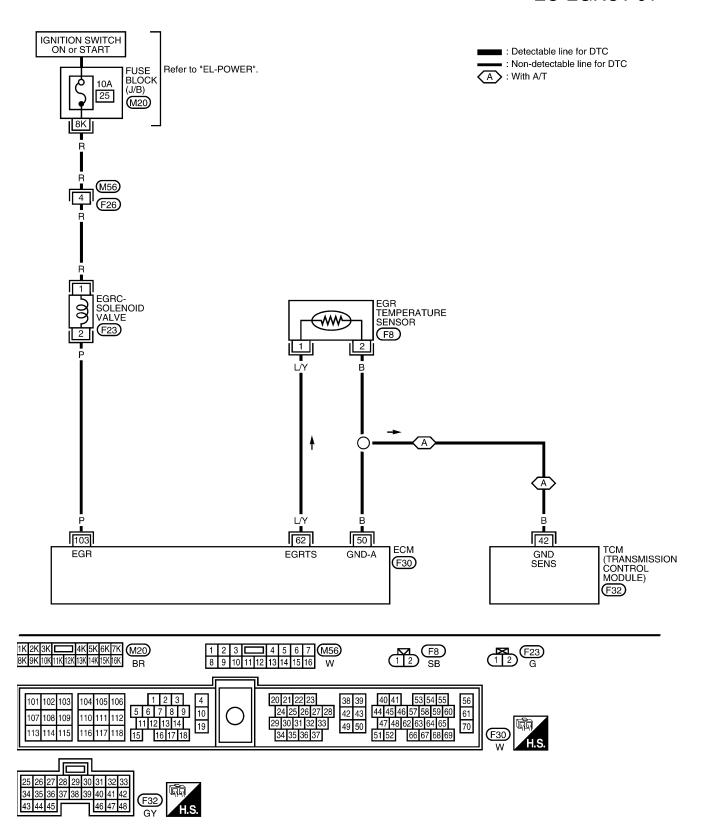
AT

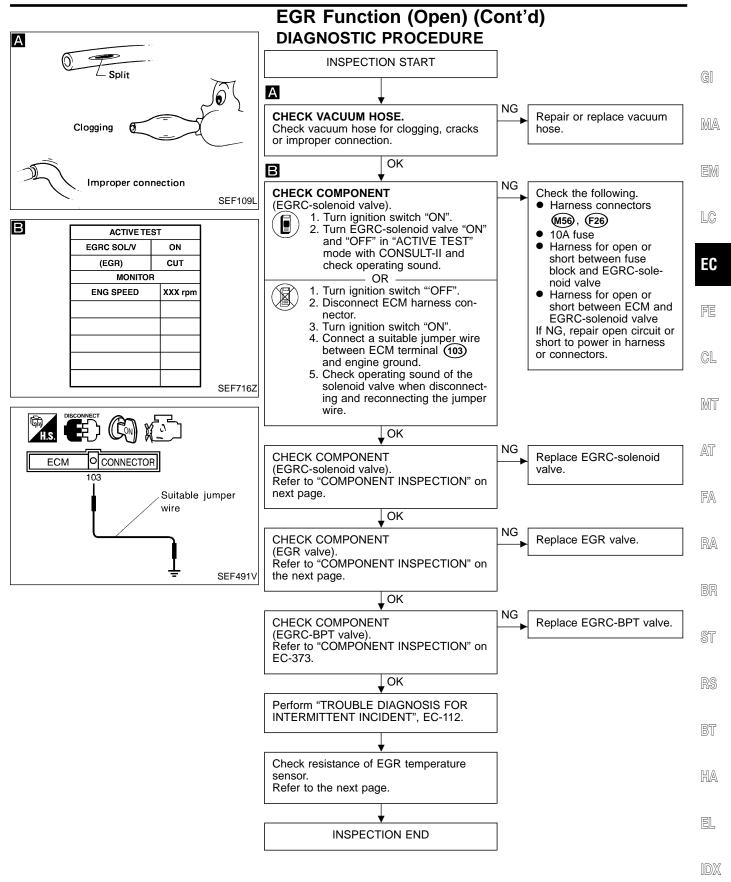
FA

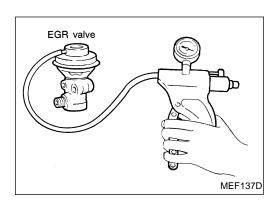
RA

BR

05-


BT

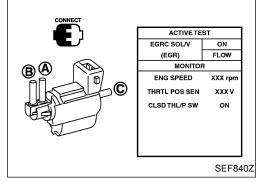

HA


EL

EGR Function (Open) (Cont'd)

EC-EGRC1-01

EGR Function (Open) (Cont'd) COMPONENT INSPECTION

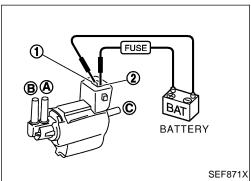

EGR valve

Apply vacuum to EGR vacuum port with a hand vacuum pump.

EGR valve spring should lift.

Check for sticking

If NG, repair or replace EGR valve.


EGRC-solenoid valve

Check air passage continuity.

Perform "EGRC SOLENOID VALVE" in "ACTIVE TEST" mode.

Condition EGRC SOLENOID VALVE	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
ON	Yes	No
OFF	No	Yes

· OR ·

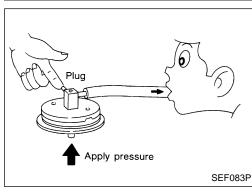
Condition	Air passage continuity between (A) and (B)	Air passage continuity between (A) and (C)
12V direct current supply between terminals ① and ②	Yes	No
No supply	No	Yes

If NG or operation takes more than 1 second, replace EGRC-solenoid valve.

ΨEC115

EGR Function (Open) (Cont'd)

EGR temperature sensor


Check resistance change and resistance value.

<Reference data>

EGR temperature °C (°F)	Voltage V	Resistance $M\Omega$
0 (32)	4.61	0.68 - 1.11
50 (122)	2.53	0.09 - 0.12
100 (212)	0.87	0.017 - 0.024

If NG, replace EGR temperature sensor.

10,000	-				
1,000					
Resistance k Ω					
10	-				
1	-		1		
'	0	50	100	150	200
(32)	(122)	(212)	(302)	(392)
		Tempe	erature	°C (°F)	SEF320L

EGRC-BPT valve

- 1. Plug one of two ports of EGRC-BPT valve.
- 2. Vacuum from the other port and check for leakage while applying a pressure above 0.981 kPa (100 mmH₂O, 3.94 inH₂O) from under EGRC-BPT valve.
- 3. If a leakage is noted, replace the valve.

EM

MA

GI

LC

EC

FE

GL

MT

AT

FA

RA

BR

RS

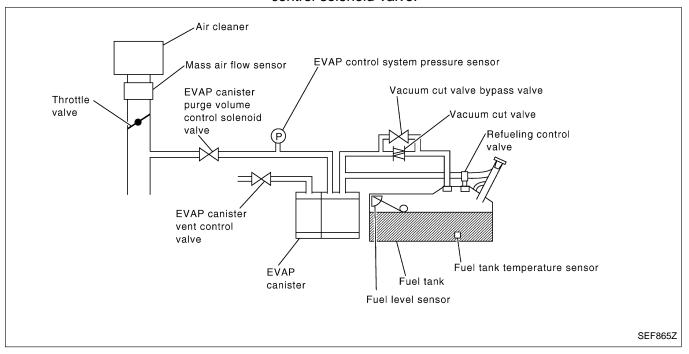
BT

HA

EL

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure)

ON BOARD DIAGNOSIS LOGIC


NOTE:

If DTC P1440 is displayed with P1448, perform trouble diagnosis for DTC P1448 first. (See EC-405.)

This diagnosis detects leaks in the EVAP purge line using of vapor pressure in the fuel tank.

The EVAP canister vent control valve is closed to shut the EVAP purge line. The vacuum cut valve bypass valve will then be opened to clear the line between the fuel tank and the EVAP canister purge volume control solenoid valve. The EVAP control system pressure sensor can now monitor the pressure inside the fuel tank.

If pressure increases, the PCM will check for leaks in the line between the vacuum cut valve and EVAP canister purge volume control solenoid valve.

Malfunction is detected when EVAP control system has a leak, EVAP control system does not operate properly.

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

Possible cause

- Incorrect fuel tank vacuum relief valve
- Incorrect fuel filler cap used
- Fuel filler cap remains open or fails to close
- Foreign matter caught in fuel filler cap

Evaporative Emission (EVAP) Control System (Small Leak) (Positive Pressure) (Cont'd)

- Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve
- Foreign matter caught in EVAP canister vent control valve
- EVAP canister
- EVAP purge line (pipe and rubber tube) leaks
- EVAP purge line rubber tube bent
- Blocked or bent rubber tube to EVAP control system pressure sensor
- Loose or disconnected rubber tube
- EVAP canister vent control valve and the circuit
- EVAP canister purge volume control solenoid valve
- Absolute pressure sensor
- Fuel tank temperature sensor
- O-ring of EVAP canister vent control valve is missing or damaged
- Water separator
- EVAP canister is saturated with water
- Fuel level sensor and the circuit
- EVAP control system pressure sensor
- Refueling control valve
- ORVR system leaks
- Foreign matter caught in EVAP canister purge volume control solenoid valve

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

Refer to "P1441 EVAP CONTROL SYSTEM (VERY SMALL LEAK) (NEGATIVE PRESSURE)", EC-378.

DIAGNOSTIC PROCEDURE

Refer to "P1441 EVAP CONTROL SYSTEM (VERY SMALL LEAK) (NEGATIVE PRESSURE)", EC-380.

MA

EM

LC

EC

FE

CL

MIT

AT

FA

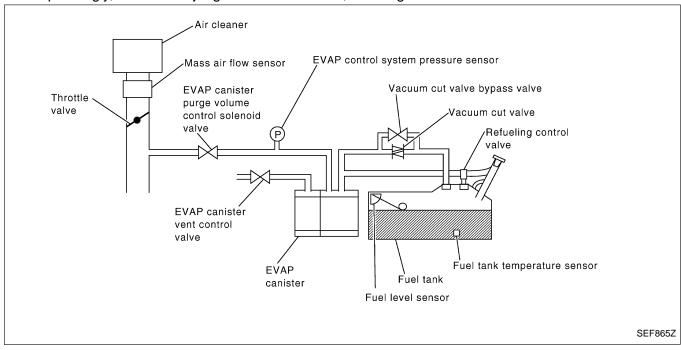
RA

RS

BT

HA

EL


 $\mathbb{D}X$

Evaporative Emission (EVAP) Control System (Very Small Leak)

ON BOARD DIAGNOSTIC LOGIC

This diagnosis detects very small leaks in the EVAP line between the fuel tank and the EVAP canister purge volume control solenoid valve using intake manifold vacuum in the same way as conventional EVAP small leak diagnosis.

If the ECM judges a leak equivalent to a very small leak, the very small leak DTC P1441 will be detected. If the ECM judges a leak equivalent to a small leak, the EVAP small leak DTC P0440 will be detected. Correspondingly, if the ECM judges there is no leak, the diagnosis result is OK.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1441	EVAP system has a very small leak. EVAP system does not operate properly.	 Incorrect fuel tank vacuum relief valve. Incorrect fuel filler cap used. Fuel filler cap remains open or fails to close Foreign matter caught in fuel filler cap. Leak is in line between intake manifold and EVAP canister purge volume control solenoid valve. Foreign matter caught in EVAP canister vent control valve. EVAP canister or fuel tank leaks. EVAP purge line (Pipe and rubber tube) leaks. EVAP purge line rubber tube bent. Blocked or bent rubber tube to EVAP control system pressure sensor. Loose or disconnected rubber tube. EVAP canister vent control valve and the circuit. EVAP canister purge volume control valve and the circuit EVAP canister purge volume control solenoid valve O-ring of EVAP canister vent control valve is missing or damaged. Water separator EVAP canister saturated with water EVAP control system pressure sensor Refueling control valve ORVR system leaks Fuel level sensor and the circuit

Evaporative Emission (EVAP) Control System (Very Small Leak) (Cont'd)

CAUTION:

- Use only a genuine NISSAN fuel filler cap as a replacement. If an incorrect fuel filler cap is used, the MIL may come on.
- If the fuel filler cap is not tightened properly, the MIL may come on.
- Use only a genuine NISSAN rubber tube as a replacement.

 $\mathbb{M}\mathbb{A}$

LC

EC

FE

CL

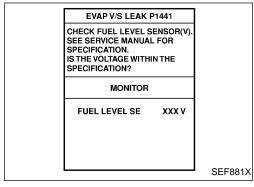
MT

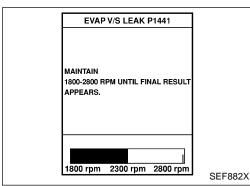
AT

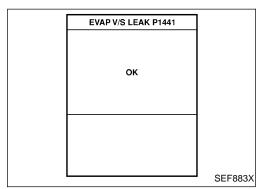
FA

RA

BR


ST


RS


BT

HA

EL

Evaporative Emission (EVAP) Control System (Very Small Leak) (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Never remove fuel filler cap during the DTC confirmation procedure.

NOTE:

- If DTC P1441 is displayed with P0440, perform TROUBLE DIAGNOSIS FOR DTC P1441 first.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.
- After repair, make sure that the hoses and clips are installed properly.

TESTING CONDITION:

- Open engine hood before conducting following procedure.
- If any of following condition is met just before the DTC confirmation procedure, leave the vehicle for more than 1 hour.
 - 1) Fuel filler cap is removed.
 - 2) Refilled or drained the fuel.
 - 3) EVAP component parts is/are removed.
- Before performing the following procedure, confirm that battery voltage is more than 11V at idle.

- Turn ignition switch "ON" and select "DATA MONI-TOR" mode with CONSULT-II.
- 2) Make sure the following conditions are met.

FUEL LEVEL SE: 1.08 - 0.2V COOLAN TEMP/S: 0 - 32°C (32 - 90°F) FUEL T/TMP SE: 0 - 32°C (32 - 90°F)

INT A/TEMP SE: More than 0°C (32°F)

If NG, turn ignition switch "OFF" and leave the vehicle in a cool place (soak the vehicle) or refilling/draining fuel until the output voltage condition of the "FUEL LEVEL SE" meets within the range above and leave the vehicle for more than 1 hour. Then start from step

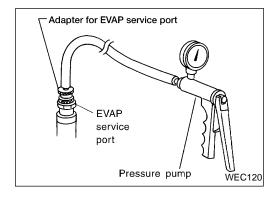
- 1).3) Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Turn ignition switch "ON".
- Select "EVAP V/S LEAK P1441" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
 - Follow the instruction displayed.
- Make sure that "OK" is displayed.
 If "NG" is displayed, refer to "Diagnostic Procedure", EC-380.

NOTE:

- If the engine speed cannot be maintained within the range displayed on CONSULT-II screen, go to "Basic inspection", EC-83.
- Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

Evaporative Emission (EVAP) Control System (Very Small Leak) (Cont'd)

OVERALL FUNCTION CHECK


Use this procedure to check the overall function of the EVAP very small leak function. During this check, a 1st trip DTC might not be confirmed.

GI

EM

LC

MA

CAUTION:

- Never use compressed air, doing so may damage the **EVAP** system.
- Do not start engine.
- Do not exceeded 4.12 kPa (0.042 kg/cm², 0.6 psi).
- Attach the EVAP service port adapter securely to the EVAP service port.
- 2) Set the pressure pump and a hose.
- 3) Also set a vacuum gauge via 3-way connector and a hose.
- 4) Turn ignition switch "ON".
- 5) Connect GST and select mode 8.
- Using mode 8 control the EVAP canister vent control valve (close) and vacuum cut valve bypass valve (open).
- Apply pressure and make sure the following conditions are satisfied.

Pressure to be applied: 2.7 kPa (20 mmHg, 0.79 inHg) Time to be waited after the pressure drawn in to the EVAP system and the pressure to be dropped: 60 seconds and the pressure should not be dropped more than 0.4 kPa (3 mmHg, 0.12 inHg)

If NG, go to diagnostic procedure, EC-380.

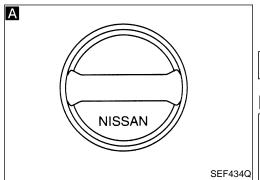
NOTE:

For more information, refer to GST instruction manual.

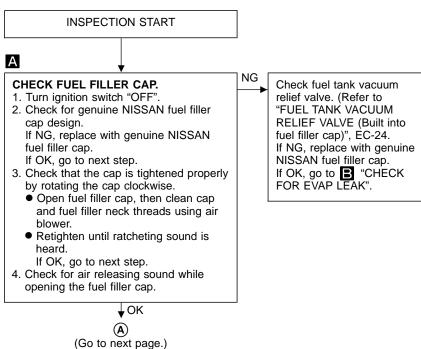
EC

RA

FA

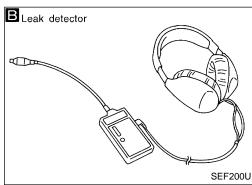

BR

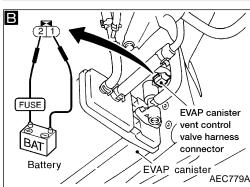
BT

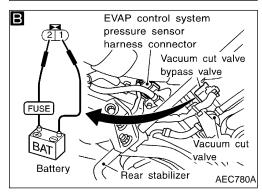

HA

耴

IDX




Evaporative Emission (EVAP) Control System (Very Small Leak) (Cont'd) DIAGNOSTIC PROCEDURE



Adapter for service port EVAP service port Pressure pump SEF462U

EVAP SYSTEM CLOSE APPLY PRESSURE TO EVAP SYSTEM FROM SERVICE PORT USING HAND PUMP WITH PRESSURE GAUGE AT NEXT SCREEN. NEVER USE COMPRESSED AIR OR HIGH PRESSURE PUMP! DO NOT START ENGINE. TOUCH START.

Evaporative Emission (EVAP) Control System (Very Small Leak) (Cont'd)

B

CHECK FOR EVAP LEAK.

 Never use compressed air or high pressure pump.

 Improper installation of service port may cause leaking.
 Do not exceed 4.12 kPa (0.042 kg/cm²,

0.6 psi) of pressure in the system.To locate EVAP leak portion, proceed with the following steps.

 Install the EVAP service port adapter and the pressure pump securely.

 Turn ignition switch "ON".
 Select "EVAP SYSTEM CLOSE" of "WORK SUPPORT" mode with CONSULT-II.

 Touch "START" and apply vacuum into the EVAP line until the pressure indicator reaches the middle of bar graph.

4. Using EVAP leak detector, locate the leak portion. For the leak detector, refer to instruction manual for more details.

Refer to "Evaporative Emission Line Drawing", EC-26.

OR

2. Turn ignition switch "OFF".

 Apply 12 volts DC to EVAP canister vent control valve. The valve will close. (Continue to apply 12 volts until the end of test.)

 Apply 12 volts DC to vacuum cut valve bypass valve. The valve will open. (Continue to apply 12 volts until the end of test.)

 Pressurize the EVAP line using pressure pump with 1.3 to 2.7 kPa (10 to 20 mmHg, 0.39 to 0.79 inHg).

 Locate the leak using a leak detector. Refer to the instruction manual for more details about the leak detector. Refer to "Evaporative Emission Line Drawing", EC-26.

Repair or replace.

EM

GI

MA

EC

FE

GL

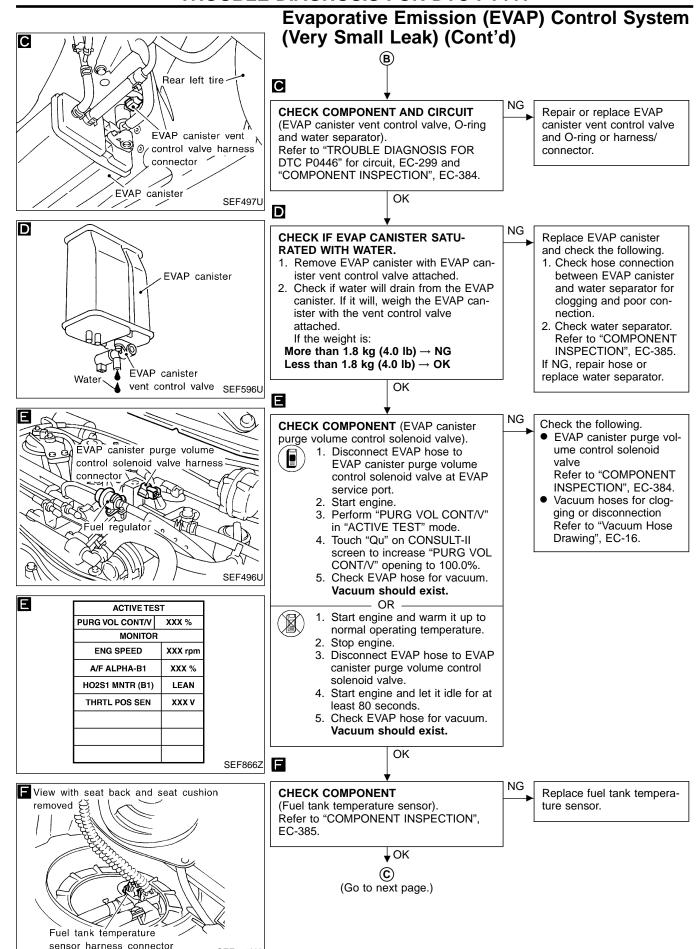
MT

AT

FA

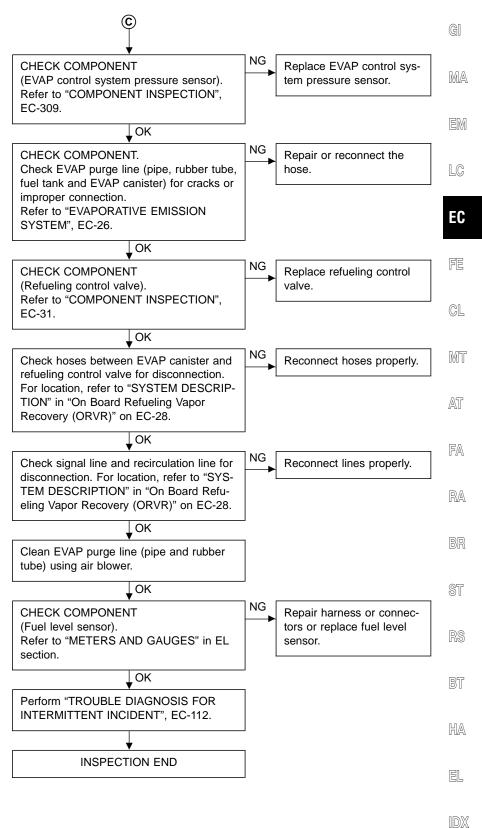
RA

BR

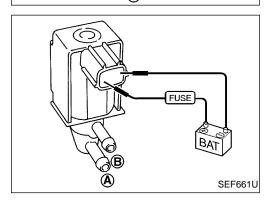

ST

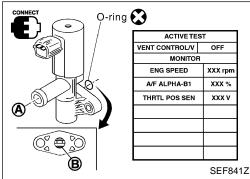
RS

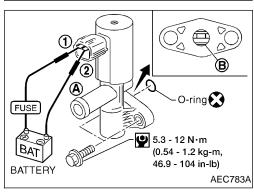
BT


HA

EL


SEF656UA


Evaporative Emission (EVAP) Control System (Very Small Leak) (Cont'd)



ACTIVE TES			
PURG VOL CONT/V	XXX %		
MONITOR			
ENG SPEED	XXX rpm		
A/F ALPHA-B1	A/F ALPHA-B1 XXX %		
HO2S1 MNTR (B1)	LEAN		
THRTL POS SEN	HRTL POS SEN XXX V		
SEF866			

B SEF660U

Evaporative Emission (EVAP) Control System (Very Small Leak) (Cont'd) COMPONENT INSPECTION

EVAP canister purge volume control solenoid valve

- Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. If OK, inspection end. If NG, go to following step.
- Check air passage continuity.

Condition PURG VOL CONT/V value	Air passage continuity between (A) and (B)
100.0%	Yes
0.0%	No

If NG, replace the EVAP canister purge volume control solenoid valve.

OR

Check air passage continuity.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals	Yes
No supply	No

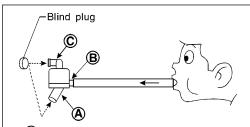
If NG or operation takes more than 1 second, replace solenoid valve.

EVAP canister vent control valve

Check air passage continuity.

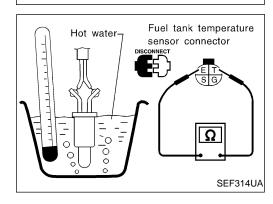
Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

Condition	Air passage continuity between (A) and (B)
ON	No
OFF	Yes
OI	R



Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals 1 and 2	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.


If portion (B) is rusted, replace control valve.

Make sure new O-ring is installed properly.

- * (A): Bottom hole (To atmosphere)
 - **B**: Emergency tube (From EVAP canister)
 - (C): Inlet port (To member)

SEF829T

Evaporative Emission (EVAP) Control System (Very Small Leak) (Cont'd)

Water separator

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that (a) and (c) are not clogged by blowing air from (B) with (a), and then (c) plugged.
- 5. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.

Fuel tank temperature sensor

Check resistance by heating with hot water or heat gun as shown in the figure.

Temperature °C (°F)	Resistance kΩ
20 (68)	2.3 - 2.7
50 (122)	0.79 - 0.90

If NG, replace fuel tank temperature sensor.

MA

EM

LC

EC

CL

MT

AT

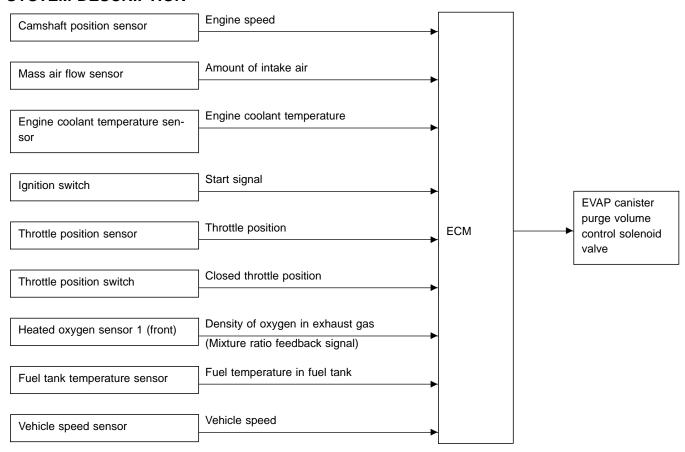
FA

RA

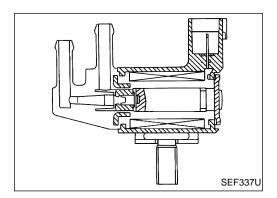
BR

ST

RS


BT

HA


EL

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve

SYSTEM DESCRIPTION

This system controls flow rate of fuel vapor from the EVAP canister. The opening of the vapor by-pass passage in the EVAP canister purge volume control solenoid valve changes to control the flow rate. The EVAP canister purge volume control solenoid valve repeats ON/OFF operation according to the signal sent from the ECM. The opening of the valve varies for optimum engine control. The optimum value stored in the ECM is determined by considering various engine conditions. When the engine is operating, the flow rate of fuel vapor from the EVAP canister is regulated as the air flow changes.

COMPONENT DESCRIPTION

The EVAP canister purge volume control solenoid valve uses ON/OFF duty to control the flow rate of fuel vapor from the EVAP canister. The EVAP canister purge volume control solenoid valve is moved by ON/OFF pulses from the ECM. The longer the ON pulse, the greater the amount of fuel vapor that will flow through the valve.

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve (Cont'd)

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION		SPECIFICATION	
	Engine: After warming up	Idle	0%	MA
PURG VOL C/V	Air conditioner switch "OFF" No-load	Vehicle running (Shift lever "1") 2,000 rpm (90 seconds after starting engine)	_	EM

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

					-
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	FE
4	W/G	ECM relay (Self-shutoff)	Engine is running. Ignition switch "OFF" For a few seconds after turning ignition switch "OFF"	0 - 1V	CL MT
			Ignition switch "OFF" A few seconds passed after turning ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)	AT FA
5	L	EVAP canister purge vol- ume control solenoid valve	Engine is running. Idle speed	BATTERY VOLTAGE (11 - 14V)	RA
56	W/R	Power supply for ECM	Ignition switch "ON"	BATTERY VOLTAGE	
61	W/R	Fower supply 101 ECIVI	Ignition switch ON	(11 - 14V)	BR -

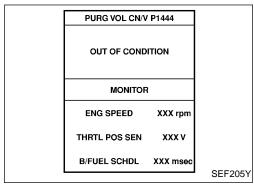
ON BOARD DIAGNOSIS LOGIC

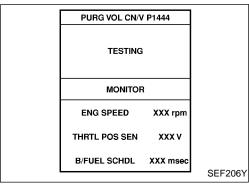
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1444	The canister purge flow is detected during the specified driving conditions, even when EVAP canister purge volume control solenoid valve is completely closed.	 EVAP control system pressure sensor EVAP canister purge volume control solenoid valve (The valve is stuck open.) EVAP canister vent control valve EVAP canister Hoses (Hoses are connected incorrectly or clogged.)

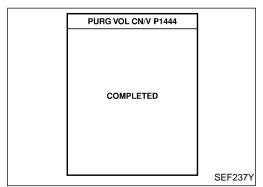
EC

LC

GI


LU


RS


BT

HA

FI

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve (Cont'd)
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

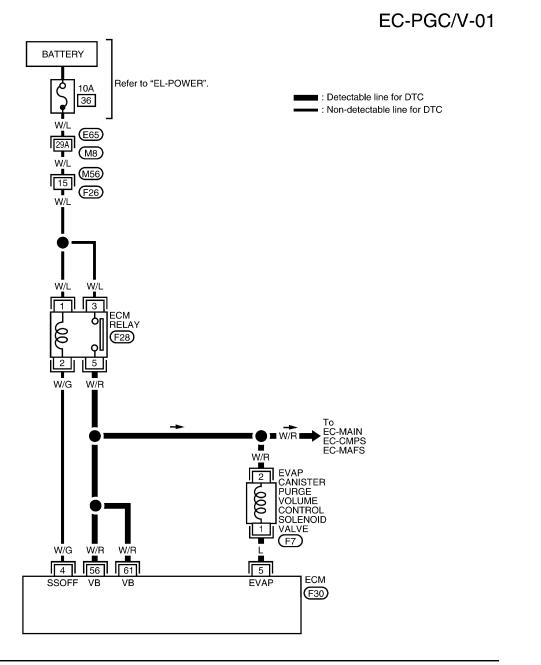
If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

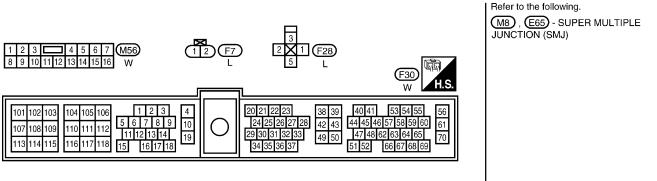
TESTING CONDITION:

For best results, perform test at a temperature of 0°C (32°F) or more.

- 1) Start engine and warm it up to normal operating temperature.
- 2) Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Turn ignition switch "ON".
- Select "PURG VOL C/V P1444" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5) Touch "START".
- 6) Start engine and let it idle until "TESTING" on CON-SULT-II changes to "COMPLETED". (It will take for at least 10 seconds.)

If "TESTING" is not displayed after 5 minutes, retry from step 2).


7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". (If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-390.)



- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Start engine and let it idle for at least 10 seconds.
- 4) Select "MODE 7" with GST.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-390.

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve (Cont'd)

GI

MA

EM

LC

EC

FE

CL

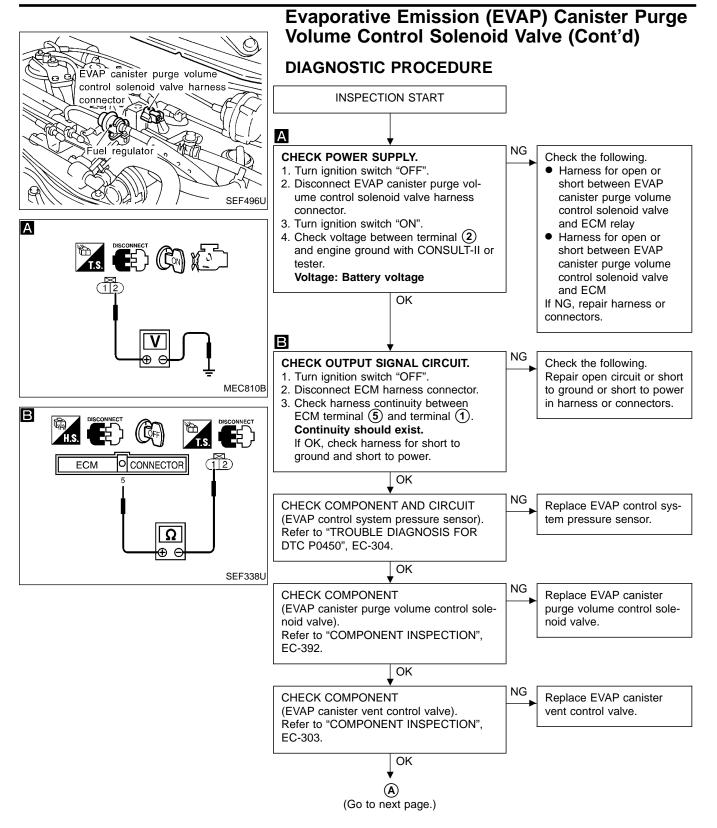
MT

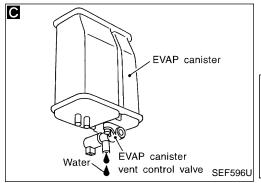
AT

FA

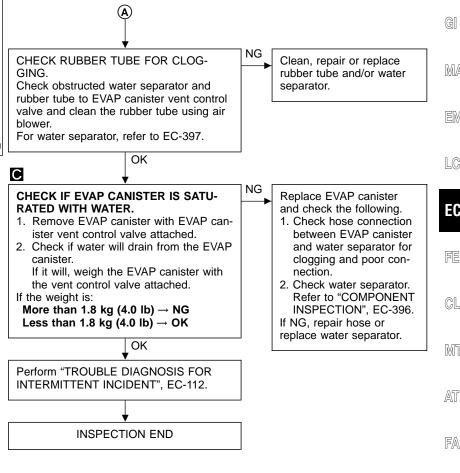
RA

BR


ST


RS

BT


HA

EL

Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve (Cont'd)

GI

MA

EM

LC

EC

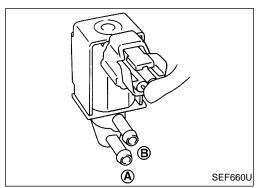
FE

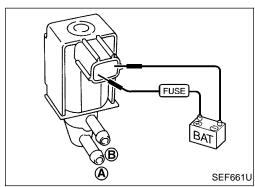
MT

FA

RA

BR


RS


BT

HA

IDX

ACTIVE TES	ST	
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 MNTR (B1)	LEAN	
THRTL POS SEN	xxx v	
		SEF801Y

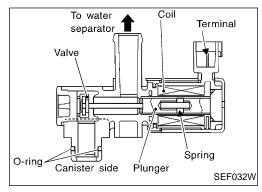
Evaporative Emission (EVAP) Canister Purge Volume Control Solenoid Valve (Cont'd) COMPONENT INSPECTION

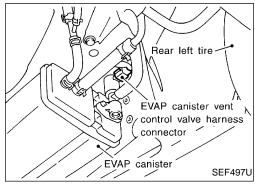
EVAP canister purge volume control solenoid valve

- 1. Start engine.
- 2. Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening.
- If OK, inspection end. If NG, go to following step.
- 3. Check air passage continuity.

Condition PURG VOL CONT/V value	Air passage continuity between (A) and (B)
100.0%	Yes
0.0%	No

If NG, replace the EVAP canister purge volume control solenoid valve.


OR



Check air passage continuity.

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals	Yes
No supply	No

If NG or operation takes more than 1 second, replace solenoid valve.

Evaporative Emission (EVAP) Canister Vent **Control Valve (Close)**

COMPONENT DESCRIPTION

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other LC evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

EC

GI

MA

FE

GL

MIT

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

FA

RA

AT

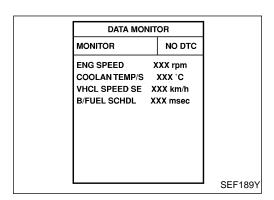
ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	@
108	PU	EVAP canister vent control valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	F

BR


BT

HA

耴

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1446	EVAP canister vent control valve remains closed under specified driving conditions.	 EVAP canister vent control valve EVAP control system pressure sensor and the circuit Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water.

Evaporative Emission (EVAP) Canister Vent Control Valve (Close) (Cont'd)
DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

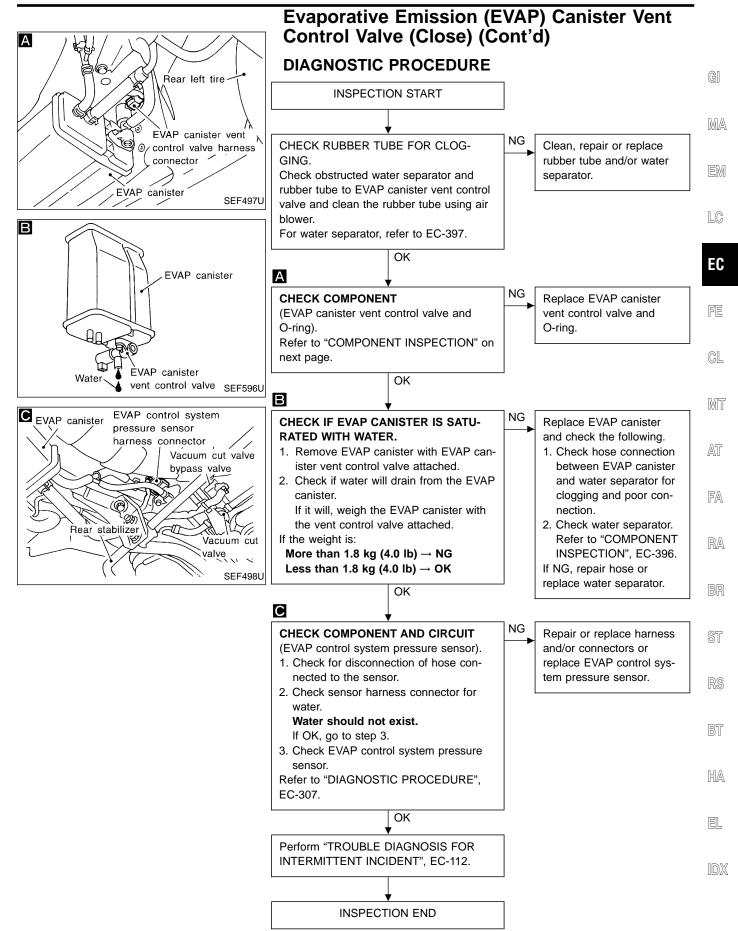
CAUTION:

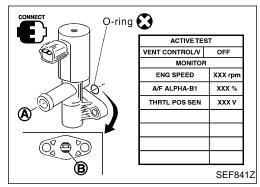
Always drive vehicle at a safe speed.

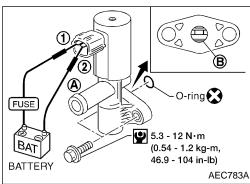
NOTE

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine.
- 4) Drive vehicle at a speed of approximately 80 km/h (50 MPH) for a maximum of 15 minutes.
- 5) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-395.


NOTE:


If a malfunction exists, NG result may be displayed quicker.


OR -

- 1) Start engine.
- Drive vehicle at a speed of approximately 80 km/h (50 MPH) for 15 minutes.
- 3) Select "MODE 7" with GST.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-395.

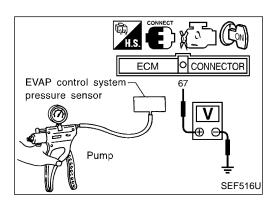
Evaporative Emission (EVAP) Canister Vent Control Valve (Close) (Cont'd) COMPONENT INSPECTION

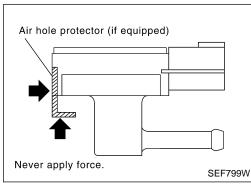
EVAP canister vent control valve

Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

Condition	Air passage continuity between (A) and (B)	
ON	No	
OFF	Yes	
OR		




Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals 1 and 2	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If the portion (B) is rusted, replace EVAP canister vent control valve.

Make sure new O-ring is installed properly.

EVAP control system pressure sensor

- 1. Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check output voltage between ECM terminal @and engine ground.

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply pressure over 20.0 kPa (150 mmHg, 5.91 inHg) or vacuum below -20.0 kPa (-150 mmHg, -5.91 inHg).
- 6. If NG, replace EVAP control system pressure sensor.

Evaporative Emission (EVAP) Canister Vent Control Valve (Close) (Cont'd)


- Never apply force to the air hole protector of the sensor, if equipped.
- Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

MA

EM

LC

- * (A): Bottom hole (To atmosphere)
 - (B): Emergency tube (From EVAP canister)
 - C: Inlet port (To member)

SEF829

Water separator

- 1. Check visually for insect nests in the water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- 4. Check that A and C are not clogged by blowing air from B with A, and then C plugged.
- 5. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.

EC

. .

CL

MT

AT

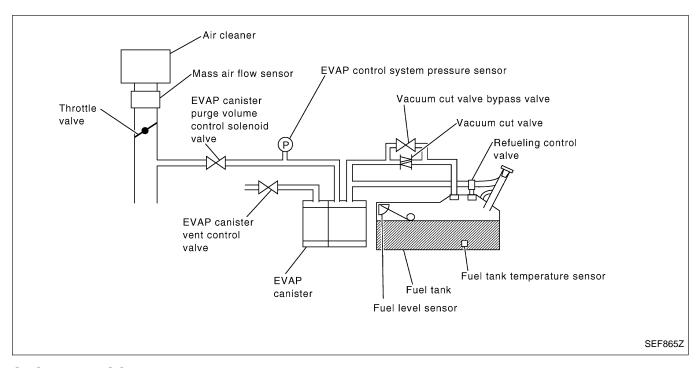
FA

RA

BR

ST

RS

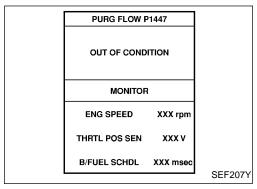

BT

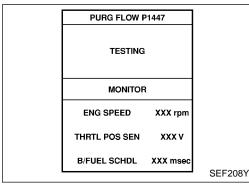
HA

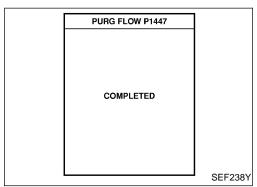
EL

Evaporative Emission (EVAP) Control System Purge Flow Monitoring

Note: If DTC P1447 is displayed with P0510, perform TROUBLE DIAGNOSIS FOR DTC P0510 first. (See EC-335.)


SYSTEM DESCRIPTION


In this evaporative emission (EVAP) control system, purge flow occurs during non-closed throttle conditions. Purge volume is related to air intake volume. Under normal purge conditions (non-closed throttle), the EVAP canister purge volume control solenoid valve is open. Purge flow exposes the EVAP control system pressure sensor to intake manifold vacuum.


ON BOARD DIAGNOSIS LOGIC

Under normal conditions (non-closed throttle), sensor output voltage indicates if pressure drop and purge flow are adequate. If not, a fault is determined.

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1447	EVAP control system does not operate properly. EVAP control system has a leak between intake manifold and EVAP control system pressure sensor.	 EVAP canister purge volume control solenoid valve stuck closed EVAP control system pressure sensor and the circuit Loose, disconnected or improper connection of rubber tube Blocked rubber tube Cracked EVAP canister EVAP canister purge volume control solenoid valve circuit Closed throttle position switch Blocked purge port EVAP canister vent control valve

Evaporative Emission (EVAP) Control System Purge Flow Monitoring (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Always perform test at a temperature of 0°C (32°F) or more.
- This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle.

- 1) Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 3) Start engine and let it idle for at least 1 minute.
- 4) Select "PURG FLOW P1447" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 5) Touch "START".
- 6) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 35 seconds.)

Selector lever: Suitable position

Vehicle speed: 32 - 120 km/h (20 - 75 MPH)

ENG SPEED: 500 - 3,100 rpm

Engine coolant temperature: More than 70°C

(158°F)

If "TESTING" is not changed for a long time, retry from step 2).

7) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-401.

MA

GI

EM

LC

EC

FE

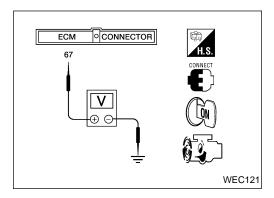
CL

MT

AT

RA

657


RS

BT

HA

EL

 \mathbb{Z}

Evaporative Emission (EVAP) Control System Purge Flow Monitoring (Cont'd)

- OR -

OVERALL FUNCTION CHECK

Use this procedure to check the overall monitoring function of the EVAP control system purge flow. During this check, a 1st trip DTC might not be confirmed.

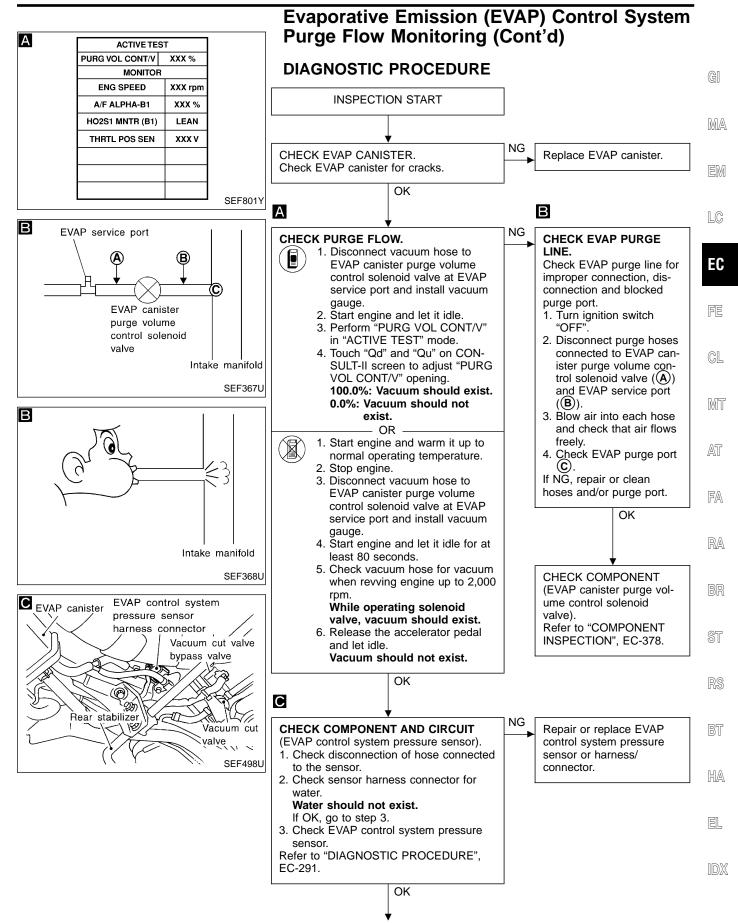
- 1) Lift up drive wheels.
- Start engine and warm it up to normal operating temperature.
- 3) Turn ignition switch "OFF", wait at least 5 seconds.
- 4) Start engine and wait at least 70 seconds.
- 5) Set voltmeter probes to ECM terminals @(EVAP control system pressure sensor signal) and ground.
- 6) Check EVAP control system pressure sensor value at idle speed.
- 7) Establish and maintain the following conditions for at least 1 minute.

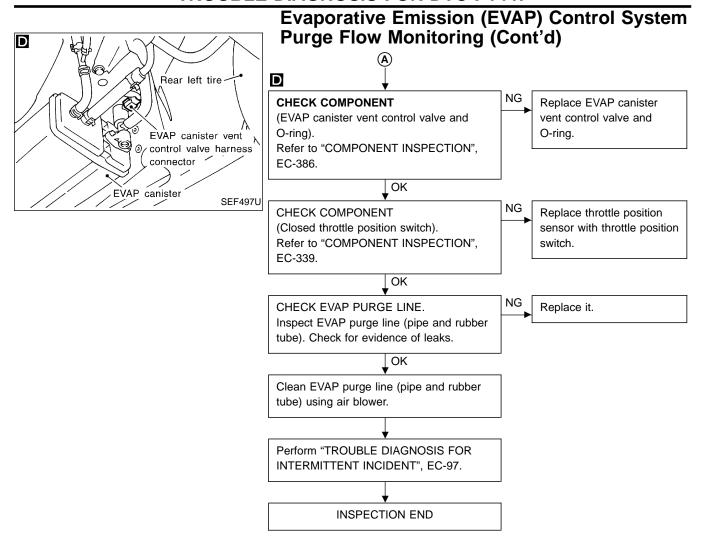
Air conditioner switch: ON Steering wheel: Fully turned

Headlamp switch: ON

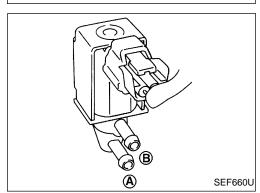
Rear window defogger switch: ON Engine speed: Approx. 3,000 rpm

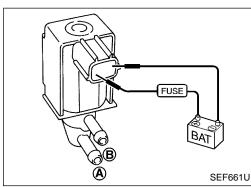
Gear position: M/T models

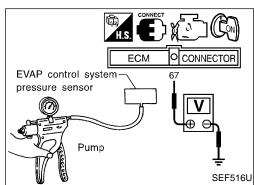

Any position other than "Neutral" or

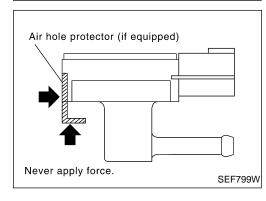

"Reverse" A/T models

Any position other than "P", "N" or "R"


Verify that EVAP control system pressure sensor value stays 0.1V less than the value at idle speed for at least 1 second.


8)f NG, go to "DIAGNOSTIC PROCEDURE", EC-401.





ACTIVE TES		
PURG VOL CONT/V	XXX %	
MONITOR		
ENG SPEED	XXX rpm	
A/F ALPHA-B1	XXX %	
HO2S1 MNTR (B1)	LEAN	
THRTL POS SEN	xxx v	
		SEF801Y

Evaporative Emission (EVAP) Control System Purge Flow Monitoring (Cont'd) COMPONENT INSPECTION

EVAP canister purge volume control solenoid valve

- 1. Start engine.
- Perform "PURG VOL CONT/V" in "ACTIVE TEST" mode with CONSULT-II. Check that engine speed varies according to the valve opening. If OK, inspection end. If NG, go to following step.

MA

EM

EC

MT

AT

RA

BR

BT

HA

耴

3. Check air passage continuity.

Condition PURG VOL CONT/V value	Air passage continuity between (A) and (B)	
100.0%	Yes	
0.0%	No	

If NG, replace the EVAP canister purge volume control solenoid valve.

OR

Check air passage continuity.

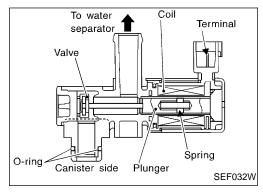
Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals	Yes
No supply	No

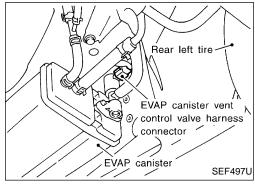
If NG or operation takes more than 1 second, replace solenoid valve.

EVAP control system pressure sensor

- Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check output voltage between ECM terminal @and engine ground.

Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6


CAUTION:


- Always calibrate the vacuum pump gauge when using it.
- Do not apply pressure over 20.0 kPa (150 mmHg, 5.91 inHg) or vacuum below -20.0 kPa (-150 mmHg, -5.91 inHg).
- If NG, replace EVAP control system pressure sensor.
- Never apply force to the air hole protector of the sensor, if equipped.

EC-403

Evaporative Emission (EVAP) Control System Purge Flow Monitoring (Cont'd)

 Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

Evaporative Emission (EVAP) Canister Vent **Control Valve (Open)**

COMPONENT DESCRIPTION

NOTE:

If DTC P0440 is displayed with P1448, perform TROUBLE **DIAGNOSIS FOR DTC P1448 first.**

The EVAP canister vent control valve is located on the EVAP canister and is used to seal the canister vent.

This solenoid (the EVAP canister vent control valve) responds to signals from the ECM.

When the ECM sends an ON signal, the coil in the solenoid valve is energized.

A plunger will then move to seal the canister vent. The ability to seal the vent is necessary for the on board diagnosis of other evaporative emission control system components.

This solenoid valve is used only for diagnosis, and usually remains opened.

When the vent is closed, under normal purge conditions, the evaporative emission control system is depressurized and allows "EVAP Control System (Small Leak)" diagnosis.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION	SPECIFICATION
VENT CONT/V	Ignition switch: ON	OFF

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	ST
108	PU	EVAP canister vent control valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)	RS

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	HA
P1448	EVAP canister vent control valve remains opened under specified driving conditions.	 EVAP canister vent control valve EVAP control system pressure sensor and circuit Blocked rubber tube to EVAP canister vent control valve Water separator EVAP canister is saturated with water. Vacuum cut valve 	- El ID)

EC

EM

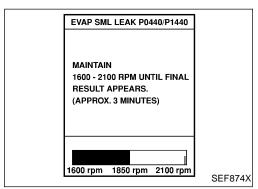
GI

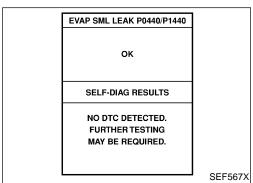
Mh

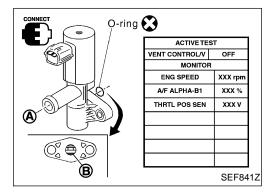
FA

AT

RA


BR


1)FOR BEST RSLT,PERFORM
AT FOLLOWING CONDITIONS.
-FUEL LEVEL: 1/4-3/4
-AMBIENT TEMP: 0-30 C(32-86F)
-OPEN ENGINE HOOD.
2)START ENG WITH VHCL
STOPPED. IF ENG IS ON,STOP
FOR 5 SEC. THEN RESTART.
3)TOUCH START.


SEF565X

WAIT
2 TO 10 MINUTES.
KEEP ENGINE RUNNING
AT IDLE SPEED.

SEF566X

Evaporative Emission (EVAP) Canister Vent Control Valve (Open) (Cont'd)

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Never remove fuel filler cap during the DTC confirmation procedure.

NOTE:

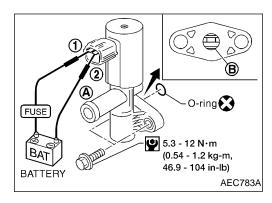
- If DTC P0440 is displayed with P1448, perform TROUBLE DIAGNOSIS FOR DTC P1448 first.
- If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- Perform "DTC WORK SUPPORT" when the fuel level is between 1/4 to 3/4 full and vehicle is placed on flat level surface.
- Open engine hood before conducting following procedure.

- 1) Turn ignition switch "ON".
- Turn ignition switch "OFF" and wait at least 5 seconds.
- Turn ignition switch "ON" and select "DATA MONI-TOR" mode with CONSULT-II.
- 4) Make sure that the following conditions are met. COOLAN TEMP/S: 0 70°C (32 158°F) INT/A TEMP SE: 0 60°C (41 86°F)
- Select "EVAP SML LEAK P0440" of "ÉVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
 - Follow the instruction displayed.
- 6) Make sure that "OK" is displayed. If "NG" is displayed, go to the following step.

NOTE:


Make sure that EVAP hoses are connected to EVAP canister purge volume control solenoid valve properly.

- 7) Stop engine and wait at least 5 seconds, then turn "ON".
- 8) Disconnect hose from water separator.
- Select "VENT CONTROL/V" of "ACTIVE TEST" mode with CONSULT-II.
- 10) Touch "ON" and "OFF" alternately.
- 11) Make sure of the following.

Condition VENT CONTROL/V	Air passage continuity between (A) and (B)
ON	No
OFF	Yes

If the result is NG, go to "DIAGNOSTIC PROCEDURE", EC-409.

If the result is OK, go to "DIAGNOSTIC PROCEDURE" for "TROUBLE DIAGNOSIS FOR DTC P0440", EC-287.

Evaporative Emission (EVAP) Canister Vent Control Valve (Open) (Cont'd)

- OR -

OVERALL FUNCTION CHECK

GI

Use this procedure to check the overall function of the EVAP canister vent control valve circuit. During this check, a DTC might not be confirmed.

MA

- 1) Disconnect hose from water separator.
- Disconnect EVAP canister vent control valve harness connector.

3) Verify the following.

EM

Condition	Air passage continuity
12V direct current supply between terminals ① and ②	No
No supply	Yes

If the result is NG, go to "DIAGNOSTIC PROCEDURE", EC-409.

If the result is OK, go to "DIAGNOSTIC PROCEDURE" for "TROUBLE DIAGNOSIS FOR DTC P0440", EC-287.

FE

MT

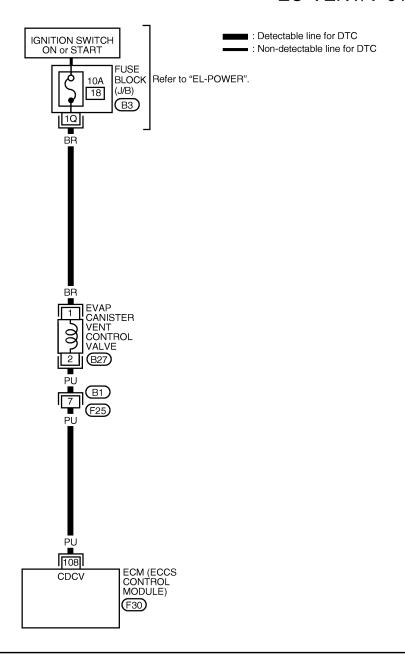
FA

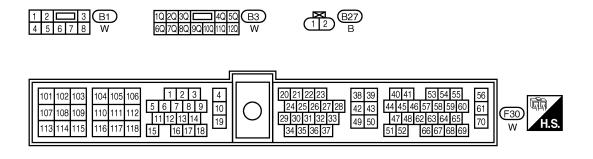
AT

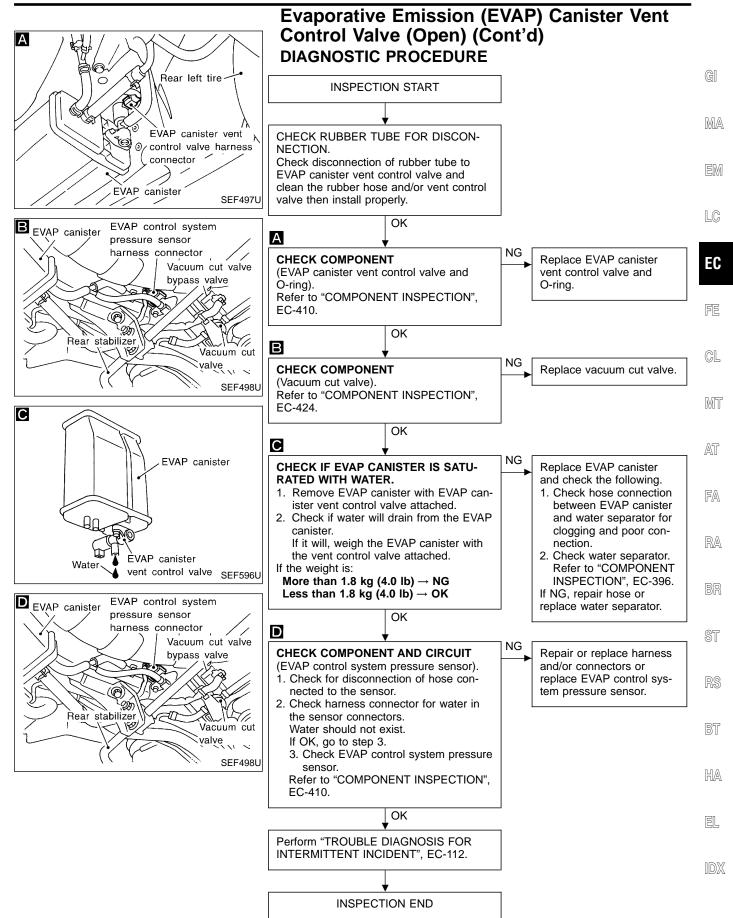
RA

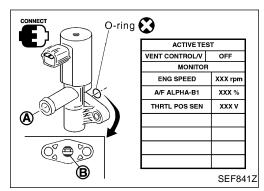
BR

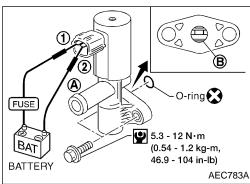
ST


BT


HA


EL


Evaporative Emission (EVAP) Canister Vent Control Valve (Open) (Cont'd)


EC-VENT/V-01

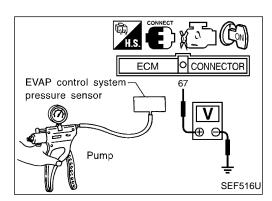
Evaporative Emission (EVAP) Canister Vent Control Valve (Open) (Cont'd) COMPONENT INSPECTION

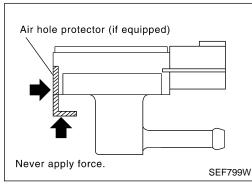
EVAP canister vent control valve

Check air passage continuity.

Perform "VENT CONTROL/V" in "ACTIVE TEST" mode.

Condition	Air passage continuity between (A) and (B)
ON	No
OFF	Yes
0	R ———




Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals 1 and 2	No
No supply	Yes

If NG or operation takes more than 1 second, clean valve using air blower or replace as necessary.

If the portion (B) is rusted, replace EVAP canister vent control valve.

Make sure new O-ring is installed properly.

EVAP control system pressure sensor

- Remove EVAP control system pressure sensor with its harness connector connected.
- 2. Remove hose from EVAP control system pressure sensor.
- 3. Turn ignition switch "ON".
- 4. Use pump to apply vacuum and pressure to EVAP control system pressure sensor as shown in figure.
- 5. Check output voltage between ECM terminal (a) and engine ground.

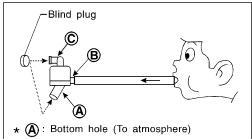
Pressure (Relative to atmospheric pressure)	Voltage V
0 kPa (0 mmHg, 0 inHg)	3.0 - 3.6
-9.3 kPa (-70 mmHg, -2.76 inHg)	0.4 - 0.6

CAUTION:

- Always calibrate the vacuum pump gauge when using it.
- Do not apply pressure over 20.0 kPa (150 mmHg, 5.91 inHg) or vacuum below -20.0 kPa (-150 mmHg, -5.91 inHg).
- 6. If NG, replace EVAP control system pressure sensor.
- Never apply force to the air hole protector of the sensor, if equipped.

EC-410

Evaporative Emission (EVAP) Canister Vent Control Valve (Open) (Cont'd)


 Discard any EVAP control system pressure sensor which has been dropped from a height of more than 0.5 m (19.7 in) onto a hard surface such as a concrete floor; use a new one.

MA

EM

LC

- (B): Emergency tube (From EVAP canister)
- (C): Inlet port (To member)

SEF829

Water separator

- 1. Check visually for insect nests in water separator air inlet.
- 2. Check visually for cracks or flaws in the appearance.
- 3. Check visually for cracks or flaws in the hose.
- Check that (A) and (C) are not clogged by blowing air from (B) with (A), and then (C) plugged.
- 5. In case of NG in items 2 4, replace the parts.
- Do not disassemble water separator.

EC

FE

CL

GL.

MT

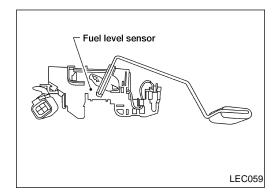
AT

FA

RA

BR

272


RS

BT

HA

EL

IDX

Fuel Level Sensor Circuit (Ground signal) **COMPONENT DESCRIPTION**

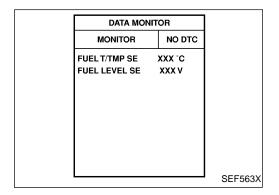
The fuel level sensor is mounted in the fuel level sensor unit. The sensor detects a fuel level in the fuel tank and transmits a signal to the ECM.

It consists of two parts, one is mechanical float and the other side is variable resistor. Fuel level sensor output voltage changes depending on the movement of the fuel mechanical float.

ON BOARD DIAGNOSTIC LOGIC

ECM receives two signals from the fuel level sensor.

One is between the level sensor and the speedometer, and the other is between the level sensor and the ground.

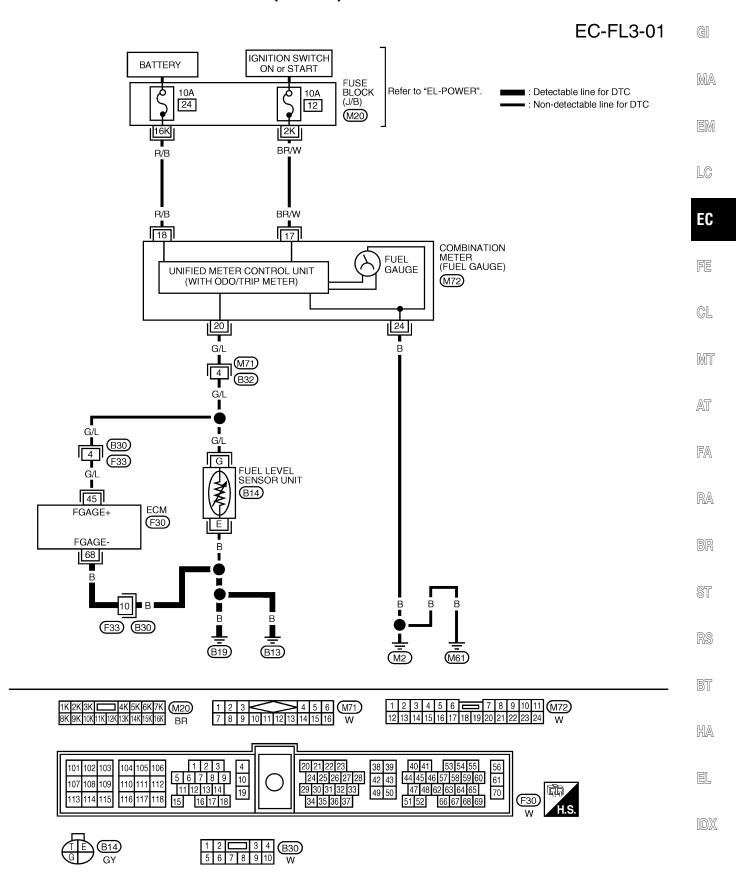

This diagnosis indicates the latter to detect open circuit malfunction.

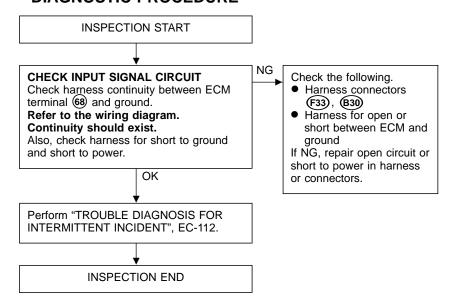
Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P0464	A high voltage from the fuel level sensor is sent to ECM.	Fuel level sensor circuit (The fuel level sensor circuit is open or shorted)

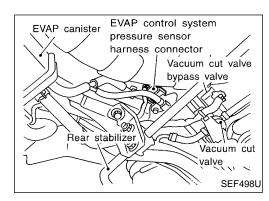
DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.


- Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "Diagnostic Procedure", EC-414.




- OR -Follow the above procedure "With CONSULT-II".

Fuel Level Sensor Circuit (Ground signal) (Cont'd)

Fuel Level Sensor Circuit (Ground signal) (Cont'd) DIAGNOSTIC PROCEDURE

Vacuum Cut Valve Bypass Valve (Circuit) COMPONENT DESCRIPTION

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis. The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened.

GI

MA

EM

LC

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	Ignition switch: ON	OFF

50

EC

GL

MIT

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
117	PU/R	Vacuum cut valve bypass valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

AT

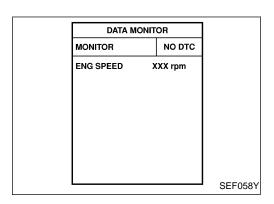
ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	RA
P1490	 An improper voltage signal is sent to ECM through vacuum cut valve bypass valve. 	Harness or connectors (The vacuum cut valve bypass valve circuit is open or shorted.)	BR
		Vacuum cut valve bypass valve	ST

DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.


TESTING CONDITION:

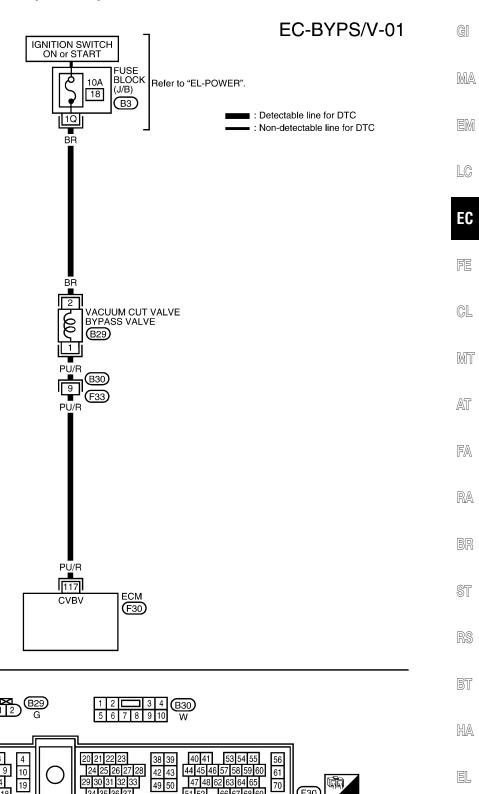
Before performing the following procedure, confirm battery voltage is more than 11V at idle.

HA

BT

n – n

Vacuum Cut Valve Bypass Valve (Circuit) (Cont'd)

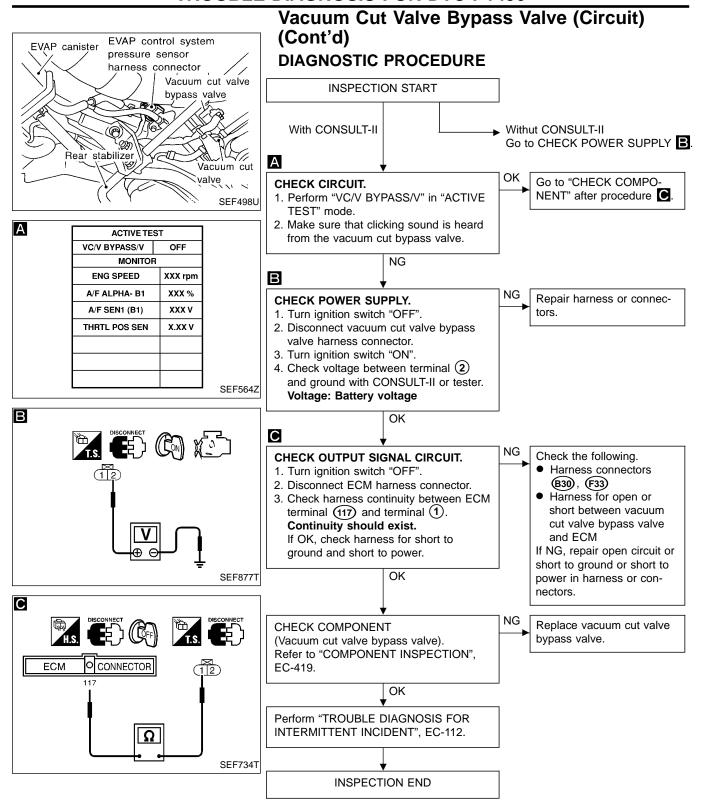

- 1) Turn ignition switch "ON".
- 2) Select "DATA MONITOR" mode with CONSULT-II.
- 3) Start engine and wait at least 5 seconds.
- 4) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-423.

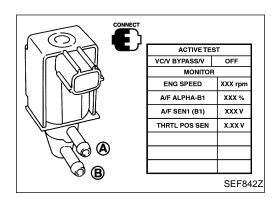
- OR -

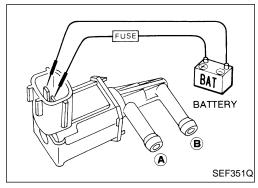
- 1) Start engine and wait at least 5 seconds.
- 2) Select "MODE 7" with GST.
- 3) If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-423.

Vacuum Cut Valve Bypass Valve (Circuit) (Cont'd)

WEC017


108 109


113 114 115


107

110 111 112

116 117 118

Vacuum Cut Valve Bypass Valve (Circuit) (Cont'd)

COMPONENT INSPECTION

Vacuum cut valve bypass valve

Check air passage continuity.

Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.

Condition	Air passage continuity between (A) and (B)
ON	Yes
OFF	No

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals	Yes
No supply	No

- OR

If NG or operation takes more than 1 second, replace vacuum cut valve bypass valve.

GI

MA

EM

LC

EC

FE

CL

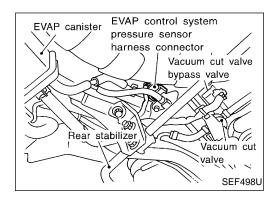
MT

AT

RA

FA

BR


ST

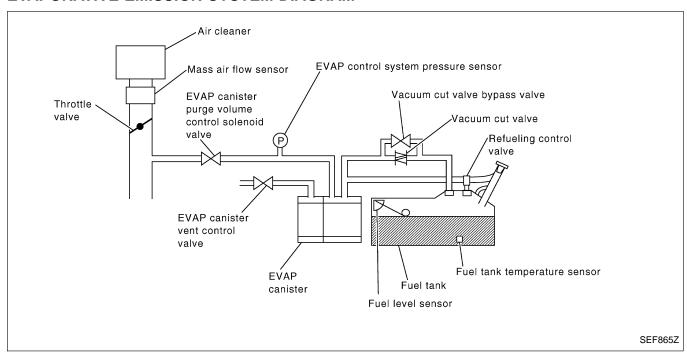
RS

BT

HA

EL

Vacuum Cut Valve Bypass Valve


COMPONENT DESCRIPTION

The vacuum cut valve and vacuum cut valve bypass valve are installed in parallel on the EVAP purge line between the fuel tank and the EVAP canister.

The vacuum cut valve prevents the intake manifold vacuum from being applied to the fuel tank.

The vacuum cut valve bypass valve is a solenoid type valve and generally remains closed. It opens only for on board diagnosis. The vacuum cut valve bypass valve responds to signals from the ECM. When the ECM sends an ON (ground) signal, the valve is opened. The vacuum cut valve is then bypassed to apply intake manifold vacuum to the fuel tank.

EVAPORATIVE EMISSION SYSTEM DIAGRAM

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

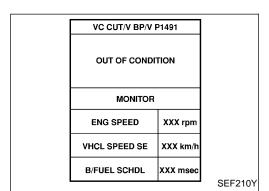
Specification data are reference values

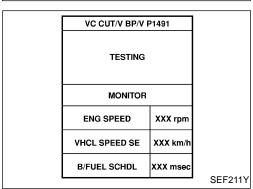
MONITOR ITEM	CONDITION	SPECIFICATION
VC/V BYPASS/V	• Ignition switch: ON	OFF

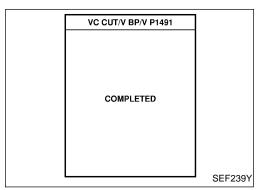
ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
117	PU/R	Vacuum cut valve bypass valve	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)


Vacuum Cut Valve Bypass Valve (Cont'd)

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)	GI
P1491	Vacuum cut valve bypass valve does not operate properly.	Vacuum cut valve bypass valve Vacuum cut valve Bypass hoses for clogging EVAP control system pressure sensor and circuit EVAP canister vent control valve Hose between fuel tank and vacuum cut valve clogged Hose between vacuum cut valve and EVAP canister clogged EVAP canister	MA EM

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

- For best results, perform test at a temperature of 0°C (32°F) or more.
- This test may be conducted with the drive wheels lifted in the shop or by driving the vehicle. If a road test is expected to be easier, it is unnecessary to lift the vehicle. Before performing the following procedure, confirm that

battery voltage is more than 11V.

- 1) Turn ignition switch "ON".
- Start engine and warm it up to normal operating temperature.
- Turn ignition switch "OFF" and wait at least 5 seconds.
- 4) Start engine and let it idle for at least 1 minute.
- Select "VC CUT/V BP/V P1491" of "EVAPORATIVE SYSTEM" in "DTC WORK SUPPORT" mode with CONSULT-II.
- 6) Touch "START".
- 7) When the following conditions are met, "TESTING" will be displayed on the CONSULT-II screen. Maintain the conditions continuously until "TESTING" changes to "COMPLETED". (It will take at least 30 seconds.)

ENG SPEED: 1,000 - 3,000 rpm Selector lever: Suitable position

Vehicle speed: 36 - 120 km/h (22 - 75 MPH)

B/FUEL SCHDL: 0.5 - 3.1 msec

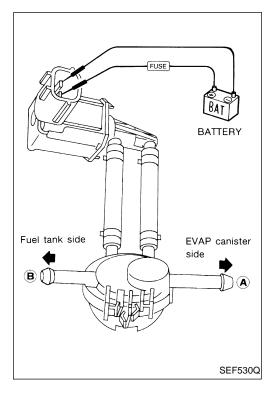
EC-421

MT

AT

RA

BT

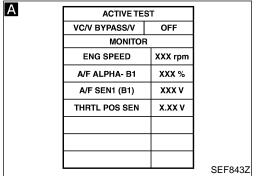

HA

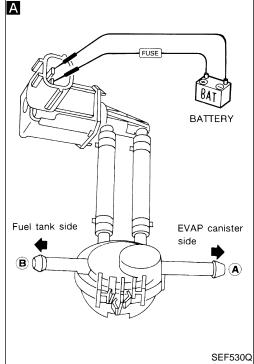
EL

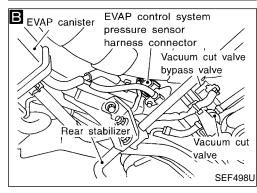
Vacuum Cut Valve Bypass Valve (Cont'd)

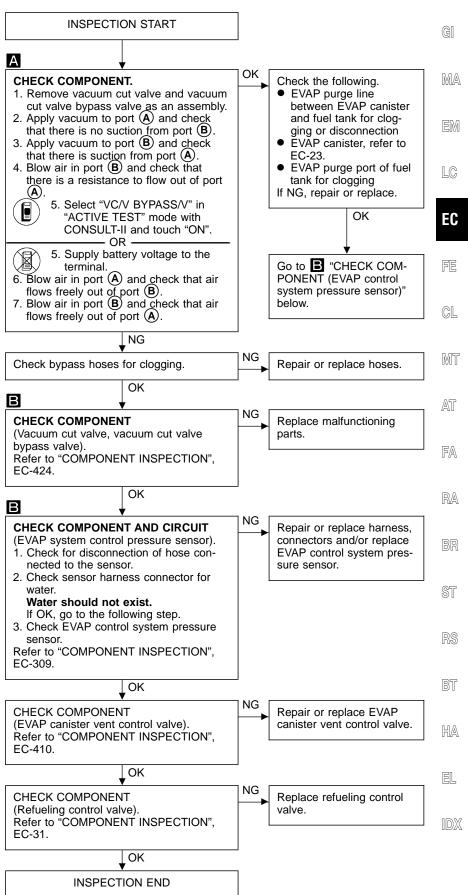
If "TESTING" is not displayed after 5 minutes, retry from step 3).

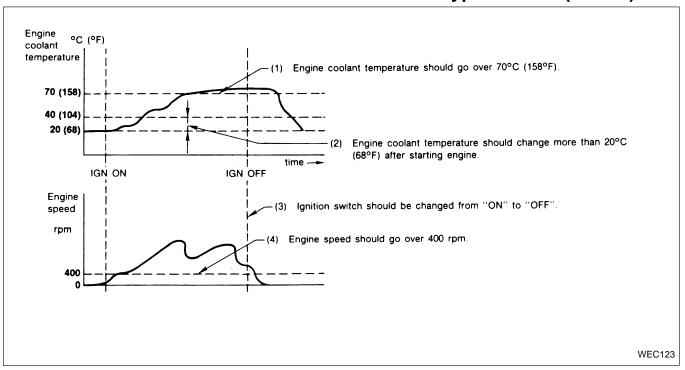
8) Make sure that "OK" is displayed after touching "SELF-DIAG RESULTS". If "NG" is displayed, refer to "DIAGNOSTIC PROCEDURE", EC-423.

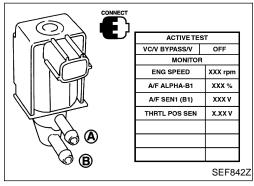


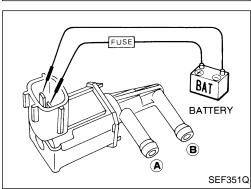

- OR -

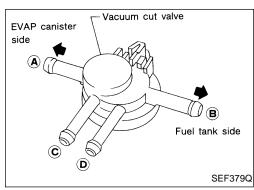

OVERALL FUNCTION CHECK


- Remove vacuum cut valve and vacuum cut valve bypass valve as an assembly.
- 2) Apply vacuum to port (A) and check that there is no suction from port (B).
- 3) Apply vacuum to port (B) and check that there is suction from port (A).
- 4) Blow air in port (B) and check that there is a resistance to flow out of port (A).
- 5) Supply battery voltage to the terminal.
- 6) Blow air in port (A) and check that air flows freely out of port (B).
- 7) Blow air in port (B) and check that air flows freely out of port (A).
- 8)f NG, go to "DIAGNOSTIC PROCEDURE", EC-423.






Vacuum Cut Valve Bypass Valve (Cont'd) DIAGNOSTIC PROCEDURE



Vacuum Cut Valve Bypass Valve (Cont'd)

COMPONENT INSPECTION

Vacuum cut valve bypass valve

Check air passage continuity.

Perform "VC/V BYPASS/V" in "ACTIVE TEST" mode.

	Air passage continuity between (A) and (B)
ON	Yes
OFF	No

- OR -

Condition	Air passage continuity between (A) and (B)
12V direct current supply between terminals	Yes
No supply	No

If NG or operation takes more than 1 second, replace vacuum cut valve bypass valve.

Vacuum cut valve

Check vacuum cut valve as follows:

- 1. Plug port © and D with fingers.
- 2. Apply vacuum to port (A) and check that there is no suction from port (B).
- 3. Apply vacuum to port (B) and check that there is suction from port (A).
- 4. Blow air in port (B) and check that there is a resistance to flow out of port (A).
- 5. Open port © and D.
 - 6. Blow air in port (A) check that air flows freely out of port (C).
 - Blow air in port B check that air flows freely out of port D.

A/T Diagnosis Communication Line

COMPONENT DESCRIPTION

The malfunction information related to A/T (Automatic Transmission) is transferred through the line (circuit) from TCM (Transmission control module) to ECM. Therefore, be sure to erase the malfunction information such as DTC not only in TCM but also ECM after the A/T related repair.

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

EM

MA

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

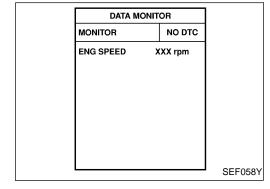
Π	0

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
7	PU	A/T check signal	Ignition switch "ON" Engine is running.	0 - 4.0V

ON BOARD DIAGNOSIS LOGIC

0	П
6	L

MT


Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1605	An incorrect signal from TCM (Transmission control module) is sent to ECM.	 Harness or connectors (The communication line circuit between ECM and TCM is open or shorted.) Dead (Weak) battery TCM

FA

AT

BR

DIAGNOSTIC TROUBLE CODE CONFIRMATION **PROCEDURE**

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

TESTING CONDITION:

Before performing the following procedure, confirm that battery voltage is more than 11V.

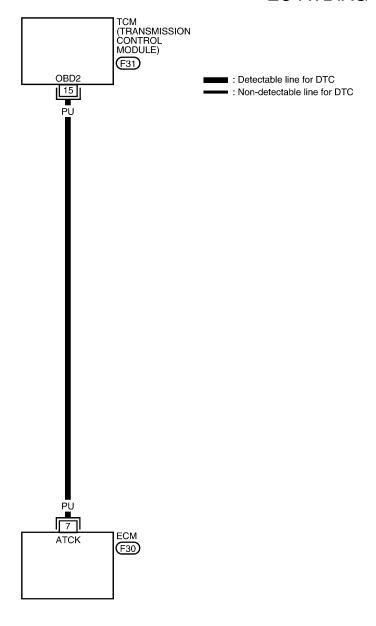
HA

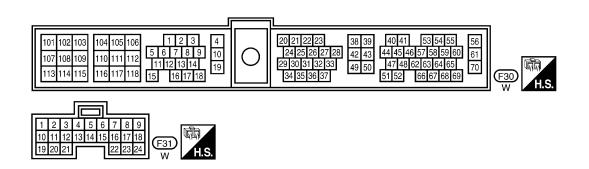
- Turn ignition switch "ON"
- Select "DATA MONITOR" mode with CONSULT-II.

Start engine and wait at least 40 seconds.

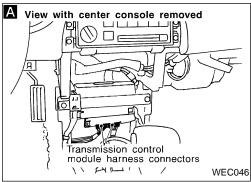
If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-427.

EL

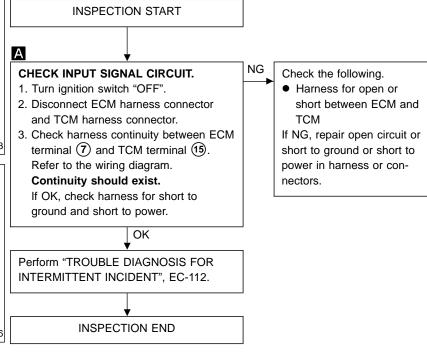

- OR Turn ignition switch "ON".
- Start engine and wait at least 40 seconds.


3) Select "MODE 7" with GST.

If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-427.


A/T Diagnosis Communication Line (Cont'd)

EC-ATDIAG-01



A View with instrument lower cover RH removed Glove box ECM harness protector WEC103

A/T Diagnosis Communication Line (Cont'd) DIAGNOSTIC PROCEDURE

 \mathbb{G}

MA

EM

LC

EC

FE

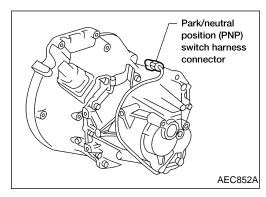
GL

MT

AT

FA

RA


BR

ST

D@

BT

HA

Park/Neutral Position (PNP) Switch

COMPONENT DESCRIPTION

When the gear position is "P" (A/T models only) or "N", Park/ neutral position (PNP) switch is "ON".

ECM detects the park/neutral position when continuity with ground exists.

For A/T models, the PNP switch assembly also includes a transmission range switch to detect selector lever position.

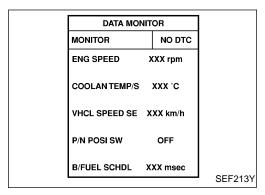
CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

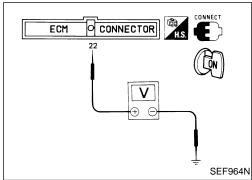
Specification data are reference values

MONITOR ITEM	CONDITION		SPECIFICATION
P/N POSI SW • Ignition switch: ON	• Ignition quitable ON	Shift lever: "P" or "N"	ON
	Except above	OFF	

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
00 0/00	Park/neutral position	Ignition switch "ON" Gear position is "N" or "P"	Approximately 0V	
22	G/OR (PNP) switch	Ignition switch "ON" Except the above gear position	Approximately 5V	

ON BOARD DIAGNOSIS LOGIC

Diagnostic Trouble Code No.	Malfunction is detected when	Check Items (Possible Cause)
P1706	The signal of the park/neutral position (PNP) switch is not changed in the process of engine starting and driving.	 Harness or connectors a. (The PNP switch or PNP switch circuit is open or shorted.) b. (The circuit between ECM and TCM is open or shorted.) PNP switch TCM (Transmission control module)

Park/Neutral Position (PNP) Switch (Cont'd) DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCEDURE

CAUTION:

Always drive vehicle at a safe speed.

NOTE:

If "DIAGNOSTIC TROUBLE CODE CONFIRMATION PROCE-DURE" has been previously conducted, always turn ignition switch "OFF" and wait at least 5 seconds before conducting the next test.

- 1) Turn ignition switch "ON".
- Select "P/N POSI SW" in "DATA MONITOR" mode with CONSULT-II. Then check the "P/N POSI SW" signal under the following conditions.

Position (Selector lever)	Known-good signal
"N" and "P" (A/T only) position	ON
Except the above position	OFF

If NG, go to "DIAGNOSTIC PROCEDURE", EC-431. If OK, go to following step.

- 3) Select "DATA MONITOR" mode with CONSULT-II.
- 4) Start engine and warm it up to normal operating temperature.
- Maintain the following conditions for at least 60 consecutive seconds.

ENG SPEED: 1,500 - 3,400 rpm COOLAN TEMP/S: More than 70°C (158°F) B/FUEL SCHDL: 3 - 12.5 msec

VHCL SPEED SE: More than 64 km/h (40 MPH) Selector lever: Suitable position

 If 1st trip DTC is detected, go to "DIAGNOSTIC PROCEDURE", EC-431.

OR

OVERALL FUNCTION CHECK

Use this procedure to check the overall function of the park/ neutral position (PNP) switch circuit. During this check, a 1st trip DTC might not be confirmed.

- 1) Turn ignition switch "ON".
- 2) Check voltage between ECM terminal 22 and body ground under the following conditions.

Condition (Gear position)	Voltage V (Known-good data)
"P" (A/T only) and "N" position	Approx. 0
Except the above position	Approx. 5

3) If NG, go to "DIAGNOSTIC PROCEDURE", EC-431.

HA

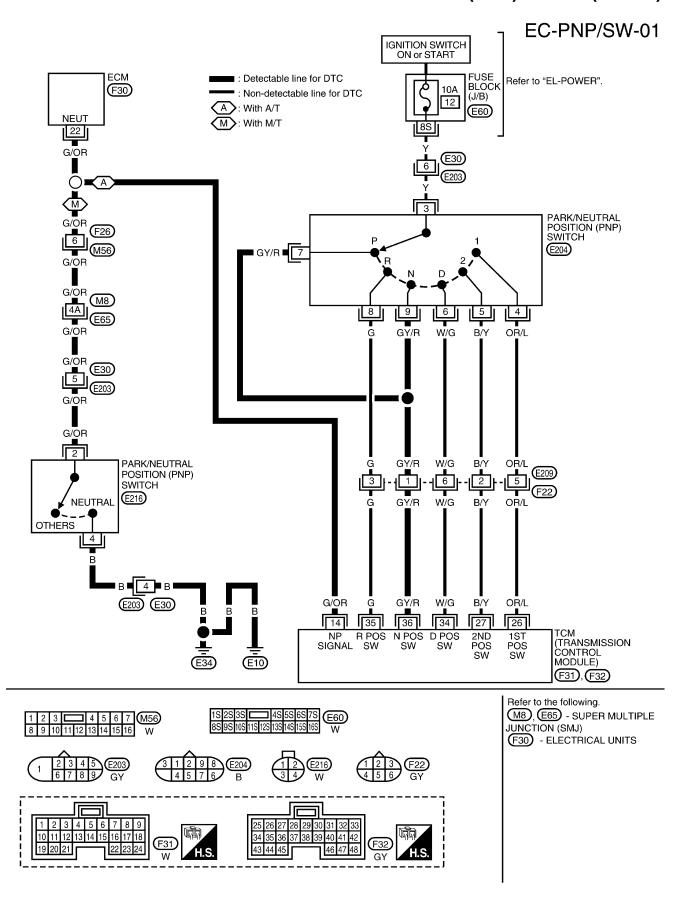
BT

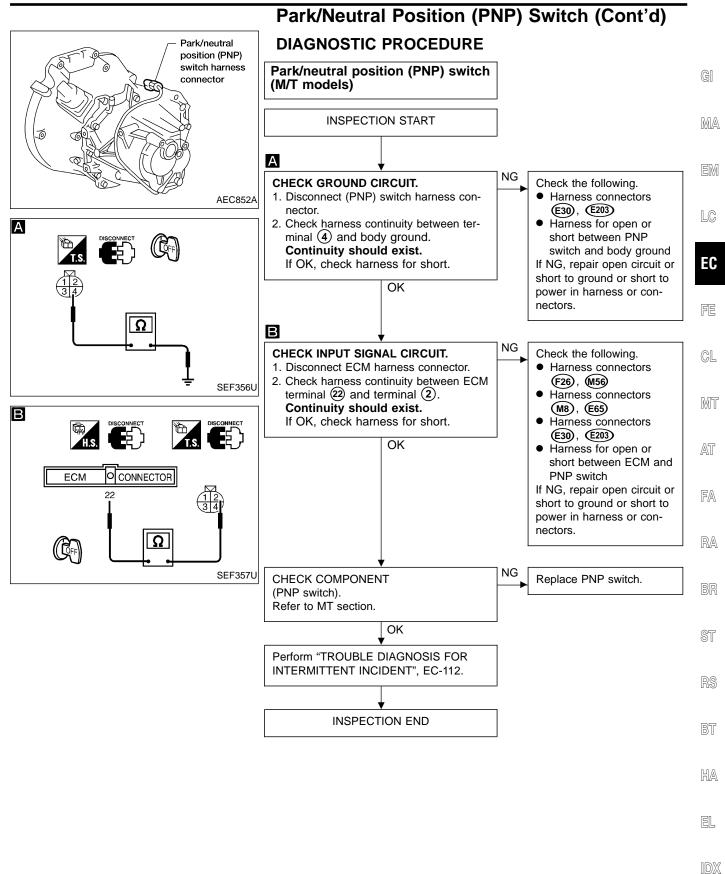
GI

EM

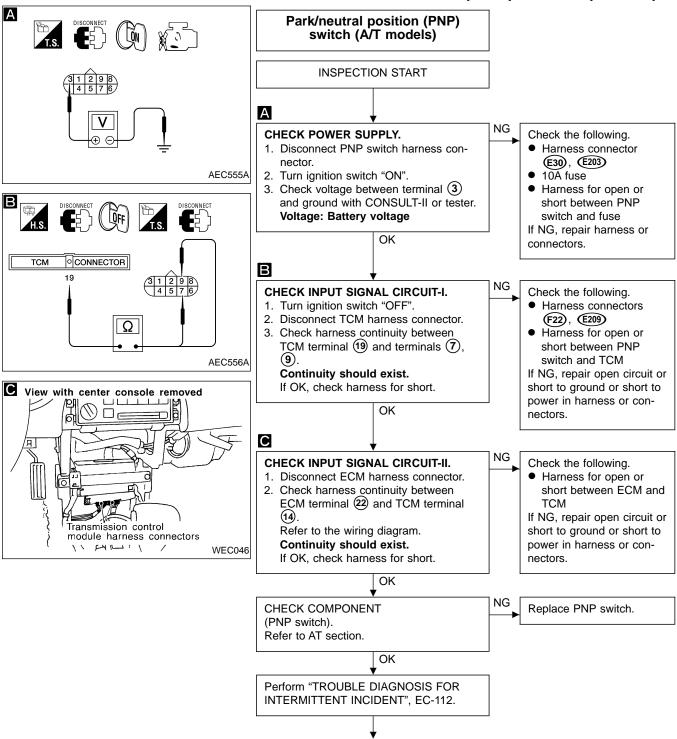
EC

MT


AT


FA

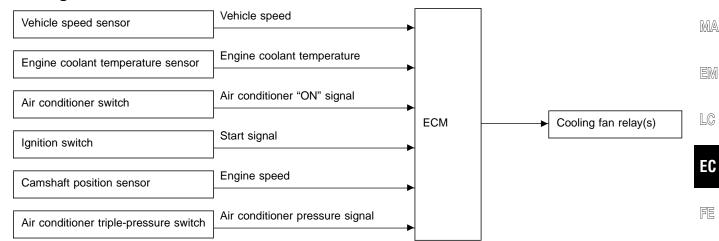
RA


BR

Park/Neutral Position (PNP) Switch (Cont'd)

Park/Neutral Position (PNP) Switch (Cont'd)

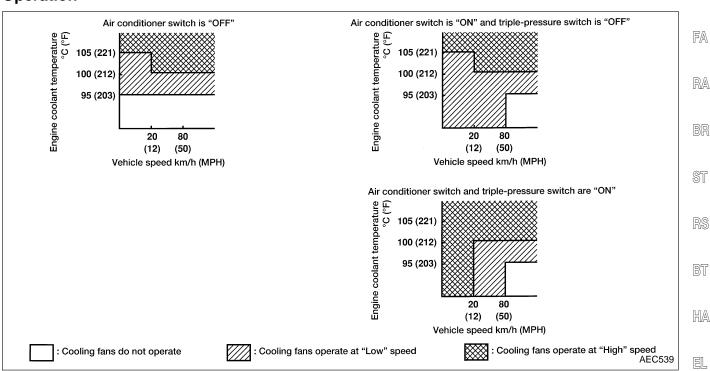
INSPECTION END


GI

AT

Overheat

SYSTEM DESCRIPTION


Cooling fan control

The ECM controls the cooling fan corresponding to the vehicle speed, engine coolant temperature, air conditioner system pressure and air conditioner ON signal. The control system has 3-step control [HIGH/LOW/OFF].

With the ignition key in the OFF position the cooling fans will operate for a maximum of 120 seconds if the engine coolant temperature reaches 96°C (205°F) or above.

Operation

Overheat (Cont'd)

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values.

MONITOR ITEM	CONDITION		SPECIFICATION
COOLING FAN	Engine: Idling, after warming up Air conditioner switch "OFF"	Engine coolant temperature is 94°C (201°F) or less.	OFF
		Engine coolant temperature is between 95°C (203°F) and 104°C (219°F).	LOW
	·	Engine coolant temperature is 95°C (203°F) or more.	н

ECM TERMINALS AND REFERENCE VALUE

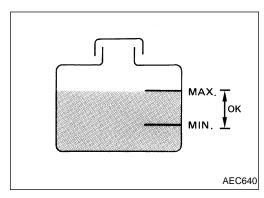
Remarks: Specification data are reference values, and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

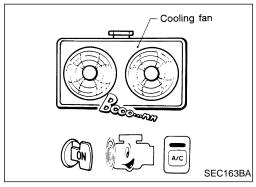
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
13	LG	Cooling fan rolay (High)	Engine is running. Cooling fan is not operating.	BATTERY VOLTAGE (11 - 14V)
13 LG Cooling fan relay (High)	Engine is running. Cooling fan (High) is operating.	0 - 0.4V		
14	LG/R	Cooling for roley (Low)	Engine is running. Cooling fan is not operating.	BATTERY VOLTAGE (11 - 14V)
14 LG/R	Cooling fan relay (Low)	Engine is running. Cooling fan (Low) is operating.	0 - 0.3V	

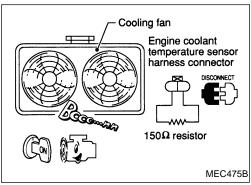
ON BOARD DIAGNOSIS LOGIC

If the cooling fan or another component in the cooling system malfunctions, the engine coolant temperature will rise.


When the engine coolant temperature reaches an abnormally high temperature condition, a malfunction is indicated.

Diagnostic trouble code No.	Malfunction is detected when	Check Items (Possible Cause)
OVERHEAT	Engine coolant temperature reaches an abnormally high temperature.	 Harness or connectors (The cooling fan circuit is open or shorted.) Cooling fan Radiator hose Radiator Radiator cap Water pump Thermostat For more information, refer to "MAIN 12 CAUSES OF OVERHEATING", EC-443.


CAUTION:


When a malfunction is indicated, be sure to replace the coolant following the procedure in the MA section ("Changing Engine Coolant", "ENGINE MAINTENANCE"). Also, replace the engine oil.

- a. Fill radiator with coolant up to specified level with a filling speed of 2 liters per minute like pouring coolant by kettle. Be sure to use coolant with the proper mixture ratio. Refer to MA section ("Anti-freeze Coolant Mixture Ratio", "RECOMMENDED FLUIDS AND LUBRICANTS").
- b. After refilling coolant, run engine to ensure that no water-flow noise is emitted.

ACTIVE TES	rT.	
COOLING FAN OFF		
MONITOR		
COOLAN TEMP/S	XXX °C	
		SEF111X

Overheat (Cont'd) OVERALL FUNCTION CHECK

WARNING:

Never remove the radiator cap when the engine is hot. Serious burns could be caused by high pressure fluid escaping from the radiator.

Wrap a thick cloth around cap. Carefully remove the cap by turning it a quarter turn to allow built-up pressure to escape. Then turn the cap all the way off.

- Check the coolant level in the reservoir tank and radiator.
 Allow engine to cool before checking coolant level.
 If the coolant level in the reservoir tank and/or radiator is below the proper range, skip the following steps and go to "DIAGNOSTIC PROCEDURE", EC-437.
- 2) Confirm whether customer filled the coolant or not. If customer filled the coolant, skip the following steps and go to "DIAGNOSTIC PROCEDURE", EC-437.
- 3) Turn ignition switch "ON".
 4) Perform "COOLING FAN" in "ACTIVE TEST" mode with CONSULT-II (LOW speed and HI speed).
 - 5) If NG, go to "DIAGNOSTIC PROCEDURE", EC-437.

3) Start engine.

Be careful not to overheat engine.

- 4) Set temperature control lever to full cold position.
- 5) Turn air conditioner switch "ON".
- 6) Turn blower fan switch "ON".
- 7) Run engine at idle for a few minutes with air conditioner operating.

Be careful not to overheat engine.

- 8) Make sure that cooling fan operates at low speed.
- 9) Turn ignition switch "OFF".
- 10) Turn air conditioner switch and blower fan switch "OFF".
- Disconnect engine coolant temperature sensor harness connector.
- 12) Connect 150 Ω resistor to engine coolant temperature sensor harness connector.
- 13) Restart engine and make sure that cooling fan operates at higher speed than low speed.

Be careful not to overheat engine.

14) If NG, go to "DIAGNOSTIC PROCEDURE", EC-437.

BT

MA

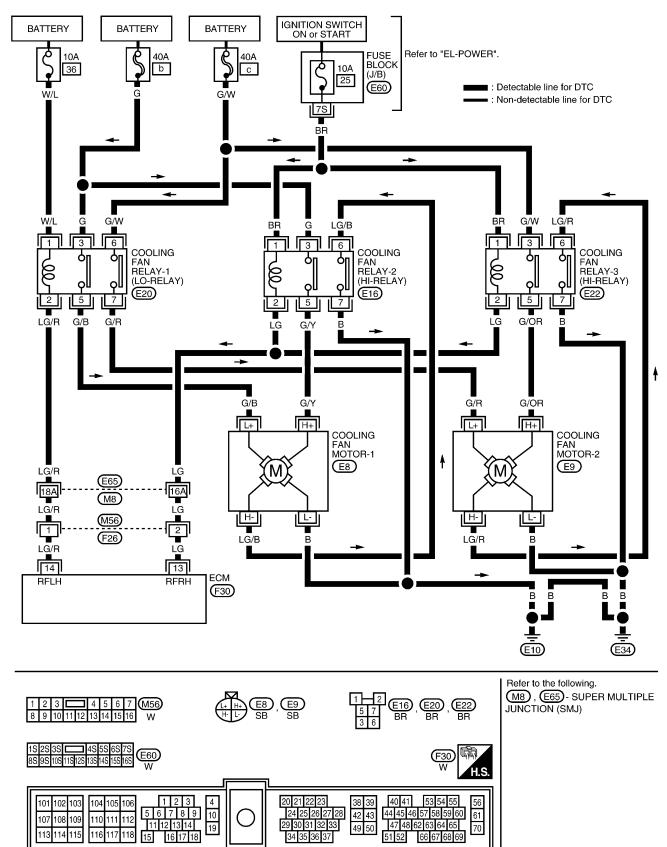
EM

EC

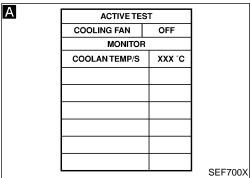
MT

FA

BR

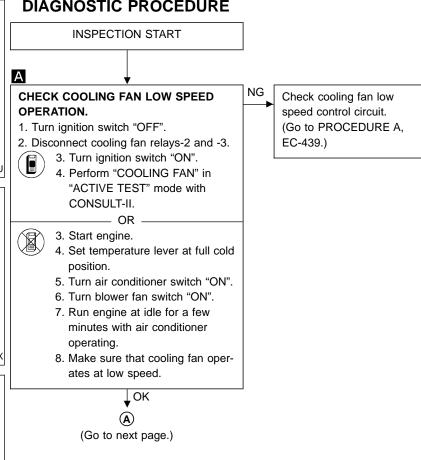

HA

EL


IDX

Overheat (Cont'd)

EC-COOL/F-01



Cooling fan relay-2 Power steering pump reservoir Cooling fan relay-3 Cooling fan relay-1 SEF518U

Overheat (Cont'd) DIAGNOSTIC PROCEDURE

GI

MA

EM

EC

FE

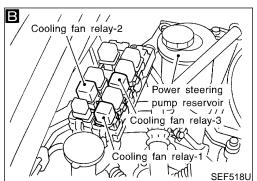
CL

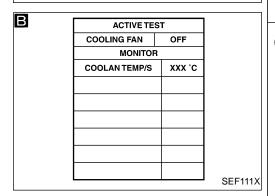
MT

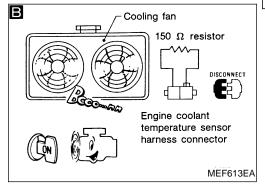
AT

FA

RA


BR


RS


BT

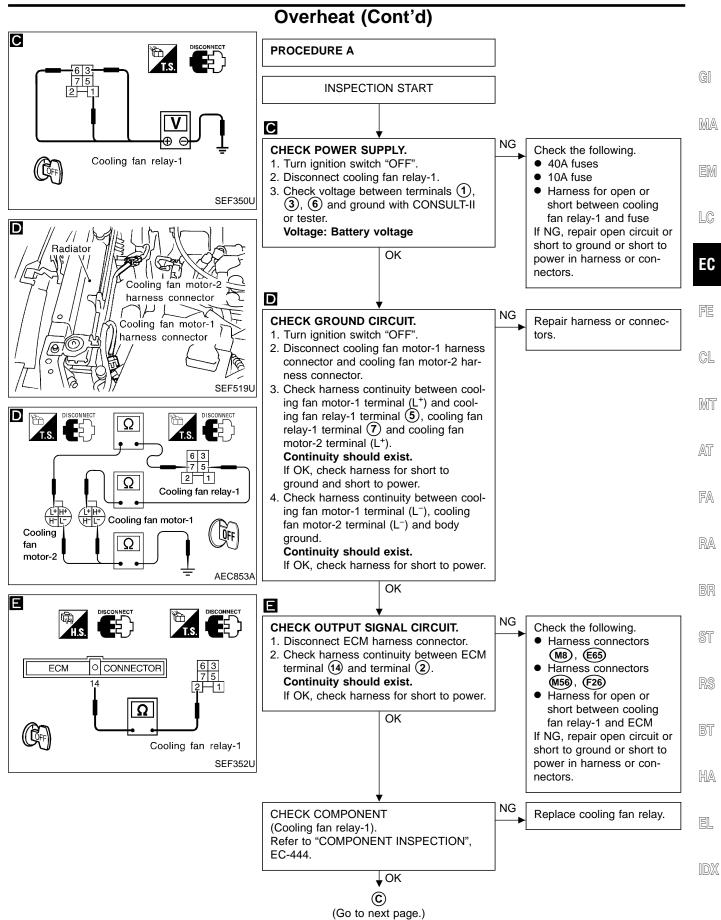
HA

EL

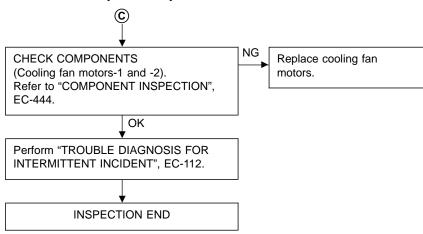
Overheat (Cont'd)

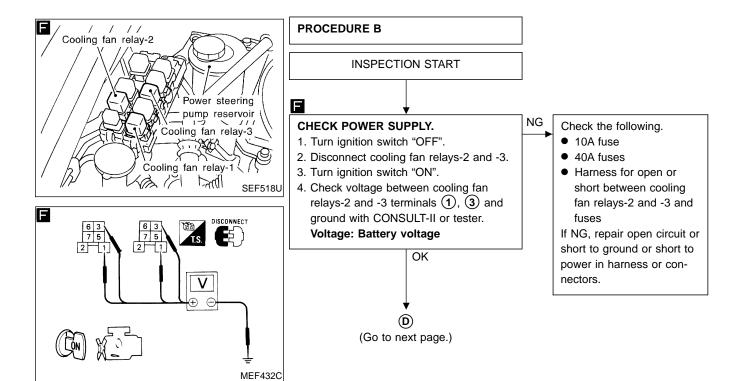
В

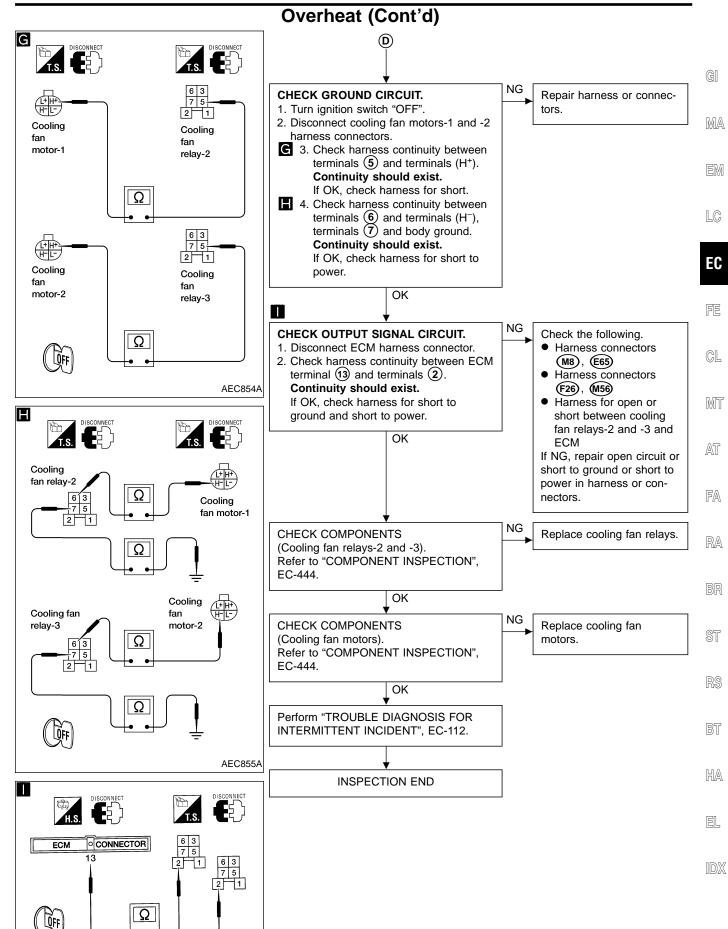
CHECK COOLING FAN HIGH SPEED OPERATION.

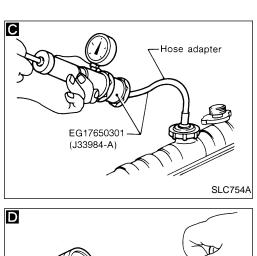

- 1. Turn ignition switch "OFF".
- 2. Reconnect cooling fan relays-2 and -3.
- 3. Disconnect cooling fan relay-1.
- 4. Turn ignition switch "ON".
 - 5. Perform "COOLING FAN" in "ACTIVE TEST" mode with CONSULT-II.

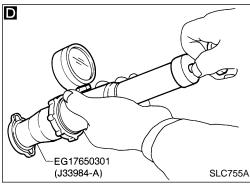
- OR -4. Turn air conditioner switch and blower fan switch "OFF".
- 5. Disconnect engine coolant temperature sensor harness connector.
- 6. Connect 150 Ω resistor to engine coolant temperature sensor harness connector.
- 7. Restart engine and make sure that cooling fan operates at higher speed than low speed.

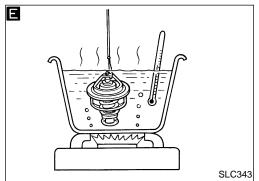

↓ok **B**)


(Go to EC-442.)


NG Check cooling fan high speed control circuit. (Go to PROCEDURE B, EC-440.)


Overheat (Cont'd)





AEC520

Overheat (Cont'd)

CHECK COOLING SYSTEM FOR LEAK.

Apply pressure to the cooling system with a tester, and check if the pressure drops.

Testing pressure:

157 kPa (1.6 kg/cm², 23 psi) Pressure should not drop.

CAUTION:

Higher than the specified pressure may cause radiator damage.

OK

OK

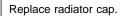
Check the following for leak.

Hose

NG

- Radiator
- Water pump

Refer to LC section ("Water Pump").



CHECK RADIATOR CAP.

Apply pressure to cap with a tester.

Radiator cap relief pressure:

59 - 98 kPa (0.6 - 1.0 kg/cm², 9 - 14 psi)

Replace thermostat

CHECK THERMOSTAT.

- 1. Check valve seating condition at normal room temperatures.
 - It should seat tightly.
- 2. Check valve opening temperature and valve lift.

Valve opening temperature: 76.5°C (170°F) [standard] Valve lift:

More than 10 mm/90°C (0.39 in/194°F)

3. Check if valve is closed at 5°C (9°F) below valve opening temperature.

For details, refer to LC section ("Thermostat").

Check engine coolant temperature sensor. Refer to "COMPONENT INSPECTION", EC-138.

Replace engine coolant temperature sensor.

NG

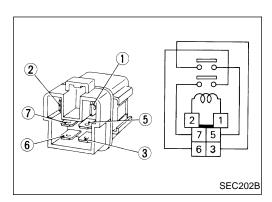
If the cause can not be isolated, go to "MAIN 12 CAUSES OF OVERHEATING" on next page.

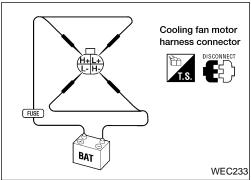
INSPECTION END

Overheat (Cont'd)

MAIN 12 CAUSES OF OVERHEATING

Engine	Step	Inspection item	Equipment	Standard	Reference page
OFF	1	 Blocked radiator Blocked condenser Blocked radiator grille Blocked bumper 	Visual	No blocking	_
	2	Coolant mixture	Coolant tester	50 - 50% coolant mixture	See "RECOMMENDED FLUIDS AND LUBRI-CANTS" in MA section.
	3	Coolant level	Visual	Coolant up to MAX level in reservoir tank and radiator filler neck	See "Changing Engine Coolant", "ENGINE MAIN- TENANCE" in MA section.
	4	Radiator cap	Pressure tester	78 - 98 kPa (0.8 - 1.0 kg/cm ² , 11 - 14 psi) 59 - 98 kPa (0.6 - 1.0 kg/cm ² , 9 - 14 psi) (Limit)	See "System Check", "ENGINE COOLING SYS- TEM" in LC section.
ON*2	5	Coolant leaks	Visual	No leaks	See "System Check", "ENGINE COOLING SYS- TEM" in LC section.
ON* ²	6	Thermostat	Touch the upper and lower radiator hoses	Both hoses should be hot	See "Thermostat" and "Radiator", "ENGINE COOLING SYSTEM" in LC section.
ON*1	7	Cooling fan	CONSULT-II	Operating	See "TROUBLE DIAGNO- SIS FOR NON-DETECT- ABLE ITEMS (Overheat)" (EC-433).
OFF	8	Combustion gas leak	Color checker chemical tester 4 Gas analyzer	Negative	_
ON*3	9	Coolant temperature gauge	Visual	Gauge less than 3/4 when driving	_
		Coolant overflow to reservoir tank	Visual	No overflow during driving and idling	See "Changing Engine Coolant", "ENGINE MAIN- TENANCE" in MA section.
OFF*4	10	Coolant return from reservoir tank to radia- tor	Visual	Should be initial level in reservoir tank	See "ENGINE MAINTE- NANCE" in MA section.
OFF	11	Cylinder head	Straight gauge feeler gauge	0.1 mm (0.004 in) Maximum distortion (warping)	See "Inspection", "CYLIN- DER HEAD" in EM sec- tion.
	12	Cylinder block and pistons	Visual	No scuffing on cylinder walls or piston	See "Inspection", "CYLIN- DER BLOCK" in EM sec- tion.


^{*1:} Turn the ignition switch ON.


For more information, refer to "OVERHEATING CAUSE ANALYSIS" in LC section.

^{*2:} Engine running at 3,000 rpm for 10 minutes.

^{*3:} Drive at 90 km/h (55 MPH) for 30 minutes and then let idle for 10 minutes.

^{*4:} After 60 minutes of cool down time.

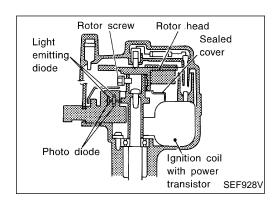
Overheat (Cont'd) COMPONENT INSPECTION

Cooling fan relays-1, -2 and -3

Check continuity between terminals 3 and 5, 6 and 7.

Conditions	Continuity
12V direct current supply between terminals ① and ②	Yes
No current supply	No

If NG, replace relay.


Cooling fan motors-1 and -2

- 1. Disconnect cooling fan motor harness connectors.
- 2. Supply cooling fan motor terminals with battery voltage and check operation.

	Spood	Terminals	
Speed		(⊕)	(⊝)
Cooling fan	Low	(L.)	Œ.
motor	High	€ , ⊕	(L-), (H-)

Cooling fan motor should operate.

If NG, replace cooling fan motor.

Ignition Signal

COMPONENT DESCRIPTION

Ignition coil & power transistor

The ignition coil is built into distributor. The ignition signal from the ECM is sent to the power transistor. The power transistor switches on and off the ignition coil primary circuit. As the primary circuit is turned on and off, the proper high voltage is induced in the coil secondary circuit.

The distributor is not repairable and must be replaced as an assembly except for the distributor cap and rotor head.

NOTE:

The rotor screw which secures distributor rotor head to the distributor shaft must be torqued properly.

9: 3.3 - 3.9 N·m (0.34 - 0.40 kg-m, 29.5 - 34.7 in-lb)

EC

FE

CL

MT

AT

GI

MA

EM

LC

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

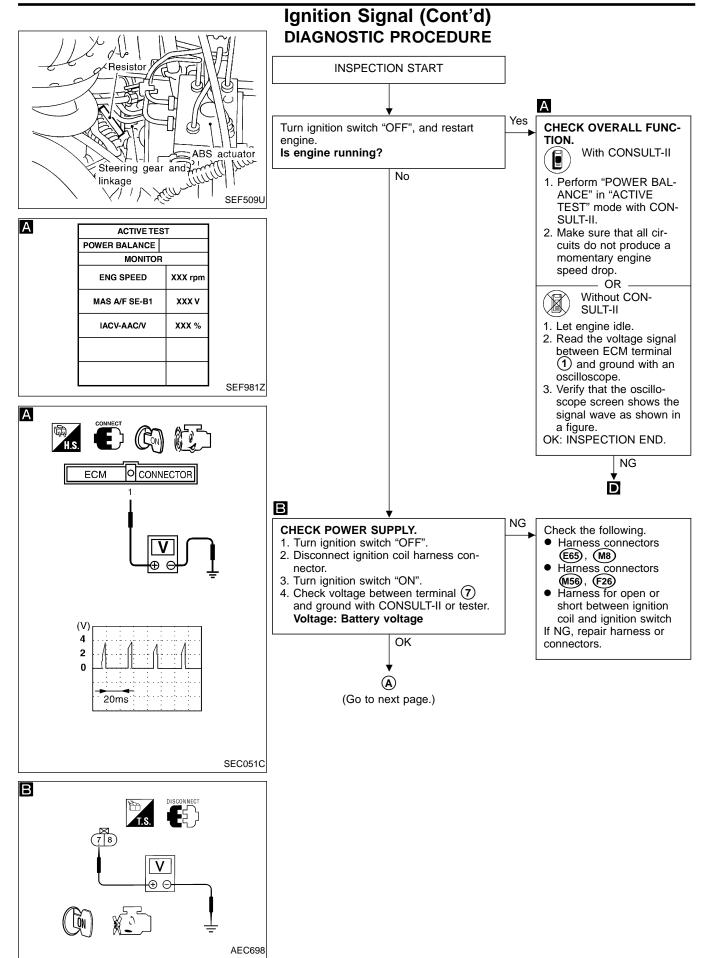
Specification data are reference values

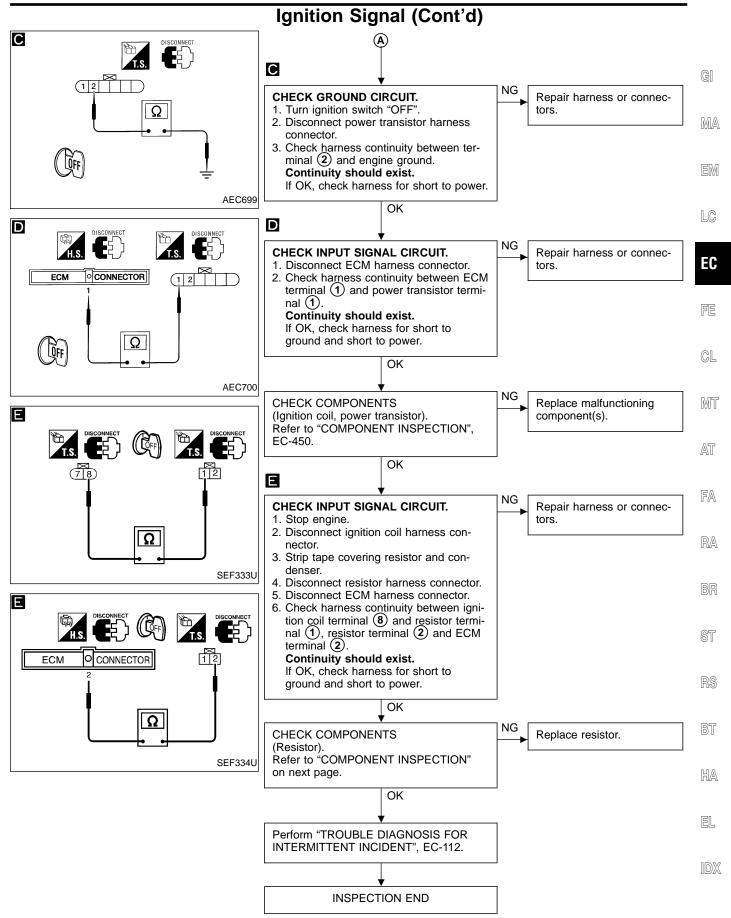
MONITOR ITEM	CONDITION		SPECIFICATION
IGNITION SW	 Ignition switch: ON → OFF → ON 		$ON \rightarrow OFF \rightarrow ON$
IGN TIMING	dista	Idle	Approx. 20° BTDC
IGN HIMING	ditto	2,000 rpm	More than 25° BTDC

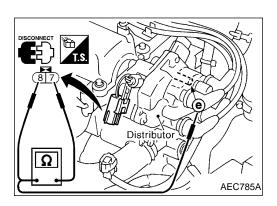
ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.


CAUTION:

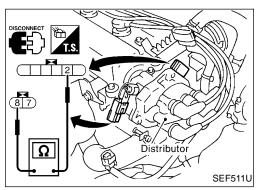

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

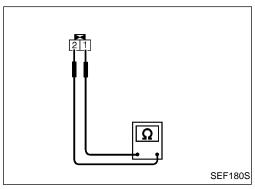

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)	RA
				0.3 - 0.5V	BR
		Engine is running. (Warm-up condition) Idle speed	(V) 4 2 0	ST	
			20ms	RS	
1	W/B	Ignition signal		SEF186T	BT
•	,_	- Ig		0.7 - 1.0V	
		Engine is running.	(V) 4 2	HA	
			Engine speed is 2,000 rpm	20ms	EL
				SEF187T	IDX


	Ignition Signal (Cont'd)					
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)		
		Engine is running. (Warm-up condition) Idle speed	13 - 14V (V) 40 20 0 SEF188T			
2	OR/B	Ignition check	Engine is running. Engine speed is 2,000 rpm.	12 - 13V (V) 40 20 0 SEF189T		

Ignition Signal (Cont'd)

Ignition Signal (Cont'd) COMPONENT INSPECTION


Ignition coil


- 1. Disconnect ignition coil harness connector.
- 2. Check resistance as shown in the figure.

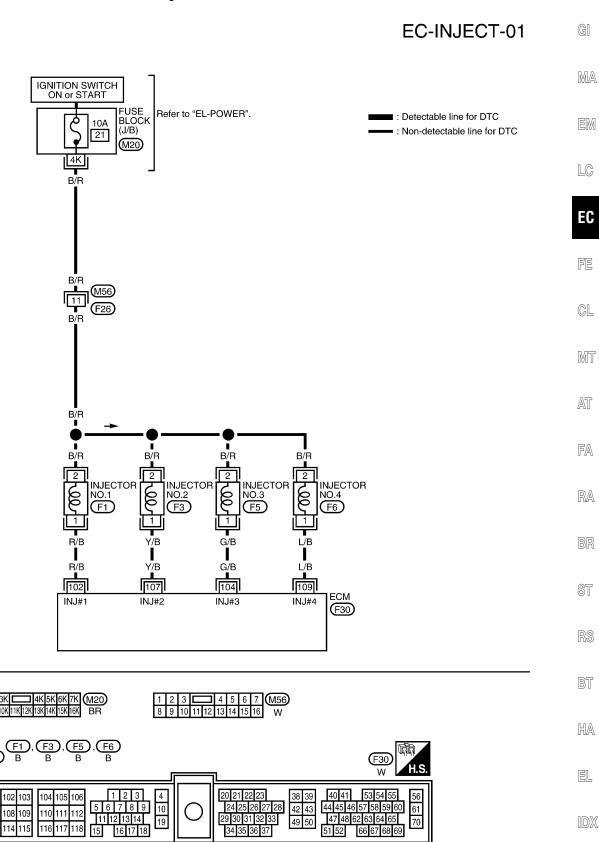
Terminal	Resistance [at 20°C (68°F)]
7 - 8 (Primary coil)	Approximately 1 Ω
7 - (e) (Secondary coil)	Approximately 10.0 kΩ

For checking secondary coil, remove distributor cap and measure resistance between coil tower metal tip (e) and terminal (7).

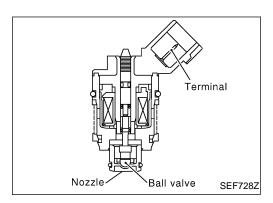
If NG, replace distributor assembly as a unit.

Power transistor

- 1. Disconnect camshaft position sensor & power transistor harness connector and ignition coil harness connector.
- 2. Check power transistor resistance between terminals 2 and 8.


Terminals	Resistance	Result
(2) and (8)	Except 0Ω	OK
Z and O	Ω0	NG

If NG, replace distributor assembly.


Resistor

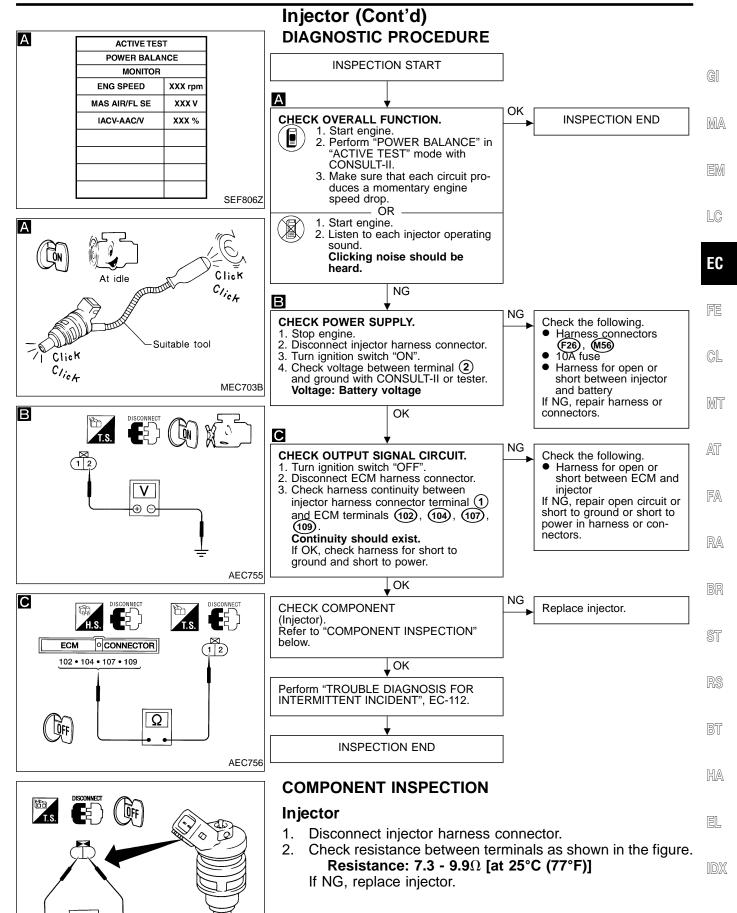
- Disconnect resistor harness connector.
- Check resistance between terminals ① and ②.
 Resistance: Approximately 2.2 kΩ [at 25°C (77°F)]
 If NG, replace resistor.

Injector

107

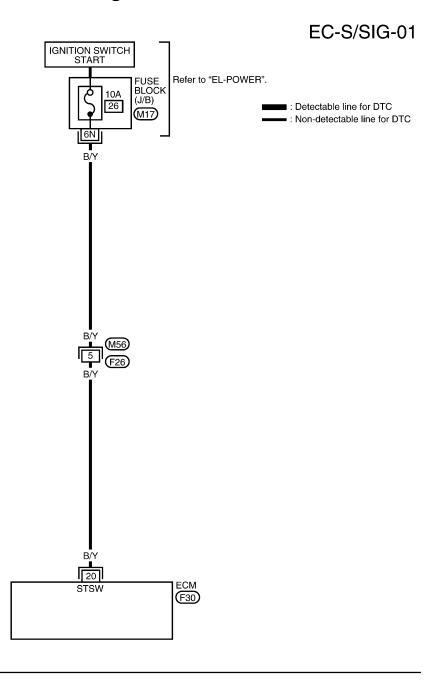
Injector (Cont'd) COMPONENT DESCRIPTION

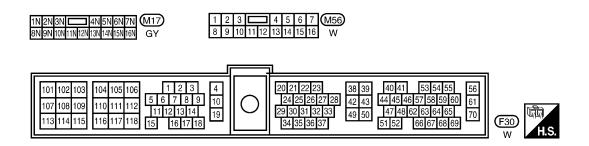
The fuel injector is a small, precise solenoid valve. When the ECM supplies a ground to the injector circuit, the coil in the injector is energized. The energized coil pulls the ball valve back and allows fuel to flow through the injector into the intake manifold. The amount of fuel injected depends upon the injection pulse duration. Pulse duration is the length of time the injector remains open. The ECM controls the injection pulse duration based on engine fuel needs.


ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.


	,0 .0		a ground outlor than both torminalo,	oudii ud tiid gi duiidi
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
102	R/B	Injector No. 1	Engine is running. (Warm-up condition)	BATTERY VOLTAGE (11 - 14V) (V) 40 20
104	G/B	Injector No. 3	└─ Idle speed	0 20ms SEF204T
107	Y/B	Injector No. 2	Engine is running. (Warm-up condition)	BATTERY VOLTAGE (11 - 14V) (V) 40 20
109	L/B	Injector No. 4	Engine speed is 2,000 rpm	0 20ms SEF205T

AEC559

Start Signal

Start Signal (Cont'd)

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION	SPECIFICATION
START SIGNAL	● Ignition switch: ON → START → ON	$OFF \to ON \to OFF$

MA

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground. **CAUTION:**

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

П	0	
L		

EM

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
20	B/Y		Ignition switch "ON"	Approximately 0V
		Start signal	Ignition switch "START"	BATTERY VOLTAGE (11 - 14V)

CL

FE

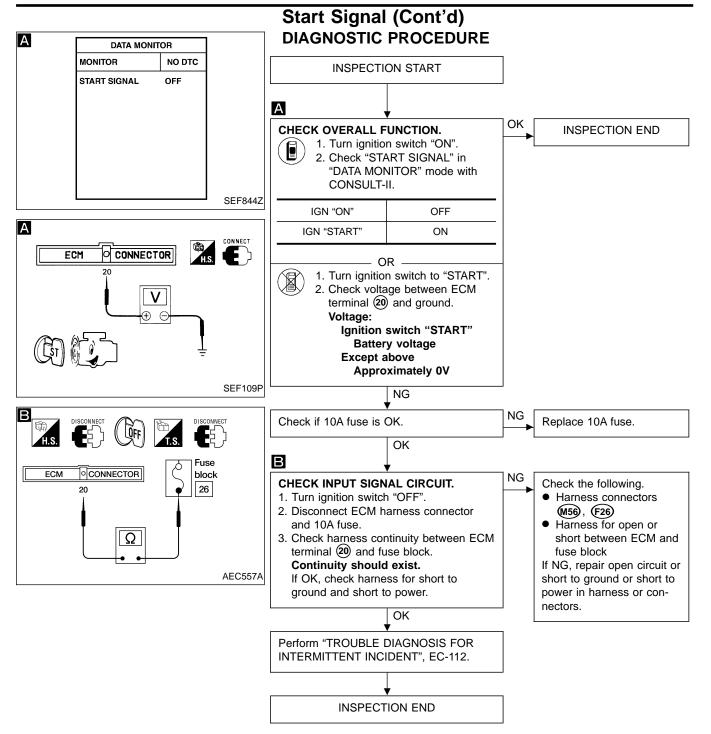
MT

AT

FA

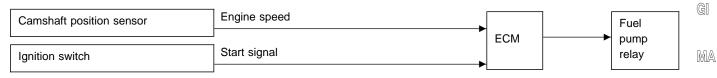
RA

BR

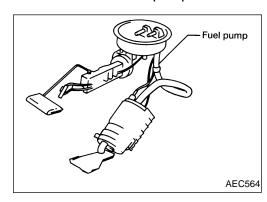

ST

RS

BT


HA

EL


Fuel Pump

SYSTEM DESCRIPTION

The ECM activates the fuel pump for several seconds after the ignition switch is turned on to improve engine startability. If the ECM receives a 180° signal from the camshaft position sensor, it knows that the engine is rotating, and causes the pump to perform. If the 180° signal is not received when the ignition switch is on, the engine stalls. The ECM stops pump operation and prevents battery discharging, thereby improving safety. The ECM does not directly drive the fuel pump. It controls the ON/OFF fuel pump relay, which in turn controls the fuel pump.

Condition	Fuel pump operation
Ignition switch is turned to ON.	Operates for 5 seconds
Engine running and cranking	Operates
Except as shown above	Stops

COMPONENT DESCRIPTION

The fuel pump with a fuel damper is an in-tank type (the pump and damper are located in the fuel tank).

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONDITION	SPECIFICATION	0.0
	Ignition switch is turned to ON (Operates for 5 seconds)Engine running and cranking	ON	S
	Except as shown above	OFF	

ECM TERMINALS AND REFERENCE VALUE

Specification data are reference values and are measured between each terminal and ground.

CAUTION-

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

BT

HA

耴

EM

LC

EC

FE

GL

MT

AT

FA

RA

	Fuel Pump (Cont'd)					
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)		
6	B/P	Fuel pump relay	Ignition switch "ON" For 5 seconds after turning ignition switch "ON" Engine is running.	0 - 1V		
			Ignition switch "ON" More than 5 seconds after turning ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)		

Fuel Pump (Cont'd)

EC-F/PUMP-01

GI

MA

EM

LC

EC

FE

CL

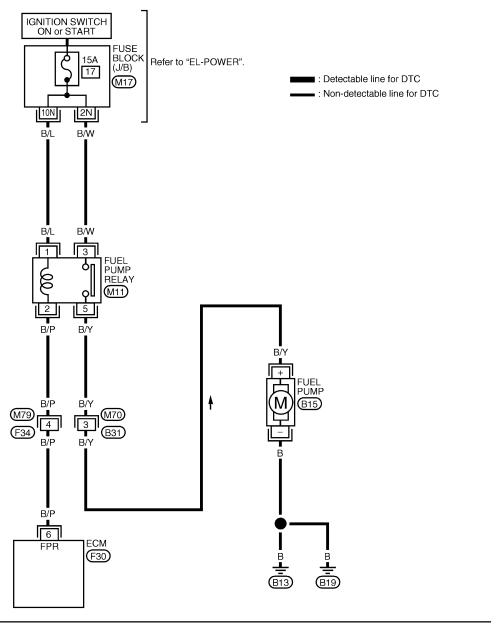
MT

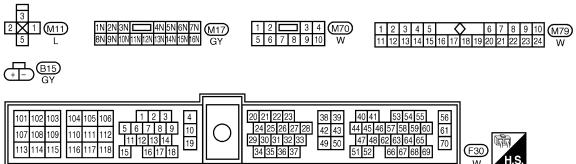
AT

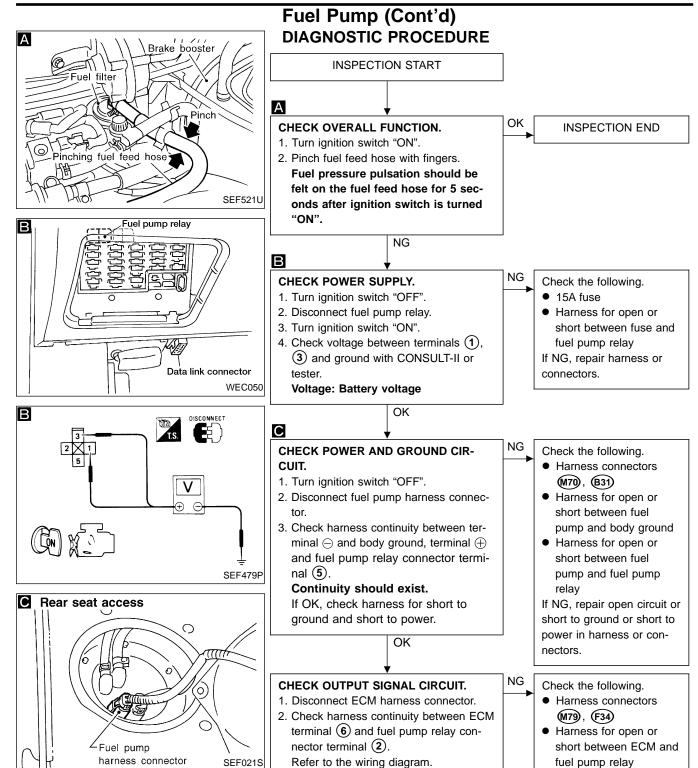
FA

RA

BR


ST


RS


BT

HA

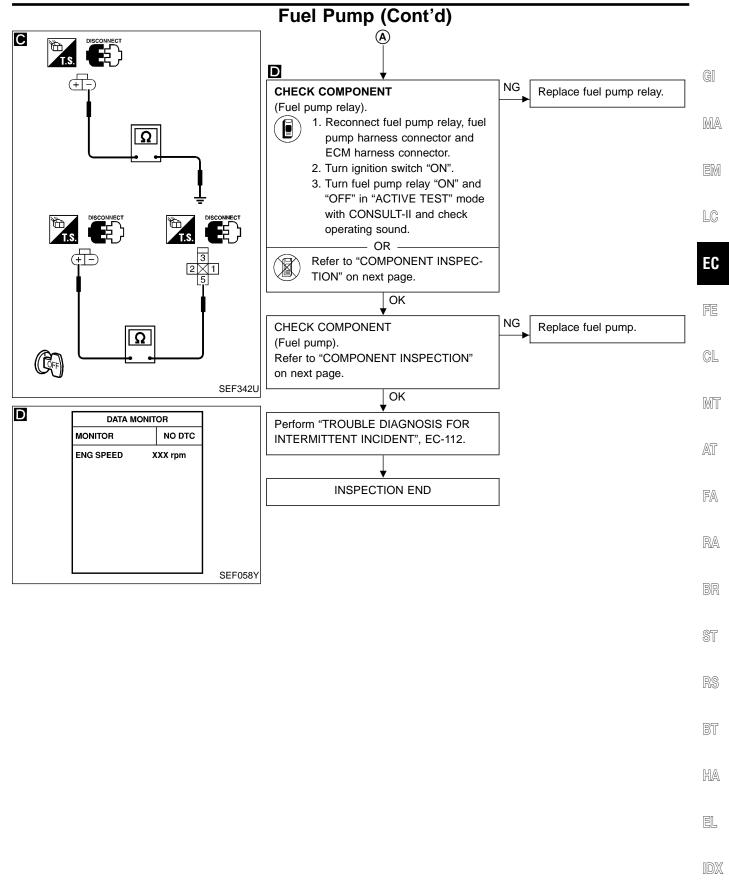
EL

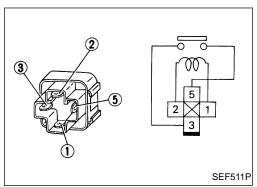
Continuity should exist.

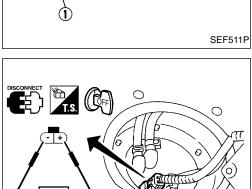
ground and short to power.

If OK, check harness for short to

↓oĸ


(Go to next page.)


If NG, repair open circuit or


short to ground or short to

power in harness or con-

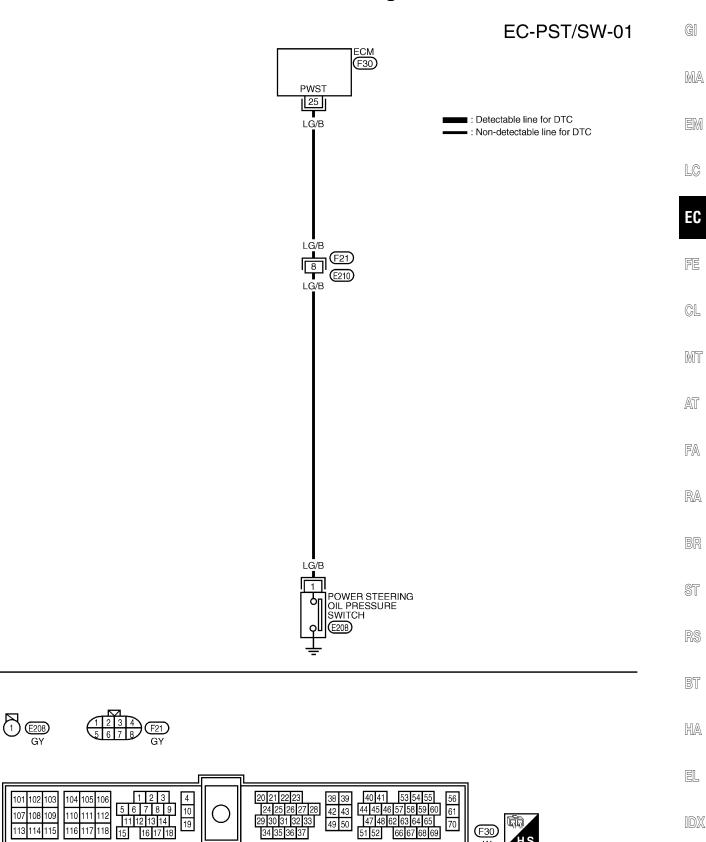
nectors.

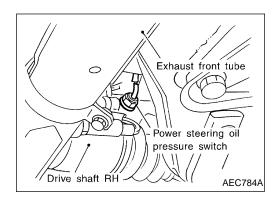
Fuel Pump (Cont'd) COMPONENT INSPECTION

Fuel pump relay

Check continuity between terminals 3 and 5.

Conditions	Continuity
12V direct current supply between terminals ① and ②	Yes
No current supply	No


If NG, replace relay.


Fuel pump

WEC234

- 1. Disconnect fuel pump harness connector.
- 2. Check resistance between terminals \oplus and \bigcirc . Resistance: 0.2 5.0 Ω [at 25°C (77°F)] If NG, replace fuel pump.

Power Steering Oil Pressure Switch

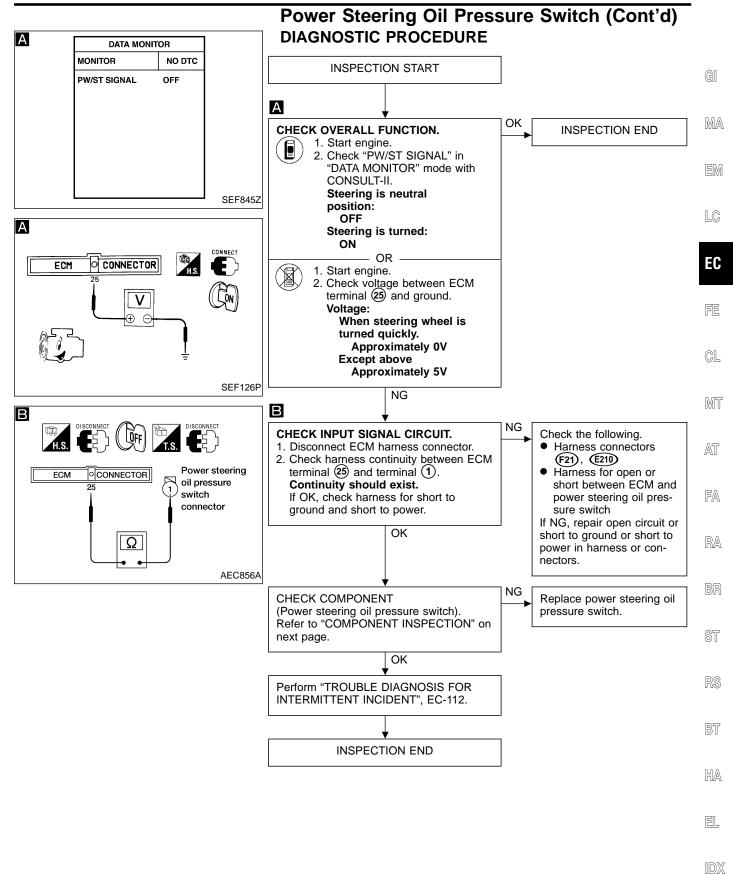
Power Steering Oil Pressure Switch (Cont'd) COMPONENT DESCRIPTION

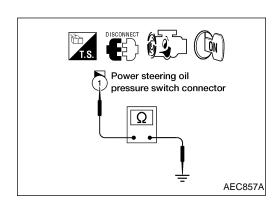
The power steering oil pressure switch is attached to the power steering pump and detects a power steering load. When a power steering load is detected, it signals the ECM. The ECM adjusts the IACV-AAC valve to increase the idle speed and adjust for the increased load.

CONSULT-II REFERENCE VALUE IN DATA MONITOR MODE

Specification data are reference values

MONITOR ITEM	CONE	DITION	SPECIFICATION
PW/ST SIGNAL	• Engine: After warming up, idle	Steering wheel in neutral position (forward direction)	OFF
	the engine	The steering wheel is fully turned	ON


ECM TERMINALS AND REFERENCE VALUE

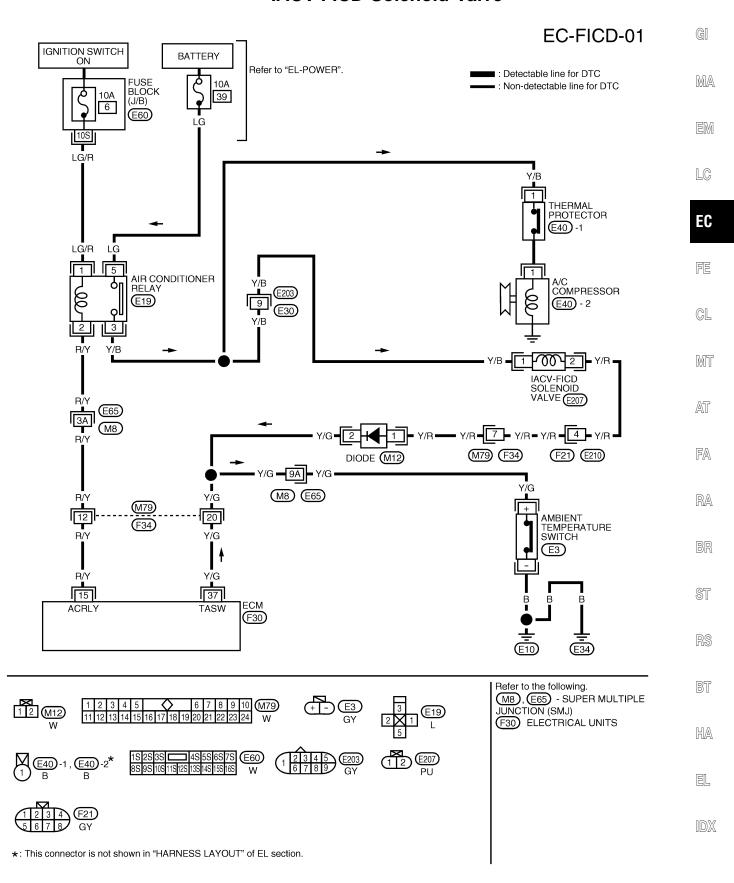

Specification data are reference values and are measured between each terminal and ground.

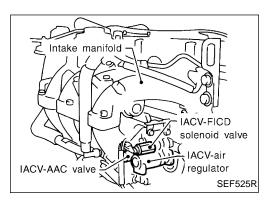
CAUTION:

Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
25	LG/B	Power steering oil pres-	Engine is running. Steering wheel is fully being turned	Approximately 0V
		sure switch	Engine is running. Steering wheel is not being turned	Approximately 5V

Power Steering Oil Pressure Switch (Cont'd) COMPONENT INSPECTION


Power steering oil pressure switch


- 1. Disconnect power steering oil pressure switch harness connector then start engine.
- 2. Check continuity between terminal ① and ground.

Conditions	Continuity
Steering wheel is fully being turned	Yes
Steering wheel is not being turned	No

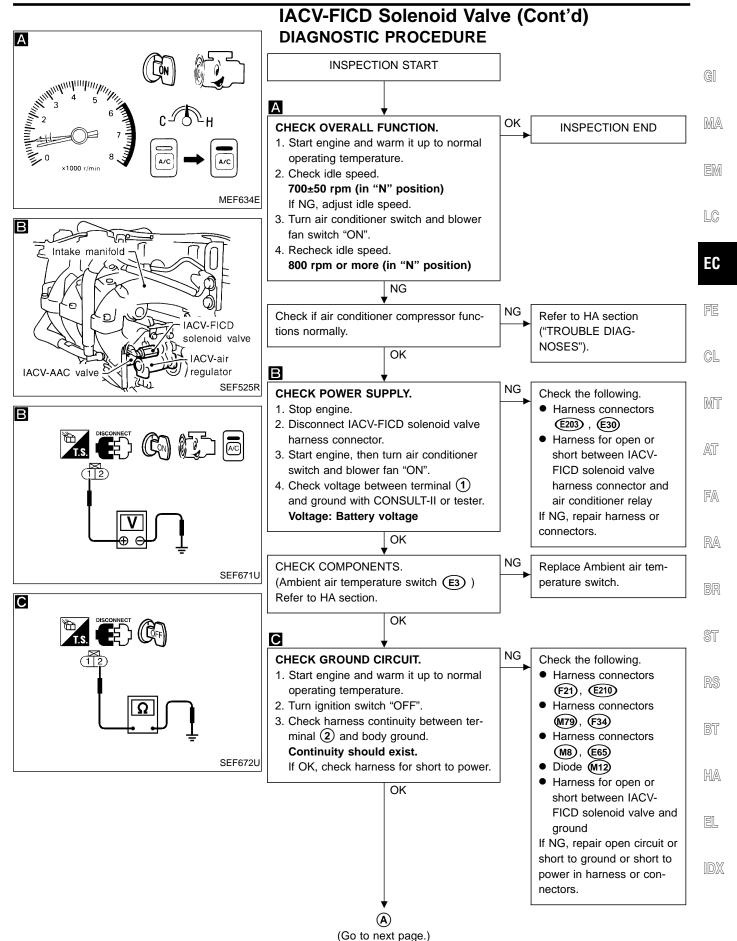
If NG, replace power steering oil pressure switch.

IACV-FICD Solenoid Valve

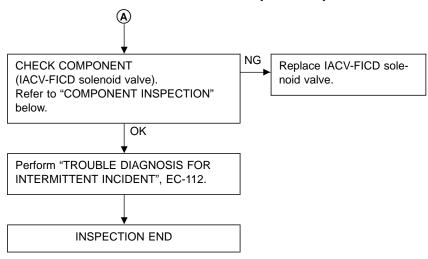
IACV-FICD Solenoid Valve (Cont'd) COMPONENT DESCRIPTION

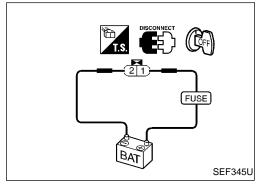
When the air conditioner is on, the IACV-FICD solenoid valve supplies additional air to adjust to the increased load.

ECM TERMINALS AND REFERENCE VALUE


Specification data are reference values and are measured between each terminal and ground.

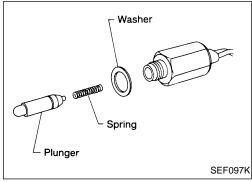
CAUTION:


Do not use ECM ground terminals when measuring input/output voltage. Doing so may result in damage to the ECM's transistor. Use a ground other than ECM terminals, such as the ground.

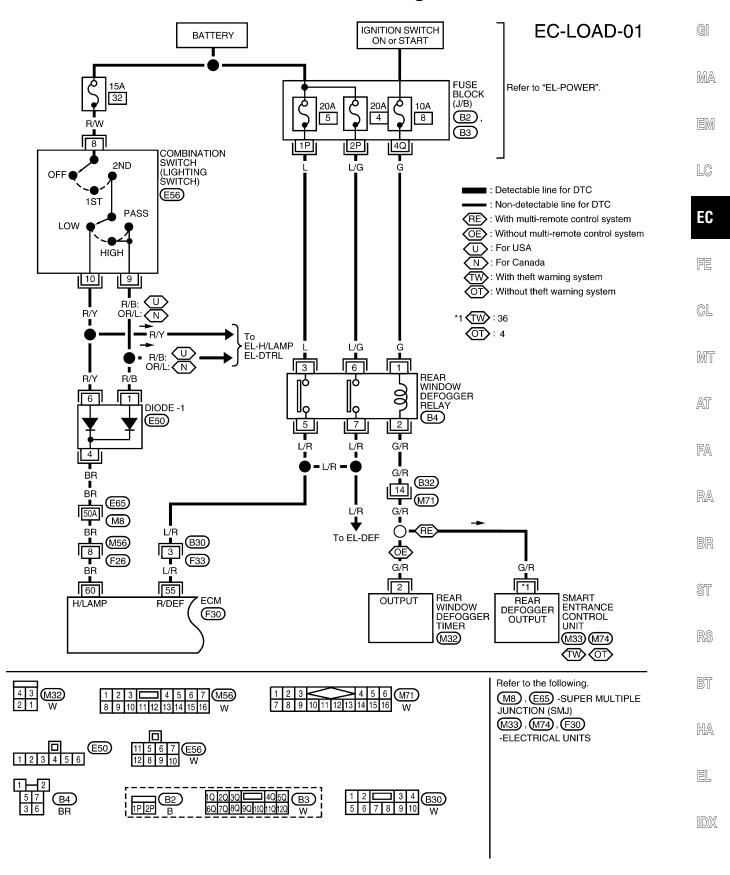

	'		<u> </u>	
TER- MINAL NO.	WIRE COLOR	ITEM	CONDITION	DATA (DC Voltage)
15	R/Y	Air conditioner relay	Engine is running. Both A/C switch and blower switch are "ON"*	Approximately 0V
			Engine is running. A/C switch is "OFF"	BATTERY VOLTAGE (11 - 14V)
21	L/OR	Air conditioner switch	Engine is running. Both air conditioner switch and blower switch are "ON" (Compressor operates)	Approximately 0V
			Engine is running. Air conditioner switch is "OFF"	BATTERY VOLTAGE (11 - 14V)
37	Y/G	//G Ambient air temperature switch	Engine is running. Idle speed	0V
			Engine is running. [Ambient air temperature is 20°C (68°F)]	Approximately 8V

^{*:} Ambient air temperature above 10°C (50°F) and in any mode except "OFF".

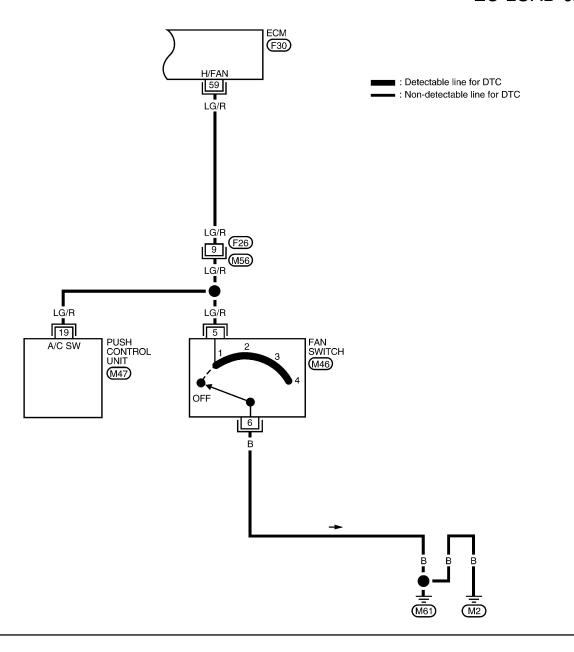
IACV-FICD Solenoid Valve (Cont'd)

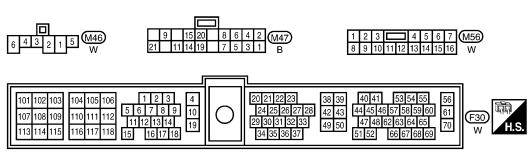


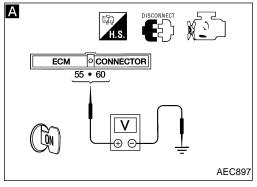
IACV-FICD solenoid valve

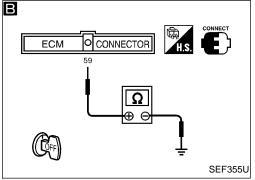

Disconnect IACV-FICD solenoid valve harness connector.

 Check for clicking sound when applying 12V direct current to terminals.

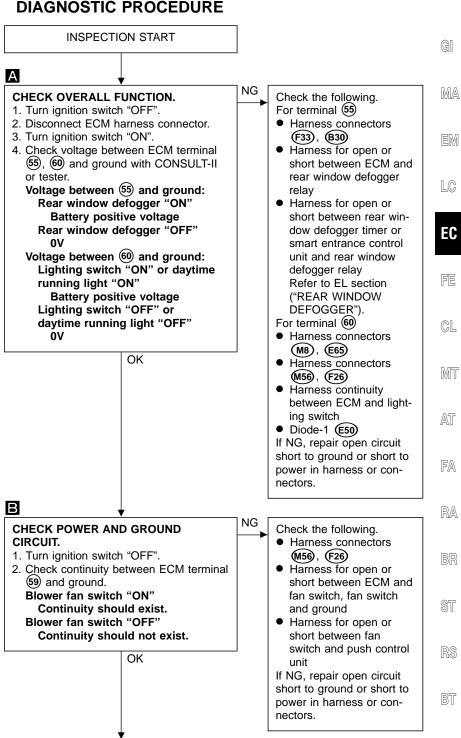

- Check plunger for seizing or sticking.
- Check for broken spring.


Electric Load Signal

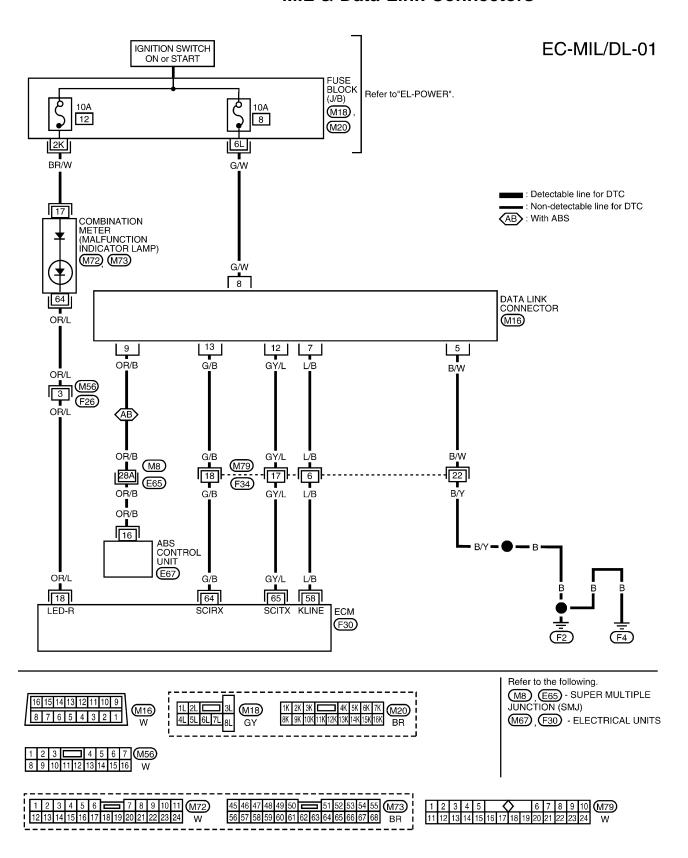



Electric Load Signal (Cont'd)

EC-LOAD-02



Electric Load Signal (Cont'd) DIAGNOSTIC PROCEDURE



HA

Perform "TROUBLE DIAGNOSIS FOR INTERMITTENT INCIDENT", EC-112.

INSPECTION END

MIL & Data Link Connectors

SERVICE DATA AND SPECIFICATIONS (SDS)

General Specifications

FUEL PRESSURE REGULATOR Fuel pressure at idling kPa (kg/cm², psi)	
Vacuum hose is connected	Approximately 235 (2.4, 34)
Vacuum hose is disconnected	Approximately 294 (3.0, 43)

MA

EM

Inspection and Adjustment

Target idle speed*1	rpm	
No-load*2	(in "N" position)	700±50
Base idle speed*3	rpm	
No-load*2	(in "N" position)	650±50
Air conditioner:	ON (in "N" position)	800 or more
Ignition timing		20°±2° BTDC*3

- *1: Throttle position sensor harness connector connected
- *2: Throttle position sensor harness connector disconnected or using CONSULT-II "WORK SUPPORT"
- *3: Under the following conditions:
 - Air conditioner switch: OFF
 - Electric load: OFF (Lights, heater fan & rear defogger)
 - Steering wheel: Kept in straight-ahead position

EGR TEMPERATURE SENSOR

	EGR temperature °C (°F)	Voltage V	Resistance ${\sf M}\Omega$
-	0 (32)	4.61	0.68 - 1.11
	50 (122)	2.53	0.09 - 0.12
	100 (212)	0.87	0.017 - 0.024

EC

HEATED OXYGEN SENSOR 1 HEATER (FRONT)

Resistance [at 25°C (77°F)] Ω 2.3 - 4.3

MT

FUEL PUMP

Resistance [at 25°C (77°F)]	Ω	0.2 - 5.0

RA

FA

IACV-AAC VALVE

Resistance [at 20°C (68°F)]	Ω	Approximately 10
-----------------------------	---	------------------

INJECTOR

Resistance [at 25°C (77°F)] Ω	7.3 - 9.9
--------------------------------------	-----------

RESISTOR

Resistance [at 25°C (77°F)]	$k\Omega$	Approximately 2.2
-----------------------------	-----------	-------------------

THROTTLE POSITION SENSOR

HA

Voltage* (at normal operating Throttle valve conditions temp., engine off, ignition switch "ON") Completely closed (a) 0.15 - 0.85V Partially open Between (a) and (b) 3.5 - 4.7 Completely open (b)

IGNITION COIL

Primary voltage	V	12
Primary resistance [at 20°C (68°F)]	Ω	Approximately 1.0
Secondary resistance [at 20°C (68°F)]	kΩ	Approximately 10

MASS AIR FLOW SENSOR

Supply voltage	V	Battery voltage (11 - 14)
Output voltage at idle	V	1.3 - 1.7*
Mass air flow (Using CON or GST)	NSULT-II g·m/sec	Approximately 3.24 at idle* Approximately 12.2 at 2,500 rpm*

^{*:} Engine is warmed up to normal operating temperature and running under no-load.

ENGINE COOLANT TEMPERATURE SENSOR

Temperature °C (°F)	Resistance kΩ
20 (68)	2.1 - 2.9
50 (122)	0.68 - 1.00
90 (194)	0.236 - 0.260

^{*:} Voltage measurement must be made with throttle position sensor installed in vehicle.

SERVICE DATA AND SPECIFICATIONS (SDS)

Inspection and Adjustment (Cont'd)

CALCULATED LOAD VALUE

	Calculated load value % (Using CONSULT-II or GST)
At idle	Approx. 19%
At 2,500 rpm	Approx. 18%

INTAKE AIR TEMPERATURE SENSOR

Temperature °C (°F)	Resistance k Ω
20 (68)	2.1 - 2.9
80 (176)	0.27 - 0.38

HEATED OXYGEN SENSOR 2 HEATER (REAR)

Resistance [at 25°C (77°F)]	Ω	2.3 - 4.3	
-----------------------------	---	-----------	--

CRANKSHAFT POSITION SENSOR (OBD)

Resistance [at 25°C (77°F)] Ω	512 - 632
-------------------------------	-----------