CINEMATRONICS
APPLICATIONS

PROGRAMMING
MANUAL



TABLE OF CONTERNTS
I. VECTOR PROCESSOR GENERAL INFORMATION

II. PROCESSOR INSTRUCTION REPERTOIRE
A. Overview
B. Format Types
C. Instruction Categories
1. ILoad/Storage Operations
2. Add/Multiply Operations
3. Subtract Operations
4. 1Indirect Addressing Operations
5. Logical Operations
6. Xoad Memory Address Operations
7. Branch Operations
8. Shift Operations
9. Table Look-Up Operations
10. Input-Output Operations
11. Vector Operations
12. Control Operations
D. Macroes

III. PROGRAMMING EXAMPLES
A. Physical Layout Of Working Storage
B. Examples Of Instruction Usage
C. Vector Line Drawing Techniques
D. Sample Program To Draw A Line
E. Program Copyright
F. Star Drawing Programming Example
G. ‘'Space Wars® - A Programming Implementation
H. Digit-Drawing Subroutine
I. Primal Primer

Iv. USING THE DEVELOPMENT SYSTEM



'I. VECTOR PROCESSOR GENERAL INFORMATION

The CINEMATRONICS ‘video game system consists of two (2)

interdependent sections: 1) Computational Section
2) Display Section
~ (Block Diagram 1)

PROGRAM MEMORY

A 4096 word by 8-bit program memory containing all of the
instructions and data necessary for the specification and
opefation of a‘particula; game, functions as a read-only
memory (ROM). The curreﬁt configuration nses two (2) ROM's
facilitating the deveiopment of a single application to 8912
words or allowing two games (1.per BOM) to be included in a
system: the games can be changed cbmpletely by simply switch-

ing befween-different program memories.

WORKING STORAGE MEMORY

A 256 word by 12-bit RAM functioning as a scratch pad
memory, used to temporarily store intermediate and final
computational values necessary to thé operation of the video
game system.

Utilizing a working storage memory separate from the program
memory speeds up operation since both memories can be accesgsed
simul taneously. |

The display secfion consists of both digital and analog
subsections. This comprises the vector generator. The main
function of this unit is to receive'digital coordinate values

of the initial point of a line segment to be drawn from the



|_NOIIOES XVIdSIq |

d0SSES0¥E ¥OLID

\ T
RS

1L WYEDVIC YOOI

; jemmcmmeaiman
ova A...J .._U,.wwﬂo._. LNVY gCZx !
A ! LA b Alowaw ememeeen
RE——4 ¢E—7  sBeuois i
) DuijaOM ;
ce At i
]

w \ 08
FRURSINIOEPIIR IR ) H
i PEO{/s0/pue/AnS/ppR i
M. pun 2100 oWyt 77
[ Y B - T
UCiIDas |Eubip prosesanmss - /7 N
I R Sy ST
NE-TT3TS L 20BN Se | "Lo,.mirt:uum" i
$iBuDy /nr__; ¢ Aseusad ! .rxumncnvuvm v
b e e - e e i
\ ra [ A
88 »9 1 t ]
pomaer =¥ mm ] | ]
P “eduanbos Kl'ﬁ" L i g !
boowayshs ! H
ruyunw..\...h L “ § !
' 1 I
14 { i
—0 L Pmcmcaee Y _pz
Fova | [essBes] g, 7 “Jotoees T !

x [ X t aoveinwingoe 77T

1 L et

NOILOZS TYNOILVINAWOD |

|

Adowaws HE alltlaﬁ/:
wiesboud f-q V2 Oi JO1D2[9S LS
djeudsdye ! ndino )
i . (o]}
ST ' 9S T uasibad NVE 92 X 28
WOY Mpyx8) | |uaysiBau ¢ 4012319 fiowaw
Asowaw ssdJppe ™ TR ssauppe 1 Jho o1s
b wedboud pue eje ] 433 4 abeuois €401
i fi Vep o8ed Buixzom
t 7 5 el Duryaom
ru..L o€ =19 ¢S X ._F Iv.
——3 ﬂ
43151094 FISEEIET J0133(3s
\.»o:u?:mc_ . ndut %[vn av 3%3
ov P T /ﬂm.- p.
Jaduanbas peo|/J0/pur/gns/ppe
E\o..mxm g han ABO} U IaE
7 7 T
vE T N |
: L Joeimwnsoe ) | aovenwinoaoe
\Nv Asewiud [ Asepuodas
- X - N\gz w “
JO1I343s J2juno> JNSI04 4—gv cz_u pygn <4 gz
ssaJppe b ssauppe k- ssouppe >M~Mm._n 30123195 |
weiboud wesboud| [wesbo.d oy 1d0iemuwnide 4
X vy ¥




A

C 5“"' ,Y\}N&i d‘u't«"\‘
5 mu‘}"()/)\vd“‘)
alk /

gl e
- rf"”’ /
»?

Py 2_6’3 ™y l\
o
o \
| ,,)m(‘{}n M}ji’#-

o~ Nﬁfvf . 'Tla ? .,{ﬁ.m\? mm%g M}Q
;‘ Y«;M(ﬁa A 6’\41"“1” s © G\ Q-YD s

. ) I LT A
W 2 6.2 'w;f % f;e,a/f b J

A- N , S




computational section and convert these values into voltages to
thereof fix the initial position of the electron beam on the

CRT display.

The system also includes a multiple operator control panel of
output ports to enable further interaction with the operator.
Sound effects; lights; coin boxes, ect. can be controlled from

these ports.

MISCELLANEOUS INFORMATION

12 bits: address to 4095,.
Clock time: 200 nanoseconds (S.MHZ)°
Instruction cycle: 600 nanoseconds.{average).

Number Of Instructions: 43

5{hck Cycie - Zﬁré ns N | .
m. insT  (7hifY /5t mw) = Jou N
ace . (\\& R’Q‘ vait
C*e@/OJJ a“TzVJQAQQA ot ung

Nam mevwsyy 1§ j
' N = 5 comhard g
Rowm Fefck +mQ=30oNs T JMP <o

T“kt ,‘“ﬂﬁfﬁr J‘l we e in Olr‘merj \l‘k LM‘J

l‘“\’( rJ 5 Rom m\”;‘ fﬁ”gf, ﬂ*j}mah.

~ Y ‘r = I mw S
Inf s

e
k P : iy
Liekv? I »~2
¢ . S"
@?4J/wv;)f~c RAM iosh. = 600 M
) W/ “ o vl = LJIC:-& S (')”A\ﬂ‘ \ C)C'QJ

9 —_—

mof 408
£t WE ) o



The Central Processing Unit, contains circuitry to strobe

and interpret all input funcﬁions including the player control
panel switches and all éoin and credit information and to create
all the digital signals used in providing the visual display.

It also contains all the software (i.e., machine language and
game personality memory) needed to control the game operation

and to generate the proper vectors needed to display.
* "Yectorbeam Ty is CINEMATRONICS service mark for video game
educational services.

In fact, the CPU logic board containsAa great portion of the
vector generating system, which also includes the display unit.
The CPU logic board also controls the switching (electrically)
of the audio printed ecircuit board.

The Audio Board, as in many other video games, is conprised

of a noise generator and the associated wave shaping circuits

- as well as a number of amplifiers. The various audio tones are
simply swiﬁches to the output amplifier stages on command from
the CPU logic board.

The Vectorbeam m

* Display Electronics is the final form
of interpretation of the GPU's’calculationsﬁ The CPU logic
informs the display electromics unit of information regarding
line length and line placement on the CRT. This is accomplished
with twc twelve-bit words, one each for horizontal and veriical
déflection, and a number of other controlling signals for the
cathode drive circuit and switching in the deflection circuits.
The major differénce between the vector generator and raster
scan type monitors is the means by which the cathode beam is .

directed (deflection) across the screen.



to accomodate two twelve-bit words of information, twelve

each for vertical and horizontal deflection, and the fact that
there is no background illumination from a constantly scanning
beaﬁ when brightness is turned up. The higher degree of reso-
lution combines with the totally blackened background creating
an appearance of depth not found in a raster scan system.

Another major design difference is the fact that no sync.

singals are needed to produce vectors on the CRT. This greatly
simplifies the hardware design of the system, and therefore the
understanding of the theory of operation, of the CPU logic as

well as the display electronics.



VECTOR THEORY

In order to understand the basic concept behind a vector
generated display, it is important to have a basic knowledge
of vector theory.

The raster scan display uses a matrix display system. A

graphical representation of a matrix is shown below.

- > T

_HORIZONTAL

: ) VERTICAT

For example, to produce a line on the CRT with a matrix-
type pattern, the appropriate intersection points of horizontal
and vertical lines are illuminated, The calculations which
select these points are made on the logicvboard, and converted
into video information for the monitor to digest. Although
there are spaces between the illuminated points, the illusion
of a solid line is made by your eyes, and the resolution is
determined by the number of aﬁailable horizontal and vertical

lines in the system, and the speed of the sweep.



In the vector display system, there are no horizontal and vertical
lines (no sweep) or sync. A line generated using a vector system
is shown in Figure 2,

A line is drawn by programming a beginning and ending point of
the line to be draWn, and forcing the cathode beam to travel
between these two points, illuminating the entire path of phosg-
phorous on the CRT. The angle of the line, the‘position of the
line, and the length of the line are determined simultaneously,
and simply, by selecting the proper voltage levels for the begin=-
ning and ending points of the line. This is accomplished by the
two twelve-bit words applied to the d/a converters on the display
board. The d/a will produce a different voltage level at its
output for each possible combination of input levels (of which
there are 4096 possibilities for each 12-bit word).

The end result of using the vector generator is an immensely
increased number of programable point, which is in direct propoxr-~
tion the the Qord size and the capabilities of the DAC-80 (i.e.,
greater resolution, definition and smoother motion using minimum

of hardware).



2 . (12X j2Y)

(-pxJ-2Y) -2

Figure 2. Line using Vector System




IT. VECTOR PROCESSOR INSTRUCTION REPERTOIRE

A.. OVERVIEW

The instructions for use with the video game system
are arranged in four (4) formats. The formats in which an
instruction is stored in program memory is determined by
the length of both the operator and operand. Being limited
to the use of a maximum of eight (8) bits per word, the
double-word instruction formats illustrated below are neégs~
'sary for instructions wherein the combined length of the

operator and operand exceeds 8-bits.

‘B:s FORMAT TYPES

1. FORMAT 1
Single-Word/8-Bit Operator/ No Operand

?eis‘:szlo

SUCIDH U =4

0P RATOR
When the instruction is decoded, (bits 0-3) and classi-

fied as a FORMAT 1 instruction, the contents of the data and
address registers are ignored and the contents of the 8-bit

operator instruction register are executed.

Instructions faliing in this category are:
SSA Select Secondary Accumulator

LDA?P Load Previously Selected

STAP Store Previously Selected

ADDP Add.Previously Selected

SUEBP Subtract Previously Selected

WSP Indirect Address Previously Selected



LPAP
JMP
JMI
JVN
JCz
JIT
JEQ
JOS
-T4K
SHR
SHRB
ASR
SHL
SHILB
MUL
IKP
ARDP
Iv
NV
DV
FRM
CST
"NOP

Load Program Address Previous
Jump (unconditional)
Jump On Minus

Jump On Vector Not Finished
Jump On Carry Zero
Jump On Less Than
Jump On Equal

Jump On One's Shifted
Toggle 4-K

Shift Right

Shift Right Both
Arithmetic Right Shift
Shift Left

Shift Left Both
Aultiply

Look Up

And Previously Selected
Initialize Vector
Normalize Vector

Draw Vector

Frame

Cold Start jnhi{sii

No Operation



2 . FORMAT 2
Single-Word/4-Bit/Operator/4-Bit Operand

.¢=5=¢g3 2 o

1
1 % i i

{ ; P
OPERATOR| | PPERAND

Classification as FORMAT 2 instruction causes the contents
of the upper 4-bits of data and address register to be used
as an operand (data or address) and the operation specified

by the 4-bit operator to be executed.

"Instructions falﬂ?}n this category aré:
IDA Load (accumulator)

ﬁQAI Joad Immediate

STA Store

SUB Subtract

S41 Subtract 4 Immediate

WS Indirect Working Storage

SETP Load Page Register

Ip Input
ADD Add
TST Test

ouT Output

3 . FORMAT 3
Double-Word/8-Bit Operator/8-Bit Operand

-4

S1943,2

['y3

R

r ; . ! : g { ¢

i i i

1T




Causes the next word in program memory to be read and the
contents loaded into.the data and address registers. After
the data and address register is loaded with the second word
of the instruction, the 8-bit content of the data and address
register is specified for use as an operand and the operation
specified by the 8-bit operator in the instruction register

is executed.

Instructions falling in this category are:
‘A8I Add 8 Immediate
S81 Subtract 8 Immediate

4, FORMAT 4
Double-Word/4-Bit Operator/12-Bit Operand

|

. | | OPERATOR _ i |

e =P oo

PERAND

Causes contents of upper 4-bits (bits 4-7) of data and
address register to be used as an operand (data or address) :.°
and the operation specified by the lower 4-bits (BO-B3) to
be partially executed. Then the next word in memory is loaded
intoc the data and address register. The second word of the
instruction containéd in the data and address register is
specified for use as an operand and the remaindexr of the opera-
tion specified by the 4-bit operator in the lower 4-bits of

the instruction is executed.

Instructions falling in this category are:

ILPAI Load Program Address Immediate



C. INSTRUCTION CATEGORIES AND DEFINITIONS

b0, 7,9, 0,5, A4,3,2, [0
AL LA /1

)
w0 AN AT

-~

The description of the operand for some FORMAT 2 instructions

(and the single FORMAT 4 instruction) uses the nomenclature shown

~ above.

This refers to the 4-bit nibble being referenced in work-

ihg storage RAM.

CONDITION CODES

Arithmetic operations will cause certain flags to be set

depending on the result of the operation.

LT

EQ
CY
NG
RS

ACC  Specified Value (JLT instruction)

ACC = Specified Value (JEQ instruction)

Carry Flag Set (JCZ instfuction)

MSB Set in ACC after Arithmetic Operation (JMI instruction)

Right Shift Flag: Set after one shifted out of position O
(JOS instruction)

Vector in Process - after DV (JVN instruction)
Upper 4-Bits of 12-Bit Word (Bits 11-8)

Middle 4-Bits of 12-Bit Word (Bits 7-4)

Lower 4-Bits of 12-Bit Word (Bits 3-0)



LOAD/STORE OPERATIONS

SSA SELECT SECONDARY ACCUMULATOR

‘14&?3/54 3 an:g‘

5 AT

Description:

Causes the secondary accumulator to be selected
during the execution of the next instruction.
The absence of the SSA instruction preceding
an instruction causes the primary AC to be

selected.

Condition Codes: Unaffected

LDA LOAD (ACCUMULATOR)

Description:

. A - __.AE .

Z by 4. 3,2,7.0

Loads the word selected by the contents of the
page register and the 4-bit address carried
with the instruction (AL) from working storage

memory into the selected accumulator.

Condition Codes: NG: Set if result negative (MSB set)

LDAP LOAD PREVIOUSLY SELECTED

Description:

Z b5 4. 3.2 1,0
¥ ¥ v T ] ¥ f

E A ‘ (M) —=> AC

Loads the word previously selected by the
contents of the working storage address register
from working storage memory into the selected

accumulator.



LDAI LOAD IMMEDIATE

Z 5‘5{4 3 2z 0

1 : ! t ‘l t
E_CDﬂiwwmﬁqﬂ’r:l zeroes to bits

XA vI° 3
1 fert el

‘Nl 9 3 e & 93 Az O

Definition: Loads the 4-bits of data carried along with

the instructions into the upper 4-bits of the
selected accumulator while loading zeroes into
the lower B-bits. |

Condition Codes: NG: Set if result negative (sets MSB) <

STA STORE

Description: Stores the contents of the selected accumulator

into the working storage memory specified with
the address carried with the instruction.

Condition Codes: NG: Retains pPrevious state of ACC.

STAP STORE PREVIOUSLY SEIECTED
Jgiaj4ﬁ_sz*ng
**** ETE ] 00— w

Description: Stores the contents of the selected accunulator

into the word previously selected by the contents
of the working storage address register into
working storage memory.

Condition Codes: Unaffected




2.

ADD/MULTIPLY OPERATIONS

AD ADDITION

2l it 34247 10

, f 6 AL} (M) WSPAR, AL * (AC) ——» AC
Description: Adds the‘Qord selected by the contents of the

Condition Codes: NG:

page register and the 4-bit address carried
with the instruction from wbrking storage
memory to the selected accumulator.

Set if result negative (MSB)

ADIP

Deseription:

CY:

ADD PREVIOUSLY SELECTED
AT 3§1;z=o

i F [“_M?L il
i s R
T P

Adds the previously selected contents of

Condition Codes: NG:

working storage to the selected accumulator.

Set if result negative (MSB)

CY:

A4T ADD 4-BIT DATA IMMEDIATE

il 43, 2.1 .0

wﬁk_mll' I#0 (AC) 4 I ———> AC
Description: Adds the 4-bits of data carried with the

Condition Codes: NG:

instruction to the selected accumulator.

Set if result negative (MSB)
CY:



*¥NOTE** DATA MUST NOT BE ZERO - A ZERO IN THE UPPER 4-BITS OF
| THE FIRST WORD IS USED TO SIGNIFY THAT AN OPERAND IS
CONTAINED IN THE FOLLOWING WORD.

A8I ADD 8-BIT DATA IMMEDIATE

b5 4 3515150

Description: Adds the second byte of the instructions to

the selected accumulator.
Condition Code: NG: Set if result negative (MSB)
CY:

MUL MULTIPLY

(o]

1=I,;\o=4 33 \
MfEE*,_ i:g

Description: Causes both the primary and secondary accum=-

ety ol

3
\
i

a1
|

ulator to be shifted right one place simul-
taneously and the contents of the selected
word from WS memory to be added to the secon-

dary AC if a one was shifted out of the primary
AC.

Condition Codes: NG: Set if product is negative; cleared

otherwise.

RS: Set if one shifted out of bit
(primary ACC).



SUBTRACT OPERATIONS

SUB SUBTRACT

_Zr_ﬁ W 3?2;1 ?o

Description: Subtracts the word selected by the contents of

the page register and the 4-bit address carried
with the instruction in working storage memoxry

from the selected accumulator.

Condition Codes: NG: Set if result negative (MSB)
CY:

SUBP SUBTRACT PREVIOUSLY SELECTED

7i6,5,4,3,2,1.0

][.E i r%T (AC) -.(M) > AC

Description: Subtracts the word previously selected by the

contents of the working storage address register
in working storage memory from the contents of
the selected accumulator.
Condition Codes: NG: Set if result negative (MSB)
CY:

S41 SUBTRACT 4 IMMEDIATE

Pyl 3
-3 1 o1so0




Description: Subtracts the 4-bits of data carried along

with the instruction from the contents of the

selected accumulator.

¥*NOTE**  DATA MUST NOT BE ZERO ADDRESS SELECTOR AND REGISTER.

v ANY OF THE '"PREVIOUSLY SELECTED' INSTRUCTIONS DO THIS.
Condition Codes: NG: Set if result negative (MSB set)

.SBI SUBTRACT 8 IMMEDIATE
‘iéiﬁ'fﬂ.??a,.l?o
| T
=

Description: Subtracts the 8-bits of data carried along

with the instruction from the contents of the
selected accumulator,
Condition Codes: NG: Set if result negative (MSB)
CY: .




4, INDIRECT ADDRESSING OPERATIONS

LE] INDIRECT ADDRESS WORKING STORAGE

Foloy 514,23, 2. 1.0

N 7/ L-

Description: Load the word specified by the contents of the
page register and the 4;bit address carried with
the instruction from the working storage memory
to the working storage address register.

Condition Codes: NG: Reflects previous state of ACC

RS: Reflects previous state of ACC
¥*NOTE**  AFTER A WS INSTRUCTION IS EXECUTED, IT IS NECESSARY 70
EXECUTE A MEMORY ACCESS INSTRUCTION WITHOUT MODIFYING
THE CONTENTS OF WORKING STORAGE ADIRESS SELECTOR AND
REGISTER. ANY OF THE 'PREVIOUSLY SELECTED' INSTRUCTIONS

DO THIS.
WSP INDIRECT ADDRESS PREVIOUSLY SELECTED
P4 544.0 14;1 o'
1o i
i L

Pescription: Loads the word previously selected by the

. contents of the working storage address register

“from working storage address fegister.

Condition Codes: Unaffected




LOGICAL OPERATIONS

TST TEST

2 ey 5 43.2.7,\0

C

o)

U S

.| (ac) - (m)
%x!{ | Aps AL ——> sets flag

Description:

Subtracts the word selected by the contents of
the page register and the 4-bit address carried
with the instruction in working storage memory
from the contents of the selected accumulator

without modifying the contents of the accumu-

ulator.
Condition Codes: Flags are set: {EQ: Set if value (WS)=ACC
T C‘G,TLT LT: Set if value (WS){ACC
USRS ; AT NG revious
AG)’JITJ}G £ji>NG Reflects previous state
e of ACC.
ANTP  AND PREVIOUSLY SELECTED
Zy by 44,3 ,2, 1,0 ’
__.__E 1 q ; I_(-Acﬁ)—’ . —a'l) “m_‘} G
= v L 1 WSR
Description: AND's the word previously selected by the con-

tents of the working storage address register

in working storage memory with the contents of

the selected accumulator.

Condition Codes: NG: Set if result negative (MSB set)

CcY:



LOAD MEMORY ADDRESS OPERATIONS

LPAP LOAD PROGRAM ADDRESS PREVIOQOUS

J%é;‘ 9 3;z=1=o
i : % .
FE ] o e e

Description: XLoads the word previously selected by the

contents of the working storage address
register from working storage memory into the
program address register.

Condition Codes: Unaffected

IPAI LOAD PROGRAM ADDRESS IMMEDIATE

ENAC RN SIS
|
A A )

Description: Loads the 12-bit address carried with the

instruction into the program address register.

Condition Codes: Unaffected

SETP T.OAD PAGE

1 ) A = Am -—=> Page Register
i A (Bits 7-4 of RAM Address)
Description: Loads the 4-bit address carried with the

instruction into the page register.

Condition Codes: Unaffected

SETP 1 Four high-order bits of address remain unchanged

until next SETP instruction is executed.



SETP O

Storing half the bits necessary to the selection of
a word from working storage memory in a separately
1oaded page register reduces the storage requife—
ments for memory access instructions from two (2)
words to 1 (one) word. If the entire 8-bit address
were carried along with the specification of the
operation, a double-word instruction would be neces-
sary. Thus: SETP 1 Loads 4 high-order bits, LDA
XYZ loads 4 low-order bits, (Up to 16 words can be

addressed in a working storage page: 4 bits).



7. BRANCH OPERATIONS

JMP JUMP (UNCONDITIONAL)

. E (PAR) ~——>» PC
i > igf"mm

Description: Causes the contents of the program address

register to be loaded into the program address
counter,

Condition Codes: Unaffected

v,
K,W”f
JMI JUMP ON MINUS \%}* &iL
: K o s

2y b5 43,2, 1,0 F\(S Q )9’¥Pj(<z.2.

Description: Causes a branch to be executed ig\(ﬁg>3§eeift€a

Condition Codes: Unaffected N

**NOTE**  DUE TO A TIMING CONSTAINT, THE JMI INSTRUCTION MUST BE
PRECEDED BY A 'NOP'. NOP
JMI
The following instruction has the same operation code as the
preceding JMI instruction. Currently a jumper determines the
hardware configuration; if jumper in: JMI ;;ff—)

if jumper out:

JEH JUMP ON EXTERNAL HIGH
24 6131 3 2! o)

-5




Description: Causes the program address register to be loaded

into the program address counter if the level
on an external input line is high., The program
counter is incremented by a single address if
the condition is not met.

Condition Codes: Unaffected

B

‘JVN ~ JUMP ON VECTOR NOT FINISHED

]

B

]

3,241

Description: Causes a branch to be executed if a line segment

is in the process of being drawn. Otherwise the
program counter is incremented by one.

Condition Codes: . Unaffected

JC2 JUMP ON CARRY EQUAL ZERO

2l iyl

Description: Causes 2 branch if the result of the preceding

Otherwise th;—program counter is incremented ﬁy
one.
Condition Codes: Unaffected

N X

JLT JUMP ON LESS THAN




Description:

Condition Codes

Causes a branch to be executed if the specified
addreéé is less than the value contained in the
selected accumulator. Otherwise the program
counter is incremented by one.

: Unaffected

XRNOTE»*
JEQ/JLT
JEQ:

JLT:

Magnitude comparato

operate on magnitude, not 2's complement.
looks at magnitudelcomparator egual to output
at time of the last accumulator opgration.
looks at magnitude comparator less than output
at time of the last accumulator operation.

r compares the selected ACC to either the cons

tents of working storage; or the data bus. The data bus is only

selected for these

instructions: IKP
A4I
ABI
S41
S8I
IPAI

JEQ  JUMP_ON EQUAL

Description:

‘Condition Code:

”ﬂ£;WMAwg<; ;,3

Causes a branch to be executed if the specified

2 b1 54,3342 200
g L i S S

value is equal to the selected accumulator.
Otherwise the program counter is incremented by

Oone.,

Unaffected



JosS - JUMP ON ONE'S SHIFTED

Pl A I 140

-5 EE%

L O |

Description: " Causes a branch to be executed if a one was
| shifted from the least significant;mﬁﬂt.of the
Primary accumulator during & right shift operf
ation. Otherwise the program counter is incre-

mented by one.

Condition'Codes: Unaffected

T4 TOGGLE 4-K BANK
Description: Bank selection of program memory. Selects the

4-X page according to the contents of the page
register's two least significant bits. The
two most significant bits are ignored. ‘his
instruction also causes a Jump. The program
address register should be loaded with the
desired address before the instruction is
executed. - |

Condition Codes; Unaffected

Page Register Function N
0 ' Not Implemented n
1 Page 0 (0-4095)
2 ' Page 1 (4096-8192)

3 Toggle  (not implemented)



**NOTE** TUE TO TIMING, THE FIRST INSTRUCTION FOLLOWING A T4K
MUST BE A NOP. =

EXAMPLE:
Lower 4-K IPAT UPPER
SETP 2
T4K

LOWER: NOP (RETURN from uppexr)

UPPER: NOP
Upper 4-K L:AI LOWER
SETP 1

4K



*#NOTE** DUE TO TIMING, THE FIRST INSTRUCTION FOLLOWING A T4K
~ MUST BE A NOP.

EXAMPIE: A
Lower 4-»K LPAI  UPPER
 Emm 2
T4K

LOWER: NOP (RETURN from upper)

. UPPER: NOP
Upper 4-K L:AT  IOWER
o | SETP 1

T4K



affected

SHIFT OPERATIONS

SHR SHIFT RIGHT
o 2 903 201, O
r 0|
| - ~

Description: Causes contents of the selected accumulator to

be shifted r;ght one place.

-Condition Codes: RS: Right shift flag: set if one shifted

v s 5 bl

. 4 CQ {Y
SHRB  SHIFD RIGHT BOTH w L

Zyb,5.4.,32. 1.0
- Tt
T L

Description:~ Causes the contents of both primary and secon-

dary accumulators to be shifted right one place
simultaneously. The carry out from the secon-

~dary ACC.is connected to the carry of the primary

ACC i.e., the secondary carry-out is fed to the ,é?
not ' primary carry-in. |
secondary ACC primary ACC
ety G 8. 2 ATS 4;.171. 1o 2hala 9 z.";:-r(élrﬁ 4 3T1 .1.‘0
N RN Pl i P _ !
et } : s ; [ I . : 3 loat
‘ i | i ! i J | ‘ [ | | ¢

Condition Codes: RS: Set if one shlfted out of Bit O

*¥NOTE**  ANY RIGHT SHIFT OPERATION INVOLVING THE SECONDARY ACC

IS AN ARITHMETIC SHIFT i.e. MOST SIGNIFTCANT BIT IS
NOT AFFECTED.

ASR - ARITHMETIC RIGHT SHIFT

Z e, 544.32.1.0

1 F

L




. SHIB SHIFT LEFT BOTH I

Lost

Description: Causes the contents of the selected ACC to be

shifted right one place wﬁile forcing the most
- significant bit to remain unchanged.
Condition Codes: Set if one shifted out of Bit 0 of primaxry ACC

SHL SHIFT LEFT

Zab a0 4,.3,2.1.0
r

-

|

Description: Causes the contents of the sélected accunulatgr - /
to be shifted left ome place. N\~ 9y¢K&¢:¥J¢§i>§;J

Condition Codes: NG: Set if result Negative (MSR set)

25443120140 ij’r’\
—&+ | A e

Description: Causes the contents of both the primary and

ﬁ - L A Y
“\\ - i | } T F\\{] Il ‘ LI I

secondary accumulators to be shifted left one

place. There is no carry-in or carry-out i.e.

secondary ACC primary ACC

Lost

Condition Codes: NG: S if re t in primary ACC negative

(MSB set)

'\ st
el



9. TABLE LOOK-UP OPERATIONS

IXP LOOK-UP
Z. b 53:4.3:.2.1.0
- NE
va

Description: Ioads the word in program memory (ROM) addressed

by the contents of the selected ACC into the
selected ACC.
Condi tion Codes: Unaffected

¥*NOTE**  EXECUTION OF IKP INSTRUCTION MUST BE FOLILOWED BY NOP
DUE TO TIMING CONSIDERATIONS. = IKP

NOP




10.

INPUT-OUTPUT OPERATIONS

INP INPUT

S AUTENE FENGE S
e

0 < <7
Description: loads the signal level from the primary input

line specified by the 4-bit address carried with
the instruction into the ILSB of the primary ACC.
When the secondary ACC is selected, the address
specifies one of 8 secondary input lines and the
destination become the secondary ACC.

Condition Codes: Unaffected

ia%
il‘ :.l- '

i ]
© <] £ 7
Description: Loads the contents of the least significant

ouT OUTPUT

byte of the selected ACC into one of 8 external
output latches selected by the 4-bit address
carried along with the instruction.

Condition Codes: Unaffected




11. VECTOR_OPERATICNS

IV

INITIALIZE VECTOR
J%Li{iq 3
.

1}

1.0

!
z

QP

e} - q

Description: Initialize the vector genefating sequence,

Causes the X' and Y coordinates of the initial
point of the line segment to be drawn to be
loaded into the X and Y registers from the

primary and secondary accumvlators respectively.

Condition Codes: Unaffected

NORMALIZE VECTOR

Z 54?2,1;0

T A !
L N

| : {

Description: Causes delta X and delta Y, the parameters

describing the length and direction of the line
~segment to be drawn to be normalized in prepar-
ation for generating the vector. Delta X and
delta Y are previously lcaded into the Primary
and secondary accumulators Tespectively where
the normalization by simultaneous left shifts

occurs.

Coridition Codes: Unaffected

*XNOTE**

ATTEMPTING TO NCRMALIZE DELTA VALUES OF 0, O WILL NOT
WORK. CPU WILL HANG UP UNTIL FRAME TIMES OUT, THEN
WILL DO A RESEf. EITHER DELTA VALUE BEING NON-~ZERO
GETS AROUND THIS.



v START (DRAW) VECTOR

- VA 351ﬁ1ﬁ
-~ '!q

Description: Causes the drawing of the line segment to be

started.



iz,

*%NOTE *#

CONTROL OPERATIONS

FRM™ FRAME
Ay NE
L =
Description: Timing function----~causes the computational

section of the system to remain halted until a

26 millisecond period 1s‘comp1etedﬁ

7T6’§revent the imagesicn the screen from flicker-~

1ng and tocreata thc illusion of continuous
motion as an object moves, the line segments
‘preatlng the display are redrawn 33 times per
second. The FRM instrucfion éauses the compus
tational section to be halted until a 26 milli-
second period is reached. For example, if the
FRM instruction is reached at 23 milliseconds
after comp]etion of the previous 26 mxllisecond
pgriod the computational section will remain
halted for 3 milliseconds. After a 26 MS period
is completed, normal execution of the program

instructions is again resumed starting with the
instruction:immediately following the FRM

instruction,

Condition Codes: Unaffected

THE INSTRUCTION IMMEDIATELY FOLLOWING THE PRM INSTRUGTION

MUST BE CST (COLD-START).



CST COLD START

7, 6,5,4.3 .2,
l i =

| b 4
BLEE N

1,0

Description: Reseté Watch-dog timer---~CST must be executed

within 3MS of the FRM instruction otherwise a
hardware timeout will occur forcing a reset and
a jump to location O.

Conditiqn Codes: Unaffected

NOP NO-OPERATION
?@;54321%0
C -
D) I |
x i
Description: Pseudo operation----- requires 400 nanoseconds

to execute and is often useful in conjuction
with those functions which cannot complete
normal execution without timeout conditions
occuring.

Condition Codes: Unaffected




D.  MACROES

Following is a list of some commonly used macroes.

The list

is by no means comprehensive: rather, it is an attempt. to illus-

trate macro construction and use.

1. BLD BIG LOAD
Description: Ioads primary ACC with 12-bit value
Loads upper 4-bits LDAI % -
Loads lower 8-bits A8I %
2. SBLD SECONDARY BIG LOAD
Description: Loads secondary ACC with 12-bit value
SSA
LDATI %
SSA
ABI %
3. TLD TINY IOAD
Description: Loads primary ACC with 4-bit vaiue
LDAI O
ALY %
4. JSR  JUMP TO SUBROUTINE ) gueﬂ-ﬂou
Description: .MACRO JSR TSR hgu;r*\f“
BLD * + 7 ~ A sudlt
STA % 1 ) ' lzc
IPAT % 2 | -
JIP //// -/"T p\é7;4»hiAfM
CJENIM ¢ T3
LPAY

3P



5. SJSR SHORT JSR

Description:

Short form of JSR which allows routine to store
:eturn;address.
_ ;UQKGXAV
-MACRO SJSR s ISk
BLD * + 6 wﬂ hﬁ
IPAI % 1 .+ A RgTwa
g N
JMP _ ——
L
- ENTM
—"ST ReT AA)
‘ L [ AP
6. JSRUP JUMP SUBROUTINE UPPER BANK P

Description:

Jump and link to subroutine in upper 4-k from
lower 4-k.

+MACRO JSRUP

LPAT % 1

BLD * + 6

STA RTN

SETP 2

T4K

«ENDM

Te JSRILC  JUMP SUBROUTINE LOWER BANK

Description:

Jump and link to subroutine in lower 4-k from
upper 4-k.

«MACRO JSRLO

LPAT % 1

-BLD * + 6

STA RTN



SETP 1-
T4K
.ENIM

8. MUL8 MULTIPLY 8-BIT VALUE
Description: -MACRO MULS
MUL
MUL

MUL
MUL
MUL
MUL
MUL
MUL
«ENIM



III. PROGRAMMING EXAMPLES
A. PHYSICAL TAYOUT OF WORKING STORAGE

WORD PAGE
0
15 0
16
31 1
32 o
47 2
48
63 3
64
19 4
80
95 5
96
111 6
112
127 , 7
128
143 8
144
159 9
160
175 10
176
191 11
192
207 12
208
223 13
- 224
239 14
240

255 15




B, EXAMPLES OF INSTRUCTION USAGE

1. SOPTWARE TIMER IMPLEﬁENTATIONS

a. Using a Eositive Delay

7LD 10 3;Delay Count

LPAT TIMER ;Delay Loop Address
TIMER: S41 1 ;Delay «e——Delay - 1

TST ZERO  ;Test Count

JLT sACC> O

{

(Timer has expired)
b. Usinga Negative Count

DELAY: EQU - 50
START: BLD DEIAY ;Get Count (12-bit value)
TIMER: LPAT CONT ;Load PAR with address
;of where to go when expired
A4 sDelay «———Delay - 1
TST ZERO sLoad Condition Code -~
sACC not modified
JEQ s Timer Expired If True
LPAT TIMER ;Else Next Iteration
JMP sDo It

2. USING THE TEST ('TST') INSTRUCTION

One way of using the 'TST' instruction is to test a variable in
working storage againsf a known value in the ACC for magnitude and
conditionally branch to another location in the program depending

on the results of that test:
IPAT ELSEWHR sExit address



LDAI 0 sACCE———0

SETP 7 3 'VAR' Defined on Page 7
TST VAR ;Test 'VAR' EQ. O

. o /v -
JEQ sJunp if e JAR = ¥

Another use for the 'PST instruction is in conjunction with the

LPAP instruction.

SETP 4 ; 'Return’ on Page 4
/msp RETURN ;Set Up WS ADDR SETL/REG
\ A
\_IPAP : " 3;Load PAR With Previously

;Selected Address
JMP ;Take (Subroutine) Return

An example of a range test using the 'TST! instrﬁction.

LPAI EXIT 3

LDAT 0 sACCeE——0

TST COUNT 3yIf Count BQ. O

JEQ ;Then Go To 'Exit'

A8I 25 ;Else ACCe——ACC + 25
TST LIMIT 3If 'Limit' £ 25

JLT _ ;Then Go To 'Exit'

3. EXAMPLES USING PREVIOUSLY SELECTED INSTRUCTIONS
a) LDAP/STAP

IPAT EXIT '3Exit Address

LDA COUNT sLoad ACC With Something

SHR sRight Shift One Place

Jos ;Jump If 1 Shifted From LSB
. Inap ;Else Load ACC With

30riginal Value From 'Count’
A41 5 ;Count €<—— Count + 5



STAP
b) ADDP
LDA XFIVE
SHL
SHL
ADIP
STA TEMP
c) ANDP
LDA COIN
A4 1
STAP
p 1
ANDP
 COIN:
ACC:
ACC:
A41 1
STAP

d) IPAP Ef AT

LbA OBJNUM
SHL

SHL

ADIP

STA TEMP

;Store In 'Count’

yACC €~—=—— 5
sACC * (2)

;ACC * (2) =
;ACC + (5)

;Get # Coins
;(1 or 2)

10
20
25

Credited

;Coin &€—— Coin + 1

sStore In 'Coin'

sAnd Coin Count To ACC

ACC €—— 1
010 or 011
001 . 001
000 001
001 001

1 2

;Store In 'Coin'

;Object Number To Draw (From

sData Tables

sOBJNUM * 4
3+ OBJNUM

Of N Objects)

;To Set Up WS ADDR. REG.



BLD GETIT ;Beginning Addr Of Vector

ADDP ; (OBJNUM) + (OBJNUM) * 4
STAP sStore It So We Can

IPAP ;Load PROGRAM ADDR. REG.
BLD DOIT - ;ADDR Of Routine To Draw

;Object After Finding In Table

STAP s;Set Up For Next IPAP
JMP ;Go Into 'GETIT' Vector Table
GETIT:BLD +OBJI s FOBJNUM' = O: Pick\Up Table Pointer
IPAP sLoad PAR With 'DOIT'
JMP ~ 3Do It
BLD 0BJ2 ; 'OBINUM' = 1
IPAP
JMP
BLD 0BJ3 sOBJIJNUM = 2
LPAP
JMP
BLD OBJn sOBJNUM = n; last Entry
- DOIT: STA POINTER  ;Store ADDRS Of Data Table

JSR Draw sDraw It

4, EXAMPLE OF INDIRECT ADDRESS INSTRUCTION

The following example will illustrate one use of the WS instruction.

The INDIRECT,QDDREQS instruction is important gince it enables the use

'\»M,

of subseritea\Variables. This routine could be used to calculate how

many remaining ships the current player has and cause that number to

be displayed on the CRT.



PAGET EQU 112

; START OF PAGE 7

s WORKING STORAGE ~-- PAGE 7

SHIP1 EQU O
TEMP7 EQU 1
SHIP2 EQU 2
PLIAYER EQU 3
;
START SETP 7
LDA PLAYER
SER
SHL
ASI PAGET

STA TEMP7
WS TEMPT
LDA?P

STA NUMBER

SJSR CONVERT
SJSR DRAW

;# SHIPS LEFT - PLAYER 1
; TEMPORARY STORAGE

;# SHIPS IEFT - PLAYER 2
;CURRENT PLAYER (1 or 2)

; LOAD PAGE REGISTER
;GET CURRENT PLAYER

3 (BECOMES O OR 1)

; (BECOMES O OR 2)

;FORM PAGE-WORD ADDRESS
;OF EITHER 'SHIP 1' OR
; "SHIP 2!

s SAVE IT

;LOAD WS ADDR REG. WITH
;EITHER 112 OR 114
;PICK UP CONTENTS OF

; 'SHIP1' OR 'SHIP2'

sCONVERT BCD
;s DISPLAY ON SCREEN



C.

VECTOR LINE DRAWING TECHNIQUES

A. GENERAL

The straight line, 2 basic element in many displays. If
two (2) points are to be connected by a line segment, only
the end'points of the vecior need “e computed for a vector
display. In most cases, operating on individual points is
only a beginning. Generally, techniques are needed for deal-
ihg with line segments that connect points to define figures
and regions. P

P

Xy, Yy)

P

(Xo, Yo)

B.  TRANSFORMATIONS

The operations necessary to manipulate points to perform

useful tasks are called transformations. There are three (3)

basic transformations in two (2) dimensions; 1) Translation
2) Rotation

3) Scaling

1. TRANSLATION

Translation, or positioning, is the movement of a point

or points by an amount in X and an amount in Y. The

motion is such that neither the shape, size, or orientation

is changed. If all the points agsociated with a line or
figure are translated by an equal amount, the graphic ele-

ment is translated without change in size, shape, or




orientation. It may be expressed as: X1 = X + CHANGE X

1 =Y + CHANGE Y

vhere change X need not equal change y.
7|
§

e LTI L iy e

? w~ '{;.L‘ AriGe, \f
2.  ROTATION K1 crmgn %

-
Rotation involves a computation which maintains shape but
changes orientation. A rotation will generally leave only
one point in the two-dimensional space with its position

unchanged: The center of rotation.

For example, assume the object to dispiay is & space ship.
The information defining it's appearance is contained in
program memory as a series of coordinate points, each
coordinate point being an end point of a line segment
defining the outline of a ship. To rotate the ship, the
stored end points are defined in terms of polar coordin~
ates. Rotating the entire set of polar coordinate end
points is achieved by incrementing every angle by the
value of the angular rotation variable. The value of the
angular rotation variable is determined by the rotation
routine, a software counter which either increments the
value, decrements the value, or leaves it unchanged,
depending on the external operator action (tilt left;
tilt right; don't touch). After the rotation of the set

of end points, the points are converted into Cartesian



coordinates using a sine table stored in program memory.
Those points are then used to determine the parameters

necessary to draw the line segments from which a ship is

constructed. .
4 ~2 Po
/ (x, y)
4 | (r, a)
X

 POLAR_COORDINATE REPRESENTATION OF A POINT IN THE XY PLANE

if PO is rotated about (0,0) by an angle of b to become
P, then; X, = r cos (a + b)

|

Y1 = r gin (a + b) X E1 (X,, Y,)

//y {(r, a+b)

7
\ i /’Po (x,s ¥,

\5/( (r,a)

: Y X
ROTATION OF VECTOR ABOUT THE ORIGIN _/

The Trigonometric equation for rotation of vector about
the origin is: Xy =X, cos (b) - Y, sin (v)

Y, = X, sin (v) - Y, cos (b)

1

3. SCALING

Scaling, or magnification, involves a change in size
without change in orientation. Depending on the defini-
tion of shape, it is either unchanged or changed "without

distortion.”



The equations; xi = 8X,
Yy = 8y, A

will scale X and Y by a factor of S. The factor may be

greater than or less than 1:; If a negative value is used

for S, then reflection about the origin is performed, If

the scale factors for X and Y are different, then stretching

is accomplished.

Y
< - S1 1 S=+1.5
Original Figure S=1
.___-—-J\
X

2]

SCALING AN ARBITRARY FIGURE IN THE XY PLANE




D.

SAMPLE PROGRAM TO DRAW A LINE

B (384, 512)

/

K (256, 256)

LINE SEGMENT AB

CRT DISPLAY
Point A: X

256

Point B: X 384

it

Y = 256

Y = 512

Paremeters necessary for specifying line segment AB are Acatesian

coordinates of point A and delta X and Y values which define length

and direction of lihe segment relative to point A.

sTarT |

L

WS ¢— XA

®

4

AC2 & 256

2.

ACl «—— c(WS)

|

v o

ACZ*—~—~C(WS%

|

A 4

IV

v

AC1l4&—128

i

©

NV

AC1¢—ACL1+WS

Sy

|
t
|

AC2&—AC2+WS

AC1
AC2

Primary ACC

Secondary ACC

WS = Working Storage



SAMPIE LINE DRAWING PROGRAM

| .PROG

s RHR EQUATES

XA .EQU 256 ;X CO-ORDINATE FOR A

YA .EQU 256 ;Y CO-ORDINATE FOR A

XB .EQU 384 ;X CO-ORTINATE FOR B

YB .EQU 512 ;Y CO-ORDINATE FOR B

DELTAX  .EQU XB-XA ;X DELTA (AB SEGMENT) )
DELTAY .EQU YB-YA ;Y DELTA (AB SEGMENT)

DELAY .EQU -50

; ¥*% WORKING STORAGE - PAGE O

X0 <EQU 0 s INSTIAL SEGMENT - X CO-ORDINATE
YO LEQU 1 s INITTAL SEGMENT - Y CO-ORDINATE

ZERO +EQU 2

; ¥%¥% START OF EXECUTABLE CODE

.ORG 0 ;PROGRAM ORIGIN - LOWER PAGE
. SETP 0 ;SET TC WORKING STORAGE - O
BLD XA 7.1 yo7 sLOAD INITIAL X
STA 'xoZ/‘ " ;STORE IN PAGE O
LOOP: LDA X0 ~ ;LOAD X-COORD TO PRIMARY AC
SSA ; SELECT SECONDARY AC
LDA YO ; TOAD Y-COORD TO SECONDARY AC
1v ;POSITICN ELECTRON BEAM (POINT A)
LDAI 0
STA ZERO sDELAY 70 ALLOW

A8I DELAY ;D/A CONVERTERS TO SETTLE



TIMER:

CONT:

DONE:

IPAT
A4
ST
JEQ
LPAI
JMP
BLD
SSA
BLD
NV
ADD
SSA
ADD
v
LPAI
JVN
FRM
CST
LPAI
JMP
.END

CONT

TIMER
DELTAX
DELTAR ) Y
X0
Y0

DONE

LOOP

;WAIT FOR TIME-OUT

; TIMER HAS EXPIRED

;LOAD SEGMENT DISP. FOR X-AXIS

; LOAD SEGMENT DISP. FOR Y-AXIS
; NORMALIZES & X 4-Y VALUES

;ADD OFFSET TO NORMALIZED

; CONTENTS IN BOTH ACs

; DEAW LINE SEGMENT FRCM A-B

;WAIT UNTIL LINE COMPLETE
; CONTROL LOOP - WAIT 30 MS
;SO WE WON'T RESET

; CONTINUE



E. PROGRAM COPYRIGHT

- Usually the first function to be performed upon powering up
the ROM, is to checksum the manufacturer's copyright. This
provides (at least) a degree of security if a competitor were to
'bootleg' a CINEMATRONICS property and attempt to delete or alter
the copyright. The checksum code should be imbedded between non
executable code to make decoding of the algorithim more diffcult
and program execution fail in the event that the checksum fails
to match the expected value, In addition, the checksum should
be computed so as to be an instruction (operator-operand) in
program memory; if the checksum is altered, the program will not

execute properly.

1) Define the ASC11 dharater string

1981 CINEMATRONICS

4T the end of the lower 4-K prom where the last character would

end on FFF, . (409510).

.ORG FEC
COPY: .ASC11 "(C) 1981 CINEMATRONICS"

FEC 28 43 29 31
FFO 39 38 31 43
FF4 49 4E 45 4D
FF8 41 54 52 4F

FFC 4E 49 43 53



2) Compute the checksum i.e. add all hex characters and divide

| by 16 to form 8 bit value; 53616 = 16 —> 3C (decodes és S4I 12)
CKSUM: S4I 12

3) Following is a flow diagram of the checksum process:

I0C 0/L0C 1 refer to working storage memory locations 0

and 1 respectively.

ACC refers to the primary accumulator.

PAR is program address register.



lORG =‘ol
\/

| SET PG REG —UPPER 4-K|

\
I0C 1 ¢«<— 0

\
ACC &— ADIR (COPY)

LOC 0 «— A (COPY)

H%?
I10AD PREVIOULSY
SELECTED -

!

ACC ¢é— PROGRAM MEMORY

W/

ACC ¢&— VALUE + C (I0C 1)

V)
10C 1 ¢— VALUE

M
ACC «— C (10C 0) !
¢ e

ACC €— ACC +1 |

LOC 0 & ACC {

[ ACC«—C (10C0) |

ey

[ ACC «—¢C (10C 1)
J_,
[TAcce—acc 16 |

N
| 10C 14.1- ACC |

[ACC <—ADDRS _(CKSUM) |
¥

\ ACC < PROG. MEM.|

= |

 IPAI

ORG O
SETP 2

LDATI O
STA 1

A8I COPY

STA O

LDAP

IKP
NOP

ADD 1

STAP
ILDA O

A4T 1

STAP

S
IDA O

S8I1

o

JLT
IDA 1

SHR/SHR/SHR/SHR

STAP
BLD CXSUM
IKP?
NOP



PAR «<— ADDR 3 IPAI 83

IoOC 1 : ACC ST 1
JEQ

SET PG REG LOWER 4-K SET? 1

()

v

PAR LOC OF INIT , IPATI RESET
ROUTINE IN UPPER 4-K!

i T4K

SELECT 4-K PAGE BASED
ON 2 LSB PAGE REGISTER > IF TEST PASSES

S/ pa IF TEST FAILS

(data descriptor table etc.)



F, STAR DRAWING PROGRAMMING EXAMPLE

Space War-type video games often employ a background of stars to

emphasize -depth and realism,: The following code and accompanying

chart illustrates one method of drawing the stars.

SETP
BLD
STA
START: LDAI
LDA
IKP
NOP
s7A
BLD
ST
JEQ
LDAP
SHL
SHL

STAP
LDA

A4l
STAP
LKP
NQOP

15
STAR
ADILRESS
. DONE
ADDRESS

X-AX
225
X-AX

ADDRESS

; SELECT PAGE IN WORKING STORAGE
s STARTING ADDRESS OF STAR TABLE
; SAVE POINTER

;EXIT ADDRESS

;GET STAR TABLE POINTER

;GET ENTRY IN TABLE (X)

y CURRENT X~-COORDINATE
s TEST FOR END OF TABLE
sEOT

;GET X

X4 FOR REAL COORDINATE VALUE
:(SO VALUES CAN BE ASSEMBLED

;AS BYTES (0-225))

X1 e—

;POINTER €—

;Pointer + 1

;GET ENTRY IN TABLE (Y)



DONE:

SHL
SHL
STA
LDA
A4T
STAP
LPAI
JVN
SSA
LDA
LDA
v
(TELAY)

LDAI
A4T
SSA
LDAI
NV

SSA
LDA
oA
v
LPAI
JMP

Y-AX
ADDRESS
1

S+é

Y-XA
X-AX

Y-AX

START

;X4

; CURRENT Y-COORDINATE

;POINTER & POINTER + 1

;WAIT ON IRAWING NOT FINISHED

;Y TO SECONDARY AC

;X TO PRIMARY AC

;POSITION BEAM

s SEGMENT DISP. POR X

s SEGMENT DISP FOR Y

;NORMALIZE

;64X AND &X
; VALUES

s DRAW POINT

;GET NEXT X-Y POINT



STAR:

DATA TABLE FOR STARS

BYTE
BYTE
BYTE
BYTE
BYTE

16, 24, 24, 88, 32, 152, 72, 160
112, 156, 166, 155, 176, 108, 128, 48
96, 104, 224, 96, 234, 172, 212, 48
60, 20, 72, 72, 172, 22, 222, 8

255, 255,



3
o
160 670 i =
'*i"q in 3
5 *® ;
! 5
) ] !
|2y 513 :
4 Sf; .’g{" ‘
96 3591 ‘
= :
4] i
. P |
L9 AS L !
|
‘ﬁ;?i s
JAN 0 )Lgl
-:i‘: 2 -
"y S .?L;:Ifa
l'p
O ] Yo
f:\ o = w." g } } % \ N |
f J 3 - ‘g Poal B ~ 5" 4 ;
e ' ga "“ft.é' 29y Sle L0 3Ly gue 10X
0 ~ b4 e ¢ /% ] &0 T T 1 B Sy

X o
Y 24 ss

12
BS& Jeo |56

5 &6 7 8 9

Ny ik

1% 1% 5%

15§ Jo§ 45 loY

NNtz

2 3w

) T4
o 2 43

1314 15 b

60 72 (32 242

P2 2% 0%




G, 'SPACE WARS' - A_PRCGRAMMING IMPLEMENTATION

The accompanying flow chart and general discussion of the functions
employed in the design of 'SPACE WARS' may aid the reader in gain-
ing a more in-depth understanding in the design of video game
programming techniques. The general flow of events may vary from
game to game, but functionally the techniques are essentially the

same.,



e

Coracr )
T ;

| I

g e o

LR s To

[ dRAWN

¥

ShAcE WAR
FLOWCHART

Bt

Theriomoi 22 /—_
Yamiaculs AND ," ,’
o |
LML ANTS
_ ek
RENTACE: POt TR 7
To (wial) téult g, i -
T.ose DAANY e N\ [ \
— { j ! 4 i
: - |
Mok EraEnT quAuw [ Pes :rwu EEAM
Nk EMER S
; ) = |JPoATE Lecarion oF | THoser ove x-v
P FER QBT B4 YALVE CG-OK"N\;ATES
{ OF PO AR, S TN ——
/' N VLot Ty i TCRAVITY
! [O ’! CALCULA T:E < CALLULA TR
. kS VEHLITY § GRAVIT Y
§ ;
. ed
e (ol
§ o v e
; PoiniEk: TELT /,
} CFoR Mssiee 7L }

DisPLAy (‘/

N CReTATE
%{mu\\ Y
7 STILK -

STATE SHIP
TWiED?

e s e e o 4

o

| AT D] pem

T,,__. PO

]

N

Zrean ]/ A
REPes; no, l«u /O\
AHO oRAe s -
\Ll;\?wre

UPDATE | EXbp
seors | saip
; ! PoER
— [ A —— |
. i /--
Josemy | [Dispiay
\ 1/0 )i SUM j : } SRR £ l75
/ e R ) N
GA \
3 xP.,@mw -

Y

/“f)@;fn!&”\ RE-piiT sf:H.ltvE:
oy VAL AELIES
- CorifLGE !~ CREPT .)(—wRL-
\\\

~

=g

MissiLe

A«ac
\‘? 2

~

(bew€ )

.,mf» Dl_sruw Ve
\/ e (10
DU PL ﬂ\/ ’
£ KPLODIN &
SHP
- o e et i
- (/‘ \\, o T mm——— N
ALELERA TR Acu. LERATE
"“UT”‘WN\Y B swip 1 /]
DePRSED : 2
FIR.E 1
<. N_- BotTe ux M )
WRL &
) ./y .
FIRL j@)




1) INITIALIZATION OF WORKING STORAGE VARIABLES

When a game is first started, variables and constsnts which
have been assigned locations in the working storage memory are
loaded with initial values from the program memory. The
values loaded into the variables at thie time determine the
initial positions and velocities of the ships and any other

objects appearing on the screen,
Variables associated with a particular routine should all be
contained in the same page of working storage to minimize the

number of times that the page register has to be reloaded.

2) CBJECT POINTER

A variable referred to as a pointer is initially loaded with

a value that both indicates the first object to be displayed
and points-to the parameters describing the p&sitioning and
trajectory of the object. When the value of the pointer is
added to a position offset, a velocity offset or any other
offset used in the program, the sum will yeild the working
storage memory address a F the X component parameter required
by the particular routine associated with the offset. When
the value of the pointer plus 1 is added to an offset the sum
yeilds the memory address of the Y component parameter, Para-
meters associated with the same function but determining X and

Y components are stored in adjacent memory locations,




3) LOCATION ROUTINE

This routine will update the location of the ship or missile
(depending on pointer). The X and Y velocities of the ship

or missile being relocated (moved across the display screen)
are added to the previous location yeilding a new-location

on the screen., Also a test is made to ensure that the ship

or missile remains on the CRT display. If the ship or missile
is about to go off the screen at the top, it is assigned the
coordinutes of the bottom of the screen, or if it is about to
go off the left side it is assigned the location of the right

side and so forth to create a wrap around effect.

) POSITION BEAM ROUTINE

After the location of the ship or missile has been determined,
the display section is given the coordinates of the center
point of the ship or missile so that the beam can start moving

towards that position.

Previously the beam was at the position of another ship or
missile ;hat could have been located any place on the screen,
near or far from the Ship or missile being positioned. The
beam is repositioned-at this time so that it will have settled
at the designated position by the time that the system is

ready to start drawing the ship or missile.

5) GRAVITY ROUTINE

A gravitational sun is located in the center of the screen,



The gravitational forces on the ships and missiles are cal-
culated using Newton's equatiors of motion. 1In solving for

X and Y component gravitational accelerations acting upon a -
ship or missile, first the radius from the sun to the ship

or missile is calculated. Next the radius offset by a constant
is used to address a location in a look-up table contained in
the program memory. The valve returned from the addressed
location in the look-up table is proportional to 1/radius3.
Finally, a constant, the returned value for 1/radius3, and the
X component of the position are multiplied together yeilding
the X component gravitational acceleration. The same multi-
plicatic.. is then repeated using the Y component gravitational

acceleration.

6) VELOCITY ROQUTINE

The velocity routine adds the current X and Y velocity values
of the ship or missile being repositioned. An additional func-
tion of the velocity routine is to limit the maximum velocity
of the ship so as not to frustrate inexperienced players who

would loose control of their ships.

7) POINTER TEST

At this point in the execution of the program, the CRT beam

is at the desired location having been allowed to reposition
itself and settle while the gravity and velocity calculations
needed to update the next position of the ship or missle were

being executed. First the value of the pointer is examined to



determine whether a ship or missile is to be drawn.

8) MISSILE DRAWING ROUTINE

To draw a missile, the display section is simply instructed
to plot a point at the location that was already loaded for

purposes of postioning the beanm.

9). SHIP ROTATION ROUTINE

The methodology for rotating an object about an origin is

covered in "VECTOR LINE DRAWING TECHNIQUES!

10) SHIP DISPLAY ROUTINE

The information defining the appearance of a ship is contained
in the program memory as a series of coordinate points, each
coordinate point being an end point of a line segment defining
the outline of the ship. This is done so that if a ship were
to be rotated, the stored end points are defined in terms of
polar coordinates. If no rotation were necessary, to draw a
ship would simply involve retrieving the parameters defining
the line segments to construct the ship from a table in program

memory and passing these (coordinates) to the display systen.

11) ACCELERATION ROUTINE

The acceleration routine causes a ship to be accelerated in
the forward direction when the associated thrust button is
pressed by the player. When the associated thrust button is
pressed, the X and Y coordinates of the fromt of the ship




relative to the ship's center of gravity are added to the

value of the variable cefining the ship's acceleration.

'

12) MISSILE FIRE ROQUTINE

When the associated missile fire button is depressed a missile
is assigned the coordinates of the front of the ship from which
it is being fired. A button held dowa continously is ignored;
it must be released and pressed again to fire another missile.
The velocity with which the missile leaves the ship is the
vector sum of a fixed velocity in the direction the ship is
pointed and the velocity of the ship itself. Also, when a
missile is fired, a variable whicl: indicates that the missile
is active is loaded with a valve that is repetitively decremen-
ted. If the decremented valve reaches zero before the missile
hits a ship, it disappears from the screen. Because it takes

a finite amount of time to locate and display a missile, each
ship is limited to a specified nﬁmber of misgiles on the

screen at a time.

13) COMPLETION TEST

After a ship or missile is drawn the valve of the pointer is
again examined to determine if all of the ships and missiles
have been repositioned and drawn. If the valve of the pointer
indicates that everything has mot been repositioned and drawn,
the valve is incremented to point at the parameters defining
the next ship, or missile, and the loop just described is

repeated, Otherwise, if the value of the pointer indicates



that everything is complete., the collision and scoring

routines are executed.

14) COLLISION ROUTINE

The collision routine checks for a collision between (a) Two
Ships, (b) A Ship and a Missile, (c) A Ship and the Sun. A
hit is detected when the center point of a ship falls within
a,specifiedﬂiﬁix andl<i Y of the center of another object. If
a ship is hit, flags are set that cause the doomed ship to be
drawn from points in an exploding ship table depicting the
scattering of pieces of a ship. Also if a ship is destroyed,
a variable assigned to the other ship is incremented and set

for keeping score,

15) DISPLAY SCORE

Seven segment numbers are used for displaying the score with
the decoding of the segments done through a look-up table in

program memory.

16) DISPLAY SUN i

After the collision routine has been executed the sun is
displayed. The sun is made up of a cluster of radial line
segments, half of which ares displayed every other freme to

give a flickering effect.

17) REINITIALIZE VARIABLES

When no ships have been hit or when a hit ship is in the process



of exploding, the value of the pointer is reinitialized so as
to point to the first ship in preparation for the program to
begin again the program loop just described. If a ship has
been hit and the explosion has been completed, all the varia-
bles except the score variables are reinitialized enabling
another contest to be played. Also, at this point in the pro-
gram if a player has attained a score of 9 hits the game is

ended.



H., SUBROUTINE TO DRAW A NUMERIC DIGIT

Pass the binary number 0-9 in 'INDEX'

'DRAW' will draw non-scaled

digit on the screen at coordinates specified by 'XPOS' and 'YPOS'

Vusing data tables located at start of second program memory bank

(1000 H) following are parameters required by subroutine (Page O

is arbitrary)

*PAGE O WORKING STORAGE

RETURN

XPOS
YPOS
INDEX
IMPX1
IMPX2
IMPY1
IMPY?2
K255
ZERO
DRAW:

SETP
STA
LpA
S81
STAP
SSA
LDA
Iv

EQU
EQU
EEQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

- O

O 0 9 o i & W N

RETURN
XPOS
42

YPOS

sreturn address
syinitial X-coordinate
yinitial Y-coordinate
;binary number 0-9
sintermediate X1
sintermediate X2
sintermediate Y1

yintermediate Y2

s SAVE RETURN

;INITIALIZE BEAM



LOOP:

DONE:

ADD

STA
TST
JLT
SSA
LDAI
SSA
STAP
LPAI
JMP
LPAI
JMP

TEMP

WS
N255

LOOP

DONE

;ADDR OF NEXT MULTIPLE
;OF PRIME

;TEST FOR END OF ARRAY

; SET MULTIPLES TO ZERO



DLOOP:

LDA
IKP
NOP
STAP

LDA
A41

NOP
STA
SSA
LDAP
SSA
ADD
LDbA
IKP
NOP
IPAI
ST
JEQ
STA
ADD
LPAI
JVN
IV

TLD .

S41
TST

INDEX

INDEX

TMPY1

YPOS
INDEX

DEXIT
K255

IMPX1
XPOS

Y,

+2

15

ZERO

;GET BINARY NUMBER
;GET INDEX INRO

; TABLE FROM 'DISP'
;STORE IN 'INDEX'

;BUMP TO FIRST BYTE
;OF RESPECTIVE TABLE
;i.e. DATAO®°**°°*DATA9
;AND GET INCREMENT
;SAVE Y1 INCREMENT

;SAME TO SECONDARY

sADD IN CURRENT Y

;GET X1 INCREMENT

;IF TAST ENTRY IN TABLE
; SAVE X1 INCREMENT
;ADD IN CURRENT X

;WAIT ON VECTOR
;INIT. VECTOR WITH COORDS.
;WAIT A FEW TICKS



JLT
LDA
A41
IKP
NOP
SUB
STA
LDA
A4T
STAP
S4X
IKP
NOP
SUB
SSA
STAP
STA
SSA
LDAP
LDA
NV
ADD
ADD
SSA
ADD
v
LDAI
JMP

INDEX

IMPX1
IMPX 2
INDEX

IMPY1

IMPY2

IMPX2

IMPXA1
XPOS

IMPY1

DLOOP

;GET POINTER
;GET NEXT INCREMENT

;LESS INITIAL X1 INCREMENT
; BECOMES X2

;DO Y

;GET Y INCREMENT
; LESS INITIAL Y1 INCREMENT

;RESET INITIAL Y COORD.
; BECOMES Y2

; SECONDARY ACC = Y2
;PRIMARY ACC = X2

s NORMALIZE

;ADD X OFFSET

;ADD BASE

;ADD Y OFFSET
;s DRAW LINE SEGMENT -

;FINISH REST OF DIGIT



DEXIT:

JVN
TST
LDAP
JMP

RETURN

;WAIT FOR SEGMENT TO FINISH

yRETURN TO CALLER



ORG 1000H
;UPPER 4 X DATA TABLES

; THESE NEXT 11 DATA TABLES MUST NOT MOVE FROM HERE!!
DATDIS: BYTE 10, 27, 32, 53, 70, 83, 100, 121, 130, 147

DATAO: BYTE 0, 0, 30, 30, 30, 30, 30, 54
BYTE 30, 54, O, 24, O, 24, 0, 0, 255

DATA1: BYTE O, O, 30, 54, 255

DATA2: BYTE O, O, 30, 12, 0, 0, O, 12
BYTE O, 12, 30, 48, 30, 48, 24, 54
BYTE 24, 54, 0, 42, 255

DATA3: BYTE O, O, 30, 42, 30, 42, 12, 30
BYTE 12, 30, 30, 54, 30, 54, 0, 42, 255

DATA4: BYTE 0, O, 30, 54, 30, 42, O, 24
BYTE O, 24, 12, 48, 255

DATA5: BYTE 0, O, 22, 32, 22, 32, 0, 24
BYTE O, 24, 12, 45, 12, 45, 30, 54, 255

DATA6: BYTE 0, O, O, 12, 0, O, 18, 7
BYTE 18, 7, 30, 30, 30, 30, 0, 12
BYTE 0, 12, 30, 54, 255



DATA7 :

DATAS8:

DATA9:

BYTE 0, O, 30, 54, 30, 54, O, 42, 255

BYTE O, O, 30, 30, 30, 30, O, 30
BYTE O, 30, 30, 54, 30, 54, O, O, 255

BYTE 0, 0, 30, 42, 30, 42, O, 24
BYTE O, 24, 12, 45, 12, 45, 12, 45, 30, 54
BYTE 30, 54, 30, 42, 255



I. PRIMAL PRIMER

The attached program shows a relatively simple implementation of
an algorithm to derive all prime numbers less than 256. Due to
the fact that the Vector Processor is not a register-oriented
machine, it becomes rather cumbersome to solvé the problem with-
out register-register operations. Consider that on the Intel 8080
the_same routine could be coded with half as many statements and
memory requirements (no variables need be carried in RAM)., Or

note the straight foward FORTRAN IV approach:

DIMENSION IPRIME (128)
DATA IPRIME (1) /2/, IPRIME (2) /3/
D0 100 I = 3,127
100 IPRIME (I) = IPRIME (I-1) + 2
D0 200 I = 2,8
IF (IPRIME (I). EQ.0) GO TO 200
INC = IPRIME (I)
DO 200 IADD = I, 127, INC
200 IPRIME (IADD) = O
STOP



AR: WORKING STORAGE ADDR REG
PAC: PRIMARY ACC
SAC: SECONDARY ACC

\ START ) 2
|
P
NUM 2 IF PAC 16
256 Entries
PROCESSED

IOC O0<—NUM

O > > oo )

NUM €«—— NUM+1 }
AR ; TEMP «——— PAC J
v PAC «——— AR ]
WS(AR) «— NUM <%>' _
TEST FOR l
END OF ARRAY

PAC «-— PAC+TEMP
|

A pR=255 TEST Fdi
END OF ARRAY
Y ]
ARe—— 0

AR ¢——— AR+1

l | L
c(AR) } SAC 0]
J l

l_TEST FOR O ' ¢(AR) ¢——SAC

\ PAC«¢




N=SOVONIONNIAWN O

e e

VALUE

|

PRIME

4 VO ¥9 V © 99 VY w V‘L

OXNHROOKOONROHNRMOMOONNMOONONRMROMNRMO NN

»63



*%*CALCULATE ALL PRIMES LESS THAN 256
*¥PRIMES: PAGES 0-7
*PAGE 15 WORKING STORAGE

WS EQU 0
ZERO EQU 1
N16 EQU 2
TEMP EQU 3
N255 EQU 4

*PROGRAM BEGINS EXECUTION HERE

-ORG 0
SETP 15
*INITIALIZATION ’f [{
TLD 2 ¢}jqk’ n
STA 0O K ;FIRST PRIME IS 2
LDAI 0
STA Ws ;WS ADDR PTR
STA ZERO
LDAI 1 i
STA N255
SSA
TLD 1 ;CARRY BASE OF FIRST ODD#

*FILL ARRAY WITH ODD NUMBERS

FILL: IPAI  PSLEEV
LDA WS : INCREMENT ADDR PTR

A41 1
STAP



TST N255 ; TEST FOR FULL ARRAY

JLT ;( 128 ENTRIES)

SSA

A41 2  ;GENERATE NEXT ODD #
\\ﬁys WS ;LOAD WS ADDR REG

SSA

STAP ; STORE # IN ARRAY

LPAI FILL

JMP

*ZERO OUT NON-PRIMES BY FINDING MULTIPLES

PSLEEV: LDAI 0
STA WS ;RESET WS ADDR PTR
LPAT SIEVE
SIEVE: LDA WS
A4T 1 ;UPDATE ADDR PTR
smaP B .
W WS ;LOAD WS ADDR REG |
. LDAP . ;GET ENTRY FROM_TABLE\
ST zERO e
JEQ | ;IF ZERO, IT WASN'T PRIME
IPAI DONE
ST N16
JLT ;IF OVER 16 WE'RE DONE
LPAI SIEVE
STA TEMP ; SAVE CURRENT VALUE

LDA WS



IV,

2.
3,
4.
5.
6.
Te
8.

9.

11.
12.

13.
14.
15

BASIC INSTRUCTIONS FOR CREATING AND EXECUTING A PROGRAM

USING THE DEVELOPMENT SYSTEM

Turn on CRT terminal.
Turn on LSI11 CPU (rear switch)
Place.boouable floppy disc into lefv drive.
Place work disc in right drive,
Eqsure front 2 left switches in ON position.
When S appears on screen, enter IX (CR)
When primary selection menu appears, enter EDIT function (E CR)
Subnote on EDIT menu will state: "IF NO ASSIGNED FILE, ENTER
CR" (File will open to SYSTEM. WRK.TEXT (default)
Seiect INSFRT mode (I CR)
Enter sovrce program uéing‘various available editing features
as listed on menu. If mistake is made in entering source file
text, use CONTROL C (CTLC) to get to level of (re) selecting
desired function, then return to INSERT mode (I CR)
Enter QUIT function (Q CR) when completed.
Then, three (3) choices will be displayed:
E (Exit File) :No Changes
U (Update File) :Current File
R (Return to Editor) :No Changes
Select update function (U CR)
System will go back to primary command menu.

to assemble program, enter A CR CR

Enter (PRINTER : CR) if output is desired

{(PRINTER MUST BE ON)



17. At DEBUG? (at PASCAL men enter (Y CR) if desired., (CR) if
not desired. Note: if both PRINTER and DEBUG options are
selected, output listing will be inordinately long (length)

18. After assembly has completed, {(with no errors) system displays
primary command menu, |

19. To execute program ie. translate PASCAL file to ocbject code,
enter (X CR). |

20. System will then ask : File?
Default is NEWROMEMU

2l. At the next menu, select LOAD function (L CR)- brings file
into buffer.

22, When system asks for name of current file, enter:

(SYSTEM. WRK CR)

23. Ensure EMULATOR power on (main power also)

24. When next response from system appears enter (D CR) for
DOWN-LOAD function (causes object file to be loaded into ROM
and executed.

25. ROM can be modified using EMULATOR edit functions through

terminal keyboard.



