CODE IS SPEECH: Legal Tinkering, Expertise,
and Protest among Free and Open Source
Software Developers

GABRIELLA COLEMAN

Department of Media, Culture, and Communication, NYU

We do not act because we know. We know because we are called upon to
act.
—Johann Gottlieb Fichte

THE POETICS OF LAW, TECHNOLOGY, AND PROTEST

Like many computer aficionados today, Seth Schoen writes all of his software
as “Free and Open Source Software” (F/ OSS) to ensure that the source code—the
underlying directions of computer programs—will remain accessible for other
developers to use, modify, and redistribute. In so doing, a Free Software developer
like Schoen not only makes technology but also participates in an emerging effort
that redefines the meaning of liberal freedom, property, and software by asserting
in new ways that code is speech.

For example, a tiny portion of a 456 stanza haiku written by Schoen in February

2001 makes just this claim:

Programmers’ art as
that of natural scientists

is to be precise,

complete in every
detail of description, not

leaving things to chance.

CULTURAL ANTHROPOLOGY, Vol. 24, Issue 3, pp. 420—454. ISSN 0886-7356, online ISSN 1548-1360. © 2009 by
the American Anthropological Association. All rights reserved. DOI: 10.1111/j.1548-1360.2009.01036.x

CODE IS SPEECH

Reader, see how yet
technical communicants

deserve free speech rights;

see how numbers, rules,
patterns, languages you don’t

yourself speak yet,

still should in law be
protected from suppression,

called valuable speech!

Schoen’s protest poem not only argued that source code is speech but also
demonstrated it: the extensive haiku was in fact a transcoding of a short piece of
Free Software called DeCSS, which could be used to decrypt access controls on
DVDs in violation of current copyright laws. Schoen wrote this poem not only
to be clever but also as part of a worldwide wave of protests following the arrest
of DeCSS’s coauthor, Jon Lech Johansen, and the lawsuits launched against those
who published DeCSS.

Twenty years ago there was no general understanding connecting code and
speech. Today Schoen and hundreds of other developers routinely make just this
assertion and the resulting association between free speech and source code is
now one of the most frequently used fixtures among F/OSS developers, who have
become extremely well versed in law, politically aware, and committed to free
speech issues, as well as technically adept at promoting their cause. How did these
surprising transformations come about?

In this essay, I examine the ways in which F/OSS developers like Schoen are
reconfiguring what source code and speech mean ethically, legally, and culturally,
and the broader political consequences of these redefinitions. I demonstrate how
developers refashion liberal precepts in two distinct cultural “locations” (Gupta and
Ferguson 1997), the F/OSS project and broader legal battles, resulting in what
legal theorist Robert Cover calls “jurisgenesis”: the collective construction of new
legal meanings and artifacts that diverge from statist or dominant interpretations of
the law (1992). Developers construct new legal meanings by challenging the idea
of software as property and by crafting new free speech theories to defend the idea
of software as speech.

Using a framework of jurisgenesis, this essay does three things. First, it
demonstrates how F/OSS developers explore, contest, and specify the meaning

of liberal freedom—especially free speech—via the development of new legal

421

CULTURAL ANTHROPOLOGY 24:3

422

tools and discourses within the context of the F/OSS project. In particular, I
highlight how developers concurrently tinker with technology and the law using
similar skills, which transform and consolidate ethical precepts among developers.
Using Debian, the largest Free Software project in the world, as my primary
ethnographic example, 1 suggest that these F/OSS projects have served like an
informal law education, transforming technologists into informal legal scholars
who are experts in the legal technicalities of F/OSS as well as proficient in the
current workings of intellectual property law.'

Second, I examine how these developers marshal and bolster this legal ex-
pertise during broader legal battles to engage in what Tilly and Tarrow describe
as “contentious politics” (2006). I concentrate on the separate arrests of two pro-
grammers, Jon Johansen and Dmitry Sklyarov, and on the protests, which unfolded
between 1999 and 2003, that they provoked. These critical events led to a histori-
cally unprecedented proliferation of claims connecting source code to speech, with
Schoen’s 456-stanza poem providing one of many well-known examples. These
events are historically notable because they dramatized what normally exists more
tacitly and brought visibility to two important social processes. They publicized
the direct challenge that F/ OSS represents to the dominant regime of intellectual
property (and thus clarified the democratic stakes involved) and also made more
visible, and thus stabilized, a rival liberal legal regime intimately connecting source
code to speech.

Third, the story I relate here helps deepen our understanding of why, and
especially when F/ OSS, a technology based movement, emerged in such politicized
ways and historicize what Kelty (2008) calls a recursive public—a public consti-
tuted by participants who defend the right to make and alter technology through
argument and by tinkering with the technologies (notably the Internet) through
which they collectively associate. It was during this period, between 1999 and
2003, when hackers were arrested and new intellectual property instruments omi-
nously loomed, that participants of this public worked out, specified, and clarified
the political significance of their technical work.

In what follows, I begin by introducing the basic history of Free Software
and presenting some general attributes concerning legal tinkering that cut across
a number of F/OSS projects. I then examine legal production within one specific
project: Debian. The final section covers the historical moment when F/OSS’s
particular public stance for free speech was rearticulated anew for wider public
consumption. I conclude by briefly considering the importance of legal expertise

among activists participating in global politics today.

CODE IS SPEECH

THE BIRTH OF THE LEGAL HACKER

F/OSS is produced by tens of thousands of technologists located around the
globe who work together on projects, such as the Web browser Firefox, over
the Internet. In the span of a decade these projects, which were loosely organized
and decentralized much like a virtual “bazaar” (Raymond 1999), have grown into
large semiformal institutions with complex governance structures. Although many
projects still deploy informal and ad hoc decision making for development, most mid
to large sized now rely on formal mechanisms—voting protocols, constitutions,
codes of conduct, legal exams, and detailed policy requirements—to coordinate
technical production (Kelty 2008; O’Mahony and Ferraro 2007; Weber 2004).
Many of the participants—some volunteers, some paid—also refer to themselves
with pride as hackers, that is, as computer aficionados driven by an inquisitive
passion for tinkering and committed to an ethical version of information freedom
(Castells 2001; Coleman and Golub 2008; Himanen 2001; Thomas 2002; Wark
2004). Increasingly, hackers’ ethical stances, I suggest, are expressed through legal
idioms, which are now pervasive in the arena of F/OSS. However, the law was
initially not only absent among hackers but also patents and copyrights seemed to
be the primary obstacle, funneling software into a proprietary model.

It is now well known that Free Software first emerged as the brainchild of
MIT hacker Richard Stallman, who in 1985 founded the Free Software Foundation
and began writing what he called Free Software—software that, unlike proprietary
software, could be copied, shared, circulated, and modified. What is less known is
that when initiating this fight, Stallman did not conceptualize Free Software in legal
terms. His goal was not to tinker with the law, which he knew very little about,
but to write a suite of Free Software applications to replace proprietary software,
thus circumventing the problem of the law.

As it turned out, the law was not entirely a foe (in the form of copyright and
patents); it became indeed a friend, at least once Stallman reconfigured it properly.
Because of a fairly complicated controversy (whose details need not concern us
here but in which Stallman was accused of illegally copying source code) the legal
issues concerning patents, copyrights, and public domain first and palpably became
clear to software developers (for the detailed history, see Kelty 2008:ch. 6). By
1989, Stallman had crafted a legal framework for Free Software to prevent the
type of controversy that had erupted over his first Free Software program from
recurring, and to add a layer of transparency, control, and accountability for Free

Software.

423

CULTURAL ANTHROPOLOGY 24:3

424

Stallman’s legal solution, the General Public License (GPL), commonly re-
ferred to as the copyleft, uses copyright law, a Constitutional mandate, to un-
dermine the logic of copyright law. The GPL is built on copyright, but disables
the restrictions of copyright to allow for modification, distribution, and access;
it is also self-perpetuating because it requires others to adopt the same license
if they modify copylefted software. By inventing the copyleft, Stallman provided
the rudiments of a rival liberal legal vocabulary of freedom, which hackers would
eventually appropriate and transform to include a more specific language of free
speech.

The first developers and hackers associated with Free Software were for the
most part users, not producers, and possessed only a rudimentary understanding
of legal issues. Some were even repelled by Stallman’s vision of software freedom,
which he had outlined in 1985 in his GNU Manifesto—a public declaration of the
ethical principles and intentions behind Free Software. One developer explained his
ambivalence during an interview in 2002 as follows: “I was a little confused. To me
it [the GNU Manifesto] sounded socialistic and ideological, a bit like [the] Jehovah’s
Witness, something which will never come to pass. At the time I disregarded it as
amad man’s dream. But I did continue to use [the GNU Free Software] Emacs and
GCC.” This developer, as well as many developers T have interviewed, is now firmly
committed to some of the ethical and pragmatic principles of Free Software, and
has expert command not only of the technology but also of its legal underpinnings.

It would take the Linux kernel project to transform Free Software from a “mad
man’s dream” into a large-scale movement with thousands of contributors, many
of whom would eventually commit to—and alter—the legal and ethical principles
of Free Software. Linus Torvalds, who wanted to rewrite the proprietary UNIX
operating system for the personal computer, initiated the Linux kernel project in
1991 as a hobbyist pursuit and eventually used an electronic mailing list to request
feedback. Within the year, volunteer programmers were turning Linux into a
high-quality PC operating system. Because coordination was organized virtually
and informally, programmers greeted Linux with bewilderment—but with open
arms. The experience of discovering that there existed an (almost) fully working
UNIX system for a PC, with available source code was, as put by one developer
during an interview, “jaw dropping.” It was surprising how hackers, working
informally over the Internet, could produce a reliable piece of software. This was
a period when Free Software development resembled a “great babbling bazaar of
differing agendas and approaches out of which a coherent and stable system could

seemingly emerge only by a succession of miracles” (Raymond 1999).

CODE IS SPEECH

Most developers did not wax philosophical in search of the success of this new
way of working. Instead they continued its success by initiating similar efforts. For
example, in 1993 lan Murdock, a computer science student, combined Torvald’s
kernel with some of the GNU/FSF software tools to create a fully functional
operating system distribution of Linux called Debian. Scores of other projects,
such as the Apache Web server and the graphical user interface GNOME, were
also initiated at this time.

As these virtual organizations got off the ground in the mid- to late 1990s,
Eric Raymond, a libertarian-leaning hacker, sought to refashion the public persona—
presentation of Free Software to attract business investors (Raymond 1999). To do
5o, he replaced the term “Free Software” with the ostensibly nonideological termi-
nology of “Open Source Software.” Although Free Software foremost emphasizes
the right to learn and to access knowledge, “Open Source” flags practical benefits of
what are the same collaborative methods, licenses, and virtual organizations (Kelty
2008). Despite these differences, it is difficult to identify many purists on either
side; participants often appeal to both moral and utilitarian logics, although they
might emphasize one logic over the other.

More important for our story of the law was the fact that during this period
F/OSS projects matured into semiformal institutions. Largely to manage the influx
of volunteers, most midsized to large projects supplemented, although they did not
displace, the bazaar style of work with more formal mechanisms (voting protocols,
membership and policy procedures, codes of conduct) to aid in social and technical
coordination. It is crucial to note here that these institutions also became de facto
training grounds, where developers acquired new ethical and legal skills, idioms,
and viewpoints.

The growing presence of the law in F/OSS projects was an outgrowth of
three circumstances. First, to participate effectively in technological production,
developers have had to acquire basic legal knowledge to make certain informed
decisions. For example, when licensing their own software, they must choose one
of over five dozen F/OSS licenses, or ascertain whether the software license on
the software package they maintain is compliant with existing license standards and
guidelines. Second, developers produce their own legal artifacts, such as licenses,
charters, and legal tests, and as a result there is a tremendous body of legal exegesis
in the everyday life of their F/OSS project. Third, many developers closely track
news about Free Software—related legal battles, especially those seen to impinge
on their productive freedom: Has the patent directive passed in the European

Union Parliament? How has Diebold, the voting machine company, used the Digital

425

CULTURAL ANTHROPOLOGY 24:3

426

Millennium Copyright Act, to suppress the circulation of information incriminating
the company? Information regarding these and other relevant developments is not
only posted widely on the Internet but also many developers get directly involved
in these cases, as the reader will see in the next section.

To be sure, there are some developers and hackers who express distaste for
discussions of legal policy and actively distance themselves from this domain of
“polluting politics.” But even though hackers will assert the superiority of technical
to legal language, or even technical to legal labor (some hackers claim that the law
is a waste of time; or as stated a bit more cynically by one developer, “writing
an algorithm in legalese should be punished with death ... a horrible one, by
preference”), technologists can very quickly acquire legal fluency and literacy.

One reason for this facility, [suggest, is that the skills, mental dispositions, and
forms of reasoning necessary to read and analyze a formal, rule-based system like
the law parallel the operations necessary to code software. Both, for example, are
logic-oriented, internally consistent textual practices that require great attention
to detail. Small mistakes in both law and software—a missing comma in a contract
or a missing semicolon in code—can jeopardize the integrity of the system and
compromise the intention of the author of the text. Both lawyers and programmers
develop mental habits for making, reading, and parsing what are primarily utilitarian
texts. As noted by two lawyers who work on software and law, “Coders are
people who write in subtle, rule-oriented, specialized, and remarkably complicated
dialects,” which, they argue, pertains also to how lawyers make and interpret the
law (Cohn and Grimmelmann 2003).?

This helps us understand why it’s been so easy for developers to integrate
the law into everyday technical practice and advocacies, and avoid some of the
frustration that afflicts lay advocates trying to acquire legal fluency to make larger
political claims. Kim Fortun, for example, describing the activists who worked
on behalf of the victims of the Bhopal disaster, perceptively shows how acquiring
legal fluency and developing the correct legal strategy is frustrating and can lead
to cynicism (2001:ch. 1). Many hackers are similarly openly cynical about the law
because it is seen as easily subject to political manipulation. Despite this cynicism,
never encountered any expression of frustration about the actual process of learning
the law. A number of developers I worked with clearly enjoy learning and arguing
about a pragmatic subset of law (such as a particular legal doctrinal framework),
just as they do technology. Many developers apply the same skills required for
hacking to the law and, as we will see, technology and the law at times seamlessly

blend into each other.

CODE IS SPEECH

To give a taste of this informal legal scholarship—of the relationship between
technical expertise and legal understanding, and of the ways in which legal questions
are often tied to moral issues—in one Free Software project, I will describe some of
Debian’s legal micropractices: its routine legal training, advocacy, and exegetical
legal commentary. These legal micropractices allow for what Robert Cover, in
his description of jurisgenesis, calls a “commitment in living out legal meaning”
(Cover 1992:103). For new legal precepts to become meaningful, Cover insists,
they must be incorporated into the practice of everyday life through a process
that stretches from informal narrative to formal exegesis of existing precepts. This
occurs in many F/OSS projects, but the process is especially salient in Debian. To
deepen this picture of how developers live in and through the law, I proceed to a
broader struggle, one where similar legal processes are underway, but are more

visible because of the way they have circulated beyond the boundaries of projects

proper .

“LIVING OUT LEGAL MEANING” WITHIN A FREE SOFTWARE

PROJECT

Just over a thousand volunteers are participating in the Debian project at
this time (early 2009), writing and distributing a Linux-based operating system
composed over 20 thousand individual software applications. In its nascence,
Debian was run entirely informally; it had fewer than two dozen volunteers who
communicated primarily through a single e-mail list. To accommodate growth,
however, significant changes in policy, procedures, and structure occurred between
1997 and 1999. Now Debian boasts a complex hybrid political system; a developer
Internet relay chat (IRC) channel; a formalized membership entry procedure called
New Maintainer (NM); and a set of charters that includes a Constitution, a Social
Contract, and the Debian Free Software Guidelines (DFSG).

A few Debian developers are paid by their employers to work on Debian, but
the project itself pays no one, not even the release managers, some of whom spend
40 hours or more a week for two to three months on the final release of a new
version of Debian. Generally, developers attain positions of authority through a
meritocratic system that rewards those who perform exceptional work and who
wish to occupy a position of responsibility (although there are exceptions). Each
developer decides where and how to contribute, with no formal mandates from
those with organizational authority to direct developer labor.

Despite this hands-off, self-directed approach all developers go through an

initial vetting process—the New Maintainer (NM) process. It is an obligatory

427

CULTURAL ANTHROPOLOGY 24:3

428

point of passage (Latour 1988) through which prospective developers apply for
membership. Fulfilling the mandates of the NM can take months, even years, of
hard work: a prospective developer has to find a sponsor and advocate; learn the
in and outs of Debian policy, Free Software licensing, and technical infrastructure;
successfully package software that satisfies a set of technical standards; meet at least
one other Debian developer in person for identity verification; and pass a series of
written tests on technical, philosophical, and legal matters. Thus do prospective
developers become familiar with the active legal culture of Debian.

Several questions in the NM application cover what is now one of the most
famous philosophical and legal distinctions in the world of Free Software: “free
beer” versus “free speech.” Common among developers today, this distinction arose
only recently, during the early to mid-1990s.

A prospective Debian Developer (DD) describes the difference in an NM
application:

Free speech is the possibility of saying whatever one want wants to. Software

[that is] free as in beer can be downloaded and used for free, but no more.

Software [that is] free as in speech can be fixed, improved, changed, be used

as building block for another [sic] software.

Some developers also note that their understanding of “free speech” is nested
within a broader liberal meaning codified in the constitutions of most liberal

democracies:

Used in this context the difference is this: “free speech” represents the freedom
to use/modify/distribute the software as if the source code were actual speech
which is protected by law in the US by the First Amendment . . . “free beer”

represents something that is without monetary cost.

This differentiation between free beer and free speech is the clearest enunci-
ation of what, to these developers, are the core meanings of “free”™—expression,
learning, and modification. Freedom is understood foremost to be about personal
control and autonomous production and decidedly not about commodity consump-
tion or “possessive individualism” (Macpherson 1962), a message that is constantly
restated by developers: Free Software is “free as in speech, not beer.”

This distinction may seem simple, however, the licensing implications of
“freedom” and free speech are complicated enough that the NM process continues
with a series of very technically oriented questions whose answers start to enter
the realm of legal interpretation. Many of these concern the Debian Free Software

Guidelines (DFSG), a set of ten provisions by which to measure whether a license

CODE IS SPEECH

can be considered “free.” Of these questions, one or two are fairly straightforward.

For example:

“Do you know what’s wrong with Pine’s current license in regard to the
DESG?”
After looking at the license on the upstream site it is very clear why pine is

non-free. It violates the following clauses of the DFSG:

1.) No Discrimination Against Fields of Endeavor—it has different require-
ments for non-profit vs. profit concerns.

2.) License Must Not Contaminate Other Software—it insists that all other
programs on a CDROM must be “free-of-charge, shareware, or non-
proprietary”

3.) Source Code—it potentially restricts binary distribution [binary refers to

compiled source code]

The sample license for an e-mail program, Pine, violates a number of DFSG
provisions. With different provisions for nonprofit and for-profit endeavors, as an
example, it discriminates according to what the DFSG calls “fields of endeavor.”

Developers are then asked a handful of far more technical licensing questions,

among them:

Athttp://people.debian.org/~joerg/bad.licenses.tar.bz2 you can find a tar-
ball of bad licenses. Please compare the graphviz and three other (your choice)
licenses with the first nine points of the DFSG and show what changes would
be needed to make them DFSG-free.

The answer clearly demonstrates the depth of legal expertise required to
address these questions: “Remove the discriminatory clauses . . . allow distribution
of compiled versions of the original source code ... replace [sections] 4.3 with
4.3.aand 4.3.b and the option to choose ...”

After successfully finishing the NM process, some developers think only rarely
about the law or the DFSG, perhaps only tracking legal developments of personal
interest. Even if a developer is not actively learning the law, however, legal
discourse is nearly unavoidable because of the frequency with which it appears on
Debian mailing lists or chat channels. Informal legal pedagogy thus continues long
after the NM.

As an example, I quote an excerpt from a discussion on IRC wherein a
developer proposed a new Debian policy that would clarify how non—Free Software

packages (those noncompliant with their license guidelines) should be categorized

429

CULTURAL ANTHROPOLOGY 24:3

430

so as to make it absolutely clear how and why they cannot be included in the main

software repository, which can only have Free Software.

<dangmang> Markel: what is your opinion about making a recommendation
in policy that packages in non-free indicate why they’re in non-free, and what
general class of restrictions the license has?

<Markel> dangmang: well, I am not too keen on mandating people do more
work for non-free packages. but it may be a good practice suggestion
<JabberWalkie> dangmang: Then I would suggest that the ideal approach
would be to enumerate all the categories you want to handle first, giving
requirements to be in those categories.

<dangmang> Markel: true. could the proposal be worded so that new uploads

would have to have it?

[..]

<JabberWalkie> dangmang: You don’t want to list what issues they fail; you

want to list what criteria they meet.

<JabberWalkie> dangmang: X-Nonfree-Permits: autobuildable, modifiable,
portable

<Markel> the developers-reference should mention it, and policy can rec-
ommend it, for starters

<Markel> dangmang: we need to have well defined tags

<JabberWalkie> mt3t: “gfdl”, “firmware”.

[..]
<JabberWalkie> mt3t: No “You may not port thisto ___”
<JabberWalkie> mt3t: You wouldn’t believe what people put in their
licenses. :)

<dangmang> Markel: right . . . I think I'll start on the general outline of the
proposal, and flesh things out, and hopefully people will have comments to

make in -policy too when I start the procedure.

It is not the exact legal or technical details that I mean to emphasize, but how,
late on a Friday night (when the discussion happened), a developer made a policy
recommendation and his peers immediately offered advice on how to proceed,
discussing the issue with such sophisticated legal vocabulary that to the uninitiated
it appears completely obscure. This is simply part of the “natural” social landscape

of most Free Software projects.

CODE IS SPEECH

More formal legal avenues are employed, however. Debian developers may
contact the original author (called the upstream maintainer) of a piece of software
that they are considering including and maintaining in Debian. Many of these ex-
changes concern licensing problems that would keep the software out of Debian; in
this way, non-Debian developers also undergo informal legal training. Sometimes
developers act in the capacity of legal advocates, convincing these upstream main-
tainers to switch to a DFSG-compliant license, which is necessary if the software is
to be included in Debian.

The developers who hold Debian-wide responsibilities must in general be
well versed in the subtleties of F/OSS licensing. The ftpmasters, whose job is to
integrate new software packages into the main repository, must check every single
package license for DFSG compatibility. Distributing a package illegally could leave
Debian open to lawsuits.

One class of Debian developers has made legal matters their obsession. These
aficionados contribute prolifically to the legal pulse of Debian in debian-legal—
a mailing list that, because of its large number of posts, is not for the faint of
heart. For those who are interested in keeping abreast but don’t have time to read
every message posted on debian-legal, summaries link to it in a weekly newsletter,
“Debian Weekly News.” Below, I quote a fraction (about one-fifth) of the legal
news items that were reported in DWN during the course of 2002 (the numbers

are references linking to mailing list threads or news stories):

GNU FDL a non-free License? Several [22] people are [23] discussing
whether the [24]GNU Free Documentation License (GFDL) is a free license
or not. If the GFDL is indeed considered a non-free license, this would [25]
render almost all KDE and many other well known packages non-free since
they use the GNU FDL for the documentation. Additionally, here’s an old
[26] thread from debian-legal, which may shed some light on the issue.

REFC: LaTeX Public Project License. Claire Connelly [4] reported that the
LaTeX Project is in the process of considering changes to the LaTeX Project
Public License. She tried to summarize some of the concerns that Debian
people have expressed regarding the changes. Hence, Frank Mittelbach asked
for reviews of the draft of version 1.3 of the [5]LaTeX Public Project License

rather than of the current version (1.2).

Enforcing Software Licenses. Lawrence Rosen, general counsel for the

[20]Open Source Initiative, wrote an [21]article about the enforceability of

431

CULTURAL ANTHROPOLOGY 24:3

432

software licenses. In particular, he discusses the issue of proving that somebody
assented to be bound by the terms of a contract so that those terms will
be enforced by a court. Authors who wish to be able to enforce license
terms against users of their source code or compiled programs may find this

interesting.

Problematic BitKeeper License. Branden Robinson [3]pointed out that
some of us may be exposed to tort claims from BitMover, Inc., the company
that produces BitKeeper, the software that is the primary source management
tool for the Linux kernel. Your license to use BitKeeper free of charge is
revoked if you or your employer develop, produce, sell, or resell a source
management tool. Debian distributes rcs, cvs, subversion and arch at least and
this seems to be a [4]different case. Ben Collins however, who works on both
the Linux kernel and the subversion project, got his license to use BitKeeper

free of charge [5]revoked . . .

These are newsletter summaries, which are read by thousands of developers
outside of the Debian community proper as well as by Debian developers. It is also
worth noting how outsiders turn to Debian developers for legal advice and how
legal expertise is valued. Practical and immediate concerns are layered upon global
currents and more philosophical musings. Some discussions can be short, breeding
less than a dozen posts; other topics are multiyear, multilist, and may involve
other organizations, such as the Free Software Foundation. These conversations
may eventually expand and reformulate licensing applications.

One routine task undertaken in debian-legal is to help developers and users
choose appropriate licensing, by providing in-depth summaries of alternative li-
censes compliant with the DFSG. One such endeavor was to determine whether a
class of Creative Commons (CC) licenses (developed to provide creative produc-
ers, such as musicians and writers, with alternatives to copyright) was appropriate
for software documentation. Debian developers assessed that the CC licenses under
consideration failed to meet the standards of the DFSG, and suggested that Debian
developers not look to them as licensing models. The most remarkable aspect
of their analysis is that it concludes with a detailed set of recommendations for
alterations to make the CC licenses more “free” according to the Debian licensing
guidelines. In response to these recommendations, Lawrence Lessig of Creative
Commons contacted Evan Prodromou, one of the authors of this analysis, to try
to find solutions to the incompatibilities between the DFSG and some of the CC

licenses.

CODE IS SPEECH

There is something ironic, on the one hand, about a world-renowned lawyer
contacting a bunch of geeks with no formal legal training to discuss changes to
the licenses that he created. On the other hand, who else would Lessig contact?
These developers are precisely the ones inhabiting this legal world. These gecks
are training themselves to become legal experts, and much of this training occurs
in the institution of the Free Software project.

Debian’s legal affairs don’t just produce what a group of legal theorists have
identified as everyday legal awareness (Ewick and Silbey 1998; Mezey 2001;
Yngvesson 1989). The arena of F/OSS probably represents the largest single
association of amateur intellectual property and free speech legal scholars ever to
have existed. Given the right circumstances, many developers will marshal this
expertise as part of broader, contentious battles over intellectual property (IP) law

and the legality of software, the topic of the next section.

CONTENTIOUS POLITICS AND THE STABILIZATION OF CODE

AS SPEECH

If hackers acquire legal expertise by participating in F/ OSS projects, they also
use and fortify their expertise during broader legal battles. Here I examine one of
the most heated of the recent controversies over intellectual property, software,
and access: the arrests of Jon Johansen and Dmitry Sklyarov. These provoked a
series of protests and produced a durable articulation of a free speech ethic that,
under the umbrella of free and open source software development, had been
under quieter cultivation in the previous decade. Intellectual property has been
debated since its inception (Hesse 2002; Johns 2006; McGill 2002), but as media
scholar Siva Vaidyanathan notes, these previous debates have “rarely punctured the
membrane of public concern” (2006:298). It was precisely in this period (1999
to 2003) and in part because of these events, when a more visible, notable, and
“contentious politics” (Tilly and Tarrow 1996) over IP emerged, especially in the
United States and Europe.’

Before discussing how the emergence of a “contentious politics” worked
to stabilize the connection between speech and code, some historical context is
necessary. At the most general level, we can say a free speech idiom formed as a
response to the excessive copyrighting and patenting of computer software. (Prior
to 1976, this had been rare.) The first widely circulated paper associating free
speech and source code was “Freedom of Speech in Software” (1991) written by
a programmer, Peter Salin. He characterized computer programs as “writings”

to argue that software was unfit for patents, although appropriate for copyrights

433

CULTURAL ANTHROPOLOGY 24:3

434

and, thus, free-speech protections. The idea that coding was a variant of writing
was gaining traction also, in part, because of the popular publications of Stanford
Computer Science professor Donald Knuth on the art of programming (Black
2002; Knuth 1998). During the carly 1990s, a new ecthical sentiment emerged
among early USENET enthusiasts (many of them hackers and developers), that the
Internet should be a place for unencumbered free speech (Pfaffenberger 1996). This
sensibility in later years would become specified and attached to technical artifacts
such as source code Perhaps most significantly, what have come to be known
as the “encryption wars” were in the mid-1990s waged over the right to freely
publish and use software cryptography in the face of governmental restrictions that
classified strong forms of encryption as munitions. The most notable juridical case
in these struggles was Bernstein v. U.S. Department of Justice. The case opened in
1995, after a computer science student, Daniel J. Bernstein, sued the government
to challenge international traffic in arms regulations (ITAR), which classified certain
types of strong encryption as munitions and thus subjected them to export controls.
Bernstein could not legally publish or export the source code of his encryption
system, Snuffle, without registering as an arms dealer. After years in court, in
1999 the judge presiding over the case concluded that government regulations of
cryptographic “software and related devices and technology are in violation of the
First Amendment on the grounds of prior restraint.”*

Neither Salin’s article nor the Bernstein case questioned copyright as a bar-
rier to speech. With the rise of Free Software, developers launched a far more
extensive critique of copyright. The technical production of Free Software had
trained developers to become legal thinkers and tinkerers well acquainted with the
intricacies of IP law as they became committed to an alternative liberal legal system
steeped in discourses of freedom and increasingly free speech. Thus, if the first
free speech claims among programmers were proposed by a handful of developers
and deliberated in a few court cases in the early to mid-1990s, in the subsequent
decade they grew social roots in the institution of the F/OSS project; individual
commitments and intellectual arguments grew into a full-fledged collective social
practice anchored firmly in F/ OSS technical production.

Unanticipated state and corporate interventions, however, raised the stakes
and gave this rival legal morality a new public face. Indeed, it was only because of
a series of protracted legal battles that the significance of hacker legal expertise and
free speech claims became apparent to me. I had, like so many developers, not only
taken their free speech arguments about code as self-evident but also had taken for

granted their legal skills in the making of these claims. Witnessing and participating

CODE IS SPEECH

in the marches, candlelight vigils, street protests, and artistic protests (many of
them articulated in legal terms), among a group of people who tend to shy away
from such overt forms of traditional political action (Coleman 2004; Galloway
2004; Riemens 2003), led me to seriously reevaluate the deceptively simple claim:
that code is speech. In other words, what existed tacitly became explicit after a set

of exceptional arrests and lawsuits.’

POETICALLY PROTESTING THE DIGITAL MILLENNIUM

COPYRIGHT ACT

On October 6, 1999, a 16-year-old Norwegian programmer, Jon Johansen,
used a mailing list to release a short, simple software program, DeCSS. Written by
Johansen and two anonymous developers, DeCSS unlocks the Digital Rights Man-
agement (DRM) on DVDs. Before DeCSS, only computers using cither Microsoft’s
Windows or Apple’s operating system could play DVDs; Johansen’s program al-
lowed Linux users to unlock a DVD’s DRM to play movies on their computers.
Released under a Free Software license, DeCSS soon was being downloaded from
hundreds, possibly thousands, of Web sites. In the hacker public, the circulation of
DeCSS would transform Johansen from an unknown geek into a famous “freedom
fighter”; entertainment industry executives, however, would soon seeck out his
arrest.

Although many gecks were gleefully using this technology to bypass a form of
Digital Rights Management so they could watch DVDs on their Linux machines,
various trade associations sought to ban the software because it made it easier to copy
and thus pirate DVDs.® In November 1999, soon after its initial spread, the DVD
Copy Control Association and the Motion Picture Association of America (MPAA)
sent cease-and-desist letters to more than fifty Web site owners and Internet
service providers, requiring them to remove links to the DeCSS code for its alleged
violation of trade secret and copyright law and, in the United States, the Digital
Millennium Copyright Act (DMCA). Passed in 1998 to “modernize” copyright for
the digital age, the DMCA’s most controversial provision outlaws the manufacture
and trafficking of technology (which can mean something immaterial, such as a
six-line piece of source code, or something physical) capable of circumventing
copy or access protection in copyrighted works that are in a digital format. The
DMCA makes illegal the trafficking and circulation of such a tool, even if it can be
used for lawful purposes (such as fair use copying) or is never used.’

In January 2000, the MPAA filed three lawsuits to stop DeCSS. One was

against the well-known hacker organization and publication 2600 and its founder

435

CULTURAL ANTHROPOLOGY 24:3

436

Eric Corley (more commonly known by his hacker handle, Emmanuel Goldstein).
He would fight the lawsuits, appealing to 2600’s journalistic free-speech right to
publish DeCSS. As happens with censored material, the DeCSS code at this time
was unstoppable; it spread like wildfire.

Simultaneously the international arm of the MPAA urged prosecution of
Johansen under Norwegian law (the DMCA, an American law, had no jurisdiction
there). The Norwegian Economic and Environmental Crime Unit (OKOKRIM)
took the MPAA’s informal legal advice and indicted Johansen on January 24,
2000, for violating an obscure Norwegian criminal code. Johansen (and his father)
were arrested and released on the same day, and law enforcement confiscated his
computers. He was scheduled to face trial three years later.

Hackers and other geek enthusiasts discussed, debated, and decried these
events, and a few consistent themes and topics emerged. The influence of the
court case discussed above, Bernstein v. United States, was one such theme. This case
established that software could be protected under the First Amendment, and in
1999 caused the overturning of the ban on exportation of strong cryptography.
Programmers could write and publish strong encryption on the grounds that
software was speech.

F/OSS advocates, seeing the DeCSS cases as a similar situation, hoped that the
courts just might declare DeCSS worthy of First Amendment protection. Consider
the first message posted on the mailing list “dvd-discuss”—a mailing list that would
soon attract a multitude of programmers, F/OSS developers, and activist lawyers

to discuss every imaginable detail concerning the DeCSS cases:

I see the DVD cases as the natural complement to Bernstein’s case. Just as
free speech protects the right to communicate results about encryption, so it
protects the right to discuss the technicalities of decryption. In this case as well
as Bernstein’s, the government’s policy is to promote insecurity to achieve
security. This oxymoronic belief is deeply troubling, and worse endangers the

very interests it seeks to protect.8

There were, it turned out, significant differences between Bernstein and
DeCSS. In the Bernstein case, hackers were primarily engaged spectators. Fur-
thermore, many Free Software advocates were critical of Bernstein’s decision to
copyright, and thus tightly control, all of his software. In the DeCSS and DVD
cases, by contrast, many F/OSS hackers became participants, by injecting into the
controversy notions of Free Software, free speech and source code (a language

they were already fluent in from F/OSS technical development). Hackers saw

CODE IS SPEECH

Johansen’s indictment and the lawsuits not simply as a violation of their right to
software, but their right to produce F/OSS. As the following call-to-arms reveals,
many hackers understood the attempt to restrict DeCSS as a “full-fledged war

against the Open Source movement”:

... here’s why they’re doing it: Scare tactic ... I know a lot of us aren’t
political enough—but consider donating a few bucks and also mirroring the
source. . . . Thisis a full-fledged war now against the Open Source movement:
they’re trying to stop . . . everything. They can justify and rationalize all they
want—but it’s really about them trying to gain/maintain their monopoly on

distribution . . .°

Johansen was, for hackers, the target of a law that challenged, fundamentally,
their freedom to tinker and to write code—values that acquired coherence and had
been articulated in the world of F/OSS production.

Hackers moved to organize politically. Many websites providing highly de-
tailed information about the DMCA, DeCSS, and copyright history went live, and
the Electronic Frontier Foundation (EFF) launched a formal “Free Jon Johansen”
campaign. All this was helping to stabilize the growing links between source code
and software, largely because of the forceful arguments that computer code is
expressive speech. Particularly prominent was an amicus curiae brief on the ex-
pressive nature of source code written by a group of computer scientists and
hackers (including Richard Stallman), as well as the testimony by one of its authors,
Carnegie Mellon Computer Science professor, David Touretzky, a fierce and well-
known free speech loyalist. Just as they dissected Free Software licensing, F/OSS
programmers quickly learned and dissected these courts cases, behaving in ways
democratic theorists would no doubt consider exemplary. Linux Weekly News, for

example, published the following overview and analysis of Touretzky’s testimony:

His [David Touretzky] point was that the restriction of source is equivalent
to a restriction on speech, and would make it very hard for everybody who
works with computers. The judge responded very well to Mr. Touretzky’s
testimony, saying things like ... “I think one thing probably has changed with
respect to the constitutional analysis, and that is that subject to thinking about it some
more, I really find what Professor Touretzky had to say today extremely persuasive and
educational about computer code.”

[- . -] Thus, there are two rights being argued here. One is that . .. we have
the right to look at things we own and figure out how they work. We even

437

CULTURAL ANTHROPOLOGY 24:3

438

have the right to make other things that work in the same way. The other is
that code is speech, that there is no way to distinguish between the two. In the
U.S., of course, equating code and speech is important, because protections
on speech are (still, so far) relatively strong. If code is speech, then we are
in our rights to post it. If these rights are lost, Free Software is in deep

trouble ... 1°

In this exegesis we see again how Free Software developers wove together
Free Software, source code, and free speech. These connections had recently been
absent in hacker public discourse. Although Richard Stallman certainly grounded
the politics of software in a liberal vocabulary of freedom, and Daniel Bernstein’s
fight introduced a far more legally sophisticated idea of the First Amendment for
software, it was only with the DeCSS cases that a more prolific and specific language
of free speech would come to dominate among F/OSS developers, and circulate
beyond F/OSS proper. In the context of F/OSS development in conjunction with
the DeCSS cases, the conception of software as speech became a cultural reality.

Much of the coherence emerged through reasoned political debate.
Cleverness—or pranksmanship—played a pivotal part as well. Evan Prodromou,
a Debian Developer and editor of one of the first Internet zines, Pigdog, circulated
a decoy program that hijacked the name DeCSS, although it performed an en-
tirely different operation from Johansen’s DeCSS. Prodromou’s DeCSS stripped
Cascading Style Sheets (CSS) data (i.e., formatting information) from HTML
pages:

Hey, so, I've been really mad about the recent spate of horrible witch hunts

by the MPAA against people who use, distribute, or even LINK TO sites that

distribute DeCSS, a piece of software used for playing DVDs on Linux. The

MPAA has got a bee in their bonnet about this DeCSS. They think it’s good

for COPYING DVDs, which, in fact, it’s totally useless for. But they’re suing

everybody ANYWAYS, the bastardos!

Anyways, I feel like I need to do something. I’ve been talking about the whole

travesty here on Pigdog Journal and helped with the big flier campaign here in

SF, ... but I feel like T should do something more, like help redistribute the

DeCSS software.

There are a lot of problems with this, obviously. First and foremost, Pigdog

Journal is a collaborative effort, and I don’t want to bring down the legal

shitstorm on the rest of the Pigdoggers just because 'm a Free Software

fanatic.

CODE IS SPEECH

DeCSS is Born

So, I decided that if I couldn’t distribute DeCSS, I would distribute DeCSS.
Like, I could distribute another piece of software called DeCSS, that is perfectly
legal in every way, and would be difficult for even the DVD-CCA’s lawyers
to find fault with. [...]

Distribute DeCSS!

I encourage you to distribute DeCSS on your Web site, if you have one . ..
I think of this as kind of an “I am Spartacus” type thing. If lots of people
distribute DeCSS on their Web sites, on Usenet newsgroups, by email, or
whatever, it’ll provide a convenient layer of fog over the OTHER DeCSS. 1
figure if we waste just FIVE MINUTES of some DVD-CCA Web flunkey’s

time looking for DeCSS, we’ve done some small service for The Cause. '

Thousands of developers posted Pigdog’s DeCSS on their sites as flak to further
confuse law enforcement officials and entertainment industry executives, who
they felt were clueless about the nature of software technology. Dozens of them
(including Jon Johansen) received cease-and-desist letters demanding they take
down a version of DeCSS that was unrelated to the decryption DeCSS.

Clever re-creations of the original DeCSS source code (originally written in
the C programming language) using other languages (such as Perl) also began to
proliferate, as did translations into poetry, music, and film. A Web site hosted by
David Touretzky, “The Gallery of CSS DeScramblers,”'? showcased a set of 24 of
these artifacts, the point being to demonstrate the difficulty of drawing a sharp line
between functionality and expression in software. Touretzkey, an expert witness

in the DeCSS case, said as much in the introductory statement to his Gallery:

If code that can be directly compiled and executed may be suppressed under
the DMCA, as Judge Kaplan asserts in his preliminary ruling, but a textual
description of the same algorithm may not be suppressed, then where exactly

should the line be drawn? This web site was created to explore this issue.

Here is a short snippet (about one-fifth), of the original DeCSS source code

written in the C programming language:

void CSSdescramble(unsigned char *sec,unsigned char *key)
{

unsigned int t1,t2,t3,t4,t5,t6;

unsigned char *end=sec+0x800;
t1=key[0]"sec[0x54]|0x100;

439

CULTURAL ANTHROPOLOGY 24:3

440

t2=key[1]"sec[0x55];

t3=("((unsigned int *)(key+2)))"(*((unsignedint *)(sec+0x56)));
4=13&7;

t3=t3%*2+48-t4;

sec+=0x80;

t5=0;

while(sec!=end)

{

t4=CSStab2[t2]"CSStab3[t1];

2=tl>1;

t1=((t1&1)<<8)"t4;

t4=CSStab5[t4];
t6=(((((((t3>>3)"t3)>>1)"t3)>>8)"t3)>> 5)&O0xIT;
t3=(t3<<8)|t6;

t6=CSStab4[t6];

t5+=t6+t4;

*sec++=CSStab1[*sec]"(t5&0xff);

t5>>=§;

}

Compare this fragment to another one written in Perl, a computer language
that hackers regard as particularly well suited for crafting “poetic” code because
longer expressions can be condensed into much terser, sometimes quite elegant
(although sometimes quite obfuscated) statements. And indeed the original DeCSS

program, composed of 9,830 characters, required only 530 characters in Perl:

#!/usr/bin/perl -w

531-byte qrpff-fast, Keith Winstein and Marc Horowitz

<sipb-iap-dvd@mit.edu>

MPEG 2 PS VOB file on stdin -> descrambled output on stdout

arguments: title key bytes in least to most-significant order

$_="‘while(read+STDIN,s_,2048){$a=29;5b=73;$c=142;$t=255;@t=

map{$_%]160rst"=sc"=($m=(11,10,116,100,11,122,20,100)[$_/ 16%8])

&110;8t"=(72,[@z=(64,72,8a"=12%($_%162?0:$m&17)),$b"=$_%64?

12:0,@z)[$_%8] }(16..271);if((@a=unx"C*”,$_)[20]&48){sh=5;$_=

unxb24,join”“,@bzmap{xB8,unbe,chr($_A$a[— - -$h+84]) }@ARGV;s/
$/18&/;$d=unxV,xb25,$_;$e=256|(ord$b[4])<<9|ord$b[3];$d=8d

>>87($f=$t&($d>>12"$d>>4"3d"8d/8))<<17,5e=3$e>>8"($t&($g=

CODE IS SPEECH

($q=8e>>14&7"8¢)"$q"8"8q<<6))<<9,$_=5t[$_]"(($h>=8)+=sf
+(~$g&st))for@a[128.. $#ta] }print+x"C*”,@a}’ ;8/x/pack+/g;eval

If Perl allows programmers to write code more poetically than other computer
languages, Seth Schoen took up the challenge of publishing a bona fide poem in
the form of an epic haiku—456 individual stanzas written over the course of just a
few days. Schoen, who was inspired by the clever re-creations of DeCSS compiled
in the gallery, wrote the poem to deliver a stark and clear political message. The
author asserts that source code is not a metaphor or “similar to expression” but is
expression, and he makes this point by recreating the original DeCSS program as a
poem. This bit of poetry is now well known among hackers as an exemplary hack
for it displays the cleverness that hackers collectively value.

The author opened his poem first by thanking Professor Touretzky and then
moved immediately to abandon his “exclusive rights” clause of the copyright statute,

indexing the direct influence of F/OSS licensing:

How to Decrypt a DVD: in haiku form
(Thanks, Prof. D. S. T.)

(I abandon my

exclusive rights to make or

perform copies of

this work, U. S. Code
Title Seventeen, section
One Hundred and Six.)

Muse! When we learned to
count, little did we know all

the things we could do
some day by shuffling

those numbers: Pythagoras

said “All is number”

long before he saw
computers and their effects,

or what they could do

by computation,
naive and mechanical

fast arithmetic.
441

CULTURAL ANTHROPOLOGY 24:3

442

It changed the world, it
changed our consciousness and lives

to have such fast math

available to
us and anyone who cared

to learn programming .

Now help me, Muse, for
I 'wish to tell a piece of

controversial math,

for which the lawyers
of DVD CCA

don’t forbear to sue:

that they alone should
know or have the right to teach

these skills and these rules.

(Do they understand
the content, or is it just

the effects they see?)

And all mathematics
is full of stories (just read

Eric Temple Bell);

and CSS is
no exception to this rule.

Sing, Muse, decryption

once secret, as all
knowledge, once unknown: how to
decrypt DVDs.

Here, the author first frames the value of programming in terms of mathematics
and its antagonists in the entertainment industry, IP statutes, lawyers, and judges,
all of whom use software without recognizing, much less truly understanding,
the embedded creative labor and expressive value. This critique is made explicit
through a question: “Do they understand the content, or is it just the effects they

see?”

CODE IS SPEECH

The author then launches into a very long mathematical description of the
forbidden CSS code represented in DeCSS. The expert explains the “player key”

of CSS, which is the proprietary piece that enacts the access control measures:

So this number is
once again, the player key:

(trade secret haiku?)

Eighty-one; and then
one hundred three—two times; then

two hundred (less three)

Two hundred and twenty
four; and last (of course not least)

the humble zero

The writer states the access control mathematically, but using words. From
these lines alone a proficient enough programmer can deduce the encryption key.
Thus the poem makes a similar point to the one made in the amicus brief, namely,
that “[a]t root, computer code is nothing more than text, which, like any other text,
is a form of speech. The Court may not know the meaning of the Visual BASIC or
Perl texts . . . but the Court can recognize that the code is text.”!?

The author then conveys that many F/OSS programmers conceive of their
craft as technically precise (and thus functional) yet fundamentally expressive, and
as a result worthy of free speech protection. In formally comparing code to poetry
in the medium of a poem, he displays a playful form of clever and recursive rhetoric

valued among hackers (Fischer 1999); he also articulates both the meaning of the

First Amendment and software to a general public:

We write precisely
since such is our habit in

talking to machines;

we say exactly
how to do a thing or how

every detail works.

The poet has choice
of words and order, symbols,

imagery, and use

443

CULTURAL ANTHROPOLOGY 24:3

444

of metaphor. She
can allude, suggest, permit

ambi guities.

She need not say just
what she means, for readers can

always interpret.

Poets too, despite
their famous “license” sometimes

are constrained by rules:

How often have we
heard that some strange twist of plot

or phrase was simply

“Metri causa,” for
the meter’s sake, solely done

“to fit the meter”?

Although this haiku contains novel assertions (the tight coupling between
source code and speech), it is also through its inscription into a tangible and espe-
cially a culturally captivating medium (a hack with playful and recursive qualities)
that the assertion is transformed into firm social fact. Or, to put it another way,
herewith a recondite legal argument makes its way into wide and public circulation
and consumption. This is how discourse meant for public circulation, as theorist of
publics Warner has noted, “helps to make a world insofar as the object of address
is brought into being partly by postulating and characterizing it” (2002:91).

The protests, the poetry, and the debates demonstrate how programmers and
hackers quickly became active participants in the drama of law and Free Software
in the digital age. Together, they enact what legal theorist Robert Cover describes
as a simultaneous process of subjective commitment to and objective projection of
norms, a bridging that emerges out of a narrative mode. “This objectification of
the norms to which one is committed frequently,” Cover writes, “perhaps always
entails a narrative—a story of how the law, now object, came to be, and more

importantly, how it came to be one’s own” (1992:145).

FREE DMITRY!
This narrative process, by which the law takes on a meaning to individ-

uals through a period of contentious politics, would accelerate thanks to the

CODE IS SPEECH

simultaneous (although completely unrelated) DMCA infraction and arrest of an-
other programmer, Dmitry Sklyarov. Because Sklyarov faced up to 25 years in
jail, programmers in fact only grew more infuriated with the state’s willingness
to police technological innovation and software distribution through the DMCA.
After Sklyrov’s arrest, protest against the DMCA and the hacker commitment to
a discourse of free speech only grew in emotional intensity and worked to extend
the narrative process already underway.

This case would also prove far more dramatic than Johansen’s because of the
timing and place of the arrest. Sklyarov was arrested while leaving Defcon, the
largest hacker conference. During the conference, Sklyarov had presented a paper
on security breaches and weaknesses within the Adobe e-book format. He purport-
edly violated the DMCA by writing a piece of software for his Russian employer,
Elcomsoft, that unlocks Adobe’s e-book access controls and subsequently converts
the files into the PDF format. For the FBI to arrest a programmer at the end of this
conference was a potent statement. It showed that federal authorities would act on
corporate demands to prosecute hackers under the DMCA. A description of the
social and ritual significance of the hacker conference will make this clearer.

During Defcon, hackers spend four days denying their bodies’ basic biological
needs—mnotably sleep—so they can hack, party, and play with friends they usually
interact with at length but largely only online. It is an intense, effervescent, and
thoroughly ritual affair held yearly in America’s strangest vacation playground, Las
Vegas. Serious technical talks go hand-in-hand with parties, dancing, swimming,
gambling, and games. Activities range from a three-day nonstop tournament in
which teams attempt to crack an encrypted server, to suggestions like, “hey lets
go check out Area 51 again.” (Area 51 is the secret military base notorious for its
shadowy “alien experiments.”)

FBI agents attend this conference, but there is a well-known, although tacit,
agreement that these agents, who are immediately identifiable by their L. L. Bean®
khaki attire (normal Defcon regalia leans toward black clothing, T-shirts, and body
piercings), not interfere with the hackers. Despite their presence since the ’con
beganin 1993, FBl agents had never arrested a hacker at this conference. (Typically,
any arrests were local and because of excessively rowdy and drunken behavior.)
The first ever FBI arrest of a hacker at Defcon sent a strong signal that intellectual
property infractions were now serious criminal and federal offenses. This was a
one-sided renegotiation of the relationship between legal authority and the hacker

world.

445

CULTURAL ANTHROPOLOGY 24:3

446

!'\«'

: SFﬂ'(H 7

FIGURE 1. Free Dmitry Protest in San Francisco, California. Photograph by Ed Hintz.

On July 17, 2001, as Sklyarov was leaving the conference, federal agents
whisked him away to an undisclosed jail in Nevada. Weeks later, he was released
in the middle of a fervent “Free Dmitry” campaign. Sklyarov’s arrest and related
court hearings prompted discussions built on those initiated by Johansen’s arrest
and the resultant DeCSS lawsuits, but the Free Dmitry campaign was organized
more swiftly, was more visible, and directly attacked Adobe, the company that had
urged the Department of Justice to make the arrest. Developers organized protests
across American cities (Boston, New York, Chicago, San Francisco, among others),
in Europe, as well as Russia.

San Francisco, where at the time I was doing my fieldwork, was a hub of
political mobilization. Even though Sklyarov was in no way identified with the world
of F/OSS development, local F/OSS developers were behind a slew of protest
activities, including a protest at Adobe’s San Jose headquarters, a candlelight vigil
at the San Jose public library, and a march held after Linux World on August 29,
2001, that ended up at the federal prosecutor’s office (see Figure 1).

At a fund-raiser that followed the march to the prosecutor’s office, Richard
Stallman, the founder of the Free Software Foundation, and Lessig, the superstar

activist-lawyer, gave impassioned speeches. Sklyarov, in a briefappearance, thanked

CODE IS SPEECH

the audience for their support. The mood was electric in an otherwise cool San
Francisco warehouse loft. Lessig, who had recently published his Code and Other
Laws of Cyberspace, a book that was changing the way F/ OSS developers understood
the politics of technology, fired up the already-animated crowd with charged

declarations during his speech:

Now this is America, right? It makes me sick to think this is where we are. It
makes me sick. Let them fight their battles in Congress. These million-dollar
lobbyists, let them persuade Congressmen about the sanctity of intellectual
property and all that bullshit. Let them have their battles, but why lock this
guy up for twenty-five years?

Most programmers agreed with Lessig’s assessment: The state had gone way
too far in its uncritical support of the copyright industries.

The protests had an immediate effect. Adobe withdrew its support of the case
and, eventually, the court dropped all charges against Sklyarov on the condition
that he testify in the subsequent case against his employers, which he did. In
December 2002, the jury in that case acquitted Elcomsoft. Johansen was acquitted
just over a year later because the charges against him were seen as far too shaky for
prosecution (the law he was arrested under had nothing to do with digital rights
management). Johansen still writes Free Software (including programs that subvert
DRM technologies), as well as a blog, “So Sue Me,” and is a hero among F/OSS
hackers.

The DeCSS lawsuits were decided between 2001 and 2004, and even though
the courts were persuaded that the DeCSS was a form of speech, they continued to
uphold copyright law and deemed DeCSS unfit for First Amendment protection.
In one of the 2600 cases, Universal City Studios Inc. v. Reimerdes, Judge Lewis A.
Kaplan went so far as to declare that the court’s decision meant to “contribute to
a climate of appropriate respect for intellectual property rights in an age in which
the excitement of ready access to untold quantities of information has blurred in
some minds the fact that taking what is not yours and not freely offered to you is
stealing.”14

Developers and hackers were, in general, deeply disappointed with these
decisions, which equated DeCSS with theft and were shocked about how
narrow the consequences of Bernstein turned out to be. Many developers, how-
ever, emboldened and galvanized by the collective outpouring they organized or
witnessed, continued to assert, in passionate and often considerable legal detail, a

different narrative to that of piracy and stealing.15 Indeed, these arrests, lawsuits,

447

CULTURAL ANTHROPOLOGY 24:3

448

and protests helped establish as a cultural commonplace among F/OSS developers
and hackers the connection between source code and speech. Hackers, program-
mers, and computer scientists continue to be motivated to transform what is now
their cultural reality—a rival liberal morality—into a broader legal one by arguing
that source code should be protectable speech under the U.S. Constitution and the

constitutions of other nations.

CONCLUSION

Software developers have helped reconfigure central tenets of the liberal
tradition—and specifically the meaning of free speech—to defend their productive
autonomy. Many hackers, understood to be technologists, became legal thinkers
and tinkerers, undergoing legal training in the context of the F/OSS project and
building a corpus of liberal legal theory that links software to speech and freedom.
By means of lively protest and prolific discussions, the connection between source
code and speech was debated continuously between 1999 and 2003 by hackers, as
well as new publics. It became a staple of Free Software moral philosophy and has
helped add clarity in the competition between two different legal regimes (speech
vs. IP) for the protection of knowledge and digital artifacts. Now other actors,
such as activist lawyers, are consolidating new projects and body of legal work that
challenge the shape and direction of IP law (Benkler 2006; Lessig 2001).

To be sure, the idea of free speech has never held a single meaning across the
societies that have valued, instantiated, or debated it, but it has come to be seen as
indispensable for a healthy democracy, a free press, individual self-development,
and academic integrity. It is, as one media theorist has aptly put it, “as much
cultural commonplace as an explicit doctrine” (Peters 2005:18; Streeter 2003).
This pervasiveness makes the cultural analysis of liberal precepts, such as free
speech, daunting (and always subject to important limitations), but is the reason
why it deserves our attention. F/ OSS, for example, is an ideal vehicle for examining
how and when technological objects, such as source code, are reinvested with
new liberal meanings, and with what consequences. By showing how developers
incorporate legal ideals like free speech into the practices of everyday technical
production, I trace the path by which older liberal ideals persist, albeit transformed,
into the present.

This is key to emphasize, for even if we can postulate a relation between a
product of creative work—source code—and a democratic ideal—free speech,
there is no necessary or fundamental connection between them (Ratto 2005). Many

academics and programmers have argued convincingly that the act of programming

CODE IS SPEECH

should be thought of as literary—*“a culture of innovative and revisionary close
reading” (Black 2002; see also Chopra and Dexter 2007). As with print culture of
the last 200 years (Johns 2000), this literary culture of programming has often been
dictated and delineated by a copyright regime whose logic is one of restriction.
New free speech sensibilities, which fundamentally challenge the coupling between
copyright and literary creation, must therefore be seen as a political act and choice,
requiring sustained labor and creativity to stabilize these connections.

Hackers have been in part successful in this political fight because of their
facility with the law; because of years of intensive technical training they have not
only easily adopted the law but also tinkered with it to suit their needs. This active,
transformative (and, one might say, populist) engagement with the law raises a set
of pressing questions about the current state of global politics and legal advocacy. As
Comaroffand Comaroff recently noted, the modern nation-state is one “rooted in a
culture of legality” (2004:26), a culture that in recent years has become ever more
pervasive, especially in the transnational arena. Whether it is the constitutional
recognition of multiculturalism across Latin America and parts of Africa, or new
avenues of commoditization like the patenting of seeds, these new political and
economic relationships are “heavily inscribed in the language of the law” (Comaroff
and Comaroff 2004:26). Given the extent to which esoteric legal codes dominate
so many fields of endeavor, from pharmaceutical production to financial regulation
to environmental advocacy, we must ask to what extent informal legal expertise,
of the sort exhibited by F/OSS developers, is a necessary or useful skill for social
actors secking to challenge such regimes, and where and how advocates acquire
legal literacy. We must remain alert to these amateur forms of legalism and to the
alternative social forms that they imply. What this article suggests—indeed, what
tracing out the relationship between hackers and the law suggests—is the extent
to which the thing at issue in struggles over code is not only hackers’ productive

freedom but also the very meaning of democratic citizenship.

ABSTRACT

In this essay, I examine the channels through which Free and Open Source Software
(F/0SS) developers reconfigure central tenets of the liberal tradition—and the meanings
of both freedom and speech—to defend against efforts to constrain their productive
autonomy. I demonstrate how F/OSS developers contest and specify the meaning
of liberal freedom—especially free speech—through the development of legal tools
and discourses within the context of the F/OSS project. I highlight how developers
concurrently tinker with technology and the law using similar skills, which transform

and consolidate ethical precepts among developers. I contrast this legal pedagogy with

449

CULTURAL ANTHROPOLOGY 24:3

450

more extraordinary legal battles over intellectual property, speech, and software. I
concentrate on the arrests of two programmers, Jon Johansen and Dmitry Sklyarov, and
on the protests they provoked, which unfolded between 1999 and 2003. These events
are analytically significant because they dramatized and thus made visible tacit social
processes. They publicized the challenge that F/OSS represents to the dominant regime
of intellectual property (and clarified the democratic stakes involved) and also stabilized

a rival liberal legal regime intimately connecting source code to speech.

Keywords: law, open source, intellectual property, free speech, hacking

NOTES

Acknowledgments. The research for this essay was carried out between 2001 and 2004 and was
supported by grants from the Social Science Research Council, the National Science Foundation,
and the Charlotte W. Newcombe Foundation. Over the years, Chris Kelty, Genevieve Lakier, and
Micah Anderson continually provided valuable feedback on this essay and T'am very grateful for their
support. I would also like to thank Seth Schoen and many other F/OSS developers (too many to list
here) who provided me with feedback, support, and material for this work.

Versions of this essay were presented while I was a fellow at the Center for Cultural Analysis at
Rutgers University, during the Law and Science workshop at Amherst College, and at the Franz Boas
lecture at Columbia University. I would like to thank the participants at these events for their feedback,
including Meredith McGill, Lisa Gitelman, Ellen Goodman, Greg Lastowka, Michael Warner, Paula
McDowell, Marc Perlman, Martha Umphrey, Elizabeth Povinelli, Nadia Abu El-Haj, Samir Chopra,
and Scott Dexter. Many others provided helpful comments on this work, pushing me to refine my
arguments: Jean Comaroff, John Kelty, Gary Downey, Jelena Karanovic, Fred Benenson, Benjamin
“Mako” Hill, Karl Fogel, Greg Pomerantz, Ben Kafka, Ben Peters, Alex Golub, Praveen Sinha, Alex
Choby, Joe Hankins, James Grimmelmann, and Paul Berk. I am indebted to the five anonymous
reviewers of this article and Mike and Kim Fortun for the invaluable feedback.

1. With this focus, I contribute to recent anthropological work that ties general political issues
to a long history of debate about liberalism as lived reality (Comarroff and Comaroff 2003;
Ong 2006; Povinelli 2002, 2006).

2. This comparison can only be made to do so much work. The law, being written in a natural
language, contains all sorts of nuance, assumptions, and linguistic flexibility not present in
the much more formal and rigid language of software; and of course, although programmers
can acquire legal knowledge, they do not necessarily make good lawyers, a profession that
requires many other skills on top of a formal comprehension of the law.

3. This was also the period when the counterglobalization protests were attacking the World
Trade Organization who were leading the move to “harmonize” intellectual property law.
Many of theses protests also put the issue of IP on the political map in new, more visible ways.

4. See http://www.eff.org/Privacy/Crypto_export/Bernstein_case/19990507_eff_pressrel.
html, accessed November 14, 2008.

5. See Sewell (2005), Das (2003), Sahlins (1981), and Starr (2005) for examples of how excep-
tional historical events can work to stabilize and make visible new cultural connections and
realities.

6. Despite the fact that one could us DeCSS to unlock copy controls on DVDs, the software
cannot be used to make copies of DVDs.

7. Because of this preemptive feature, a number of scholars and lawyers critique this provision as
draconian, for it obliterates the already fragile fair-use doctrine underpinning copyright law
since 1976 (Gillespie 2007; Lessig 2001; Litman 2001; Samuelson 1999; Vaidhyanathan 2001,
2004).

CODE IS SPEECH

8. See http://web.archive.org/web/20031124051048/cyber.law harvard.edu/archive/dvd-
discuss/msg00000.html, accessed November 10, 2008.
9. See http://slashdot.org/comments.pl?sid=3644&cid=1340340, accessed August 15, 2008.
10. See http://lwn.net/2000/0727/bigpage.php3, accessed November 20, 2008.
11. See http://www.pigdog.org/decss/, accessed February 5, 2009.
12, See http://www-2.cs.cmu.edu/~dst/DeCSS/Gallery/, accessed November 10, 2008.
13. See http://cryptome.org/mpaa-v-2600-bac.htm, accessed April 23, 2009.
14, Universal City Studios Inc. v. Reimerdes, 82 F. Supplement 2d 211 [2000]. This case was appealed
by one of the defendants, Eric Corley. In the subsequent case, Universal City Studios Inc. v.
Corley 273 F. Supplement 3d 429 [2001], the presiding judges also affirmed the importance of
this view in so far as they highlighted and quoted a longer version of this statement.
15. See The History of the DeCSS Haiku (Schoen 2004) for one of the most well-known examples.

Editors’ Notes: Cultural Anthropology has published a number of essays on the practices and politics
of informationalism. See particularly Brian Axel’s “Anthropology and the New Technologies
of Communication” (2006), Christopher Kelty’s “Geeks, Social Imaginaries, and Recursive
Publics” (2005), and René T. A. Lysloff’s “Musical Community on the Internet: An On-Line
Ethnography” (2003). Also see Anthropology of/in Circulation: The Future of Open Access
and Scholarly Societies, a conversation in Cultural Anthropology amongst open access advocates,
accessible online at: http://blog.culanth.org/incirculation/ .

Cultural Anthropology has also published a number of essays on the politics of law. See Damani
Partridge’s “We Were Dancing in the Club, Not on the Berlin Wall: Black Bodies, Street
Bureaucrats, and Exclusionary Incorporation into the New Europe” (2008), Heather Paxson’s
“Post-Pasteurian Cultures: The Microbiopolitics of Raw-Milk Cheese in the United States”
(2008), Tlana Feldman’s “Difficult Distinctions: Refugee Law, Humanitarian Practice, and
Political Identification in Gaza” (2007), and Sarah Jain’s “‘Dangerous Instrumentality’: The
Bystander as Subject in Automobility” (2004).

REFERENCES CITED

Axel, Brian
2006 Anthropology and the New Technologies of Communication. Cultural Anthrop-
ology 21(3):354-384.
Benkler, Yochai
2006 The Wealth of Networks. New Haven, CT: Yale University Press.
Black, Maurice J.
2002 The Art of Code. Ph.D. dissertation, Department of English, University of
Pennsylvania.
Castells, Manuel
2001 The Internet Galaxy. Oxford: Oxford University Press.
Chopra, Samir, and Scott Dexter
2007 Decoding Liberation: The Promise of Free and Open Source Software. New
York: Routledge.
Coleman, E. Gabriella
2004 The Political Agnosticism of Free and Open Source Software and the
Inadvertent Politics of Contrast. Anthropology Quarterly 77(3):507-519.
Coleman, E. Gabriella, and Alex Golub
2008 Hacker Practice: Moral Genres and the Cultural Articulation of Liberalism.
Anthropological Theory 8(3):255-277.
Cohn, Cindy, and James Grimmelmann
2003 Seven Ways in which Code Equals Law. Electronic document, http://
90.146.8.18/en/archives/festival _archive/festival_catalogs/festival _artikel.asp?
iProjectID=12315, accessed January 27, 2009.
Comaroff, Jean, and John Comaroff
2003 Reflections on Liberalism, Policulturalism, and ID-Ology: Citizenship and
Difference in South Africa. Social Identities 9(3):445-474.

451

CULTURAL ANTHROPOLOGY 24:3

452

2004 Criminal Obsessions, after Foucault: Postcoloniality, Policing, and the
Metaphysics of Disorder. Critical Inquiry (30):800—-824.
Cover, Robert
1992 Nomos and Narrative. In Narrative, Violence, and the Law: The Essays
of Robert Cover. Martha Minow, Michael Ryan, and Austin Sarat, eds. Pp. 95—
172. Ann Arbor: University of Michigan Press.
Das, Veena
2003 Critical Events. Oxford: Oxford University Press.
Ewick, Patricia, and Susan Silbey
1998 The Common Place of the Law. Chicago: University of Chicago Press.
Feldman, Ilana
2007 Difficult Distinctions: Refugee Law, Humanitarian Practice, and Political
Identification in Gaza. Cultural Anthropology 22(1):129-169.
Fischer, Michael
1999 Worlding Cyberspace: Towards a Crucial Ethnography in Time, Space, Theory.
In Critical Anthropology Now: Unexpected Context, Shifting Constituencies,
Changing Agendas. George Marcus ed. Pp. 245-304. Santa Fe: SAR Press.
Fortun, Kim
2001 Advocacy after Bhopal: Environmentalism, Disaster, New Global Orders.
Chicago: University of Chicago Press.
Galloway, Alexander R.
2004 Protocol: How Control Exists after Decentralization. Cambridge, MA: MIT
Press.
Gillespie, Tarleton
2007 Wired Shut: Copyright and the Shape of Digital Culture. Cambridge, MA: MIT
Press.
Gupta, Akhil, and James Ferguson
1997 Discipline and Practice: “The Field” as Site, Method, and Location in An-
thropology. In Anthropological Locations: Boundaries and Grounds of a Field
Science. Akhil Gupta and James Ferguson, eds. Pp. 1-46. Berkeley: University
of California Press.
Hesse, Carla
2002 The Rise of Intellectual Property, 700 B.C.—A.D. 2000: An Idea in the
Balance. Daedalus (Spring):6—45.
Himanen, Pekka
2001 The Hacker Ethic and the Spirit of the Information Age. New York:
Random House.
Jain, Sarah
2004 “Dangerous Instrumentality”: The Bystander as Subject in Automobility.
Cultural Anthropology 19(1):61-94.
Johns, Adrian
2006 Intellectual Property and the Nature of Science. Cultural Studies 20(2—
3):145-164.
2000 The Nature of the Book. Chicago: University of Chicago Press.
Kelty, Chris
2005 Geeks, Social Imaginaries, and Recursive Publics. Cultural Anthropology
20(2):185-214.
2008 Two Bits: The Cultural Significance of Free Software and the Internet.
Durham, NC: Duke University Press.
Knuth, Donald
1998 The Art of Computer Programming. 3 vols. New York: Addison-Wesley.
Latour, Bruno
1988 Pasteurization of France. Alan Sheridan and John Law, trans. Cambridge,
MA: Harvard University Press.

CODE IS SPEECH

Litman, Jessica
2001 Digital Copyright: Protecting Intellectual Property on the Internet. Amherst,
NY: Prometheus.
Lessig, Lawrence
1999 Code and Other Laws of Cyberspace. New York: Perseus.
2001 The Future of Ideas: The Fate of the Commons in a Connected World.
New York: Random House.
Lysloff, René T. A.
2003 Musical Community on the Internet: An On-Line Ethnography. Cultural
Anthropology 18(2):233-263.
Macpherson, C. B.
1962 The Political Theory of Possessive Individualism: Hobbes to Locke. Ox-
ford: Clarendon Press.
Mezey, Naomi
2001 Law as Culture. Yale Journal of Law and the Humanities 13(1):35—68.
McGill, Meredith
2002 American Literature and the Culture of Reprinting, 1834—1853. Philadel-
phia: University of Pennsylvania Press.
O’Mahony, Siobhan, and Fabrizio Ferraro
2007 The Emergence of Governance in an Open Source Community. Academy
of Management Journal 50(5):1079—1106.
Ong, Aihwa
2006 Neoliberalism as Exception: Mutations in Citizenship and Sovereignty.
Durham, NC: Duke University Press.
Partridge, Damani
2008 We Were Dancing in the Club, Not on the Berlin Wall: Black Bodies,
Street Bureaucrats, and Exclusionary Incorporation into the New Europe.
Cultural Anthropology 23(4):660—687.
Paxson, Heather
2008 Post-Pasteurian Cultures: The Microbiopolitics of Raw-Milk Cheese in
the United States. Cultural Anthropology 23(1):15-47.
Peters, John Durhman
2005 Courting the Abyss: Free Speech and the Liberal Tradition. Chicago:
University of Chicago Press.
Pfaffenberger, Bryan
1996 “If T Want It, It’'s OK”: Usenet and the (Outer) Limits of Free Speech.
Information Society 12:365—388.
Povinelli, Elizabeth
2002 The Cunning of Recognition: Indigenous Alterities and the Making of
Australian Multiculturalism. Durham, NC: Duke University Press.
2006 The Empire of Love: Toward a Theory of Intimacy, Genealogy, and
Carnality. Durham, NC: Duke University Press.
Ratto, Matt
2005 Embedded Technical Expression: Code and the Leveraging of Functionality.
Information Society 21(3):205-213.
Raymond, Eric
1999 The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. Sebastopol, CA: O’Reilly.
Riemens, Patrice
2003 Some Thoughts on the Idea of “Hacker Culture.” Multitudes 8(2). Electronic doc-
ument, http://multitudes.samizdat.net/Some-thoughts-on-the-idea-of html,
accessed January 27, 2009.
Sahlins, Marshall
1981 Historical Metaphors and Mythical Realities: Structure in the Early History
of the Sandwich Islands Kingdom. Ann Arbor: University of Michigan Press.

453

CULTURAL ANTHROPOLOGY 24:3

454

Salin, Peter
1991 Freedom of Speech in Software. Electronic document, http://www.philsalin.
com/patents.html, accessed November 12, 2003.
Samuelson, Pamela
1999 Intellectual Property and the Digital Economy: Why the Anti-Circumvention
Regulations Need to Be Revised. Berkeley Tech Law Journal 14:519-548.
Sewell, William
2005 Logics of History: Social Theory and Social Transformation. Chicago:
University of Chicago Press.
Schoen, Seth
2001 How to Decrypt a DVD: In Haiku Form. Electronic document, http://www.cs.
cmu.edu/~dst/DeCSS/ Gallery/decss-haiku.txt, accessed October 2, 2008.
2004 The History of the DeCSS Haiku. Electronic document, http://www.loyalty.
org/~schoen/haiku.html, accessed January 10, 2008.
Starr, Paul
2005 The Creation of the Media: Political Origins of Modern Communication.
New York: Basic.
Streeter, Thomas
2003 The Romantic Self and the Politics of Internet Commercialization. Cultural
Studies 17(5):648-668.
Thomas, Douglas
2002 Hacker Culture. Minneapolis: University of Minnesota Press.
Tilly, Charles, and Sidney Tarrow
2006 Contentious Politics. Boulder, CO: Paradigm.
Vaidyanathan, Siva
2001 Copyrights and Copywrongs: The Rise of Intellectual Property and How
It Threatens Creativity. New York: New York University Press.
2004 The Anarchist in the Library: How the Clash between Freedom and Con-
trol Is Hacking the Real World and Crashing the System. New York: Basic.
2006 Critical Information Studies: A Bibliographic Manifesto. Cultural Studies
20(2-3):292-315.
Wark, McKenzie
2004 A Hacker Manifesto. Cambridge, MA: Harvard University Press.
Woarner, Michael
2002 Publics and Counterpublics. New York: Zone.
Weber, Steven
2004 The Success of Open Source. Cambridge, MA: Harvard University Press.
Yngvesson, Barbara
1989 Inventing Law in Local Settings—Rethinking Popular Legal Culture. Yale
Law Journal 98(8):1689—1709.

